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ABSTRACT

Breast cancer is one of the prevailing cancers diagnosed among women today

and the second leading cause of cancer death in women. Modeling breast can-

cer cell growth would be a useful tool in identifying therapeutically relevant

targets while reducing the amount of spent resources. We have compiled a de-

tailed signal transduction network incorporating epidermal growth factor re-

ceptor (EGFR) signaling and downstream components, such as PLC-γ, MAPK,

PI3K/Akt, cell cycle signaling, transcription, and translation. Using mass-action

kinetics, the model was formulated as a set of ordinary differential equations

(ODEs). This resulted in more than 8,000 unknown parameters and more than

3,000 ODEs. Partitioning the original model into smaller sub-models and solv-

ing them individually may reduce run-time, while maintaining qualitatively

similar results as the unpartitioned model. Experiments were performed on

the MDA-MB-231 cell line to observe the effects of growth factor treatment on

targets such as transcription factors and post-translationally modified proteins.

Combination treatments of different growth factors resulted in negative synergy

with respect to the chosen targets, which suggests interference between the dif-

ferent pathways involved in growth. This experimental data serves as a starting

point to estimate an initial parameter set that can be used to obtain ensembles of

parameters that emulate experimental results. In conclusion we have identified

an approach to solving large-scale systems that can be used in conjunction with

experimental data to predict novel therapeutic targets.
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CHAPTER 1

INTRODUCTION

Breast cancer is one of the prevailing cancers diagnosed among women to-

day as well as the second leading cause of cancer death in women [43]. Current

treatments include surgery, chemotherapy, radiation therapy, and targeted pro-

tein therapies [54]. None of these treatments are completely effective alone and

are usually used in conjunction with one another. A particularly successful tar-

geted therapy, trastuzumab (Herceptin R©, Genentech, Inc., member of the Roche

Group), is a monoclonal antibody that targets the cell surface receptor HER2,

which is commonly overexpressed in certain types of breast cancer [2]. The ef-

ficacy of this drug raises the question of whether other prominent proteins in

breast cancer proliferation can be targeted to induce anti-proliferative effects.

As the molecular players in breast cancer cells are innumerable, it would be

difficult to test the effectiveness of targeting each one with bench top experi-

ments. However, mathematical modeling of breast cancer cell growth would be

a useful tool in identifying potential targets while reducing the amount of spent

resources.

In this study, we aim to characterize hormone refractory growth by creating

a network that encompasses multiple signaling pathways and feedback loops.

Combining experimental and computational approaches will allow us to add

another dimension of specificity by targeting breast cancer. In order to achieve

this, we need to generate experimental data that is not only specific to breast

cancer, but also applicable to computational model simulations/analysis.
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1.1 Breast cancer development

The breast consists of a branching, ductal network embedded in fat. These ducts

are made up of layers of epithelial cells, which continually proliferate, split-

ting and expanding the network [93]. When growth is unregulated, otherwise

known as intraductal hyperplasia, epithelial cells fill the duct, leading to in-

traductal carcinoma in situ [55]. As growth continues, cells can break through

the ductal basement membrane, a stage recognized as invasive carcinoma, and

tumor formation can begin. Once this barrier is breached, cancerous cells can

invade surrounding tissues or enter the bloodstream, leading to angiogenesis

and metastasis.

1.1.1 HER2+/ER- breast cancer

The estrogen receptor is a nuclear receptor that binds to steroid hormones, more

commonly called estrogens, the most dominant of which is estradiol. Upon

estrogen-receptor binding, receptors dimerize and can then regulate gene ex-

pression by binding to estrogen response elements on the promoter regions of

target genes [4]. However, estrogen-receptor negative (ER-) tumors do not de-

pend on this type of signaling for growth. Rather, alternative pathways become

the driving force behind uncontrolled cell proliferation. For example, the dys-

regulation of epidermal growth factor receptor (EGFR; see Table B.1 in Chap-

ter B in Appendix for nomenclature index) signaling has been highly implicated

in cancer. This receptor family, also known as ErbB, HER, or EGFR, consists of

four trans-membrane receptor tyrosine kinases, which will be individually re-

ferred to as EGFR, HER2, ErbB3, and ErbB4. Three out of the four receptors bind
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to extracellular ligands, but no ligands have been found to bind to HER2 [95].

Despite this, HER2 is the most potent oncoprotein in the family and overexpres-

sion of HER2 (HER2+) has been associated with worse prognosis [76]. Because

HER2 does not depend on ligand binding for activation, it is must dimerize with

an activated form of itself or any other activated receptor. [27]. Upon dimeriza-

tion, the receptor tyrosine kinases autophosphorylate themselves on the cytoso-

lic tyrosine residues. These phosphotyrosine residues serve as docking sites

for various intracellular proteins (Figure 1.1). Combinations of different protein

complexes suspended at the cell membrane can lead towards different signaling

pathways [95].

Ligand-receptor pairing

In the receptor family, EGFR and ErbB4 have the most binding partners.

Well characterized ligands of ErbB1 include epidermal growth factor (EGF),

amphiregulin (AREG), transforming growth factor alpha (TGFα), betacellulin

(BTC), heparin-binding growth factor (HBEGF), and epiregulin (EREG). ErbB4

also has the capacity to bind to BTC, HBEGF, and EREG, as well as the four

members of the neuregulin family (NRG1, NRG2, NRG3, and NRG4). ErbB3

can bind to NRG1 and NRG2 [11]. However, ErbB3 lacks intrinsic kinase activity

[29]. Similar to HER2, in order to activate the kinase domain, it must dimerize

with another activated receptor, although HER2 is the preferred dimerization

partner [95]. In fact, HER2 serves as the preferred heterodimerization part-

ner out of all the ErbB receptors [27]. Due to its prominent role in upstream

signaling, HER2 has been targeted in anti-cancer treatments. However, these

treatments are not always effective, and interest has been shown in exploring
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species (e.g. PIP2, DAG) is not indicated.

4



alternative targets [84].

Adaptor complexes

Once the tyrosine kinase domains of a receptor dimer are activated, adaptor

proteins, such as Src homology 2 domain-containing protein (Shc), can bind to

the domain and become tyrosine phosphorylated. Shc will then interact with

growth factor receptor-bound protein 2 (Grb2), which subsequently binds Son

of Sevenless homolog 1 (Sos), a rat sarcoma (Ras) guanine nucleotide exchange

factor [70]. The Grb2-Sos complex can form independently of Shc as well for

Grb2 can also be recruited directly to the phosphotyrosine domain [78]. Sos,

suspended in the adaptor protein complex in close proximity to the membrane,

can then exchange the guanosine diphosphate (GDP) bound to Ras for a guano-

sine triphosphate (GTP), activating Ras (Ras-GTP) [53].

Pathways

Upon activation, Ras can bind to Raf, the first kinase in the mitogen-activated

protein kinase (MAPK) pathway, and by sequestering it to the membrane, lead

to its activation. Activated Raf initiates a cascade of phosphorylation events by

phosphorylating mitogen-activated protein kinase (MEK), which in turn phos-

phorylates extracellular-signal-regulated kinase (ERK). This activated form of

ERK then translocates into the nucleus and activates a variety of transcription

factors [80]. Although this pathway seems to be linear, positive and negative

feedback loops keep the signaling cascade in control. Ras-GTP can also acti-

vate phosphoinositide 3-kinase (PI3K). PI3K phosphorylates phosphatidylinos-
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itol 4,5-bisphosphate (PIP2), a membrane phospholipid, to phosphatidylinosi-

tol 3,4,5-trisphosphate (PIP3). Protein kinase B (Akt) preferentially binds PIP3

and translocates to the membrane, where it is activated via phosphorylation

by phosphoinositide-dependent kinase-1 (PDK). Activated Akt plays a role in

cell proliferation and anti-apoptosis (cell survival) by regulating the function of

an assortment of proteins. For example, Akt can inhibit the activity of cyclin

dependent kinase inhibitors, which normally have anti-proliferative roles, and

activate mammalian target of rapamycin (mTOR), which can stimulate mRNA

translation into proteins [62].

Receptor tyrosine kinase domains can also directly phosphorylate phos-

pholipase C gamma 2 (PLC). This activated form of PLC interacts with the

cell membrane and cleaves PIP2 into diacylglycerol (DAG) and inositol 1,4,5-

triphosphate (IP3). DAG remains at the membrane and serves to recruit protein

kinase C for activation (PKC) [89], while IP3 will bind to the IP3 receptor on the

endoplasmic reticulum, releasing stores of Ca2+ [71, 30]. This increase in cal-

cium ion concentration will help sequester cytosolic phospholipase A2 (PLA2)

to the membrane [64]. PLA2 triggers the release of arachidonic acid, which

stimulates PKC activation [82]. PKC is the kinase responsible for Raf activation

[49].

Transcription and translation

Transcription is the process of converting genomic information, in the form of

DNA (deoxyribonucleic acid), to mRNA (messenger ribonucleic acid), while

translation is the process of interpreting mRNA into functional proteins. While

there are multiple steps involved in gene transcription, the main step we have
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focused on is binding of RNA polymerase I (RNAp) to the gene of interest.

However, transcription factors or transcription factor complexes are needed

to facilitate this binding. Once RNAp binds to a promoter region on DNA, it

uses one of the helical strands to construct a complementary strand of mRNA.

This mRNA undergoes additional processing to increase stability and is then

exported out of the nucleus into the cytosol. For mRNA to be translated into

protein, it must first bind an initiation complex composed of various initiation

factors, each of which interacts with a different structural component of the

mRNA. We have decided to represent this initiation factor complex with eu-

karyotic translation initiation factor 4E (EIF4E), the overexpression of which is

often correlated to cancer. The 43S ribosome pre-initiation complex, composed

of 40S small ribosomal subunit, methionyl tRNA, and additional initiation fac-

tors, joins the initiation complex. This eventually leads to 60S ribosomal subunit

recruitment and translation is poised to begin at this point [83]. As full detail

of the translational process is beyond the scope of this study, we have only in-

cluded 40S and 60S binding, after which mRNA is committed to translation.

