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ABSTRACT 

 

White grubs (Coleoptera: Scarabaeidae) are the most widespread and 

damaging pests in turfgrass habitats of the Northeast U.S. and their management is 

highly dependent on chemical pesticides.  Best IPM is constrained by widespread 

reliance on early season preventive applications of imidacloprid as well as by a lack of 

biologically-based control alternatives.  Part of the solution would be curative 

alternatives that would permit sampling and better decision-making, and biobased 

alternatives that could supplant reliance on chemical insecticides.  This project’s focus 

on white grub control in turfgrass thereby represents the major pest complex in one of 

the most extensive and rapidly expanding components of our urban and rural 

landscape.  As managed ecosystems, extensive and diverse turfgrass habitats require 

decision-making strategies to maintain them for their intended uses.  Better managing 

this vast area will have huge positive impacts, especially considering that this habitat 

is intimately associated with human populations and that home owners can spray lawn 

chemicals with little regulation or training.  Synergistic combinations of selected 

biological and chemical control products are one approach that might yield valuable 

alternatives for the management of soil insect pests.   

Chapter 1 summarizes laboratory studies that were conducted on third instar 

white grubs challenged by individual control products.  The objective was to measure 

variation in the susceptibility of four invasive species of white grubs (Amphimallon 

majale, Anomala orientalis, Maladera castanea and Popillia japonica) to 18 

registered and experimental insecticides used as curative controls under controlled 

laboratory conditions.  Across white grub species, the most efficacious biological and 

 



chemical insecticide alternatives were the entomopathogenic nematode Steinernema 

scarabaei and chlorpyrifos, respectively.  Biorationals were highly variable across 

target species.  For biorational and chemical insecticides, A. majale was the least 

susceptible species.  For biologicals, P. japonica was the least susceptible.  

Considering all control products, A. orientalis was the most susceptible. 

Chapter 2 summarizes a series of laboratory, greenhouse and field trials that 

were conducted on third instar white grubs challenged by combinations of control 

products.  The objective was to screen numerous combinations of biological and 

sublethal doses of neonicotinoid insecticides against third instars under controlled 

laboratory conditions, and then to characterize those interactions as synergistic, 

additive or antagonistic.  The most promising combinations were advanced to 

greenhouse pot studies and then to microplot field trials.  To reveal variation across 

white grub species, trials were conducted on A. majale and P. japonica.  Among the 

combinations of biological and neonicotinoids tested here, results revealed that 

synergistic interactions are relatively uncommon, and involved only 

entomopathogenic nematodes and fungi.  For A. majale, the most promising 

synergistic combinations were between H. bacteriophora and both neonicotinoids; 

across all laboratory, greenhouse and field trials.  In contrast, for P. japonica the most 

promising synergistic combinations were between B. bassiana and M. anisopliae Met 

F52 with clothianidin and M. anisopliae NYSAES with imidacloprid.  Like A. majale, 

this was discernible in each of the two laboratory trials, but did not persist through to 

the greenhouse and field.  Finally, an antagonistic interaction between Bt-products and 

both neonicotinoids was common to both white grub species.   

 



The magnitude of variation in susceptibility across white grub species supports 

the idea that a single product will not reliably suppress populations of all scarab taxa.  

This differential susceptibility could have broader consequences for grub 

management, if a numerically dominant target species is more completely suppressed 

than a co-occurring species.  Synergistic combinations of biological control products 

with reduced rates of neonicotinoid insecticides could be a promising approach for the 

curative control of white grubs and as an IPM tool for the suppression of other soil 

insect pests.  
 

 



BIOGRAPHICAL SKETCH 

 

Anuar Morales Rodríguez was born in Bogotá, D.C., Colombia on January 8, 

1966.  He is the eldest of three siblings.  After graduation in 1985 from the Instituto 

Nacional de Educación Media Dersificada, INEM Santiago Pérez El Tunal-Bogotá, he 

attended the Universidad Distrital Francisco José de Caldas in Bogotá, and received 

his B.S. in Biology with a major in Education in 1995.  His undergraduate thesis was 

titled “Biological control of the coffee berry borer Hypothenemus hampei Ferrari 

(Coleoptera: Scolytidae) with different propagules of the entomopathogenic fungus 

Beauveria bassiana (Balsamo) Vuill.”  Before and after his graduation from the 

university, he worked with different agrochemical companies in Colombia until 1995.  

From 1995 to 2004 he worked at the International Center for Tropical Agriculture 

(CIAT), Colombia in the beans, forage and IPM entomology programs.  From 2000 to 

2001 he attended the Universidad del Valle in Cali, Colombia to obtain a 

“Specialization in Entomology.”  He moved to the United States in 2004 as a Visiting 

Scholar in the Department of Entomology at the New York State Agricultural 

Experimental Station (NYSAES) of Cornell University in Geneva, NY.  In 2006 he 

was accepted into the graduate program (M.S.) in the Field of Entomology at Cornell 

University, and conducted his work at the NYSAES. 

iii 
 



 

 

 

 

 

 

 

 

 

 

 

Este trabajo se lo dedico al motor de mi vida, mi familia. 

iv 
 



ACKNOWLEDGMENTS 

 

I would like to take this opportunity to thank everyone who has helped me 

throughout the entire process of my research from the beginning to its completion.  

First of all, thank you to my friend and advisor, Dr. Daniel C. Peck, for his friendship 

and for giving me the opportunity to enjoy his program and for his invaluable 

guidance, advice, support and encouragement.  To my committee members, Drs Ann 

Hajek and David Soderlund, thank you for all your advice and support. 

Thank you from the bottom of my heart to my friend, helper and wife, Aracely 

Ospina, to make my work and my life a lot easier. 

A huge thank you to our soil insect laboratory team who helped me so much 

including Dan Olmstead, Maria Diaz, Kandi Nelson, Akiko Seto and Masanori Seto, 

and our summer helpers Jill Roper and Erin Jennings and visiting scholars in our lab 

Ulises Castro and Anyimilehidi Mazo.  

Thank you to the superintendents at the Battle Island Golf Course, Saratoga 

Spa Golf, Wayne Hills Country Club, Queensbury Country Club and Parkview 

Fairways Golf Course for allowing us to collect grubs at their facilities. 

Thank you to all the helpful people of the Department of Entomology at 

NYSAES including Mary Lou Hessney, Wendy Kain and Callie Musto for all their 

help in different aspects of my work.  A special thank you for all help, support and 

encouragement in the difficult moments to Nancy Reissig. 

Thank you to all my family for their support and help including my daughters 

Isabella, Nathalia and Carolina and my mother, siblings and relatives.  

Thank you to all my friends and colleagues at Cornell University for making 

my stay here a memorable one. 

v 
 



Finally, I would to thank the Department of Entomology of the New York 

State Agriculture Station and special to chairs Drs. Wendell Roelofs and David 

Soderlund for providing me a graduate research assistantship.  Thank you to a Federal 

Formula Funds project that supported part of my research. 

vi 
 



TABLE OF CONTENTS 

 

Biographical sketch……………..…………………..…………….……………….….iii 

Dedication…………………………………………....…………….………………….iv 

Acknowledgments…………………...………………..……….….……………………v 

Table of contents……...……………………………….…………………………...…vii 

List of figures…………...…..………………………………………………………….x 

List of tables……………...……………………………………………………………xi 

Preface….…………………………………………………………………………....xiii 

CHAPTER ONE…………......…..………………………………………………..….1 
Variation in the laboratory susceptibility of turf-infesting white grubs (Coleoptera: 

Scarabaeidae) to biological, biorational and chemical control products……..…..……1 

Abstract…………...………..………………………………………………………1 

Keywords…………...………………..…………………………………………….2 

1.  Introduction…………...…………………..…………………………………….2 

2.  Materials and Methods………………...…..……………………………………5 

2.1.  White grubs……………………………..………...…….…………………….5 

2.2.  Trial protocols…………………………..………………...………………..…6 

2.3.  Data analyses…………………………..……………………………………...9 

3.  Results……………………………...….…………………….…….…………....9 

3.1.  Biologicals………………………………...………..…….………………......9 

3.2.  Biorationals……………………...…………………….……..……………...15 

3.3.  Chemicals…………………..……………………….………...…………......20 

4.  Discussion……………...……………………………………..…….…..……..25 

4.1.  Biologicals…………………………...………………………..………….…26 

4.2.  Biorationals………………………...…………………………..........……....28 

vii 
 



4.3.  Chemicals…………………..…………...………………….………….…….29 

4.4.  Implications………………………………………….....………….....…..….30 

Acknowledgements………………………………...……………………..………31 

References…………………………………………...……………………………32 

CHAPTER TWO……………………....…………...……………………………….37 
Synergies between biological and neonicotinoid insecticides for the curative  

control of the white grubs Amphimallon majale and Popillia japonica..………..…...37 

Abstract…………………...……………………………………………….……...37 

Keywords……………………..………………..……….…….…………………..38 

1.  Introduction…………………..…………………..…………………..………..38 

2.  Methodology………………………..………….……………………………...41 

2.1.  Source of insects………………………...…………………………………..41 

2.2.  Treatments……………………...……………………………….…………...42 

2.3.  Laboratory experiments………………………………………………...…...43 

2.4.  Greenhouse experiments…………………………...………………………..44 

2.5.  Field experiments………………………...……………………………...…..45 

2.6.  Statistics…………………...………………………………………..……….46 

3. Results………………………………...………………………………………..47 

3.1.  Laboratory experiments…………………………...……………………...…47 

3.2.  Greenhouse experiments……………………………...……………………..60 

3.3.  Field experiments……………………….…..………………………...……..62 

4.  Discussion…………………………..….………………………………..…….64 

4.1.  Synergies are specific to grub species……………………………...………..65 

4.2.  Mechanisms and neonicotinoids effect……………………………..……….66 

4.3.  Bt-products and neonicotinoids area antagonistic…………………...………67 

4.4.  Strength of synergies diminishes from laboratory to field…………….…….68 

viii 
 



4.5.  Implications for soil insect pest management……………………...………..70 

Acknowledgments……………...…..………………….………………………….71 

References………………………………..…………………...………………………72 

ix 
 



LIST OF FIGURES 

 

CHAPTER ONE 
 
Figure 1.  Percent mortality of four species of white grubs at 10, 20 and 30 days after 
treatment (DAT) with biologicals.  B.b. = Beauveria bassiana, H.b. = Heterorhabditis 
bacteriophora, M.a. = Metarhizium anisopliae, P.p. = Paenibacillus popilliae, H. sp. = 
Heterorhabditis sp., S.s. = Steinernema scarabaei.  For each species, bars with the 
same letter are not significantly different for cumulative mortality by 30 DAT 
(Tukey’s test, P < 0.005)………………………...……………………………………12 
 
Figure 2.  Percent mortality of four species of white grubs at 10, 20 and 30 days after 
treatment (DAT) with biopesticides.  Spin = Spinosad, Diat = Diatomaceous earth, 
Azad = Azadirachtin, Bt ten = Bacillus thuringiensis var. tenebrionis, Bt gall = 
Bacillus thuringiensis var. galleriae.  For each species, bars with the same letter are 
not significantly different for cumulative mortality by 30 DAT (Tukey’s test, P < 
0.005)…………………………………………………………………………………18 
 
Figure 3. Percent mortality of four species of white grubs at 10, 20 and 30 days after 
treatment (DAT) with chemical insecticides.  Cloth = clothianidin, Chlor = 
chlorpyrifos, Trich = trichlorfon, Thia = thiamethoxam, Imid = imidacloprid, Dino = 
dinotefuran, Bifen = bifenthrin.  For each species, bars with the same letter are not 
significantly different for cumulative mortality by 30 DAT (Tukey’s test, P < 
0.005)…………………………………………………………………………………23 
 
 
CHAPTER TWO 
 
Figure 1. Percent mortality of Popillia japonica at 10, 20 and 30 days after treatment 
(DAT) with different insecticide combinations in laboratory conditions.  B.b. = 
Beauveria bassiana, M.a. = Metarhizium anisopliae, Clo-1/4 = clothianidin quarter 
label rate, Clo-1/2 = clothianidin half label rate, Imi-1/2 = imidacloprid half label rate, 
*  =  significant synergistic interaction between biological and chemical insecticide, X2 
test value for 1 df……….…………………………………………………………….58 
 
Figure 2. Percent mortality of Amphimallon majale at 10, 20 and 30 days after 
treatment (DAT) with different insecticide combinations in laboratory conditions.  
H.b. = Heterorhabditis bacteriophora, Clo-1/4 = clothianidin quarter label rate, Clo-
1/2 = clothianidin half label rate, Imi-1/4 = imidacloprid quater label rate, Imi-1/2 = 
imidacloprid half label rate, *  =  significant synergistic interaction between biological 
and chemical insecticide, X2 test value for 1 df……………………...……………….59 

 

x 
 



LIST OF TABLES 

 
CHAPTER ONE 
 
Table 1. Control products (18) evaluated in controlled laboratory bioassays against 
third instar of four species of white grubs……………………………………..……….7 
 
Table 2. Analysis of variance of percent mortality (arcsine square root transformed) of 
white grubs (Anomala orientalis, Amphimallon majale, Maladera castanea, Popillia 
japonica) in response to biological insecticides under laboratory bioassay 
conditions…….…….10 
 
Table 3. Mean (± SE) percent mortality of four species of white grubs at 10, 20 and 30 
days after treatment (DAT) with biological insecticides………………………..……11 
 
Table 4. Analysis of variance of percent mortality (arcsine square root transformed) of 
white grubs (Anomala orientalis, Amphimallon majale, Maladera castanea, Popillia 
japonica) treated with biopesticide insecticides under laboratory bioassay 
conditions……………………………………………………………………………..15 
 
Table 5. Mean (± SE) percent mortality of four species of white grubs at 10, 20 and 30 
days after treatment (DAT) with biopesticide insecticides…………………………...17 
 
Table 6. Analysis of variance of percent mortality (arcsine square root transformed) of 
white grubs (Anomala orientalis, Amphimallon majale, Maladera castanea, Popillia 
japonica) treated with chemical insecticides under laboratory bioassay conditions…20 
 
Table 7. Mean (± SE) percent mortality of four species of white grubs at 10, 20 and 30 
days after treatment (DAT) with chemical insecticides…………………………..…..22 
 
CHAPTER TWO 
 
Table 1. Laboratory mortality (mean ± SE) of third instar Popillia japonica and the 
interaction among different combinations of biological and neonicotinoid insecticides 
at 30 DAT in 2005……………………………………………………………………49 
 
Table 2. Laboratory mortality (mean ± SE) of third instar Popillia japonica and the 
interaction among different combinations of biological and neonicotinoid insecticides 
at 30 DAT in 2006……………………………………………………………………51 
 
Table 3. Laboratory mortality (mean ± SE) of third instar Amphimallon majale and the 
interaction among different combinations of biological and neonicotinoid insecticides 
at 30 DAT in 2005……………………………………………………...…………….54 
 

xi 
 



Table 4. Laboratory mortality (mean ± SE) of third instar Amphimallon majale and the 
interaction among different combinations of biological and neonicotinoid insecticides 
at 30 DAT in 2006………...………………………………………………...………..56 
 
Table 5. Greenhouse mortality (mean ± SE) of third instar Popillia japonica and 
Amphimallon majale and the interaction among different combinations of biological 
and neonicotinoid insecticides at 30 DAT…………………………..………………..61 
 
Table 6. Field mortality (mean ± SE) of third instar Popillia japonica and 
Amphimallon majale and the interaction among different combinations of biological 
and neonicotinoid insecticides at 30 DAT…………………………………………....63 

xii 
 



PREFACE 

 

Turfgrass covers > 20 million ha in the United States.  The maintenance and 

protection of that area is an economically important industry.  Insect control programs 

are a major sector of that industry and almost all are based on the use of chemical 

insecticides.  In turfgrass habitats of the Northeast U.S., root-feeding white grubs are a 

widespread and damaging pest complex of eight species. Four species are introduced 

exotics, including the Japanese beetle, Popillia japonica Newman; the oriental beetle, 

Anomala orientalis Waterhouse; the Asiatic garden beetle, Maladera castanea 

(Arrow); and the European chafer, Amphimallon majale (Razoumowsky).  Four are 

native species, including the black turfgrass ataenius, Ataenius spretulus (Haldeman); 

the green June beetle, Cotinis nitida (L); the northern masked chafer, Cyclocephala 

borealis Arrow; and the May or June beetles, Phyllophaga anxia (LeConte).  Their 

management in both preventive and curative windows is highly dependent on 

chemical pesticides.  Some of the most commonly used insecticides in control 

programs include carbamates, diacylhydrazine, neonicotinoids and organophosphates.  

