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1 About Relativization

In this column we explore what relativization says about space bounded computa-
tions and what recent results about space bounded computations say about rela-
tivization.

There is a strong belief in computational complexity circles that problems that
can be relativized in two contradictory ways are very hard to solve. We know that
such problems can only be solved by proof techniques that do not relativize and
thus, for example, standard diagonalization methods are powerless in these cases
[BGS75,HH76 Hop84]. So far only very simple problems with contradictory rela-
tivizations have been solved [Har85]. Unfortunately, very many important problems
in complexity theory have contradictory relativizations and thus have to be viewed

*This research was supported by NSF Research Grant DCR 85-20597.



?
as inaccessible to our current proof techniques. The classic example is the P = NP
problem for which Baker, Gill and Solovay [BGS75] exhibited recursive oracles A
and B such that

P4 = NP4 and P® # NP5,

Since then, a large number of other computational complexity problems have been
shown to have contradictory relativizations and so far none of them has been solved.

Today, a proof that a problem has contradictory relativizations is viewed as
strong evidence that the problem cannot be solved by current proof techniques
and such problems are generally not attacked vigorously. In an intuitive sense,
a contradictory relativization of a problem can be viewed as a weak form of an
independence result asserting that the problem is “not provable in ...” or “not
provable with ...”. So far, these concepts have not been made precise. At the
same time, we believe that it is important to clarify and make precise what kind of
“independence” results are implied by what kind of contradictory relativizations.
We hope that this challenge will be taken up and that the “meaning of contradictory
relativizations” in complexity theory will be clarified.

The theoretical computer science community has shown a love-hate attitude
toward relativization results in complexity theory. Several relativization results
have caused great excitement while some program committees have been unkind to
other sound work in relativization. This is partially understandable since quite a few
of the relativization results looked like pure recursive function theory without direct
relevance to computer science. At the same time, there are quite a few beautiful
relativization results that have enriched theoretical computer science and we believe
that a deeper understanding of relativization will yield further important insights
into the nature of computing.

In our opinion, relativization work in computational complexity plays a different
role than in recursive function theory. In complexity theory, relativization results
should be viewed as revealing logical possibilities about computational structures,
as a study of the power of different access mechanisms to information, and as well as
a study of how the structure of the accessed information affects this power. Finally,
relativization results can be viewed as not yet fully understood “independence”
results, pinpointing the difficulty of problems.

A nice example revealing the power of different access mechanisms and the
influence of the structure of information is the result showing that polynomially
many parallel queries to SAT can be replaced by O(log(n)) many sequential queries
[Hem87):



PSAT[log(n)] — PSAT”.

Clearly, this result depends on the structure of SAT, and one can easily show that
this result fails to hold with probability 1 for random oracles [Kad88].

A surprising version of this result for a constant number of queries has been
shown by Beigel [Bei87]. For all k¥ > 1,

PSATIK] _ pSAT[2E-1]|

Some other interesting results about various access mechanisms to SAT have
been observed in [Wag87]. Let LOGS4T denote the set of languages accepted by a
deterministic log(n) tape bounded machine with a one-way oracle tape. Then

PSAT[log(n)] — LOGSAT — LOGSAT[log(n)] — LOGSAT”.

2 Relativization of Space Bounded Computations

The recent result by Immerman and Szelepcsényi [Imm87,5ze87] that nondetermin-
istic space bounded computations are closed under complementation came as an
unexpected surprise. The elegance and simplicity of this proof is so nice that in
the 33rd EATCS Bulletin the proof was presented three times, once in the origi-
nal paper by Szelepcsényi and also in the “Formal Language Theory Column” and
“The Structural Complexity Column” by Salomaa and Hartmanis, respectively. It
seems that the possibility of contradictory relativizations of this problem was not
explored, which for the right relativization model would have been impossible to
obtain. This could have suggested that this problem can be, with ingenuity, solved
by “known techniques”, as it turned out.