Cell cycle

The cell cycle, or the process of cell division, is composed of two main stages,

mitosis, during which nuclear division occurs, and interphase, which is a pe-

riod of normal cell growth. For modeling purposes, we have chosen to identify

the signaling events that carry a cell through the three major phases of inter-

phase, Gap 1 (G1), Synthesis (S), and Gap 2 (G2). During G1, the cell prepares

for DNA replication, whereas DNA replication actually occurs in the S phase.

After progressing through S phase, the cell prepares for mitosis during the G2
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phase. Progression through these three phases is regulated by a group of ki-

nases called cyclin-dependent kinases (CDK), which are activated at different

points throughout the cycle. Although more CDKs have been identified, there

are four that take part in cell cycle regulation - cyclin dependent kinase 1 (Cdk1),

2 (Cdk2), 4 (Cdk4) and 6 (Cdk6). As the name suggests, these enzymes are de-

pendent on the presence, and binding, of proteins called cyclins, the levels of

which periodically rise and fall according to the current phase. We will address

four cyclins in this study - cyclin D (CycD), E (CycE), A (CycA) and B (CycB).

Table 1.1 shows all possible cyclin-cyclin dependent kinase complex combina-

tions included in the model as well as the corresponding phase in which they

are active [68, 88]. As with most biological processes, cell cycle is tightly con-

trolled, and cyclin-dependent kinase inhibitors, such as p21 and p27, can restrict

CDK activity.

Table 1.1: Cyclin-dependent kinases and corresponding cyclins. If a spe-
cific phase is not indicated, then that complex does not form.
Also included are the cyclin-dependent kinase inhibitors that in-
hibit the function of Cdk2/4/6 ( indicated with an ”X”).

Cdk1 Cdk2 Cdk4 Cdk6

CycA G2/M transition S – –

CycB M – – –

CycD – – G1 G1

CycE – G1/S transition – –

p21† – X X X

p27† – X X X

† Cyclin dependent kinase inhibitors

An additional level of control comes in the form of Cdc25 phosphatases,
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Cdc25A and Cdc25C, which are the enzymes responsible for activating CDKs.

As kinases, the role of CDKs is to phosphorylate target proteins, such as the

retinoblastoma protein (Rb). Rb is normally phosphorylated, at which point it

is bound to the transcription factor E2F1, but upon further phosphorylation, it

reaches a state of ”hyperphosphorylation.” At this point E2F1 is released from

Rb, which is significant due to the ability of E2F1 to induce the transcription of

many cell cycle genes. Other CDK targets include phosphatases that dephos-

phorylate Rb, transcription factors, and even Cdc25 phosphatases [68].
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CHAPTER 2

NETWORK CONCEPTION AND CONSTRUCTION

While similar signaling networks have been described previously, this

model in particular not only includes signaling from all four receptors and their

corresponding ligands, but a simplified representation of cell cycle signaling as

well. Transcription and translation reactions for all 72 distinct proteins present

in the model have also been included. All reactions except for catalytic and

degradation reactions are assumed to be reversible. All phosphorylation steps

are accompanied by a separate dephosphorylation step, whether by a generic

phosphatase (denoted by ”Pase”) or a specific regulator. Every species can de-

grade, while genes can be generated and degraded. General importers and ex-

porters are used to transport proteins in and out of the nucleus and or cytosol.

2.1 ErbB signaling

Binding of extracellular ligands to ErbB receptors act as the driving force in the

model. Reactions for this portion of the model were based on the system pub-

lished by Schoeberl et al. [77], which only accounted for EGFR and one ligand.

In this model, all four receptors as well as their corresponding ligands have been

implemented. Each receptor, except for HER2, binds at least two different lig-

ands. EGFR binds to EGF, AREG, TGFa, BTC, HBEGF, and EREG. ErbB4 binds

to BTC, HBEGF, EREG, NRG1, NRG2, NRG3, and NRG4. ErbB3 can bind to

NRG1 and NRG2 [11]. Though HER2 does not bind any ligands, it can dimer-

ize with itself and autophosphorylate [74]. Each receptor can dimerize with

another receptor [95]. This results in a total of ten possible receptor dimer com-

binations. The added complexity of ten different ligands results in more than
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100 possible dimer formations. These dimers can then either degrade or become

autophosphorylated. In accordance to the Schoeberl model, autophosphoryla-

tion is reversible. Also, there is no distinction as to which receptor or receptor

tyrosine residue becomes phosphorylated. Rather, the dimer as a whole is de-

noted as phosphorylated. EGFR-containing dimers can also be phosphorylated

by phosphorylated Src, a cellular tyrosine kinase (non-receptor) [51]. As stated

before, ErbB3 homodimers lack intrinsic kinase activity [29], so while four dif-

ferent ErbB3 homodimers can form, they contribute to downstream signaling.

2.2 Adaptor protein signaling

The model published by Kholodenko et al. served as the basis for adaptor pro-

tein complex formation [47], which can be Shc-independent or Shc-dependent.

In Shc-independent adaptor protein signaling, the activated dimer first binds

Grb2. Sos then binds to the dimer-protein complex as well. At this point, the

Grb2-Sos complex can either detach from the dimer and further dissociate into

Grb2 and Sos, or remain bound to the dimer and ”bind” Ras-GDP. After seques-

tering Ras-GDP to the dimer complex, Ras-GTP can then break off as a result.

In Shc-dependent adaptor protein signaling, the activated dimer binds Shc.

Shc becomes phosphorylated and will either dissociate from the dimer complex

in its activated form (and eventually deactivate) or remain bound to the dimer

and bind to Grb2 and Sos one at a time, as in the Shc-independent pathway. Af-

ter binding Sos, the entire adaptor protein complex, including phosphorylated

Shc, can either detach from the dimer and further dissociate into its individual

components, or bind Ras-GDP and release Ras-GTP [39, 7].
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The availability of specific binding adaptor protein binding sites on each re-

ceptor determined whether certain dimers would participate in Shc-dependent

or Shc-independent signaling, or even both (Table 2.1). ErbB4 can participate

in Shc-dependent signaling, but the number of Grb2 binding sites on the ty-

rosine kinase domain is more dominant than that of Shc binding sites, so Shc-

dependent signaling is not included for ErbB4. ErbB3-containing dimers can

also bind and activate PI3K directly due to the abundance of PI3K binding sites

on ErbB3 [78].

Table 2.1: Shc-independency/dependency of receptor dimer signaling.
”Y” indicates that dimer can signal with respect to that pathway,
and ”N” indicates that it cannot. The ErbB3 homodimer is not
included as it does not participate in adaptor protein signaling.

Receptor dimer combination Shc-independent Shc-dependent

EGFR-EGFR Y Y

EGFR-HER2 Y Y

EGFR-ErbB3 Y Y

EGFR-ErbB4 Y Y

HER2-HER2 N Y

HER2-ErbB3 N Y

HER2-ErbB4 Y Y

ErbB3-ErbB4 Y N

ErbB4-ErbB4 Y N
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2.3 Mitogen-activated protein kinase (MAPK) pathway

Ras-GTP has multiple functions, one of which is to facilitate MAPK signaling by

helping to activate Raf, the initiator of the protein phosphorylation events that

characterize the MAPK pathway. As an additional form of control, we have in-

cluded Ras GTPase activating protein (GAP) in the model, which can deactivate

Ras by exchanging its GTP for GDP.

2.3.1 Raf activation

Raf must first be recruited to the plasma membrane by tyrosine 3-

monooxygenase/tryptophan 5-monooxygenase activation protein (14-3-3) be-

fore undergoing phosphorylation. However, in order to bind 14-3-3, Raf needs

to be phosphorylated at serine 259 (S259). Therefore, we distinguish phosphory-

lation at this site from general phosphorylation, which signifies activation. After

14-3-3 sequesters S259-phosphorylated Raf to the membrane, Raf can complex

with Ras-GTP. Protein phosphatase 2 (PP2) can then release the Raf-Ras-GTP

complex from 14-3-3 by dephosphorylating Raf at S259 [42]. The released Raf-

Ras-GTP complex binds to activated PKC, and the resulting complex dissociates

into the original components, only Raf is now phosphorylated, or activated [51].

The model also includes additional reactions to regulate Raf activation. For

example, phosphorylated Akt can phosphorylate Raf at S259, but PP2 can

negate this by dephosphorylating the site before 14-3-3 binding. Furthermore,

the Raf-Ras-GTP complex may dissociate before binding PKC [42]. It is also

possible for phosphorylated Src to bind the Raf-Ras-GTP complex and activate
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Raf in a similar fashion as PKC [51].

2.3.2 Mitogen-activated protein kinase cascade

Phosphorylated Raf can then bind MEK, also known as MAPKK, and phos-

phorylate it. Phosphorylated Raf can also bind to phosphorylated MEK and

phosphorylate it a second time to produce the fully activated version of MEK.

Activated MEK is able to phosphorylate ERK, also known as MAPK, in a similar

manner [77]. However, phosphatases can dephosphorylate Raf, MEK, or ERK

at any point and hinder cascade flow, as seen in the Schoeberl model [77].

