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Abstract

A“tlassified, or clustered file is one where related, or similar
records are grouped into classes, or clusters of items in such a way
that all ftems within a cluster are jointly retrievable. Clustered
files exhibit substantial advantages in many retrieval environments
over the more conventional inverted list or multilist technologies.

An inexpensive file clustering method applicable to large files
is given together with appropriate file search methods. An abstract
model is used to predict the retrieval effectiveness of various
search methods in a clustered file environment, and experimental
evidence %s introduced to confirm the usefulness of the model. As
an example, a collection of research papers in computer science is
clustered automatically, and the resulting research clusters are compared

with existing, manually constructed taxonomies for the computer field.

1. Conventional Retrieval Environments

In the computer science literature the information retrieval field
is separated into two unequal portions: by far the largest part is
devoted to single-key searches, that is, to retrieval activities wherg

only a single key is used at any one time for search purposes; a small
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part of the literature — probably less than ten percent of the output —
concerns itself with fhe so-called secondary key, or multi-key retrieval
methods. The reasons for the emphasis on single-key searches are two-fold.
First, certain well-known processes studied by computer scientists make

it necessary to perform searches based on single search arguments —

this jg notably the case for the symbol table searches used in compiling,
and for a variety of dictionary look-up processes. Second, single-key
searches are now well understood; a great many sophist:;;;d data structures
and search methodologies have been devised, including refined hashing
methods and tree search processes, leading to optimal single-key searches under
specified conditions. [1]

By comparison, retrieval problems based on multiple keys have been
neglected, in part, one may suspect, because the mathematical constructs
that are often used for single keys do not extend easily to the more
general situation: effectivevkey-address (hash) transformations are
difficult to construct when a large number of keys must be simultaneohsly
manipulated, and the well-known search tree construction methods produce
large, unwieldy constructs when a given tree node represents a
multiplicity of keys. [2,3]

Unfortunately, it is often impossible in practice to formulate one's
search requirements in terms of single search arguments, or even as
sequences of single arguments. In the business world, for example, one
may wish to identify all employees exhibiting certain job classifications,
who also fall within certain age brackets, and possess certain specified
skills. Alternatively, one may wish to extract from a library file all

items falling into a number of specified subject areas.



In such circumstances, one is forced to revert to secondary,
multi-key retrieval methods and to the few well-known file organization
and search methods which apply. When the file size is
snall:-or when rapid responses are not essential, a sequential search
may be made through an unorganized file by successively comparing the
given search arguments with the identifiers attached to the various
stored records. Thus the first record is compared with the query,
then the seconq\rfggpd;'and 5o on, until finally the last record is
treated. On average, one;ggif of the stored records must be examined
to identify any particular wanted record.

When the response time or file size requirements make it impossible
to use sequential searches, an auxiliary index, or directory is normally
used which may identify for each key all the record numbers or record
addresses in the main data file ;ontaining the given key; alternatively,
the directory may identify only the first record containing each key,
and this record in turn may lead to subsequent records for the same key.
In the former case, one speaks of a so-called inverted file organization;
in the latter case, the organization is known as a multi-list file,

In an inverted file system, a search is conducted in several
steps {4,5]):

a) For each term included in the search request the corresponding
1ist of record numbers or record addresses is obtained from
the directory.

b) These record lists are combined, or merged to produce all
record numbers or addresses that satisfy the query specification,



€) The actual data records corresponding to the previously
determined record numbers are retrieved from the main file.

In a multi-list file, only the first record pertaining to a given
key is identiffed in the directory, and the records exhibiting a common
search key are chained together in the main file, that is, connected
by a chain of pointers. Retrieval then takes place by identifying in
the directory the shortest record list (pointer chain) for any of the
keys included in the query statement. The records in that chain are
then individually examined before retrieval to determine whether the.
complete search requirements are actually satisfied in each case.

An idealized diagram of the inverted and multi-list file search strategies
is contained in Fig. 1.

An inverted file system leads to rapid retrieval because the list
processing operations involving the di‘x‘ectaz-y (steps (a) and (b) above)
are performed in fast storage, whereas retrieval from the main data file
is restricted to those records only that actually correspond to the full
query statement. Retrieval from a multi-list file may also be reasonably
rapid provided that the number of records corresponding to the variqus
query keys is small, that is, provided the length of the record chains
in the main file is limited. It can be shown that for short record lists
the multi-list system is generally more efficient than the inverted
file process; the reverse obtains when the number of records corresponding
to a given search key is large. [6]

Unfortunately, both the multi-list and the inverted file systems

exhibit two substantial disadvantages: .



a) Any search key actually used in practice must be provided
for in the directory in advance; for practical purposes this
implies that the search vocabulary (index terms, key words,

= etc.) used to formulate the search requests is closed and
prespecified; furthermore each search request must be
formulated completely and precisely using the preestablished

system vocabulary.

b) Because the retrieval strategy is based on an exact match
between search keys included in the query statements and identifiers
attached to the stored records, retrieval is an "all or nothing"
proposition, in that all items that completely match the search
specification are retrieved whereas all others are rejected;
furthermore, the user has little control over the size of the
output set, and no obvious method suggests itself for ranking

_ the output in some presumed order of potential usefulness.

In actual fact, the conditions under which retrieval activities are
ideally carried out are quite different: much of the time, the user does
not know how to formulate a precise, unambiguous query, but can instead
suggest tentative, incomplete statements to be refined during the course
of the search action; in the same way, the stored records might not be
completely specifiable because the actual content of an item m;y be in
doubt, or because ambiguous record attributes may in fact be appropriate
in some cases. This suggests that the use of complete, unambiguous record
and query specifications based on static, preconstructed vocabularies may
be unnatural.

What is wanted instead is a system where approximate searches can be
conducted between partially formulated queries and possibly incompletely
specified information items leading to the identification of a few
potentially relevant items. When such an item proves useful upon further

examination it should be possible to "zero-in" on the corresponding




portion of the stored record collection so as to retrieve additional
items similar to those previously identified as potentially interesting.
Such a retrieval environment appears to lead directly to the use of

clustered files.