In view of this situation, we review and derive some new results about relativiza-
tion of space bounded computations. Our main interest is in what relativization
says about space bounded computations and vice versa.

Since 1965, when the study of space bounded computations was initiated [SHL65,
LSH65], it was clear that the reusability of space yielded sharper hierarchy results
than those obtainable for time bounded computations [HS65]. Also, Savitch’s re-
sult [Sav70] showed that nondeterminism for space bounded computations could at
best save the square root in resources over deterministic computations. That is, for
space constructible bounds L(n) > log(n) :

NSPACE[L(n)] C SPACE[L(n)?],



and therefore
PSPACE = NPSPACE ,
in contrast to our belief that
P # NP.

* On the other hand, the relativization of space bounded computations presented
a more complex problem than the time bounded case. There are several options for
the access mechanism to the oracle for space bounded computations [LL76,RST84].
For deterministic and nondeterministic log(n) space bounded computations, we can
allow both types of machines to use an additional one-way write-only oracle tape

on which they can write n*-long queries. Denote the corresponding language classes
by LOG* and NLOG* respectively.
It is easily shown that

LOG C NLOG C P.

However, using a straightforward Baker-Gill-Solovay oracle construction [BGS75,
LL76] one can construct an oracle A such that

NLOGA ¢ P4,

Intuitively, we can see that nondeterministically NLOG# can query all strings of
length n in A, and P# can query only polynomially many such strings. This permits
an A such that

{ 17|(3z)[z € A and |z| = n]} € NLOG4 — PA.

Similarly, we can construct oracles B and C which for this model of relativization
invalidate Savitch’s result [LL76]

NLOG® ¢ SPACE®[(log(n))?],
as well as the Immerman-Szelepcsényi result,
NLOG® # NLOG® .

The construction of C is achieved by judiciously placing at most one string of each
length in C so that

A = { 1"|(3z)[z € C and |z| =n]} € NLOG® — NLOG® .
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The key observation in the construction of C is that if an NLOG® machine
accepts an input 1" with C N X" = @, then there is an accepting computation with
polynomially many queries to C. Therefore, there are strings z, |z| = n, which were
not queried on this accepting path. We add one such string to C to insure that this
machine does not accept A. If this machine does not accept 1” on any path with
C NI™ = 0, then it is not accepting A, and we add no strings of length n to C.

. All these violations, and in particular the NLOG4 € P4 violation, suggest that
this is not the right model for relativizing space bounded computation.

To avoid these anomalies, another somewhat artificial oracle access mechanism
was defined in [RST84]. In this model, there is again an additional one-way write-
only oracle tape, but it is required that the computation of the oracle query must be
done deterministically by both types of machines (i.e., during the query computation
phase the machine computes deterministically). Denote the corresponding language
classes by LOGP™) and NLOGP™. Now both types of machines can, for any given
input, query only polynomially many strings in A, and the above anomalies are
avoided. On the other hand, when we consider linear tape bounds, this model
permits queries exponentially long in the input length and looks artificial.

Finally, the simplest and most natural oracle access mechanism is to limit the
oracle queries to the length of the work tape. Denote the corresponding language
classes by LOG54) and NLOGS®). In this model the nondeterministic machines
can use nondeterministically computed queries.

The one objection to this model is that there exist oracles A such that

A ¢ NLOGS4),

since only log(n) long queries are possible on inputs of length n. This anomaly
disappears for linear and larger tape bounds.

In the following we will show that, quite surprisingly, the D(-) and S(-) models of
relativization behave very similarly when we deal with the possibility of separating
deterministic and nondeterministic space bounded classes.

3 Relativized Separation of Space Bounded
Computations

In [Wil85] it was shown that
LOG = NLOG <= (VA)[ LOGP™ = NLOGP™ ],



This is a generalization of a result in [Sim77] and later in [RS81]. A later publication
of this result can also be found in [KL87]. See also [Wil86].