Biological control options are available but unreliable and infrequently used.  

Integrated pest management is constrained by widespread reliance on early season 

preventive applications of imidacloprid as well as by a lack of biologically-based 

control alternatives.  In practical terms, this means that turfgrass managers have no 

quantitative way to decide when not to spray, other than making localized applications 

that target areas highly susceptible or traditionally affected by these pests.  Pest 

management practitioners seeking non-chemical options are stymied by commercial 

formulations that are relatively difficult or expensive to apply, or yield such 

inconsistent results that they are impracticable.  Searching for opportunities for pest 

management in this system would be enhanced by understanding how susceptibility to 

xiii 
 



control products varies across taxa.  In addition, previous work has revealed promising 

possibilities for reduced-risk curative control by combining microbiological control 

agents and neonicotinoid insecticides.  Synergistic combinations of select control 

products might yield valuable alternatives for the management of white grubs and 

other soil insect pests.   

The first objective of this research was to measure under laboratory conditions 

the variation in susceptibility of four invasive white grub species to 18 registered and 

experimental insecticides used as curative controls.  Across white grub species, the 

most efficacious biological and chemical insecticide alternatives were Steinernema 

scarabaei and chlorpyrifos, respectively.  Biorationals were highly variable across 

target species.  For biorational and chemical insecticides, A. majale was the least 

susceptible species.  For biologicals, P. japonica was the least susceptible.  

Considering all control products, A. orientalis was the most susceptible.  The 

magnitude of variation in susceptibility across white grub species supports the idea 

that a single product will not reliably suppress populations of all taxa, and highlights 

the need for pest management practitioners to diagnose and differentiate scarab 

species before intervention. 

The second objective was to understand the breadth of potential synergies by 

screening numerous combinations of biological control agents with sublethal doses of 

neonicotinoid insecticides against third instar white grubs under controlled laboratory 

conditions.  The most promising combinations were advanced to pot studies conducted 

in the greenhouse and then to field trials featuring microplots with artificially infested 

populations.  To reveal variation across white grub species, trials were conducted on 

Amphimallon majale and Popillia japonica.   

Among the combinations of biologicals and neonicotinoids tested, synergistic 

interactions were relatively uncommon, and involved only entomopathogenic 
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nematodes and fungi.  Synergies were remarkably consistent across trials, were 

specific to white grub species, and diminished in strength from lab to greenhouse to 

field.  For A. majale, the most promising synergistic combinations were between H. 

bacteriophora and both neonicotinoids; those results were discernible in all laboratory 

and greenhouse trials and into the field.  In contrast, the most promising synergistic 

combinations for P. japonica were B. bassiana and M. anisopliae Met F52 with 

clothianidin and M. anisopliae NYSAES with imidacloprid.  Like A. majale, this was 

discernible in each of the two laboratory trials, but did not persist through to the 

greenhouse and field.  Finally, an antagonistic interaction between Bt-products and 

both neonicotinoids was common to both white grub species.   

The differential susceptibility detected in this study could have broader 

consequences for grub management if a numerically dominant target species is more 

completely suppressed than a co-occurring species.  On the other hand, synergistic 

combinations of biological control products with reduced rates of neonicotinoid 

insecticides could be a promising approach for the curative control of white grubs and 

as an IPM tool for the suppression of other soil insect pests.  
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CHAPTER ONE 

Variation in the laboratory susceptibility of turf-infesting white grubs (Coleoptera: 

Scarabaeidae) to biological, biorational and chemical control products1

 

Abstract 

 

BACKGROUND: White grubs are the most widespread and damaging pests in 

turfgrass habitats of the Northeast U.S. and their management is highly dependent on 

chemical pesticides.  Because this complex includes eight species, opportunities for 

pest management in this system would be enhanced by understanding how 

susceptibility to control products varies across taxa.  The objective of this laboratory 

study was to measure variation in the susceptibility of four invasive species of white 

grubs to 18 registered and experimental insecticides used as curative controls. 

RESULTS: Across white grub species, the most efficacious biological and chemical 

insecticide alternatives were Steinernema scarabaei and chlorpyrifos, respectively. 

Biorationals were highly variable across target species.  For biorational and chemical 

insecticides, European chafer, Amphimallon majale, was the least susceptible species.  

For biologicals, Japanese beetle, Popillia japonica, was the least susceptible.  

Considering all control products, Oriental beetle, Anomala orientalis, was the most 

susceptible.  

CONCLUSION: The magnitude of variation in susceptibility across white grub 

species supports the idea that a single product will not reliably suppress populations of 

all taxa, and highlights the need for pest management practitioners to diagnose and 

differentiate scarab species before intervention.  This differential susceptibility could 

  
1 This chapter was submitted to Pest Management Science. 
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have broader consequences for grub management, if a numerically dominant target 

species is more completely suppressed than a co-occurring species.  

 

Keywords: Amphimallon majale; Anomala orientalis; Maladera castanea; Popillia 

japonica; turfgrass.  

 

1   INTRODUCTION 

For pest management practitioners who often contend with complexes of 

injurious species, a successful outcome depends on the ability to properly tailor 

intervention programs to the species present.  It is unlikely that a single intervention 

tactic or control product will suffice.  Therefore, it would help to have an 

understanding of how generalizable control method efficacy is across the members of 

the pest complex.  Even among closely related species, details of variation in natural 

history may have repercussions for the outcome of a control program.  

In the northeastern United States, a complex of eight white grub (Coleoptera: 

Scarabaeidae) species is highly damaging to turfgrass and nurseries.  Four species are 

introduced exotics, including the Japanese beetle, Popillia japonica Newman, which 

was discovered in New Jersey in 1916; followed by the oriental beetle, Anomala 

orientalis Waterhouse, in Connecticut in 1920; the Asiatic garden beetle, Maladera 

castanea (Arrow), in New Jersey in 1921; and the European chafer, Amphimallon 

majale (Razoumowsky), in New York in 1940.1,2,3,4  Today, all four species are 

widespread across the northeastern United States and are expanding into other regions 

of the country.  Four native white grub species are also considered turfgrass pests in 

the Northeast.  These include the black turfgrass ataenius, Ataenius spretulus 

(Haldeman); the green June beetle, Cotinis nitida (L); the northern masked chafer, 
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Cyclocephala borealis Arrow; and the May or June beetles, Phyllophaga anxia 

(LeConte).1  

Turfgrass covers > 20 million ha in the United States.5  The maintenance and 

protection of that area is an economically important industry.  Insect control programs 

are a major sector of that industry and almost all are based on the use of chemical 

insecticides.6  The pressure on turfgrass managers (golf course superintendents, lawn 

care providers and home owners) to maintain high aesthetic standards leaves little role 

for cultural or biological control.  Unfortunately, there is no known specific host plant 

resistance for white grubs.  This generates a high dependence on interventions through 

applications of control products, in particular chemical insecticides.  Some of the most 

commonly used insecticides in control programs include carbamates, diacylhydrazine, 

neonicotinoids and organophosphates.  Biological control options are available but 

unreliable and infrequently used.  The most popular is Paenibacillus (=Bacillus) 

popilliae (Dutky), commonly referred to as “milky disease” or “milky spore 

disease”.7,8  Commercial formulations of nematodes from the genera Heterorhabditis 

and Steinernema are also available, as well as the fungi Beauveria bassiana (Balsamo) 

Vuillemin and Metarhizium anisopliae (Metchnikoff) Sorokin.8  Most of the efficacy 

studies with biological control agents have been conducted as preventive controls of 

first or second instars where they have a better opportunity to suppress populations 

due to increased susceptibility.  We found few reports where biological agents have 

been tested as curative controls of third instars. 

“Biorational” or “biopesticide” is the generic name used for some insecticides 

derived from natural sources.  These can include products from plants (neem and oils), 

insect pathogens (Bt-toxin), non insect pathogens (spinosyn), minerals or fossils 

(diatomaceous earth), and other ingredients such as soap.9  Biorationals are desired by 

management practitioners because they are regarded as being innocuous, with low 
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environmental toxicity and minor impact to non-target organisms.10  Among the Bt-

insecticides, only some strains of Bacillus thuringiensis Berliner have been 

recommended for white grub control in turfgrass. 

With two exceptions (A. spretulus and P. anxia), white grubs have a 1-yr life 

cycle with two principal application windows.  In the preventive window, applications 

of control agents target small first and second instars, while in the curative window 

they target large third instars.  Due to the relatively greater susceptibility of early life 

stages, there are more preventive control alternatives.  However, since preventive 

interventions are made in a window prior to damage and feasible scouting, 

applications could be unnecessary or the area applied underestimated.  Curative 

controls can be made after scouting to assess thresholds or in response to damage, but 

alternatives are few and there may be no opportunity to reapply if curative 

interventions fail.11

The decision on when to apply and what kind of control needs to be applied is 

also complicated by the common occurrence of two or more grub species at a site.  

Although some characteristics of the biology and behavior of the four invasive species 

are similar, others are subtly different.  For instance, about 5-10% of the population of 

A. majale take 2 yr to complete their life cycle.1  Amphimallon majale and M. 

castanea fly for a relatively short period (2-3 wk) in late spring while P. japonica and 

A. orientalis fly for longer periods (6-10 wk) during the summer and early fall.  This 

means there are different times frames for the preventive control window as well as 

possible overlap in the curative and preventive windows for the different species in 

early fall.  Another factor that complicates control decisions is the variation in action 

thresholds.  Thresholds for third instars vary from 18-20 and 5-10 grubs per 0.1 m2 in 

M. castanea and A. orientalis, respectively, to 4-5 grubs per 0.1 m2 in A. majale and P. 

japonica.1, 12
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Several chemical insecticides are recommended for the control of white grubs 

in general, and some variation in efficacy is documented across target species.  For 

instance, laboratory tests showed halofenozide (N-[4-chlorobenzonyl]-N-benzoyl-

terbutyl hydrazine) to be highly toxic to P. japonica, less toxic to A. orientalis and 

least toxic to A. majale.13  A differential susceptibility was also found with 

bendiocarb, chlorpyrifos, diazinon, ethoprop and isofenphos against third instar P. 

japonica, A. orientalis and A. majale.14  Variation in efficacy across white grub 

species also occurs with biological agents such as nematodes and fungi, as well as 

biorational controls such as azadirachtin and Bt serovar japonensis strain Buibui.15, 16, 

17, 18, 19  More studies to develop species-specific insecticide recommendations for the 

white grub complex are needed.14

The main objective of this study was to measure variation in the susceptibility 

of four invasive white grub species to 18 registered and experimental insecticides, 

including biological, biopesticide and chemical agents as curative controls.  These 

studies were conducted under controlled laboratory conditions to reduce the possibility 

of interactions with other antagonists in the field.  We sought information to help 

establish which groups of insecticides are the best options for the control of individual 

species, as well as the complex, and to ascertain whether the magnitude of variation in 

the efficacy of these insecticides has relevance for the design of grub control 

programs. 

 

2   MATERIALS AND METHODS 

2.1   White grubs   

All studies were conducted on third instar white grubs collected from the field.  We 

chose this life stage because it is the most difficult to control, it is the target for 

curative control in the field, and it can be maintained in the laboratory for several 
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months.  This life stage was collected from infested turf in late fall before grubs 

descended in the soil profile for overwintering.  Maladera castanea and A. majale 

were collected on 1 October 2004 in Lyons, NY (Wayne Hills Country Club, Wayne 

Co.).  Amphimallon majale was also collected on 1-2 November 2004 in Saratoga 

Springs, NY (Saratoga Spa Golf, Saratoga Co.).  Anomala orientalis was collected on 

1-2 November 2004 in Saratoga Springs, NY (Saratoga Spa Golf, Saratoga Racing 

Cars and nearby residential lawn, Saratoga Co.).  Popillia japonica was collected on 

29 November 2005 in Fulton, NY (Battle Island Golf Course, Oswego Co.).  The 

larvae were maintained in wooden boxes (30 cm wide x 50 cm long x 12 cm high) 

with soil and a piece of sod as food source from the same sites of collection.  Boxes 

were held in a walk-in cooler at 10oC until start of the trials.  

 

2.2   Trial protocols 

One larva was housed per 30-ml plastic cup filled with approximately 30 g of soil and 

a pinch of grass seed (AgWay Shady-Green) included as a food source.  Cup diameter 

was 4.0 cm with a surface area of 12.6 cm2 at the top of the cup.  Sandy soil (82.9% 

sand, 12.1% silt, 5.0% clay, 0.79% organic matter, pH 7.09) was screened and raised 

to 10.5% (w/w) moisture.  

After the grub had successfully burrowed into the soil, both liquid and wettable 

powder formulations of control products were applied in 1 ml of water over the soil 

surface.  Granular treatments were applied on the surface followed by an additional 1 

ml of water.  Cups were capped after treatments had been applied.  In addition to an 

untreated check (water), 18 experimental treatments were applied representing 

biological, biopesticide and chemical insecticides (Table 1).  The application rate for 

each insecticide was based on the highest label rate for white grubs or on direct 

recommendations from the manufacturer. 
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Table 1. Control products (18) evaluated in controlled laboratory bioassays against third instar of four species of white 
grubs. 

Control agent Active ingredient Commercial name Source  Ratea

Biologicals:     
Bacterial pathogen Paenibacillus popilliae Milky Spore St. Gabriel Laboratories, 

Orange, VI 
24.76 kg (AI) ha-1

Entomopathogenic 
nematode 

Heterorhabditis bacteriophora Heteromask BioLogic,  
Willow Hill, PA 

2.04 X 109 IJ3 ha-1

 Heterorhabditis sp.  --- NYSAES, Geneva, NY 2.04 X 109 IJ3 ha-1

 Steinernema scarabaei --- Rutgers University,   
New Brunswick, NJ 

8.19 X 109 IJ3 ha-1

Fungal entomopathogen Beauveria bassiana GHA Botanigard  ES Emerald BioAgriculture 
Okemos, MI  

8.14 X1015 con ha-1

 Metarhizium anisopliae F52 --- Novozymes Biologicals, 
Salem, VA 

7.94 X 1015 con ha-

1

Biopesticides:     
Azadirachtin Azadirachtin Ornazin 3% EC  SePRO Carmel, IN 0.022 L (AI) ha-1

Bacillus thuringiensis Bt var. galleriae --- (Proprietary) 0.65 kg (AI) ha-1

 Bt var. tenebrionis Novodor FC Valent BioSciences,  
Libertyville, IL 

0.09 kg (AI) ha-1

Diatomaceous earth Diatomaceous earth Concern Woodstream, Lititz, PA 7949.14 kg ha-1

Spinosad Spinosad Conserve SC Dow Agrosciences, 
Indianapolis, IN 

0.44 L (AI) ha-1

Chemicals:     
Neonicotinoid Clothianidin  Arena 50 WDG Valent USA Corporation, 

Walnut Creek, CA 
0.45 kg (AI) ha-1

 Dinotefuran Safari 20 SG Valent USA Corporation, 
Walnut Creek, CA 

0.61 kg (AI) ha-1

 Imidacloprid Merit 0.2% Bayer, Durham, NC 0.39 kg (AI) ha-1

 Thiamethoxam  Flagship 25 WG Syngenta, Wilmington, DE 0.30 kg (AI) ha-1

Organophosphate Chlorpyrifos GrubGuard Grotech, Melbourne, 
Australia 

2.0 kg (AI) ha-1

 Trichlorfon Dylox 80 Bayer, Durham, NC 9.12 kg (AI) ha-1

    Pyrethroid Bifenthrin  Talstar GC Flowable FMC, Philadelphia, PA 0.24 kg (AI) ha-1

Untreated check Untreated check --- --- 1 ml water cup-1

a AI = active ingredient, IJ3 = third instar infective juvenile nematodes, con = conidia 
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The registered and experimental biologicals were represented by B. bassiana, 

H. bacteriophora, Heterorhabditis sp., M. anisopliae, P. popilliae and Steinernema 

scarabaei Stock and Koppenhöfer.  The Heterorhabditis sp. strain NYSAES was  

isolated from soil samples from Fulton, NY in 2005 (Battle Island Golf Course, 

Oswego Co.).  It was cultured in the last instar of the greater wax moth, Galleria 

mellonella L.  The emerging infective juveniles (IJ3) were harvested from white traps 

the same day of application.20  The biopesticides were represented by azadirachtin, 

two Bt- products (Bt. var. galleriae in an experimental formulation and Bt. var. 

tenebrionis as a commercial product), diatomaceous earth and spinosad.  Most 

commercial Bt-products contain the protein toxin and spores, but some are cultured in 

a manner that yields only the toxin component.  Since the insecticidal activity of Bt-

products is largely attributed to the toxin (in some cases the spore has no direct effect 

on mortality), for the purposes of this manuscript we categorized them as 

biopesticides.  The neonicotinoid insecticides were represented by clothianidin, 

dinotefuran, imidacloprid and thiamethoxam.  The organophosphates were represented 

by chlorpyrifos (bait formulation) and trichlorfon.  The pyrethroids were represented 

by bifenthrin.  All products were tested against all four species with the exception that 

azadirachtin, bifenthrin and dinotefuran were not tested on A. orientalis and M. 

castanea. 