2. Clustered File Organizations

A clustered file organization is one where similar, or related
records are grouped into classes, or clusters of items in such a way
that all items within a common cluster are jointly accessible without
excessive delay. The place of a given record within the stored file
depends on the similarity of that record with other records in the fll;.
Normally this similarity between file items is ascertained by performing
a global comparison of the record identifiers attached to the corresponding
items.

Consider as an example a record identified by t attributes (or keys,
identifiers, index terms, etc.). Such a record may be represented by a
t-dimensional vector D1 = (di1’di2""'d1t) where d15 represents the
weight, or importance of the jth identifier attached to record Di' If
each stored record is a vector in t-space, the complete file becomes a
t-dimentional vector space. The similarity between pairs of items ;ay
then be computed as a vector function between the corresponding attribute
or term vectors. Typicalbslmilarity functions might be the inner product
g of the term vectors, or the cosine h of the angle formed by the vectors

in t-space. Specifically,
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Based on the similarity concept between records it is now easy to
define a clustered file as one which groups into common classes, or
clusters, those items whose pairwise similarity is sufficiently large.
A typical clustered file organization is shown in Fig. 2, where each x
represents a record, and the circular configurations are the clusters.
The distance between two x's in the two-dimensional representation of
Fig. 2 is assumed inversely related to the similarity between the
corresponging records, or rather between the term vectors representing
the records. Thus, when the clusters are far removed from each other,
the records will exhibit substantial differences. For overlapping clusters,
on the other hand, the corresponding records may present considerable
similarity.

In the diagram of Fig. 2 each record cluster is identified by a
dummy central item known as the centroid. Typically the centroid of a
cluster is another t-dimensional vector, computed for example as the
vector sum of all records included in the cluster. In a clustered file
organization, a search is carried out by first comparing a query
formulation with the cluster centroids. This may then be followéd by
a comparison between the query and those individual records whose
corresponding query-centroid similarity was found to be sufficiently

large in the earlier comparison. It is clear that the store of cluster



centroids carries out in a clustered file enviromment the same function
as the keyword directory for an inverted or multi-list file, in that the
centroids are used to provide access to some of the stored records. {7,8]
The foregoing introduction indicates that clustered file searches
can be rapidly conducted because large portions of the file are immediately
rejected, the search being concentrated in areas where substantial
similarities are detectable between queries and cluster centroids.
Furthermore, records similar to a given sample record, or to a given
query, are easily identified because a complete cluster of items is
normally stored in adjacent storage locations (for example, on the same
track of a disc file), and hence becomes available simultaneously. Since
the retrieval process depends on a global match between the complete query’
formulation and the content identifiers attached to the records, the
operations will carry through also for partially, or incompletely specified
items.
The major problem relating to clustered files arises not in
connection with the search operation but rather with the file generation

process. This problem is examined in more detail in the next few paragraphs.

3. Cluster File Genération and Search

The vast majority of.the automatic classification methods actually
used in practice are based on the availability of a complete similarity
matrix specifying the similarity between all pairs of records. In such
a case, sij‘ the matrix element at the intersection of row i and column j
of the matrix represents the similarity coefficient between records Di

and D,. By suitable transformations of the rows and columns of the
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similarity matrix it may be possible to\hollect many of th; large
similarity coefficients (matrix elements) in certain areas of the
similanity matrix. This in turn leads to the identification of
clusters of related items exhibiting large pairwise similarities. [8,9,10]
Unfortunately, the well-known standard classification methods which
follow this scheme all exhibit a complexity of at 1éast order n2, since
for n records n(n-1)/2 similarity coefficients must be computed for the
generation of the similarity matrix alone. Such a clustering process then
becomes too expensive for practical implementation with large files., In
practice, it is necessary to resort to the esthetically less satisfying

single-pass clustering methods in which each item is processed only

once, a pairwise similarity matrix is not required, and the cost of
generation is of order n log n for n items. (7,8]

Typically the construction process is bottom-upf The first item
is initially identified with cluster one. The next item is compared
with cluster one and merged with it if found to be sufficiently
similar, If the new item is not similar to any already existing cluster,
a new cluster is generated. Whenever a new item is entered into a
cluster, the corresponding cluster centroid must be redefined by
incorporating terms from the ne# term vector into the original cluster
centroid.

In principle, such a process should serve to assign each item to
at least one cluster, and the classification should be complete after
one pass through th; file. In practice, the resulting classes may not
be usable for search purposes without additional refinements. Several

problems arise:
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a) the number of clusters produced by the one-pass system may become
excessively large, implying that a query submitted to the system
may have to be matched against a very large number of centroids
before access to the individual records is actually obtained;

b) the size of certain clusters may become too large, particularly
if a great many records in a collection cover

a fairly homogeneous subject area;

¢) alternatively, the cluster size may be very small, and could
indeed be limited to a single record in cases where so-called
"loose" records exist that do not match any other records in
the collection;

d) the overlap among clusters, that is, the number of items Jjointly
contained in more than one cluster may be too large or too small,

To respond to sucg eventualities, controls must be introduced to
regulate cluster size, cluster overlap, and number of clusters generated.
Furthermore, special provisions must be made for the loose items that do
not properly relate to any of the existing clusters. [11,12] Concerning
£irst the loose items, a really efficient solution appears to be lacking.
As an ad-hoc measure, such items could remain unclustered, particularly
if relatively few such items exist. Alternatively, loose items might be
merged with the closest existing clusters, that is, with clusters with
which the item correlates most highly; or finally loose items might be
collected into special clusters for which the normal affinity requirements
between cluster elements are relaxed.

Reasonable solutions do exist to control size and number of clusters.
Thus when a cluster becomes too large during cluster generation, that is
when it contains too many individual records, its centroid may be split,
and two new clusters may emerge from a single original one. Such a

splitting operation can be initiated automatically whenever the cluster
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sizes exceed a preestablished threshold. Unfortunately, as more centroids
are created, the search operation becomes less and less efficient, since
many query-centroid comparisons must then be made before any of

the records can actually be retrieved. This suggests that a hierarchy of
clusters be created: first the individual records are grouped into
clusters; the cluster centroids defining these low-level clusters may
themselves be grouped into superclusters defined by supercentroids.

