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Computational chemistry has made remarkable progress in the last couple of

decades due to the availability of better and more powerful computers. How-

ever, there is definitely more room for improvement. There are problems in

material science and biology that require 102 to 104 atoms to be considered and

the importance of such systems cannot be over-emphasized. Addressing such

systems with ab-initio methods is still a quantum chemist’s dream.

Brute force solutions of the Schrödinger equation are not possible for rea-

sonably interesting and important systems due to the large number of Slater

determinants that have to be stored in a computer’s memory. Thus electronic

structure theorists have made chemically and mathematically intuitive approx-

imations to simplify the problems.

A particularly difficult class of systems that is very interesting to the theo-

retical and experimental chemists is the strongly correlated systems. High Tc

superconductors, nanotubes, graphene sheets, transition metal complexes and

photosynthetic materials all fall under this category. These systems are too large

to be treated by traditional quantum chemical methods. Another reason why

such systems have not been studied sufficiently by ab-initio method is that they

comprise of complicated strong electron-electron correlation (and therefore the

name strongly correlated), thus, making them impossible to be qualitatively de-

fined by a molecular orbital picture, which has been a quantum chemist’s fa-



vorite tool for a long time now.

Therefore, in this thesis, we have tried to develop, improve and apply meth-

ods for treating such strongly correlated systems. The thesis is broadly divided

into two parts. In the first part, we discuss the orbital optimized DMRG method

developed to treat static correlation in large strongly correlated systems. In the

next part we discuss the two methods that can treat dynamic correlation in such

complicated systems.
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CHAPTER 1

INTRODUCTION

1.1 Strong and weak correlation

In quantum chemistry and more specifically in electronic structure theory, the

main aim of a researcher is to solve the Schrödinger equation, Hψ = Eψ asso-

ciated with the quantum chemical Hamiltonian, formed by applying the Born-

Oppenheimer approximation to the full Hamiltonian for the electrons and nu-

clei in the molecule,

[− ~2

2me

∑
i

∇2
i −

∑
A

~2

2MA

∇2
A −

∑
A,i

ZAe
2

4πε0rAi
+

∑
A>B

ZAZBe
2

4πε0RAB

+
∑
i>j

e2

4πε0rij
]Ψ(r; R) = EΨ(r; R). (1.1)

Eqn. 1.1 is the full time independent Schrödinger equation, solving which we

can obtain the combined nuclear and electronic wavefunction of a molecule,

where r and R denote the electronic and nuclear coordinates and the indices

i and j refer to electrons and A refers to nuclei. To make the equation more

compact, we introduce the atomic units, ~ = |e| = 1
4πε0

= me = 1. Incorporating

the atomic units in Eqn. 1.1 we get,

[−1

2

∑
i

∇2
i −

∑
A

1

2MA

∇2
A −

∑
A,i

ZA
rAi

+
∑
A>B

ZAZB
RAB

+
∑
i>j

1

rij
]Ψ(r; R) = EΨ(r; R).

(1.2)

The left hand side of the equation consists of a kinetic part due to the electronic

motion T̂e(r) = − 1
2MA

∑
i∇2

i , a nuclear kinetic term T̂N(R) = −1
2

∑
A∇2

A, the

electron-nuclear attractive potential term V̂eN(r; R) = −∑
A,i

ZA

rAi
, the nuclear
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nuclear repulsion term V̂NN(R) =
∑

A>B
ZAZB

RAB
and the electron-electron repul-

sion term V̂ee(r) =
∑

i>j
1
rij

respectively.

After applying the Born-Oppenheimer approximation, we can obtain a residual

Schrödinger equation for the electrons only,

[−1

2

∑
i

∇2
i −

∑
A,i

ZA
rAi

+
∑
A>B

ZAZB
RAB

+
∑
i>j

1

rij
]Ψ(r) = EelΨ(r),

[T̂e(r) + V̂eN(r; R) + V̂NN(R) + V̂ee(r)]Ψ(r) = EelΨ(r). (1.3)

To understand the challenges involved in electronic structure problem, it is cus-

tomary to start with the simplest possible approximation to its solution, the

Hartree-Fock (HF) approximation [1–4]. In this approximation, one treats the

electrons as moving in a mean field of the other electrons, i.e. the electrons ignore

the effect of the other electrons except in a mean field kind of way.

Going beyond the mean field approximation to consider a picture where the

electrons feel the presence of other electrons individually, involves considering

the electron correlation. Electron correlation, as defined by Löwdin [5], is the

difference between the mean field or Hartree-Fock approximation and the exact

solution of the full non-relativistic Schrödinger equation.

According to the degree of electron correlation, all quantum chemical systems

can be classified into weakly correlated and strongly correlated. The term weakly

correlated refers to the systems that can be qualitatively well described by sim-

ple one electron theories like density functional theory (DFT) [6–8] or HF the-

ory. Although HF theory appears to be a drastic approximation, it has served

well as a starting point for most of these systems. In order to calculate exper-

imental observables with sufficient accuracy, there are well-known and well-

2



developed post Hartree-Fock methods like configuration interaction (CI) [9–12],

Møller Plesset (MP) perturbation [13] and coupled cluster (CC) [14, 15] theories.

The term strongly correlated refers to materials or molecules that are not qual-

itatively described by simple one-electron theories. Among this class of com-

pounds are interesting materials that show unusual electronic and magnetic

properties, most well known being high Tc superconductors, transition metal

complexes, conjugated polymers and biological compounds of photosynthetic

importance. In essence, not all properties of these systems can be qualitatively

understood from a simple free-electron model, nor are they fully ionic in charac-

ter, thus making these systems very interesting as well as difficult to understand

comprehensively. These systems have near-degenerate valence orbitals and the

Coulomb repulsion becomes comparable to the orbital energy spacing. There-

fore, it is impossible to pinpoint a single valence electronic configuration as the

predominant configuration. Thus, it seems logical that Hartree-Fock, being a

single determinant approximation is an inadequate starting point.

As a simple example, if we take two H atoms in the dissociation limit , both

the determinants |σg↑σg↓〉 and |σu↑σu↓〉 are equally important since |σg〉 and |σu〉,
i.e. the bonding and antibonding orbitals are degenerate at the limit of no in-

teraction. Thus, there is need for at least two closed shell Slater determinants

[σg(r1)σg(r2) + σu(r1)σu(r2)] of equal weight to describe the H2 molecule at this

limit. If we start with any one of the determinants and try to add in correla-

tion, we are treating the two determinants differently which should have been

treated similarly a priori. The correct dissociation of H2 is into H radicals H ·H· as

expected intuitively. However HF theory cannot treat more than one Slater de-

terminant and, therefore predicts equal probability of dissociating a H2 molecule
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into H+H− or H · H·. For this reason the restricted Hartree-Fock energy of the

hydrogen molecule at very large separation is unphysically high. Another ex-

ample where HF theory fails spectacularly is the Cr2 dimer. Here, HF theory

fails to predict any binding. For conjugated polyenes, it is unable to predict

the presence of low-lying excited states that are formed by more than single

electron excitations. Thus, we can come to the conclusion that the single elec-

tronic configuration picture is not adequate to understand situations like bond

breaking, e.g. the H2, N2 and Cr2 bond breaking, and excitations in conjugated

systems, e.g. organic polymers and biologically important systems, as well as

metal complexes of material and biological importance.

In these situations, more than one electronic configuration needs to be treated

on an equal footing. The name multireference is used for such quantum chem-

ical methods that have the capability to treat large number of valence config-

urations. Examples of such methods are complete active space configuration

interaction (CASCI), complete active space self-consistent field (CASSCF) [16–

18], complete active space perturbation method (CASPT2) [19–21], multirefer-

ence Møller Plesset perturbation theory (MRMP)[22] and multireference config-

uration interaction (MRCI) [23, 24]. A more recently developed multireference

method is density matrix renormalization group (DMRG) [25].

Here, it should be pointed out that, of course, if we could do a full configuration

interaction (FCI) calculation on any system, i.e. consider all possible electron

configurations as

|Ψ〉 =
∑

n1n2n3...

