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Recent observations of surface emission from isolated neutron stars (NSs) pro-

vide unique challenges to theoretical modeling of thermal radiative processes. We

construct models of thermal emission from strongly magnetized NSs in which the

outermost layer of the NS is in a condensed liquid or solid form, or is an ionized

H or He atmosphere.

We calculate the emission properties (spectrum and polarization) of NSs with

condensed Fe and H surfaces using a generalized form of Kirchhoff’s Law, in the

regimes where condensation may be possible. For smooth condensed surfaces, the

overall emission is reduced from blackbody by less than a factor of two. The

spectrum exhibits modest deviation from blackbody across a wide energy range,

and shows mild absorption features associated with the electron plasma and ion

cyclotron frequencies in the condensed matter. The roughness of the solid Fe

condensate decreases the reflectivity of the surface, making the emission spectrum

even closer to blackbody.

We provide an accurate treatment of vacuum polarization effects in magne-

tized NS atmosphere models. We treat the conversion of photon modes (due to

“vacuum resonance” between plasma and vacuum polarizations), employing both

the modal radiative transfer equations (coupled with an accurate mode conversion



probability at the vacuum resonance) and the full radiative transfer equations for

the photon Stokes parameters. We are able to quantitatively calculate the atmo-

sphere structure, emission spectra, beam patterns, and polarizations for the range

of magnetic field strengths B = 1012 − 1015 G. In agreement with previous studies,

we find that for NSs with magnetic field strengths B/2 >∼ Bl ≃ 7 × 1013 G, vac-

uum polarization reduces the widths of spectral features and softens the hard tail

of magnetized atmosphere models. For B <∼ Bl/2, vacuum polarization does not

change the emission spectra, but can affect the polarization signals.

We investigate the propagation of photon polarization in NS magnetospheres,

and show that vacuum polarization induces a unique energy-dependent linear po-

larization signature, and can generate circular polarization in the magnetospheres

of rapidly rotating NSs. We discuss the implications of our results for observations

of thermally emitting isolated NSs and magnetars, and the prospects for future

spectral and polarization studies.
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Chapter 1

Introduction

Neutron stars are a natural laboratory for studying exotic physics. Young, cool-

ing neutron stars (NSs) provide a probe into matter compressed to super-nuclear

densities. Putative NS interiors can obey a wide variety of equations of state, with

varying stiffness or unconventional phases of quark or strange matter (see, e.g.,

Lattimer & Prakash, 2001). A wide range of predicted NS cooling histories exist

due to uncertainties in neutrino production mechanisms in NS cores and ambigu-

ities in the treatment of superfluid protons and neutrons throughout the interior

(Lattimer et al., 1991; Prakash et al., 1992; Kaminker et al., 2002; Yakovlev et al.,

2004). Many NSs have strong magnetic fields (B >∼ BQ ≈ 4.4 × 1013 G, where

BQ is the quantum critical field), in which QED effects directly influence radiation

emitted from the NS surface (Gnedin et al., 1978; Ventura et al., 1979; Bulik &

Miller, 1997; Heyl & Hernquist, 1997).

While observations of non-thermal emission from isolated pulsars and mag-

netars (see below) yield important information about the structure and radiative

processes of NS magnetospheres, thermal radiation emerging directly from the sur-

face can constrain the equation of state and cooling properties of a NS. For most

observed NSs, non-thermal magnetospheric emission or the presence of accretion

in binaries complicates the interpretation of thermal spectra. Nevertheless, semi-

reliable effective surface temperatures have been derived from observational data

for several pulsars and radio-quiet central compact objects in supernova remnants

(see, e.g., Table 2 of Yakovlev & Pethick, 2004). These objects roughly fit basic

models of NS cooling without superfluidity (Fig. 1 of Yakovlev & Pethick, 2004).

1
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In addition, atmosphere modeling, coupled with identification of atomic transi-

tions or cyclotron resonance in the NS emission spectrum, yields information about

the NS M/R ratio. This information is combined with distance measurements (us-

ing parallax or identification with a star forming region) to constrain the NS radius.

For a large range of masses the group of equation of state models predict a small

range of radii that can be compared with observation (Lattimer & Prakash, 2001).

Furthermore, timing measurements of the NS rotation period and its derivative

are used to estimate the NS (dipole) magnetic field strength and characteristic

age, while phase-resolved spectroscopy provides constraints on the magnetic field

geometry and temperature distribution. Unfortunately, the procedures outlined

above are complicated by discrepancies between atmosphere calculations and ob-

servations, as well as ambiguities in the identification of spectral features.

Observations of thermal emission from isolated NSs began in the early 1980s

with the Einstein satellite, which detected thermal X-rays from several objects,

including radio pulsars 1E 2259+586, PSR 1055-52, 1E 1048.1-5937, and PSR

0656+14 (see, e.g., the review by Ogelman, 1995). The ROSAT survey of the

1990s continued the search for soft X-ray sources. Several authors predicted the

discovery of a population of old NSs accreting from the ISM (Treves & Colpi, 1991;

Blaes & Madau, 1993). ROSAT and later missions did not identify this population

of old accretors, instead locating seven dim, radio-quiet, thermal X-ray emitters,

now referred to as X-ray dim isolated NSs (XDINSs; see Treves et al., 2000).

These sources provide a unique opportunity to model thermal emission without

complications from accretion or magnetospheric emission. Another population

of NSs, the magnetars, was identified in the mid 1990s (Thompson & Duncan,

1995, 1996; Woods & Thompson, 2004). During quiescence, magnetars also emit
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uncontaminated thermal spectra and are excellent candidates for the study of NS

surfaces (see below).

In the last decade, the XMM-Newton and Chandra observatories have achieved

significant improvements in the quality and quantity of data from radio pulsars,

central compact objects in supernova remnants, XDINSs, and magnetar sources

(for recent reviews, see Pavlov et al., 2004; Woods & Thompson, 2004; Haberl,

2005). The nature of these objects, and the percentage of the overall NS popu-

lation represented by them, as well as possible evolutionary connections between

magnetars, XDINSs, and pulsars are intriguing, unsolved questions. We review

basic properties of thermal emission from these sources and highlight some of the

observational puzzles that challenge current theoretical work.

1.1 Observations of Thermal Radiation from Isolated Neu-

tron Stars

1.1.1 X-ray Dim Isolated Neutron Stars

The XDINS population consists of the seven nearby radio-quiet X-ray sources

originally identified by the ROSAT survey.1 Optical counterparts have been iden-

tified for several of these sources, and periodicity has been detected in all but two

(RX J1856.5-3754 and RX J1605.3+3249). XDINS are characterized by long pe-

riods (∼ 8.4 − 11.4 s), large X-ray to optical flux ratios [log(fX/fO) ∼ 3 − 5], and

nearly thermal soft X-ray spectra with temperatures kBT
∞
bb ∼ 50− 120 eV (where

1It has been suggested that the recently discovered population of Rotating
Radio Transients is part of, or has connections to the XDINSs (see McLaughlin
et al., 2006; Popov et al., 2006). Futher searches for isolated NS candidates are
currently underway (see, e.g., Agüeros et al., 2006).
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T∞
bb is the effective blackbody temperature measured by the observer). Proper

motion has been measured for three of the sources (Kaplan et al., 2002; Motch

et al., 2003, 2005). The nature of XDINSs is unclear at present: they could be

young cooling NSs, older NSs kept hot by accretion from the ISM, or magnetars

and their descendents (van Kerkwijk & Kulkarni, 2001; Mori & Ruderman, 2003;

Haberl, 2005), though the large proper velocities and optical observations tend to

rule out the accretion hypothesis (Treves et al., 2000; Haberl, 2005).

Spectroscopic studies of the XDINSs initially revealed featureless, blackbody

spectra (see, e.g., Paerels et al., 2001; Drake et al., 2002; Burwitz et al., 2003).

However, recent observations have identified absorption features at E ≃ 0.2 −

2 keV from at least three of the sources: RX J0720.4-3125 (Haberl et al., 2004b),

RX J1605.3+3249 (van Kerkwijk et al., 2004), RX J1308.6+2127 (Haberl et al.,

2003), and possibly RX J0806.4-4123, RX J0420.0-5022 (Haberl et al., 2004a),

and RX J2143.0+0654 (Zane et al., 2005). The equivalent widths (EWs) of these

features vary strongly across the sources despite their similar effective temperatures

(see Chapter 5). The identification of these features remains uncertain, due to

degeneracies in the spectral flux between magnetic field strength and geometry,

red shift, and the energies and EWs of electron or ion cyclotron lines and atomic

transitions of H, He, or mid-Z atoms in strong magnetic fields (Ho & Lai, 2004;

van Kerkwijk et al., 2004; Pavlov & Bezchastnov, 2005; Mori et al., 2005; Zane

et al., 2005).

Of the ROSAT sources, RX J1856.5-3754 and RX J0720.4-3125 are the best

studied. RX J1856.5-3754 was discovered by Walter et al. (1996), and observed

extensively with Chandra and XMM-Newton (for an overview, see Burwitz et al.,

2003). Its X-ray spectrum is fit by a blackbody with kBT
∞
bb ≈ 64 eV (7 × 105 K).
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No feature or variation in the X-ray flux has been detected (see the discussion in

Chapter 2). Astrometric measurements yield a distance d ≈ 120 pc (Kaplan et al.,

2002).2 The published distance and blackbody fit to the X-ray flux yields the NS

radius at infinity R∞
bb ≈ 5 km. If the emission is from the entire star surface,

this value is puzzling, as it is smaller than the allowed radii for any baryonic NS

equation of state.

A dim, thermal optical counterpart to RX J1856.5-3754 was identified by Wal-

ter & Matthews (1997). Fitting the entire spectrum with a single model is difficult,

as extrapolation of the X-ray blackbody to low energies underpredicts the optical

flux by a factor of six, while atmosphere fits to the X-ray data tend to overpredict

the optical flux (see Zavlin & Pavlov, 2002, and the references therein). A success-

ful fit to the spectrum of RX J1856.5-3754 can be achieved using a two-temperature

blackbody model (Pons et al., 2002; Burwitz et al., 2003). In this case, the X-rays

are emitted by a hot polar cap, while the optical photons emerge from the colder

bulk of the NS. While this model provides an excellent fit to the observations, it

is not obvious that this temperature profile is realistic, or why RX J1856.5-3754

emits as a perfect blackbody.

Another well-studied XDINS, RX J0720.4-3125, was identified by Haberl et al.

(1997). Subsequent studies confirmed a thermal soft X-ray component with kBT
∞
bb ≈

81 eV (9× 105 K), and identified an optical counterpart (see Haberl et al., 2004b,

and the references therein). An absorption feature was detected by Haberl et al.

(2003) at energy E ∼ 270 eV, with a phase dependent EW ∼ −40 eV. This phase

dependence is of particular interest, as the EW of the feature and the hardness

ratio of the phase-resolved spectra are anti-correlated with the pulse amplitude

2Note that a revised parallax will be available soon, correcting the distance to
d ≈ 170 pc (Kaplan, 2005).
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maximum (Haberl et al., 2004b). A blackbody fit to the X-ray portion of the

RX J0720.4-3125 spectrum underpredicts the optical flux by a factor of six, while

atmosphere fits predict an excess, as in the case of RX J1856.5-3754. Kaplan

et al. (2003) have identified a non-thermal component to the optical spectrum,

which could be due to energy dependent absorption, or emission from the mag-

netosphere. It is clear that in the case of RX J0720.4-3125, a simple blackbody

model is not sufficient to explain the optical data.

XDINS sources display great variability in their lightcurves: RX J1856.5-3754

and RX J1605+3249 show no pulsations, with pulse fractions constrained to within

<∼ 1% for the former (Burwitz et al., 2003), and <∼ 3% for the latter (van Kerkwijk

et al., 2004); RX J2143.7+0654 shows sinusoidal single-peaked pulsations (P = 9.4

s) with pulse fraction ∼ 4% (Zane et al., 2005), though this result is unconfirmed;

RX J0720-3125 shows sinusoidal single-peaked pulsations (P = 3.39 s) with pulse

fraction ∼ 11%, the spectral hardness and line width both varying with the pulse

phase (Haberl et al., 2004b); RX J0806.4-4123 and RX J0420.0-5022 show sinu-

soidal single-peaked pulsations (P = 11.4 s and P = 3.5 s) with pulse fractions

∼ 6% and ∼ 13%, respectively, the spectral hardness of the latter varying with

the pulse phase (Haberl et al., 2004a); and RX J1308+2127 shows double-peaked

pulsations (P = 10.3 s) with pulse fraction ∼ 18% (Haberl et al., 2003). Long-term

spectral variations in RX J0720.4-3125 were recently reported by de Vries et al.

(2004). This variation bears some similarity to that seen in certain AXPs, and

is as yet unexplained, though a recent paper interprets it as precession of the NS

spin axis (Haberl et al., 2006).
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1.1.2 Magnetars

Anomalous X-ray Pulsars (AXPs) and Soft Gamma-ray Repeaters (SGRs) form

two populations of isolated NSs with similar characteristics. There are five con-

firmed SGRs, all in the galactic plane (except for one source in the LMC). In

quiescence, SGRs have a thermal soft X-ray component, with kBT
∞
bb ∼ 0.5 − 0.6

keV, and a non-thermal hard X-ray power-law, with αph ∼ 2−3 (Fν ∝ ν−αph). Qui-

escent SGR luminosities range from LX ∼ 0.8−3×1035 erg s−1. Three SGRs have

confirmed pulsations, two observed during quiescence, with periods P ∼ 5 − 8 s

(Kouveliotou et al., 1998, 1999). Assuming standard magnetic dipole spin-down,

SGRs have magnetic field strengths B <∼ 1015 G. Somewhat surprisingly, the ob-

served thermal emission does not show any of the expected spectral features at

these field strengths, such as the ion cyclotron line around 1 keV.

The characteristic features of SGRs are repeating, short, soft Gamma and X-

ray bursts (with timescales ∼ 100 ms), which can have much larger luminosities

(∼ 1041 erg s−1) than the quiescent emission. The burst spectra can be fit by a non-

thermal power-law, modeled by optically thin bremsstrahlung (kBT
∞ ∼ 20 − 50

eV), and are typically harder than the quiescent spectra. (see GöğüŞ et al., 1999).

Such bursting activity can follow years of quiescent emission. Occasionally, SGRs

undergo giant bursts which achieve luminosities L > 1044 erg s−1; three such bursts

have been observed: from SGR 0525-66 in March, 1979 (Evans et al., 1979), SGR

1900+14 in August, 1998 (Cline et al., 1998), and SGR 1806-20 in December, 2004

(Hurley et al., 2005).

There are five confirmed AXPs, all in the galactic plane. In quiescence, AXPs

have a pulsed thermal soft X-ray component, with kBT
∞
bb ∼ 0.41 − 0.7 keV, and

a hard non-thermal power-law with αph ∼ 2 − 3.6. Quiescent AXP luminosities
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range from LX ∼ 1033 − 1035 erg s−1. In addition, optical and IR counterparts

to several AXPs have been discovered, as well as significant pulsed flux at ∼ 100

keV from several of the sources (Israel et al., 2004; Kuiper et al., 2004, 2006). All

AXPs are spinning down, with periods P ∼ 6 − 12 s. Assuming standard dipole

spin-down, AXPs have magnetic field strengths B ∼ 0.5 − 7 × 1014 G. As in the

SGR case, AXPs do not show any features in their thermal spectra. Recently,

SGR-like bursts have been detected from AXP sources 1E 1048.1-5937 (Gavriil

et al., 2002) and 1E 2259+586 (Kaspi et al., 2003).

SGRs and AXPs have a significantly high pulsed fraction, from 4-60% (rms)

(see Table 14.2 of Woods & Thompson, 2004). The pulsed fraction is constant over

the energy range 0.5-10 keV, while the contribution of the blackbody component

relative to the total flux varies from 0-70%. Several AXPs and SGRs are associated

with supernova remnants; for a summary of associations and inferred distances,

see Table 14.4 of Woods & Thompson (2004). For comparisons of AXP and SGR

properties, see Woods et al. (2002); Kulkarni et al. (2003); Kaspi (2004). For a

recent review of magnetar properties, see Woods & Thompson (2004).

Both SGRs and AXPs have been identified as magnetars. In the magnetar

model, the quiescent and burst luminosities are driven by the decay of super-

strong magnetic fields with B >∼ 1015 G in the NS interior (Duncan & Thompson,

1992; Paczynski, 1992; Thompson & Duncan, 1995, 1996). Several pieces of ev-

idence provide support for the magnetar hypothesis (reviewed by Kaspi, 2004):

(1) The energy required to produce SGR giant flares exceeds the energy available

from rotation by many orders of magnitude, but is plausibly produced by the re-

lease of energy confined in a large magnetic field; (2) A large magnetic field is

required to slow SGR 0525-66 to P = 8 s in 104 yrs (this age is inferred through
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association with a supernova remnant); (3) Strong magnetic fields greatly reduce

the Thomson cross-section of photon-electron scattering, allowing the observed

super-Eddington flux from giant flares to escape from the NS; (4) Magnetic fields

provide confinement of burst energy (for over several minutes) during the observed

quasi-exponential decay of giant flares; (5) Rotation is insufficient to power quies-

cent AXP emission; (6) Decay of strong magnetic fields is consistent with the low

inferred ages of AXPs from spin-down measurements; (7) AXPs exhibit bursting

behavior similar to that observed in SGRs.

Thus, a variety of indirect evidence supports the hypothesis that magnetar

sources are endowed with magnetic fields B >∼ 1015 G, though there are currently

no direct observations of these large fields. Recent observations of radio pulsars

with magnetic fields strengths slightly less than those of the magnetar population

demonstrate that the former sources are rotation-powered (i.e., their luminosities

are less than the energy budget available from NS spin; see, e.g., McLaughlin et al.,

2003). Therefore, magnetars and pulsars are differentiated by more than just the

strength of their magnetic fields. One possibility is that they also differ in magnetic

field structure; while magnetars may have the same dipole magnetic field as high

field radio pulsars, they may in addition have a stronger quadrupole component.

Due to these uncertainties, the development of independent methods to mea-

sure properties of magnetar magnetic fields is extremely important. One promising

method is the identification of transient spectral features, which have been observed

during outburst in AXPs 1RXS J170849-400910 (Rea et al., 2003), and 1E 1048.1-

5937 (Gavriil et al., 2002), and SGRs 1806-20 (Ibrahim et al., 2002, 2003), and

1900+14 (Strohmayer & Ibrahim, 2000). Identification of these features with pro-

ton cyclotron resonance implies magnetic field strengths roughly consistent with
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those calculated from dipole spin-down, nevertheless, identification of these fea-

tures remains ambiguous.

1.1.3 Pulsars and Central Compact Objects

The spectra of a number of radio pulsars (e.g., PSR B1055-52, B0656+14, Geminga

and Vela) are observed to possess thermal components that can be attributed to

emission from NS surfaces and, in some cases, heated polar caps (Becker & Pavlov,

2002). Phase-resolved spectroscopic observations constrain the surface magnetic

field geometry and emission radius of the pulsar (see Caraveo et al., 2004; De Luca

et al., 2005; Jackson & Halpern, 2005). The thermal emission from most radio

pulsars is fit well by a blackbody, and is featureless (see, e.g., Marshall & Schulz,

2002).