If too many superclusters should exist, the corresponding supercentroids
may be collected into larger hyperclusters, identified by hypercentroids,
and so on. The centroid splitting operation must then operate equally

at each level of the cluster hierarchy: whenever aﬁy grouping (cluster,
supercluster, hypercluster, etc.) contains too many substructures (records,
centroids, supercentroids, etc.), a split may be made to create two
smaller groups in place of a large one.

A sample cluster splitting operation is shown in Fig. 3 where the
assumption is made that no grouping may contain more than four subelements.
The initial state consists of four clusters, each containing between two
and four records. The cluster centroids are labelled A, B, C, and D,
respectively. In Fig. 3(a), a dummy supercentroid, labelled S, identifies
a single supercluster containiné the four original centroids. If a new
record is added to cluster A, an illegal situation arises since the
cluster size is assumed limited to four elements. The A centroid may
then be split thereby creating two new centroids A' and A'' as shown in
Fig. 3(c). At this point the supercluster S is no longer viable since
it now contains five subelements. This is remedied by splitting S into

S' and S'' and creating a dummy hypercluster labelled H in Fig. 3(d).
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It will be recognized that this cluster maintenance process is
in fact identical to the bucket splitting process used when too many
keys congregate in a single bucket of a B-tree. [12,13,14] The
B-tree operations for reductions in file size also carry through in
that it may then become necessary to delete one or more clusters
by merging two centroids into one.

A typical hierarchical cluster structure obtained from a single-
pass cluster generation process is shown in Fig. #4(a). The structure
consists of 33 records grouped into 11 clusters. The 11 cluster centroids
are themselves arranged in four auperclustera;‘and these in turn appear in
two large hyperclusters. The search tree corresponding to Fig. u(a) is
shown at the bottom of Fig. 4. An incoming user query, or a new record
to be added to the file is first compared with the two hypercentroids
(labelled 1 and 2 in Fig. 4(b)). Depending on the magnitude of the
similarity coefficient between the input item and the hypercentroids,

a comparison next occurs with supercentroids 3 and N; or with super-
centroids 5 and 6. The supercentroids in turn lead to the third level
centroids and eventually to the individual records themselves.

A simplified flowchart of the single-pass cluster generation and
search process is shown in Fig. 5. Generation and search differ in
substance only for the lowest level centroids: during cluster generation
a new record must be added on the lowest level of the cluster tree and the
cluster splitting routine may need to be invoked; for searching, on the
other hand, the low-level clusters simply lead to lower level individual

records.
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when cluster splitting is in order, the program of Fig. 5 simply
inserts the corresponding cluster identifier onto a list of items to be
apllt...?he splitting routine itself is represented in detail in the
chart of Fig. 6. The programs of Figs. 5 and 6 refer to the "nodes"
of a cluster tree, to the "father" of a node on the next higher level,
and the "sons" of a node on the next lower level. These terms are standard
designations in normal tree processing algorithms.

Clearly the search strategy may be adapted to individual user

requirements by suitably adjusting the thresholds of the varfous similarity
coefficients as one proceeds through the cluster structure. Narrow,
depth-first searches may thus be conducted by using at each level only

the highest matching item to reach a lower level, Narrow searches may be
expected to produce high retrieval precision and low ggggll.* Alternatively,
broader searches may be performed by developing (that is, by comparing with
the incoming query) several highly correlating elements at each level of
the tree. In that case the recall may be higher but the precision may
suffer. It is not hard to show that for the single-pass process previously
outlined, the number of vector comparisons (between queries, incoming new
recopds, centroids, etc.) needed for cluster searching, cluster generation,

and cluster tree updating is of order n log n for a file of n records. [12]

—————————————

#ppecision is defined as the proportion of retrieved items actually

found relevant, whereas recall is the proportion of relevant materials
actually retrieved. When the recall is high most of the items relevant
to a given user query will have been retrieved successfully. High
precision, on the other hand implies that much of the extraneous material
will have been rejected. It may happen on occasion that everything of
interest is retrieved while all extraneous items are rejected. In that
case both the recall and the precision measures will attain maximum
values of 1.
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Since cluster processing is effectively implemented as a tree tracing
process, these complexity bounds are not likely to be lowered any

further.

4. A Cluster Search Model

The cluster search strategy of Fig. $ provides an overall framework
for traversing the cluster hierarchy leading to an eventual comparison
between the incoming query and some of the records on the lowest level
of the cluster structure. Unfortunately the search strategy itself
provides no clue about the individual parameter values to be used in a
given search. In particular, it is not clear how many clusters should
be examined at each level of the cluster hierarchy in order to obtain
a specified number of desired records, nor is any information provided
about the threshold values to be used for the similarity computations
between individual centroid or record vectors.

These questions may be studied by examining a simple probabilist1c~
model of cluster searching which is capable of predicting under well-
defined conditions the expected number of desired records contained ‘in
each cluster of a clustered file, Given such a model, it is possible
to fix in advance the various parameter values which must be used to
ensure the retrieval of a given number i of desired records. [15]

Consider, in particular, a query Q of length % (that is, containing
£ attributes), and a cluster containing m records. Both the query and
the record attributes are assumed to be binmary, that is, qij (or dij)
is equal to 1 whenever the jth attribute is assigned to query Qi (or to

record Di)' and is otherwise equal to 0., Furthermore, let the similarity
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between queries and stored records be measured as the inner product
between the corresponding attribute vectors, that is, g(Qi’Dj) = k§1 . djk'
Since ‘t-he vectors are assumed to be binary, this function simply
measures the number of common attributes between the two vectors. .