Our extensions of this result are summarized in the following two theorems. The
key ideas for the proofs, which are quite simple, will be given in the next section.

Theorem 1 Consider only space constructible L(n) > log(n). Then,

LOG = NLOG <= (VL(n),A) [SPACES®[L(n)] = NSPACES®[L(n)] ]
< (VL(n),A) [SPACEPM[L(n)] = NSPACEPM[L(n)] ].

Since the D(-)-relativization models for LOG and NLOG can compute n*-long
queries on inputs of length n, there exist oracles A such that

LOGP™ = NLOGPA),

(regardless of whether LOG = NLOG or LOG # NLOG). We believe that this is
not the case for the S(-) relativization when only log(n) long queries can be used.
We expect that

LOG # NLOG <= (VA)[ LOG’® #£ NLOGSW |,
but have not been able to prove it. It seems that proving for some A
LOGS £ NLOGS™)

is as hard as proving LOG # NLOG.
If LOG # NLOG, then for both relativization models we can construct “natural”
oracles which collapse and separate the higher complexity classes.

Theorem 2 If LOG # NLOG then for all space constructible L(n) > n there exist
oracles A and B such that

SPACEPM(L(n)] = NSPACEPW[L(n)],
SPACESM[L(n)] = NSPACESXW[L(n)),
SPACEP®)[L(n)] # NSPACEP®)[L(n)],
SPACE’S®)[L(n)] # NSPACES®)|[L(n)].

These results show very clearly that if LOG = NLOG then we cannot obtain
contradictory relativizations of these and higher deterministic and nondeterministic
space bounded classes. In other words, the existence of an oracle A such that
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SPACESM|[L(n)] # NLOG5X[L(n)]
or alternatively
SPACEP|[L(n)] # NLOGP@[L(n)]
implies that
LOG # NLOG.

This is quite different from the corresponding situation for time bounded com-
putations and suggests that the

LOG L NLOG

problem may be solvable by known techniques. The recent Immerman-Szelepcsényi
success, showing NLOG = NLOG, similarly suggests that the space bounded com-
putations may be easier to understand than the corresponding time bounded com-
putations. We believe that it is an opportune time to renew an attack on the

LOG £ NLOG problem.

On the other hand, if LOG # NLOG then there exist oracles which collapse and
oracles which separate the higher ( L(n) > n ) deterministic and nondeterministic
space bounded classes. This leads to the strange possibility that the proof of

LOG < NLOG

could be achieved by known proof techniques, but because of the contradictory
relativization (even in the S(-)-model) the

SPACE[n] = NSPACE[n]

problem would not be so easily solvable. We return to this problem in the next
section.

4 Proof of Results

To outline proofs of our theorems we recall a few definitions and results.

Let GAP represent the set of directed graphs with an IN and an OUT node
such that there is a directed path from IN to OUT. The following was observed in
[Sav70].



Lemma 1 GAP is complete for NLOG under log(n)-space bounded reductions.

Proof

Clearly, GAP is in NLOG. To see that A in NLOG can be reduced to GAP,
let L(N) = A, where N is an NLOG machine. For any z, we will construct a
directed graph, G, n, polynomially large in the size of z, such that z € A iff G,y €
GAP. The nodes of the graph are the configurations of N: the state of the machine,
the content of the work tape and the head positions on the input tape and work
tape. There is a directed edge from node a to node b iff there is a legal move from
configuration a to configuration b when N is working on input z. Note that z is not
represented in the configurations, only the single symbol read by the input head .

Clearly, the number of configurations for N on input = is polynomial in the
length of z, and the graph G,y can be computed by a deterministic log(n)-space
bounded machine from input z (and printed on a one-way output tape). Also, z is
in L(N) iff there is a directed path in G, n from the “starting” node to the unique
“accepting” node (or from the IN to the OUT node). 0

We now show that in the S(-) model and D(-) model an oracle cannot separate
LOG from NLOG if LOG = NLOG.