Chandra has also uncovered a number of compact sources in supernova rem-

nants with spectra consistent with thermal emission from NSs (see Pavlov & Za-

vlin, 2003), from which useful constraints on NS cooling physics have been ob-

tained (Slane et al., 2002; Yakovlev & Pethick, 2004). A particularly interesting

object is 1E 1207.4-5209, an isolated X-ray source lying in the supernova remnant

G296.5+10.0. Timing studies have uncovered pulsations with P = 0.424 s (Zavlin

et al., 1998), and an inferred magnetic field strength of B ∼ 3 × 1012 G (Pavlov

et al., 2002). Successful fits to the spectrum of 1E 1207.4-5209 have been achieved

with both blackbody and H atmosphere models (Mori et al., 2005). 1E 1207.4-5209

is unique among isolated NSs in that it has two confirmed absorption features in its

spectrum, at 0.7 and 1.4 keV (Sanwal et al., 2002; Mori & Hailey, 2003; Mori et al.,

2005). Several possible interpretations of these features include atomic transitions

of singly-ionized He in a NS atmosphere with B ∼ 1014 G (Sanwal et al., 2002),
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transitions of mid-Z oxygen or neon in a B ∼ 1012 G field (Mori & Hailey, 2002),

or transitions of high-Z metals at B ∼ 1012 G.

1.2 This Work

As discussed above, many fundamental questions about isolated NSs remain unan-

swered: What are the natures of XDINSs and magnetars and are there evolutionary

connections between them? Why is the emission from RX J1856.5-3754 featureless

and without pulsation? Can a unifying picture be developed to explain the ab-

sorption lines from XDINSs? What differentiates magnetars from high-field radio

pulsars? Can the strength of magnetar magnetic fields be observed directly? For

progress to be made, reliable models of thermal emission from NS surfaces must be

developed. The goal of this dissertation is to provide new, more accurate models

of NS thermal emission which can be used to better understand the observational

data. The dissertation is organized as follows: Chapter 2 discusses thermal emis-

sion from the condensed surface of a magnetized NS; Chapter 3 contains a new,

quantitative treatment of vacuum polarization effects in NS atmosphere modeling;

Chapter 4 uses these models to calculate the observed polarization signal from a

rotating NS hotspot, including a new calculation of circular polarization gener-

ated in the NS magnetosphere; and Chapter 5 discusses the implications of our

calculations to observations of isolated NSs.



Chapter 2

Condensed Surfaces of Strongly

Magnetized Neutron Stars

With the exception of 5-6 sources, the thermal spectra of many isolated NSs are

featureless and well fit by a blackbody. As discussed above, deep observations with

Chandra and XMM-Newton show that the soft X-ray (0.15-1 keV) spectrum of the

XDINS RX J1856.5−3754 (Walter et al., 1996) can be fit with an almost perfect

blackbody at kBT
∞
bb = 64 eV (e.g., Drake et al., 2002; Burwitz et al., 2003). The

optical data of RX J1856.5−3754 is well represented by a Rayleigh-Jeans spectrum,

but the observed flux is a factor of 7 higher than the extrapolation from the X-ray

blackbody (see Pons et al., 2002). Thus, the spectrum of RX J1856.5−3754 is

best fit by a two-temperature blackbody model. Using this model as well as the

observational upper limit (1.3% at 2σ) of X-ray pulsation (Burwitz et al., 2003),

Braje & Romani (2002) obtained several constraints on the viewing geometry,

mass-to-radius ratio, and temperature distribution. Another well-studied, XDINS,

RX J0720.4−3125, also shows an X-ray spectrum fit by a blackbody at T∞
bb ≃

1 MK (Paerels et al. 2001; but see Haberl et al. 2004b for identification of spectral

features).

The featureless, and in some cases “perfect” blackbody spectra observed in

isolated NSs are puzzling. This is because a NS atmosphere, like any stellar atmo-

sphere, is not a perfect blackbody emitter due to its non-grey photon opacities. On

the one hand, a heavy-element (e.g., Fe) atmosphere would produce many spectral

lines in the X-ray band (Rajagopal & Romani, 1996; Pons et al., 2002). On the

other hand, a light-element (H or He) atmosphere would result in an appreciable

12
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hard tail relative to blackbody (Shibanov et al., 1992).

One physical effect that may help explain the observations is vacuum polar-

ization. The treatment of vacuum polarization in NS atmosphere modeling is

discussed in Chapter 3.

Recently, several groups have suggested that the spectrum of RX J1856.5−3754

might be explained if the NS has a condensed surface with no atmosphere above

it (Burwitz et al., 2001, 2003; Mori & Ruderman, 2003; Turolla et al., 2004).

The notion that an isolated magnetic NS has a condensed surface was first put

forward in the 1970s (see Ruderman, 1971; Flowers et al., 1977), although these

early studies overestimated the cohesive energy of solid Fe at B ∼ 1012 G. Revised

calculations yield a much smaller cohesive energy (Mueller, 1984; Jones, 1986;

Neuhauser et al., 1987; Medin & Lai, 2006) making condensation unlikely for most

observed NSs. Lai & Salpeter (1997) studied the phase diagram of a NS H surface

layer and showed that for strong magnetic fields, if the surface temperature is below

a critical value (which is a function of the magnetic field strength), the atmosphere

can undergo a phase transition into a condensed state (see also Lai, 2001). For

B >∼ 1014 G, this may occur for temperatures as high as 106 K. This raises the

possibility that the thermal radiation is emitted directly from the metal surface of

the NS.

The thermal emission from condensed Fe surfaces of magnetic NSs was pre-

viously studied by Brinkmann (1980) (see also Itoh, 1975; Lenzen & Truemper,

1978) and shown to produce a rough blackbody with reduced emissivity and a

spectral feature at the electron plasma energy. For the temperatures and magnetic

fields considered by Brinkmann (T >∼ 107 K and B = 1012−13G, appropriate for

accreting X-ray pulsars), the Fe surface is not expected to be in the condensed
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state. However, at the lower temperatures appropriate for XDINSs, or for the

higher magnetic field strengths in magnetars, condensation remains a possibility

(see Lai, 2001; Medin & Lai, 2006).

Motivated by recent observations of XDINSs, we calculate the emissivity of

condensed Fe or H surfaces of magnetic NSs in the regime where we expect con-

densation might be possible. Our study goes beyond previous work (Brinkmann,

1980; Turolla et al., 2004) in that we calculate both the spectrum and polarization

of the emission, and provide a more accurate treatment of the dissipative effect

and transmitted radiation. In previous works, the ions have been treated as fixed;

while the exact dielectric tensor of the condensed matter is currently unknown, we

also consider the alternate limit of free ions (see §2.1.2).

Regardless of how the effect of ions in the dielectric tensor is treated, we find ap-

preciable difference between our result and that of Turolla et al. (2004). We traced

the difference to their neglect of the ion effect, and their “one-mode” treatment of

the transmitted radiation in the low-energy regime (see §2.3.1).

2.1 Condensed Surface of Magnetic Neutron Stars

2.1.1 Condition for Condensation

It is well known that strong magnetic fields can qualitatively change the proper-

ties of atoms, molecules and condensed matter. For B ≫ B0 = Z2e3m2
ec/h̄

3 =

2.35Z2 × 109 G (where Z is the nuclear charge number), the electrons in an atom

are confined to the ground Landau level, and the atom is elongated, with greatly

enhanced binding energy. Covalent bonding between atoms leads to linear molec-

ular chains, and interactions between molecular chains can lead to the formation
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of three-dimensional condensed matter (for a recent review, see Lai, 2001).

The phase diagram of H has been studied under a variety of conditions. Lai

& Salpeter (1997) showed that in strong magnetic fields, there exists a critical

temperature Tcrit below which a phase transition from the gaseous to condensed

state occurs, with kTcrit about 10% of the cohesive energy of the condensed H.

Thus, Tcrit ∼ 8 × 104, 5 × 105, 106 K for B = 1013, 1014, 5 × 1014 G (Lai, 2001;

Medin & Lai, 2006). An analogous “plasma phase transition” was also obtained

in an alternative thermodynamic model for magnetized H plasma (Potekhin et al.,

1999). While this model is more restricted than Lai & Salpeter (1997) in that it

does not include long Hn chains, it treats more rigorously atomic motion across

the strong B field and Coulomb plasma nonideality. In the Potekhin et al. (1999)

model, the density of phase separation is roughly the same as in Lai & Salpeter

(1997) (see eq. [2.1] below), but the critical temperature is several times higher.

Thus, Tcrit is probably uncertain by a factor of a few. However, there is no question

that for T <∼ Tcrit/2, the H surface of the NS is in the form of a condensed metallic

state with negligible vapor above it.

For heavy elements such as Fe, no such systematic characterization of the phase

diagram has been performed. Calculations so far have shown that at 1012−1013 G,

a linear chain is unbound relative to individual atoms for Z >∼ 6 (Jones, 1986;

Neuhauser et al., 1987; Medin & Lai, 2006) — contrary to earlier expectations

(Flowers et al., 1977).1 Therefore chain-chain interactions play a crucial role in

determining whether 3D zero-pressure condensed matter is bound or not. Numer-

ical results of Jones (1986), together with approximate scaling relations suggest

an upper limit of the cohesive energy (for Z >∼ 10) is Qs <∼ Z9/5B
2/5
12 eV, where

1For sufficiently large B, when B ≫ 1014(Z/26)3 G, we expect the linear chain
to be bound in a manner similar to the H chain (Lai, 2001).
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B12 = B/(1012 G). Thus for Fe, the critical temperature for phase transition is

Tcrit <∼ 0.1Qs/k <∼ 105.5B
2/5
12 K (Lai, 2001).

The zero-pressure density of the condensed matter can be estimated as

ρs ≃ 560 η AZ−3/5B
6/5
12 g cm−3, (2.1)

where A is the mass number of the ion (A ≈ 1.007 for H, A ≈ 55.9 for Fe),

and η = 1 corresponds to the uniform electron gas model in the Wigner-Seitz

approximation (Kadomtsev, 1970). Other effects (e.g., the Coulomb exchange

interaction, or non-uniformity of the electron gas) can reduce the density by up

to a factor of ∼ 2, and thus η may be as small as 0.5 (Lai, 2001; Potekhin &

Chabrier, 2004). In our calculations below, we assume η = 1. The condensate will

be in the liquid state when the Coulomb coupling parameter Γ = (Ze)2/(aikT ) =

0.227Z2(ρ1/A)1/3/T6 < Γm. Here, ai is the ion sphere radius (ni = (4πa3
i /3)−1,

where ni is the number density of ions), ρ1 = ρs/(1 g cm−3), T6 = T/(106 K), and

Γm is the characteristic value of Γ at which the Coulomb crystal melts. In the

one-component plasma model (i.e., classical ions on the background of the uniform

degenerate electron gas), Γm = 175, but electron gas non-uniformity (electron

screening) introduces a dependence of Γm on ρ and Z; Γm is typically within the

range Γm ∼ 160–190 (Potekhin & Chabrier, 2000). From equation (2.1) we obtain

Γ ≃ 1.876 η1/3Z9/5B
2/5
12 /T6 at the condensed surface. Therefore, the surface will

be solid when T < 7 × 104η1/3(175/Γm)B
2/5
14 K for H (where B14 = B/1014 G)

and T < 4 × 106η1/3(175/Γm)B
2/5
12 K for Fe. Therefore, if condensation occurs

(T < Tcrit), we expect the Fe condensate to be solid. Note that we use the simple

melting criterion above for the condensed phase only. It cannot be used for non-

condensed iron at T <∼ 107 K (e.g., when T is only slightly above Tcrit) because in

this case the state of matter is affected by partial ionization.
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2.1.2 Dielectric Tensor of Condensed Matter

The emissivity of the condensed NS surface depends on its dielectric properties.

As a first approximation, we use the free electron gas model to determine the

(complex) dielectric tensor for condensed matter (Ashcroft & Mermin, 1976). In

the coordinate system with magnetic field B along the z-axis, the dielectric tensor

takes the form (cf. Ginzburg 1970)2

[

ǫ
]

ẑ=B̂
=













ǫ i g 0

−i g ǫ 0

0 0 η













, (2.2)

where

ǫ± g ≃ 1 − ve

(1 ± u
1/2
e )(1 ∓ u

1/2
i ) + i γ

(tr)
ei

, (2.3a)

η ≃ 1 − ve

1 + i γ
(l)
ei

. (2.3b)

In eqs. (2.3), the dimensionless quantities ue = (EBe/E)2, ui = (EBi/E)2, ve =

(Epe/E)2 are used, where E = h̄ω is the photon energy, EBe, EBi are the electron

and ion cyclotron energies, and Epe is the electron plasma energy. These energies

take the values:

EBe =
h̄eB

mec
= 1158B14 keV, (2.4a)

EBi =
h̄ZeB

mic
= 0.635B14

(

Z

A

)

keV, (2.4b)

Epe =

(

4πh̄2e2ne

me

)1/2

= 0.0288

(

Z

A

)1/2

ρ
1/2
1 keV

= 10.8 η1/2Z1/5B
3/5
14 keV, (2.4c)

2See also Lai & Ho 2003a. Note that eq. (13) of Lai & Ho 2003a is incorrect:
γ±ei should simply be γei(1 + Zme/Amp). We neglect the factor 1 + Zme/Amp in
eq. (2.3a) since it provides a negligible correction relative to the uncertainty in the
collisional damping (see §2.3).



18

where ne is the electron number density, mi is the ion mass, and we have substituted

eq. (2.1) for ρ. The collisional damping is calculated for transverse and longitudinal

motions with respect to the magnetic field. The dimensionless damping rates γ
(tr)
ei

and γ
(l)
ei are obtained from the collisional damping rates ν

(tr)
ei and ν

(l)
ei (see §2.1.3)

through γ
(tr)
ei = h̄ν

(tr)
ei /E and γ

(l)
ei = h̄ν

(l)
ei /E.

Equations (2.3) give the elements of the dielectric tensor for a cold, magnetized

plasma. While the expressions were derived classically, the quantum calculation,

incorporating the quantized nature of electron motion transverse to the magnetic

field, yields identical results (Canuto & Ventura, 1972; Pavlov et al., 1980). More

significantly, the expressions (2.3) assume that the electrons and ions are subject

to the pairwise Coulomb attraction, the interaction with the stationary magnetic

field, and the periodic force from the propagating electromagnetic wave. At high

densities, however, other interactions can also be important. For instance, the ions

are strongly coupled to each other when the Coulomb parameter Γ is large. It is

this coupling that leads to the liquid-solid phase transition mentioned in §2.1.1. It

has been suggested by Turolla et al. (2004) that in the solid phase the ion motion

should be frozen (by setting the ion mass mi = ∞), however, this treatment is

not exactly correct. It is known that optical modes of a crystal lattice (at B = 0)

can be derived from a polarizability of the form given by equation (2.3) with an

additional term in the denominator which specifies the binding of the ions (see,

e.g., Ziman, 1979). According to the harmonic model of the Coulomb crystal

(Chabrier, 1993), the characteristic ion oscillation frequency (the Debye frequency

of acoustic phonons) is ωD ≈ 0.4Epi/h̄, where Epi = 6.75 × 10−4 (Z/A) ρ
1/2
1 keV is

the ion plasma energy. The magnetic field appreciably affects the motion of the

ions in the Coulomb crystal if h̄ωD/EBi <∼ 1 (or Epi <∼ EBi, see Usov et al. 1980).
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From eqs. (2.4) we find h̄ωD/EBi ≈ 1.6η1/2A1/2Z−0.3B−0.4
14 , which shows that the

magnetic forces on the ions are not completely negligible compared to the Coulomb

lattice forces.

Needless to say, our current understanding of condensed matter in strong mag-

netic fields is crude, and equations (2.3) are only a first approximation to the true

dielectric tensor of the magnetized medium. In our calculations below, in addi-

tion to the case of of quasi-free ions described by eqs. (2.3), we will also consider

the case where the motion of the ions is neglected (formally obtained by setting

mi = ∞). It is reasonable to expect that, in reality, the surface radiation spectra

lie between the results obtained for these two limiting cases. Nevertheless, future

work is needed to evaluate the reliability of our results at low frequencies.

2.1.3 Collisional Damping Rate in Condensed Matter

For the collisional damping rates γ
(l,tr)
ei , different approximations can be used in

different ranges of frequency ω and density ρ. For E ≫ Epe, the electron-ion colli-

sions are considered to be independent, and γ
(l,tr)
ei are determined by the effective

rates of free-free transitions of a single electron-ion pair. However, this approxi-

mation fails for E <∼ Epe, where collective effects become important and electron

degeneracy in the condensed surface should be taken into account. In general, the

complex dielectric tensor ǫ for arbitrary ω can be obtained from kinetic theory,

at least in principle (see, e.g., Ginzburg, 1970). Since such an expression for ǫ is

presently unknown, we shall approximate γ
(l,tr)
ei in the E <∼ Epe regime using the

result of Potekhin (1999), who obtained the zero-frequency conductivity tensor

for degenerate Coulomb plasmas (liquid and solid) in arbitrary magnetic fields.

Specifically, we set ν
(l)
ei = 1/τ‖, ν

(tr)
ei = 1/τ⊥, where τ‖ and τ⊥ are the effective
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collision times given by eqs. (28) and (39) of Potekhin (1999), respectively. Figure

2.1 shows h̄ν
(tr)
ei and h̄ν

(l)
ei as a function of magnetic field strength for a condensed

Fe surface at T = 106 K, over the range B = 1012 − 1014 G.

The calculations of ν
(l)
ei and ν

(tr)
ei adopted in our paper neglect the influence of

the magnetic field on the motion of the ions. Therefore, these calculations apply

only in the ui → 0 limit (this corresponds to the “fixed” ion limit of §2.1.2), or to

the regime E ≫ EBi. We note, however, that the emissivity at E <∼ EBi does not

depend sensitively on the damping rates (see §2.3; in particular, Fig. 2.2 shows that

the emissivity at such low energies is almost the same with or without damping).

Thus, unless the true values of ν
(l)
ei , ν

(tr)
ei at such low energies are many orders

of magnitude larger than our adopted values, our emissivity results will not be

affected by this uncertainty (indeed, as discussed in §2.1.2, the main uncertainty

at such low energies lies in whether to treat the ions as “free” or “fixed”).

2.2 Emission From Condensed Matter: Method

We consider the regime where a clear phase separation occurs at the NS surface

(i.e., for T at least a few times lower than Tcrit), so that the vapor (gas) above the

condensed surface has negligible density and optical depth to photons. In this case

the radiation emerges directly from the condensed matter.

2.2.1 Kirchhoff’s Law for a Macroscopic Object

A macroscopic body at temperature T produces an intrinsic thermal emission,

with specific intensity I
(e)
ν . To calculate this intensity, consider the body placed

inside a blackbody cavity also at temperature T . The body is in thermodynamic

equilibrium with the surrounding radiation field, which has an intensity given by
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Figure 2.1: Transverse and longitudinal damping rates h̄ν
(tr)
ei and h̄ν

(l)
ei as a function

of magnetic field strength B = 1012B12G for a condensed Fe surface at T = 106 K.