We conducted five repetitions, each with 20 grubs.  Studies were initiated for 

A. orientalis, M. castanea and A. majale on 7 January 2005 and for P. japonica on 19 

December 2005.  After application the cups with insects were maintained in a walk-in 

environmental chamber under controlled climate conditions (complete darkness, 90-

95% HR, 25oC) at the NYSAES, Geneva, NY.  Evaluations were made at 10, 20 and 
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30 days after treatment (DAT) to measure mortality rates.  To do this, the contents of 

each cup were emptied onto a piece of paper, the status of the grub was assessed, and 

the contents were replaced in the cup with a pinch of additional grass seed. 

 

2.3  Data analyses   

We calculated mean mortality rates for each treatment based on the five repetitions.  

Treatment mortality data were corrected for mortality in the untreated check using 

Abbott’s formula.21  Percentage data was normalized using an arcsine square root 

transformation.  Data were analyzed with Proc Mixed using SAS 9.1 as least-square 

means (LSMEANS statement), where repetition was treated as a random factor and 

treatment and species were treated as fixed factors within a repeated-measures design.  

Each experimental treatment was compared with the untreated check using Dunnett’s 

test.  For treatments with significant effects, mortality was defined as low when 0-29% 

of the insects died, moderate at 30-79% and high at 80-100%.  All statistical analyses 

were performed using SAS.22  

 

3   RESULTS 

3.1   Biologicals 

There were significant effects of treatment, white grub species, time after application, 

and all interactions on mortality (Table 2).  Among the treatments, only S. scarabaei 

and H. bacteriophora caused a significant mortality in all four of the white grub 

species (Fig. 1).  Among white grub species, A. orientalis was significantly more 

susceptible than A. majale and M. castanea, followed by P. japonica, which was 

significantly less susceptible (P ≤ 0.05, LSD).  With respect to interactions among 
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treatments, white grub species and time after application, mortality due to H. 

bacteriophora and S. scarabaei in P. japonica, for instance, was already expressed at 

10 DAT and fully expressed by 20 DAT.  In contrast, mortality was not expressed in 

A. orientalis until 30 DAT.  In general, mortality due to nematode treatments was 

expressed faster than fungal or bacteria treatments.  For instance, at 30 DAT in A. 

majale, both S. scarabaei and M. anisopliae caused significant mortality.  At 10 DAT, 

however, mortality was already > 90% for S. scarabaei, but not significant for M. 

anisopliae.   

Among the three nematode treatments, S. scarabaei caused high mortality in 

all four white grub species (Table 3).  Significant mortality was already expressed at 

10 DAT and by 30 DAT it was >97% for all species.  There was no significant effect 

of white grub species (F = 1.14; df = 3, 48; P = 0.341) or time (F = 2.12; df = 2, 48; P 

= 0.058).  
 
Table 2. PROC MIX of percent mortality (arcsine square root transformed) of white 
grubs (Anomala orientalis, Amphimallon majale, Maladera castanea, Popillia 
japonica) in response to biologicals under laboratory bioassay conditions.  

 
Source Num df Den df F value Pr > F 

Treatment 6 332 167.67 <0.0001 
Species 3 332 30.33 <0.0001 
Time 2 332 129.43 <0.0001 
Treatment*species 18 332 15.26 <0.0001 
Species*time  6 332 6.05 <0.0001 
Treatment*time 12 332 6.85 <0.0001 
Treatment*species*time 36 332 1.48 0.0412 
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Table 3. Mean (± SE) percent mortality four species of white grubs at 10, 20 and 30 
days after treatment (DAT) with biological insecticides. 
 

Treatment White grub 
 species 10 DAT a 20 DAT a 30 DAT a

Nematodes:     
H. bacteriophora A. majale  19.2 ± 9.2* 22.2 ± 12.3* 36.7 ± 14.7** 
 A. orientalis 21.1 ± 6.5** 40.1 ± 8.2* 63.0 ± 8.2*** 
 M. castanea 13.0 ± 5.8* 17.3 ± 6.2 NS 38.7 ± 12.5*** 
 P. japonica 61.4 ± 4.3*** 100.0 ± 0.0*** 100.0 ± 0.0*** 
Heterorhabditis sp. A. majale  12.1 ± 4.0 NS 18.1 ± 4.9 NS 43.5 ± 3.2** 
 A. orientalis 6.3 ± 3.0 NS 25.6 ± 9.7* 58.6 ± 9.2*** 

 M. castanea 0.0 ± 0.0 NS 8.0 ± 4.4 NS 47.0 ± 5.1** 
 P. japonica 0.0 ± 0.0 NS 1.1 ± 1.1 NS 6.7 ± 4.4 NS 

S. scarabaei A. majale  91.6 ± 5.2*** 98.9 ± 1.1*** 98.8 ± 1.3*** 
 A. orientalis 92.5 ± 2.8*** 92.9 ± 2.7*** 97.4 ± 1.61*** 
 M. castanea 95.4 ± 2.2*** 97.6 ± 1.5*** 97.3 ± 1.7*** 
 P. japonica 94.0 ± 4.0*** 100.0 ± 0.0*** 100.0 ± 0.0*** 

Bacteria:     
P. popilliae A. majale  6.0 ± 4.0 NS 5.4 ± 3.5 NS 10.4 ± 4.3 NS 
 A. orientalis 9.6 ± 4.8 NS 17.4 ± 6.6 NS 28.8 ± 4.4** 

 M. castanea 2.0 ± 2.0 NS 2.2 ± 2.2 NS 5.1 ± 3.0 NS 
 P. japonica 3.2 ± 2.0 NS 5.2 ± 2.3 NS 6.4 ± 2.6 NS 
Fungi:     

B. bassiana GHA A. majale  11.6 ± 5.3 NS 15.6 ± 2.6 NS 43.4 ± 8.4** 
 A. orientalis 8.5 ± 3.8 NS 54.8 ± 5.7*** 77.0 ± 4.0*** 

 M. castanea 1.1 ± 1.1 NS 6.9 ± 4.2 NS 36.8 ± 7.0 NS 
 P. japonica 3.1 ± 2.0 NS 6.1 ± 3.7 NS 10.4 ± 5.5 NS 

M. anisopliae A. majale  4.0 ± 1.9 NS 10.1 ± 4.1 NS 69.8 ± 7.3*** 
 A. orientalis 5.5 ± 2.5 NS 39.6 ± 5.7*** 77.2 ± 6.1*** 
 M. castanea 7.2 ± 4.5 NS 37.9 ± 8.7*** 75.6 ± 5.8*** 
 P. japonica 1.0 ± 1.0 NS 3.2 ± 1.3 NS 4.2 ± 2.6 NS 

a Means are significantly different from the untreated check at *0.05, **0.01 and 

***0.001 (Dunnett’s test), NS = Not significant. 
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Figure 1. Percent mortality of four species of white grubs at 10, 20 and 30 days after 
treatment (DAT) with biologicals.  B.b. = Beauveria bassiana, H.b. = Heterorhabditis 
bacteriophora, M.a. = Metarhizium anisopliae, P.p. = Paenibacillus popilliae, H. sp. = 
Heterorhabditis sp., S.s. = Steinernema scarabaei.  For each species, bars with the 
same letter are not significantly different for cumulative mortality by 30 DAT 
(Tukey’s test, P < 0.005).  
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For H. bacteriophora, there was a significant effect of white grub species (F = 

32.18; df = 3, 48; P < 0.0001) and time (F = 16.87; df = 2, 48; P < 0.0001).  Moderate 

mortality in P. japonica was already expressed at 10 DAT, increasing to 100% 

mortality by 20 DAT (Table 3).  There was moderate mortality in A. orientalis, A. 

majale and M. castanea at 30 DAT.   

In the third nematode treatment, Heterorhabditis sp., there was also a 

significant effect of white grub species (F = 33.10; df = 3, 48; P < 0.0001) and time (F 

= 63.63; df = 2, 48; P < 0.0001) (Table 3).  There was significant moderate mortality 

in A. orientalis, M. castanea and A. majale but this was not expressed until 30 DAT.  

There was no significant effect on P. japonica.   

For P. popilliae, there was a significant effect of white grub species (F = 

32.18; df = 3, 48; P < 0.0001) and time (F = 15.22; df = 3, 48; P = 0.0002).  There was 

significant low mortality in A. orientalis at 30 DAT.  There was no significant effect 

on any of the other three grub species (Table 3).   

Both fungal treatments caused moderate to high mortality in A. orientalis, and 

A. majale, but not in P. japonica or M. castanea.  For M. anisopliae, there was a 

significant effect of white grub species (F = 56.17; df = 3, 48; P < 0.0001) and time (F 

= 107.78; df = 2, 48; P < 0.0001).  Significant mortality in M. castanea and A. 

orientalis was already expressed at 20 DAT and at 30 DAT there was significant 

mortality in A. majale, M. castanea and A. orientalis.  For B. bassiana, there was a 

significant effect of white grub species (F = 26.41; df = 3, 48; P < 0.0001) and time (F 

= 48.81; df = 2, 48; P < 0.0001).  Significant mortality in A. orientalis was expressed 

at 20 DAT and this increased at 30 DAT.  Significant moderate mortality in A. majale 
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was expressed at 30 DAT.  There was no significant effect of B. bassiana on M. 

castanea or P. japonica.  

 
Table 4. PROC MIX of percent mortality (arcsine square root transformed) of white 
grubs (Anomala orientalis, Amphimallon majale, Maladera castanea, Popillia 
japonica) treated with biopesticide insecticides under laboratory bioassay conditions.  

 
F value Source Num df Den df Pr > F 

Treatment 5 260 14.27 <0.0001 
Species 3 260 4.15 0.0067 
Time 2 260 131.63 <0.0001 
Treatment*species 13 260 15.69 <0.0001 
Species*time  6 260 7.08 <0.0001 
Treatment*time 10 260 2.29 0.0138 
Treatment*species*time 26 260 1.26 0.1836 

 

3.2   Biorationals 

There were significant effects of treatments, white grub species, time after 

application and all 2-way interactions on mortality (Table 4).  Among the treatments, 

only diatomaceous earth caused a significant mortality in all four of the white grub 

species (Fig. 2).  Among white grub species, A. orientalis was significantly more 

susceptible than P. japonica and M. castanea, followed by A. majale, which was 

significantly less susceptible (P ≤ 0.05, LSD).  With respect to the interaction between 

white grub species and time after application, mortality due to spinosad in M. castanea 

was not significant at 20 DAT but increased significantly by 30 DAT (Table 5).  With 

respect to the interaction between treatment and time after application, mortality due 

to diatomaceous earth, for instance, caused significant mortality in A. majale and P. 
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japonica by 10 DAT, but this was not expressed in A. orientalis and M. castanea until 

30 DAT (Table 5).   
 

For azadirachtin there was a significant effect of white grub species (F = 86.79; 

df = 1, 24; P < 0.0001) and time (F = 6.52; df = 2, 24; P = 0.0055).  Moderate 

mortality was expressed in P. japonica by 10 DAT and this increased to high mortality 

by 30 DAT.  In contrast, azadirachtin had no effect on A. majale. For the mechanical 

insecticide treatment, diatomaceous earth, there was a significant effect of time (F = 

14.65; df = 2, 48; P < 0.0001) but not white grub species (F = 1.10; df = 3, 48; P = 

0.359).  Moderate mortality was expressed in P. japonica and A. majale at 10, 20 and 

30 DAT.  There was also a significant effect on M. castanea and A. orientalis at 30 

DAT but no significant effect was detected at 10 or 20 DAT.  Among the microbial-

derived biopesticides, spinosad showed a significant effect of white grub species (F = 

5.99; df = 2, 48; P = 0.0015) and time (F = 39.50; df = 2, 48; P < 0.0001).  Mortality 

was not expressed until 30 DAT for M. castanea, A. orientalis and A. majale.  There 

was no effect on P. japonica.  

Both Bt treatments caused low to moderate mortality in some species but this 

was not expressed until 30 DAT.  For Bt var. galleriae there was a significant effect of 

white grub species (F = 39.43; df = 2, 48; P < 0.0001) and time (F = 104.22; df = 2,48; 

P < 0.0001).  For Bt var. tenebrionis there was also significant effect of white grub 

species (F = 7.27; df = 2, 48; P = 0.0004) and time (F = 22.68; df = 2, 48; P < 0.0001). 

Both strains caused significantly moderate mortality to A. majale, A. orientalis and M. 

castanea at 30 DAT and had no effect on P. japonica. 
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Table 5. Mean (± SE) percent mortality of four species of white grubs at 10, 20 and 30 
days after treatment (DAT) with biopesticide insecticides. 
 

White grub  a  a  aTreatment 10 DAT 20 DAT 30 DAT species
 Botanical:    
A. majale  Azadirachtin 4.0 ± 2.5 NS 1.1 ± 1.1 NS 15.8 ± 8.3 NS 
A. orientalis  NA NA NA 
M. castanea  NA NA NA 

 P. japonica 47.3 ± 7.0*** 64.1 ± 9.2*** 87.2 ± 5.7*** 
Mechanical:     

A. majale  Diatomaceous earth 26.0 ± 5.6*** 29.1 ± 10.1* 45.5 ± 13.8** 
A. orientalis  1.0 ± 1.0 NS 17.4 ± 4.8 NS 54.8 ± 2.5*** 

 M. castanea 6.5 ± 3.0 NS 12.6 ± 4.4 NS 35.9 ± 6.5*** 
 P. japonica 27.7 ± 4.8*** 34.8 ± 9.5** 46.3 ± 11.9*** 

 Microbial-derived:    
Bt var. galleriae A. majale  6.1 ± 1.9 NS 14.7 ± 4.6 NS 44.2 ± 3.9** 

A. orientalis  2.1 ± 1.3 NS 37.1 ± 2.8 NS 65.7 ± 5.8*** 
M. castanea  2.0 ± 2.0 NS 17.0 ± 3.8 NS 55.2 ± 2.9*** 
P. japonica  0.0 ± 0.0 NS 4.2 ± 3.1 NS 8.9 ± 5.4 NS 

Bt var. tenebrionis A. majale  17.4 ± 5.9 NS 23.1 ± 7.9 NS 32.1 ± 9.5** 
A. orientalis  4.3 ± 2.7 NS 20.4 ± 8.3 NS 52.8 ± 9.5*** 
M. castanea  3.1 ± 2.0 NS 5.7 ± 2.6 NS 41.3 ± 3.8 *** 
P. japonica  1.0 ± 1.0 NS 4.2 ± 3.1 NS 14.9 ± 7.2 NS 
A. majale  Spinosad 17.1 ± 8.9 NS 11.8 ± 9.5 NS 26.5 ± 10.5 NS 

 A. orientalis 3.2 ± 1.3 NS 31.4 ± 8.2** 59.0 ± 14.9*** 
 M. castanea 6.6 ± 2.2 NS 20.6 ± 6.4 NS 79.6 ± 2.1*** 
 P. japonica 7.3 ± 2.3 NS 33.5 ± 4.8** 58.9 ± 8.5*** 

a Means are significantly different from the untreated check at *0.05, **0.01 and 

***0.001 (Dunnett’s test), NS = Not Significant. 
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Figure 2. Percent mortality of four species of white grubs at 10, 20 and 30 days after 
treatment (DAT) with biopesticides. Spin. = Spinosad, Diat. = Diatomaceous earth, 
Azad = Azadirachtin, Bt ten = Bacillus thuringiensis var. tenebrionis, Bt gall = 
Bacillus thuringiensis var. galleriae.  For each species, bars with the same letter are 
not significantly different for cumulative mortality by 30 DAT (Tukey’s test, P < 
0.005).  
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3.3   Chemicals 

There were significant effects of treatment, white grub species, time after application 

and all interactions on mortality (Table 6).  Among the treatments, chlorpyrifos and 

trichlorfon caused significant mortality in all four of the white grub species (Fig. 3).  