Ψn1n2n3...|n1n2n3...nk〉, (1.4)

where ni spans over |−〉, | ↑〉, | ↓〉, | ↑↓〉, we would be able to obtain the correct

(within the basis set) answer to all our questions. However in Eqn. 1.4, the basis
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size scales as 4k. The exponential scaling makes the FCI calculation feasible for

at most 16 electrons in 16 orbitals with the fastest and newest computers. This

means that all relevant molecules with sufficiently large basis sets are too big to

do FCI on and therefore there is the need to get approximate theories that do not

compromise too much of the accuracy but which are more tractable than FCI.

The main challenge in formulating a method that can handle strongly correlated

systems is the need to treat different and a priori unknown electronic configu-

rations at an equal footing since it is difficult to devise a method which does

not simply consider all the configurations within a set of valence or active or-

bitals. In fact, this is the strategy taken by most of the multireference methods

that were listed above which makes them scale exponentially with respect to the

valence or active orbitals and thus, the system size in most cases.

However, DMRG uses a different approach than the other multireference meth-

ods. It circumvents this implicit exponential scaling with the system size.

DMRG has a polynomial cost scaling, which will be explained in the later chap-

ters. Therefore, we are interested in trying to develop DMRG based multirefer-

ence methods.

1.2 Static and dynamic correlation

In this section, we will try to introduce some terminology used in electronic

structure theory. Firstly, it is customary to divide the orbitals broadly into core,

active and virtual orbitals. Core orbitals are the low energy orbitals that are al-

ways largely occupied and are not involved directly in chemical reactions. Vir-

tual orbitals are the very high energy orbitals that are almost never occupied and
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also do not play a major role in chemical reactions. The core and virtual orbitals

together form the non-valence or external orbitals. Active orbitals are the orbitals

that are in between the core and virtual orbitals in energy and are generally

made up of the complete space of valence orbitals and are the most important

orbitals that play a vital role in chemical reactions and bond breaking.

Static correlation is the correlation arising from near degeneracies in the valence

or active orbitals and associated with the multireference nature of the system. It

can also be understood as synonymous with strong correlation. Since, static cor-

relation comprises of the correlation arising from the valence orbitals, this can

give a qualitatively correct starting point for most systems. Dynamic correlation

arises from correlations to and from non-valence or external orbitals. Due to the

cusp like nature of the wavefunction at the electron-electron coalescence, the

dynamic correlation is slowly convergent with the number of external orbitals.

Fortunately, in most cases the contribution of dynamic correlation to the energy

difference is much smaller than the contribution to the total energy. While the

static correlation alone gives the correct qualitative description in most prob-

lems, dynamic correlation has to be considered for quantitative accuracy needed

for the calculation of experimentally observed properties.

We can divide quantum chemical methods into those that can treat static and

dynamic correlation. For the treatment of static correlation, there are methods

like CASSCF, CASCI and DMRG. The dynamic correlation is incorporated as

a correction on top of this static correlated reference wavefunction |Ψ0〉. The

exponential ansatz,

|Ψ〉 = eT |Ψ0〉 (1.5)

where T is an excitation operator from the active to external space, has been

6



Core

Active

Virtual

Dynamic
correlation

Dynamic
correlation

Static
correlation

1

Figure 1.1: Dynamic and static correlation: dynamic correlation is the cor-
relation out of the active space while static correlation is the
correlation arising from the active space orbitals.

known to provide an accurate and economical solution to the dynamic correla-

tion problem. In the case of systems with single reference character, experimen-

tally observed properties can be quite accurately calculated by coupled cluster

(CC) theory, which corresponds to the exponential ansatz in Eqn. 1.5, where

|Ψ0〉 is a single determinant. However for multireference problems, the problem

of incorporation dynamic correlation is still much more open and a completely

satisfactory analogue of CC theory has yet to be found. When the reference

wavefunction is a multireference state, some of the natural simplification and

advantages of the exponential ansatz are lost, thereby making the CC equations

a lot more complicated and impractical for most cases.

In Table. 1.1, dynamic correlation methods for both the single reference and

multireference systems are tabulated.
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Table 1.1: Hierarchy of quantum chemical methods for dynamic correla-
tion. The method bracketed in the table is explained in this the-
sis.

Dynamic correlation Dynamic correlation

for single reference for multireference

MP2 CASPT2

CISD and variants MRCI and variants

CCSD and variants (Canonical transformation)

In this thesis, we describe some work to target both static and dynamic corre-

lation in multireference systems. The method we use to target the static corre-

lation problem is orbital optimized density matrix renormalization group [26]

and the methods we use to target the dynamic correlation problem are cu-

mulant approximated n-electron valence perturbation theory (cu-NEVPT2) [27]

and canonical transformation theory [28].

1.3 Scope of the thesis

In Chapter II we start with introducing the concepts of the density matrix

renormalization group and explaining the algorithm and the properties of the

method. Chapter III deals with the theory and implementation of orbital opti-

mization with density matrix renormalization group that improves the applica-

bility of DMRG to static correlation in highly multireference systems with non-

trivial active spaces. In Chapter IV we describe the application of the above

mentioned method to conjugated polyenes and carotenoids. This consists of

the static correlation part of my thesis. In the dynamic correlation part, start-
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ing with Chapter V, we explain the theory and implementation of a cumulant

approximated n-electron valence perturbation theory that can be used for large

systems. In Chapter VI, we describe the theory and application of canonical

transformation theory to small polyenes. Chapter VII brings together the static

and dynamic correlation methods with the joint application of orbital optimized

DMRG and cu-NEVPT2/canonical transformation theory to carotenoids. We

conclude in Chapter VIII with a discussion on computing the three particle re-

duced density matrix from a DMRG wavefunction and other future directions.
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[20] K. Andersson, P.-Å.. Malmqvist, and B. O. Roos, J. Chem. Phys. 96, 1218

(1992).

[21] K. Hirao, Recent Advances in Multireference Methods, volume 4 of Recent

Advances in Computational Chemistry, World Scientific Publishing Co. Pte.

Ltd., Singapore, 1999.

[22] K. Hirao, Chem. Phys. Lett. 190, 374 (1992).

[23] H. F. Schaefer III and F. E. Harris, Phys. Rev. Lett. 21, 1561 (1968).

[24] R. J. Buenker, S. D. Peyerimhoff, and W. Butscher, Mol. Phys. 35, 771 (1978).

[25] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

[26] D. Ghosh, J. Hachmann, T. Yanai, and G. K.-L. Chan, J. Chem. Phys. 128,

144117 (2008).

11



[27] D. Zgid, D. Ghosh, E. Neuscamman, and G. K.-L. Chan, J. Chem. Phys.

130, 194107 (2009).

[28] D. Ghosh, E. Neuscamman, T. Yanai, and G. K.-L. Chan, J. Chem. Theor.

Comput. (submitted).

12



CHAPTER 2

DENSITY MATRIX RENORMALIZATION GROUP

2.1 Need for renormalization

The renormalization group (RG) [1] has been used to study phase transitions

and critical phenomena for a long time. The traditional need for renormalization

arises when there is no distinct separation between length or time scales. For

example, at a critical point, there are very large macroscopic fluctuations along

with fluctuations at all intermediate length scales. In such drastic situations, the

idea of the renormalization group is used to reduce the number of degrees of

freedom across all the length scales into something tractable.

In quantum chemistry, the Hamiltonian is written in second quantization as,

H =
∑
ij

tija
†
iaj +

∑
ijkl

vijkla
†
ia
†
jakal. (2.1)

While from this form, it looks like there are only one and two body interac-

tions, the motion of one electron can be relayed to all other electrons through a

domino effect to a greater or lesser degree. This domino effect can be efficiently

described in a renormalization group framework, even when we are away from

criticality, and this is the origin of the use of RG in quantum chemistry.

2.2 Numerical renormalization group

The numerical renormalization group (NRG) technique was developed by Wil-

son to solve the Kondo problem [2, 3]. Shortly after this, there was consider-
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able interest in applying this technique to other related problems. Quantum

lattice models such as the Heisenberg and Hubbard models in one dimension

appeared to be ideal candidates for the application of this method. However,

this approach proved to be rather unreliable, particularly when compared to

existing methods.