The density is calculated using eq. (2.1), with η = 1.
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the Planck function Bν(T ). Imagine a ray of the cavity radiation impinging on a

surface element dA of the body. The radiation field is unpolarized, and the electric

field of the incoming ray can be written in terms of two independent polarization

states: E
(i)
1 = Ae

(i)
1 and E

(i)
2 = Ae

(i)
2 , where A =

√

Bν/2, and e
(i)
1 and e

(i)
2 are

the polarization eigenvectors of the incident wave. The ray is, in general, partially

reflected, with each incoming polarization giving rise to a reflected field:

E
(r)
1 = A

(

r11e
(r)
1 + r12e

(r)
2

)

, (2.5a)

E
(r)
2 = A

(

r21e
(r)
1 + r22e

(r)
2

)

, (2.5b)

where E
(r)
1 and E

(r)
2 are the reflected electric fields due to incoming fields E

(i)
1

and E
(i)
2 , respectively. Thus, the intensity of radiation in the reflected field with

polarizations e
(r)
1 and e

(r)
2 is:

I
(r)
ν1 =

1

2

(

|r11|2 + |r21|2
)

Bν ≡ 1

2
R1Bν , (2.6a)

I
(r)
ν2 =

1

2

(

|r12|2 + |r22|2
)

Bν ≡ 1

2
R2Bν . (2.6b)

The energy in the incoming wave for a frequency band ν → ν + dν during time dt

is Bν dAdΩ
(i) dν dt, where dΩ(i) is the solid angle element around the direction of

the incoming ray. Similarly, the energy contained in the reflected wave (for each

polarization) is (1/2)R1,2Bν dAdΩ
(r) dν dt, with dΩ(r) = dΩ(i). To insure that

the cavity radiation field remains an unpolarized blackbody, the intensities of the

radiation emitted by the body (in the same direction as the reflected wave) with

polarizations e
(r)
1 and e

(r)
2 must be:

I
(e)
ν1 =

1

2
Bν − I

(r)
ν1 =

1

2
(1 −R1)Bν , (2.7a)

I
(e)
ν2 =

1

2
Bν − I

(r)
ν2 =

1

2
(1 −R2)Bν . (2.7b)

Since I
(e)
ν1 and I

(e)
ν2 are intrinsic properties of the body, these equations should also

apply even when the body is not in thermodynamic equilibrium with a blackbody



23

radiation field. Thus, a body at temperature T has emission intensity

I(e)
ν = (1 −R)Bν(T ) ≡ JBν(T ) (2.8)

where R ≡ (1/2)(R1 + R2) is the reflectivity, and J = 1 − R is the dimensionless

emissivity. The degree of linear polarization of the emitted radiation is

P ≡ I
(e)
ν1 − I

(e)
ν2

I
(e)
ν1 + I

(e)
ν2

=
1

2

R2 −R1

1 −R
. (2.9)

2.2.2 Calculation of Reflectivity

To calculate the reflectivity R, we set up a coordinate system as follows: the surface

lies in the xy plane with the z-axis along the surface normal. The external magnetic

field B lies in the xz plane, with B̂× ẑ = sin θBŷ, where θB is the angle between B̂

and ẑ. Consider a ray (of given polarization, e
(i)
1 or e

(i)
2 ) impinging on the surface,

with incident angle θ(i) and azimuthal angle ϕ, such that the unit wave vector

k̂(i) = (− sin θ(i) cosϕ,− sin θ(i) sinϕ,− cos θ(i)). The transmitted (refracted) and

reflected rays lie in the same plane as the incident ray. Our goal is to calculate the

field associated with the reflected ray.

Outside the condensed medium (z > 0), the dielectric and permeability tensors

are determined by the vacuum polarization effect with ǫ = aI + qB̂B̂ and µ−1 =

aI + mB̂B̂, where a, q,m are dimensionless functions of B (see Ho & Lai, 2003,

and the references therein). Since a ∼ 1 and |q|, |m| ≪ 1 for B ≪ 5× 1016 G, the

vacuum polarization effect is negligible. In our calculation (Appendix A), we choose

e
(i)
1

(

and e
(r)
1

)

to be along the incident plane and e
(i)
2

(

and e
(r)
2

)

perpendicular to

it.

Consider an incident ray with E(i) = E
(i)
1 = Ae

(i)
1 . The E-field of the reflected
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ray takes the form given by eq. (2.5a), while the transmitted wave has the form:

E(t) = E
(t)
1 = A

(

t11e
(t)
1 + t12e

(t)
2

)

. (2.10)

The eigenvectors of the transmitted wave, e
(t)
1 and e

(t)
2 , depend on the refraction

angles, θ
(t)
1 and θ

(t)
2 , respectively; note that in general, these angles are complex

and distinct from each other. The refraction angle θ
(t)
j , the mode eigenvector e

(t)
j

and the corresponding index of refraction n
(t)
j (j = 1, 2) satisfy Snell’s law

sin θ(i) = n
(t)
j sin θ

(t)
j , (2.11)

and the mode equation3

[

ǫ + (n
(t)
j )2

(

k̂
(t)
j k̂

(t)
j − I

)]

· E(t)
j = 0, (2.12)

where I is the unit tensor, and k̂
(t)
j = (− sin θ

(t)
j cosϕ,− sin θ

(t)
j sinϕ,− cos θ

(t)
j ) is

the unit wavevector of the transmitted waves.

In the xyz coordinate system, the rotated dielectric tensor takes the form:

[

ǫ
]

=













ǫ cos2 θB+η sin2 θB ig cos θB (ǫ−η)sin θB cos θB

−ig cos θB ǫ −ig sin θB

(ǫ− η) sin θB cos θB ig sin θB ǫ sin2 θB + η cos2 θB













(2.13)

For eq. (2.12) to have a non-trivial solution, the determinant of the matrix ǫ +
(

n
(t)
j

)2 (

k̂
(t)
j k̂

(t)
j − I

)

must be equal to zero. This gives an equation involving

powers of n
(t)
j , sin θ

(t)
j , and cos θ

(t)
j . Substituting eq. (2.11) into this equation, and

squaring both sides yields a fourth-order polynomial in
(

n
(t)
j

)2

, which allows for

the determination of the indices of refraction (see Appendix A.1 for more details).

3The vacuum polarization effect is neglected in eq. (2.12), which is justified
because the density of the condensed medium is much larger than the vacuum
resonance density, ρV ≃ 0.96(A/Z)B2

14(E/keV)2 g cm−3 (see Lai & Ho, 2002).
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Having determined n
(t)
j , eq. (2.12) can be used to calculate e

(t)
j , while eq. (2.11)

gives θ
(t)
j . Once θ

(t)
j , e

(t)
j and n

(t)
j are known, r11, r12, t11 and t12 can be obtained

using the standard electromagnetic boundary conditions:

∆D · ẑ = 0, ∆B · ẑ = 0, ∆E × ẑ = 0, ∆H × ẑ = 0, (2.14)

where, e.g., ∆E ≡ E(i) + E(r) − E(t), D(t) = ǫ · E(t), and

H(t) = B(t) = A
(

n
(t)
1 t11 k̂

(t)
1 × e

(t)
1 + n

(t)
2 t12 k̂

(t)
2 × e

(t)
2

)

, (2.15)

neglecting the vacuum polarization effect (µ ≃ I). Note that eqs. (2.14) are not

all independent, and only ∆E× ẑ = 0 and ∆B× ẑ = 0 are used in our calculation.

A similar procedure applies in the case when the incident wave is E(i) = E
(i)
2 =

Ae
(i)
2 , yielding the reflection coefficients r21 and r22 (together with t21, and t22).

2.3 Emission from Condensed Surface: Results

In this section, we present the results of our surface emission calculations for three

illustrative cases: Fe surfaces at B = 1012 G and 1013 G, and a H surface at 1014 G.

As discussed in §2.1.1, the condensation temperature for these cases is around

106 K. Note that the dimensionless emissivity J = 1 − R [see eq. (2.8)] depends

weakly on T through the collisional damping rate (§2.1.3). For concreteness, we

set T = 106 K in all our calculations. Figures 2.2–2.4 show the emissivity J as a

function of photon energy E for the three cases; in each, the B field is assumed

to be normal to the surface (θB = 0). In all three cases, the emissivity is reduced

(compared to blackbody) at low energies, and approaches unity for E > a few×Epe.

For the case of Fe, there are features associated with the ion cyclotron energy EBi

and the electron plasma energy Epe. For H, the electron plasma energy is too high
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to be of interest for observation, but the feature around the ion cyclotron energy

is evident.

The spectral feature in the emissivity J near EBi can be understood by con-

sidering the special case of normal incidence (θ(i) = 0). In this case the reflectivity

takes the analytic form:

R =
1

2

∣

∣

∣

∣

n1 − 1

n1 + 1

∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

n2 − 1

n2 + 1

∣

∣

∣

∣

2

, (2.16)

where n1 and n2 are the indices of refraction of the two modes in the medium,

and are given by n2
1 = ǫ+ g, n2

2 = ǫ− g. Consider energies around EBi, such that

ve, ue ≫ 1. We find

n2
1,2 ≈ 1 ∓ ve(1 ∓ u

1/2
i )

u
1/2
e (1 ∓ u

1/2
i )2 + (γ

(tr)
ei )2

+i
veγ

(tr)
ei

ue(1 ∓ u
1/2
i )2 + (γ

(tr)
ei )2

. (2.17)

Although γ
(tr)
ei can be greater than unity (see Fig. 2.1), a qualitative understanding

of the spectral features can be achieved by neglecting the imaginary part of n2
1,2,

since ve/ue ≪ 1 [see eq. (2.4)]. Then eq. (2.17) becomes

n2
1,2 ≈ 1 ∓ ve

u
1/2
e (1 ∓ u

1/2
i )

(2.18)

For E < EBi (ui > 1), both n1 and n2 are real and differ from unity, leading to

J < 1. For E > EBi, n1 is imaginary until (ve/u
1/2
e )(1− u

1/2
i )−1 < 1, which occurs

at

EC ≈ EBi + E2
pe/EBe. (2.19)

Thus, for EBi < E < EC , n2
1 increases from −∞ to 0 (implying no mode propa-

gation in the medium), giving rise to the broad depression in J (with J → 0.5 as

the energy nears EC).
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Figure 2.2: Dimensionless emissivity as a function of photon energy for a condensed

Fe surface, at B = 1012 G. The B field is normal to the surface. The different

curves correspond to different angles θ(i) between the incident photon direction and

surface normal. The short-dashed-dotted line shows the result when the collisional

damping is set to zero in the plasma dielectric tensor. The other light lines show

the results when ion motion is neglected for two values of θ(i) (by setting the ion

mass to ∞; see §2.1.2). The three vertical lines denote the ion cyclotron energy

EBi, the electron plasma energy Epe [see eq. (2.4)] and Ec [eq. (2.19)].
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Figure 2.3: Same as Fig. 2.2, except for B = 1013 G.
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Figure 2.4: Same as Fig. 2.2, except for a H surface at 1014 G.
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We can similarly understand the feature near the electron plasma energy. This

feature appears only for θ(i) 6= 0. For energies around Epe, ue ≫ 1, ui ≪ 1, and

we have ǫ ≈ 1+ ve/ue and g ≈ −ve/u
1/2
e . Substituting these values into (2.12) and

neglecting terms to order ve/ue and higher, we find

n2
1 ≈ 1 +

ve

(1 − ve)
sin2 θ(i), n2

2 ≈ 1. (2.20)

For E > Epe, both n1 and n2 are real, while for E < Epe, n
2
1 < 0. The reflectivity

no longer takes the simple analytic form of (2.16). However, the basic behavior

of the reflectivity is similar to the case of normal incidence: for one mode with

imaginary n and the other with n ≈ 1, the emissivity J attains a local minimum

(≃ 0.5 in the absence of collisional damping; see Fig. 2.2).

When calculating the emissivity, it is clear that the inclusion of the ion terms

in eqs. (2.3) for the elements of the dielectric tensor can qualitiatively change

the emission spectrum at low energies (see Figs. 2.2–2.7). As discussed in §2.1.2,

complete neglect of ion effects is not justified; while the exact dielectric tensor is

currently unknown, the true spectra should lie between the two limiting cases we

present here. Without the ion terms, the broad feature around EBi is replaced by

a stronger depression of J at low energies, up to E ∼ EC . At high energies, the

ion effect is unimportant.

Figures 2.5 and 2.6 give some examples of our numerical results for the cases

when the magnetic field is not perpendicular to the surface (i.e., θB 6= 0). In these

cases the emissivity J is no longer symmetric with respect to the surface normal,

but depends on both θ(i) and the azimuthal angle ϕ. Although the geometry is

more complicated, the basic features of the emissivity are similar to those depicted

in Figs. 2.2–2.4.
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Figure 2.5: Dimensionless emissivity J = 1 − R as a function of photon energy E

for the case of a condensed Fe surface at B = 1013 G. The incident angles are fixed

at θ(i) = π/4 and ϕ = π/4. The different curves correspond to different magnetic

field inclination angles (θB is the angle between B and the surface normal). As

in Fig. 2.2, the light lines (labeled “no ion”) show the results when ion motion is

neglected in the plasma dielectric tensor.
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Figure 2.6: Same as Fig. 2.5, except that the geometry is fixed at θ(i) = π/4 and

θB = π/4, and the different curves correspond to different values of ϕ (the angle

of the plane of incidence with respect to the xz plane; see §2.2.2).
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The specific flux at the NS surface is:

Fν =

∫ 2π

0

dϕ

∫ π/2

0

dθ(i) cos θ(i) sin θ(i)J(θ(i), ϕ)Bν(T ). (2.21)

Fν is shown in Figure 2.7 as a function of photon energy for the three cases illus-

trated in Figs. 2.2–2.4. For the Fe surface, there is reduced emission (by a factor of

2 or so) around EBi <∼ E <∼ Ec compared to blackbody at the same temperature.

For the H surface at B = 1014 G, the flux is close to blackbody at all energies

except for a broad feature around EBi.

Radiation from a condensed surface is polarized. Figures 2.8 and 2.9 show

the degree of linear polarization as a function of energy for the cases illustrated

in Figures 2.3 and 2.4 (i.e., Fe at 1013 G and H at 1014 G). The degree of linear

polarization P increases with angle of incidence, and is clearly peaked around EBi

and Epe. For the Fe surface, at energies below EC , the polarization vector is parallel

to the k-B plane. Above EC , the sign of P changes, and the radiation is polarized

perpendicular to the k-B plane. For H, there is a slight net linear polarization

perpendicular to the k-B plane, except near EBi, where the polarization peaks

with P > 0. These polarization properties of condensed surface emission are

qualitatively different from those of atmosphere emission (see Chapter 4).

2.3.1 Comparison with Previous Work

Recently, Turolla et al. (2004) performed a detailed calculation of the emissivity of

a solid Fe surface. Our results differ significantly from theirs in several respects. In

particular, Turolla et al. found that collisional damping in the condensed matter

leads to a sharp cut-off in the emission at low photon energies, especially when

the magnetic field is inclined with respect to the surface normal. For comparison,
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Figure 2.7: Spectral flux as a function of photon energyE for the cases of condensed

Fe (B = 1012, 1013 G) and H (B = 1014 G) surfaces, all at temperature T = 106 K.

The light lines (labeled “no ion”) show the flux for Fe and H surfaces when ion

motion is neglected. The solid line shows the blackbody spectrum at 106 K. For

all of the curves, the magnetic inclination angle θB = 0.
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Figure 2.8: Degree of linear polarization P [see eq. (2.9)] as a function of photon

energy E for the case of a condensed Fe surface with B = 1013 G. The B field is

normal to the surface, and the different curves correspond to different angles θ(i)

between the incident photon direction and surface normal. The net linear polariza-

tion is peaked around EBi and Epe. Positive P corresponds to polarization parallel

to the k-B plane, while negative P corresponds to polarization perpendicular the

k-B plane. Note that P changes sign around EC .
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Figure 2.9: Same as Fig. 2.8, except for a H surface at B = 1014 G. There is a

slight net linear polarization perpendicular to the k-B plane (P ∼ −5%), except

around EBi where the polarization peaks parallel to the k-B plane.
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we show the angle-averaged emissivity, 〈1 − R〉 = Fν/[πBν(T )], for a specific case

with B = 5 × 1013 G, T = 106 K and θB = 0.7 × π/2 (Fig. 2.10); this should be

directly compared to Fig. 5 of Turolla et al. Their results show no emission below

∼ 0.1 keV, and they find that this “cutoff” feature becomes more pronounced as

the magnetic field inclination angle increases and the field strength decreases. Our

calculations clearly do not show this behavior (see the solid line of Fig. 2.10).

These discrepancies stem from at least two differences in the reflectivity cal-

culation: (1) Turolla et al. neglected the effect of ion motion in their expression

for the plasma dielectric tensor (see the end of §2.1.2). This strongly affects the

emissivity at E <∼ EBi (see also Figs. 2.2–2.7). (2) Even when the ion motion is

neglected (by setting mi = ∞), our result (see the dashed-line in Fig. 10) does

not reveal any low-energy cutoff. It is most likely that this difference arises from

the “one-mode” description for the transmitted radiation adopted by Turolla et

al.: when the real part of the index of refraction of a mode is less than zero or the

imaginary part of the index of refraction exceeds a threshold value, this mode is

neglected by Turolla et al. in the transmitted wave. Such treatment is incorrect

and can lead to significant errors in the reflectivity calculation. The inclusion of

collisional damping gives rise to complex values for the index of refraction, which

lead to transmitted waves with a propagating (oscillatory) part multiplied by a

decaying amplitude (see Appendix A.2). While the damping factor for such waves

can be large if the index of refraction has a large imaginary part, the propagating

piece allows energy to be carried across the vacuum-surface boundary; these waves

cannot be ignored in the reflectivity calculation.
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Figure 2.10: Angle-averaged intensity 〈1−R〉 as defined in §2.3.1 forB = 5×1013 G,

T = 106K, θB = 0.7×π/2. The solid line shows our result including the ion effect,

while the dashed-line shows the results when the ion motion is neglected. For

comparison, the dotted line shows data from Fig. 5 of Turolla et al. (2004).
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2.4 Discussion

As discussed in Chapter 1, many isolated NSs display no spectral features in ther-

mal emission, and are well fit by a blackbody spectrum. The most thoroughly

studied object of this type is RX J1856.5−3754, which is well fit in the X-ray

by a blackbody spectrum at temperature kT∞
bb = 63.5 eV, with emission radius

R∞ = 4.4 (d/120 pc) km (where d is the distance). This X-ray blackbody under-

predicts the optical flux by a factor of 7. Pavlov & Zavlin (2003) review several

models involving a non-uniform temperature on the surface of the NS, in which

the X-ray photons are emitted by a hot spot. By varying the temperature distri-

bution and assuming blackbody emission from each surface element, a reasonable

fit to the X-ray and optical data can be achieved (see also Braje & Romani, 2002;

Trümper et al., 2004). Nevertheless, the nearly perfect X-ray blackbody spectrum

of RX J1856.5−3754 is surprising.

If the NS surface is indeed in a condensed form (see §2.1.1), the emissivity will

be determined by the properties of the condensed matter. Our calculations (§2.2

and §2.3) show that the emission spectrum resembles a diluted blackbody, with a

reduction factor in the range of J = 0.4− 1, depending on the photon energy (see

Figs. 2.2–2.6). This would increase the inferred NS emission radius by a factor of

J−1/2. The weak “absorption” features in the emission spectrum are associated

with the ion cyclotron and electron plasma frequencies in the condensed medium.

We note that the emissivity and spectrum presented in this paper correspond to

a local patch of the NS. When the emission from different surface elements are

combined to form a synthetic spectrum, these absorption features are expected

to be smoothed out further because of the magnetic field variation across the NS

surface.
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In our calculations, we have assumed a perfectly smooth surface. This is valid if

the condensed matter is in a liquid state, as is likely to be the case for a H conden-

sate (see §2.1.1). For Fe, the condensed surface is most likely a solid with a rough

surface. Although it is not possible to predict the scale and shape of the surface ir-

regularities, their maximum possible height hmax can be estimated from the require-

ment that the stress nonuniformity ∼ ρgh is small compared to the shear stress µθs.

Using a shear modulus µ ≃ 0.1ni (Ze)
2/ai (Ogata & Ichimaru, 1990) and the max-

imum strain angle θs = 10−3θ−3, we find hmax ∼ 2 × 10−5 θ−3 Z
2A−4/3ρ

1/3
1 g−1

14 cm

(where g = 1014g14 cm s−2 is the NS surface gravity). For a condensed Fe surface

at the density given by eq. (2.1), we have hmax ∼ 4 × 10−4 θ−3B
2/5
12 cm (for a NS

with R = 10 km and M = 1.4M⊙). Clearly, the scale of the surface roughness

can easily be much larger than the photon wavelength (∼ 10Å). As illustrated in

Fig. 2.11, the surface may be much less reflective than the results shown in §2.3,

and the emission will be closer to blackbody.