Among white grub species, A. orientalis was significantly more susceptible than P. 

japonica and M. castanea, followed by A. majale, which was significantly less 

susceptible (P ≤ 0.05, LSD).  With respect to interactions among treatment, white grub 

species and time after application, mortality due to clothianidin in A. orientalis, for 

instance, was already expressed at 10 DAT.  In contrast, mortality was not expressed 

in A. majale until 30 DAT (Table 7).  For A. majale at 30 DAT, both chlorpyrifos and 

clothianidin caused significant mortality.  At 10 DAT, however, mortality was already 

> 40% for chlorpyrifos, but was not significant for clothianidin. 

 
Table 6. PROC MIX of percent mortality (arcsine square root transformed) of white 
grubs (Anomala orientalis, Amphimallon majale, Maladera castanea, Popillia 
japonica) treated with chemical insecticides under laboratory bioassay conditions. 
  

F value Source Num df Den df Pr > F 
Treatment 7 332 280.11 <0.0001 
Species 3 332 189.41 <0.0001 
Time 2 332 94.53 <0.0001 
Treatment*species 17 332 37.30 <0.0001 
Species*time  6 332 1.16 0.3294 
Treatment*time 14 332 5.58 <0.0001 
Treatment*species*time 34 332 1.12 0.2963 

 

Among the four neonicotinoid treatments, thiamethoxam caused the highest 

overall mortality to all species, except A. majale (Table 7).  There was a significant 

effect of white grub species (F = 32.95; df = 3, 54; P < 0.0001) and time (F = 50.31; df 

= 2, 54; P < 0.0001).  Significant mortality was already expressed at 10 DAT in P. 
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japonica and A. orientalis, at 20 DAT in M. castanea and only until 30 DAT in A. 

majale. 

For clothianidin there was a significant effect of white grub species (F = 98.55; 

df = 3, 54; P < 0.0001) and time (F = 53.93; df = 2, 54; P < 0.0001).  At 10 DAT 

significant mortality was already expressed in A. orientalis and M castanea.  At 30 

DAT significant mortality was expressed for all four species but mortality was higher 

for M. castanea and A. orientalis than A. majale and P. japonica. 

For imidacloprid there was also a significant effect of white grub species (F = 2.81; df 

= 3, 54; P = 0.048) and time (F = 24.23; df = 2, 54; P < 0.0001) (Table 7).  

Imidacloprid had a significant effect on P. japonica and A. orientalis at 20 DAT and 

on A. majale at 30 DAT.  Imidacloprid had no effect on M. castanea (Table 7). 

Finally, for dinotefuran there was a significant effect of white grub species (F 

= 131.75; df = 2, 26; P < 0.0001) and time (F = 5.54; df = 2, 26; P = 0.0072).  It 

caused significant mortality on P. japonica, which was already expressed at 10 DAT 

and increased at 30 DAT.  There was no effect on A. majale. 

For both organophosphate insecticides, there was a significant effect of species 

(F = 7.91; df = 3, 48; P = 0.0002 for chlorpyrifos and F = 114.22; df = 3, 48; P < 

0.0001 for trichlorfon) and time (F = 146.96; df = 2, 48; P < 0.0001 for chlorpyrifos 

and F = 10.54; df = 2, 48; P = 0.0002 for trichlorfon).  For chlorpyrifos there was 

significant mortality on all four species at 10, 20 and 30 DAT.  The highest mortality 

at 10 DAT was expressed in A. orientalis followed by M. castanea, P. japonica and A. 

majale (Table 7).  Mortality was high at 30 DAT for all four species, but only for A. 

majale and P. japonica was 100%. 
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Table 7. Mean (± SE) percent mortality of four species of white grubs at 10, 20 and 30 
days after treatment (DAT) with chemical insecticides. 
 

White grub 
species 

 a  a  aTreatment 10 DAT 20 DAT 30 DAT

 Neonicotinoid:    
A. majale  Clothianidin 19.8 ± 4.1 NS 22.6 ± 4.4 NS 44.3 ± 3.6** 
A. orientalis  56.0 ± 5.7*** 89.3 ± 0.9*** 98.6 ± 1.43***
M. castanea  39.8 ± 9.9* 75.7 ± 5.2*** 100.0 ± 0.0*** 
P. japonica  4.0 ± 2.5 NS 22.9 ± 2.5** 32.8  ± 4.8***
A. majale  Dinotefuran 0.0 ± 0.0 NS 2.2 ± 2.2 NS 8.9 ± 5.4 NS 
A. orientalis  NA NA NA 
M. castanea  NA NA NA 
P. japonica  54.4 ± 8.2*** 69.3 ± 7.7*** 86.2 ± 6.5*** 
A. majale  Imidacloprid 13.0 ± 6.4 NS 18.3 ± 10.7 NS 34.2 ± 9.9** 
A. orientalis  9.7 ± 2.7 NS 30.1 ± 8.4*** 68.3 ± 8.4*** 
M. castanea  9.2 ± 5.6 NS 12.2 ± 5.1 NS 38.8 ± 10.9 NS
P. japonica  9.1 ± 3.3 NS 22.6 ± 3.9* 41.7 ± 5.6*** 
A. majale  Thiamethoxam 13.1 ± 8.1 NS 16.4 ± 9.7 NS 35.1 ± 9.5** 
A. orientalis  27.0 ± 1.8*** 57.5 ± 4.5*** 78.7 ± 5.0*** 
M. castanea  28.2 ± 5.1 NS 39.1 ± 9.1*** 72.8 ± 5.4*** 
P. japonica  48.1 ± 3.1*** 74.9 ± 5.0*** 91.0 ± 3.9*** 
 Organophosphate:    

Chlorpyrifos A. majale  43.0 ± 3.0*** 89.0 ± 2.9*** 100.0 ± 0.0*** 
A. orientalis  87.9 ± 2.3*** 94.8 ± 3.2*** 98.6 ± 1.4*** 
M. castanea  65.5 ± 5.7*** 89.6 ± 4.3*** 92.4 ± 3.6*** 
P. japonica  62.7 ± 5.7*** 84.4 ± 2.9*** 100.0 ± 0.0*** 
A. majale  Trichlorfon 6.0 ± 2.5 NS 2.6 ± 7.4 NS 7.4 ± 8.7 NS 
A. orientalis  95.6 ± 2.1*** 95.1 ± 2.2*** 96.0 ± 1.7*** 
M. castanea  70.3 ± 16.6*** 97.7 ± 1.4*** 100.0 ± 0.0*** 

 P. japonica 71.3 ± 1.6*** 92.6 ± 2.8*** 94.8 ± 2.7*** 
 Pyrethroid:    
A. majale  Bifenthrin 0.0 ± 0.0 NS 0.0 ± 0.0 NS 0.0 ± 0.0 NS 
A. orientalis  NA NA NA 
M. castanea  NA NA NA 
P. japonica  36.9 ± 3.3*** 59.3± 3.7*** 86.7 ± 5.7*** 

a Means are significantly different from the untreated check at *0.05, **0.01 and 

***0.001 (Dunnett’s test), NS=Not Significant.  NA = Not Applied in this species. 
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Figure 3. Percent mortality of four species of white grubs at 10, 20 and 30 days after 
treatment (DAT) chemical.  Cloth = clothianidin, Chlor = chlorpyrifos, Trich = 
trichlorfon, Thia = thiamethoxam, Imid = imidacloprid, Dino = dinotefuran, Bifen = 
bifenthrin.  For each species, bars with the same letter are not significantly different 
for cumulative mortality by 30 DAT (Tukey’s test, P < 0.005).
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For both organophosphate insecticides, there was a significant effect of species 

(F = 7.91; df = 3, 48; P = 0.0002 for chlorpyrifos and F = 114.22; df = 3, 48; P < 

0.0001 for trichlorfon) and time (F = 146.96; df = 2, 48; P < 0.0001 for chlorpyrifos 

and F = 10.54; df = 2, 48; P = 0.0002 for trichlorfon).  For chlorpyrifos there was 

significant mortality on all four species at 10, 20 and 30 DAT.  The highest mortality 

at 10 DAT was expressed in A. orientalis followed by M. castanea, P. japonica and A. 

majale (Table 7).  Mortality was high at 30 DAT for all four species, but only for A. 

majale and P. japonica was 100%. 

Trichlorfon caused significant and high mortality in A. orientalis and moderate 

mortality in P. japonica and M. castanea at 10 DAT.  Mortality was 100% at 30 DAT 

for M. castanea and significantly high for A. orientalis and P. japonica.  In contrast, 

there was no effect on A. majale at any time after application (Table 7). 

For the last chemical treatment, bifenthrin, there was a significant effect of 

white grub species (F = 154.96; df = 3, 141; P < 0.0001) and time (F = 7.92; df = 2, 

141; P = 0.0021).  Significant mortality was expressed in P. japonica at 10 DAT, 

which increased significantly at 20 and 30 DAT.  There was no effect on A. majale. 

 

4   DISCUSSION 

There is broad variation in the effectiveness of the 18 insecticides evaluated across 

white grub species.  Only two, for instance, showed a high efficacy to all four species: 

chlorpyrifos in a bait formulation and the entomopathogenic nematode S. scarabaei.  

Four other products showed a significant effect on all four species: H. bacteriophora, 

diatomaceous earth, clothianidin and thiamethoxam.  Only one showed low effect to 

all four species: a commercial formulation of P. popilliae, which only caused 
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significant but low mortality (28.8%) on A. orientalis at 30 DAT.  Efficacy varied 

across white grub species for the other 12 insecticides.  

There was also broad variation in the susceptibility of grub species to the 

insecticides.  Overall, A. majale and P. japonica were the least susceptible to all 

treatments; 6 of 18 treatments had no effect.  In contrast, 3 of 15 treatments for M. 

castanea had no effect and all 15 treatments had effect on A. orientalis.  

 

4.1   Biologicals  

In general, entomopathogenic nematodes were more virulent than entomopathogenic 

fungi except for A. orientalis where there was no significant difference between the 

two pathogen groups.  However, different results are reported from golf courses in 

Korea for A. orientalis where Beauveria brongniartii (Sacc.) caused lower mortality 

and more variability than Steinernema carpocapsae (Weiser), Steinernema glaseri 

Steiner or H. bacteriophora.17

Among nematodes, S. scarabaei was more effective than H. bacteriophora 

because it led to 100% mortality in all four species by 10 DAT (Fig 1).  This confirms 

results obtained by Koppenhöfer and Fuzy (2004), where the same rate of 100 IJs 

larva-1 caused > 95% mortality in third instars of the same four white grub species.    

In a subsequent study, Koppenhöfer et al. (2002) reported no difference in mortality of 

A. majale, A. orientalis and P. japonica with 50 and 400 IJs larvae-1 at 7 and 14 

DAT.15, 23  Efficacy against M. castanea, however, was significantly less at the low 

rate.  Heterorhabditis bacteriophora was more effective against P. japonica than the 

other three white grub species. At 20 DAT it caused 100% mortality in P. japonica but 

did not cause significant mortality in A. majale or M. castanea.  Significant mortality 
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was observed against A. orientalis at 30 DAT.  These results are similar to those 

reported by Koppenhöfer et al. (2002), where H. bacteriophora caused ≈ 90% 

mortality in P. japonica but < 30% in the other three species.15

Among fungi, there was no effect of either species against P. japonica.  

Among the other three white grub species, M. anisopliae was more pathogenic than B. 

bassiana (Fig 1).  There are some reports of successful control of white grubs using 

fungi.  In Belgium M. anisopliae suppressed Hoplia philanthus Füessly in a sports 

field, and in Europe and Korea, B. brongniartii controlled Melolontha spp. and A. 

orientalis, respectively.16, 17, 24  In North America, however, only a few formulations of 

B. bassiana and only one of M. anisopliae are registered and marketed for the control 

of white grubs; there are no specific reports of their effectiveness.  In addition, while 

M. anisopliae and B. bassiana occur under natural conditions, there are no reports of 

outbreaks on natural populations.  Low efficacy of entomopathogenic fungi has been 

reported in diverse studies against the four pest species that we tested in this study.25, 

26, 27

For P. popilliae, several studies showed ambiguous efficacy against white 

grubs, and specifically P. japonica.28  In 1946, the incidence of this bacterial disease 

was 41.5% in a field survey in Kentucky.  By 1995 only 0.2% of P. japonica larvae 

collected from golf courses in Kentucky showed evidence of the disease.28  In this 

study, we found no significant effect of the commercial formulation of milky spore 

against P. japonica and this result was similar for the other three white grub species.  

Lack of efficacy is not surprising given that first instars are more susceptible to milky 

spore than later instars. In addition, third instars collected in the late summer or early 

spring are more susceptible than those collected in the late fall.29  Production in-vivo 
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and in-vitro as well as the formulation of milky spore present problems resulting in an 

unreliable product.30  There is also the possibility of an increase in the degree of 

resistance by white grubs.28 

 

4.2   Biorationals 

For azadirachtin, our results showed no effect on A. majale but high efficacy (>87%) 

versus P. japonica.  George and Potter (2008), however, showed poor results in 

greenhouse and field trials where the label rate had no effect on third instar P. 

japonica and five times the label rate was needed to kill second instars.31  Azadirachtin 

has an antifeedant effect in many species of insects, causing death by starvation.32  

However, late third instar of A. majale can survive long periods without eating 

(Morales A, pers. obs.), which means that an insecticide with antifeedant properties 

could have minimal effect. 

Among the biorational products, Bt–based insecticides are most effective 

against lepidopteran larvae.  However, there are some Bt subspecies and strains with 

specific toxicity to white grubs.33  Bt var japonensis strain Buibui, isolated from soil 

samples in Japan, exhibits a strong effect against different scarab grubs.18  Our results 

showed a low to moderate mortality in A. orientalis and M. castanea with both Bt-

products tested, moderate mortality in A. majale with Bt var tenebrionis and no effect 

on P. japonica for both formulations.  High mortality (88 - 99%) in P. japonica and A. 

orientalis has been reported in other studies using Bt. var japanensis strain Buibui.18, 34  

However, due to formulation and commercial development challenges there is no 

commercial product currently available. 
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The other biorational product tested spinosad, is produced from a soil 

bacterium through a fermentation process and is labeled for the control of caterpillars 

and fire ants in turf.  Efficacy versus white grubs is not documented.  While our results 

revealed no effect in A. majale, spinosad had a significant effect on P. japonica, A. 

orientalis and especially in M. castanea.  Greenhouse and field studies are necessary 

to establish the potential of spinosad as a control alternative. 

 

4.3   Chemicals 

Our results showed that the susceptibility of white grub species varies for most 

insecticides applied (Fig 3).  Among the chemical insecticides, only chlorpyrifos 

showed consistently high mortality (>90%) across all four species.  Baker reported a 

LD50 8.5 times higher for A. orientalis than P. japonica.35  The use of technical quality 

materials (chlorpyrifos 95%) and topical application versus a new experimental bait 

formulation in this study was the main difference between the two studies.  The bait 

formulation has been shown to be effective for other species of white grubs in sugar 

cane crops.36  In contrast, trichlorfon, the other organophosphate widely used for 

curative control, showed no effect on A. majale but high mortality (90%) on the other 

three species.  In this study bifenthrin, the pyrethroid insecticide, showed high control 

of P. japonica but poor control of A. majale.  Pyrethroids are generally not used for 

white grub control because they penetrate poorly into the soil zone where the grubs are 

active.11

Among the neonicotinoid insecticides, imidacloprid had the lowest mortality 

on all four species. Amphimallon majale and M. castanea were the least susceptible 

and A. orientalis the most susceptible.  In a laboratory experiment testing 
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imidacloprid, Koppenhöfer et al. (2004) reported < 20% mortality against third instar 

A. orientalis, A. majale and M. castanea with a rate of 360 g AI ha-1, and 5-20% 

mortality of P. japonica with 50, 100 and 200 g AI ha-1.38  Clothianidin and 

thiamethoxam in this study showed high (≥ 72.8%) control of P. japonica, A. 

orientalis and M. castanea and low (≤ 35.1%) control against A. majale.  Few or no 

studies have reported the efficacy of both insecticides against the four species, 

however thiamethoxam caused low mortality (< 25%) on P. japonica and A. orientalis 

at 14 DAT using different doses (50, 100 and 200 g AI ha-1).23  Grewal found a 

significant population reduction of P. japonica at 31 DAT with imidacloprid but not 

with thiamethoxam or halofenozoide.37  

 

4.4   Implications  

The results of this study show that with the exception of S. scarabaei and chlorpyrifos, 

none of the control agents evaluated can be reliably used for the curative control of the 

exotic white grub complex in the Northeast United States.  Variation in efficacy 

among pest species means that decisions on product selection have to be made based 

on the pest species’ identity.  Trichlorfon, widely relied on as a late season curative or 

rescue treatment, may not be reliable against A. majale, so turf managers should focus 

on preventive control in areas dominated by this species.  Moreover, some insecticides 

with high efficacy are not commercially available due to production and marketing 

limitations.  For instance, mass production of S. scarabaei has not yet proven to be 

feasible.38  Another difficulty is the restricted use designation in turfgrass of 

insecticides with high efficacy, such as chlorpyrifos.  This chemistry is no longer 
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allowable in turfgrass settings due to a review by the Food Quality Protection Act 

(FQPA).38   

Variation in efficacy measured in this study could be attributed to several 

factors including insect morphology, behavior and physiology, insect immune 

response and insecticide mode of action.  However, the variability generated by many 

of these factors were likely minimized under the experimental and laboratory 

conditions.  In the field, due to grub-soil and control agent-soil interactions, higher 

variation in the efficacy of the different control agents is expected, even among 

closely related taxa with similar resource use and habitat requirements.  This 

differential susceptibility could have another ecological consequence for grub 

management.  In areas where two or more pest species are present, insecticide 

applications could favor populations of non-target grub species, thereby increasing 

their potential to emerge as consequential pests.  
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CHAPTER TWO 

Synergies between biological and neonicotinoid insecticides for the curative control of 

the white grubs Amphimallon majale and Popillia japonica. 