Lemma 2 LOG = NLOG <= (VA) [ LOG’™ = NLOG4) ].

Proof

(<) This part of the proof is obvious when we set A =0 .

(=) If LOG = NLOG then GAP is in LOG. We now show that an S(A) oracle
computation cannot do any harm. For an N5(4)(x) computation we can again
compute a directed graph of configurations. Here, the configurations are augmented
by the query tape (of length log(|z|)), and the graph includes two transition edges,
labelled YES or NO, after each configuration in the oracle query state. Again,
N5W) accepts iff there is a path in this graph from the IN to the OUT node using
only the correct YES and NO edges, as determined by A.

Since LOG = NLOG, a LOG®*™ machine can recognize such graphs. The
deterministic machine proceeds as a deterministic GAP recognizer and consults its
oracle on the query edges to decide which edges are legally present in the graph, as
the computation demands. Therefore,

LOG5) = NLOG*W,



A similar proof shows that the same result holds for the D(-) oracle access model.
The crucial observation here is that a D(-) query is computed deterministically
and is therefore determined by the machine configuration @ at the start of the
deterministic query computation. This query computation is not encoded in the
graph. Instead, the node @ is followed by the two appropriate YES and NO edges.
Clearly, a LOGP4) machine can recognize if such a graph is in GAP by recomputing
the oracle query and determining which of the YES or NO edge in the graph is
consistent with A.

This proof fails for the unrestricted oracle access mechanism in which an NLOG*
machine can query exponentially many strings in A and the LOG4 machine can
query only polynomially many strings.

Next we extend this result to higher deterministic and nondeterministic tape
bounded classes. Not to obscure the simplicity (or elegance) of these ideas, we
discuss only the linearly bounded tape classes. With a few technical details, the
same proof can be used for all other space constructible bounds L(n) > log(n).

Lemma 3 LOG = NLOG = (VA) [ SPACE’*)[n] = NSPACESW[n]).
Proof

Let the linearly space bounded machines again have a read only input tape, a
linearly bounded read-write work tape and a separate linearly bounded oracle tape.
Given a nondeterministic n-space bounded machine N,fg ‘) and input =, we con-

struct an NLOGS) machine Nos((,-‘;) such that N,-S (4) accepts z iff Nf((‘.‘?) accepts

g#2-lel, By the previous lemma we know that for Nf((’.‘?) there exists an equiv-
alent deterministic log(n)-space bounded machine M,i(,sq). However, there exists

a deterministic linear-space bounded machine M ;Ef) equivalent to M;,S;(,-;l). Thus,
SPACES®[n] = NSPACESW[n)]. 0

The same proof extends to all space constructible L(n) > log(n) as well as to
the D(-) model, but not to the unrestricted oracle access model.

Lemma 4 LOG # NLOG = (3A) [ SPACE’®[n] £ NSPACE*“W[n]).

Proof
Assuming LOG # NLOG, for each LOG machine M; there are arbitrarily large
counterexample graphs G; such that

G, € GAP < G; ¢ L(M,').
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For each M; we choose a counterexample graph G; with edge descriptions of size
n; > 2™-1. We define A to be the set of edges of the graphs G;, : > 1. Note that
A=" = {e € A| |e|] = n;} precisely encodes the graph G;. (We leave it to the reader
to verify that A can be recognized in SPACE[2"] by an algorithm which diagonalizes
over the M;’s.)

Consider the language

A = {1"| A=" encodes some graph G and G € GAP }.
We show that
A € NSPACES[n] — SPACESP[n].