In traditional RG, we consider some quantum system A described by

the quantum degrees of freedom {A} expressed on a subset of quantum sites on

a finite lattice. During the RG, we imagine growing (“blocking”) A to

cover additional sites on the lattice, while truncating (“decimating”) the degrees

of freedom at each step. The main steps in the numerical renormalization group

method are therefore:

1. From two simple blocks A build a compound block AA and construct the

corresponding Hamiltonian HAA.

2. Diagonalize HAA and obtain the m lowest eigenvectors U .

3. From U obtain a subset Ū of m eigenvectors with the lowest eigenvalues.

Transform the Hamiltonian to this renormalized basis Ū . This defines a

truncated (or “decimated”) representation A′ of the compound block AA,

such that e.g. the Hamiltonian becomes HA′ = Ū †HAAŪ .

4. Define A′ to be the new “simple” block A.

5. Iterate from step 1.
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2.2.1 Problems of numerical renormalization group

The main source of error in using numerical RG for spin problems comes from

using the lowest energy eigenstates of HAA as the decimated representation.

Since HAA has no connection to the rest of the lattice, its eigenstates may have

unwanted characteristics, e.g. unphysical nodes at the ends of the composite

block AA which correspond to the middle of the complete lattice.

Boundary problem

G.S. of big box AA
G.S. of sub-box A

1st E.S. of sub-box A

A A

1

Figure 2.1: The ground state of a particle in a box made from the ground
and excited states of sub-boxes. The dashed lines denote the
ground and first excited state of the sub-boxes A, while the
solid line is the correct ground state of the composite box AA.

This boundary value problem can be understood by a very simple example. In

a particle in a box, Fig. 2.1 we can see that if we start with a small box (shown by

the dashed lines), and use the lowest energy eigenstates for this building block
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to solve for ground state wavefunction of the composite box AA, we are always

faced with a node in the middle which is unphysical in the composite box but

which occurs due to the boundary condition of the building blocks. No matter

how many states we keep for the small box, we cannot remove this unphysi-

cal node. This problem is the reason why numerical RG was later reformulated

using a density matrix of the composite lattice to determine the decimation pro-

cedure.

2.3 Density matrix renormalization group

The density matrix renormalization group (DMRG) was developed by White

and Noack [4, 5] as a numerical technique for finding accurate approximations

to the ground state and low-lying excited states of strongly interacting quantum

lattice models such as the Heisenberg and Hubbard model especially in one

dimension.

The main steps in the density matrix renormalization group are [6–8]:

1. A site commonly called a dot is added to the initial block A to form the

superblock A′.

2. The complete Hamiltonian of the system is constructed using HA′ + HB′

where B′ is the rest of the lattice other than A′ and the Hamiltonian of the

B′ part is a guess Hamiltonian to start with. Here it should be noted thatA

is commonly referred to as the system block and the B as the environment

block and in between the blocks there are two sites or dots.

3. Now, that we have the approximate Hamiltonian for the complete system
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HA′B′ , we solve for a few low-lying eigenstates of the Hamiltonian using

the Lanczos or Davidson algorithm.

4. The density matrix of the system block is formed by tracing out the envi-

ronment from the eigenstates that we have solved for.

5. The density matrix is diagonalized.

6. Using M most significant eigenvectors of the density matrix, we project

the space {A′} to a smaller space of size M .

7. We replace A with the decimated block A′ and iterate from step 1.

Thus, we see that DMRG differs from NRG in two main ways:

1. The approximate Hamiltonian of the full system, and not just the su-

perblock, is used to decide on the degrees of freedom that are retained.

This fixes the problem of unphysical boundary conditions.

2. The criterion for keeping the degrees of freedom is the largest weight

eigenstates of the density matrix and not the lowest eigenstates of the

Hamiltonian.

2.4 DMRG algorithm in quantum chemistry

The DMRG was applied in quantum chemical problems for the first time by

Fano et al. [9] where the cyclic polyenes were studied using Pariser-Parr-Pople

Hamiltonian. In 1999, the first application of the DMRG with ab-initio Hamil-

tonian to H2O molecule was presented by White [10]. Later there were sev-

eral other applications and implementations by various groups such as those of

Mitrushenkov, Chan, Legeza [11–15].
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As mentioned earlier we are trying to solve for the eigenstates of the quantum

chemical Hamiltonian given in Eqn. 2.1. We first imagine that the orbitals that

are correlated are ordered in some way as sites on a lattice, so as to make con-

nection to the original RG formulation. We know that from the simple particle

in a box example, we need to not only consider a system block that is grow-

ing in the renormalization procedure but also the remaining sites in the lattice,

or environment block. At any stage in the RG algorithm or “sweep”, therefore,

there are two blocks L andR (corresponding to system and environment) which

vary in size along the sweep and two smaller blocks •L and •R (“dots”) which

are used to enlarge the L and/or R blocks in the blocking procedure, as shown

in Fig. 2.2. When sweeping from left to right, L is the system and R is the

environment, while in the reverse direction, their roles are also reversed.

L •L •R R

1

Figure 2.2: The standard block configuration. The lattice is divided into
left block L, left dot •L, right dot •R and right block R. •L site
is blocked with L and •R is blocked with R.

Sweep iterations are divided into three major steps:

1. Blocking

Each of the blocks L and R spans a set of orbitals (or “sites”) and consists

of a subset of the corresponding Fock space (as we have truncated the Fock

space using RG along the sweep). In the blocking step, the L and R blocks

are combined with their adjacent sites to make a superblock of the system

18



and environment. That is block L containing states {l} are blocked with

•L giving the superblock consisting of {l}⊗ {•l} states where {l} ∈ Fl and

{•l} = F•l .

L : |l1〉, |l2〉, |l3〉 . . . •L : |−〉, | ↑〉, | ↓〉, | ↑↓〉

⊗ =

ai ∈ L
aj ∈ •L

aiaj

1

Figure 2.3: Blocking step in DMRG. L block (spanned by {l} of size M ) is
blocked with •L (spanned by {•L} of size 4). Thus the operators
are formed through direct products of operators in each block
and is represented by matrices of dimension 4M × 4M .

If the block L contains M states, after the blocking step the superblock

contains 4M states {l′}, as the •l contains the complete Fock space of size

4 (|−〉, | ↑〉, | ↓〉, | ↑↓〉) of the dot. The Hamiltonian of the superblock L+ •L
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is given by HL′

HL′ = HL +H•L +
∑

i∈L,j∈•L

tij(a
†
iaj + a†jai)

+
∑

ijk∈L,l∈•L

(vijkl − vijlk)a†ia†jakal

+
∑

i∈L,jkl∈•L

(vijkl − vjikl)a†ia†jakal

+
∑

ij∈L,kl∈•L

vijkl(a
†
ia
†
jakal + a†ka

†
laiaj)

+
∑

ik∈L,jl∈•L

(vijkl − vjikl − vijlk + vjilk)a
†
ia
†
jakal, (2.2)

where the first two terms are the Hamiltonians of the individual block and

dot and the third term onwards are the interactions between the block and

the dot adjacent to it. The operators in the superblock are made by the

direct product between the operators in the block and that of the dot.

2. Solving

The decimation criterion explained earlier requires the creation of the ap-

proximate Hamiltonian of the complete system given by HL′R′ ,

HL′R′ = HL ⊗H•L ⊗H•R ⊗HR

= Dim(M) ∗Dim(4) ∗Dim(4) ∗Dim(M)

= HL′ ⊗HR′ . (2.3)

This eigenstate(s) of the approximate Hamiltonian HL′R′ are obtained as

in Eqns. 2.4 and 2.5. Here, it should be noted that the Hamiltonian is of

dimension 16M2 as each L′ and R′ are of dimension 4M (see Eqn. 2.3).

HL′R′Ψ = εΨ (2.4)

Ψ = cl′r′|l′r′〉. (2.5)
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3. Decimation

In the next step, we decimate or transform or renormalize the superblock

subspace of 4M into a basis of dimension M . This is the step where the

degrees of freedom are reduced while approximately preserving the eigen-

value spectrum associated with the wavefunctions obtained in Eqn. 2.4.