 

ABSTRACT  

Synergistic combinations of select biological and chemical control products 

might yield promising alternatives for the management of soil insect pests.  Root-

feeding white grubs are a widespread and damaging pest complex in turfgrass habitats 

of the Northeast U.S.  Their management is highly dependent on chemical pesticides, 

but previous work has demonstrated feasibility for reduced-risk curative control via 

synergies between entomopathogenic nematodes and neonicotinoid insecticides.  To 

understand the breadth of potential synergies, we screened numerous combinations of 

biological control agents with sublethal doses of neonicotinoid insecticides against 

third instar white grubs under controlled laboratory conditions.  The most promising 

combinations were advanced to greenhouse pot studies and then to field trials 

featuring microplots with artificially infested populations.  To reveal variation across 

white grub species, trials were conducted on Amphimallon majale and Popillia 

japonica.  For A. majale, synergistic combinations of Heterorhabditis bacteriophora 

with imidacloprid and clothianidin were detected in the laboratory, greenhouse and in 

the field.  Under field conditions, some synergistic interaction was detected among 

overwintered insects (174 days after treatment) but not late fall insects (30 DAT).  For 

A. majale, interactions with fungal entomopathogens were largely additive and Bt-

products largely antagonistic.  For P. japonica, synergistic combinations of B. 

bassiana and M. anisopliae with both neonicotinoids were detected in the laboratory 

and greenhouse, but effects did not persist in the field.  For P. japonica, interactions 

with entomopathogenic nematodes were largely additive and Bt-products largely 
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antagonistic.  Synergistic combinations of biological control products with reduced 

rates of neonicotinoid insecticides could be a promising approach for the curative 

control of white grubs and as an IPM tool for the suppression of other soil insect pests.  

 

Keywords: Beauveria bassiana; clothianidin; European chafer; Heterorhabditis 

bacteriophora; imidacloprid; Japanese beetle; Metarhizium anisopliae; Paenibacillus 

popilliae; soil insect pests; synergism; turfgrass.  

 

1.  INTRODUCTION  

The simultaneous application of biological and chemical insecticides to 

achieve a greater total effect than the sum of their individual effects may be a 

promising approach for insect pest management in different agricultural systems 

(Anderson et al., 1989; Furlong and Groden, 2001).  For instance, the combination of 

the fungal entomopathogen Beauveria bassiana (Balsamo) Vuill. with a low rate of 

the insecticide imidacloprid against Colorado potato beetle (Leptinotarsa 

decemlineata Say) can exert a significant synergistic effect on mortality and mycosis 

(Boucias et al., 1996; Quintela and McCoy, 1997; Furlong and Groden, 2001).  For the 

suppression of soil insect pests, in particular, enhanced effects of bacteria, fungi and 

nematodes in combination with chemical insecticides have been reported (Boucias et 

al., 1996; Koppenhöfer and Kaya, 1998; Quintela and McCoy, 1998; Koppenhöfer et 

al., 2003; Jaramillo et al., 2005).  For instance, Jaramillo et al. (2005) reported low 

doses of imidacloprid as a synergist for the fungal entomopathogen Metarhizium 

anisopliae (Metchnikoff) Sorokin against the burrower bug Cyrtomenus bergi 

Froeschner under laboratory and greenhouse conditions.  Quintela and McCoy (1998) 

observed a significant increase in the mortality of the root weevil Diaprepes 

abbreviatus (L.) when B. bassiana was applied in combination with imidacloprid.  
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Synergistic combinations of biological controls with reduced rates of chemical 

insecticide synergists may therefore represent a valuable approach for the suppression 

of soil insect pests.  

Root-feeding white grubs (Coleoptera: Scarabaeidae) are a major global pest of 

diverse agricultural crops (Jackson and Klein, 2006).  They are the most damaging 

group of soil insects in turfgrass, nurseries and ornamentals in extensive areas of the 

United States (Fleming, 1972; Potter, 1998; Wright et al., 1988; Alm et al., 1999; 

Vittum et al., 1999).  In the Northeast United States, a complex of eight scarab species 

is problematic in turf.  The most damaging among these are four exotic species 

introduced in the early 1900’s.  These include the Japanese beetle, Popillia japonica 

Newman; the oriental beetle, Anomala orientalis (Waterhouse), the Asiatic garden 

beetle, Maladera castanea (Arrow); and the European chafer, Amphimallon majale 

(Razoumowsky) (Vittum et al., 1999).   

All four exotic species have a 1-yr life cycle in the Northeast U.S.  Adults 

emerge late in the spring (A. majale and M. castanea) or during the summer (A. 

orientalis and P. japonica) to lay eggs in the soil (Potter, 1998; Vittum et al., 1999).  

First instars develop over 4-6 wk, when they can be effectively targeted for 

suppression with a variety of preventive insecticides.  Larvae of all four species are 

third instar by the end of the summer; at this point suppression shifts to faster acting 

curative insecticides.  Third instars feed voraciously on roots which can lead to 

extensive loss of turf.  Additional indirect damage can be experienced due to the 

activity of mammalian predators digging for grubs, even in areas where direct damage 

is not visible.  After overwintering, third instars emerge in early spring to feed for 

another couple weeks before pupation (Potter, 1998; Vittum et al., 1999).    

While there are non-chemical control alternatives for the control of white grubs, 

all have severe limitations (Koppenhöfer and Kaya, 1998; Potter, 1988; Vittum et al., 
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1999).  Among the biological insecticides, a commercial formulation of the bacteria 

that causes “milky disease”, Paenibacillus popilliae Dutky, is mainly effective against 

first instar P. japonica and even then it has only a slow effect (Koppenhöfer and Kaya, 

1998).  Entomopathogenic nematodes of the genera Heterorhabditis and Sterneinema 

are commercially available but are not reliable enough to provide consistent control, 

especially due to problems related with the formulation and quality of the final product 

(Koppenhöfer and Kaya, 1998; Grewal and Peters, 2005).  Most recently, in the U.S 

the first commercial formulation of M. anisopliae (strain F52) was approved and this 

product includes turf-infesting white grubs on the label (USEPA, 2003). 

Several studies have shown that third instar white grubs are more susceptible 

to nematodes when challenged by other antagonists such as reduced rates of 

neonicotinoids or endophytic host plants (Grewal et al., 1995; Koppenhöfer and Kaya, 

1998; Koppenhöfer et al., 2000a, 2002, 2003).  The first evidence was obtained by 

Koppenhöfer and Kaya (1998) who reported a synergistic interaction between H. 

bacteriophora and imidacloprid against Cyclocephala hirta (LeConte) and C. 

pasadenae Casey.  Later work revealed that imidacloprid and two other neonicotinoids 

(acetamiprid and thiamethoxam) were synergists for H. bacteriophora against A. 

orientalis but not against A. majale or M. castanea (Koppenhöfer et al., 2002).   

While the mechanisms involved in the interaction between neonicotinoids and 

biological insecticides are not established, among white grubs it is likely that 

disruption of the insect’s grooming behavior facilitates host attachment of infective 

juvenile nematodes (Koppenhöfer et al., 2000b).  Another possibility is blocking the 

evasive response of the insect to avoid places with natural enemies.  That evasive 

behavior was reported for larvae of P. japonica where white grubs move away from 

sites applied with M. anisopliae (Villani et al., 1994).  The same evasive behavior has 

also been observed in A. majale to M. anisopliae, and additionally to sublethal doses 
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of imidacloprid (Morales, A. unpublished data).  Diaprepes abbreviatus increased 

mobility with a single application of B. bassiana or in combination with imidacloprid, 

but with a single application of imidacloprid the mobility of larvae decreased 

(Quintela and McCoy, 1998). 

In order to broaden our understanding of which non-chemical control products 

could be synergized by neonicotinoid insecticides, our goal was to screen numerous 

combinations against third instars under controlled laboratory conditions.  This life 

stage is the most damaging, the most difficult to control, the easiest to manipulate, and 

is targeted by late season curative applications.  The interactions were characterized as 

synergistic, additive or antagonistic.  The most promising combinations (based on 

synergy and efficacy) were advanced to greenhouse pot studies, and then to field 

studies featuring microplots with artificially infested populations.  To understand how 

synergistic combinations might vary with white grub species, trials were conducted on 

two of the dominant species in the Northeast U.S., P. japonica and A. majale.   

 

2.  METHODOLOGY 

2.1.  Source of insects 

Third instar white grubs collected from the field were used to conduct all 

laboratory, greenhouse and field experiments.  Popillia japonica was collected on 29 

November 2005 in Fulton, NY (Battle Island Golf Course, Oswego Co.), on 7-8 

November 2006 in Geneva, NY (Seneca Lake Country Club, Ontario Co.) and on 6-7 

November 2007 in Victor, NY (Parkview Fairways Golf Course, Ontario Co.).  

Amphimallon majale was collected on 15-16 November 2005 and on 31 October 2006 

in Lake George, NY (Queensbury Country Club, Warren Co.) and on 6-7 November 

2007 in Victor, NY (Parkview Fairways Golf Course, Ontario Co.).  The larvae were 

maintained in wooden boxes with soil and a piece of sod as a food source from the 
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same sites of collection.  Boxes were held in a walk-in cooler at 10oC until the start of 

trials.   

 

2.2.  Treatments 

We applied registered and experimental biological insecticides at 

recommended rates in combination with low doses of two chemical insecticides. The 

chemical insecticides were clothianidin (Arena 50 WDG; Valent, Walnut Creek, CA) 

and imidacloprid (Merit 75 WP; Bayer, Durham, NC) applied at ½ and ¼ the label rate 

of 0.45 kg AI/ha.  The biologicals included products based on entomopathogenic 

fungi, nematodes and bacteria.   

The fungal entomopathogens were represented by Beauveria bassiana 

(Botanigard ES; Emerald BioAgriculture, Okemos, MI) (8.14 X 1015 conidia/ha) and 

Metarhizium anisopliae (two strains: Met F52 Novozymes Biologicals, Salem, VA 

and Met NYSAES) (7.94 X 1015 con/ha).  The NYSAES strain (ARSEF pending) was 

isolated from P. japonica collected from Fulton, NY (Battle Island Golf Course, 

Oswego Co.) and was propagated on sterile Sabouraud Dextrose Agar (10 g peptone, 

40 g dextrose, 15 g agar, 1 liter distilled water) plus 1% yeast (10 g yeast extract).  

After inoculation with conidia, Petri dishes were maintained for 18-20 d in a growth 

chamber at 27ºC and photoperiod of 12:12 h light:dark.  For the application, conidia 

were scraped from the plate into a 1-liter flask containing 500 ml of sterilized distilled 

water with 0.05% Tween 80 (Fisher Scientific, Pittsburgh, PA).  The conidial 

concentration was determined with a hematocytometer (Bright-Line®; American 

Optical, Buffalo, NY) and adjusted to the required concentration.   

The entomopathogenic nematodes were represented by Heterorhabditis 

bacteriophora (Heteromask; BioLogic, Willow Hill, PA) (2.04 X 109 IJ3/ha) and 

Heterorhabditis sp. (two NYSAES strains) (2.04 X 109 IJ3/ha).  The NYSAES Nema 
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1 strain was isolated from soil samples from Fulton, NY and the NYSAES Nema 2 

strain was isolated from a third instar A. majale collected from Saratoga Springs, NY 

(Saratoga Spa Golf, Saratoga Co.).  Both strains were cultured in the last instar of the 

greater wax moth, Galleria mellonella L.  The emerging infective juveniles (IJ3) were 

harvested from white traps the same day of application (Kaya and Stock, 1997).  

The bacterial products were represented by Paenibacillus popilliae (Milky 

Spore; St. Gabriel Laboratories, Orange, VA) (2.5 kg AI/ha) and Bacillus 

thuringiensis.  The Bt- products were Bt var. galleriae in an experimental formulation 

(650 g AI/ha) and Bt var. tenebrionis (Novodor FC; Valent BioSciences, Libertyville, 

IL) (935 ml AI/ha).  

 

2.3.  Laboratory experiments 

For the laboratory experiments, insects were maintained in a walk-in 

environmental chamber under controlled climate conditions (complete darkness, 90-

95% RH, 25oC) at the NYSAES, Geneva, NY.  Assay units consisted of 30-ml plastic 

cups filled with 30 g of screened soil raised to 10.0% (w/w) moisture.  The soil was 

sandy loam (83.0% sand, 12.0% silt, 5.0% clay) with 0.79% organic matter and pH 

7.09.  A pinch of grass seed (Shady-Green; Agway, Richmond, VA) was added as a 

food source.  After being held at room temperature for 24 h, individual larvae were 

released into each cup.  Larvae that did not burrow into the soil within 3 h were 

replaced.  The treatment applications consisted of the full rate of the biological alone, 

½ or ¼ rate of the neonicotinoid alone and the combination of biological and 

neonicotinoid.  Treatments were applied in 2 ml of water total: 1 ml for the biological 

and 1 ml for the chemical insecticide.  When only one control agent was applied, 1 ml 

of water was added.  Untreated checks received 2 ml of water.   
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Each assay had six repetitions of 10 cups and 10 grubs, and was conducted 

once each year.  In 2005 the studies were initiated on 20 December (P. japonica) and 

22 December (A. majale).  In 2006 the studies were initiated on 15 December (P. 

japonica) and 18 December (A. majale).  In 2006, neither Heterhabditis sp. Nema 1 

nor Heterhabditis sp. Nema 2 could be applied against P. japonica or A. majale.  

Evaluations were made at 10, 20 and 30 d after treatment (DAT) to measure mortality 

rates.  To do this, the contents of each cup were emptied onto a piece of paper, the 

status of the grub was assessed, and the contents were replaced in the cup with a pinch 

of additional grass seed.  These protocols were modified from Morales et al. 

(submitted). 

 

2.4.  Greenhouse experiments 

Greenhouse experiments were conducted at the NYSAES, Geneva, NY.  The 

average greenhouse temperature was 14.0°C (8.5-27.5°C) and the photoperiod was 

14:10 hr light:dark.  One-liter pots filled with soil were seeded with perennial ryegrass 

(Tri-Rye; Agway, Richmond, VA).  The potting soil was sandy loam (84.0% sand, 

11.0% silt, 5.0% clay) with 8.43% organic matter and pH 6.85.  Grass was maintained 

for 10-12 wk, watered every 2 d, and cut to a height of 5.0 cm and fertilized (20-20-

20, Scotts Miracle-Gro Products, Marysville, OH) every week.   

Five larvae were released into each pot.  Larvae that did not burrow into the 

soil within 24 h were replaced.  Treatments were applied in 100 ml of water: 50 ml for 

the biological and 50 ml for the chemical insecticide.  When only one control agent 

was applied, 50 ml of water was added.  Untreated checks received 100 ml of water.  

Each assay had 10 pots (repetitions) and was conducted once each year.  In 2006 the 

studies were initiated on 20 December (P. japonica) and 22 December (A. majale).  In 
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2007 the studies were initiated on 15 January (P. japonica) and 29 January (A. 

majale).   

Treatments for each grub species were selected based on those that exhibited a 

synergistic interaction in laboratory assays.  The P. japonica treatments were B. 

bassiana and clothianidin at ½ and ¼ label rate alone and in combination; M. 

anisopliae Met 52 and clothianidin at ½ label rate alone and in combination; and M. 

anisopliae strain NYSAES and imidacloprid at ½ label rate alone and in combination.  