2.3.3 Feedback

We have incorporated feedback into the model as well. For example, activated

ERK can phosphorylate Sos, which inhibits upstream adaptor protein signaling

[7]. Activated ERK can also retrophosphorylate MEK [8] and Raf [91]. Although

this implies that ERK is phosphorylating these upstream kinases, these events

actually contribute to negative feedback, inhibiting cascade signaling. There-

fore, in the model, this negative feedback is represented by dephosphorylation

reactions as a simplification. An example of positive feedback present in the

model would be how phosphorylated ERK can activate cytosolic phospholi-

pase 2 (PLA2), which leads to production of more Ras-GTP [50], as explained in

Section 2.5.
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2.4 PI3K pathway

Aside from activation due to interactions with the ErbB3 tyrosine kinase do-

main, PI3K can also be activated by Ras-GTP [22]. Activated PI3K can then

induce the conversion of PIP2 to PIP3. PIP3 will either revert to PIP2 through

phosphatase and tensin homolog (PTEN) [34], or serve to recruit Akt and PDK

to the membrane, where PDK will phosphorylate Akt. Activated Akt can then

activate mTOR, the result of which will lead to translation and cell growth

[62]. The tuberous sclerosis complex (TSC), composed of TSC1, also known

as hamartin, and TSC2, also known as tuberin, plays an important role in the

regulation of mTOR. The TSC1-TSC2 complex can catalyze the conversion of

the GTPase Ras homolog enriched in brain (Rheb) from Rheb-GTP to Rheb-

GDP. This downregulates mTOR activity as Rheb-GTP has the ability to activate

mTOR. However, phosphorylated Akt can block this conversion by phosphory-

lating the TSC1-TSC2 complex directly, thereby inhibiting TSC1-TSC2 activity,

or by phosphorylating TSC2 and preventing the formation of the TSC1-TSC2

complex [34].

Activated mTOR can either inactivate eukaryotic translation initiation factor

4E-binding protein 1 (4E-BP1) by phosphorylation and prevent it from binding

eukaryotic translation initiation factor 4E (EIF4E), or release EIF4E by phospho-

rylating the 4E-BP1 component of the 4E-BP1-EIF4E complex [34]. Activated

mTOR can also phosphorylate ribosomal protein S6 kinase (p70). Activated p70

can then activate the 40S ribosomal subunit (40S), allowing it to take part in

translation.
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2.5 PLC-γ pathway

Activated dimers, such as the ErbB1 homodimer, can also activate PLC [47]. Ac-

tivated PLC can then cleave PIP2 into diacylglycerol (DAG) and inositol 1,4,5-

triphosphate (IP3), both of which will lead to the activation of PKC. DAG has

the ability to activate PKC directly, while as a simplification in the model, IP3

directly interacts with PLA2 to ”activate” it. Another simplification is that ”ac-

tivated” PLA2 directly activates PKC. In addition to activating Raf, PKC also

plays a role in loading Ras with GTP[94].

2.6 Cell cycle

Cyclins, cyclin dependent kinases (Cdk), and their respective complexes com-

prise an important regulatory aspect of the intricate biological process known as

the cell cycle. However, phosphorylation states determine their activity. Some

proteins/complexes are active when phosphorylated, and some are inactive.

Table 2.2 describes cell cycle protein/complex activation states when phospho-

rylated.

Most of these complexes play some role in E2F1/retinoblastoma protein reg-

ulation. E2F1 is a transcription factor for various cell cycle genes, while the

retinoblastoma protein (Rb) acts as a regulator for E2F1. Depending on its level

of phosphorylation, Rb can sequester and inactivate E2F1 (low phosphoryla-

tion), or release E2F1 (high phosphorylation) [35]. In the model, Rb has three

states - unphosphorylated (Rb), single phosphorylation (pRb) to represent hy-

pophosphorylation, and dual phosphorylation (ppRb) to represent hyperphos-
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Table 2.2: Activation state of proteins/protein complexes involved in cell
cycle regulation when phosphorylated.

Protein/protein complex Active or inactive

CycA-Cdk1 Inactive

CycA-Cdk2 Inactive

CycB-Cdk2 Inactive

CycD-Cdk4 Inactive

CycD-Cdk6 Inactive

CycE-Cdk2 Inactive

p21 Inactive

p27 Inactive

Cdc25A Active

Cdc25C† Active

Chk1‡ Active

PP1 Inactive

†Inactive when dual phosphorylated
‡Dual phosphorylated

phorylation.

The complexes CycA-Cdk2, CycE-Cdk2, CycD-Cdk4, and CycD-Cdk6 have

the ability to phosphorylate Rb directly, preventing E2F1 sequestration [17, 46,

48]. CycD-Cdk4/6 can also phosphorylate Rb while Rb is complexed with E2F1.

The complex then dissociates into pRb and E2F1. However, pRb, still complexed

with E2F1, can be phosphorylated again by CycE-Cdk2 and simultaneously re-

lease E2F1. The ppRb then can degrade. CycE-Cdk2 also has the ability to

directly phosphorylate pRb to ppRb. Protein phosphatase 1 (PP1) can dephos-
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phorylate pRb and ppRb [20] but CycA/E-Cdk2 and CycB-Cdk1 have the ability

to phosphorylate, and thus deactivate, PP1 [52, 66].

The cyclin-CDK complexes also regulate other proteins aside from the E2F1-

Rb complex. For example, CycA-Cdk2 can phosphorylate the transcription fac-

tor specificity protein 1 (Sp1), which is a transcription factor for the majority

of the genes represented in the model [19]. CycB-Cdk1 phosphorylates and ac-

tivates M-phase inducer phosphatase 3 (Cdc25C) [61, 37, 23]. It is then pos-

sible for Cdc25C to activate, by dephosphorylation, the CycB-Cdk1 complex,

demonstrating a form of feedback [63, 38, 6]. Other activators of Cdc25C in-

clude polo-like kinase1 (PLK) [72, 67] and activated ERK [90]. Chk checkpoint

homolog (Chk1) also phosphorylates Cdc25C, but with an inhibitory effect in-

stead [9, 75]. In the model, this is indicated with a dual phosphorylation step.

The double phosphorylated version of Cdc25C can then degrade.

When phosphorylated, another phosphatase, M-phase inducer phosphatase

1 (Cdc25A), activates, by dephosphorylation, CycA/E-Cdk2 [6, 68, 73]. Similar

to the feedback exhibited by interactions between CycB-Cdk1 and Cdc25C, once

activated, CycE-Cdk2 can phosphorylate and activate Cdc25A [38, 59]. Chk1,

when dual phosphorylated, can inhibit Cdc25A activity in the same way that it

inhibits Cdc25C [86, 21].

Cyclin dependent kinase inhibitors also have a regulatory role in cell cycle.

We have incorporated two inhibitors, cdk inhibitor 1 (p21) and cdk inhibitor 1B

(p27). p21 can bind directly to Cdk2/4/6, preventing them from complexing

with cyclins [31], but the role of p27 is slightly more complex. For example, p27

binds to CycE-Cdk2 complexes to inhibit them [5]. However, the activated form

of the CycE-Cdk2 complex can bind the CycE-Cdk2-p27 complex and phospho-
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rylate p27, releasing the bound CycE-Cdk2 complex. Phosphorylated p27 will

either become dephosphorylated or degraded [58, 81, 68]. CycE-Cdk2 can also

be released from p27 by the CycD-Cdk4/6 complex, although p27 will not be

phosphorylated as before [13]. Instead, p27 will simply dissociate from CycD-

4/6. p27 can bind directly to CycD-Cdk4/6 complexes, but it will not inhibit

activity. That is, CycD-Cdk4/6-p27 can carry out the same functions as CycD-

Cdk4/6 with respect to the E2F1-Rb complex [18, 68]. Though normal functions

of CycD-Cdk4/5 are not affected by p27, glycogen synthase kinase 3b (GSK) can

phosphorylate CycD when complexed with p27, which marks the complex for

degradation [12, 81]. Another p27 regulator, phosphorylated Src, can phospho-

rylate p27, restricting its inhibitory activity towards CycE-Cdk2 [15].

2.7 Transcription and translation

Basal transcription for every gene corresponding to the 72 proteins present in

the model has been included. That is, it is only necessary for a gene to bind to

RNA polymerase I (RNAp) and mRNA will be generated. mRNA will then be

exported out of the nucleus, where it may be degraded or translated. We have

included multiple transcription factors that control gene expression as well. Ta-

ble 2.3 shows the various ways transcription factors are regulated in the model.

Once transcription factors are activated, they are transported into the nucleus

and can bind to the appropriate gene (along with RNAp) and initiate transcrip-

tion. Figure 2.1 identifies which genes are controlled by which transcription

factor.

Once mRNA is released from the nucleus, it can either degrade or bind with
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Figure 2.1: Graphical map of transcription regulation. The transcription
factors shown in the middle point to the genes they control.
While most transcription factors initiate transcription of the re-
spective genes, p53 (gene name: TP53) inhibits transcription
of CHEK1. The faded genes without an indicated transcrip-
tion factor are controlled by the transcription factors SRF, SP1,
FOS-JUN, and/or MYC-MAX. These transcription factors are
not included as regulators in the figure for simplicity as they
induce transcription of most genes in the model.
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Table 2.3: Transcription factor activation/regulation.

Transcription factor Regulation Citation

Sp1 Phosphorylation by CycA-CDK2 [19]

Phosphorylation by ERK [56]

Fos-Jun complex Phosphorylation by ERK [57]

Myc-MAX complex Phosphorylation by p-ERK [28, 79]

MAX Inhibition by MAD [97, 14]

Myc Degradation by GSK phosphorylation [96, 79]

Srf Phosphorylation by ERK [3]

ETS1 Phosphorylation by ERK [92]

E2F1 Inhibition by Rb [81, 68]

STAT5B Phosphorylation by ERK [65]

ELK Phosphorylation by ERK [41]

STAT3 Phosphorylation by ERK [16]

Phosphorylation by Src [69]

eukaryotic translation initiation factor 4E (EIF4E) and the ribosomal subunits,

40S and 60S. This complex then commits to translation and releases EIF4E. Next,

the corresponding protein is released along with 40S, 60S, and the mRNA. This

translation process is a simplified version of the system published previously

by Nayak et al. [60].
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CHAPTER 3

MATERIALS AND METHODS

3.1 Experimental

3.1.1 Cell culture

The human breast carcinoma cell line, MDA-MB-231, was received as a gift

from the Claudia Fischbach-Teschl Lab (Cornell University, Ithaca, NY). Cells

were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM; Mediatech,

Inc., Manassas, VA) supplemented with 10% fetal bovine serum (FBS; Lonza,

Walkersville, MD) and 1% antibiotic-antimycotic (A/A) solution (10,000 units/

mL penicillin G, 10 mg/mL streptomycin sulfate, and 25 µg/mL amphotericin

B). Cells were incubated in a humidified incubator kept at 37◦C and 5% CO2. To

harvest cells, the media was first aspirated. The cell layer was then rinsed with

phosphate buffered saline (PBS) to remove traces of serum. Cells were then in-

cubated with 0.05% Trypsin/0.53 mM EDTA in Hank’s Balanced Salt Solution

(Mediatech, Inc., Manassas, VA) at 37◦C until cells rounded up and detached

from the surface. Regular culture media (10% FBS, 1% A/A) was added to re-

suspend the cells. This solution was passed (1:2-5) in order to maintain stock,

or centrifuged to reseed for experimental purposes.