Two additional assumptions are made for present purposes: first,
the query attributes are assumed to be independently assigned to the
records within a given cluster; and second, no overlap is assumed to
exist between clusters, that is, a given record is assigned to at
most one low-level cluster. The first assumption appears reasonable
because the records within a common cluster a.x-e necessarily related in
subject matter. The second assumption is in fact unnecessary; however
the model becomes too complicated for present purposes when cluster
overlap is included. [15]

Let y:i represent the number of records in a cluster of m records
containing query attribute j. Then yj/n is the probability that a
random record in the cluster contains the jth query attribute., Since
the query attributes occur independently in the records, the probability
that a random record contains exactly the k query attributes 31‘52“""’)(’

but not the t-k attributes jkfi""’jl becomes

3 L
n oy / o {1-y, /aD}.
P=1 p p=k+1 JP

Since there are (;') ways of choosing k attributes out of £, the
probability that a random record in cluster r contains any k properties

in common with a query of length & is
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X L
Pk)= I (N y, /a) T [1-y, /m)), 1)
r &y PP pknn. P

x

and the expected number of records out of m records in cluster r having
exactly k properties in common with query Q is
3

L
c(k)=mI (1 vy /m)( 1 [1-yj /m)).
r &y Pt P pke P

k .

Finally, the expected number of records in cluster r having at least
k properties in common with query Q is
L
E (k) = p1=:k c.(p). (2)
By computing the E value for the various file clusters and assuming
that a record containing a sufficient number of matching query attributes
is in fact relevant to that query, it becomes possible to devise a
reasonable cluster search strategy. Let i be the total number of records
to be retrieved in a given search, and let A>0 be a constant such apy
cluster containing A or fewer expected number of desired records will
not be included in the search effort (because the expected search pay-off
would be too small in such a case). An appropriate search strategy is then
as follows:

1) Retrieve records from clusters for which the expected number of
desired records is greater than A for each cluster, that is

L
L C(p)> 8 (ra1,...,n),
p=k
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2. Since the aggregate number of records to be retrieved must be
greater than i for properly chosen k, the added condition must
be

T ; c (p) > i.
r p=k r -

When overlap exists among the clusters, it becomes necessary to
compute the expected number of records having at least k properties
in common with the query that are situated in the intersection between
two or more adjacent clusters. The overlapping items must then be
subtracted to reach an accurate E value. When the overlap is small,
the calculated E value of equation (2) may however be expected to hold
even in the more complicated situation. [15)

The foregoing s;arch algorithm will prove useful when the calculated
expected number of useful records is close to the actual number of
records in the cluéter identified as relevant by the user submitting the
original search request. This correspondence may depend on how closely
the assumptions of the model are actually satisfied in practice. In
particular, when the query terms are not independent of each other but
are instead semantically related, the calculated E value may substantially
differ from the real one. This suggests that the model may be more
appropriate for short queries with few attributes than for longer queries
where the independence assumptions are more questionable.

To confirm the reasonableness of the model, E values were calculated
for a number of actual clusters and search requests using a collection
of documents (records) in aerodynamics together with queries submitted
by a user population of researchers in the aeronautics field. In each

case, a cluster-query pair was chosen and the actual occurrence
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probabilities yjpln were used for each of £ query terms to compute
an E value as a function of k, the number of matching query-document
attributes.

Typical output results (E values) are shown in Table 1 for 3
different clusters and two different queries, including a long query
of 12 terms and a short one of 5 terms. The Table also shows the
actual number of relevant and nonrelevant documents included in the
respective clusters and exhibiting the appropriate number of query
term matches (the appropriate k values). Considering part (a)
of Table 1, it is seen that cluster 38 contains 7 documents in all, of
which 6 are identified as relevant by the user submitting query 1.

The nonrelevant item has 2 attributes in common with the query, Of the
six relevant ones, two exhibit two query terms, two more include

three query terms, one has four terms in common with the query, and

the last one has five common query terms. It may be seen that the
computed E values are very close to the actual values in that case.
When all items are retrieved with at least one matching query term, the
E value predicts 7 desired documents and 6 actually exist; for at least
two matching terms the E value goes down to 6.9 while the actual

number of useful records remains at 6, Finally, when items with at
least 3 matching terms are retrieved, E becomes 4,9 and the actual
number of retrieved useful items is 4,

An examination of the remaining output of Table 1 indicates that
when k is small, that is when a great many items are retrieved, the

predicted value is not very close to the actual one. The reason is that
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many stored records may be expected to exhibit one or two term matches
in common with the query even though the records may not be relevant

to the.corresponding query. However, as the number of term matches
needed for retrieval increases, the estimated probability value E
becomes very close to the actual one. For k=3 or larger, the calculated
values shown in Table 1 appear to be very good indeed. One concludes

that the model is adequate for practical utilization,

5. Cluster Search Strategies

The probabilistic model examined in the previous section may be
tested by using sample document collections with actual user queries
in a clustered retrieval environment. A clustered collection of
42y docunénts in aerodynamics is therefore used experimentally with
24 user queries; the recall-precision output is averaged in each case
over all 24 queries. [16]

The following principal cluster search strategies suggest
themselves:

a) A standard similarity computation between the query and the
various cluster centroids can be used to identify the n
clusters with the highest query-centroid values; the items
in these clusters can then be compared with the query and
recall-precision values can be obtained after all documents
in the n best clusters are processed. For present purposes,
the cosine measure h is used to compare queries with cluster
centroids and documents. This standard cluster search process
may be expected to produce a high-level of performance when
the user requirements are fairly homogeneous, because
variations in the search strategy are not required in that case

from one query to another.
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b) Instead of using a standard query-centroid similarity

c)

computation, it is possible to perform the probability
calculations of equation (2) to obtain for each cluster
and for fixed values of k the expected number of records
in the cluster ha?ing at least k matching attributes in
common with the query. All clusters with E values higher
than a given threshold can then be compared with the
query before recall and precision values are computed.
Obviously when k is small, large values of E are
obtained producing high recall output but low precision
because many nonrelevant items may be expected to be
retrieved together with many relevant ones. As k grows,
few clusters will exhibit large E values and the search
pattern may favor high precision and lower recall values.
The Er(k) measure depends on cluster size. An

alternative probability measure independent of the number

" of records per cluster is the probability that a random

record in cluster r contains at least k properties in common
with the query. From equation (1) this P-value is defined as
L .