The emission from a condensed NS surface is distinct from atmospheric emission

in several respects: (1) Atmospheric emission generally possesses a hard spectral

tail (although this tail is somewhat suppressed by the QED effect for B >∼ 1014 G;

see Chapter 3), whereas the condensed surface emission does not; (2) The spectrum

of a cool NS atmosphere can have both cyclotron and atomic absorption features

which are suppressed for B >∼ 1014 G–the broad (cyclotron and plasma) features of

condensed surface emission persist even in the magnetar field regime (if they are not

smoothed out by variations of surface B fields or by the rough surface effect); (3)

The polarization signature of condensed matter emission is qualitatively different

from that of atmospheric emission. All of these differences can serve as diagnostics

for the physical condition of the emission region.
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Figure 2.11: Effect of surface roughness on the reflectivity. The surface roughness

is characterized by a vertical scale h and a horizontal scale l, both much larger than

the photon wavelength. For the idealized “triangular” surface, a normal incident

ray goes through at least two reflections if θ = tan−1(l/h) < 60◦, at least three

reflections if θ < 36◦, at least four reflections if θ < 180◦/7, etc. Thus, the net

reflectivity of the rough surface is ≪ 1 if h > a few× l, and the emission spectrum

will be close to blackbody.
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At the surface temperature of AXPs and SGRs (T ≃ 5×106 K), H is unlikely to

be condensed, but Fe condensation is possible. The dim, isolated NSs have lower

temperatures (T <∼ 106 K), and if they possess magnetar-like fields, condensation

is likely. In particular, the blackbody X-ray spectra of RX J1856.5−3754 (kT ≃

64eV) and RX J0420.0−5022 (kT ≃ 45eV; see Haberl et al. 2004a) could arise from

condensed surface emission (a non-smooth Fe surface at B >∼ 1012 G), although to

account for the optical data, non-uniform surface temperatures are still needed.



Chapter 3

Atmosphere Models of Pulsars and

Magnetars

In Chapter 1 we review current observational challenges to models of thermal

emission from isolated NSs. For most NSs, the spectrum of thermal radiation is

formed in the atmosphere layer (with scale height ∼ 0.1−10 cm and density 10−3−

103 g cm−3) that covers the stellar surface. Thus, to properly interpret observations

of NS surface emission, detailed modeling of NS atmospheres in strong magnetic

fields is required. In recent years, a great deal of effort has been spent on the

development of reliable NS atmosphere models. The first magnetic NS atmosphere

models were constructed by Shibanov et al. (1992) (see also Pavlov et al., 1995;

Zavlin & Pavlov, 2002) who focused on moderate field strengths B ∼ 1012–1013 G

and assumed full ionization (see Zane et al., 2000, for atmosphere models with

accretion). Similar ionized models for the magnetar field regime (B >∼ 1014 G) were

studied by Zane et al. (2001); Özel (2001); Ho & Lai (2001, 2003). An inaccurate

treatment of the free-free opacities in the earlier models (Pavlov et al., 1995) was

corrected by Potekhin & Chabrier (2003), and the correction has been incoporated

into later models (Ho et al., 2003; Ho & Lai, 2004). Recent works (Lai & Ho,

2002, 2003a; Ho & Lai, 2003) have shown that in the magnetar field regime, the

effect of strong-field quantum electrodynamics significantly influences the emergent

atmosphere spectrum. In particular, vacuum polarization gives rise to a resonance

phenomenon, in which photons can convert from the high-opacity mode to the

low-opacity one and vice versa. This vacuum resonance tends to soften the hard

spectral tail due to the non-greyness of the atmosphere and suppress the width

43
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of absorption lines (for a qualitative explanation, see Lai & Ho, 2003a). Even for

modest field strengths (B <∼ 1014 G), vacuum polarization can still leave a unique

imprint on the X-ray polarization signal (see Lai & Ho 2003b and Chapter 4).

A strong magnetic field greatly increases the binding energies of atoms, molecules

and other bound species (see Lai, 2001), therefore, these bound states may have ap-

preciable abundances in the NS atmosphere (Lai & Salpeter, 1997; Potekhin et al.,

1999). Recently, a thermodynamically consistent equation of state and opacities for

magnetized (B = 1012 − 1015 G), partially ionized H plasma have been obtained

(Potekhin et al., 1999; Potekhin & Chabrier, 2003, 2004). The effect of bound

atoms on the dielectric tensor of the plasma has also been studied (Potekhin et al.,

2004). These have been incorporated into the first partially ionized, magnetic NS

atmosphere models (Ho et al., 2003; Potekhin et al., 2004).

While previous works have clearly identified the importance and trend of the

vacuum polarization effect (Lai & Ho, 2002, 2003a), so far the implementation

of the effect in NS atmosphere models (Ho & Lai, 2003, 2004) has been based on

approximations (see §3.1). All previous studies of magnetic NS atmospheres rely on

solving the transfer equations for the specific intensities of the two photon modes.

As discussed in Lai & Ho (2003a) and reviewed in §3.1 below, these equations

cannot properly handle the vacuum-induced mode conversion phenomenon because

mode conversion intrinsically involves interference between different modes.

We provide a new, quantitatively accurate treatment of vacuum polarization

effects in radiation transfer for fully ionized NS atmospheres. Our work confirms

the semi-quantitative results obtained in previous works based on an approximate

treatment of the vacuum resonance (Ho & Lai, 2003; Lai & Ho, 2003a). Moreover,

our new treatment allows us to quantitatively predict the spectral and polarization
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properties of NS atmospheres with field strengths varying from 1012 G to 1015 G.

3.1 Effect of Vacuum Polarization on Radiative Transfer

Before describing our quantitative treatment of the vacuum polarization effect in

NS atmospheres, it is useful to summarize the basic physics of the effect (see also

Lai & Ho, 2003a) and discuss the limitations of previous treatments.

Photons in magnetized NS atmospheres (with energy E ≪ EBe = h̄eB/mec,

the electron cyclotron energy) usually propagate in two distinct polarization states,

the ordinary mode (denoted by “O”) and the extraordinary mode (denoted by

“X”), which are polarized (almost) parallel and perpendicular to the plane made

by the magnetic field and direction of photon propagation, respectively. In strong

magnetic fields, the dielectric tensor describing the atmospheric plasma of a NS

must be corrected for QED vacuum effects (Gnedin et al., 1978; Meszaros & Ven-

tura, 1979; Pavlov & Shibanov, 1979; Meszaros, 1992). For a photon propagating

in a medium of constant density ρ, the plasma and vacuum contributions to the

dielectric tensor “cancel” each other out at a particular energy given by

EV = 1.02 (Ye ρ1)
1/2B−1

14 fB keV, (3.1)

where Ye = Z/A (Z, A are the atomic number and mass number, respectively),

ρ1 = ρ/(1 g cm−3), B14 = B/(1014 G), and fB ∼ 1 is a slowly varying function of B

[see eq. (2.41) of Ho & Lai (2003)]. At the resonance, both modes become circularly

polarized. A number of previous papers (e.g., Meszaros, 1992) emphasized the

sharp X-mode opacity feature associated with the resonance (see Fig. 3.1). It might

seem that to understand the vacuum polarization effect in radiative transfer, all

one needs to do is to include this spike in the opacity (e.g., Özel, 2003). However,
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this treatment neglects the conversion of photon modes at the resonance.

A more useful way to understand the effects of the vacuum resonance is to

consider a photon with given energy E, traversing the density gradient of a NS

atmosphere. The photon will encounter the vacuum resonance at the density

ρV = 0.96Y −1
e E2

1 B
2
14 f

−2
B g cm−3, (3.2)

where E1 = E/(1 keV). Lai & Ho (2002) showed that the photon undergoes

resonant mode conversion when the adiabatic condition E >∼ Ead is satisfied, with1

Ead = 2.52
[

fB tan θkB

∣

∣1 − (EBi/E)2
∣

∣

]2/3
(

1 cm

Hρ

)1/3

, (3.3)

where θkB is the angle between the magnetic field and direction of propagation,

EBi = 0.63(Z/A) keV is the ion cyclotron energy, and Hρ ≡ |ds/d ln ρ| is the

density scale height along the ray. Thus, an adiabatic O-mode photon encountering

the vacuum resonance will convert into an X-mode photon, and vice-versa. In

general, for intermediate energies E ∼ Ead, photons undergo partial conversion, in

which an O-mode converts to a X-mode (and vice-versa) with probability 1−Pjump,

where Pjump is the non-adiabatic jump probability given by

Pjump = exp
[

−π
2
(E/Ead)

3
]

. (3.4)

Due to free-free absorption, the X-mode opacity is suppressed relative to the O-

mode by a factor of (EBe/E)2, where the electron cyclotron energy is EBe =

1158 B14 keV; thus, the mixing of photon modes at the resonance can have a

drastic effect on the radiative transfer. For magnetic field strengths satisfying (Lai

& Ho, 2003a; Ho & Lai, 2004)

B >∼ Bl ≃ 6.6 × 1013 T
−1/8
6 E

−1/4
1 S−1/4 G, (3.5)

1Since Ead depends on E, one needs to solve for E >∼ Ead to determine the
adiabatic region. See Fig. 6 of Lai & Ho (2003a).
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Figure 3.1: Photon free-free absorption opacities for X and O polarization modes

as a function of energy at B = 1014 G, T = 106 K, θkB = π/4 and ρ = 5.4 g cm−3.

Vacuum polarization induces the sharp resonance feature for the X-mode opac-

ity at EV . This opacity spike can affect the emergent radiation spectrum from

magnetized NSs, but does not include all the effects associated with the vacuum

resonance.
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where T6 = T/(106 K) and S = 1− e−E/kT , the vacuum resonance density lies be-

tween the X-mode and O-mode photospheres for typical photon energies, leading to

suppression of spectral features and softening of the hard X-ray tail characteristic

of ionized H atmospheres. For “normal” magnetic fields, B <∼ Bl, the vacuum res-

onance lies outside both photospheres, and the emission spectrum is unaltered by

the vacuum resonance, although the observed polarization signals are still affected

(Lai & Ho, 2003b).

In their implementation of the vacuum resonance effect in NS atmosphere mod-

els, Ho & Lai (2003) considered two limiting cases: (1) complete mode conversion

(Pjump = 0), which is equivalent to assuming that E ≫ Ead is satisfied for all

photon energies; (2) no conversion (Pjump = 1), which is equivalent to assuming

E ≪ Ead for all photons. In the former case, all X-mode photons are converted

to the O-mode at the resonance (and vice-versa), whereas in the latter, such con-

version is neglected. In both cases, radiative transfer equations based on photon

modes can be used, as long as one properly defines the modes across the resonance

(Ho & Lai, 2003). We expect that the complete and no conversion limits bracket

the correct solution. Case (2) only includes the narrow opacity spike associated

with the resonance. Lai & Ho (2002) estimated the width of this opacity spike and

emphasized the importance of resolving it. In both limits, vacuum resonance has

the same qualitative effects on the emergent spectrum, e.g., suppression of lines

and softening of hard spectral tails (Lai & Ho, 2002; Ho & Lai, 2003), although

for B ∼ (a few×1013)−1014 G, appreciable quantitative differences in the spectra

using the two limits are produced (Ho & Lai, 2004).

As mentioned before, all studies of radiative transfer in magnetized NS atmo-

spheres have relied on solving the transfer equations for the specific intensities of
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the two photon modes (e.g., Meszaros, 1992; Zavlin & Pavlov, 2002). These equa-

tions cannot properly handle the vacuum-induced mode conversion phenomenon.

In particular, photons with energies 0.3-2 keV are only partially converted across

the vacuum resonance (this is the energy range in which the bulk of the radiation

emerges and spectral lines are expected for B ∼ 1014 G). In addition, the phe-

nomenon of mode collapse (when the X and O-modes become degenerate) occurs

when dissipative effects are included in the plasma dielectric tensor, and the con-

comitant breakdown of the Faraday depolarization condition near the resonance

further complicates the standard treatment of radiative transfer based on normal

modes. As shown by Gnedin & Pavlov (1974), the modal description of radiative

transfer is valid only in the limit |Re(nX − nO)| ≫ |Im(nX + nO)|, where nX and

nO are the indices of refraction corresponding to the X and O-modes, respectively.

Ho & Lai (2003) showed that, for a narrow range of energies around the vacuum

resonance, this condition can be violated, and the violation becomes especially

pronounced in the magnetar field regime. It is not obvious whether the mode col-

lapse significantly alters the radiative transfer. Thus, to account for the vacuum

resonance effect in a quantitative manner, one must solve the transfer equations

in terms of the photon intensity matrix (Lai & Ho, 2003a) and properly take into

account the probability of mode conversion.
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3.2 Method

3.2.1 Partial Mode Conversion using Mode Equations

Radiative Transfer Equation

For our models, we consider plane-parallel, fully ionized H or He atmospheres, with

the magnetic field oriented normal to the surface. The standard method used in

all previous work involves solving the coupled radiative transfer equations for the

two modes of photon propagation. These are given by

±µ∂I
j
ν(τ,±µ)

∂τ
=
κtot

j

κT

[

Ij
ν(τ,±µ) − Sj

ν(τ,±µ)
]

(3.6)

where Ij
ν(τ, µ) is the specific intensity for mode j, µ = k̂ · ẑ ≥ 0, κtot

j = κff
j + κsc

j is

the total opacity (with contributions from free-free absorption and scattering, see

below), κT = 0.4 cm2 g−1 is the Thomson scattering opacity, τ is the Thomson

optical depth (defined by dτ = −ρ κT dz), and Sj
ν is the source function, defined

below. Eq. (3.6) is solved subject to the constraints of hydrostatic and radiative

equilibria, as well as constant radiative flux Frad, given by:

P =
g

κT

τ, (3.7)

∫ ∞

0

dν

2
∑

j=1

κabs
j

(

Bν

2
− J j

ν

)

= 0, (3.8)

Frad = 2π
2

∑

j=1

∫ ∞

0

dν

∫ 1

0

dµµ
[

Ij
ν(µ) − Ij

ν(−µ)
]

= σsbT
4
eff (3.9)

where P is the pressure of electrons and ions, g =
(

GM
R2

) (

1 − 2GM
Rc2

)−1/2
= 2.4 ×

1014 cm s−2 is the surface gravitational acceleration (we adopt M = 1.4 M⊙ and

R = 10 km throughout our calculations), J j
ν ≡ (1/2)

∫ 1

0
dµ [Ij

ν(µ) + Ij
ν(−µ)] is the
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mean specific intensity, Bν is the Planck function, and Teff is the effective tem-

perature of the atmosphere. To integrate eq. (3.6) subject to the conditions of

(3.7)-(3.9), we assume the ideal gas equation of state for both protons and elec-

trons; that is, electron degeneracy effects are neglected. For the regime investigated

below (B ∼ 1013−5×1014 G, Teff ∼ 106−5×106 K), the field is strongly quantizing

(the electrons are restricted to the ground Landau level), and the temperature is

less than the critical magnetic temperature at which the effects of Landau quan-

tization are smeared out (Lai, 2001). However, in all but the deepest layers of the

atmosphere, the temperature is much larger than the Fermi temperature, and the

ideal gas equation of state may be used to describe the electron pressure (see Fig.

6 of Lai, 2001). Numerical calculations by Ho & Lai (2001) show that the effect of

this approximation on the atmosphere is negligible.

In general, thermal conduction due to electrons also contributes to the total

flux. However, we show in Appendix B that the conduction flux is always less than

a few percent of the total flux in the atmosphere region of interest, and is therefore

neglected.

Photon Modes and Opacities

The properties of magnetized atmospheric plasma can be described by a complex

dielectric tensor (Ginzburg, 1970). In a coordinate system with the magnetic field

aligned with the z-axis, the plasma contribution to the dielectric tensor takes the
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form (Lai & Ho, 2003a):2

[

ǫ(pl)
]

=













ǫ i g 0

−i g ǫ 0

0 0 η













, (3.10)

where

ǫ± g ≈ 1 − ve(1 + iγri) + vi(1 + iγre)

(1 + iγre ± u
1/2
e )(1 + iγri ∓ u

1/2
i ) + iγ⊥ei)

(3.11)

η ≈ 1 − ve

1 + i(γ
‖
ei + γre)

− vi

1 + i(γ
‖
ei + γri)

. (3.12)

In eqs. (3.11)–(3.12) we have defined the dimensionless ratios ue ≡ (EBe/E)2,

ui ≡ (EBi/E)2, ve ≡ (Epe/E)2, vi ≡ (Epi/E)2, where Epe = h̄(4πnee
2/me)

1/2 =

0.02871(Ye ρ1)
1/2 keV is the electron plasma energy, and Epi = (Zme/Amp)Epe =

6.70× 10−4 Ye ρ
1/2
1 keV is the ion plasma energy. The dimensionless damping rates

γ
⊥,‖
ei = ν

⊥,‖
ei /ω (for electron-ion collisional damping), γre = νre/ω (for electron

radiative damping), and γri = νri/ω (for ion radiative damping) are given by

γ
⊥,‖
ei = 9.2 × 10−5 Z2 ρ1

AT
1/2
6 E2

1

(

1 − e−E/kBT
)

gff
⊥,‖, (3.13)

γre = 9.5 × 10−6E1, (3.14)

γri = 5.2 × 10−9Z
2

A
E1. (3.15)

The quantities gff
⊥ and gff

‖ are the velocity-averaged magnetic Gaunt factors perpen-

dicular and parallel to the magnetic field, respectively; they are calculated using

eqs. (4.4.9)-(4.4.12) from Meszaros (1992).3 This calculation includes contributions

2Note that eq. (13) of Lai & Ho (2003a) should be γ±ei = γ⊥ei(1 + me

Amp
) ≈ γ⊥ei.

This substitution should be applied to all the appropriate equations in Lai & Ho
(2003a).

3Note that eq. (4.4.12) of Meszaros (1992) should be a± = (p ± [p2 +
2mh̄ω]1/2)2/(2mkBT ).
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from electrons in the ground Landau level only. Gaunt factors including contri-

butions from excited states have been derived by Potekhin & Chabrier (2004).

Nevertheless, for energies well below EBe, the differences between the two calcula-

tions are negligible (Potekhin, 2006). Fig. 3.2 shows the magnetic Gaunt factors

as a function of photon energy for T = 106 K at several magnetic field strengths

(note that the Gaunt factors depend weakly on temperature). The solid curves

show the value of gff perpendicular to the magnetic field while the dashed curves

show the result parallel to the field. From bottom to top, the curves correspond to

B = 1013, 4×1013, 7×1013, 1014, and 5×1014 G. In the energy range E ∼ 0.1−1 keV,

the Gaunt factors have magnitudes of order unity, however, outside of this range

they can vary in magnitude greatly (from ∼ 60 in the optical band to ∼ 0.1 in the

X-ray band). The strong energy dependence of gff has a significant effect on the

opacities and hence radiative transfer; it is thus critical to properly evaluate these

factors.

Vacuum contributions to the dielectric tensor can be taken into account by

making the following substitutions into the tensor of eq. (3.10):

ǫ→ ǫ′ = ǫ+ a− 1, η → η′ = η + a+ q − 1, (3.16)

where a and q are vacuum parameters given by the expressions in, for example,

Heyl & Hernquist (1997) and Potekhin et al. (2004) (the latter contains general

fitting formulas). Solving Maxwell’s equations for the anisotropic medium yields

two modes of propagation. In a coordinate system where the wave vector k is along

the z-axis and the magnetic field lies in the xz plane (such that k̂×B̂ = − sin θkBŷ),

the mode eigenvectors can be written as

e± =
1

(1 + |K±|2 + |Kz±|2)1/2
(iK±, 1, iKz±), (3.17)
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Figure 3.2: Magnetic Gaunt factors as a function of photon energy for T = 106 K

at several magnetic field strengths. The solid curves show the Gaunt factors

perpendicular to the magnetic field, while the dashed curves show the Gaunt

factors parallel to the field. From bottom to top, the curves correspond to

B = 1013, 4 × 1013, 7 × 1013, 1014, and 5 × 1014 G. Note the strong energy de-

pendence and deviations of the Gaunt factors from unity.
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where the ellipticity K± = −iex/ey of mode ± is given by

K± = β ±
√

β2 + r, (3.18)

with r = 1+(m/a) sin2 θkB (m is another vacuum polarization parameter; see Heyl

& Hernquist 1997; Potekhin et al. 2004), and the polarization parameter β is

β = −ǫ
′2 − g2 − ǫ′η′(1 +m/a)

2gη′
sin2 θkB

cos θkB

. (3.19)

The z-components of the mode eigenvectors are given by

Kz± = −(ǫ− η − g) sin θkB cos θkBK± + g sin θkB

ǫ sin2 θkB + (η + q) cos2 θkB + a− 1
. (3.20)

Note that when the modes are labelled according to eq. (3.18), the K± vary

continuously across the vacuum resonance (β = 0), and do not cross each other in

the absence of dissipation (Lai & Ho, 2003a). Another way of labeling the modes,

commonly adopted in the literature (e.g., Meszaros, 1992), is

Kj = β

[

1 + (−1)j

(

1 +
r

β2

)1/2
]

. (3.21)

According to this labeling scheme, j = 1 corresponds to the X-mode (|K1| < 1)

and j = 2 corresponds to the O-mode (|K2| > 1). Obviously, K1 and K2 are not

continuous functions across the vacuum resonance. It is also clear that a given +

mode (or - mode) which manifests as the X-mode (O-mode) before the resonance

switches character after the resonance.