In order to starve cells, cells were seeded in regular media overnight. The

media was then aspirated and replaced by reduced serum media (RSM; DMEM

supplemented with 0.1% fetal bovine serum, 1% antibiotic-antimycotic solu-

tion) for 24 hours in order to commence starvation.
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Cells were grown in BD Falcon tissue culture flasks with vented caps (BD

Biosciences, Bedford, MA) and Costar R© tissue-culture treated 6-well plates

(Corning, Inc., Lowell, MA; Cat No. 3516).

Cells were counted on a TC10TM automated cell counter (Bio-Rad, Hercules,

CA) in a 50:50 ratio with Trypan Blue 0.4% solution (Lonza, Walkersville, MD).

To maintain frozen stock, cells were resuspended in freezing solution, con-

sisting of DMEM, 10% FBS, and 5% dimethyl sulfoxide (DMSO) at a density of

2-3M. Samples were kept at -20◦C overnight and then moved to a -80◦C freezer

for long-term storage.

3.1.2 Flow cytometry

Cells were seeded at 50% confluency (approximately 750,000 cells in 3 mL of me-

dia, or a density of 0.25M) in 6-well plates in 10% FBS media overnight. The next

day, the media was replaced by RSM and cells were starved for 24 hours. Afer

starvation, cells were treated with EGF, NRG1, or both to bring the final concen-

tration of the respective growth factor to 1 nM or 10 nM. Treatments of different

concentrations of growth factor were normalized to the same volume, while un-

treated samples were dosed with PBS. The flow cytometry protocol was adapted

from the the protocol written by Cell Signaling Technolog (Danvers, MA). Cells

were harvested and fixed for ten minutes at 37◦C with 3% formaldehyde solu-

tion (3g/100mL PBS) assuming 1 mL fixing solution/1×106 cells, at 1 hour, 2

hours, and 24 hours. Samples were then centrifuged and resuspended in PBS.

Chilled 100% methanol, assuming 0.5 mL methanol/1×106 cells, was added to

bring the solution to 90% methanol. Samples were chilled on ice for 30 minutes.
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After membrane permeabilization with methanol, samples were washed twice

with incubation buffer. Incubation buffer was made as indicated by the flow

cytometry protocol, consisting of 0.5 g of bovine serum albumin (BSA; Sigma-

Aldrich Cat. No A2153) in 100 mL of PBS. Cells were then resuspended in 100

µL of incubation buffer and blocked for ten minutes at room temperature. Cells

were incubated with conjugated antibodies (1:50 ratio) for one hour in the dark

at room temperature. Cells were washed twice with incubation buffer and re-

suspended in 400 mL of PBS for analysis on a BD LSR II flow cytometer using

BD FACSDiva software at the Biomedical Sciences Flow Cytometry Core Lab-

oratory at Cornell University located in Ithaca, NY. All samples were done in

triplicate.

Data analysis

The mean fluorescence from each marker was recorded for each sample. Values

for each marker were then scaled by dividing by the maximum intensity de-

tected over all time points for that particular marker. That is, fluorescence values

for p53 were divided by the maximum intensity detected for p53 over the entire

experiment (regardless of time or treatment condition). Repeat samples were

averaged and plotted with standard error. A two-sample Student’s t-test was

used to determine the statistical significance of treated sample measurements

with respect to the untreated case (Section A.1 in Chapter A in Appendix).

Untreated samples were also prepared without antibody incubation and an-

alyzed under the same conditions with flow cytometry. Intensity values for each

marker were compiled across all time points and compared with corresponding

control (with antibody incubation) data with a two-sample Student’s t-test (Sec-
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tion A.2 in Chapter A in Appendix).

3.1.3 Cell cycle analysis

Cells were seeded at 50% confluency (approximately 750,000 cells in 3 mL of

media, or a density of 0.25M) in 6-well plates in 10% FBS media overnight. Me-

dia was changed to RSM and cells were starved for 24 hours. After starvation,

cells were treated with EGF, NRG1, or both to bring the final concentration of

the individual growth factor to 1 nM or 10 nM for 24 hours. Treatments of differ-

ent concentrations of growth factor were normalized to the same volume, while

untreated samples were dosed with PBS. After treatment, cells were harvested

and washed with cold PBS twice. Cells were then resuspended in 400 µL hypo-

tonic staining solution, which consisted of PBS, 0.1% v/v Triton X-100 (Sigma-

Aldrich, St. Louis, MO), 0.2 mg/mL RNase A (Sigma-Aldrich, St. Louis, MO),

and 4% v/v propidium iodide (Sigma-Aldrich, St. Louis, MO) staining solution

(propidium iodide dissolved in water at a concentration of 0.5 g/mL). Samples

were incubated overnight at 4◦C in the dark. Analysis was performed on a BD

LSR II flow cytometer using BD FACSDiva software at the Biomedical Sciences

Flow Cytometry Core Laboratory at Cornell University located in Ithaca, NY.

All samples were done in triplicate.

The percentage of cells in G1, S, and G2/M phases were recorded for each

sample. Percentages were averaged across repeats and plotted with standard

error.
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3.1.4 Antibodies and growth factors

Fluorophore-conjugated antibodies were used for flow cytometric analysis. Pre-

conjugated monoclonal antibodies for p53 (Alexa Fluor R© 488; Cat No. 2015),

phosphorylated-p44/42 MAPK (Alexa Fluor R© 647; Cat No. 4375), Ser473

phosphorylated-Akt (Alexa Fluor R© 647; Cat No. 4075), and phosphorylated 4E-

BP1 (Alexa Fluor R© 488; Cat No. 2846) were obtained from Cell Signaling Tech-

nology (Danvers, MA). Monoclonal antibodies for E2F1 (Abcam, Cambridge,

MA; Cat No. ab483) were conjugated using the Pacific BlueTM monoclonal anti-

body labeling kit (Cat No. P30013) from Invitrogen (Carlsbad, CA).

Human recombinant Neuregulin-1 (NRG1; Cat No. 5218SF) was obtained

from Cell Signaling Technology (Danvers, MA), and human recombinant epi-

dermal growth factor (EGF; Cat No. PHG0311) was obtained from Invitrogen

(Carlsbad, CA). For storage purposes, EGF and NRG1 were reconstituted in PBS

(100 mg/mL) and aliquoted as needed for treatments.

3.2 Computational

3.2.1 Formulation and solution of the model equations

The breast model was formulated as a set of coupled Ordinary Differential

Equations (ODEs):
dx
dt
= S · r(x,p) x(to) = xo (3.1)

The symbol S denotes the stoichiometric matrix (3433 × 8178). The quantity x

denotes the protein and protein complex concentration (3433 × 1). The term
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r(x,p) denotes the vector of reaction rates (8178 × 1). Each row in S described a

species while each column described the stoichiometry of network interactions.

Thus the (i, j) element of S, denoted byσi j, described how protein i was involved

in rate j. If σi j < 0, then protein i was consumed in r j. Conversely, if σi j > 0,

protein i was produced by r j. Lastly, if σi j = 0, protein i was not involved in rate

j.

We assumed mass-action kinetics for each interaction in the network. The

rate expression for protein-protein interaction or catalytic reaction q:∑
j∈{Rq}

σ jqx j →
∑

p∈{Pq}

σpqxp (3.2)

was given by:

rq(x, kq) = kq

∏
j∈{Rq}

x−σ jq

j (3.3)

The set {Rq} denotes reactants for reaction q. The quantity {Pq} denotes the set of

products for reaction q. The kq term denotes the rate constant governing the qth

interaction. Lastly, σ jq and σpq denote stoichiometric coefficients (elements of

the matrix S). We treated every interaction in the model as non-negative. All re-

versible interactions were split into two irreversible steps. The mass-action for-

mulation, while expanding the dimension of the breast model, regularized the

mathematical structure. The regular structure allowed automatic generation of

the model equations. In addition, an analytical Jacobian (A) and matrix of par-

tial derivatives of the mass balances with respect to the model parameters (B)

were also generated. Mass-action kinetics also regularized the model param-

eters. Unknown model parameters were one of only three types, association,

dissociation, or catalytic rate constants. Thus, although mass-action kinetics in-

creased the number of parameters and species, they reduced the complexity of

model analysis. In this study, we did not consider intracellular concentration
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gradients. However, we accounted for membrane and cytosolic proteins by ex-

plicitly incorporating separate membrane and cytosolic protein species. We did

consider a separate nuclear compartment and incorporated nuclear importers

and exporters.

UNIVERSAL, an in-house code generation program (available for download

at http://code.google.com/p/universal-code-generator/), was used to gener-

ate model code (mass balance equations, stoichiometric matrix, etc.), while

SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic equation Solvers)

[36] was used in Octave (www.octave.org) to solve the model equations.

3.2.2 Simulation protocol

An approximate steady-state was used as the starting point (t = 0 s) for all treat-

ment simulations. Although no individual cell is likely to be at steady-state,

we assumed that it was a reasonable approximation of the population average

behavior of HER2+/ER- cells growing in the exponential phase. The steady-

state was estimated numerically by repeatedly solving the model equations and

estimating the difference between two subsequent time points:

||x(t + 4t) − x(t)||2 ≤ ε (3.4)

The quantities x(t) and x(t +4t) denote the simulated concentration vector at

time t and t + 4t, respectively. The quantity || · · · ||2 denotes the L2 vector norm.