From the approximate wavefunction given by the Eqn. 2.5, the density

matrix can be constructed (dropping the ′ notation in Eqn. 2.5 and taking

l, r to refer to states in the superblocks L+ •L, R + •R)

Dll′ =
∑
r

clrcl′r

=
∑
i

wi|θi〉〈θi|. (2.6)

The eigenfunctions θi corresponding to the lowest M eigenvalues of the

density matrix are chosen as the decimated states (indicated by a bar) thus

giving the approximate renormalized wavefunction,

|Ψ〉 ≈ |Ψ̄〉 =
∑
l̄r̄

cl̄r̄|l̄|r̄〉. (2.7)

The eigenfunction basis of the density matrix forms a fast converging basis

for the wavefunction. This can be verified if we define our problem as one

of finding the approximate wavefunction and minimizing the error, given

by

S = ||Ψ〉 − |Ψ̄〉|2

=
∑
lr

(clr −
∑
i

diu
i
lv
i
r)

2 (2.8)

where i is of dimension M and l and r are of dimension 4M . Thus, we

are trying to minimize S by optimizing di, uil and vir and the solution is

produced by the singular value decomposition of c (with elements clr),
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taking the M largest singular values

c = UDVT (2.9)

where U is 4M ×M , D is M ×M , V is M × 4M . U is row-orthogonal, V

is column-orthogonal and D is a diagonal matrix containing the singular

values of c.

L R

L R

L R

L R

Backward Sweep

Forward Sweep

1

Figure 2.4: The DMRG sweep algorithm consisting of the forward and
backward sweep. In the forward sweep L is the system and
R is the environment and the system block L grows in size. In
the backward sweep the roles of L and R are reversed.
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Successive renormalization transformations along the sweep are used. We start

with a very small left block or system and keep adding sites next to it, succes-

sively blocking and decimating as we go over all the sites. This is referred to

as a sweep. When we reach one end of the sweep, we reverse and start with a

small environment and keep adding sites to it, blocking and decimating. Thus,

we have what is called a forward and a backward sweep.

Now, that we know the basic method of applying DMRG to the quantum chemi-

cal system, there are some specific problems that need to be addressed for quan-

tum chemical systems due to their special complicated structure.

2.4.1 Dealing with complicated Hamiltonians

From the expression for the quantum chemical Hamiltonian, Eqn. 2.1 it is clear

that the Hamiltonian contains O(k4) terms (k being the number of basis func-

tions or site functions) because of the two electron part vijkla
†
ia
†
jakal. Thus, at

each step of the sweep, there is need to transform and store O(k4) such oper-

ators each of which has a M × M matrix representation. This would be very

expensive computationally as well as for memory and storage costs if this is

done in a brute force way.

Note that we cannot simply store the summation
∑

ijkl vijkla
†
ia
†
jakal over all

i, j, k, l because we need to update the representation of the operators ai, aj etc.

during the sweep.

However, there is a common procedure of summing over the terms in the

Hamiltonian of a block to create computational intermediates, that is used to
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reduce the cost of the quantum chemistry DMRG algorithm. Since the lattice

sites are divided into sites on the left and right blocks, the computational inter-

mediates can be classified broadly into three types:

• All four indices in one block, i.e. the operator is located on any one of

the component blocks L or R and can be stored as a single floating point

matrix by summing over the indices, e.g.
∑

ijkl∈L vijkla
†
ia
†
jakal.

• 3 indices in one block, e.g. Ri =
∑

jkl∈Lwijkla
†
jakal which is reduced to

O(k) terms on contracting over j, k, l.

• 2 indices in one block, e.g. Pij =
∑

kl∈L vijklakal or Qij =
∑

kl∈L vijkla
†
kal,

which is reduced to O(k2) terms.

Using these complementary operators, the storage is reduced to O(k2M2) since

each of these operators have a M × M matrix representation. The computa-

tional cost of making these complementary operators is O(M2k3) and this is the

predominant cost in the blocking step.

Another computationally expensive step arises after blocking, when we have

the HamiltonianHL′R′ and we have to construct the Hamiltonian vector product

HL′R′cL′R′ , where c is 16M2 in dimension. However, again we can take advan-

tage of the complementary operators and form the Hamiltonian by multiplying

these operators, e.g. multiplications like
∑

ij Pija
†
ia
†
j which has a computational

cost of O(M3k2) adding up to a total cost of O(M3k3) per DMRG sweep.

To summarize, the most expensive steps in the DMRG algorithm are blocking,

Davidson diagonalization and decimation which have a computational scaling

of O(M2k3), O(M3k2) and O(M3k2) respectively. Since along each of the sweeps

there are O(k) renormalization steps, the total computational cost of the DMRG
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algorithm is O(M2k4 +M3k3) per sweep. Taking into account the optimal com-

bination of complementary operators that must be formed, the memory usage

per sweep is O(M2k2).

2.4.2 Orbital ordering

N N

1

Figure 2.5: Example of orbital ordering in N2 and C6H8. The active space
of N2 consists of 2s and 2p orbitals. The active space of C6H8

consists of the six pz orbitals each located on a carbon atom.

To start the DMRG sweep, we have to first arrange the orbitals in an one dimen-
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sional lattice so that we can start blocking and decimating from one end of the

lattice to the other.

This is not always trivial for most quantum chemical systems and especially

for complicated active spaces. The orbital ordering is considerably easier if the

molecule is pseudo one dimensional. It is further simplified if the active space

consists of one orbital per atom, e.g. conjugated polyenes where the active space

is generally the π space consisting of the approximately the pz orbitals on each

atom.

When we have to consider more than one dimensional molecules, we have to or-

der the active orbitals in such a way that the nearby lattice sites (corresponding

to the orbitals) interact more and the interaction between the lattice sites sepa-

rated by a longer distance are generally much lower. In this situation, larger M

states should be retained to solve for the wavefunction with sufficient accuracy.

There is one more requirement for the successful application of the DMRG

ansatz. The orbitals or the site functions should be localized in order to min-

imize the interaction between distant sites. Different localization schemes are

explained in details in Chapter III.

2.4.3 Convergence of the DMRG sweeps

There are two issues of convergence to consider in relation to the DMRG. The

first is the fundamental convergence of the truncation procedure as one in-

creases the number of renormalized states used, M . It can be shown that the
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error in DMRG energy is proportional to the weight of the discarded states [12]

Error = |E(M)− E0| ≈ const
∑
i

wi + C. (2.10)

The convergence of energy with M can also be shown to be approximately

ln|δE| ≈ −κ(ln(M))2. (2.11)

The second issue is the convergence of the iterative sweeps. These generally

converge well, but during the decimation step, some random noise sometimes

needs to be added to the density matrix so that each state is represented with

non-zero weight. As long as this noise is gradually decreased, it does not affect

the converged DMRG energy. However, if no noise is added the DMRG solution

can get stuck in local minima and does not converge to the correct energy.

2.5 DMRG wavefunction as matrix product states

The DMRG can be understood from a different viewpoint to the one we have

so far used, based on the structure of the underlying class of variational wave-

functions, which are sometimes known as Matrix Product States (MPS) [16–18].

The DMRG wavefunction when expressed explicitly in the complete basis ex-

pansion of Slater determinants {|n1n2n3 . . . nk〉} can be written as

|ΨDMRG〉 =
∑

n1n2n3...nk

i1i2i3...ik−1

ψn1
i1
ψn2
i1i2
ψn3
i2i3

. . . ψnk
ik−1
|n1n2n3 . . . nk〉 (2.12)

where |ni〉 spans over |−〉, | ↑〉, | ↓〉, | ↑↓〉.

Each of the functions ψ (other than the ones at the ends) has three indices or ψ

is a tensor of rank 3 and thus, can be thought of as a vector or series of matrices.
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Figure 2.6: Site connectivity in a DMRG site chain. The wavefunction is
contracted over the indices i and decimated such that wave-
function is spanned by M determinants.

