eCommons

 

Poset Convex-Ear Decompositions and Applications to the Flag h-Vector

Other Titles

Abstract

Possibly the most fundamental combinatorial invariant associated to a finite simplicial complex is its f-vector, the integral sequence expressing the number of faces of the complex in each dimension. The h-vector of a complex is obtained by applying a simple invertible transformation to its f-vector, and thus the two contain the same information. Because some properties of the f-vector are easier expressed after applying this transformation, the h-vector has been the subject of much study in geometric and algebraic combinatorics. A convex-ear decomposition, first introduced by Chari, is a way of writing a simplicial complex as a union of subcomplexes of simplicial polytope boundaries. When a (d−1)-dimensional complex admits such a decomposition, its h-vector satisfies, for i<d/2, hihi+1 and hihdi. Furthermore, its g-vector is an M-vector.

We give convex-ear decompositions for the order complexes of rank-selected subposets of supersolvable lattices with nowhere-zero M"obius functions, rank-selected subposets of geometric lattices, and rank-selected face posets of shellable complexes (when the rank-selection does not include the maximal rank). Using these decompositions, we are able to show inequalities for the flag h-vectors of supersolvable lattices and face posets of Cohen-Macaulay complexes.

Finally, we turn our attention to the h-vectors of lattice path matroids. A lattice path matroid is a certain type of transversal matroid whose bases correspond to planar lattice paths. We verify a conjecture of Stanley in the special case of lattice path matroids and, in doing so, introduce an interesting new class of monomial order ideals.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2008-04-21T19:54:00Z

Publisher

Keywords

Mathematics; Combinatorics; Partially ordered sets; h-vector

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record