In this study, 4t = 100 seconds of simulated time and ε = 0.001. Simulated time

is not equivalent to the time-to-completion of a simulation (run-time).
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3.2.3 Partitioning

To reduce run-time, a partitioning strategy was applied using the multi-way

hypergraph partitioning algorithm published by the George Karypis Lab (De-

partment of Computer Science and Engineering, University of Minnesota) [45].

The 8178 reactions of the original model were sorted into multiple ”sub-models”

in order to minimize the number of shared species between each sub-model, or

partition. Mass balances were generated for each partition and solved inde-

pendently. In order to preserve complete signal flow, after solving each time

step, results from each partition were averaged together and used as the initial

conditions across all partitions for the next time step:

ICt+ts =
x1,t + · · · + xN,t

N
(3.5)

where IC represents initial conditions, x represents simulated concentrations at

time t, and N represents the number of partitions.

3.2.4 Pareto Optimal Ensemble Techniques (POETs)

POETs is a multiobjective optimization strategy which integrates several local

search strategies e.g., Simulated Annealing (SA) or Pattern Search (PS) with a

Pareto-rank-based fitness assignment [85]. Denote a candidate parameter set at

iteration i + 1 as ki+1. The squared error for ki+1 for training set j was defined as:

E j(k) =
T j∑
i=1

(
M̂i j − ŷi j(k)

)2
(3.6)

The symbol M̂i j denotes scaled experimental observations (from training set j)

while the symbol ŷi j denotes the scaled simulation output (from training set j).
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The quantity i denotes the sampled time-index and T j denotes the number of

time points for experiment j. The training data was representative of experi-

mental data, which is not always necessarily quantifiable. Suppose we have the

intensity for species x at time i = {t1, t2, .., tn} in condition j. The scaled measure-

ment would then be given by:

M̂i j =
Mi j −miniMi j

maxiMi j −miniMi j
(3.7)

Under this scaling, the lowest measurement equaled zero while the highest

measurement equaled one. A similar scaling was defined for the simulation

output.

We computed the Pareto rank of ki+1 by comparing the simulation error at it-

eration i+1 against the simulation archive Ki. We used the Fonseca and Fleming

ranking scheme [24]:

rank (ki+1 | Ki) = p (3.8)

where p denotes the number of parameter sets that dominate parameter set ki+1.

Parameter sets on or near the optimal trade-off surface have small rank. Sets

with increasing rank are progressively further away from the optimal trade-

off surface. The parameter set ki+1 was accepted or rejected by the SA with

probability P (ki+1):

P(ki+1) ≡ exp {−rank (ki+1 | Ki) /T } (3.9)

where T is the computational annealing temperature. The initial temperature

To = n/log(2), where n is user defined (n = 4 for this study). The final temper-

ature was T f = 0.1. The annealing temperature was discretized into 10 quanta

between To and T f and adjusted according to the schedule Tk = βkT0 where β

was defined as:

β =

(
T f

To

)1/10

(3.10)

30



The epoch-counter k was incremented after the addition of 100 members to the

ensemble. Thus, as the ensemble grew, the likelihood of accepting parameter

sets with a large Pareto rank decreased. We performed a local pattern-search

every 5 steps to minimize the residual for the mean over the objective. The local

pattern-search algorithm has been described previously [25, 87]. The parame-

ter ensemble used in the simulation studies was generated from the low-rank

parameter sets in Ki.
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CHAPTER 4

RESULTS

4.1 Experimental

After forming a hormone refractory based cancer growth model, we decided to

generate experimental data specific to HER2+/ER- breast cancer. Because pre-

liminary model simulations were based on growth factor stimulations, we chose

to perform similar growth factor treatments on the MDA-MB-231 cell line. High

(10 nM) and low (1 nM) dosages of EGF and NRG1, as well as combinations of

the two, were administered to serum-starved cells. EGF was chosen due to its

role in cell proliferation, while NRG1 was chosen for its specificity to the ErbB3

receptor, which is the only receptor that can activate the PI3K/Akt pathway. We

chose phospho-ERK1/2, phospho-Akt, p53, E2F1, and phospho-4E-BP1 as our

intracellular targets. Phospho-ERK1/2 is a common indicator of cell prolifera-

tion and phospho-Akt plays a role in cell survival and functions downstream of

PI3K, which is activated by the ErbB3 receptor. E2F1 is a transcription factor for

many cell cycle proteins, while p53 generally acts as a tumor suppressor. 4E-BP1

suppresses translation by sequestering EIF4E, but when 4E-BP1 becomes phos-

phorylated by mTOR, EIF4E is released. Therefore, we correlate the level of

phospho-4E-BP1 to the level of translational processes in the cell. Fluorophore-

conjugated antibodies for each marker were used and the resulting mean fluo-

rescence was detected with flow cytometry. Analysis was performed at 1 hour,

2 hours, and 24 hours in order to capture short and long-term signaling.
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4.1.1 Growth factor treatment

When cells were treated with 1 nM of EGF, phospho-ERK1/2 showed a signifi-

cant increase after 2 hours, while with 10 nM, a significant change was observed

within 1 hour (Figure 4.1). Differences in the levels of phospho-ERK1/2 be-

tween treated and control cases were only noticeable on a shorter time scale, as

the levels of phospho-ERK1/2 from each case were comparable with the con-

trol by 24 hours. Interestingly, NRG1 treatments of 1 nM and 10 nM induced

similar levels of phospho-ERK1/2 expression at 2 hours as the 1 nM treatment

of EGF (Figure 4.1), which proves NRG1 has the ability to induce proliferation,

but EGF is the dominant growth factor in that aspect. However, when cells were

treated with both EGF and NRG1, the effects were not additive, in neither low

nor high dosages (Figures A.1 and A.2 in Appendix A). This was also the case

for phospho-Akt. While all treatments resulted in an increase of phospho-Akt at

1 and 2 hours, the magnitude of change did not vary significantly across treat-

ment conditions, except for the 1 nM EGF treatment surprisingly (Figures 4.2

and 4.3). Because of the link between the ErbB3 receptor to the PI3K/Akt

pathway, it would be expected that NRG1 would be a the dominant inducer of

Akt activity. However, a low treatment of NRG1 did induce rapid degradation

of p53. While in the control case p53 eventually degraded from 2 hours and on-

ward, after being treated with NRG1 for 1 hour, the level of p53 was down to the

final level of the control at 24 hours (Figure 4.4). This was also the case with the

low combined dosage of NRG1 and EGF. In general, changes induced by high

growth factor treatments were not significantly different from low growth fac-

tor treatments. For example, in the case of E2F1, increases were quantitatively

similar at 24 hours across all treatment conditions (Figure 4.5). Also, with a 1

nM EGF treatment, a phospho-4E-BP1 signal was maintained from 1 to 2 hours,
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Figure 4.1: Fluorescence intensity of phospho-ERK1/2. Flow cytometric
analysis was performed on untreated and 1 nM EGF, 10 nM
EGF, 1 nM NRG1, and 10 nM NRG1 treated cells. Complete
treatment results can be found in Appendix A. Cells were fixed
at 1 hour, 2 hours, and 24 hours before analysis. Intensity val-
ues were scaled as described in Materials and Methods. All
samples were done in triplicate and standard error was plot-
ted.

while in other treatment cases, including the 10 nM EGF treatment, mean values

decreased after 1 hour. With respect to the control, NRG1 seems to have more

of an impact on phospho-4E-BP1 than EGF alone within 1 hour (Figure 4.6).

4.1.2 Cell cycle analysis

We performed a cell cycle analysis in order to verify that these signaling obser-

vations were in fact due to growth factor treatments and not a result of normal

cell division. Cells were seeded and then starved for 24 hours before undergo-
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Figure 4.2: Fluorescence intensity of phospho-Akt. Flow cytometric anal-
ysis was performed on untreated, 1 nM EGF, 1 nM NRG1, and
1 nM EGF + 1 nM NRG1 treated cells. Cells were fixed at 1
hour and 2 hours before analysis. Intensity values were scaled
as described in Materials and Methods. All samples were done
in triplicate and standard error was plotted.

ing the same treatments (1 nM EGF, 10 nM EGF, 1 nM NRG1, 10 nM NRG1, 1

nM EGF + 1 nM NRG1, and 10 nM EGF + 10 nM NRG1). Cells were incubated

in a hypotonic solution with propidium iodide to simultaneously permeabilize

the membrane and stain DNA. The fluorescence intensity of propidium iodide

was assumed to reflect the amount of DNA present in the cell. Samples were

analyzed using flow cytometry after 24 hours of treatment. Figures 4.7 and 4.8

show the cell cycle distribution over all treatment conditions. With respect to

the control, treatments do not seem to change the cell cycle distribution. After

24 hours of treatment, cells are dominantly in the G1 phase. This shows that

for this particular cell line, the treatments that we chose are strong enough to

induce growth signaling, but not enough to stimulate rapid cell growth, which
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Figure 4.3: Fluorescence intensity of phospho-Akt. Flow cytometric analy-
sis was performed on untreated, 10 nM EGF, 10 nM NRG1, and
10 nM EGF + 10 nM NRG1 treated cells. Cells were fixed at 1
hour and 2 hours before analysis. Intensity values were scaled
as described in Materials and Methods. All samples were done
in triplicate and standard error was plotted.

would result in a false positive in terms of markers such as phospho-ERK1/2.

4.2 Computational

Given current computational limitations, repetitively solving a model of 3433

ODEs soon becomes time-consuming and inconvenient for analysis. We inves-

tigated a method that would sort model reactions into smaller partitions that

would hypothetically take less time to run. To test the partitioning strategy, a

simplified model was used for analysis. This model, from now on referred to

as the 3-gene model, is qualitatively similar to the breast cancer model in that it
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Figure 4.4: Fluorescence intensity of p53. Flow cytometric analysis was
performed on untreated, 1 nM NRG1, and 1 nM EGF + 1 nM
NRG1 treated cells. Complete treatment results can be found in
Appendix A. Cells were fixed at 1 hour, 2 hours, and 24 hours
before analysis. Intensity values were scaled as described in
Materials and Methods. All samples were done in triplicate
and standard error was plotted.

includes ligand-receptor binding that leads to activated transcription factor and

the transcription and translation of three distinct genes. The smaller scale of the

3-gene model translates into faster run-time, making comparisons between par-

titioned model simulations and unpartitioned model simulations more feasible.