L P (p).
p=k *

The process based on the probability function may be rendered
more flexible by using a varying value of k for the individual

queries. Thus for each query, the value of k is incremented
until equation (1) shows that a random record in the third
highest ranked cluster has a probability smaller than 1 of
exhibiting exactly k matching terms in common with the query.
Contrariwise, the value of k is decreased by 1 if the
probability value of a random record in the highest ranked
cluster is smaller than 0.3, In effect, the varying k

method chooses a particular k value for each query in such

a way that the number of clusters to be examined is restricted
to only those which exhibit a high relevance probability of
containing useful material. A high k value is used for queries
producing large E values for many clusters, whereas low

values of k are produced when the E values are generally low.
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d) An alternative approach to the use of varying values of k

consists in looking at the variance of the distribution
L
obtained by plotting the P-values I Pr(p) for the
p=k
various document clusters of the collection and for specific

values of k. In each case, the clusters may be arranged

in decreasing order of their P values for a given value of

k and a given query, and these P values may be plotted along
the ordinates of a two-dimensional plot against the cluster
numbers shown along the abscissa. A monotonically decreasing
curve results which becomes more peaked as the value of k
increases. The variance method consists in using for each
query a normalized distribution of the P-values (for which the
area under the P curve is the same in each case) and in
picking that value of k for which the variance of the normalized
distribution is smaller than a given threshold. An idealized
picture of the variance changes with increasing k threshold is

shown iQ Fig. 7.

The effect of the variance process is the same as that of
the varying k in that a large k is obtained for queries
producing large P values for many clusters; smaller k values are

used for queries for which this is not the case.

Two kinds of evaluation output may be exhibited. The first shows
variations in recall and precision output as more and more document clusters
are compared with the user queries; the other compares the retrieval
effectiveness for a fixed number of clusters examined using the various
search strategies described earlier. The output shown in Table 2
exhibits recall-precision values as a function of the number of expanded
document clusters for a collection of 424 documents in aerodynamics,
averaged over 24 user queries. Four search methods are used including

the standard cosine similarity comparison, the probability measure for
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two fixed values of k, and the varying k method. f

It i§ clear from the output of Table 2 that as expected the recall
will improve as more and more clusters are examined, and the precision
suffers accordingly. For the cosine function the identical search
strategy can always be applied to all 24 queries. This is not the case,
however, for the probability compufations: for a fixed value of k and
increasing numbers of clusters examined, the required probability values
are obtained for fewer and fewer queries; the problem worsens as k
increases. Thus for k=4, there are only 20 queries out of 2u for which
it is possible to find a single cluster with ;onzero probability of
having a random record exhibit four matching query terms. When 18 or 20
clusters must be found with the required nonzero probabilities, only
9 queries out of 24 can be used for the recall-precision computations.
The right-hand column of Table 2(d) shows that many more queries can be
used with the varying k method than for fixed k.

Table 2 demonstrates that the standard cosine measure produces high
recall values when many clusters are examined; when very few clusters
are looked at, the one or two most important clusters are easier td
find using the probability calculations. The varying k method represents
a good compromise between cosine and fixed k, because the recall-precision
values approach the fixed k output when few clusters are used and the cosine
when many clusters are expanded. The best retrieval precision is clearly
obtained for large values of the threshold k. In that case, only the
most relevant clusters are actually matched with the query; unfortunately
not many queries exist for which such high standards of relevance

actually exist,
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To obtain an accurate picture of retrieval system performence,
it is appropriate to perform a detailed comparison of the search methods
for some fixed average number of expanded clusters. Table 3 shows the
number of expanded clusters averaged over 24 queries for various search
strategies involving fixed k, varying k and variance methods. The figures
of Table 3 apply to a situation where the maximum number of clusters
expanded for a éiven query is either 7 or 20, and two different thresholds
are used in the E values to decide upoh the total number of clusters to be
looked at in each case. In the first case, laPelled 7-1 and 20-1 in Table 3,
no further clusters are expanded after finding one for which the expected
number of relevant records (that is, the expected ﬁumber of records with
the requisite number of matching attributes between query and documents)
is less than 1. In the two other cases, labelled 7-3 and 20-3
respectively, no further clusters are expanded upon finding a cluster for
which the expected number of relevant records is less than 3,

In Table 4, average precision values are shown for fixed values of
the recall. A number of search strategies are compared, the output being
grouped so that the average number of expanded clusters is the same
within each group. Thus in Table 4(a) approximately 3 clusters are

expanded on average for the 24 éueries. The average number of clusters

Aed

g incr to 5, 7, and 14 in Tables 4(b), 4(c), and u4(d)
respectively. The actual search strategy used is listed under each
column of precision values: the maximum number of expanded clusters i,
and the stopping criterion for further consideration of additional

clusters j is designated as i-j, as previously explained. The exact

number of clusters actually used on average for the 24 queries is shown
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in parentheses under the respective column., Within each subsection

of Table 4, the best precision values are identlfled‘by a vertical bar.
Once again higher performance values are obtained as more clusters

are expanded. Obviously the better performance is achieved at the cost

of more search effort., For a given common level of search effort,

the standard cosine process is again best at the high recall end of

the spectrum., The probability computations are most useful when high

retrieval precision is wanted; of the various search strategies which

use the probability measure, the varying k or variance procedures are

preferred over the fixed k methods, The fixed k process should be used

with large k values only when outstanding performance for a few queries

is preferred over a reasonable average performance in all queries.

6. Document Clusters in Computer Science

The cluster file concept is best understood by considering a
cluster structure involving actual records. In principle, it is possible
to produce clusters for ordinary business records, such as records of
employees in a personnel file, or customer accounts in a bank. In such
business environments, it may be possible to implement both a flexible
cluster search system based on a clustered file system, as well as the
usual exact match capability currently used in mechanized data base
retrieval environments. The latter could be obtained, for example,
by adding to the normal clustered data file an inverted directory
constructed from the cluster centroid terms. [7,8]

For tutorial purposes, it is however convenient to use as a
clustering example a file in which the individual records represent

the documents of a particular collection of books or articles. In
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that case, the individual document clusters are similar in concept
to the subject classes with which one deals routinely in a normal
lihraf; environment. Under normal circumstances, the subject headings
or other content identifiers attached to the individual documents might
constitute the principal clustering criterion used to produce the
document clusters; that is, items exhibiting similar subject descriptions
would be grouped into clusters.