Using the mode eigenvectors and the componenets of the dielectric tensor,

expressions for the free-free absorption and scattering opacities can be obtained.

The cyclic components of the mode eigenvectors in a rotating frame with the

magnetic field along the z-axis are:

∣

∣ej
±

∣

∣

2
=

∣

∣

∣

∣

1√
2
(ej

X + iej
Y )

∣

∣

∣

∣

2

=
1 ± |Kj cos θkB +Kzj sin θkB|2

2(1 + |Kj|2 + |Kzj|2)
, (3.22)

∣

∣ej
o

∣

∣

2
=

|Kj sin θkB −Kzj cos θkB|2
1 + |Kj|2 + |Kzj|2

. (3.23)
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Note that in the above expression, j indicates the mode, and the ± subscript should

not be confused with the K± labeling of photon modes. The free-free absorption

opacity for mode j can be written (Lai & Ho, 2003a):

κff
j = κj

+|ej
+|2 + κ−|ej

−|2 + κo|ej
o|2, (3.24)

with

κ± =
ω

cρ
veΛ±γ

⊥
ei, (3.25)

κo =
ω

cρ
veγ

‖
ei, (3.26)

Λ± =
[

(1 ± u1/2
e )2(1 ∓ u

1/2
i )2 + γ2

±

]−1

, (3.27)

γ± = γ⊥ei + (1 ± u1/2
e )γri + (1 ∓ u

1/2
i )γre. (3.28)

Note that these expressions include the contribution of electron-ion Coulomb col-

lisions to the free-free absorption opacity in a consistent way. They correct the

free-free opacity adopted in earlier papers (e.g. Pavlov et al., 1995; Ho & Lai, 2001),

and they agree with the correct expressions given in Potekhin & Chabrier (2003),

and those used by Ho et al. (2003).

The scattering opacity from mode j into mode i is given by Ventura (1979)

(see also Ho & Lai, 2001):

κsc
ji = YeκT

1
∑

α=−1

[

(1 + αu1/2
e )2 + γ2

e

]−1 |ej
α|2Ai

α +

(

Z2me

Amp

)2
κT

A

1
∑

α=−1

[

(1 − αu
1/2
i )2 + γ2

i

]−1

|ej
α|2Ai

α (3.29)

where γe = γα
ei+γre, γi = γα

ei+γri, and Ai
α = (3/4)

∫ 1

−1
dµ′|ei

α|2. The total scattering

opacity from mode j is then κsc
j =

∑

i κ
sc
ji .
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Source Function

The source function in eq. (3.6) can be written as

Sj
ν(µ) =

κff
j (µ)

κtot(µ)

Bν

2
+

2π

κtot
j (µ)

2
∑

i=1

∫ 1

0

dµ′dκ
sc(µ′i→ µj)

dΩ

[

Ij
ν(µ) + I i

ν(−µ)
]

(3.30)

where (Ventura, 1979)

dκsc(jµ→ iµ′)

dΩ′
=

3

8π
YeκT

∣

∣

∣

∣

∣

1
∑

α=−1

1

1 + αu
1/2
e

ej
α

∗
ei

α

∣

∣

∣

∣

∣

2

+

3

8π

(

Z2me

Amp

)2
κT

A

∣

∣

∣

∣

∣

1
∑

α=−1

1

1 − αu
1/2
i

ej
α

∗
ei

α

∣

∣

∣

∣

∣

2

. (3.31)

Following Ho & Lai (2001), it is a good approximation to assume that the differ-

ential scattering cross-section is independent of the initial photon direction. The

resulting approximate source function is:

Sj
ν(µ) ≈

κff
j (µ)

κtot
j (µ)

Bν

2
+

∑

i

κsc
ji(µ)

κtot
j (µ)

cui
ν

4π
(3.32)

where uj
ν = (2π/c)

∫ 1

−1
dµ′Ij

ν(µ
′) is the specific energy density of mode j. Note that

the source function depends on the specific intensity in all directions, and thus

depends on the solution to the radiative transfer equation. Therefore, we calculate

Sj
ν iteratively, according to the scheme described below.

Solution to Transfer Equation for Photon Modes Including Partial Mode

Conversion

We describe above how vacuum polarization effects can be incorporated into the

free-free absorption and scattering opacities for the photon modes. However, these

opacity effects do not capture the essence of the vacuum resonance phenomena. As

discussed in Lai & Ho (2003a), solving the transfer eq. (3.6) using K± [eq. (3.18)]
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as the basis for the photon modes amounts to assuming complete mode conver-

sion (Pjump = 0), while using K1,2 [eq. (3.21)] corresponds to assuming no mode

conversion (Pjump = 1). This was the strategy adopted by previous works. To

correctly account for the vacuum resonance effect, it is necessary to use the jump

probability Pjump [eq. (3.4)] to convert the mode intensities across the resonance

according to the formulas:

IX → Pjump IX + (1 − Pjump)IO, (3.33)

IO → Pjump IO + (1 − Pjump)IX . (3.34)

Note that since the resonance density depends on photon energy, the standard

Feautrier procedure for integrating the radiative transfer equation cannot be used

here, as there is no simple way to incorporate eqs. (3.33)-(3.34) into the method

of forward and backward substitution employed by Feautrier (see §6-3 of Mihalas,

1978). Instead, we use the standard Runga-Kutta method to integrate the trans-

fer eq. (3.6) in the upward and downward directions starting from the boundary

conditions:

Ij
ν(τ → τmax,+µ) → Bν/2, (3.35)

Ij
ν(τ → τmin,−µ) → 0. (3.36)

The Runga-Kutta integration is stopped at the resonance, where eqs. (3.33) and

(3.34) are used to convert the mode intensities. Then the integration is continued

to completion. The limits τmax and τmin are chosen to span 5-8 orders of magnitude.

This insures that (1) photons begin their evolution at densities greater than the

X-mode decoupling depth, and (2) both X-mode and O-mode photons are fully

decoupled from the matter at the outermost edge of the atmosphere (τ = τmin).
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We finite-difference eq. (3.6) as:

±µI
′ − I

∆τ
≈ 1

2κT

[κ(I − S) + κ′(I ′ − S ′)] (3.37)

where I = Ij
ν(τ,±µ), I ′ = Ij

ν(τ
′,±µ), κ = κtot

j , κ′ = κtot
j (τ ′), S = Sj

ν(τ,±µ),

S ′ = Sj
ν(τ

′,±µ), with τ ′ = τ + ∆τ . This gives

I ′ =
1

1 ∓ ∆τκ′

2µκT

[(

1 ± ∆τκ

2µκT

)

I ∓ ∆τ

2µκT

(κS + κ′S ′)

]

. (3.38)

This formula yields stable integrations whose results are not strongly dependent

on grid spacing (see §3.2.4).

To summarize, our method for integrating the radiative transfer with partial

mode conversion is as follows: (1) For given E and θkB, we integrate eq. (3.6) using

(3.38) from τmax to the vacuum resonance at optical depth τV (defined by ρ(τV ) =

ρV ); (2) At the resonance, the X-mode and O-mode intensities are converted using

eqs. (3.33) and (3.34); (3) Integration of eq. (3.6) is continued to τmin. We use an

analagous procedure for downward integration from τmin to τmax.

Temperature Correction Procedure

To integrate the radiative transfer equation, an initial temperature profile is as-

sumed (the initial source function is set to Bν/2). This initial profile is taken from

a previously constructed model with the same magnetic field and effective tem-

perature, but without partial mode conversion (see Ho & Lai, 2003). In general,

the solution to eq. (3.6) using this profile will not satisfy eqs. (3.8)-(3.9). To es-

tablish equilibrium, the initial temperature profile is corrected using the standard

Unsöld-Lucy procedure (Mihalas, 1978). The entire process is iterated until the

deviations from radiative equilibrium, constant flux, and the relative size of the

temperature correction are all less than a few percent. During a given iteration,
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the specific intensity calculated from the previous iteration is used to determine

the source function. Thus, the source function must also converge to yield a self-

consistent solution. Numerically, we find that the source function converges more

rapidly than the other quantities considered above. For a more detailed discussion

of the construction of self-consistent atmosphere models, see Ho & Lai (2001) and

Mihalas (1978).

3.2.2 Partial Mode Conversion Using Photon Stokes Pa-

rameters

While the treatment described above captures the essential physics of the transfer

problem, it is important to compare it with the exact solution obtained from inte-

gration of the transfer equations for the radiation Stokes parameters. As discussed

in §3.1, near the vacuum resonance, the modal transfer equation (3.6) breaks down

because of the violation of the Faraday depolarization condition and collapse of

the photon modes (see Figs. 4-5 of Lai & Ho 2003a for the precise condition).

The radiative transfer equations for the Stokes parameters are given by (Lai &

Ho, 2003a):

±µ∂I
∂τ

= M · I − Sem, (3.39)
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with

M =
ω

cρκT





















σ11i 0 σ12i/2 −σ12r/2

0 σ22i −σ12i/2 −σ12r/2

−σ12i σ12i (σ11i + σ22i)/2 (σ11r − σ22r)/2

−σ12r −σ12r (σ22r − σ11r)/2 (σ11i + σ22i)/2





















, (3.40)

Sem =
ωBν

2ρκT c





















σ11i

σ22i

0

−2σ12r





















em

, (3.41)

where σ11 = ǫ′ cos2 θkB + η′ sin2 θkB − a, σ12 = ig cos θkB, σ22 = ǫ′ − a−m sin2 θkB,

σαβr = ℜe(σαβ), σαβi = ℑm(σαβ), and I≡ (I11, I22, Uν , Vν)
+, with I11 = (Iν +

Qν)/2, I22 = (Iν −Qν)/2. Note that eq. (3.39) ignores scattering; the “em” suffix

on the source functions implies that terms proportional to γre or γri should be set

to zero as they are related to scattering contributions. The scattering contributions

to eq. (3.39) are derived in Lai & Ho (2003a).

Away from the resonance, the modes discussed in §3.2.1 are well defined and

are readily calculated from the Stokes parameters. Neglecting dissipative terms in

the dielectric tensor, the transverse part of the mode polarization vectors can be

written [see eq. (3.17)]

e+ = (i cos θm, sin θm), e− = (−i sin θm, cos θm), (3.42)

where θm is the “mixing angle” defined by cos θm = K+/
√

1 +K2
+, sin θm =

1/
√

1 +K2
+. The intensities of the ± modes can be calculated from the Stokes

parameters via

I±ν =
1

2
[Iν ± (cos 2θmQν + sin 2θmVν)] . (3.43)
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Conversely, given the mode intensities, the Stokes parameters can be calculated

using

Iν = I+
ν + I−ν , (3.44)

Qν = cos 2θm(I+
ν − I−ν ) − 2 sin 2θm(I+

ν I
−
ν )1/2 cos ∆φ, (3.45)

Uν = −2(I+
ν I

−
ν )1/2 sin ∆φ, (3.46)

Vν = sin 2θm(I+
ν − I−ν ) + 2 cos 2θm(I+

ν I
−
ν )1/2 cos ∆φ, (3.47)

where ∆φ = ∆φi + (ω/c)
∫ z

(n+ − n−)dz is the phase difference between the +

and − modes. Note that ∆φ is unknown, since the initial phase difference ∆φi

between photons in the X and O-modes is random. To correctly evaluate the

Stokes parameters from the specific mode intensities, one should sample ∆φ from

a random distribution, and average over the results. Practically, we note that while

the choice of ∆φ affects the values of the Stokes parameters, it does not change the

specific mode intensities calculated from eq. (3.43). Therefore, the phase difference

is unimportant for the comparison of the mode and Stokes parameter transfer

equations (see §3.2.3).

In principle, eq. (3.39) can be integrated from τmax to τmin using the initial

condition I(τmax) → (Bν/2, Bν/2, 0, 0)+ as in §3.2.1. However, this approach runs

into a numerical difficulty: away from the vacuum resonance, differences in the

indices of refraction for the two modes manifest as rapid oscillations in Qν , Uν , Vν ,

which are difficult to handle numerically. Thus, the direct solution of eq. (3.39) over

the entire range of integration is impractical. It is possible, however, to integrate

eq. (3.39) for a small range of τ around the resonance. Using eqs. (3.43) and

(3.44)–(3.47), we can quantitatively compare the result of such an integration with

that obtained using the method of §3.2.1, and thereby confirm the accuracy of the
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latter method.

3.2.3 Numerical Comparison Between Mode and Stokes

Equations

We consider a typical case, the propagation of a photon, initially polarized in the −

mode, with energy E = 1.0 keV, propagation angle θkB = π/4, and magnetic field

B = 1014 G. The temperature profile is held constant at T = 5×106 K [eqs. (3.44)-

(3.47) are used to set the initial conditions for (3.39)]. Figure 3.3 shows the Stokes

parameters as a function of optical depth near the resonance. These are obtained

by integrating eq. (3.39). The corresponding mode intensities are then calculated

using eq. (3.43) and depicted in the top panel (solid and dashed lines). The dashed-

dot and dotted lines show the results obtained from the integration of the mode

equations with partial mode conversion [eqs. (3.33)-(3.34)]. Note that the curves

agree exactly except near the resonance where the modes are not well-defined.

We have carried out many similar comparisons between the mode equations

and the Stokes transfer equation. The close agreement between the two methods

establishes the validity of our method described in §3.2.1, i.e., integrating the mode

eq. (3.6) and taking partial mode conversion into account using eqs. (3.33)-(3.34).

3.2.4 Numerical Test of Grid Accuracy

In solving eq. (3.6), we set up grids in Thomson optical depth, temperature, density,

energy, and angle. The grid in optical depth {τd : d = 1, . . . , D} is equally spaced

logarithmically with 15−20 points per decade (ppd). As discussed above, this grid

spans 5 − 8 orders of magnitude to insure that photons are generated at densities

higher than the X-mode decoupling depth, and that they are fully decoupled from
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Figure 3.3: Evolution of the Stokes parameters across the vacuum resonance ob-

tained by integrating the transfer equation (3.39). The parameters are B = 1014

G, θkB = π/4, T = 5 × 106 K, and E = 1 keV. At high optical depth, the photon

is in the − mode. In the top panel, the dotted line and the dot-dashed line show

the mode intensities obtained using the method described in §3.2.1 [i.e., solving

the transfer equation (3.6) based on photon modes, but taking account of partial

mode conversion through eqs. (3.33)-(3.34)], while the solid and dashed lines give

the mode intensities based on the evolution of the Stokes parameters (panels 2-4).

Note the close agreement everywhere except near the resonance where the modes

are not well-defined.
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the matter at the outermost layer.

Care must be used in defining the energy grid. As mentioned before, vacuum

polarization introduces a narrow spike in the X mode opacity. A prohibitively high

energy grid resolution is required to properly resolve this feature. An alternative is

to use the equal-grid method described by Ho & Lai (2003). In this case, each point

of the energy grid is chosen to be the vacuum resonance energy [given by eq. (3.1)]

corresponding to a point on the optical depth grid: {En = EV (τn) : n = 1, . . . , D}.

This insures that the vacuum resonance is resolved. Ho & Lai (2003) point out

that in the “no conversion” limit, this leads to an over-estimate of the integrated

optical depth across the vacuum resonance. It is therefore important to investigate

what effect this has on the emergent spectra.

Figure 3.4 illustrates the effect of grid resolution on the spectra for two of

the models presented in §3.3. The top panel shows the model with B = 1014 G,

Teff = 106 K, which includes vacuum polarization in the opacities, but neglects the

mode conversion effect (i.e., Pjump = 1). Over-estimation of the vacuum resonance

in the X-mode opacity is expected to be strongest for this model, since modification

of the emission spectrum is due solely to the enhaced opacity. The difference

between models at 15 ppd and 20 ppd is negligible. Even at 10 ppd the difference

is small, occuring mainly around the proton cyclotron line, as expected.

The bottom panel of Fig. 3.4 shows the model with B = 1014 G, and Teff =

5×106 K, which includes partial mode conversion. At higher effective temperatures,

the optical depth across the vacuum resonance becomes much greater than unity,

thus, the error due to finite grid size becomes even less important. The lower grid

resolution (10 ppd) model shows negligible deviation from the higher grid resolution

(20 ppd) model, even around the proton cyclotron feature. This behavior is typical
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Figure 3.4: Spectra showing the effect of grid resolution on thermal emission. The

top panel shows H atmosphere models with B = 1014 G, Teff = 106 K, which include

vacuum polarization but neglect mode conversion. As the number of grid points

per decade (ppd) are increased, the curves quickly converge to the 20 ppd case.

At low resolution the error mainly occurs around the proton cyclotron feature,

and is negligible elsewhere. The bottom panel shows H models with B = 1014 G,

Teff = 5 × 106 K, which include vacuum polarization and mode conversion. At

the higher effective temperature, the difference between models with varying grid

resolution is negligible.



67

of all models with B = 5 × 1014 G.

3.3 Results

We now present the results of our atmosphere models. We consider B = 4 ×

1013, 7 × 1013, 1014, 5 × 1014 G, and Teff = 106, 5 × 106 K, for both H and He

compositions.

3.3.1 Atmosphere Structure

Figure 3.5 shows the temperature profile as a function of Thompson optical depth

τ for the H atmosphere model with B = 1014 G, and Teff = 106 K. To understand

the effect of vacuum polarization, we show the results based on four different

treatments: (1) vacuum polarization is completely turned off (“no vaccum”); (2)

vacuum polarization is included, but the mode conversion is neglected (Pjump = 1,

“no conversion”); (3) vacuum polarization is included, and complete mode con-

version is assumed (Pjump = 0, “complete conversion”); (4) vacuum polarization

is included with the correct treatment of the resonance (“partial conversion”), us-

ing Pjump calculated from eq. (3.4). We see that models which include vacuum

polarization show higher temperatures over a wide range of τ for the same Teff

than models which ignore vacuum effects. This temperature increase is due to the

X-mode opacity feature at the vacuum resonance (see Fig. 3.1). In general, atmo-

sphere structure is determined by the radiative equilibrium condition; inspection of

the individual terms of eq. (3.8) reveals how the resonance affects the temperature

profile. The mode absorption opacities obey the relation κO ≫ κX except at the

energies E = EBi, EV . Thus, κX(Bν/2) can be neglected relative to κO(Bν/2) in

eq. (3.8). In the absence of vacuum polarization, the O-mode largely determines
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the atmosphere structure due to the weak interaction of X mode photons with the

medium. However, when the resonance spike in the X mode opacity is present,

κXJ
X
ν cannot be neglected relative to κOJ

O
ν ; in fact, this occurs over a large band-

width for which JX
ν ≫ JO

ν . The result of this enhanced interaction is to increase

the overall temperature. Adding the effect of mode conversion further increases

the temperature over a large range of optical depth. This is due to heat deposited

by converted X mode photons, which interact with the large O mode opacity after

passing through the vacuum resonance. The temperature profile for the partial

mode conversion model (shown by the solid curve of Fig. 3.5) closely follows the

result for the no conversion model (shown by the dotted curve) for the small optical

depths at which low energy photons decouple. This is because for these photons,

E <∼ Ead, is satisfied and mode conversion is ineffective. For larger optical depths,

at which higher energy photons decouple, E >∼ Ead, and mode conversion is more

effective, thus the “partial conversion” result lies between the “no conversion” and

“complete conversion” limits.