When the 3-gene model was partitioned, the structural components of the re-

sulting two partitions were intriguing. One partition contained upstream reac-

tions, such as ligand-receptor binding and transcription factor activation, while

the other partition contained mostly downstream transcription and translation

reactions. It also should be noted that the model was sorted into equally sized

partitions.
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Figure 4.5: Fluorescence intensity of E2F1 after 24 hours of treatment.
Flow cytometric analysis was performed on untreated, 1 nM
EGF, 1 nM NRG1, 1 nM EGF + 1 nM NRG1, 10 nM EGF, 10
nM NRG1, and 10 nM EGF + 10 nM NRG1 treated cells. Com-
plete treatment results can be found in Appendix A. Cells were
fixed at 1 hour, 2 hours, and 24 hours before analysis. Intensity
values were scaled as described in Materials and Methods. All
samples were done in triplicate and standard error was plotted.

4.2.1 Partitioning a smaller three-gene network

First, it was necessary to determine if a partitioned model had the ability to

reproduce qualitatively similar results as an unpartitioned model. A standard

simulation was to run each model to steady state, and then introduce ligand af-

ter an additional 100 seconds. There should be an increase over time in protein

1 in the cytosol (P1 c), the production of which is directly correlated to ligand-

receptor binding. Figure 4.9 shows the results of unpartitioned and partitioned

model simulations. It can be seen that the two-partition model shows a qualita-

tively similar response with respect to P1 c. Also, using the same rate constant
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Figure 4.6: Fluorescence intensity of phospho-4E-BP1. Flow cytometric
analysis was performed on untreated, 1 nM EGF, 10 nM EGF, 1
nM NRG1, and 10 nM NRG1 treated cells. Cells were fixed at 1
hour and 2 hours before analysis. Intensity values were scaled
as described in Materials and Methods. All samples were done
in triplicate and standard error was plotted.

parameters in each model, the scale of P1 c response from the two-partition

model simulation is on par with the unpartitioned model simulation. However,

at later time points the level of P1 c decreases, while in the unpartitioned model,

the level of P1 c continues to gently increase. It is therefore concluded that the

dynamics of the partitioned model differ from that of the unpartitioned model.

Partition Analysis

In order to identify the variability of results associated with parititioning, a par-

tition constant, α, was defined. For example, in a two-partition system,

ICt+ts = αx1,t + (1 − α)x2,t (4.1)

39



G1 S G2/M
0

10

20

30

40

50

60

70

80

90

Cell Cycle Phase

%
C

e
ll

 C
y

cl
e

 D
is

tr
ib

u
ti

o
n

1 nM EGF

1 nM NRG1

1 nM EGF + 1 nM NRG1

Control

Figure 4.7: Cell cycle distribution of untreated and treated cells. Cells were
seeded and then starved for 24 hours before being treated with
1 nM EGF, 1 nM NRG1, and 1 nM EGF + 1 nM NRG1.
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Figure 4.9: Concentration profiles of protein 1 in the cytosol (P1 c) at sam-
pled time points of 1, 100, 200, 800, and 1000 seconds. Both
the unpartitioned model and two-partition model were run to
steady state (data not shown). Both models were run for an ad-
ditional 100 seconds before adding a perturbation in the form
of one unit of ligand.

Previously, when results were averaged, α equaled 1/N. When α does not equal

1/N, we are making the assumption that one partition’s results should be fa-

vored when determining the initial conditions for the next time step. By running

simulations with α set at different values between 0.1 and 0.9, we can observe a

partitioned model’s sensitivity to this new parameter that is not present in the

unpartitioned model. Figure 4.10 shows the results from multiple two-partition

simulations plotted alongside the results from an unpartitioned model simula-

tion. It is clear that the value of α significantly affects the partitioned model’s

response to a stimulus. However, we believed there existed a parameter set that

would reflect an unpartitioned model’s response, qualitatively and dynamically

regardless of the α value.
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Figure 4.10: Concentration profiles of protein 1 in the cytosol (P1 c). Af-
ter reaching steady state, a stimulus of ligand (one unit) was
added 100 seconds later and the simulation was run for an
additional 1000 seconds. While only changing the value of α,
simulations were run using a two-partition model.

Estimation of a population of models using Pareto Optimal Ensemble Tech-

niques (POETs)

POETs is typically used to obtain ensembles of model parameters that emulate

various forms of experimental data (e.g. Western blots, ELISAs, immunoblots).

Because the 3-gene network is not specific to any biological system, we ”simu-

lated” experimental data using an unpartitioned 3-gene model. We ran a stim-

ulus simulation with the unpartitioned 3-gene model as done previously. This

time, after reaching steady state, the model was run for an additional 1000 sec-

onds before adding a unit of ligand. We make the assumption that bench-top

experiments occur on a longer time-scale. The response was recorded for the

next 1000 seconds. We chose four species to represent four distinct objectives -

P1 c, protein 3 in the cytosol (P3 c), total transcription factor (TF), and total ac-
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tivated transcription factor (aTF). The amounts of total transcription factor and

total activated transcription factor were calculated by summing free TF/aTF

and complexed TF/aTF values. We then chose four time points - 900, 1100, 1500

and 2000 time units. Only four markers and four time points were used in or-

der to closely emulate a realistic set of experimental data. This data has been

compiled in Figure 4.11. We generated 29 possible parameter sets and selected
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Figure 4.11: Simulated data from an unpartitioned 3-gene model. Data
was scaled as in Equation 3.7.

those with low rank (1 or 0), resulting in a total of 18 sets for analysis. This

ensemble was used to run simulations as before with the two-partition system.

Results were scaled as in Equation 3.7. The average response of protein 1 in the

cytosol across all 18 simulations is plotted alongside results from a simulation

with an unpartitioned model in Figure 4.12. Despite a time lag early on, the

response level of P1 c to the addition of ligand in a two-partition system con-

tinues to increase towards the end of the simulation, as opposed to preliminary

simulations.
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Figure 4.12: Two-partition model simulations over parameter ensemble
versus unpartitioned simulation. After reaching steady state,
the simulations were run for an additional 1000 seconds be-
fore adding a stimulus of ligand. The response of protein 1 in
the cytosol was recorded for the next 1000 seconds. Results
from the ensemble were averaged and plotted with a margin
of error (standard error×1.96), assuming a 95% confidence in-
terval.
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CHAPTER 5

DISCUSSION

Using published experimental data, prior computational models of EGFR

signaling, and protein interaction databases, we have compiled a comprehen-

sive model of hormone-refractory cell growth. By incorporating multiple path-

ways and feedback loops, we hope to capture the intricacy and non-linearity

of signaling driven by growth factors. Although our laboratory experiments

were not designed to validate data from a particular set of computational sim-

ulations (or vice versa), from the network connectivity we hypothesized that

growth factor stimulation would induce growth signaling. Likewise, we be-

lieved that treatments of multiple growth factors simultaneously and high con-

centration treatments would result in increased growth signaling, or at least

indicate signal saturation. As EGF had specificity for EGFR, we believed that

EGF would mainly activate the MAPK pathway, while NRG1, with specificity

for ErbB3, would activate the PI3K/Akt pathway. However, flow cytometric

analysis of EGF and/or NRG1 stimulated MDA-MB-231 cells for the selected

markers (phospho-ERK1/2, phospho-Akt, E2F1, p53, and phospho-4E-BP1) did

not completely correspond to this hypothesis.

While it was clear that a higher dose of EGF alone induced at 1 hour a sta-

tistically significant increase in phospho-ERK1/2 (Figure 4.1), a marker for cell

proliferation, higher concentrations of growth factor did not consistently result

in stronger or weaker signals. Also, the potency of signaling due to a 10 nM

treatment of EGF was lost after 2 hours. At the 2 hour time point, phospho-

ERK1/2 showed an increase with respect to the control, but the scaled mean

fluorescence values across all treatment conditions did not vary significantly.
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However, with regards to phospho-Akt, a 1 nM EGF treatment induced the

highest overall (across all treatments and time points) phospho-Akt signal at

2 hours (Figure 4.2). Therefore, EGF is not necessarily limited to one partic-

ular pathway (MAPK) as we assumed and can upregulate PI3K/Akt as well.

EGF may influence an increase in Ras-GTP (either through the MAPK or PLC-γ

pathway) which has the ability to activate PI3K, and thus lead to Akt activation.

Interestingly, a higher treatment of EGF (10 nM) did not lead to a linear increase

in Akt activation. This gives reason to believe that phospho-ERK1/2 can inhibit

Akt activation. One of the modes of negative feedback in the model consists

of phospho-ERK phosphorylating Sos. Phosphorylated Sos is unable to asso-

ciate with Grb2, the result of which restricts the production of Ras-GTP (Sos

exchanges the GDP bound to Ras for GTP). This growth factor induced effect

has also been demonstrated by Hayashi et al. [33]. Therefore, a high treatment

of EGF must generate such a strong response of phospho-ERK1/2 that this neg-

ative feedback loop is triggered. The non-linearity of EGF signaling is further

reflected in the response levels of phospho-4E-BP1. Despite a 10-fold difference

in treatment concentration, the levels of phospho-4E-BP1 detected from a low

and high EGF dose were comparable. This demonstrates that a low amount

of EGF is enough to saturate the level of phospho-4E-BP1 at 1 hour and/or the

higher treatment of EGF stimulates additional feedback loops that prevent a lin-

ear signal (e.g. Sos phosphorylation). Expression saturation was also reached in

the case of E2F1. Regardless of treatment conditions, the increase (taking error

into account) with respect to the untreated control at 24 hours was uniform.