¢ In the present study, the content identifiers or index terms used

to control the clustering process are replaced by references and citations.

A reference is a bibliographic item appearing in the bibliography of a
document (A refers to B); a citation, on the other hand, is a reference
made by an outside item to a given document (B cites A). The clustering
criterion to be used operates in such a way that the similarity
coefficienf between two items will depend on the number of references
shared by their bibliographies, and on the number of common citations
from the outside.

Consider, as an example, a given document D = (ci,cz,...,cn,rl.rz,...,rm)
where 5 represents the ith citation, and rj the jth reference. When two
items share many citations, the c-terms in the respective document vectors
exhibit many common elements; hence the corresponding similarity coefficient
between these two items will be large. The same is true for items sharing
many common references (many common r-terms).

As an example of the clustering process, a hierarchical multi-level
clustered file was generated for a collection of research articles in

computer science. The base collection consisted of 334 articles appearing




26

either in the ACM literature during 1974 (ACM Communications, ACM Journal,
and ACM Computing Surveys), or in Computer and Control Abstracts, an
abstract journal published by Inspec in England, during 1968 and 1971.
Articles published in two different time periods were chosen for the
base collection in the hope of obtaining ; number of cross-citations
from one base article to another. In addition to the base collection
of 334 articles all documents appearing in the lists of bibliographic
references attached to each of the base documents were included in the
collection. These reference lists contained an average of 11 references
per paper, or about 3670 articles. After elimination of all duplicates,
the completed collection contained 3,520 distinct articles, including
the 334 base papers. .

Th; complete document collection may be further broken down into
the following subsets:

a) 3,186 distinct articles not included in the base collection
that were referred to by one or more of the base articles but
did not themselves cite other base articles in the collection;

b) 33 base articles that were referred to by other base articles

but did not themselves cite other base articles in the collection;

c) 13 base articles referred to by other base articles that also

cited one or more other base article; and

d) 30 base articles that were not themselves referred to by base

articles but that cited one or more base article.
A summary of the collection make-up is contained in Fig. 8. If a 1link
is defined as either a reference or a citation from one article to
another, the 3,520 distinct collection items used for the experiment

generate 3,893 distinct links.
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The bottom-up clustering process of Fig. 5 can be used to produce
document clusters consisting of groups of related research articles.
Because of the method followed in building the experimental collection,
two slight modifications were made in the basic procedure. First, a
preliminary pass through the collection was used to merge with the
respective citing items the document vectors of all items cited by a
single document only that did not themselves cite other collection
items. In other words, initial clusters were formed which would
contain a given citing item plus all its singly cited items that did
not themselves cite anything else in the collection. Furthermore, the
items identified as loose during the cluster generation process were not
forced into other clusters, but were‘instead kept unclustered. This
would make it possible to determine what type of documents in a homogeneous
suﬁject area would prove difficult to classify automatically.

A summary of the cluster generation process for the 3520
computer science documents is shown in Fig. 9 and the corresponding
cluster statistics are contained in Table 5. Fig. 1 and Table 5 show
that the initial pass (pass 1 or P1) combining a given citing item with
its singly cited references produces 327 clusters of about 9.5 documents
per cluster. 415 of the original 3520 documents remain unclustered after
pass 1. Of the 327 pass-1 clusters, 74 were "complete" after pass 1
in the sense that these clusters were divorced from all other elements
ln‘the structure (the similarity between any of these 74 clusters and
the remaining centroids or documents of the collection was zero). Such
complete clusters remain unchanged for the remainder of the clustering
process. The 74 completed pass-1 clusters comprising 490 documents are

3

shown separately in Fig. 9.
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A standard clustering pass is now used to produce the pass-2
clusters. A total of 61 pass-2 clusters are generated in pass 2
containing an average of 33 documents per cluster. Seven of the
61 pass-2 clusters were complete after pass-2 and cannot be
absorbed with other elements of the collection. After pass 2,

121 original documents are still loose, and 166 pass-1 clusters

still remain in the system, including of course the 7% completed ones.
Fig. 9 shows that 22 pass-3 clusters are eventually generated comprising
an average of 95 documents per cluster, and 9 pass-4 clusters containing
approximately 275 documents each.

At the conclusion of the clustering run, the entire structure consists
of 12 initial documents which could not fit into any of the groupings.

In addition, 91 pass-1 clusters still remain, including the 74 complete
ones; 8 pass-2 clusters including the 7 complete ones; two pass-3
clusters; and finally 9 large pass-3 clusters. Failure to insist on
absorbing the poorly matching constructs (documents or clusters) into
higher level structures produces an unbalanced search tree shown in

Fig. 10, where some items are reachable more quickly (with a smallepr
number of comparison operations) than others. Thus the 42 pass-2 clusters
on level 3 of the tree are rcached by first matching a search request
with the 9 centroids for pass-4 clusters, followed by a comparison with
20 pass-3 centroids. On the other hand, the 8 pass-2 clusters which are
never absorbed into larger clusters are available without any intermediate
comparisons. The tree of Fig., 10 can be balanced by forcing all items _
into upper level constructs on the next higher level of the search tree,
or alternatively by defining dummy centroids to replace the intermediate

nodes left empty in the tree of Fig. 10.
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7. Automatic Clustering and Computer Science Taxonomies

It is impossible in the present context to provide a detailed
analysis of all the individual clusters of research papers generated by
the clustering process. It may, however, be worth comparing a few of the
automatically generated research clusters with some of the existing computer
science taxonomies. This could determine affinities between recognized
subtopics of the field and actual research output. The pass-1 clusters
consisting of reference lists attached to individual documents are too
small for this purpose, and the pass-3 clusters containing on average
almost 100 documents are too big. The 61 pass-2 clusters with an average
size of 33 documents per cluster may best fit the subtopics in the
established taxonomies.