This way of re-expressing helps us in keeping track of the indices. Also, com-

putationally we are more used to handling vectors and matrices and not higher

rank tensors. We can therefore write out the 3-rank tensors as a series of matrix

products,

|ΨDMRG〉 =
∑

n1n2n3...nk

[ψn1 ][ψn2 ][ψn3 ] . . . [ψnk ] (2.13)

and hence the name Matrix Product States. In Eqn. 2.13 each of [ψnj ] is a matrix

that has its elements ψnj

ij−1ij
. Here, it should be noted that the matrices that

denote the end of the chain of sites, namely [ψn1 ] and [ψnk ] are of dimension

1 ×M and M × 1 respectively and the rest of the matrices in the middle of the

chain are of dimension M ×M .

In order to understand the analogy with the original DMRG formulation, the

above matrices can be easily shown to be formed from a series of singular value

decompositions of the FCI tensor ψn1n2n3...nk that are related to the singular value

decomposition considered in Eqn. 2.9. For example, consider a wavefunction

for two sites with FCI coefficients ψn1n2 . This wavefunction can be re-expressed
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as a singular value decomposition

ψn1n2 =
∑
i1

Rn1
i1
σi1R

n2
i1

=
∑
i1

ψn1
i1
ψn2
i1
. (2.14)

Now, if we consider three sites, we can again perform similar successive singu-

lar value decompositions

ψn1n2n3 =
∑
i1

Rn1
i1
σi1S

n2n3
i1

=
∑
i1i2

Rn1
i1
σi1i2R

n2
i1i2
Rn3
i2

=
∑
i1i2

ψn1
i1
ψn2
i1i2
ψn3
i2
. (2.15)

Thus, when we consider the complete chain of site functions, we end up with

k − 1 singular value decompositions to get a matrix product state that can be

re-written in the form Eqn. 2.12.

2.6 Further properties of the DMRG

We finish by mentioning some further important properties of the DMRG that

are relevant to quantum chemistry.

1. Variational nature

When we start a DMRG sweep, we start with the complete Hilbert space

of a small subsystem and as we go along the sweep, we keep adding the

Hilbert space of the next site and then decimating or choosing a small
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subset of this Hilbert space. Thus, at all steps the DMRG wavefunction is

spanned by a subset of the Hilbert space. And therefore, it is variational in

nature. With the increase in M or the number of states that are kept after

decimation, the DMRG energy reaches the FCI energy variationally.

2. Size-consistency

The DMRG wavefunction is size-consistent in the localized basis. |ΨAB〉
(the wavefunction of the composite system) can be shown to be equal to

the product of the wavefunction of the subsystems |ΨA〉 and |ΨB〉,

|ΨAB〉 =
∑

n1...na+b

i1...ia+b−1

ψn1
i1
. . . ψna

ia−1ia
ψ
na+1

iaia+1
. . . ψ

aa+b

ia+b−1
|n1 . . . nana+1 . . . na+b〉

=
∑
n1...na

i1...ia−1

ψn1
i1
. . . ψna

ia−1
|n1 . . . na〉

∑
na+1...na+b

ia+1...ia+b−1

ψ
na+1

ia+1
. . . ψ

na+b

ia+b−1
|na+1 . . . na+b〉

= |ΨA〉|ΨB〉. (2.16)

3. Multireference wavefunction for one dimensional systems

The DMRG wavefunction is multireference as the occupied and virtual

orbitals are treated equally. And it is naturally suitable for the treatment

of one dimensional or pseudo one dimensional systems as the sites can be

naturally ordered along the backbone of the system and are blocked and

decimated along one dimension. This gives a physically correct way of

blocking the orbitals that are spatially close to each other and therefore,

has the largest correlation. Using localized orbitals, the number of states

retained can be virtually kept constant with the length of the molecule (if

it is pseudo one dimensional) without any loss of accuracy.
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edited by D. Sénéchal, A.-M. Tremblay, and C. Bourbonnais, CRM Series in

Mathematical Physics, Springer, New York, 2003.

[9] G. Fano, F. Ortolani, and L. Ziosi, J. Chem. Phys. 108, 9246 (1998).

[10] S. R. White and R. L. Martin, J. Chem. Phys. 110, 4127 (1999).

[11] A. O. Mitrushenkov, G. Fano, F. Ortolani, R. Linguerri, and P. Palmieri, J.

Chem. Phys. 115, 6815 (2001).

[12] G. K.-L. Chan and M. Head-Gordon, J. Chem. Phys. 116, 4462 (2002).

31



[13] G. K.-L. Chan, J. Chem. Phys. 120, 3172 (2004).
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CHAPTER 3

DENSITY MATRIX RENORMALIZATION GROUP SELF-CONSISTENT

FIELD

(Some parts of this chapter are taken from Ref. [1].)

3.1 Introduction

The basic idea of the DMRG wavefunction was explained in Chapter II. Since

DMRG gives us a variational ansatz to solve for the eigenstates of the quantum

chemical Hamiltonian with arbitrary accuracy, we can use it as an alternative

for full CI calculations. However, in quantum chemistry the full CI or DMRG

calculations in our case is done only in the active space in order to reduce the

computational cost. That is we start by dividing the orbitals into core, active and

virtual orbitals as defined in Chapter I. The active space consists of the valence

orbitals where the most important chemistry occurs and therefore accounts for

the majority of the chemically relevant correlations. DMRG calculations are car-

ried out with the orbitals in the active space.

In most applications of the DMRG to quantum chemistry so far [2–5], the active

space of interest has been easy to identify, i.e. there is a good core-valence and

valence-Rydberg separation, either for energetic or symmetry reasons, allow-

ing the DMRG to be used with such an active space as a direct substitute for

complete active space configuration interaction (CASCI). In general however,

we cannot always identify the active orbitals in a simple way, and thus there is

a need for an orbital optimized DMRG, where the active space is determined self-

consistently by energy minimization, in much the same way as in the complete
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Core

Active

Virtual

1

Figure 3.1: The orbitals in a system are divided into core, active and virtual
spaces. The core consists of the low energy orbitals that are
predominantly doubly occupied. The active space consists of
the valence orbitals that have a variable occupancy and are the
most important in chemical reactions. The virtual orbitals are
very high energy orbitals that are almost never occupied (see
Chapter I).

active space self-consistent field (CASSCF) method [6, 7]. In this method we

start with a reasonable guess of the active space by looking at the energy and

the symmetry of the orbitals and self-consistently solve for the optimal active

space. The resulting orbital optimized DMRG will be referred to as the DMRG-

CASSCF method.

Orbital optimization is a straightforward idea however, its efficient and practi-

cal implementation has to be tailored to the underlying many body wavefunc-
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tion ansatz and the details of our implementation are explained in this chapter.

Our implementation ties together calculating the DMRG wavefunction in the

active space, obtaining the reduced density matrices and using these informa-

tion to rotate the orbitals in order to minimize the energy. Since DMRG is a local

ansatz, we also have to consider the various localization schemes. We have a

fully parallelized implementation in order to enable us to do large scale calcu-

lations.