NRG1 signaling is not exclusive to a particular pathway either. The fact that

low and high treatments of NRG1 were able to stimulate a phospho-ERK1/2

signal as well as EGF treatments at 2 hours is not completely surprising, as the
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HER2/ErbB3 heterodimer is thought to be a potent EGFR mitogenic signaling

dimer when driven by neuregulin [1]. Nevertheless, other NRG1 treatment re-

sponses did correlate to the PI3K/Akt pathway. For example, a 1 nM treatment

of NRG1 after 1 hour resulted in a sharp decrease in p53. This reflects the acti-

vation of Akt as Akt activates the Mdm2 (mouse double minute 2) p53 binding

protein homolog [26]. Mdm2 then inhibits and contributes to the degradation of

p53 [32]. This rapid degradation of p53 was also reflected in the simultaneous

treatment of 1 nM EGF and 1 nM NRG1. It appears that EGF only slightly atten-

uated the response induced by NRG1. It is possible that phospho-ERK1/2 plays

a role in stabilizing p53 in the MDA-MB-231 cell line [40]. If this is true, then

it is plausible that EGF helps mitigate phospho-Akt-stimulated p53 degrada-

tion, knowing that phospho-ERK1/2 is a downstream target of EGF. This point

is supported by the response of p53 to a 10 nM treatment of EGF (Figure A.6).

There is no decrease in p53 and the average mean fluorescence is actually com-

parable to the control case. NRG1 was also able to stimulate an increase in

phospho-4E-BP1, an indirect downstream target of the PI3K/Akt pathway. The

difference in phospho-4E-BP1 levels between NRG1-treated and untreated cells

is slightly greater than the difference between EGF-treated and untreated cells,

which suggests that NRG1 has more of an ability to activate the PI3K/Akt path-

way. This is not unreasonable, as ErbB3 signals directly to PI3K, while EGFR is

likely to activate PI3K indirectly through Ras-GTP.

The non-linearity of growth factor signaling was also demonstrated in simul-

taneous treatments of EGF and NRG1. None of the responses of each marker

to combination treatments were additive. To statistically compare the results

from combination treatments to results from individual treatments, the respec-

tive control intensity value was subtracted from all treated samples. Deltas from
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EGF-treated samples (4EGF) and NRG1-treated 4NRG1) samples were added to-

gether and this value was compared to the delta calculated from EGF+NRG1

treatments 4EGF+NRG1). A two-sample Student’s t-test was used to determine

whether differences were statistically significant (Table A.7). Although 1 nM

treatments of EGF and NRG1 separately induced an increase in phospho-

ERK1/2, this increase was not additive in the combination treatment (Fig-

ure A.1). It is possible that negative feedback loops are triggered at some thresh-

old of phospho-ERK1/2 and that the MAPK and PI3K/Akt pathways counter-

balance each other in order to check unregulated growth. A similar response

was seen with phospho-Akt at 2 hours (Figure 5.1). The response of phospho-

Akt to a 1 nM combination treatment did not reflect additive synergy. While

the current version of our breast cancer model does not include any form of

negative feedback with respect to Akt directly, there is evidence to believe that

Akt activity can induce an downregulation in ErbB3 activity and expression

[10]. ErbB3 inhibition would likely reduce the effect of NRG1 treatment on

downstream signaling pathways. This theory is supported by the behavior of

phospho-4E-BP1 in response to the same treatment at the same time point (not

included in Figure 5.1; see Table A.7). However, the mechanism driving this

feedback has yet to be revealed and requires further investigation.

While the level of detail included in the hormone-refractory cancer growth

network is helpful in understanding different modes of regulation with respect

to growth signaling, the resulting model becomes difficult to solve and simula-

tion completion times become the rate-limiting step in terms of analysis. There-

fore we have devised a partitioning strategy to essentially solve model equa-

tions in manageable ”pieces” without sacrificing the original model connectiv-

ity. To test this strategy, we first applied it to a smaller 3-gene model. Initial
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Figure 5.1: Comparison between 4 fluorescence intensity from combina-
tion treatment and individual treatments of EGF and NRG1.
Samples were treated with growth factor for 2 hours. The in-
tensity detected in the control case (Section A.1 in Chapter A in
Appendix) was subtracted from treated cases to obtain a delta
of response (4). 4EGF (blue) and 4NRG1 (green) were stacked and
plotted next to 4EGF+NRG1 (purple). The scale for phospho-Akt
corresponds to the y-axis on the left and the scale for phospho-
ERK1/2 corresponds to the y-axis on the right.

simulation comparisons between an unpartitioned and a two-partition model

showed that a partitioned model responded in a qualitatively similar fashion

to addition of ligand. However, the partitioned model was accompanied by a

new parameter, α, which determined how results from each partition were re-

combined after each time step. When the value of α was varied, the behavior of

protein 1 in the cytosol’s response to ligand varied as well. This is likely due to

the structural differences in each partition. Performing a weighted average as-

sumes that there is reason to believe one partition’s results take precedence over

the other. Because partitions are created in order to minimize the number of in-

teracting species between each partition, while limiting overlaps as well, it is un-

likely that one partition can arbitrarily be used to determine the other partition’s
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conditions. Each partition represents only a segment of the entire network, and

it may be more accurate to identify an α value for each species. However, in

a larger model with 3433 species, this quickly complicates an already-complex

system. Therefore, for the purpose of POETs, an α value of 0.75 was chosen to

give precedence to the partition with upstream signaling events. After obtain-

ing 18 low rank parameter sets, it was observed that the behavior of P1 c, in

comparison to original partitioned model simulations, changed in response to

ligand. Instead of a transient signal, the level of P1 c continually rises, as in the

unpartitioned model simulation. We determined that it was possible to use PO-

ETs to identify an ensemble of parameters that would allow a partitioned model

to behave like an unpartitioned model. Running POETs for a longer period of

time to generate more parameter sets would provide a more thorough analy-

sis, but with this preliminary study we have revealed a tool to solve large-scale

systems.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

We have developed a unique, detailed, hormone refractory cancer growth

model comprised of ligand-receptor signaling, cell proliferation/survival path-

ways, cell cycle, and transcription/translation of genes. The detail and scope

of the network translated into 8178 reactions and 3433 ODEs. To identify inher-

ent characteristics of HER2+/ER- breast cancer signaling, we used the MDA-

MB-231 cell line to perform growth factor experiments. By selecting the targets

phospho-ERK1/2, phospho-Akt, p53, E2F1, and phospho-4E-BP1, we aimed to

observe the activation of different downstream signaling pathways induced by

EGF and NRG1. We observed that growth factor treatment upregulated these

pathways, but certain treatments caused downregulation as well. This unex-

pected observation suggests that these signaling pathways are not linear and

that they intersect at certain points in order to maintain balance in terms of

growth. While this data may not necessarily be able to describe 8178 parame-

ters, it provides a starting point towards characterizing HER2+/ER- breast can-

cer cell growth. In addition, now that we have been able to employ a technique

with reasonable throughput to generate experimental growth factor treatment

data, we can utilize the same method to observe the effects of these growth

factors on different sections of the network, such as cyclin expression. Putting

more focus on cell cycle protein expression would further elucidate the link

between the current incorporated pathways and cell division. This data in con-

junction with the data collected in this study could serve to better characterize

the model, which would undergo further analysis to obtain ensembles of pa-

rameter sets that emulate the experimental results. Also, our partitioning strat-

egy remains to be applied to the larger model, but this preliminary, develop-
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mental step is critical in terms of approaching large-scale systems. In this epi-

dermal growth factor signaling network, we have modeled only a few pathways

involved in cell proliferation, but biologically, there is no shortage of additional

pathways/regulators that have just as an important role. For example, Jones

et al. performed an extensive analysis of the dysregulated pathways that con-

tribute to pancreatic cancer [44]. Out of a population of pancreatic tumors, they

identified 12 core signaling pathways that were consistently altered. However,

the specific genetic alterations involved in each pathway varied between indi-

vidual tumors. This demonstrates and emphasizes the fact that ”cancer” cannot

be studied by narrowly examining a subset of signaling pathways. Rather, the

system that these pathways comprise must be considered in its entirety. Cre-

ating an expansive interaction network that integrates these pathways together

would provide a better understanding of the interplay involved in growth dys-

regulation. However, this task is in no way insignificant computationally and

requires the investigation of alternative methods other than brute force in terms

of solving model equations. Our partitioning tool not only gives us the op-

tion to expand the network and elaborate on the current connectivity, but it also

serves as the catalyst to propel this investigation forward. This strategy may not

be the final solution, but only time and effort will reveal the optimal approach,

bringing us one step closer to identifying novel therapeutic targets and assisting

patients with unmet medical needs.
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APPENDIX A

SUPPLEMENTAL EXPERIMENTAL DATA

A.1 Flow cytometry results
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Figure A.1: Response of phospho-ERK1/2 to low concentration growth
factor treatments.
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Figure A.2: Response of phospho-ERK1/2 to high concentration growth
factor treatments.

Table A.1: p-values for phospho-ERK1/2. Intensity levels detected for
phospho-ERK1/2 in each treated, antibody-stained sample
were compared to intensity levels detected in untreated,
antibody-stained samples with a two-sample Student’s t-test.

p-values for phospho-ERK1/2

Treatment 1 hour 2 hours 24 hours

1 nM EGF 0.612 0.069 0.680

1 nM NRG1 0.226 0.108 0.634

1 nM EGF + 1 nM NRG1 0.849 0.604 0.329

10 nM EGF 0.010 0.245 0.831

10 nM NRG1 0.484 0.006 0.800

10 nM EGF + 10 nM NRG1 0.589 0.228 0.580
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Figure A.3: Response of phospho-Akt to low concentration growth factor
treatments.
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Figure A.4: Response of phospho-Akt to high concentration growth factor
treatments.
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Table A.2: p-values for phospho-Akt. Intensity levels detected for
phospho-Akt in each treated, antibody-stained sample were
compared to intensity levels detected in untreated, antibody-
stained samples with a two-sample Student’s t-test.

p-values for phospho-Akt

Treatment 1 hour 2 hours

1 nM EGF 0.052 0.023

1 nM NRG1 0.004 0.228

1 nM EGF + 1 nM NRG1 0.117 0.044

10 nM EGF 0.005 0.166

10 nM NRG1 0.093 0.157

10 nM EGF + 10 nM NRG1 0.081 0.227
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Figure A.5: Response of p53 to low concentration growth factor treat-
ments.
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Figure A.6: Response of p53 to high concentration growth factor treat-
ments.