Before proceeding with such a comparison, it should be remembered
fhat only about 2000 of the 3520 original documents are actually included
in a pass-2 cluster. Thus not all active research areas are reflected
in the P2 subset; however, each of the 61 clusters should be recognizable
in the various taxonomies. Three well-known computer science taxonomies
may be used for present purposes, including the well-known classification
designed for the ACM Computing Reviews (CR) [17], the taxonomy introduced
by the NSF sponsored Computer Séience and Engineering Research Study
(Cosers) [18), and finally the subject classification used to arrange
articles in the recently published Encyclopedia of Computer Science [19].
Table 6 shows a list of the major topic classes that define the three
classification systems, as well as a subcategory count for each class.

An attempt to apportion the 61 pass-2 research clusters to the
subcategories of the various taxonomies raises a number of problems in

aanh' raca. Hv far the most troublesome questions arise for the Computing
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Reviews taxonomy. Over half of the research clusters fall into a single
topic class (Mathematics of Computation), and two other major classes
(Functions, and Analog Computers) are vacuous, or nearly so. The Cosers
classification represents a great improvement over CR, but there are some
highly idiosyncratic features — for example, the important “Applications®
area is vacuous for Cosers even though there is significant research coverage
in the applications sections of the competing classifications, and the useful-
ness of the "Symbol Processing" topic class is not obvious. By far the
most suitable and the most comprehensive ciassificacion is the one proposed
in the Encyclopedia.

A detailed list of the problems which arise in fitting each of the
61 research clusters to the hundreds of subtopic classes défined for the
three classification systems cannot be given here., A summary must suffice,
starting with the CR classification. The following major problems are
apparent:

a) the hardware area is split up into two major topic classes for no
apparent reason; the “"analog computer" class is vacuous of research
clusters and its existence appears unnecessary as a separate major

topic area;

b) the software area, on the other hand may be too large as currently
constituted; the topics related to programming languages and
programning practice could be split off from the software

management area as is done in the Encyclopedia classification;



c)

d)

e)

f)

g)

the applications class is divided by CR into areas of ultimate
use, such as natural sciences, engineering, humanities, and so
on; a much more felicitous arrangement for computer science
purposes would be a subdivision according to the technique
being used for solving a problem, or by aspect or property

of a problem;

the topic class entitled "Functions" appears to be a mixture
of application topics such as graphics, and mathematical
techniques, such as simulation methods, and operations research;

the mathematics class includes both numerical methods and theory
of computation, thus accounting for over half of the research

clusters under a single heading;

each major topic class includes two subclasses entitled “general®
and "miscellaneous", respectively; these subclasses understandably

do not fit any recognizable research topic;

several active topics appear to be lost for practical purposes:
for example, classification theory, security-privacy, thcorem

proving, microprocessing, radix conversion, and others.

The Cosers classification presents fewer problems than CR. Still a

few questions of substance must be raised:

a)

b)

the applications area includes nine special topics, such as, for
example, weather prediction, moon orbit calculations, and
computer animation; excluded are many other equally deserving
topics,with the result that its matching coefficient with the

61 research clusters is a perfect zeroj

a special major topic class is assigned to artificial intelligence,

but not to any other major area of applications techniques;
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d)
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a curious area entitled "symbol processing" and recently renamed
"gpecial topics" falls squarely between applications and theory;
included in this class are list processing and algebraic
manipulations, but also text processing; the latter topic is shown
under “special topics" and a second time in the data management
class; the whole special topics class has a flavor similar to that

suggested by the "miscellaneous" categories defined for CR;

quite a few active topics exist that don't find a ready home in
the Cosers taxonomy, including for example, network topology,
sorting, information retrieval, social implications, and others,

As indicated earlier, the Encyclopedia classification presents the

fewest problems. There seem to be no extraneous major categories, and the

problems that do arise may be common to all computer science taxonomies:

a)

b)

c)

d)

in the applications area, it is difficult to distinguish between

.conputational techniques common to many applications, and

specific methods applied to a given field only;

the line between mathematical techniques and theory is hard to
draw; for example, in the Encyclopedia, automata theory appears

under mathematics but formal languages belongs to theory;

data management which is given a separate heading by Cosers
appears under computer systems in the Encyclopedia where it is

thus bracketted with computer networks and time-sharing3

some deserving topics are not explicitly mentioned, such as, for
example combinatorial methods which should be included under,
theory, or possibly under mathematics for computing; and logic
which could go under many headingss including also applications

where theorem proving now appears.

The foregoing analysis makes it clear that none of the existing

taxonomies will provide a perfect fit for.actually existing research

collections in the field. However the difficulties which arise in fitting
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the research clusters to the classification systems are easy to discover,
and the basic usefulness of any given manually constructed scheme becomes
obvious. Furthermore, the automatic cluster structure can be used to
suggest improvements in the manual classifications and to obtain a better
understanding of a given field of endeavor.

One may expect that when the construction and use of clustered files
becomes more widespread in the future, automatic clustering procedures will
suggest themselves not only for file organization, search, and retrieval
purposes, but also for the analysis and identification of influential

contributors and important topic classes in a given discipline.
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Average Number of
Clusters Expanded

Maximum 7 Clusters
Used

Maximum 20 Clusters
Used

Stop on <1 Stop on <3

Stop on <1 Stop on <3

(for 24 queries) Relevant Relevant Relevant Relevant

7-1 7-3 20-1 20-3
Fixed k=1 7.0 6.8 20,0 17.0
Fixed k=2 5.45 4,95 14.0 9.1
Fixed k=3 4.5 3.1 9.3 4.5
Fixed k=4 1.96 1.93 2.1 2.1
Varying k 5.5 4.87 4.0 7.2
Variance 3,75 2,7 7.6 4.4

Average Number of Clusters Expanded
for Varying Search Strategies

Table 3
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Number of Documents Number of Documents
k B’(k) Nonrelevant Relevant Br(k) Nonrelevant Relevant
1 7 [} 0 7.8 S 0
2 1 2 2.9 3 0
s | @D 0 2 0 0
y - 0 1 - 0 0
5 - 0 1 - ) 0
a) Cluster 38 (6 relevant out b) Cluster 50 (0 relevant
of 7) out of 9)
Query 1 (12 terms) Query 1 (12 terms)
Number of Documents Number of Documents
3 nr(k) Nonrelevant Relevant tr(k) Nonrelevant Relevant
1 5.9 4 0 6.4 1] [\]
2 2,5 1 0 4.3 1 0
y - 0 1] - 0 0
5 - 0 0 - 1 (/]
c) Cluster 38 (0 relevant d) Cluster 68 (2 relevant
. out of 7)
Query 2 (5 terms) Query 2 (5 terms)