3.2 Overview of orbital optimization

Starting from the electronic Hamiltonian, specified by the one- and two-electron

integrals tij and vijkl

H =
∑
ij

tija
†
iaj +

∑
ijkl

vijkla
†
ia
†
jakal (3.1)

an ab-initio quantum chemical method provides a wavefunction Ψ that approx-

imates a target eigenstate of H . From Ψ we define the one- and two-particle

density matrix elements γij, γijkl

γij = 〈Ψ|a†iaj|Ψ〉

γijkl = 〈Ψ|a†ia†jakal|Ψ〉 (3.2)

and the energy expectation value 〈Ψ|H|Ψ〉 can be written as

E =
∑
ij

tijγij +
∑
ijkl

vijklγijkl (3.3)

Orbital rotation corresponds to a unitary transformation of the wavefunction

effected by an operator eA, where A has the single-particle excitations

A =
∑
ij

Aija
†
iaj (3.4)
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and Aij = −A∗ji. After orbital rotation, the transformed wavefunction Ψ̄ and

energy Ē are

Ψ̄ = eAΨ

Ē = 〈Ψe−A|H|eAΨ〉 (3.5)

But one can also consider the unitary operator to act on the Hamiltonian rather

than the wavefunction, and from this equivalent point of view, we have a trans-

formed H̄ and energy expressions

H̄ = e−AHeA, (3.6)

Ē = 〈Ψ|H̄|Ψ〉. (3.7)

The transformed Hamiltonian H̄ has the same form as the original Hamiltonian

(Eqn. 3.1) but with modified integrals t̄ij and v̄ijkl that reflect the rotated orbitals

t̄ij =
∑
i′j′

U∗ii′Ujj′ti′j′

v̄ijkl =
∑
i′j′k′l′

U∗ii′U
∗
jj′Ukk′Ull′vi′j′k′l′ (3.8)

where U is the coefficient matrix eA. Thus we can rewrite the energy after orbital

rotation in terms of the original one- and two-particle density matrices and the

modified integrals

Ē =
∑
ij

t̄ijγij +
∑
ijkl

v̄ijklγijkl. (3.9)

Thus, the basic procedure of optimizing the orbital in an ab-initio wavefunction

is as follows:

1. From the ab-initio method obtain Ψ corresponding to the givenH and form

the density matrices γij, γijkl.
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2. Determine an orbital rotation step eA, and form the new Hamiltonian H̄ =

e−AHeA from the transformed integrals.

3. Goto 1. and loop until convergence in Ψ.

Note that in the above, the orbital degrees of freedom and the other ansatz

degrees of freedom in Ψ are alternately optimized in steps (1), (2). More

sophisticated approaches which couple orbital rotations with changes in the

other ansatz degrees of freedom can be envisaged (as are employed in multi-

configurational self-consistent field methods [8–10]), but we have used the

above simple strategy to optimize the orbitals in the DMRG wavefunction. The

conceptual task is then twofold:

• How do we calculate the one- and two-particle density matrices from the

DMRG wavefunction?

• What method should we use to select our orbital rotation steps and to

construct the transformed Hamiltonian?

3.3 One- and two-site DMRG algorithms

Before we go on any further, we will digress from the discussion and define

more clearly the different kinds of DMRG algorithm based on different block-

ing schemes. The algorithm described in Chapter II (Sec. 2.4) is a “two-site”

DMRG algorithm, while the wavefunction written in Sec. 2.5 corresponds to a

“one-site” algorithm. Here we present both the wavefunction and algorithm ex-

pressions for the one- and two-site DMRG side by side as they will be crucial to
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understanding the one- and two-body density matrix calculation as described

later.

3.3.1 Two-site algorithm

In the two-site algorithm the DMRG wavefunction can be written as

|Ψ〉 =
∑

n1n2...np

Ln1Ln2 . . .Lnp |n1n2 . . . np〉 ⊗ |np+1〉 ⊗ |np+2〉 ⊗∑
np+3np+4...nk

Cnpnp+1np+2np+3Rnp+3Rnp+4 . . .Rnk |np+3np+4 . . . nk〉,(3.10)

where we have defined all the site functions or renormalization matrices on the

left block as Lni , those on the right block as Rni and Cnpnp+1np+2np+3 is the cor-

relation between the blocks and the sites in between (explained in more details

in the next section). Here, we see that up to p sites are on the left block, p + 1

and p + 2 form the left and right sites and the p + 3 to k sites are in the right

block. Thus, at each step the wavefunction is defined in a space of dimension

M × 4× 4×M as the left and right blocks have M states in them and the sites in

between have the complete Fock space (4 states each). This algorithm was the

first to be developed and exhibits robust convergence.

3.3.2 One-site algorithm

The DMRG wavefunction as defined by the one-site algorithm is

|Ψ〉 =
∑

n1n2...np

Ln1Ln2 . . .Lnp |n1n2 . . . np〉 ⊗ |np+1〉 ⊗∑
np+2np+3...nk

Cnpnp+1np+2Rnp+2Rnp+3 . . .Rnk |np+2np+3 . . . nk〉, (3.11)
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(a) One site DMRG block

L •L •R R

1

(b) Two site DMRG block

Figure 3.2: The one- and two-site algorithms in DMRG. They are different
in the number of sites (dots) in between the L and R blocks.
The lattice sites in the figure correspond to spin orbitals, i.e. a
pair of these spin orbitals make a spatial orbital or dot.

where we have defined all the site functions or renormalization matrices on the

left block asLni , those on the right block asRni andCnpnp+1np+2 is the correlation

between the blocks and the site in between (explained in more details in the next

section). Here, we see that up to p sites are on the left block, p + 1 form the dot

and p+ 2 to k sites are in the right block.

From Eqn. 3.11 it follows that the one-site DMRG wavefunction is defined in

a space of dimension M × 4 ×M as the left and right blocks have M states in

them and the site in between has a complete Fock space of 4. The dimension

of the Hamiltonian in the Davidson diagonalization is 4M2 × 4M2 which is 16

times smaller than in the two-site algorithm. The dimensions of the density

matrix (4M × M ), ensure that there can only be M non-zero eigenvalues and

thus, the choice of eigenvectors are trivial. Consequently, there are no trunca-
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tion errors. Thus, the wavefunction can be exactly expressed in either of the

forms Ln1Ln2 . . .Lnp |n1n2 . . . np〉 ⊗ Cnpnp+1np+2|np+1〉 ⊗Rnp+2 . . .Rnk |np+2 . . . nk〉
and Ln1Ln2 . . .Lnp−1 |n1n2 . . . np−1〉 ⊗ Cnp−1npnp+1 |np〉 ⊗ Rnp+1 . . .Rnk |np+1 . . . nk〉
corresponding to successive block configurations in the sweep. In the one-site

algorithm, the energy converges monotonically within a sweep in contrast to

the two-site algorithm where the minimum energy is at the middle of the sweep.

Consequently at convergence the DMRG wavefunction is the same at any block

configuration and this is crucial to correctly evaluate the one- and two-body re-

duced density matrices in the procedure we have described later. However, in

spite of all these very attractive properties of the one-site algorithm, it is very

prone to converging to a local minima. In our DMRG-CASSCF procedure, we

have used the one-site algorithm but, have used rather large numerical noise

to ensure that the wavefunction does not get trapped in a local minima and

reaches the correct energy.

3.4 Canonical structure of the DMRG wavefunction

To make the properties of the one-site DMRG algorithm introduced in the last

section more explicit (in particular the relationship between the algorithm and

wavefunction formulation of the DMRG), we now go into greater detail to de-

scribe the relationship between DMRG wavefunctions at different block config-

urations in a sweep.

The DMRG ansatz is invariant to transformations of the site functions of the

form (ψnp → ψnpU, ψnp+1 → U†ψnp+1) and thus it is useful to define a canonical

form of the DMRG wavefunction that eliminates this freedom. In practice, this
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canonical representation is used in all DMRG calculations, and it is also the rep-

resentation in which the link between the DMRG wavefunction and the tradi-

tional renormalization group language is most direct. In essence, the canonical

form of the wavefunction at a given site corresponds to the familiar expression

for the DMRG wavefunction where it is expanded in the product basis of the

left and right blocks separated by the site [11, 12].

To obtain the canonical form, we choose a specific site, say p, around which to

canonicalize. Then the site p canonical form is given as

|Ψ〉 =
∑

n1...np...nk

Ln1 . . .Lnp−1CnpRnp+1 . . .Rnk |n1 . . . np . . . nk〉. (3.12)

We label the site functions to the left of p by L and those to the right by R.

The degeneracy (invariance to transformation) of the original ansatz (Eqn. 3.12)

mentioned above is lifted by requiring the L and R site functions to be orthogo-

nal projection matrices in the following sense

∑
lnq

L
nq

ll′L
nq

ll′′ = δl′l′′ (3.13)

∑
rnq

R
nq

r′rR
nq

r′′r = δr′r′′ (3.14)

i.e. by grouping together the lnq indices to form the row index of a 4M × M

matrix, each L site function is orthogonal with respect to its M columns, while

by grouping together the rnq indices to form the column index of a M × 4M

matrix, each R site function is orthogonal with respect to its M rows.