Figure 3.6 shows the temperature profile for the B = 1014 G, Teff = 5 × 106 K

model. This higher temperature model shows the same basic features as the low-

Teff model in Fig. 3.5. In this case, the energy flux is carried by photons with higher

energies, and the adiabatic condition (E >∼ Ead) is more readily satisfied, leading

to effective mixing of photon modes. Thus we see that at large optical depths (τ >∼
0.1), the partial conversion profile closely follows the complete conversion curve.

At lower optical depth, the partial conversion profile lies between the complete

conversion and no conversion curves.

Finding self-consistent temperature profiles is the most time consuming step

in atmosphere modeling. Once the profile is known, the emergent radiation can
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Figure 3.5: Temperature profile for the H atmosphere model with B = 1014 G,

Teff = 106 K. The four curves correspond to different ways of treating the vacuum

polarization effect: (1) no vacuum (short-dashed curve); (2) no conversion (dotted

curve); (3) partial conversion (solid curve); and (4) complete conversion (long-

dashed curve).
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Figure 3.6: Same as Fig. 3.5, except for Teff = 5 × 106 K.
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be obtained by a single integration of the transfer equation. To facilitate future

work on NS atmospheres and related applications, we provide fitting formulas

for the models presented in this paper. Formulas are provided only for models

incorporating vacuum polarization with partial mode conversion. The fits are

valid over the optical depth range τ = 10−3 − 2 × 104. Each model is fit by the

function

log10 [T6(τ)] =







































a1 + a2 ∆x+ a3 ∆x2 + a4 ∆x3 + a5 ∆x4 + a6 ∆x5

τmid < τ < 2 × 104,

b1 + b2 ∆x+ b3 ∆x2 + b4 ∆x3 + b5 ∆x4 + b6 ∆x5

10−3 < τ < τmid,

(3.48)

where x ≡ log10(τ), ∆x ≡ x − xmid, and τmid denotes the break between the two

parts of the fit used to describe the temperature profile. The parameters are fit

with a standard linear least-squares method. To insure that the function and its

derivative are continuous through τmid, we set b1 = a1, a2 = b2, and re-fit, holding

b1 and a2 constant. This process is iterated until a self-consistent set of parameters

is obtained. The parameters for each model are summarized in Table 3.1.
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Table 3.1: Parameters in the temperature profile fitting formulas [eq. (3.48)] for NS atmosphere models with different magnetic

field strengths, effective temperatures and compositions (ionized H or He)

Model τmid a1 a2 a3 a4 a5 a6

1013 G, 5 × 106 K, H 27.1 0.793 0.122 -0.502 0.548 -0.205 0.0266

4 × 1013 G, 106 K, H 4.27 -0.0599 0.192 0.0225 0.0115 -0.0072 0.00116

4 × 1013 G, 5 × 106 K, H 11.9 0.623 -0.0425 0.0991 0.0412 -0.026 0.0036

7 × 1013 G, 106 K, H 0.888 -0.0455 -0.158 0.221 -0.0469 0.00231 0.000307

7 × 1013 G, 5 × 106 K, H 21.6 0.789 0.123 -0.650 0.726 -0.274 0.0354

1014 G, 106 K, H 0.683 0.00828 0.0614 -0.304 0.266 -0.0719 0.00652

1014 G, 106 K, He 0.749 -0.0935 -0.154 0.262 -0.0904 0.0167 -0.00124

1014 G, 5 × 106 K, H 30.6 0.799 0.115 -0.537 0.617 -0.241 0.0326

5 × 1014 G, 106 K, H 32.9 0.0939 0.0181 -0.0153 -0.0413 0.0376 -0.00578

5 × 1014 G, 5 × 106 K, H 63.2 0.761 0.00198 0.267 -0.356 0.179 -0.0282

5 × 1014 G, 5 × 106 K, He 23.5 0.707 0.0467 0.342 -0.417 0.174 -0.0234
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Table 3.1 (Continued)

Model τmid b1 b2 b3 b4 b5 b6

1013 G, 5 × 106 K, H 27.1 0.793 0.122 0.00445 0.0108 0.00211 0.0000574

4 × 1013 G, 106 K, H 4.27 -0.0599 0.192 0.109 0.0828 0.0256 0.00286

4 × 1013 G, 5 × 106 K, H 11.9 0.623 -0.0425 -0.0851 -0.00392 0.0034 0.000418

7 × 1013 G, 106 K, H 0.888 -0.0455 -0.158 -0.329 -0.118 -0.00387 0.00304

7 × 1013 G, 5 × 106 K, H 21.6 0.789 0.123 -0.0105 -0.00406 -0.00242 -0.000411

1014 G, 106 K, H 0.683 0.00828 0.0614 -0.313 -0.374 -0.162 -0.0234

1014 G, 106 K, He 0.749 -0.0935 -0.154 -0.197 0.0197 0.0428 0.0083

1014 G, 5 × 106 K, H 30.6 0.799 0.115 -0.00603 0.00409 0.000351 -0.0000978

5 × 1014 G, 106 K, H 32.9 0.0939 0.0181 0.0504 0.0462 0.00991 0.000676

5 × 1014 G, 5 × 106 K, H 63.2 0.761 0.00198 -0.118 -0.0336 -0.00428 -0.00022

5 × 1014 G, 5 × 106 K, He 23.5 0.707 0.0467 -0.109 -0.040 -0.0069 -0.000481
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3.3.2 Spectra

Figure 3.7 presents the spectrum for the H atmosphere model with B = 1014 G

and Teff = 106 K. The results for the four different ways of treating the vacuum

resonance (see §3.3.1) are shown. These spectra correspond to the temperature

profiles depicted in Fig. 3.5.

When the vacuum polarization effect is neglected, the spectrum of a magnetic,

ionized H atmosphere model generally exhibits two characteristics: (1) a hard

spectral tail (compared to blackbody) due to the non-grey free-free opacity (κff

decreases with increasing photon energy; Shibanov et al. 1992; Pavlov et al. 1995);

(2) a significant proton cyclotron absorption line when EBi is not too far away

from the blackbody peak (∼ 3kBT ) (Zane et al., 2001; Ho & Lai, 2001). Vac-

uum polarization tends to soften the hard spectral tail and suppress (reduce) the

proton cyclotron line. These effects are discussed extensively in §4 of Ho & Lai

(2003), and Lai & Ho (2003a). In Fig. 3.7, all of the models that include vacuum

polarization effects display a large reduction in the equivalent width (EW) of the

proton cyclotron feature due to the modification of the temperature profile by the

vacuum resonance (see §3.3.1) and the mode conversion effect. The spectra also

show softening of the hard spectral tail relative to the no vacuum case, though

they are all still harder than blackbody. The “partial conversion” curve appears

as an intermediate case between the “complete conversion” and “no conversion”

extremes. The adiabatic regime where mode conversion is efficient is clearly vis-

ible: for E >∼ Ead ∼ 2 keV, the “partial conversion” curve begins to follow the

“complete conversion” curve.

This transition from “no conversion” to “complete conversion” is further illus-

trated by Fig. 3.8, which shows, for several photon energies E (and a given direction
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Figure 3.7: Spectra for H atmosphere models with B = 1014 G, Teff = 106 K.

The four cases described in the text are shown: (1) no vacuum (short-dashed

cuve); (2) no conversion (dotted curve); (3) partial conversion (solid curve); and

(4) complete conversion (long-dashed curve). The light dashed-dot curve shows

the blackbody spectrum with T = 106 K. For all three cases that include vacuum

effects, the proton cyclotron feature is strongly suppressed and the high energy tail

is softened relative to the no vacuum case. The “partial conversion” curve is seen

to be intermediate between the “no conversion” and “complete conversion” limits.
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of propagation, θkB) the evolution of the specific mode intensities as a function of

optical depth. At the resonance depth (denoted by the vertical lines), the X mode

photons encounter the vacuum induced spike in opacity, and mode conversion oc-

curs [governed by the non-adiabatic jump probability Pjump; see eq. (3.4)]. As the

energy is increased (from the second to bottom panels), mode conversion becomes

increasingly more effective.

Figure 3.9 shows the spectrum for the H model with B = 1014 G and Teff =

5×106 K. All the calculations that include vacuum polarization effects show strong

suppression of the ion cyclotron feature and significant softening of the hard spec-

tral tail. At higher effective temperatures, there is a smaller difference between the

no conversion, partial conversion, and complete conversion cases. In this regime,

the optical depth across the vacuum resonance is much greater than unity, and

the decoupling of X-mode photons occurs at the resonance density whether or not

mode conversion is taken into account (see Lai & Ho, 2002). At high energies

(E >∼ 5 keV), the models which include mode conversion are softer than those

which do not.

Figures 3.10-3.13 depict atmosphere models at Teff = 106 K with varying mag-

netic field strengths, comparing the “no vacuum” and correct “partial conversion”

results. For B = 4× 1013 G < Bl (Fig. 3.10), the vacuum resonance lies at a lower

density than the X-mode and O-mode photospheres, and vacuum polarization has

a negligible effect on the spectrum, reflected by the close agreement between the

“no vacuum” and “partial conversion” curves. For the H atmosphere model with

B = 7 × 1013 G (Fig. 3.11), and the He atmosphere model with B = 1014 G

(Fig. 3.12), vacuum polarization affects the spectrum. For these models, B >∼ Bl,

and the ion cyclotron line lies near the blackbody peak. Thus, it is particularly
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Figure 3.8: The transition from “no conversion” to “complete conversion” for a

photon propagating in a H atmosphere with B = 1014 G, Teff = 106 K. The top

panel shows the temperature profile for this model. The bottom three panels show

the evolution of the specific mode intensities for energies E = 0.35, 0.65, 2.72 keV

and θkB = π/4. The solid line shows the O-mode intensity, the dashed line the

X-mode intensity, and the dotted vertical lines specify the location of the vacuum

resonance. For E = 0.35 keV: Hρ = 0.69 cm, E < Ead, and Pjump = 1.0, leading

to minimal mode conversion. For E = 0.65 keV: Hρ = 0.78 cm, E ∼ Ead, and

Pjump = 0.65, leading to partial mixing of the modes. For E = 2.72 keV: Hρ =

0.98 cm, E > Ead, and Pjump = 0.15, leading to nearly complete conversion of the

modes.
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Figure 3.9: Same as Fig. 3.7, except for Teff = 5×106 K. The strength of the proton

cyclotron feature is strongly suppressed for models which include vacuum polar-

ization. At E >∼ 5 keV, the models which include mode conversion are softer than

those without, though all the atmosphere models are still harder than blackbody.
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important to treat the vacuum resonance correctly, taking partial mode conversion

into account to calculate the line width. For the B = 5×1014 G model (Fig. 3.13),

the spectral feature at EBi is outside the energy band of observational interest.

We note that at such a high field and low effective temperature, the atmosphere

should contain a significant fraction of bound atoms and molecules (Ho et al., 2003;

Potekhin et al., 2004), so the fully ionized model shown in Fig. 3.13 is not realistic.

Figures 3.14-3.15 show atmosphere models at magnetic field strength B =

5 × 1014 G and Teff = 5 × 106 K, for H and He compositions. At this effective

temperature, the ion cyclotron feature lies close to the blackbody peak, and the

effects of vacuum polarization on the line width and spectral tail are pronounced.

3.3.3 Beaming Patterns and Observed Spectra

Calculations of observed NS lightcurves and polarization signals (see Chapter 4) are

critical for interpreting observations. An important ingredient of such calculations

is the angular beam pattern of surface emission. Figures 3.16-3.23 show the radi-

ation intensities from local patches of NS atmosphere (for the Teff = 106 K models

presented in §3.3.2) as a function of emission angle relative to the surface normal

for several photon energies. The heavy curves show models that include vacuum

polarization effects, while the light curves show models that neglect vacuum polar-

ization. Magnetized atmosphere models which neglect vacuum polarization have

a distinctive beaming pattern, consisting of a thin “pencil” feature at low emis-

sion angles and a broad “fan” beam at large emission angles, with a prominent

gap between them (c.f., Özel, 2001). This gap tends to increase with increasing

photon energy. The detailed shape of the emission beam pattern is determined

by the temperature profile and the anisotropy of the mode opacities. As shown
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Figure 3.10: Spectrum of the H atmosphere model with B = 4 × 1013 G, Teff =

106 K, calculated for two cases: partial mode conversion (solid curve), and no

vacuum (dotted curve). The light dashed line shows the blackbody spectrum with

T = 106 K.
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Figure 3.11: Same as Fig. 3.7, except for B = 7 × 1013 G.
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Figure 3.12: Same as Fig. 3.10, except for He composition with B = 1014 G. The

ion cyclotron line width is reduced by vacuum polarization, though it has a larger

equivalent width than the model for H, due to the location of the line near the

maximum of the continuum emission.
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Figure 3.13: Same as Fig. 3.11, except for B = 5 × 1014 G.
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Figure 3.14: Same as Fig. 3.13, except for Teff = 5 × 106 K. The proton cyclotron

feature is strongly suppressed by vacuum polarization. The hard spectral tail is

softened considerably relative to the no vacuum case, though it is still harder than

blackbody.
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Figure 3.15: Same as Fig. 3.14, except for He composition. Vacuum polarization

strongly suppresses the ion cyclotron feature, and softens the hard spectral tail

relative to the no vacuum case.
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by Figs. 3.16-3.23, vacuum polarization tends to smooth out the gap, leading to

a broad, featureless beam pattern at large magnetic fields. The broadening of the

beaming pattern is due to the alteration of the temperature profile by the spike in

opacity at the vacuum resonance and the mode conversion effect.

Figures 3.24-3.29 show the specific radiation intensity from patches of NS atmo-

sphere (for the Teff = 106 K models presented in §3.3.2) at several emission angles.

We find that the shapes of the specta and EWs of the absorption features can

change significantly depending on the emission angle and whether or not vacuum

polarization effects are included in the calculation.
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Figure 3.16: Observed flux as a function of emission angle at photon energies

E = 0.1, 0.5, 1 keV for the NS atmosphere model with B = 4 × 1013 G and

Teff = 106 K. For B < Bl, the beam pattern assumes the characteristic shape for

magnetized NS atmospheres which neglect vacuum polarization effects, with a thin

“pencil” shape at low emission angles, a broad “fan” at large emission angles, and

a prominent gap in between. The gap becomes more pronounced with increasing

photon energy. The heavy curves show models which include vacuum polarization

effects, while the light curves denote models which neglect vacuum polarization.
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Figure 3.17: Same as Fig. 3.16 except for B = 7 × 1013 G. For B > Bl, vacuum

polarization effects tend to smooth out the gap in emission, leading to a broader

beam pattern.
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Figure 3.18: Same as Fig. 3.16 except for B = 1014 G.
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Figure 3.19: Same as Fig. 3.18 except for He composition.
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Figure 3.20: Same as Fig. 3.16 except for B = 5 × 1014 G.
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Figure 3.21: Same as Fig. 3.16 except for B = 1014 G, Teff = 5 × 106 K.
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Figure 3.22: Same as Fig. 3.16 except for B = 5 × 1014 G, Teff = 5 × 106 K.
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Figure 3.23: Same as Fig. 3.16 except for B = 5 × 1014 G, Teff = 5 × 106 K, He

composition.
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Figure 3.24: Observed spectral flux at emission angles θem = 5◦, 15◦, 45◦, 60◦, for

the NS atmosphere model with B = 4 × 1013 G and Teff = 106 K.
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Figure 3.25: Same as Fig. 3.24, except for B = 7 × 1013 G.
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Figure 3.26: Same as Fig. 3.24, except for B = 1014 G.
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Figure 3.27: Same as Fig. 3.24, except for B = 5 × 1014 G.
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Figure 3.28: Same as Fig. 3.24, except for B = 1014 G, Teff = 5 × 106 K.
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Figure 3.29: Same as Fig. 3.24, except for B = 5 × 1014 G, Teff = 5 × 106 K.



Chapter 4

Polarization of the Atmosphere Emission

Thermal emission from a magnetized NS atmosphere is highly polarized. This

arises from that fact that the typical X-mode photon opacity is much smaller than

the O-mode opacity,1 κX ∼ (E/EBe)
2κO ≪ κO. Thus, X-mode photons escape

from deeper, hotter layers of the NS atmosphere than O-mode photons, and the

emergent radiation is linearly polarized to a high degree (as high as 100%; see

Gnedin & Sunyaev, 1974; Meszaros et al., 1988; Pavlov & Zavlin, 2000).

There has been some recent interest in X-ray polarimetry for NSs (Costa et al.,

2001, 2006). Observations of X-ray polarization, particularly when phase-resolved

and measured in different energy bands, can provide useful constraints on the

magnetic field strength and geometry, the NS rotation rate, and compactness. This

information is highly complimentary to that obtained from spectra and lightcurves.

Moreover, as we show below (see also Lai & Ho, 2003b), vacuum resonance gives

rise to a unique polarization signature in the surface emission, even for NSs with

moderate (B ∼ 1012 − 1013 G) magnetic fields.

Below, we calculate the observed X-ray polarization signals in the case when

the emission comes from a rotating magnetic hotspot on the NS surface. Although

this represents the simplest situation, it captures the essential properties of the

polarization signals, and the result can be carried over to more general situations.

See the end of §4.3 for a discussion of the case when emission comes from an

extended area (or the whole) of the stellar surface.

1This applies under typical conditions, when the photon energy E is much less
than the electron cyclotron energy EBe, is not too close to the ion cyclotron energy
EBi, the plasma density is not too close to the vacuum resonance (see the text),
and θkB (the angle between k and B) is not too close to 0◦ or 180◦.

101
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4.1 Geometry and Lightcurves

To calculate the observed lightcurves and polarization signals, we set up a fixed

coordinate system XY Z with the Z-axis along the line-of-sight (pointing from the

NS toward the observer), and the X-axis in the plane spanned by the Z-axis and

Ω (the spin angular velocity vector). The angle between Ω and êZ is denoted by

γ. The hotspot is assumed to be at the intersection of the NS surface and dipole

magnetic axis, which is inclined at an angle η relative to the spin axis. As the

star rotates, the angle Θ between the magnetic axis µ and the line of sight varies

according to

cos Θ = cos γ cos η − sin γ sin η cosψ, (4.1)

where ψ = (Ωt + constant) is the rotation phase (ψ = 0 when µ lies in the XZ

plane). We use the simplified formalism derived by Beloborodov (2002) to calculate

the observed spectral flux from the area dS of the hotspot, which takes the form

Fobs =
(

1 − rg

R

)3/2

Iν(θem) cos θem
dS

D2
, (4.2)

where rg = 2GM/c2 is the Schwarzschild radius, R is the NS radius, and θem (the

angle between the photon direction and the surface normal at the emission point)

is related to Θ through:

cos θem =
rg

R
+

(

1 − rg

R

)

cos Θ. (4.3)

For R > 3rg, the spectral flux calculated using eq. (4.2) differs from the exact

treatment (see Pechenick et al., 1983) by less than 1%.