The A. majale treatments were H. bacteriophora and clothianidin and imidacloprid at 

½ and ¼ label rate alone and in combination.  After applications, all pots were 

arranged in a completely randomized design.  Destructive evaluations were made at 30 

DAT to measure mortality rates.   

 

2.5.  Field experiments 

Field experiments were conducted in microplots with artificially infested 

populations.  Studies with P. japonica were conducted on irrigated turf at the Turf 

and Landscape Research Center, Cornell University, Ithaca, NY.  Mowing height 

was 6.5 cm, thatch depth was 0.2-0.5 cm and turf composition was ryegrass 

(Lolium spp. L.) (35%), annual bluegrass (Poa annua L.) (19%), fescue (Festuca 

spp. L.) (2%) and broad-leaf weeds (44%).  Soil was sandy loam (63.0% sand, 

26.0% silt, 9.0% clay) with 2.6% organic matter and pH 5.8.  Previous to the start 

of the experiment, natural populations of white grubs were detected at a density of 

30-40 grubs/m2, with a species composition of 90-95% P. japonica and 5-10% A. 

majale.   

Experiments with A. majale were conducted in an experimental turf area at 

the NYSAES, Geneva, NY.  Mowing height was 8.5 cm, thatch depth was 0.4-0.6 

cm and turf composition was ryegrass (18.8%), crabgrass (Digitaria spp.) (75.0%) 
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and broad-leaf weeds (6.2%).  Soil was silty clay loam (12.5% sand, 55.0% silt, 

32.5.0% clay) with 5.7% organic matter and pH 6.5.  Previous to the start of the 

experiment, a low natural population of P. japonica was detected at a density of ≤ 

5 grubs/m2.  Neither of the two locations had been treated with insecticides within 

5 yr. 

The microplots were PVC rings (30.5 cm diameter, 7.6 cm height) that 

were pushed completely into the soil 1 wk before infestation.  Fifteen P. japonica 

or 10 A. majale larvae (third instar) were released into each ring 24 h before 

treatment application.  Larvae that did not burrow into the soil within 3 h were 

replaced.  There were ten replicated microplots per treatment and these were 

arranged in a randomized block design.  The P. japonica treatments were applied 

on 29 October 2007 (air temperature 5.5°C, soil temperature 10.7°C at 2.5 cm 

depth and 10.9°C at 7.6 cm depth; sunny).  The A. majale treatments were applied 

on 26 October 2007 (air temperature 13.0°C, soil temperature 11.9°C at 2.5 cm 

depth and 12.2°C at 7.6 cm depth; partly cloudy).  The treatments applied in the 

field were the same treatments applied in the greenhouse for each species.  

Applications were made in 500 ml of water and the untreated check received only 

water.  All applications were made using a watering can followed by 0.95 cm of 

irrigation.  Destructive evaluations were made in five microplots at 30 DAT (late 

fall) and five at 174 DAT (early spring) to measure mortality rates.   

 

2.6.  Statistics 

In the laboratory and greenhouse experiments, percent mortality was corrected 

for mortality in the untreated check (Abbott, 1925).  In the field experiments, mortality 

was corrected for the average number of larvae recovered from the untreated check.  

Percent mortality data were normalized using an arcsine square root transformation 
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and subjected to analysis of variance (ANOVA). Synergistic, additive and antagonistic 

interactions between agents in the combination treatments were determined using a X2 

test (Benz, 1971; MacVay et al., 1977; Koppenhöfer and Kaya, 1998; Koppenhöfer 

and Fuzy, 2003).  The expected interaction mortality value, ME, for combined agents 

was calculated using the formula ME = MB + MN (1- MB/100), where MB and MN are 

the observed percent mortalities caused by the biological and neonicotinoid products 

alone, respectively.  Results from a X2 test were compared to the X2 table value for 1 

df, using the formula X2 = (MBN- ME)2 / ME, where MBN is the observed mortality for 

the biological - neonicotinoid combinations.  A non-additive effect between the two 

agents was suspected when the X2 value exceeded the table value (Koppenhöfer and 

Fuzy, 2003).  If the difference MBN – ME had a positive or negative value, a significant 

interaction was then considered synergistic or antagonistic, respectively.  Data from 

the field experiment were also assessed for an effect of overwintering.  To do that each 

treatment mean was tested individually in a contrast between 30 and 174 DAT 

evaluations.  Differences among means were considered significant at P < 0.05.  All 

statistical analyses were performed using SAS (SAS Institute, 2002). 

 

3. RESULTS  

3.1.  Laboratory experiments 

Mortality in the untreated check ranged from 5 - 15% for both species.  

Because there was an effect of year (F = 10.15; df = 1, 714; P = 0.0015) on mortality, 

each year was analyzed separately.  In 2005, there was a significant effect of treatment 

(F = 27.95; df = 49, 500; P < 0.0001), white grub species (F = 1440.51; df = 1, 500; P 

< 0.0001) and their interaction (F = 6.73; df = 50, 500; P < 0.0001) on mortality at 30 

DAT.  This result was consistent in 2006 for treatment (F = 13.14; df = 49, 500; P < 

0.0001), white grub species (F = 649.69; df = 49, 500; P < 0.0001) and their 
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interaction (F = 6.52; df = 101, 714; P < 0.0001).  Overall, P. japonica was 

significantly more susceptible to fungi-neonicotinoid combinations than A. majale.  Of 

the 24 combinations evaluated over the 2005 and 2006 studies, 11 were synergistic for 

P. japonica but none for A. majale (Tables 1-4).  In contrast, A. majale was 

significantly more susceptible to H. bacteriophora combinations than P. japonica.  Of 

the 16 combinations, 7 were synergistic for A. majale and only 1 for P. japonica 

(Tables 1-4).  For the bacteria-neonicotinoid combinations, only additive or 

antagonistic effects were detected.  Of the 24 combinations, 8 were antagonistic for A. 

majale and 11 for P. japonica. 

For P. japonica and B. bassiana, a synergistic interaction was detected for 

clothianidin-½ in both years (Tables 1 and 2).  There was an additional synergy for 

imidacloprid-½ and clothianidin-¼ in 2005 and imidacloprid-¼ in 2006.  For Met F52, 

a synergistic interaction was detected for clothianidin-½ in both years. There was an 

additional synergy for imidacloprid-½ in 2005.  For Met NYSAES, a synergistic 

interaction was detected for imidacloprid-½ in both years. There was an additional 

synergy for clothianidin-½ in 2005.  An antagonistic interaction was detected for 

clothianidin-¼ in 2006.  All other interactions between fungal entomopathogens and 

neonicotinoids were additive.  

For A. majale and B. bassiana, an antagonistic interaction was detected for 

imidacloprid-¼ and clothianidin-¼ in 2006 (Tables 3 and 4).  For Met F52, an 

antagonistic interaction was detected with clothianidin-¼ and ½ and imidacloprid-½ in 

2006.  For Met NYSAES, an antagonistic interaction was detected for clothianidin-½ 

in 2006.  All other interactions between fungal entomopathogens and neonicotinoids 

were additive (Tables 3 and 4).  



Table 1. Laboratory mortality (mean ± SE) of third instar Popillia japonica and the interaction among different combinations of 
biological and neonicotinoid insecticides at 30 DAT in 2005. 

 
   Rate 1/2 b   Rate 1/4c  

Treatment Measurementa Mortality χ 2 Effect Mortality χ 2 Effect 
B. bassiana GHA 

Imidacloprid 
 

Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
75.0 ± 5.0 
58.3 ± 6.3 
83.3 ± 4.9 
36.7 ± 8.6 

 
7.76 

 
70.48 

 
Synergistic 
 
Synergistic 

 
53.3 ± 5.6 
56.7 ± 8.7 
80.0 ± 8.6 
50.0 ± 8.3 

 
0.27 

 
23.80 

 

 
Additive 
 
Synergistic 
 

M. anisopliae Met F52 
Imidacloprid 

 
Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
78.3 ± 4.7 
40.0 ± 5.1 
78.3 ± 4.8 
61.7 ± 9.3 

 
46.17 

 
46.17 

 
Synergistic 
 
Synergistic 

 
61.7 ± 7.5 
53.3 ± 5.6 
61.7 ± 7.0 
60.0 ± 7.2 

 
0.81 

 
3.27 

 
Additive 
 
Additive 
 

M. anisopliae NYSAES 
Imidacloprid 

 
Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
83.3 ± 4.9 
68.3 ± 7.7 
66.7 ± 9.2 
46.7 ± 5.4 

 
9.33 

 
41.67 

 

 
Synergistic 
 
Synergistic 

 
45.0 ± 9.9 
66.7 ± 6.7 
56.7 ± 9.5 
60.0 ± 7.1 

 
3.05 

 
0.29 

 

 
Additive 
 
Additive 
 

H. bacteriophora 
Imidacloprid 

 
Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
100.0 ± 0.0 
100.0 ± 0.0 
100.0 ± 0.0 
100.0 ± 0.0 

 
0.0 

 
0.0 

 
Additive 
 
Additive 
 

 
100.0 ± 0.0 
100.0 ± 0.0 
100.0 ± 0.0 
100.0 ± 0.0 

 
0.0 

 
0.0 

 
Additive 
 
Additive 
 

Heterorhabditis sp. Nema 1
Imidacloprid 

 
Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
58.3 ± 5.4 
61.7 ± 6.2 
63.3 ± 7.1 
40.0 ± 5.6 

 
0.06 

 
18.74 

 
Additive 
 
Synergistic 

 
53.3 ± 4.9 
60.0 ± 5.8 
53.3 ± 6.1 
53.3 ± 5.1 

 
0.05 

 
0.38 

 
Additive 
 
Additive 
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Table 1. (Continued). 
Heterorhabditis sp. Nema 2 

Imidacloprid 
 
Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
55.5 ± 5.7 
50.0 ± 4.9 

48.3 ± 10.1 
41.3 ± 8.7 

 
1.13 

 
2.06 

 
Additive 
 
Additive 

 
53.3 ± 4.2 
63.3 ± 6.1 
60.0 ± 5.7 
56.7 ± 4.9 

 
0.19 

 
1.63 

 
Additive 
 
Additive 
 

P. popilliae 
Imidacloprid 

 
Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
26.7 ± 7.1 
83.3 ± 5.6 
38.3 ± 8.7 
61.6 ± 7.3 

 
24.26 

 
3.67 

 

 
Antagonistic 
 
Additive 

 
50.0 ± 7.3 
81.7 ± 9.2 
53.3 ± 4.2 
75.0 ± 6.8 

 
3.80 

 
1.03 

 

 
Additive 
 
Additive 
 

Bt var. galleriae 
Imidacloprid 

 
Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
26.7 ± 6.2 
53.3 ± 4.7 
46.7 ± 6.1 
41.7 ± 5.1 

 
16.38 

 
1.89 

 
Antagonistic 
 
Additive 
 

 
38.3 ± 5.4 
51.7 ± 8.1 
48.3 ± 6.0 
45.0 ± 5.2 

 
5.49 

 
0.05 

 
Antagonistic 
 
Additive 
 

Bt var. tenebrionis 
Imidacloprid 

 
Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
33.3 ± 8.4 
73.3 ± 9.4 

48.3 ± 13.2 
51.7 ± 9.3 

 
13.35 

 
0.22 

 
Antagonistic 
 
Additive 

 
59.4 ± 9.5 

100.0 ± 0.0 
48.3 ± 4.8 
65.0 ± 5.7 

 
3.94 

 
0.95 

 

 

50 

Antagonistic 
 
Additive 

a Observed = efficacy of both control agents applied at the same time. Expected = sum of efficacy of each control agent applied 

separately.  
b ½ = half of the high label rate recommendation for white grub control. 
c ¼ = quarter of the high label rate recommendation for white grub control 
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Table 2. Laboratory mortality (mean ± SE) of third instar Popillia japonica and the interaction among different combinations 
of biological and neonicotinoid insecticides at 30 DAT in 2006. 

 
   Rate 1/2 b   Rate 1/4c  

Treatment Measurementa Mortality χ 2 Effect Mortality χ 2 Effect 
B. bassiana GHA 

Imidacloprid 
 

Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
38.3 ± 9.5 
41.7 ± 5.4 
63.3 ± 2.1 
43.3 ± 7.6 

 
1.39 

 
15.78 

 
Additive 
 
Synergistic 

 
43.3 ± 2.1 
35.0 ± 8.5 
45.0 ± 4.3 
40.0 ± 7.7 

 
3.92 

 
2.23 

 
Synergistic 
 
Additive 
 

M. anisopliae Met F52 
Imidacloprid 

 
Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
26.7 ± 3.3 
21.7 ± 3.1 
58.3 ± 4.8 
26.7 ± 4.2 

 
1.65 

 
41.68 

 
Additive 
 
Synergistic 

 
23.3 ± 3.3 
18.3 ± 3.1 
28.3 ± 4.8 
23.3 ± 2.1 

 
1.80 

 
1.54 

 

 
Additive 
 
Additive 
 

M. anisopliae NYSAES 
Imidacloprid 

 
Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
55.0 ± 2.2 
41.7 ± 5.4 
41.7 ± 10.8 
46.7 ± 9.3 

 
8.16 

 
0.01 

 
Synergistic 
 
Additive 
 

 
41.7 ± 6.0 
38.3 ± 4.0 
25.0 ± 6.2 
43.3 ± 4.9 

 
1.27 

 
4.87 

 

 
Additive 
 
Antagonistic 
 

H. bacteriophora 
Imidacloprid 

 
Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
33.3 ± 4.2 
31.7 ± 5.4 
28.3 ± 4.0 
36.7 ± 4.2 

 
0.59 

 
0.78 

 
Additive 
 
Additive 
 

 
23.3 ± 5.6 
28.3 ± 3.1 
30.0 ± 3.7 
33.3 ± 4.9 

 
0.35 

 

51 

0.01 

 
Additive 
 
Additive 
 

P. popilliae 
Imidacloprid 

 
Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
16.7 ± 3.3 
23.3 ± 3.3 
13.3 ± 2. 1 
28.3 ± 4.0 

 
1.38 

 
6.88 

 
Additive  
 
Antagonistic 
 

 
18.3 ± 3.1 
20.0 ± 4.5 
15.0 ± 2.2 
25.0 ± 2.2 

 
1.38 

 
3.26 

 

 
Additive 
 
Additive 
 

        
 

 

 

 

 44



a Observed = efficacy of both control agents applied at the same time. Expected = sum of efficacy of each control agent applied 

separately.  
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Table 2. (Continued). 
 

Bt var. galleriae 
Imidacloprid 

 
Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
20.0 ± 2.6 
31.7 ± 4.0 
10.0 ± 2.6 
36.7 ± 4.2 

 
2.88 

 
16.41 

 
Additive 
 
Antagonistic 
 

 
23.3 ± 6.1 
28.3 ± 1.7 
23.3 ± 4.9 
33.3 ± 3.3 

 
0.35 

 
1.73 

 
Additive 
 
 Additive 
 

Bt var. tenebrionis 
Imidacloprid 

 
Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
20.0 ± 5.2 
46.7 ± 6.1 
23.3 ± 4.9 
51.7 ± 6.0 

 
11.27 

 
10.59 

 
Antagonistic 
 
Antagonistic 
 

 
26.7 ± 3.3 
43.3 ± 3.3 
26.7 ± 4.2 
48.3 ± 4.8 

 
4.06 

 
6.08 

 

 
Antagonistic 
 
Antagonistic 
 

c ¼ = quarter of the high label rate recommendation for white grub control.  

b ½ = half of the high label rate recommendation for white grub control. 

 

 

52 



 53

For P. japonica and Heterorhabditis sp. Nema 1, a synergistic interaction was 

detected for clothianidin-½ in 2005 (Table 1).  For P. japonica, all other interactions 

between entomopathogenic nematodes and neonicotinoids were additive. 

For A. majale and H. bacteriophora, a synergistic interaction was detected for 

imidacloprid-½ and ¼ and clothianidin-½ and ¼ in both years, with the exception of 

clothianidin-¼ in 2006 which was only additive (Tables 3 and 4). For A. majale, all 

other interactions with Heterhabditis sp. Nema 1 and Heterhabditis sp. Nema 2 were 

additive.   

For P. japonica and P. popilliae, an antagonistic interaction was detected for 

imidacloprid-½ and ¼ in 2005 and clothianidin-½ in 2006 (Table 1 and 2).  For Bt var 

galleriae, an antagonistic interaction was detected for imidacloprid-½ and ¼ in 2005 

and clothianidin-½ in 2006.  For Bt var tenebrionis, an antagonistic interaction was 

detected for imidacloprid-½ and ¼ in 2005 and imidacloprid-½ and ¼ and 

clothianidin-½ and ¼ in 2006.  For P. japonica, all other interactions between 

bacterial products and neonicotinoids were additive. 