The link between the canonical form and the original RG formulation ap-

pears when we combine the L site functions Ln1 . . .Lnp−1 with the basis

states |n1 . . . np−1〉, and the R site functions Rnp+1 . . .Rnk with the basis states

|np+1 . . . nk〉, to define renormalized left and right many body spaces {lp−1},
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{rp+1}
|lp−1〉 =

∑
n1...np−1

l1...lp−2

Ln1
l1
. . . L

np−1

lp−2lp−1
|n1 . . . np−1〉, (3.15)

|rp+1〉 =
∑

np+1...nk

rp+2...rk

Rnp+1
rp+1rp+2

. . . Rnk
rk
|np+1 . . . nk〉. (3.16)

Since the dimension of the left basis in Eqn. 3.15 is M (i.e. the dimension

of the auxiliary index lp−1) and similarly for the right basis, the site functions

Ln1 . . .Lnp−1 andRnp+1 . . .Rnk define a projective transformation or renormaliza-

tion from the many body spaces {n1} ⊗ . . . ⊗ {np−1} and {np+1} ⊗ . . . ⊗ {nk} to

the left and right spaces, {lp−1}, {rp+1}, respectively. Then in the renormalized

representation, Cnp

lp−1rp
gives the coefficients of expansion of the wavefunction

|Ψ〉, i.e.

|Ψ〉 =
∑

lp−1nprp

C
np

lp−1rp
|lp−1nprp〉. (3.17)

This is just the RG expression for the one-site DMRG wavefunction, in the prod-

uct space of a renormalized left “block”, a site p, and a renormalized right

“block”. Thus in the usual DMRG language, the site p canonical form corre-

sponds to the DMRG wavefunction in the basis associated with the block con-

figuration •1 . . . •p−1 •p •p+1 . . . •k .

A one-site DMRG wavefunction expressed in the canonical form of a given site

p can always be expressed in the canonical form for any other site (or using

the traditional DMRG language, the DMRG wavefunction for a given one-site

block configuration can always be expressed in the basis of any other one-site

block configuration along a sweep). Since we are simply re-expressing the same

wavefunction in a different basis, the coefficients C and site-functions L,R at

different sites are related. To see the link explicitly, we compare the canonical
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forms at adjacent sites p, p+ 1

|Ψ〉 =
∑

n1...np...nk

Ln1 . . .Lnp−1CnpRnp+1Rnp+2 . . .Rnk |n1 . . . np . . . nk〉

=
∑

n1...np...nk

Ln1 . . .Lnp−1LnpCnp+1Rnp+2 . . .Rnk |n1 . . . np . . . nk〉, (3.18)

which yields the relation

LnpCnp+1 = CnpRnp+1 . (3.19)

Now say we are given CnpRnp+1 from the site p canonical form, and we wish

to determine LnpCnp+1 for the site p + 1 canonical form, where Lnp satisfies the

orthogonality conditions (Eqn. 3.13). We can obtain such a Lnp solution of Eqn.

3.19 together with Cnp+1 from the singular value decomposition (SVD) of Cnp ,

viewed as the 4M ×M matrix with row indices lp−1np, column indices rp+1 and

M singular values σlp

C
np

lp−1,rp+1
=

∑
lp

L
np

lp−1,lp
σlpVlprp+1 (3.20)

C
np+1

lp,rp+2
=

∑
rp+1

σlpVlprp+1R
np+1
rp+1,rp+2

. (3.21)

The above transformation between canonical forms at adjacent sites corre-

sponds directly to the transformation between block configurations during the

sweep algorithm in the DMRG. In particular, Eqn. 3.20 corresponds to the deter-

mination of the basis of the renormalized block •1 . . . •p+1 from the density ma-

trix eigenvectors of the superblock •1 . . . •p •p+1, while Eqn. 3.21 corresponds

to the wavefunction transformation used to generate the guess at a given block

configuration from that at the previous configuration. We see therefore, that an

exact transformation between canonical forms at different sites is only possible

with the one-site DMRG ansatz and not in the two-site DMRG discussed in Sec.

3.3.
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3.5 Evaluation of one- and two-particle density matrices in

DMRG

Given the DMRG wavefunction, the next step is to find the one- and two-particle

density matrices. Naively, one would think that the direct evaluation of the

one- and two-particle density matrices should require k2 and k4 terms respec-

tively and thus, the cost of saving these operators would be O(M2k4). This is

prohibitively expensive. Here, it should be noted that unlike the Hamiltonian,

where we could have contracted over all i, j, k, l indices to get
∑

ijkl vijkla
†
ia
†
jakal,

for the evaluation of two-particle reduced density matrix (2RDM) we actually

need all of the a†ia
†
jakal terms . Thus, we need to find some computationally

cheaper way of calculating the 2RDM from the DMRG wavefunction.

In the algorithm for the evaluation of the two-particle density matrix, we take

advantage of the canonical representations at the different sites, and certain com-

putations which are difficult in one canonical representation become computa-

tionally cheaper in another. When changing between representations, we are

simply re-expressing the same wavefunction in a different step of the sweep

and exploiting the relationship between the wavefunction coefficient C and the

transformation matrices L,R at different steps of the sweep algorithm.

The pseudo-code for the two-particle RDM evaluation is given in Algs. (1), (2).

Alg. (1) describes how to partition the evaluation of different density matrix

elements amongst the block configurations as we traverse a DMRG sweep.

The different functions that are put together in Alg. (1) to form the complete

two-particle density matrix can be understood by noting that there are a few
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Algorithm 1: Creation of the two-particle density matrix by assembling
across a DMRG sweep.

special treatment for first configuration •1 •2 •3 . . . •k
left= site 1, sitep= site 2, right= sites 3 . . . k

COMPUTE(4, 0, 0, left, sitep, right)

COMPUTE(3, 1, 0, left, sitep, right)

COMPUTE(3, 0, 1, left, sitep, right)

COMPUTE(2, 1, 1, left, sitep, right)

sweep through block configurations •1 . . . •p−1 •p •p+1 . . . •k
for sitep= 2 to k-1 do

left= sites 1 . . . p− 1, right= sites p+ 1 . . . k

COMPUTE(1, 2, 1, left, sitep, right)

COMPUTE(2, 1, 1, left, sitep, right)

COMPUTE(2, 2, 0, left, sitep, right)

COMPUTE(1, 3, 0, left, sitep, right)

COMPUTE(0, 3, 1, left, sitep, right)

COMPUTE(0, 4, 0, left, sitep, right)

end for

special treatment for final configuration •1 . . . •k−2 •k−1 •k
left= sites 1 . . . k − 2, sitep= site k − 1, right= site k

COMPUTE(0, 0, 4, left, sitep, right)

COMPUTE(0, 1, 3, left, sitep, right)

COMPUTE(1, 0, 3, left, sitep, right)

COMPUTE(0, 2, 2, left, sitep, right)

COMPUTE(2, 0, 2, left, sitep, right)

COMPUTE(1, 1, 2, left, sitep, right)

COMPUTE(1, 2, 1, left, sitep, right)
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Algorithm 2: COMPUTE(nl, np, nr, left, sitep, right). Note nl, np, nr ≤ 2

and nl + np + nr = 4, i.e. the number of indices in the two-
particle density matrix γ.

for all opl= operators with nl indices on block left do

(If parallel, loop only over opl stored on current proc)

for all opp= operators with np indices on block sitep do

for all opr= operators with nr indices on block right do

γ(np, nl, nr) = parity(opl, opp, opr)× 〈Ψ|opl ⊗ opp⊗ opr|Ψ〉
end for

end for

end for

(If parallel, accumulate contributions from all procs to root processor)

major types of density matrix elements depending on how many operators are

situated on different lattice sites.

• γijkl such that i = j = k = l which give rise to COMPUTE functions with

arguments [4, 0, 0], [0, 4, 0] and [0, 0, 4] (in the first configuration, sweep

through the block and final configuration respectively).