The top panels of Figs. 4.1-4.3 show lightcurves for NS models with several

magnetic field strengths, at a range of energies E = 0.5 − 3 keV, with geometry

γ = 30◦, η = 70◦.
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1 keV

0.5 keV

2 keV

3 keV

5 keV

Figure 4.1: Lightcurve and polarization as a function of rotation phase for a NS

hotspot with B = 1013 G, Teff = 5 × 106 K. The angle of the spin axis relative to

the line of sight is γ = 30◦, and the inclination of the magnetic axis relative to the

spin axis is η = 70◦. Note that the sign of the FQ Stokes parameter is opposite for

low and high energy photons; this implies that the planes of polarization for low

and high energy photons are perpendicular. This is a unique signature of vacuum

polarization for models with B < Bl.
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2 keV
1 keV

3 keV

5 keV

0.5 keV

Figure 4.2: Same as Fig. 4.1 with B = 5 × 1014 G. At this field strength, B > Bl,

and the vacuum resonance lies between the O and X-mode photospheres. Thus,

the sign of the FQ Stokes parameter for low and high energy photons is the same.

Note that in the top panel, the flux for the 0.5 keV case is multiplied by a factor

of 10 relative to the other curves.
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1 keV2 keV

3 keV

0.5 keV

5 keV

Figure 4.3: Same as Fig. 4.1 with B = 7 × 1013 G. For this model, B ∼ Bl,

representing the transition between the models shown in Figs. 4.1 and 4.2.
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4.2 Observed Linear Polarization Signals

The atmosphere models presented in Chapter 3 yield the specific intensities IX
ν (θem)

and IO
ν (θem) of the two photon modes, emerging from the NS atmosphere (outside

the vacuum resonance layer). To determine the observed polarization signals, it is

important to consider propagation of the polarized radiation in the NS magneto-

sphere. In the X-ray band, the magnetospheric dielectric properties are dominated

by vacuum polarization (Heyl & Shaviv, 2002). Heyl et al. (2003) evolved the

Stokes parameters along photon geodesics in the magnetosphere and showed that

the observed polarization is determined at the so-called “polarization limiting ra-

dius,” a distance far from the NS surface. Below we present a simple calculation of

the propagation effect and observed linear polarization (see also Lai & Ho, 2003b).

Consider a photon emitted at time ti from the hotspot, with rotation phase

ψi = Ωti. The emission point has polar angle Θi (relative to the fixed XY Z

frame) given by eq. (4.1) with ψ = ψi, and azimuthal angle ϕi given by

tanϕi =
sin η sinψi

sin η cos γ cosψi + cos η sin γ
. (4.4)

This is also the angle [ϕi = ϕB(R)] between the projection of the magnetic axis in

the XY plane and the X-axis. After the photon leaves the star, it travels towards

the observer, with a trajectory given by

r = (R sin Θi cosφi+∆X) X̂+(R sin Θi sinφi+∆Y ) Ŷ +(R cos Θi+s+∆Z) Ẑ, (4.5)

where s = c∆t = c(t − ti), ∆X,Y,Z are relativistic corrections (which, as we will

see shortly, are unimportant for the polarization signals), and X̂, Ŷ , Ẑ are unit

vectors. As the photon propagates in the magnetosphere, it will “see” a changing
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stellar magnetic field, given by B = −∇(µ · r/r3), where2

µ = µ
[

(sin η cos γ cosψ + cos η sin γ) X̂ + sin η sinψ Ŷ+

(cos η cos γ − sin η sin γ cosψ) Ẑ
]

, (4.6)

with ψ = Ωt = ψi + Ω∆t = ψi + s/rl (here rl = c/Ω is the radius of the light

cyclinder). The photon’s polarization state will evolve adiabatically, following

the varying magnetic field that the photon experiences, up to the polarization

limiting radius rpl beyond which the polarization is frozen. Since we anticipate

rpl ≫ R, we consider only the region far from the NS. For r ≫ R, the photon

trajectory is simply r ≃ s Ẑ, and the magnetic field along the photon path is

B ≃ (2µZẐ − µXX̂ − µY Ŷ )/r3, with r ≃ s. This magnetic field has magnitude

B(s) =
Bs

2

(

R

r

)3
[

1 + 3 (cos η cos γ − sin γ sin η cosψ)2]1/2
, (4.7)

where Bs = 2µ/R3 is the magnitude of the (dipole) surface field strength at the

magnetic pole. The magnetic field is inclined at an angle θkB to the line of sight,

and makes an azimuthal angle ϕB in the XY plane such that:

sin2 θkB(s) =
1 − (cos η cos γ − sin γ sin η cosψ)2

1 + 3 (cos η cos γ − sin γ sin η cosψ)2 , (4.8)

tanϕB(s) =
sin η sinψ

cos η sin γ + cos γ sin η cosψ
. (4.9)

Recall that in Eqs. (4.7)-(4.9), ψ = ψi + s/rl = Ωti + s/rl and s is the affine

parameter along the ray.

The wave equation for photon propagation in a magnetized medium takes the

form

∇× (µ̄ · ∇ × E) =
ω2

c2
ǫ · E, (4.10)

2We restrict the propagation to the “near zone” of the star, i.e., r < rl = c/Ω.
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where E is the electric field (not to be confused with the photon energy), and ǫ, µ̄

are the dielectric and inverse permeability tensors, respectively. In the magnetized

vacuum of the NS magnetosphere, they are given by ǫ = aI + qB̂B̂ and µ̄ =

aI + mB̂B̂. Solving eq. (4.10) for EM waves with E ∝ eiks−iωt yields the two

modes (in the XY basis)

eO = (cosϕB, sinϕB), eX = (− sinϕB, cosϕB), (4.11)

with indices of refraction nO ≃ 1 + (q/2) sin2 θkB and nX ≃ 1 − (m/2) sin2 θkB. A

general (transverse) EM wave can be written as a superposition of the two modes:

E = AOeO + AXeX. (4.12)

Following the steps of Lai & Ho (2002) [see their eq. (15)], we derive the following

equations for the evolution of the mode amplitudes:

i







A′
O

A′
X






≃







−(ω/c)∆n/2 iϕ′
B

−iϕ′
B (ω/c)∆n/2













AO

AX






, (4.13)

where the prime (’) denotes a derivative with respect to s, and ∆n = nO − nX =

1
2
(q +m) sin2 θkB. The condition for adiabatic evolution of photon modes is

(ω/c)∆n≫ 2ϕ′
B. (4.14)

Near the star (r ∼ R), ϕB ∼ 1/r, and the adiabatic condition is easily satisfied.

Far from the star, r ≫ R; using eq. (4.7), we write:

∆n =
α

30π

(

B

BQ

)2

sin2 θkB = 9.94 × 10−9B2
12

(

R

r

)6

FB, (4.15)

where

FB = 1 − (cos η cos γ − sin γ sin η cosψ)2 , (4.16)
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and B12 = Bs/(1012G). From eq. (4.9), we have

dϕB

ds
=

1

rl

Fϕ, (4.17)

with

Fϕ =
(

sin2 η cos γ + sin η cos η sin γ cosψ
)

/FB. (4.18)

The polarization-limiting radius rpl is set by the condition ω∆n/c = 2ϕ′
B. Substi-

tuting in eqs. (4.15) and (4.17), we find3

rpl

R
= 32.6

(

E1B
2
12FB

f1 Fϕ

)1/6

, (4.19)

where f1 is the spin frequency Ω/(2π) in Hz, and FB, Fϕ are slowly varying func-

tions of phase and are of order unity. Note that the above analysis is valid only

if rpl <∼ rl/2, since beyond the light-cylinder radius the magnetic field is no longer

described by a static dipole. Thus we require that

rpl

rl

≃ 6.84 × 10−3

(

E1B
2
12FB

Fϕ

)1/6

R10 f
5/6
1

<∼ 0.5, (4.20)

where R10 = R/(10 km).

Beyond rpl, the polarization state of the photon is “frozen.” Using eq. (4.11),

the observed Stokes parameters in the observer coordinate system (XY Z) are given

by

I = IO + IX, (4.21)

Q ≃ (IO − IX) cos 2ϕB(rpl), (4.22)

U ≃ (IO − IX) sin 2ϕB(rpl), (4.23)

where IO ∝ IO
ν (θem) and IX ∝ IX

ν (θem) are the specific mode intensities emitted at

the NS surface [calculated with our models described in Chapter 3, and corrected

3Our expression for rpl differs from that given in Heyl & Shaviv (2002) and
Heyl et al. (2003).
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for the general relativistic effect; see eqs. (4.2)-(4.3)], and ϕB(rpl) is evaluated

at s ≃ r = rpl. From eqs. (4.4) and (4.9), with ψ(rpl) = ψi + rpl/rl, we see

that the effect of NS rotation is to shift the polarization lightcurve by a phase

rpl/rl. For slow rotation rpl/rl ≪ 1 [see eq. (4.20)] and this shift is small, yielding

ϕB(rpl) ≃ ϕi + π. We calculate the observed spectral fluxes FI = F, FQ, FU

associated with the intensities I, Q, U using the standard procedure described in

§4.1.

The middle and bottom panels of Figs. 4.1-4.3 show the phase evolution of the

Stokes parameter FQ and the degree of linear polarization, both normalized to the

observed spectral flux. Note that Q is defined such that Q = 1 corresponds to

linear polarization in the plane spanned by the line of sight Z and the NS spin

axis. In Fig. 4.1, we consider emission from a NS hotspot with B = 1013 G and

Teff = 5× 106 K. Note that the value of FQ for low energy photons (E <∼ 1 keV) is

of opposite sign to that of high energy photons (E >∼ 3 keV). This implies that the

planes of polarization for low and high energy photons are perpendicular. This is a

unique signature of vacuum polarization first identified by Lai & Ho (2003b), which

occurs for B < Bl [see eq. 3.5] because the vacuum resonance appears outside the

O-mode photosphere. Below the vacuum resonace layer (ρ > ρV ), the X-mode flux

dominates over the O-mode. For low energy photons, E <∼ Ead, mode conversion

is inefficient, and the emergent flux is dominated by the X-mode; for high energy

photons E >∼ Ead, mode conversion is efficient, rotating the plane of polarization,

and the emergent flux is dominated by the O-mode [see Fig. 2 of Lai & Ho (2003b)].

Fig. 4.2 shows the same result for the model with B = 5 × 1014 G, Teff =

5 × 106 K. In this case, B > Bl, the vacuum resonance appears inside the O and

X-mode photospheres, and the emergent radiation is always dominated by the X-
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mode. As expected, the planes of polarization for low and high energy photons

are aligned. Fig. 4.3 shows an intermediate case, where B ∼ Bl — to calculate

the spectra and polarization signals for such a model, it is particularly important

to incorporate partial mode conversion properly. The distinct behavior between

the low field and high field cases is illustrated by Fig. 4.4, which shows the phase-

averaged FQ Stokes parameter as a function of photon energy for several values of

the magnetic field strength. The low-field cases show the characteristic rotation of

the plane of polarization between low-E and high-E, whereas the high-field cases

do not.

Note that in the above analysis, the observed linear polarization fraction ΠL

(the bottom panel of Figs. 4.1-4.2) is the same as the value just outside the emission

region, |Πem|, i.e.,

ΠL =
(Q2 + U2)1/2

I
= |Πem|, with Πem =

IO
ν (θem) − IX

ν (θem)

IO
ν (θem) + IX

ν (θem)
. (4.24)

The polarized fluxes are simply

FQ ≃ FIΠem cos 2ϕB(rpl), FU ≃ FIΠem sin 2ϕB(rpl). (4.25)

In §4.3 we shall see that for rapidly rotating NSs, the observed ΠL will be somewhat

smaller than |Πem| because of the generation of circular polarization around rpl.

4.3 Circular Polarization

Circular polarization of surface emission may be generated for NSs with sufficiently

rapid rotation, due to the gradual photon mode coupling and decoupling around

rpl. While the linear polarization signals can be adequately described and calcu-

lated using the simple analysis given in §4.2, to calculate the circular polarization,
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Figure 4.4: Phase-average of Stokes parameter FQ as a function of photon energy

for a rotating NS hotspot at magnetic field strengths B = 1013, 4 × 1013, 7 × 1013

and 5× 1014 G, with Teff = 5× 106 K. Note that the sign of 〈FQ〉 changes between

low and high photon energies for the low-field cases, corresponding to rotation of

the plane of polarization.
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quantitative solutions of the evolution equations for the modes or Stokes parame-

ters in the magnetosphere are necessary.

Consider the mode evolution equations (4.13). For given initial values (e.g.,

the mode amplitudes at ri ≪ rpl), the solution of the equations depends on two

parameters: C, defined by (ω/c)∆n ≈ C/r6 and ϕ′
B (since ψ varies by a small

amount along the ray path, FB and Fϕ are nearly constant). Alternatively, since

rpl is determined by C/r6 = 2ϕ′
B, the solution depends only on the dimensionless

parameter Γ, defined by

Γ ≡ rplϕ
′
B =

rpl

rl

Fϕ ≃ 6.84 × 10−3
(

E1B
2
12FBF

5
ϕ

)1/6
R10 f

5/6
1 . (4.26)

Indeed, if we define x = r/rpl, eq. (4.13) can be rewritten as

i
d

dx







AO

AX






≃ Γ







−x−6 i

−i x−6













AO

AX






. (4.27)

Note that while eq. (4.13) is valid for all radii, the magnetostatic approximation for

the field of a rotating dipole breaks down beyond the light-cylinder radius. Since

ϕ′
B ∼ 1/rl, eq. (4.27) is valid only for Γ ∼ rpl/rl <∼ 0.5.

The Stokes parameters can be written in terms of the mode amplitudes as

I = |EX |2 + |EY |2 = |AO|2 + |AX|2, (4.28)

Q = |EX |2 − |EY |2 =

cos 2ϕB (|AO|2 − |AX|2) − 2 sin 2ϕB ℜe (AOA∗
X) , (4.29)

U = 2ℜe (EXE
∗
Y ) =

sin 2ϕB (|AO|2 − |AX|2) + 2 cos 2ϕB ℜe (AOA∗
X) , (4.30)

V = 2ℑm (EXE
∗
Y ) = 2ℑm (AOA∗

X) . (4.31)

Figure 4.5 gives some examples of the results of numerical integration of eq.

(4.27). We start the integration at radius xi = ri/rpl such that the adiabatic
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condition is well satisfied (we typically choose xi <∼ 1/3). In these examples, the

initial values are AO = 1, AX = 0. After obtaining AO(x) and AX(x), we calculate

the Stokes parameters using eqs. (4.28)-(4.31) with ϕB = ϕ′
B(r − ri) = Γ(x − xi)

(adding a constant to ϕB will affect Q and U , but not V ). We see that for x <∼ 1/2,

the photon modes evolve adiabatically, and thus Q ∝ cos 2ϕB, U ∝ sin 2ϕB [see

eqs. (4.22)-(4.23)] and V ≃ 0. Around x = 1 (r = rpl), the modes couple and

circular polarization is generated. For x >∼ 2, the values of the Stokes parameters

are “frozen” and no longer evolve. NSs with large Γ (corresponding to rapid

rotations: f = 40 Hz, B = 1013 G, E = 1 keV yields Γ ∼ 0.3) can generate

appreciable circular polarization, with V (r → ∞)/I ≈ −14%. As the NS spin

frequency decreases, the resulting |V/I| decreases.

Alternatively, using the relations (4.28)-(4.31) and the mode evolution equation

(4.13), we can derive evolution equations for the Stokes parameters:

I ′ = 0, (4.32)

Q′ = (ω∆n/c)V sin 2ϕB, (4.33)

U ′ = −(ω∆n/c)V cos 2ϕB, (4.34)

V ′ = −(ω∆n/c)Q sin 2ϕB + (ω∆n/c)U cos 2ϕB. (4.35)

Since the vacuum contribution to the dielectric tensor includes no dissipation,

I ′ = 0 as expected. Equations (4.32)-(4.35) can be evolved numerically to calculate

the observed Stokes parameters. Again we start the integration at a radius ri < rpl

such that the adiabatic condition is well satisfied. Since the circular polarization

does not depend on the orientation of the XY axes, we set the initial conditions

at ri by rotating the coordinate system azimuthally so that I = 1, U = 0 (this also

corresponds to choosing ψ = 0 or ϕB = 0 at r = ri), and Qi = Πem ≤ 1, where Πem
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Figure 4.5: Evolution of the radiation mode amplitudes (top panel) and Stokes

parameters (bottom three panels). The solid lines are for Γ = 0.3 and the dashed

lines for Γ = 0.1. The polarization limiting radius is shown as the vertical dotted

line. The initial values (at a small x = xi) are AO = 1, AX = 0, Q = I = 1, U = 0

and V = 0. At distances x <∼ 0.5, the modes evolve adiabatically. At r ∼ rpl the

modes begin to couple, generating appreciable circular polarization. At x >∼ 2, the

values of the Stokes parameters are “frozen.”
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is the linear polarization fraction just outside the atmosphere [see eq. (4.24)]. Since

the radiation emerging from the NS surface is linearly polarized, we set V (ri) = 0.

Equations (4.32)-(4.35) are then integrated to a distance beyond rpl.

For a given initial value of the linear polarization fraction Πem at a small

ri ≪ rpl, the solution of eqs. (4.33)-(4.35) depends only on the dimensionless

parameter Γ ≡ rplϕ
′
B. Again, if we define x = r/rpl, eqs. (4.33)-(4.35) can be

rewritten as

dQ/dx =
2Γ

x6
V sin 2ϕB, (4.36)

dU/dx = −2Γ

x6
V cos 2ϕB, (4.37)

dV/dx = −2Γ

x6
(Q sin 2ϕB − U cos 2ϕB) , (4.38)

with ϕB = Γ(x − xi). We are interested in the value of V at x = xf ≫ 1. Figure

4.5 shows some examples of the integration of Eqs. (4.36)-(4.38). Not surprisingly,

the results are in exact agreement with those obtained using the mode evolution

equations.

We have calculated the circular polarizations produced by rotating NSs with

different values of Γ. Our numerical results [see Fig. (4.6)] show that the generated

circular polarization is given by the expression

V/I ≈ −0.60 Πem sign(ϕ′
B) |rpl ϕ

′
B|

6/5
=

−1.5 × 10−3 Πem

(

E1B
2
12 FB

)1/5
f1 Fϕ. (4.39)

This expression is accurate to within one percent in the regime Γ <∼ 0.4 [see

Fig. (4.6)]. Recall that FB ∼ Fϕ ∼ 1, so eq. (4.39) provides a quick estimate

of the magnitude of circular polarization in NS surface emission.

Fig. 4.7 shows the observed, phase-resolved radiation Stokes parameters for a

NS with B = 1013 G and Teff = 5 × 106 K, rotating at f = 50 Hz, with magnetic



117

Figure 4.6: The magnitude of the observed circular polarization fraction |V |/I as a

function of Γ. The linear polarization fraction (Πem) just outside the atmosphere is

assumed to be 100%. The dashed line depicts the fitting formula, eq. (4.39), which

agrees with the numerical solution to within 1% for Γ < 0.4. Note that solutions

with Γ >∼ 0.5 are incorrect since the magnetic field around the polarization limiting

radius is no longer described by the near-zone field of a rotating dipole as adopted

in our calculations.
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field and spin geometry γ = 30◦, η = 70◦ (this is the case shown in Fig. 4.1). The

solid curves are numerical solutions to the Stokes parameter equations of transfer

in the NS magnetosphere, while the dotted curves are calculated using the method

described in §4.2. The latter method assumes FV = 0, but yields results for FQ

and FU that are quite close to those of the numerical integrations. For a rapidly

rotating NS, substantial circular polarization is generated, with |FV /FI | reaching

0.2−0.3 in the hard X-ray band (see also Fig. 4.6). In contrast, Fig. 4.8 shows the

same case with f = 1 Hz. In this case, negligible circular polarization is generated,

and results from the two methods agree with each other exactly.