For P. popilliae and A. majale, an antagonistic interaction was detected for 

imidacloprid-½ and ¼ in 2005 and clothianidin-½ rate in 2006 (Tables 3 and 4). For Bt 

var galleriae, an antagonistic interaction was detected for imidacloprid-½ in 2005 and 

clothianidin-½ in 2006.  For Bt var tenebrionis, an antagonistic interaction was 

detected for imidacloprid-¼ in both years.  There was an antagonism for clothianidin-

¼ in 2006.  For A. majale, all other interactions between bacterial products and 

neonicotinoids were additive. 



Table 3. Laboratory mortality (mean ± SE) of third instar Amphimallon majale and the interaction among different combinations 
of biological and neonicotinoid insecticides at 30 DAT in 2005. 

 
   Rate 1/2 b   Rate 1/4c  

Treatment Measurementa Mortality χ 2 Effect Mortality χ 2 Effect 
B. bassiana GHA 

Imidacloprid 
 

Clothianidin 

 
Expected 
Observed 
Expected 
Observed 

 
10.0 ± 4.5 
10.0 ± 4.4 
6.7 ± 4.2 

10.0 ± 3.7 

 
0.0 

 
1.66 

 
Additive 
 
Additive 
 

 
6.7 ± 3.3 

10.0 ± 2.6 
16.7 ± 8.2 

6.7 ± 2.1 

 
1.66 

 
1.21 

 

 
Additive 
 
Additive 
 

M. anisopliae Met F52 
Imidacloprid 

 
Clothianidin 

 
Expected 
Observed 
Expected 
Observed 

 
10.0 ± 4.5 
6.7 ± 3.3 
6.7 ± 4.2 
5.0 ± 2.2 

 
1.11 

 
0.41 

 
Additive 
 
Additive 
 

 
6.7 ± 3.3 

11.7 ± 1.6 
6.6 ± 4.3 
1.7 ± 1.7 

 
3.75 

 
2.72 

 

 
Additive 
 
Additive 
 

M. anisopliae NYSAES 
Imidacloprid 

 
Clothianidin 

 
Expected 
Observed 
Expected 
Observed 

 
15.0 ± 5.0 
23.3 ± 6.1 
13.3 ± 5.5 
10.0 ± 3.7 

 
3.38 

 
0.15 

 
Additive 
 
Additive 
 

 
11.7 ± 5.4 
20.0 ± 5.2 
20.0 ± 5.8 
11.7 ± 4.0 

 
3.62 

 
2.88 

 

 
Additive 
 
Additive 
 

H. bacteriophora 
Imidacloprid 

 
Clothianidin 

 
Expected 
Observed 
Expected 
Observed 

 
33.3 ± 9.5 
75.0 ± 6.7 
28.3 ± 9.1 
58.3 ± 6.0 

 
62.45 

 
31.41 

 
Synergistic 
 
Synergistic 
 

 
30.0 ± 7.7 
80.0 ± 3.7 
23.3 ± 6.6 
41.7 ± 7.5 

54 

 
93.44 

 
62.45 

 
Synergistic 
 
Synergistic 
 

Heterorhabditis sp. Nema 1 
Imidacloprid 

 
Clothianidin 

 
Expected 
Observed 
Expected 
Observed 

 
11.7 ± 4.8 
13.3 ± 4.2 
10.0 ± 3.7 

8.3 ± 1.7 

 
0.29 

 
0.0 

 
Additive 
 
Additive 

 
8.3 ± 4.0 

13.3 ± 7.1 
16.7 ± 3.3 

6.7 ± 3.3 

  
3.17 

 
3.37 

Additive 
 
Additive 
 

 
 

 59 



Table 3. (Continued). 
 

Heterorhabditis sp. Nema 2 
Imidacloprid 

 
Clothianidin 

 
Expected 
Observed 
Expected 
Observed 

 
11.7 ± 4.8 
13.3 ± 4.2 
10.0 ± 3.7 

8.3 ± 1.7 

 
0.12 

 
3.00 

 
Additive 
 
Additive 

 
8.3 ± 4.0 

13.3 ± 7.1 
16.7 ± 3.3 

6.7 ± 3.3 

 
0.0 

 
3.67 

 

 
Additive 
 
Additive 
 

P. popilliae 
Imidacloprid 

 
Clothianidin 

 
Expected 
Observed 
Expected 
Observed 

 
16.7 ± 5.6 

3.3 ± 2.1 
8.3 ± 4.0 

10.0 ± 3.7 

 
10.02 

 
0.64 

 
Antagonistic 
 
Additive 

 
13.3 ± 3.3 

1.7 ± 1.7 
16.7 ± 5.6 

8.3 ± 3.1 

 
9.77 

 
0.41 

 
Antagonistic 
 
Additive 
 

Bt var. galleriae 
Imidacloprid 

 
Clothianidin 

 
Expected 
Observed 
Expected 
Observed 

 
10.0 ± 4.4 

1.7 ± 2.1 
6.7 ± 4.2 
8.3 ± 4.0 

 
6.94 

 
0.41 

 
Antagonistic 
 
Additive 

 
6.7 ± 3.3 
3.3 ± 1.7 

16.7 ± 7.6 
8.3 ± 5.4 

 
1.67 

 
3.79 

 
Additive 
 
Additive 
 

Bt var. tenebrionis 
Imidacloprid 

 
Clothianidin 

 
Expected 
Observed 
Expected 
Observed 

 
11.7 ± 4.0 

3.3 ± 2.1 
8.3 ± 4.0 

13.3 ± 4.9 

 
5.79 

 
3.17 

 
Antagonistic 
 
Additive 

 
8.3 ± 3.0 
3.3 ± 3.3 

16.7 ± 5.8 
5.0 ± 2.2 

 

55  
2.91 Additive 

 
3.22 

 

 
Additive 
 

a Observed = efficacy of both control agents applied at the same time. Expected = sum of efficacy of each control agent applied 

separately.  
b ½ = half of the high label rate recommendation for white grub control.  
c ¼ = quarter of the high label rate recommendation for white grub control.  
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Table 4. Laboratory mortality (mean ± SE) of third instar Amphimallon majale and the interaction among different combinations 
of biological and neonicotinoid insecticides at 30 DAT in 2006. 

 
   Rate 1/2 b   Rate 1/4c  

Treatment Measurementa Mortality χ 2 Effect Mortality χ 2 Effect 
B. bassiana GHA 

Imidacloprid 
 

Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
20.0 ± 2.6 
31.7 ± 7.0  
21.7 ± 5.4 
40.0 ± 6.3 

 
2.88 

 
7.18 

 
Additive 
 
Antagonistic 
 

 
28.3 ± 4.7 
28.3 ± 6.0 
21.7 ± 5.4 
36.7 ± 6.1 

 
0.14 

 
4.08 

 

 
Additive 
 
Antagonist
ic 
 

M. anisopliae Met F52 
Imidacloprid 

 
Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

  
6.7 ± 3.3  

15.0 ± 3.4  
5.0 ± 2.2 

23.3 ± 3.3 

 
4.63 

 
14.40 

 
Antagonistic 
 
Antagonistic 
 

 
11.7 ± 1.6 
11.6 ± 4.0 

1.7 ± 1.7 
20.0 ± 3.7 

 
0.0 

 
16.81 

 
Additive 
 
Antagonist
ic 
 

M. anisopliae NYSAES 
Imidacloprid 

 
Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
31.7 ± 7.0 
43.3 ± 4.2 
41.7 ± 10.7 
51.7 ± 4.0 

 
1.40 

 
0.25 

 
Additive 
 
Additive 
 

 
48.3 ± 7.9 
40.0 ± 3.7 
25.0 ± 6.2 
48.3 ± 4.8 
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3.69 
 

7.32 
 

 
Additive 
 
Antagonist
ic 
 

H. bacteriophora 
Imidacloprid 

 
Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
58.3 ± 3.1 
40.0 ± 4.5 
58.3 ± 3.0 
48.3 ± 4.0 

 
13.45 

 
5.90 

 
Synergistic 
 
Synergistic 
 

 
48.3 ± 3.1 
36.7 ± 4.9 
51.7 ± 4.0 
45.0 ± 5.0 

 
6.30 

 
3.40 

 
Synergisti
c 
 
Additive 
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Table 4. (Continued). 
 

P. popilliae 
Imidacloprid 

 
Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
16.7 ± 3.3 
28.3 ± 3.1 
18.3 ± 3.1 
36.7 ± 4.2 

 
3.55 

 
6.90 

 
Additive  
 
Antagonistic 
 

 
30.0 ± 8.5 
25.0 ± 5.6 
23.3 ± 2.1 
33.3 ± 4.2 

 
1.83 

 
1.75 

 

 
Additive 
 
Additive 
 

Bt var. galleriae 
Imidacloprid 

 
Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
25.0 ± 4.3 
25.0 ± 4.3 
13.3 ± 3.3 
33.3 ± 3.3 

 
0.10 

 
10.07 

 
Additive 
 
Antagonistic 
 

 
26.7 ± 6.1 
21.7 ± 3.1 
28.3 ± 6.5 
30.0 ± 3.7 

 
1.86 

 
0.01 

 
Additive 
 
 Additive 
 

Bt var. tenebrionis 
Imidacloprid 

 
Clothianidin 

 
Observed 
Expected 
Observed 
Expected 

 
20.0 ± 5.2 
30.0 ± 5.2 
23.3 ± 4.9 
38.3 ± 6.5 

 
2.16 

 
3.79 

 
Additive 
 
Additive 
 

 
26.7 ± 5.6 
38.3 ± 4.8 
35.0 ± 5.6 
26.7 ± 4.2 

 
7.22 

 
1.33 

 

 
Antagonist
ic 
 
Antagonist
ic 
 

 
a Observed = efficacy of both control agents applied at the same time. Expected = sum of efficacy of each control agent applied 

separately.  
b ½ = half of the high label rate recommendation for white grub control. 
c ¼ = quarter of the high label rate recommendation for white grub control.
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Figure 1. Percent mortality of Popillia japonica at 10, 20 and 30 days after treatment 
(DAT) with different insecticide combinations under laboratory conditions.  B.b. = 
Beauveria bassiana, M.a. = Metarhizium anisopliae, Clo-1/4 = clothianidin quarter 
label rate, Clo-1/2 = clothianidin half label rate, Imi-1/2 = imidacloprid half label rate, 
+ = expected mortality base on mortalities of both insecticides applied separately, x = 
mortality observed when both insecticides are applied at the same time,* = significant 
synergistic interaction between biological and chemical insecticide, X2 test value for 1 
df. 
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Figure 2. Percent mortality of Amphimallon majale at 10, 20 and 30 days after 
treatment (DAT) with different insecticide combinations under laboratory conditions.  
H.b. = Heterorhabditis bacteriophora, Clo-1/4 = clothianidin quarter label rate, Clo-
1/2 = clothianidin half label rate, Imi-1/4 = imidacloprid quater label rate, Imi-1/2 = 
imidacloprid half label rate, + = expected mortality base on mortalities of both 
insecticides applied separately, x = mortality observed when both insecticides are 
applied at the same time, *  =  significant synergistic interaction between biological 
and chemical insecticide, X2 test value for 1 df. 
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Among all the treatments that showed synergistic interactions against P. 

japonica at 30 DAT in 2005, only B. bassiana in combination with clothianidin-½ and 

¼ expressed the effect at 10 and 20 DAT (Fig. 1).  Neither M. anisopliae NYSAES in 

combination with imidacloprid-½ nor Met F52 in combination with clothianidin-½ 

expressed the effect earlier than 30 DAT.  In 2006, none of the synergies was 

expressed before 30 DAT.  For A. majale, in 2005 all treatments that showed 

synergistic interaction effects were expressed as early as 10 and 20 DAT (Fig. 2).  In 

2006, none of the synergies was expressed before 30 DAT.  

 

3.2.  Greenhouse experiments 

Mortality in the untreated check ranged from 4 - 18% for both species.  In 

general, treatment mortalities declined in the greenhouse with respect to the 

laboratory.  For P. japonica, mortality due the combination of B. bassiana and 

clothianidin-½ was 83.3% in 2005 and 63.3% in 2006 for the laboratory, but was 

29.5% in 2006 and 53.0% in 2007 in the greenhouse.  For M. anisopliae NYSAES in 

combination with clothianidin-½, laboratory mortalities of 83.3 and 41.7% fell to 18.0 

and 34.0% in the greenhouse, respectively (Tables 3, 4 and 5).  For B. bassiana, a 

synergy was maintained for clothianidin-½ in both years, but was only additive for 

clothianidin-¼ (Table 5).  For M. anisopliae Met F52, a synergy was also maintained 

for clothianidin-½.  All other interactions were additive. 

For A. majale laboratory mortalities due to the combination of H. 

bacteriophora and clothianidin-½ and ¼ were 58.3 and 41.7% in 2005 and 58.3 and 

51.7% in 2006 for each clothianidin rate, respectively (Table 5).  Greenhouse 

mortalities fell to 32 and 28% for 2006 and 36 and 18% in 2007 for each clothianidin 



2007 

42

Table 5. Greenhouse mortality (mean ± SE) of third instar Popillia japonica and Amphimallon majale and the interaction 
among different combinations of biological and neonicotinoid insecticides at 30 DAT.   

 
 2006 

Treatmentb Measurementa Mortality χ 2 Effect Mortality χ 2 Effect 
P. japonica:        

B. bassiana        
Clothianidin-½  Observed 

Expected 
29.5 ± 5.6 
17.5 ± 3.0 

9.36 Synergistic 53.0 ± 4.1 
44.0 ± 4.5 

13.78 
 

Synergistic 

Clothianidin-¼  Observed 
Expected 

21.5 ± 3.1 
15.0 ± 3.3 

0.00 
 

Additive 40.0 ± 4.9 
37.7 ± 6.7 

0.96 
 

Additive 

M. anisopliae Met F52        
Clothianidin-½  Observed 

Expected 
28.5 ± 3.7 
17.0 ± 3.6 

19.50 
 

Synergistic 13.0 ± 4.4 
30.0 ± 3.6 

0.03 
 

Additive 

M. anisopliae NYSAES        
Imidacloprid-½  Observed 

Expected 
18.0 ± 4.7 
14.5 ± 4.4 

0.98 
 

Additive 34.0 ± 4.0 
33.0 ± 4.7 

0.44 
 

Additive 

A. majale:        
H. bacteriophora        

Clothianidin-½  Observed 
Expected 

32.0 ± 3.3 
18.0 ± 3.6 

12.54 
 

Synergistic 36.0 ± 5.8 
20.0 ± 5.2 

14.80 
 

Synergistic 

Clothianidin-¼  Observed 
Expected 

22.0 ± 3.6 
18.0 ± 2.0 

1.19 
 

Additive 18.0 ± 3.8 22.0 
± 4.4 

0.39 
 

Additive 

Imidacloprid-½  Observed 
Expected 

40.0 ± 7.5 
16.0 ± 2.7 

37.50 
 

Synergistic 42.0 ± 7.6 
18.0 ± 5.5 

34.58 
 

Synergistic 

Imidacloprid-¼  Observed 
Expected 

51.0 ± 6.0 
14.0 ± 3.1 

97.79 
 

Synergistic 58.0 ± 4.7 
19.0 ± 4.7 

94.32 
 

Synergistic 

a Observed = efficacy of both control agents applied at the same time. Expected = sum of efficacy of each control agent 

applied separately.  
b ½ = half of the high label rate recommendation for white grub control and ¼ = quarter of the high label rate recommendation 

for white grub control
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rate, respectively.  For H. bacteriophora in combination with imidacloprid-½ and ¼, 

laboratory mortalities were 75.0 and 80.0% in 2006 and 58.3 and 48.3% in 2006 for 

each imidacloprid rate, respectively.  Greenhouse mortalities fell to 40.0 and 51.0% in 

2006 and 42 and 58% in 2007 for each imidacloprid rate, respectively.  For H. 

bacteriophora a synergy was maintained for clothianidin-½ and imidacloprid-½ and ¼ 

in both years.  All other interactions were additive (Table 5). 

 

3.3.  Field experiments 

The average number of P. japonica recovered in the untreated check was 5.2 or 

34.7% of the initial infestation at 30 DAT and 10.2 or 67.8% of the initial infestation 

at 174 DAT.  Average recovery for A. majale was 9.1 or 90.1% of the initial 

infestation at 30 DAT and 6.9 or 69.3% of the initial infestation at 174 DAT. 