Clearly, A € NSPACE*™[n]. Suppose A € SPACE*™[n] and is recognized by
some linear space machine M5(4). From M we construct a logspace machine M;
which on input G with edges of size n = log(|G|) simulates MS(4)(17).

e When M5(4)(1") queries an edge e of size n, M;(G) looks for e in G.

e When MS(4)(1") queries a string z of size > n, M;(G) assumes the oracle
answers “no”.

e When MS5(4)(1") queries a string z, log(n) < |z| < n, M;(G) also assumes the
oracle answers “no”.

e When M5(4)(1") queries a string z, |z| < log(n), M;(G) computes directly
whether z € A. (Recall that A € SPACE[2"].)

Note that M5(4)(1") and M;(G) each have O(n) workspace. Also, for each graph
G; encoded in A, M;(G;) agrees with MS5(4)(1%). In particular,

M; accepts G; <= M accepts 1™
< Gj € GAP,

contrary to the choice of G; as a counterexample for M;. m]

Observe that the same oracle also separates NSPACEP ) [n] from SPACEP4)[n)
on the same language A provided that we made the gaps between n; and n;,
sufficiently large so that on input 1™ the graph Gi;; cannot be accessed (even
though the D(A)-oracle access mechanism allows 2™ long queries).

Finally, it is easily shown that for a PSPACE complete set R and space con-
structible L(n) > n,
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SPACEP®|[[(n)] = NSPACEP®)|[L(n)]
and
SPACE’®[L(n)] = NSPACES®|[L(n)].

This completes the sketch of the proofs for Theorems 1 and 2.
. We now discuss the possible difference in proving LOG # NLOG and SPACE|[n]
# NSPACE|[n]. Recall that

LOG # NLOG <= GAP ¢ LOG.

On the other hand, we will show that NSPACE|[n] and SPACE|[n] are different if and
only if there exists a sparse, easily computable subset of GAP in NLOG — LOG.
To make “easily computable” precise, let M, be a standard universal TM (with a
one-way output tape) and define [Har83]

KS[log(m), log(m)] = {w| || = m and (3y)[ly| < log(m)
and M,(y) = w is computed on log(m) tape]}.

Lemma 5 SPACE[n] = NSPACE[n] <= GAP nKS|[log(m),log(m)] € LOG.

Proof

(«<=) Observe that, like NLOG, any NSPACE[n] computation can also be described
by a graph, except that this graph has edges with description size n (as determined
by the configurations of n-space bounded machine) and that the graph is computable
from the input z, |z| = n, and the machine description. Since the graph is exponen-
tially larger than z and is computable in space linear in |z| (not counting output
tape), the graph itself is in K S[log(m),log(m)]. So, if GAP NK S[log(m),log(m)] €
LOG, a SPACE[n] machine can determine if any graph describing an NSPACE([n]
computation is in GAP. Thus, NSPACE[n] = SPACE]|n|.

(=) Consider the following set of short descriptions:

C = {y| M.(y) = G using |y| tape, |y| < log(|G|) and G is a graph in GAP }.

Clearly, C € NSPACE[r]. By assumption NSPACE[n] = SPACE[n], so C €
SPACE[n]. Now, a LOG machine can determine if G € GAP NK S[log(m),log(m)],
by checking if any string y, |y| < log(|G|), is in C. (Such a y exists iff G € GAP
NK S[log(m),log(m)].) 0
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Thus, SPACE[n] # NSPACE][n] if and only if NLOG and LOG are separated on
the sparse set of graphs in GAP which can easily be computed from exponentially
shorter descriptions.

As stated earlier, it may be that NLOG # LOG and that this can be proved
by known techniques, but the proof does not extend to linearly space bounded
computations. That is, the separation of LOG from NLOG may not be easily
provable on the sparse set

GAP NK S[log(m),log(m)].

Such a situation could arise, for example, if one could prove that NLOG and
LOG differ on random graphsin GAP. Since random graphs (with high probability)
are not computable from shorter strings, the separation of NLOG from LOG may
not be extendable to a separation of NSPACE[n| from SPACE]|n].
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