Expected Number of Records Having at Least
k Properties in Common with Q

Table 1
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Recall Precision Precision Precision
0,05 0.30468 0.29463 0.31513
0.10 0.30468 0.29463 0.31513
0.15 0.29873 0.25880 0.29084
0.20 0.29595 0.26255 0.28489
0.25 0.28837 0.25954 0.26489
0.30 0,23844 0.25306 Jo.26142
0.35 0.23150 0.22509 0.21205
0.40 0.22227 0.22509 0.21205
0.45 0.26392 0.18627 0.17091
0.50 0.19400 0.18329 0.16793
0.55 0.15340 0.16135 0.14979
0.60 0.12380 0.14833 0.13542
0.65 0.10065 0.10893 0.11012
0.70 0.08874 0.10893 0.10893
0.75 0.08874 0.10893 0.10893
0.80 0.06436 0.04540 0.04540
0.85 0.06436 0.04488 0.04488
0.90 0.06436 0.04486 0,0u488
0.95 0.05745 0,03571 0.03571
1.00 0.05745 0.03571 0.03571
Cosine Fixed k=3 Variance
3 clusters 7-3(3.1) 7-1(3.75)

a) Expanding Approximately 3 Clusters

Precision

0.31331
0.31331
0.30582
0.30506
0.29759
0.25637
0.25126
0.23665
0.22602
0.22304
0.19168
0.15381
}0.13066
0.11467
0.11467
0.07675
0.06436
0.06436
0.05745
0.05745

Cosine

5 clusters

Precision

0.30066
0.30066
0.27941
0.27223
0.259u4
0.25640
0.21025
0.21025
0,18214
0.17917
0.16808
0.15834
0.12735
0.12474
0.12474
0.05928
0.03571
0.03571
0,03571
0.03571

Fixed k=2
7-1(5.45)

Precision

0.31195 0.31855
0,31195 0.31855
0.28915 0.30274
0.28320 0,.29282
0.26320 0.28003
0.25279 10.27975
0.20925 0.22835
0.20925 0.22835
0.15527 0.18721
0.14535 0,18423
0.14110 0.17601
0.13537 Jo.16560
0.11855 0.,12609
0.11226 I0.12229
0.11220

0.04340 0.05632
0.04488 0.04u88
0.04u488 0.0un88
0.04u81 0.03571
0.0n481 0.03571
Variance Varying k

20-3(4.4) 7-1(5.5)

b) Lxpanding Approximately 5 Clusters

Recall-Precision Output for Cosine and
Probability Matching Functions

Precision

0.12229




Recall Precision Precision Precision Precision

0.05 0.31373 0,20294 0.32646 0.32049
0.10 0.31373 0.21248 0.32646 0.32049
0.15 0.30817 0.20736 0.30217 0.30626
0.20 0.30805 0.20017 0.29785 0.29634
0.25 0.303uS 0.19730 0.27785 10.28197
0.30 0.26334 0.19u47 |0.27u38 0.28281
0.35 0.25739 0.15837 0.23084 0.23725
0.40 0.24340 0.15837 0.23084 0.23725
0.45 0.23276 0.13026 0.19014 0.19369
0.50 0.22978 0.13026 0.19071 0.19071
0.55 0.19168 0.11256 0.18145 0.18145
0.60 0.15390 0.08677 0.17009 0.17009
0.65 0.13724 0.07359 0.13911 0.13911
0.70 0.12125 0.06246 0.11992 0.11992
0.75 0.12125 0.06246 0.11471 0.11471
0.80 . 0.09319 0.05678 0.04540 0.04540
0.85 0.08080 0.05184 0.04488 0.04488
0.90 0.07432 0.0518u 0.04488 0.04488
0.95 0.05745 0.05184 0.04481 0.04481
1.00 0.05745 0.05184 0.04481 0.04u481
Cosine Fixed k=1 Variance Varying k

7 clusters 7-1(7.0) 20-1(7.6) 20-3(7.2)
c¢) Expanding Approximately 7 Clusters ’

Recall Precision Precision Precision

0.05 0.30633 0,.30066 0.32162
0.10 0.31228 0.30066 0.32162
0.15 0.31278 0,28203 0.30843
0.20 0.31266 0.27486 0.30013
0.25 0.30806 0,26471 0.28998
0,30 0.29386 0.26419 0.28978
0,35 0.26790 0.22163 0.2u466
0,40 0.26741 0.22163 0.24466
0.45 0.24953 0.19619 0.20392
0,50 0,24655 0.19322 0,20095
0,55 0.21959 0.18727 0.19271
0.60 0.20083 0.17577 0.18077
0.65 0.16059 0,15141 0.14604
0.70 0.13281 0.14081 0.13664
0.75 0.12978 0.13964 0.13547
0.80 0.10329 0,.06822 0.06189
0.85 0.09759 0.05543 0.05416
0.90 0.09608 0.05543 0.05416
0.95 0.08678 0.05543 0.05409
1.00 0.08678 0,05543 0.05409
Cosine Fixed k=2 Varying k

14 clusters 20-1(14.0)  20-1(14.0)

d) Expanding Approximately 14 Clusters

Recall-Precision Output for Cosine and
Probability Matching Functions
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Pass Number of Number of Number of Average Number Number of
Number Original Existing Documents per _ of Documents for Remaining
Documents Clusters Pass i Cluster all Existing Distinct Items
(loose) Clusters
0 3520 0 0 0 3520
1 15 327 9.5 9.5 742
2 121 227 33.0 15.458 3u8
3 39 151 95.0 23.05 190
L} 12 110 274.3 31.89 122

Clustering Statistics

Table 5
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