Table A.3: p-values for p53. Intensity levels detected for p53 in each
treated, antibody-stained sample were compared to intensity
levels detected in untreated, antibody-stained samples with a
two-sample Student’s t-test.

p-values for p53

Treatment 1 hour 2 hours 24 hours

1 nM EGF 0.445 0.810 0.956

1 nM NRG1 0.001 0.367 0.270

1 nM EGF + 1 nM NRG1 0.005 0.209 0.868

10 nM EGF 0.838 0.702 0.611

10 nM NRG1 0.225 0.587 0.418

10 nM EGF + 10 nM NRG1 0.401 0.209 0.356
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Figure A.7: Response of E2F1 to low concentration growth factor treat-
ments.
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Figure A.8: Response of E2F1 to high concentration growth factor treat-
ments.

58



Table A.4: p-values for E2F1. Intensity levels detected for E2F1 in each
treated, antibody-stained sample were compared to intensity
levels detected in untreated, antibody-stained samples with a
two-sample Student’s t-test.

p-values for E2F1

Treatment 1 hour 2 hours 24 hours

1 nM EGF 0.603 0.607 0.006

1 nM NRG1 0.810 0.472 0.016

1 nM EGF + 1 nM NRG1 0.511 0.879 0.070

10 nM EGF 0.351 0.606 0.051

10 nM NRG1 0.512 0.906 0.048

10 nM EGF + 10 nM NRG1 0.571 0.343 0.115
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Figure A.9: Response of phospho-4E-BP1 to low concentration growth fac-
tor treatments.
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Figure A.10: Response of phospho-4E-BP1 to high concentration growth
factor treatments.

Table A.5: p-values for phospho-4E-BP1. Intensity levels detected for
phospho-4E-BP1 in each treated, antibody-stained sample were
compared to intensity levels detected in untreated, antibody-
stained samples with a two-sample Student’s t-test.

p-values for phospho-4E-BP1

Treatment 1 hour 2 hours

1 nM EGF 0.028 0.052

1 nM NRG1 5.79E-04 0.150

1 nM EGF + 1 nM NRG1 0.082 0.037

10 nM EGF 0.001 0.556

10 nM NRG1 0.082 0.228

10 nM EGF + 10 nM NRG1 0.040 0.635
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A.2 Comparison of fluorescence intensity between unstained

and stained samples
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Figure A.11: Comparison of detected fluorescence for phospho-ERK1/2
between unstained and stained samples. Values across all
time points were averaged and plotted with standard error.
p-values listed in Table A.6.
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Figure A.12: Comparison of detected fluorescence for phospho-Akt be-
tween unstained and stained samples. Values across all time
points were averaged and plotted with standard error. p-
values listed in Table A.6.
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Figure A.13: Comparison of detected fluorescence for p53 between un-
stained and stained samples. Values across all time points
were averaged and plotted with standard error. p-values
listed in Table A.6.
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Figure A.14: Comparison of detected fluorescence for E2F1 between un-
stained and stained samples. Values across all time points
were averaged and plotted with standard error. p-values
listed in Table A.6.
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Figure A.15: Comparison of detected fluorescence for phospho-4E-BP1 be-
tween unstained and stained samples. Values across all time
points were averaged and plotted with standard error. p-
values listed in Table A.6.

Table A.6: p-values from two-sample Student’s t-test between unstained
and stained samples. Values across all time points were
grouped together and simultaneously analyzed in the t-test.

Target p-value

phospho-ERK1/2 1.94E-03

phospho-Akt 9.22E-03

E2F1 0.020

p53 0.002

phospho-4E-BP1 5.39E-05

64



A.3 Statistical significance of combination treatments

Table A.7: p-values from two-sample Student’s t-test between the result
due to a combination treatment 4EGF+NRG1) and the sum of a
marker’s response to just EGF and just NRG1 (4EGF + 4NRG1).

Time Concentration p53 p-ERK1/2 E2F1 p-4E-BP1 p-Akt

1 hr
1 nM 0.012 0.559 0.724 0.123 0.109

10 nM 0.372 0.079 0.092 0.077 0.076

2 hr
1 nM 0.351 0.023 0.241 0.027 1.0E-4

10 nM 0.245 0.255 0.019 0.188 0.045

24 hr
1 nM 0.053 4.61E-4 0.046 – –

10 nM 0.104 0.607 0.018 – –
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APPENDIX B

NOMENCLATURE TABLE

Table B.1: Nomenclature reference index

Model reference† Full name Abbreviation

AKT1 Protein kinase B Akt

AREG Amphiregulin AREG

BTC Betacellulin BTC

CCNA1 Cyclin A CycA

CCNB1 Cyclin B CycB

CCND1 Cyclin D CycD

CCNE1 Cyclin E CycE

CDC2 Cyclin dependent kinase 1 Cdk1

CDC25A M-phase inducer phosphatase 1 Cdc25A

CDC25C M-phase inducer phosphatase 3 Cdc25C

CDK2 Cyclin dependent kinase 2 Cdk2

CDK4 Cyclin dependent kinase 4 Cdk4

CDK6 Cyclin dependent kinase 6 Cdk6

CDKN1A Cyclin dependent kinase inhibitor 1; p21;

Waf1; Cip1

p21

CDKN1B Cyclin-dependent kinase inhibitor 1B;

p27; Cip2; Kip1

p27

cEx Cellular exporter cEx

CHEK1 Chk1 checkpoint homolog Chk1

DAG Diacylglycerol DAG

E2F1 E2F1 transcription factor E2F1

Continued on next page. . .
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Table B.1 (Continued)

Model reference† Full name Abbreviation

EGF Epidermal growth factor EGF

EGFR Epidermal growth factor receptor EGFR

EIF4E Eukaryotic translation initiation factor 4E EIF4E

EIF4EBP1 Eukaryotic translation initiation factor 4E-

binding protein 1

4E-BP1

ELK1 ETS-like gene 1 ELK

ERBB2 Epidermal growth factor receptor 2 HER2

ERBB3 Epidermal growth factor receptor 3 ErbB3

ERBB4 Epidermal growth factor receptor 4 ErbB4

EREG Epiregulin EREG

ETS1 E-twenty-six transcription factor ETS1

FOS c-Fos Fos

GAP1m Ras GTPase activating protein GAP

GRB2 Growth factor receptor binding protein 2 Grb2

GSK3B Glycogen synthase kinase 3b GSK

HBEGF Heparin-binding epidermal growth factor HBEGF

IP3 Inositol 1,4,5-triphosphate IP3

JUN c-Jun Jun

KRAS c-Kirsten-ras protein Ras

Lap Lapatinib Lap

MAP2K1 Mitogen-activated protein kinase/ERK

kinase

MEK

MAPK1 Extracellular-signal-regulated kinase ERK

Continued on next page. . .
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Table B.1 (Continued)

Model reference† Full name Abbreviation

MAX Myc -associated factor X MAX

MTOR Mammalian target of rapamycin mTOR

MXD1 MAX dimerization protein 1 MAD

MYC c-Myc Myc

nEx Nuclear exporter nEx

nIm Nuclear importer nIm

NRG1 Neuregulin 1 NRG1

NRG2 Neuregulin 2 NRG2

NRG3 Neuregulin 3 NRG3

NRG4 Neuregulin 4 NRG4

Pase Phosphatase Pase

PDK1 Phosphoinositide-dependent kinase-1 PDK

PIK3CA Phosphoinositide 3-kinase PI3K

PIP2 Phosphatidylinositol 4,5-bisphosphate PIP2

PIP3 Phosphatidylinositol 3,4,5-trisphosphate PIP3

PLA2G4A Cytosol phospholipase A2 PLA2

PLCG2 Phospholipase C, gamma 2 PLC

PLK1 Polo-like kinase 1 PLK

PPP1R3A Protein phosphatase 1 regulatory subunit

3A

PP1

PPP2R5A Protein phosphatase 2, regulatory subunit

B, alpha

PP2

PPP5C Protein phosphatase 5, catalytic subunit PP5

Continued on next page. . .
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Table B.1 (Continued)

Model reference† Full name Abbreviation

PRKCA Protein kinase C, alpha PKC

PTEN Phosphatase and tensin homolog PTEN

R40S 40S ribosomal subunit 40S

R60S 60S ribosomal subunit 60S

RAF1 Raf-1 protein kinase Raf

Rap Rapamycin Rap

RB1 Retinoblastoma protein Rb

RHEB Ras homolog enriched in brain Rheb

RNAp RNA polymerase I RNAp

RPS6KB1 Ribosomal protein S6 kinase p70

SHC4 Src homology 2 domain containing Shc

SOS1 Son of sevenless homolog 1 Sos

SP1 Specificity protein 1 Sp1

SP3 Specificity protein 3 Sp3

SRC Sarcoma; c-Src Src

SRF Serum response factor Srf

STAT3 Signal transducer and activator of tran-

scription 3

STAT3

STAT5B Signal transducer and activator of tran-

scription 5B

STAT5B

TGFA Transforming growth factor alpha TGFa

TP53 Tumor protein 53 p53

TSC1 Tuberous sclerosis; hamartin TCS1

Continued on next page. . .
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Table B.1 (Continued)

Model reference† Full name Abbreviation

TSC2 Tuberous sclerosis; tuberin TCS2

Wort Wortmannin Wort

YWHAB tyrosine 3-monooxygenase/tryptophan

5-monooxygenase activation protein, beta

polypeptide

14-3-3

†Also gene reference where applicable
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