Finally, we note that although the specific results presented in this section

refer to emission from a hot polar cap on the NS, we expect many of our key

results (e.g., rotation of the planes of linear polarization between E <∼ 1 keV and

E >∼ 4 keV due to vacuum polarization for B <∼ 7 × 1013 G) to be valid in more

complicated models (when several hotspots or the whole stellar surface contribute

to the X-ray emission). This is because the polarization-limiting radius (due to

vacuum polarization in the magnetosphere) lies far from the star [see eq. 4.19],

where rays originating from different patches of the NS experience the same dipole

field (Heyl et al., 2003). Our results therefore demonstrate the unique potential of

X-ray polarimetry to probe physics under extreme conditions (strong gravity and

magnetic fields) and the nature of various forms of NSs.
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Figure 4.7: Observed radiation Stokes parameters for a NS with B = 1013 G,

Teff = 5 × 106 K, f = 50 Hz, γ = 30◦, and η = 70◦, for photon energies E = 0.5, 3

keV. The solid curves show the results of numerical integration of the transfer

equations for the Stokes parameters, while the dotted curves are calculated using

the approximate method of § 4.2.
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Figure 4.8: Same as Fig. 4.7, except for f = 1 Hz. For a slowly rotating NS, there

is negligible difference between the results from the two methods.



Chapter 5

Discussion and Future Challenges for

Atmosphere Modeling

We have presented a new method for incorporating partial conversion of photon

modes due to vacuum polarization into fully-ionized, self-consistent atmosphere

models of magnetized NSs. This method takes into account the non-trivial prob-

ability of photon mode conversion at the vacuum resonance. While recent works

have clearly identified the important effects of the vacuum resonance and related

mode conversion in determining atmosphere radiation spectra and polarizations

(Lai & Ho, 2003a), so far the implementation of these effects in self-consistent

atmosphere models, for technical reasons, has only considered two extreme limits:

complete mode conversion and no mode conversion (Ho & Lai, 2003, 2004). With

a direct, semi-explict Runga-Kutta integration of the radiative transfer equations

for the photon modes (as opposed to the forward-backward substitution procedure

of the Feautrier method) and with the use of an accurate mode conversion for-

mula for each photon, our new atmosphere code displays excellent stability with

respect to grid resolution. Moreover, integration of the full transfer equations for

the radiation Stokes parameters shows that our treatment of partial conversion is

accurate. As expected, the partial conversion solution is intermediate between the

extreme cases of complete and no conversion considered previously. An accurate

treatment of vacuum polarization is a critical step toward interpreting the spectra

and predicting the polarization signals of magnetic NSs.

With our new atmosphere code, we have constructed a large number of at-

mosphere models for various magnetic field strengths, ranging from 1013 G to

121
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5× 1014 G, for both H and He compositions. In agreement with previous, approx-

imate calculations (Ho & Lai, 2003, 2004), we find that for B >∼ 7 × 1013 G, the

vacuum resonance affects the atmosphere spectra (the hard spectral tail is sup-

pressed and the spectral line widths are reduced), with the effects becoming more

significant as the magnetic field strength is increased. For B <∼ 7 × 1013 G, the

effect of the vacuum resonance on the spectra is smaller and becomes negligible for

B <∼ 4×1013 G. However, even for such “low” field strengths, vacuum resonace has

a significant effect on the observed X-ray polarizations (see Lai & Ho, 2003b). Our

new calculations presented in this paper are particularly important for the “inter-

mediate” field regime (4 × 1013 <∼ B <∼ 2 × 1014 G), where previous approximate

treatments are inadequate. For the first time, we are able to accurately determine

the B-dependence of the structure, spectra and polarization signals of ionized NS

atmospheres.

Since the most time-consuming and difficult part of atmosphere modeling in-

volves finding the atmosphere temperature profile that satisfies the condition of

radiative equilibrium, for the convenience of the astrophysics community, we have

presented fitting formulas for the temperature profiles of various atmosphere mod-

els (see §3.3.1). With these analytic expressions, it is relatively straightforward (us-

ing the procedure outlined in §3.2.1) to calculate various properties of the emergent

radiation. These analytic profiles will also be useful for comparison with future

theoretical atmosphere models.

We note that the models presented in this paper have several limitations: (1)

The models assume that the magnetic field lies along the surface normal. While

a more general magnetic field inclination does not change the main results of our

paper (e.g. the effect of vacuum resonance and the dependence of the atmosphere
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spectra on B), to confront observations, synthetic spectra must be constructed

using realistic magnetic field and surface temperature distributions, adding up

contributions over the entire NS surface. Such calculations are necessarily model-

dependent, but they are needed for proper interpretation of observations. (2) At

high density, the radiative transfer equation breaks down, due to the dense plasma

effect. At large optical depth, the photon polarization develops a non-negligible

longitudinal component, the index of refraction deviates significantly from unity,

and the dielectric properties of the medium change. This occurs when the plasma

frequency of the medium exceeds the photon frequency. To date, no detailed stud-

ies of the transfer of radiation in dense plasmas have been performed, though the

problem has been treated in an ad-hoc way by Ho et al. (2003). Nevertheless,

this effect is important for treating thermal radation in the optical band, and for

magnetars can affect the emission spectrum in the soft X-ray (<∼ 1 keV). (3) The

assumption of fully ionized atmospheres may not be valid for cool NSs (such as

the dim isolated NSs) or even the higher temperature AXPs and SGRs. Neverthe-

less, we expect features due to bound-bound and bound-free transitions of neutral

species to be suppressed in the same manner as the ion cyclotron feature (see

Ho et al., 2003; Potekhin et al., 2004, 2005, for recent works on partially ionized

magnetic atmosphere models).

5.1 Implications for Observations of Isolated Neutron Stars

As mentioned in Chapter 1, recent observations by Chandra and XMM-Newton

have shown that the quiescent thermal spectra from AXPs and SGRs have no

observable absorption features (e.g., the ion cyclotron line at EBi = 0.63(Z/A)B14

keV). As first pointed out by Ho & Lai (2003), and confirmed by our more accurate
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calculations presented here, the inclusion of vacuum polarization effects provides

a natural explanation for the non-detection: at B = 5 × 1014 G, the vacuum-

suppressed width of the H or He cyclotron line is smaller than the current detector

resolution. We expect that in the magnetar field regime, bound-bound and bound-

free features will be similarly suppressed (see Ho et al. 2003; Potekhin et al. 2004).

Prominent absorption lines (at 0.7 keV and 1.4 keV) have been detected from

the source 1E1207.4-520, a young neutron star (T ≃ 2 × 106 K) associated with a

supernova remnant (Sanwal et al., 2002; De Luca et al., 2005; Mori et al., 2005).

Two viable (but tentative) identifications of these features are: (1) Ion cyclotron

and atomic transitions of light-element (most likely He) atmospheres at B >∼ 1014 G

(Pavlov & Bezchastnov 2005); (2) Atomic transitions of C or O atmospheres with

B <∼ 1012 G (Mori et al., 2005). Based on our general result of line suppression in

the magnetar field regime, we suggest that the first interpretation is unlikely to be

correct, although a quantitative calculation of the atomic line strengths is needed

to draw a firm conclusion.

Absorption features have also been detected from three nearby, dim isolated

NSs: RX J1308.6+2127, RX J1605.3+3249, and RX J0720.4-3125. While all three

sources have similar effective temperatures (Teff ∼ 106 K), their observed features

occur at different energies and have varying equivalent widths: E ≈ 0.2− 0.3 keV

with EW≈ 150 eV for RX J1308.6+2127 (Haberl et al., 2003), E ≈ 0.27 keV with

EW≈ 40 eV for RX J0720.4-3125 (Haberl et al., 2004b), and E ≈ 0.45 keV with

EW≈ 80 eV for RX J1605.3+3249 (van Kerkwijk et al., 2004). With a single

line, it is difficult to conclusively determine the atmosphere composition. One

possibility is that these features are associated with proton cyclotron resonance

(with possible blending from atomic transitions) in a H atmosphere (Ho & Lai



125

2004). For RX J1308.6+2127, the inferred magnetic field is 3−5×1013 G, for which

line suppression by vacuum resonance is ineffective. The broad width of the feature

is consistent with that calculated by our H atmosphere models (see Fig. 3.10).

RX J1605.3+3249 is also consistent with this picture: its feature corresponds to

B ∼ 7 × 1013 G, and partial suppression of the line may account for its lower

(by a factor of ∼ 2) EW (see Fig. 3.11). The situation for RX J0720.4-3125 is

more complicated: its spectrum (including the line width) varies as a function of

the rotation phase (Haberl et al., 2004b) and over a long timescale (a few years;

see Haberl et al., 2006). If its absorption feature is a proton cyclotron line, then

the inferred magnetic field is too low for vacuum polarization effects to alter the

line strength. Its small EW (40 eV) could arise if the line-emitting region (where

B <∼ 1014 G) is a small fraction of the NS surface; most of the surface would

have B >∼ 1014 G, requiring a highly non-dipolar surface field. Alternatively, if the

atmosphere of RX J0720.4-3125 is composed of He, the required field strength is

B ∼ 9 × 1013 G, strong enough for the vacuum effects to reduce the line width.

Several recent papers have identified similar absorption features in other XDINSs,

though these observations may require independent confirmation and better statis-

tics. Haberl et al. (2004a) report spectral features for RX J0806.4-4123 (E ≈

0.4 − 0.46 keV; EW≈ 33 − 56) and RX J0420.0-5022 (E ≈ 0.3 keV; EW≈ 45),

while Zane et al. (2005) report a spectral feature for RX J2143.7+0654 (E ≈ 0.75

keV; EW≈ 27). These features are similar to those described in more detail above,

and suffer from the same difficulties of identification. Needless to say, since the

magnetic field strengths of these NSs likely lie in the range 5 × 1013 − 1014 G,

for which accurate treatment of the vacuum resonance effect is crucial, the at-

mosphere models developed in this paper will be particularly useful, especially



126

when combined with detailed modeling of (phase-dependent) synthetic spectra

and (energy-dependent) lightcurves.

5.2 Implications for Future Work

It is clear that further theoretical modeling of NS surface emission is needed to

confront observations. Our discussion above also suggests that accurate theoret-

ical models and high-quality data may still be inadequate to break some of the

inherent degeneracies in magnetic field strength and geomery, atmosphere compo-

sition, and surface temperature distribution. In this regard, X-ray polarimetry is

highly desirable. Our calculations in Chapter 4 show that polarization signals are

complementary to X-ray spectra. In fact, the polarization signals from magnetars

and NSs with moderate field strengths are qualitatively different. It is therefore

possible for a NS with a typical spectrum and lightcurve to generate an interesting

polarization signature.



Appendix A

Details of Condensed Surface Emission

Calculation

A.1 Reflectivity Calculation

Here we fill in some of the details for the reflectivity calculation described in §2.2.2.

In the coordinate system xyz defined in §2.2.2, the explicit expression for

eq. (2.12) is:
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where nj (with j = 1, 2) is the index of refraction in the medium, and θ
(t)
j is the

formal complex angle of propagation calculated using Snell’s law (see Appendix

A.2 for a discussion of the interpretation of complex θ
(t)
j ) . Taking the determinant

of eq. (A.1) yields:

a4n
4
j + a2n

2
j + cos θ

(t)
j sin θ(i)

(

a1nj + a3n
3
j

)

+ a0 = 0, (A.2)
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where we have used Snell’s law and the following definitions:

a0 = (ǫ2 − g2)η +
1

8

[

g2 + ǫ(η − ǫ)
] (

2 + 6 cos 2θB − 4 sin2 θB cos 2ϕ
)

sin2 θ(i)

−2
(

ǫ cos2 θB + η sin2 θB

)

sin2 ϕ sin4 θ(i) (A.3a)

a1 =
[

ǫ(η − ǫ) + g2
]

sin 2θB cosϕ (A.3b)

a2 =
1

2

[

g2 − ǫ(ǫ+ 3η) − (g2 + ǫ(η − ǫ)) cos 2θB

]

+

[

ǫ(ǫ− η) cos 2θB + (ǫ cos2 θB + η sin2 θB) sin2 ϕ− ǫ cos2 ϕ
]

sin2 θ(i) (A.3c)

a3 = (ǫ− η) sin 2θB cosϕ (A.3d)

a4 =
(

ǫ2 − g2
)

η. (A.3e)

The cos θ
(t)
j term is moved to the right-hand side, and the entire equation is then

squared. Using the identity cos2 θ
(t)
j = 1− sin2 θ

(t)
j and Snell’s law yields a polyno-

mial equation in nj:

a2
4n

8
j + (2a2a4 − a2

3 sin2 θ(i))n6
j + (a2

2 + 2a0a4 − 2a1a3 sin2 θ(i) + a2
3 sin4 θ(i))n4

j +

(2a0a2 − a2
1 sin2 θ(i) + 2a1a3 sin4 θ(i))n2

j + a2
0 + a2

1 sin4 θ(i) = 0 (A.4)

The polynomial equation (A.4) has eight roots for nj which are found numerically

using Laguerre’s method (Press et al., 1992). Only two of the roots are physical

and satisfy the original equation (A.2). In practice, it was found that for certain

combinations of the parameters E, θ(i), θB, ϕ, a spurious root satisfies eq. (A.2) to

the specified degree of accuracy, resulting in an unphysical result for the reflectivity.

It is often the case that such roots can be discounted physically using the conditions

(A.11) and (A.12) (see Appendix A.2). Once the indices of refraction n1, n2 are

known, the normal mode polarization vectors can be determined. Solving eq. (2.12)
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for the ratios fj ≡ E
(t)
x /E

(t)
y and gj ≡ E

(t)
z /E

(t)
y results in the expressions
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gj = Ajfj +Bj, (A.5b)
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Cj = Bj cos θ
(t)
j + sin θ

(t)
j sinϕ, (A.5e)

Dj = Aj cos θ
(t)
j + sin θ

(t)
j cosϕ. (A.5f)

With the propagation modes in the plasma determined, the latter two equations

of (2.14) give
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(A.6)

for the incoming polarization modes e
(i)
1 = (− cos θ(i) cosϕ,− cos θ(i) sinϕ, sin θ(i))

and e
(i)
2 = (sinϕ,− cosϕ, 0). Inverting the coefficient matrix of eq. (A.6) and

performing extensive algebra yields the following expressions for the reflected field
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amplitudes:

r11 =
4A cos θ(i) − 2B− sin2 θ(i) + (3 + cos 2θ(i))(B+ cos 2ϕ+ C+ sin 2ϕ)

4A cos θ(i) +B−(3 + cos 2θ(i)) − 2 sin2 θ(i)(B+ cos 2ϕ+ C+ sin 2ϕ)
, (A.7a)
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4A cos θ(i) +B−(3 + cos 2θ(i)) − 2 sin2 θ(i)(B+ cos 2ϕ+ C+ sin 2ϕ)
, (A.7b)

r21 =
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using the definitions:

C1,2 =
[
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A = (C6C7 − C5C8), (A.8d)

B± = (C2C5 + C2C6) ± (C2C7 − C1C8), (A.8e)

C± = (C1C6 + C2C5) ± (C2C7 − C1C8). (A.8f)

The reflectivity and the emission spectrum and polarization are then determined

by eqs. (2.7), (2.8), and (2.9).

A.2 Complex Angle of Propagation

In this Appendix we outline some of the physical properties of a wave propagating

in a plasma with complex index of refraction (c.f. §13.2 of Born & Wolf, 1980).

For a medium with complex index of refraction n = nR + inI (where nR and nI

are real), the formal refraction angle θ(t), as determined by Snell’s law, is complex.

Let cos θ(t) = (1 − sin2 θ(t))1/2 = cos θ
(t)
R + i cos θ

(t)
I . Defining the vector parallel to



131

the plane of incidence ŝ = (− cosϕ,− sinϕ, 0), the wavevector for the transmitted

waves can be written:

k(t) =
nω

c

(

sin θ(t)ŝ − cos θ(t)ẑ
)

=
ω

c

[
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I )ẑ

]

(A.9)

The transmitted electric field has the form E(t) ∝ eik(t)·r−iωt. Substituting eq. (A.9)

into this expression, the field takes the form:

E(t) ∝ exp
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]

×

exp
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i
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)

− iωt
]

. (A.10)

Thus, the transmitted wave has a propagating component multiplied by a damping

factor. Since the amplitude of the wave must decrease as it travels through the

medium, eq. (A.10) gives the following condition on the index of refraction (recall

that in the geometry of §2.2.2, z < 0):

nR cos θ
(t)
I + nI cos θ

(t)
R > 0. (A.11)

The traveling component can be used to define a new wavevector k′ = sin θ(i)ŝ −

(nR cos θ
(t)
R −nI cos θ

(t)
I )ẑ. The real angle of propagation is then given by cos θ(t)′ =

k̂′·k′/|k′|. By assumption, the angle of propagation for the refracted wave measured

with respect to the z axis must be greater than π/2, yielding a second condition

on the index of refraction:

−1 ≤ cos θ(t)′ =
nI cos θ

(t)
I − nR cos θ

(t)
R

√

sin2 θ(i) + (nI cos θ
(t)
I − nr cos θ
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≤ 0. (A.12)

The real and imaginary parts of the indices of refraction for the birefringent trans-

mitted waves must satisfy eqs. (A.11) and (A.12).



Appendix B

Thermal Conduction in Neutron Star

Atmospheres

As discussed in Chapter 3, thermal conduction of electrons must be included in

the calculation of atmospheric structure. Specifically, the condition of constant

radiative flux, eq. (3.9), should be replaced by a constant total flux, Ftot = Frad +

Fth, where Fth is the flux from thermal conduction of electrons. Due to the strongly

quantizing nature of the magnetic field in the atmosphere models considered in

§3.2, thermal conduction is strongly suppressed tranverse to the magnetic field.

We therefore consider logitudinal conduction only.

Potekhin et al. (1999) provide calculations of electron thermal conductivity in

arbitrary magnetic fields. To estimate the effects of thermal conduction on atmo-

sphere structure, we use the classical Spitzer-Härm formula in our calculations, as

a first approximation. For further discussion of calculations of thermal conductiv-

ities, see Potekhin et al. (1999) and the references therein.

The Spitzer-Härm formula for thermal conductive flux due to electrons is

(Spitzer, 1962)

Fth = −λCT
5/2∂T

∂z
(B.1)

where λC = 1.8× 10−5 erg cm−1 s−1 K−7/2. Using the fitting formulas from §3.3.1,

Fth can be written as a function of Thomson optical depth:

Fth = 5.23 × 1016 T
5/2
6

(

c2 + 2 c3 ∆x+ 3 c4 ∆x2 + 4 c5 ∆x3 + 5 c6 ∆x4
)

(cgs), (B.2)

where cj = aj for τ > τmid and cj = bj for τ < τmid.
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The radiative flux is given by

Frad = 5.67 × 1019 (Teff/106 K)4 erg cm−2 s−1 (B.3)

Figure B.1 shows Fth/Frad as a function of optical depth for the H NS atmosphere

models with B = 4 × 1014 G, Teff = 106 K and B = 1014 G, Teff = 5 × 106 K.

For both models, the thermal conductive flux is a small fraction of the radiative

flux (less than 1%) except in the deepest layers (τ > 103).1 We therefore conclude

that thermal conduction provides a minor correction to the total flux and can be

neglected in the calculations of Chapter 3.

It is possible, however, to envision scenarios in which Fth can become important.

As discussed in Chapter 5, at large optical depth and magnetic field strength, the

plasma frequency of the medium can exceed the photon frequency in the optical

and X-ray bands. In a such case, we expect the radiative flux to be suppressed,

and the conductive flux may supply the bulk of Ftot. When atmosphere models

take this effect into account, it may become necessary to revisit the problem of

thermal conduction in NS atmospheres in more detail.

1Note that the negative values of Fth around τ ∼ 102 for the Teff = 5 × 106 K
model result from the inversion of the temperature profile due to the extra heat
deposited by X-mode photons at the vacuum resonance.
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Figure B.1: Ratio of thermal conductive flux to radiative flux for H NS atmosphere

models with B = 4 × 1013 G, Teff = 106 K and B = 1014 G, Teff = 5 × 106 K. The

conductive flux is a small fraction of the total flux except in the deepest layers

(τ > 103).
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