Show simple item record

dc.contributor.authorAlessi, M. J.
dc.contributor.authorHerrera, D. A.
dc.contributor.authorEvans, C.P.
dc.contributor.authorDeGaetano, A. T.
dc.contributor.authorAult, T. R.
dc.date.accessioned2021-04-05T14:28:38Z
dc.date.available2021-04-05T14:28:38Z
dc.date.issued2021-04-05
dc.identifier.urihttps://hdl.handle.net/1813/103562
dc.descriptionPlease note that the individual .nc data files are large, and may take a long time to download.
dc.description.abstractStrengthened land-atmosphere coupling in the northeastern United States (NEUS), accompanied by a positive soil moisture-rainfall feedback, may lead to more short-term or flash droughts. Coupling between the land and atmosphere emerges when low soil moisture values limit surface latent heat flux, or evapotranspiration, so that a majority of absorbed solar radiation is emitted from the surface as sensible heat. In this study, the Weather Research and Forecasting model (WRF) was run with four prescribed soil moisture levels across seven years to elucidate the strength of land-atmosphere coupling under potential, future soil moisture states in the NEUS. Under drier soil moisture conditions, land-atmosphere coupling strengthens, and a positive soil moisture-precipitation feedback develops in all years despite differences in synoptic influx of moisture. As snowpack decreases and evaporative demand increases, antecedent soil moisture conditions may become drier in future summers over the NEUS, resulting in the more frequent development of flash droughts. This dataset supports the findings of this publication.
dc.language.isoen_US
dc.relation.isreferencedbyAlessi, M. J., Herrera, D. A., Evans, C. P., DeGaetano, A. T., Ault, T. R. (2021). Antecedent Soil Moisture Conditions Determine Land-Atmosphere Coupling Drought Risk in the Northeastern United States. Submitted to Journal of Geophysical Research: Atmospheres.
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectdrought
dc.subjectland-atmosphere coupling
dc.subjectWRF
dc.titleData from: Antecedent Soil Moisture Conditions Determine Land-Atmosphere Coupling Drought Risk in the Northeastern United States
dc.typedataset
dc.relation.isreferencedbyurihttps://doi.org/10.1029/2021JD034740
dc.identifier.doihttps://doi.org/10.7298/zx3b-2b51
schema.accessibilityFeaturereadingOrder


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, this item's license is described as Attribution 4.0 International

Statistics