For P. japonica, no mortality was detected at 30 DAT for any of the treatments 

(Table 6).  At 174 DAT an antagonistic interaction was detected for B. bassiana with 

clothianidin-½.  All other interactions were additive.  Overwintering had a significant 

effect on mortality because there was a significant difference between 30 and 174 

DAT for all treatments.  Mortality was significantly higher at 174 DAT for B. 

bassiana with clothianidin-½ (F = 17.61; df = 1, 32; P = 0.0002) and clothianidin-¼ (F 

= 23.01; df = 1, 32; P = 0.0001), M. anisopliae Met F52 with imidacloprid-½ (F = 

17.61; df = 1, 32; P = 0.0002) and M. anisopliae NYSAES with clothianidin-½ (F = 

29.12; df = 1, 32; P = 0.0001). 

For A. majale, all combinations were additive at 30 DAT (Table 6).  At 174 

DAT there was a synergy for H. bacteriophora in combination with clothianidin-½   



174 DAT 

63

Table 6. Field mortality (mean ± SE) of third instar Popillia japonica and Amphimallon majale and the interaction among 
different combinations of biological and neonicotinoid insecticides at 30 DAT.   

 
 30 DAT 

Treatmentb
 

Measurementa
Mortality χ 2 Effect Mortality χ 2 Effect 

P. japonica:        
B. bassiana        

Clothianidin-½  Observed 
Expected 

0.0 ± 0.0 
0.0 ± 0.0 

0.00 
 

Additive 20.6 ± 4.9 
42.6 ± 5.5 

8.25 
 

Antagonist
ic 

Clothianidin-¼  Observed 
Expected 

0.0 ± 0.0 
0.3 ± 0.2 

0.30 
 

Additive 23.5 ± 4.0 
36.8 ± 5.0 

3.28 
 

Additive 

M. anisopliae Met F52        
Clothianidin-½  Observed 

Expected 
0.0 ± 0.0 
0.0 ± 0.0 

0.00 
 

Additive 20.6 ± 6.8 
32.4 ± 5.2 

2.83 
 

Additive 

M. anisopliae NYSAES        
Imidacloprid-½  Observed 

Expected 
0.0 ± 0.0 
0.0 ± 0.0 

0.00 
 

Additive 26.5 ± 2.9 
26.5 ± 4.3 

0.14 
 

Additive 

A. majale:        
H. bacteriophora        

Clothianidin-½  Observed 
Expected 

15.9 ± 9.5 
14.4 ± 5.6 

0.29 
 

Additive 42.3 ± 11.0 
30.0 ± 3.6 

7.98 
 

Synergistic 

Clothianidin-¼  Observed 
Expected 

7.6 ± 4.7 
16.5 ± 4.0 

4.20 
 

Additive 36.5 ± 10.8 
34.6 ± 5.6 

0.76 
 

Additive 

Imidacloprid-½  Observed 
Expected 

18.2 ± 6.7 
26.9 ± 4.3 

1.47 
 

Additive 45.4 ± 16.7 
26.9 ± 4.3 

16.10 
 

Synergistic 

Imidacloprid-¼  Observed 
Expected 

22.0 ± 6.8 
23.2 ± 7.2 

0.00 
 

Additive  48.1 ± 11.6 
26.9 ± 8.6 

20.70 
 

Synergistic 

a Observed = efficacy of both control agents applied at the same time. Expected = sum of efficacy of each control agent 

applied separately.  
b ½ = half of the high label rate recommendation for white grub control and ¼ = quarter of the high label rate 

recommendation for white grub control.
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and imidacloprid-½ and ¼.  H. bacteriophora in combination with clothianidin-¼ was 

additive.  Overwintering had a significant effect on mortality for only one 

combination.  Mortality was significantly higher at 174 DAT for H. bacteriophora in 

combination with imidacloprid-¼ (F = 3.15; df = 1, 32; P = 0.005).  No overwintering 

effect was detected for H. bacteriophora in combination with imidacloprid-½ (F = 

3.43; df = 1, 32; P = 0.072), clothianidin-¼ (F = 3.89; df = 1, 32; P = 0.057) or 

clothianidin-½ (F = 3.25; df = 1, 32; P = 0.081). 

 

4.  DISCUSSION  

Among the combinations of biological and neonicotinoids tested here, results 

reveal that synergistic interactions are relatively uncommon, and involved only 

entomopathogenic nematodes and fungi.  Of the 80 experimental combinations 

evaluated, interactions were synergistic/additive/antagonistic 17/49/14 times for A. 

majale and 15/52/13 times for P. japonica.  Moreover, synergies were remarkably 

consistent across trials, were specific to white grub species, and diminished in strength 

from lab to greenhouse to field.  For A. majale, the most promising synergistic 

combinations were between H. bacteriophora and both neonicotinoids; those results 

were discernible in all laboratory and greenhouse trials and into the field.  In contrast, 

the most promising synergistic combinations for P. japonica were B. bassiana and M. 

anisopliae Met F52 with clothianidin and M. anisopliae NYSAES with imidacloprid.  

Like A. majale, this was discernible in each of the two laboratory trials, but did not 

persist through to the greenhouse and field.  Finally, an antagonistic interaction 

between Bt-products and both neonicotinoids was common to both white grub species.  

Further study of these non-additive interactions might shed light on how biological 

and chemical products could be combined to offer enhanced control of soil insect 

pests. 
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4.1  Synergies are specific to grub species 

We showed that the same combination of insecticides have different effects in 

different species of white grubs.  In this case, specific combinations of neonicotinoids 

and biological insecticides have a synergistic response in specific white grub species.  

Interactions between H. bacteriophora and both neonicotinoids were synergistic in A. 

majale but only additive in P. japonica.  In contrast, interactions between B. bassiana 

and M. anisopliae and both neonicotinoids were synergistic in P. japonica but only 

additive in A. majale.   

Synergies between entomopathogenic nematodes and different neonicotinoids 

against white grub species have previously been shown (Koppenhöfer and Kaya, 

1998; Koppenhöfer et al., 2000a; 2000b; 2003 and 2006).  Those reports are highly 

variable, however.  The same group of researchers, for instance, reported synergies in 

P. japonica for H. bacteriophora and different doses of imidacloprid and 

thiamethoxam in one study (Koppenhöfer et al., 2002a), but only an additive effect in 

a later study (Koppenhöfer et al., 2003).  In another study (Koppenhöfer et al., 2002a), 

H. bacteriophora combined with imidacloprid and acetamiprid had only an additive 

effect on A. majale and M. castanea, but an antagonistic effect with thiamethoxam; in 

A. orientalis there was a synergistic effect for all combinations.  In contrast, the 

synergies that we showed between H. bacteriophora and both rates of imidacloprid 

(½, ¼) in A. majale were consistent across experiments and trials.   

For P. japonica, a synergistic interaction was detected for some combinations 

of entomopathogenic fungi with both neonicotinoids under laboratory conditions, a 

few in the greenhouse and none in the field (Table 6).  No other reports of synergistic 

interactions were found in the literature using fungi, bacteria and neonicotinoids either 

on P. japonica or A. majale.  But synergisms have been reported for other soil insects 

using low doses of imidacloprid and entomopathogenic fungi.  For instance, Jaramillo 
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et al. (2005) reported a synergistic effect of low doses of imidacloprid with M. 

anisopliae CIAT 224 on C. bergi nymphs under laboratory and greenhouse conditions.  

Moreover, Quintela and McCoy (1998) observed decreased larval movement and 

increased larval mortality of D. abbreviatus with B. bassiana and M. anisopliae in 

combination with low doses of imidacloprid.   

The type of interaction and the strength of synergistic effects may depend on 

factors such as target species, doses (biological and neonicotinoid) insecticides and 

even strain of bacteria, fungi or nematode used (Jaramillo et al., 2005; Koppenhöfer et 

al., 2000a; 2000b; 2002 and 2003; Polavarapu et al., 2007).  When Koppenhöfer et al. 

(2002) targeted P. japonica, for instance, H. bacteriophora and imidacloprid were 

synergistic under laboratory, greenhouse and field conditions. No synergy was 

detected when A. majale was the target species.  With respect to dose, Polavarapu et 

al. (2007) reported a synergism in A. orientalis when H. bacteriophora was combined 

with a low dose of imidacloprid (84 mg AI/ha) but not with a high dose (168 mg 

AI/ha).  The dose of the biological insecticide may also affect the type of interaction.  

For instance, Koppenhöfer et al. (2002) showed that at low dose (1.25 x 109 IJ/ha) of 

H. bacteriophora in combination with thiamethoxam was additive, but at a high dose 

(2.5 x 109 IJ/ha) it was antagonistic for P. japonica and E. orientalis.  With 

imidacloprid, however, the low dose of H. bacteriophora was additive, and the high 

dose synergistic.  The differences could be related to different nematode strains used 

for each study. Our study used a commercial strain (Heteromask) while Koppenhöfer 

et al. (2002) used non commercial strains (TF and NC1).   

 

4.2 Mechanisms and neonicotinoids effects 

Understanding how each insecticide affects the target insect when applied 

individually may shed light on the mechanism behind synergies.  For instance, 
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neonicotinoid insecticides could affect normal behavior and make insects more 

susceptible to natural enemies.  An immediate effect of neonicotinoids is antifeedant.  

While this is probably less important in the late fall when white grubs are preparing to 

overwinter, it could be very important in early spring when they reemerge to feed for a 

couple weeks more before pupation (Grewal et al., 2001).  If the insect does not move 

to forage, it may be an easy target for fungi, nematodes as well as parasitoids.  That 

defensive behavior may be efficient for systemic insecticides (such as neonicotinoids) 

and enterobacteria (such as Bt and P. popilliae) if the insect does not ingest enough 

product.  Second, neonicotinoids also interfere with the insect nervous system, 

producing uncoordinated movements, tremor and paralysis, rendering white grubs less 

able to descend in the soil to avoid freezing temperatures during the winter or 

exposure to pathogens, parasitoids and predators (Ehler et al., 1998; Grewal et al., 

2001).  Third, Koppenhöfer et al. (2000b) hypothesized a blockade of the defensive 

behavior of white grubs due to the disruption of normal nerve function as a direct 

effect of the neonicotinoid in the cholinergic receptors in the postsynaptic membrane.  

This could produce a change in grooming behavior, such as a reduction in frequency 

of brushing, chewing and rubbing.  In response to the presence of H. bacteriophora 

the frequency of these activities has been shown to increase (Koppenhöfer et al., 

2000a).  This behavior is probably linked to defense from nematodes, rather than fungi 

or bacteria where a cellular and humoral immune response is the main defense 

(Narayanan, 2004). 

 

4.3. Bt-products and neonicotinoids are antagonistic 

Beyond the synergistic interactions detected in this study, specific antagonistic 

interactions were also detected.  In particular, under laboratory conditions for both 

white grub species, almost all combinations of bacteria and neonicotinoids were 
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antagonistic.  Chemical insecticides may have inhibitory effects on bacteria and their 

prevalence in the field.  For P. popilliae, 14 chemical pesticides (herbicides, 

fungicides and insecticides) were shown to reduce levels of spore viability, spore 

germination and/or vegetative cell growth (Dingman, 1994).  

Other than that, the only other antagonistic interactions detected were for A. 

majale with some combinations of entomopathogenic fungi and both neonicotinoids.  

The efficacy of entomopathogenic fungi in combination with some chemical 

insecticides may be affected due to lower germination rate, decreased production of 

enzymes necessary for penetration of the insect’s cuticle, and poor mycelium growth 

ratio.  For instance, mycelium growth ratios of B. brogniartti and B. bassiana are 

inhibited by carbosulfan, but carbofuran stimulated the growth of B. brogniartti 

(Bednarek et al., 2004).  Antagonistic interactions have been reported by Koppenhöfer 

et al. (2002) for A. majale, A. orientalis, M. castanea and P. japonica with combined 

application of thiamethoxam and H. bacteriophora under field conditions.  An 

antagonistic effect was also reported for A. majale treated with a combination of S. 

scarabaei and imidacloprid, but that effect could be attributed to the high mortality 

produced by the nematode alone, which did not give room for the expression of any 

improvement in mortality, rather than inhibition of S. scarabaei, or no synergistic 

effect of imidacloprid (Cappaert and Koppenhöfer, 2003). 

 

4.4. Strength of synergies diminishes from laboratory to field 

For P. japonica, mortality in treatments with synergistic interactions was 2.2 

times higher in the laboratory than the greenhouse, and 6.0 times higher than the field.  

For A. majale, mortality in the laboratory was 1.6 times higher than the greenhouse 

and 1.8 times higher than the field.  The decline in mortality from laboratory to 

greenhouse and field experiments may be due to size of the experimental units and 
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temperature fluctuation.  Laboratory bioassay cups were 33 times smaller than 

greenhouse pots and 185 times smaller than field arenas.  The large arenas provided 

more possibilities to escape from the control agents even if the insecticide doses were 

applied at the same rate proportional to the area.  Previous studies have shown evasive 

behavior in P. japonica to areas treated with M. anisopliae in soil microcosms (Villani 

et al., 1994; Fry et al., 1997).  The same behavior has also been observed in P. 

japonica with imidacloprid and in A. majale with both M. anisopliae and imidacloprid 

(Morales, A. unpublished data).  

Environmental conditions could induce changes in the behavior of white grubs 

that diminish the strength of synergistic interactions.  After applications in the 

laboratory, the experimental units were maintained in walk-in environmental 

chambers under controlled climate conditions with little variation in temperature and 

humidity.  In the greenhouse, even with an environmental control system, high 

variation was observed in the temperature (mean 13.5°C, range 9.0 - 25.0°C) and 

humidity (average 55%, range 35 - 95%).  While more variation was expected in the 

field, it may be that the low temperatures of late fall had an inhibitory affect on both 

biological and chemical insecticides.  The average temperature 7 DAT was 6.9°C (3.3 

– 10.5°C) for P. japonica and 9.6°C (5.5 – 13.8°C) for A. majale.  Low temperatures 

can inactivate or otherwise affect performance of biological insecticides.  The optimal 

range of temperature is 20-30°C for B. bassiana and M. anisopliae and 15-30°C for H. 

bacteriophora (Bruck et al., 2008; Pandey, 2008).  

In the fall evaluation, unusually low air temperatures for almost a week 

dropped soil temperatures by about 5-7ºC below average; P. japonica may have 

responded to the low temperatures by moving down in the soil profile (Vittum et al., 

1999).  We suspect that this is the reason why few larvae were collected in the field 

evaluation at 30 DAT in late fall.  At 174 DAT with higher temperatures, twice as 
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many larvae were collected from the untreated checks.  Amphimallon majale tolerates 

low temperatures better than P. japonica and moves down in the soil profile later in 

the fall (Morales, personal observation).  For P. japonica, we could not compare the 

effect of the treatments at 30 and 174 DAT to establish any additional effect of 

treatments in the overwintering larvae.  For A. majale, mortality was higher at 174 

DAT than 30 DAT for H. bacteriophora and the high rate of clothianidin (½) and both 

rates of imidacloprid (½, ¼).  This suggests that both neonicotinoids have an effect on 

overwintering larvae as Grewal et al. (2001) reported.   

 

4.5. Implications for soil insect pest management 

To validate and adopt synergistic combinations of biological and chemical 

insecticides as a new approach for turfgrass IPM programs, some hurdles remain.  For 

instance, only two entomopathogenic fungi products are registered in the United States 

for control of white grubs in turfgrass.  More species-specific nematodes are needed 

commercially.  High standards of quality control are needed to avoid variability in 

biological control agents available in the market.  Due to differential effects among 

white grub species (Morales et al., submitted), pest management practitioners need to 

diagnose and differentiate scarab species before any intervention. 

As an alternative for curative control, synergistic interaction products could be 

used with less cost to turf managers.  Low application rates (half of the recommended 

field rate) could be made in response to signs of damage and could be limited to only 

the affected area, in contrast to preventive applications where large areas are treated 

even when the degree of infestation is unknown.  For white grub management, a 

synergistic interaction approach might be useful for curative control and thereby 

broaden opportunities for the use of biological insecticides beyond preventive control.  

Indeed, Koppenhöfer and Fuzy (2008) suggest an early curative control; nematode and 
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neonicotinoid combinations could be more effective against second and early third 

instars than late third instars. 

Turfgrass managers prioritize the control of diseases and insect pests on 

fairways, tees and greens, and avoid pesticide application in low-value turf areas that 

can tolerate some damage, such as roughs.  But each year untreated areas may become 

a source of new infestation for the whole golf course, thereby increasing reliance on 

insecticide applications.  Combined applications of a biological with low doses of 

insecticide could help to control the problem at low cost while conserving natural 

enemies for the avoidance of future outbreaks.    
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