• γijkl such that i = j = k 6= l which give rise to COMPUTE functions with ar-

guments [3, 1, 0] and [3, 0, 1] in the first configuration, [1, 3, 0] in the sweep

through the block, and [0, 1, 3] and [1, 0, 3] in the final configuration.

• γijkl such that i = j 6= k 6= l which give rise to COMPUTE functions with ar-

guments [2, 1, 1] in the first configuration, [1, 2, 1] and [2, 2, 0] in the sweep

through the block, and [2, 0, 2], [1, 1, 2] and [1, 2, 1] in the final configura-

tion.

• γijkl such that i = j & k = l & i 6= k which give rise to COMPUTE function
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with arguments [0, 2, 2] in the sweep through the block.

• γijkl such that i 6= j 6= k 6= l which give rise to the most complicated

COMPUTE function with arguments [2, 1, 1] in the sweep through the block.

The actual calculation of the density matrix elements is carried out by the func-

tion COMPUTE in Alg. (2), which computes all density matrix elements that may

be assembled from nl index operators on the left block, np index operators on

site p, and nr index operators on the right block.

The resultant computational complexity can be understood if we look more

closely at the density matrix element γijkl ∀ i 6= j 6= k 6= l since these are the

most computationally expensive elements. In the pseudo-code it is calculated

using the COMPUTE function with [2, 1, 1] arguments, i.e. the left block has 2

indices and the site (dot) and the right block have one index each (This can be

thought of as 2 indices per block, viewing the R + •R as a super R block.). That

is we choose a block configuration such that i, j lie in the left block, k in the dot

in between the blocks and l in the right block, i.e. . . . •i . . . •j . . . •k . . . •l . . . .

The corresponding matrix element may then be evaluated using a†ia
†
j on the left

block, and ak on site and al on right block, and thus no operator matrices with

more than two orbital indices appear on either block (see Fig. 3.3).

By the appropriate choice of partitioning between the left and right blocks, we

can arrange things such that we never manipulate operators with more than

two orbital labels on either the left or right blocks for any ijkl. During a DMRG

sweep we iterate through all block configurations where the dividing site •p
ranges from site 2 to site k−1. At each block configuration, we then evaluate all

the two-particle density matrix elements which do not require more than two-

index operators on either the left or right blocks, and assemble the contributions
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Figure 3.3: Evaluation of a 2-RDM element γ1369. We can obtain this ele-
ment, e.g. at the block configuration where indices 1, 3 are on
the left block and indices 6, 9 are on the site and right block
(corresponding to calling COMPUTE(2, 1, 1) in Alg. 1).

of all the block configurations at the end of the DMRG sweep. The total memory

and storage cost is thus reduced to O(M2k2).

We consider the different steps in building these elements.

• The creation of the operators a†ia
†
j on left block and akal on site (in between

the blocks) and right block which has k2 matrix multiplications of size

M ×M thus giving rise to the computational cost of M3k2.

• The final multiplication of these operators on each block to get the final

density matrix element γijkl =
∑

A,B Lij(A,B)Rkl(A,B) where there are k4

indices ijkl and A and B are each of dimension M resulting to the compu-

tational cost of M2k4.

Therefore, the total computational cost is O(M2k4 + M3k2). The computational
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costs of each of the different objects that build up the complete two-particle

reduced density matrix are given in Table 3.1.

Therefore, exploiting the canonical property we can formulate an efficient algo-

rithm to evaluate the two-particle density matrix with a total per-sweep com-

putational cost of O(M3k2 +M2k4) and a memory cost of O(M2k2).

An attractive feature of the quantum chemical DMRG algorithm is the high level

of parallelizability, which is described in detail in Ref. [13]. In our implemen-

tation, the loops over operators in Alg. (2) are trivially parallelized because of

how our operators are divided across processors in the original formulation [13].

For example, the dominant computational cost of the two-particle density ma-

trix evaluation comes from COMPUTE(2, 1, 1, left, sitep, right) in Alg. (1), which

costs O(M3k2 + M2k4) per DMRG sweep. However, in our parallel DMRG im-

plementation, the two index operators opl on the left block, namely a†iaj and

aiaj , are divided across the processors, while the corresponding one index oper-

ators opp, opr are replicated on all processors, and thus we can easily parallelize

over the first opl loop in Alg. (2). This leads to a final computational cost per

sweep of O((M3k2 +M2k4)/np) with a communication cost of O(k4 lnnp), where

np is the number of processors.

3.6 Orbital step and integral transformation

As described earlier, the DMRG wavefunction is primarily efficient at captur-

ing static correlation and consequently we employ an active space DMRG de-

scription of the electronic structure, the purpose of the orbital optimization then

being to obtain the best form of the active space. Recall that the active space
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Table 3.1: Computational cost of various steps for the evaluation of the
two-particle density matrix. k is the no. of orbitals and M is
the number of states retained after each decimation step in the
DMRG algorithm.

Configuration Args. to the Total computational

COMPUTE functions cost

First [4, 0, 0] O(M3)

[3, 1, 0] O(M3)

[3, 0, 1] O(M3k)

[2, 1, 1] O(M3k)

Sweep [1, 2, 1] O(M3k2)

[2, 1, 1] O(M3k2 +M2k4)

[2, 2, 0] O(M3k2)

[1, 3, 0] O(M3k)

[0, 3, 1] O(M3k)

[0, 4, 0] O(M3)

Final [0, 0, 4] O(M3)

[0, 1, 3] O(M3)

[1, 0, 3] O(M3k)

[0, 2, 2] O(M3)

[2, 0, 2] O(M3k2)

[1, 1, 2] O(M3k)

[1, 2, 1] O(M3k)
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is defined by partitioning the orbitals into three sets, closed-shell orbitals which

remain doubly occupied in all DMRG configurations, active orbitals which form

the product active space {n1} ⊗ . . . ⊗ {nk} in the DMRG wavefunction expan-

sion Eqn. 2.12, and external orbitals, which remain unoccupied in all DMRG

configurations. With this partitioning, the active space DMRG wavefunction is

determined with respect to the active space Hamiltonian

Hact = Eclosed +
∑
ij

tact
ij a

†
iaj +

∑
ijkl

vijkla
†
ia
†
jakal (3.22)

where indices i, j are limited to the active orbitals and the modified one-particle

integrals tactij and closed-shell energy are given respectively by

Eclosed =
∑
c

tcc +
∑
cc′

(vcc′c′c − vcc′cc′) (3.23)

tact
ij = tij + 2

∑
c

(viccj − vicjc) (3.24)

where c, c′ denote the closed-shell indices.

Orbital optimization chooses the best form of the active orbitals by minimizing

the energy of the DMRG wavefunction with respect to the active and closed-

shell orbitals. This is the basic idea behind the complete active space self con-

sistent field (CASSCF) description of electronic structure. In CASSCF, the active

space wavefunction is the exact eigenfunction of the active space Hamiltonian

Eqn. 3.22 and is thus invariant with respect to active-active orbital rotations. In

the corresponding orbital optimized DMRG-CASSCF, the accuracy of our active

space DMRG wavefunction depends on the size of M .

The algorithm we use for orbital optimization is an Augmented Hessian New-

ton Raphson scheme similar to that used in modern CASSCF implementations

[8–10]. The orbital rotations are parametrized by the anti-hermitian amplitudes

A in Eqn. 3.4, and the derivative with respect to these amplitudes is evaluated
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from the one- and two-particle density matrices from the DMRG calculation.

However, as the DMRG enables the use of larger active spaces than in tradi-

tional CASSCF studies and consequently we can expect to have a larger number

of correlating external and closed-shell orbitals, we have focused on an efficient

parallel implementation of the orbital optimization. Here the primary task is to

parallelize the four-index transformation which is performed after each orbital

rotation to generate the two-electron integrals in the basis of the rotated orbitals.

Say we have a coefficient matrix U giving the expansion coefficients for our

rotated orbitals in terms of the starting atomic orbitals. Then, the transformed

integrals vpqrs are obtained from the atomic orbital integrals vAOµνκλ through (as-

suming real coefficients, for simplicity)

vpqrs =
∑
µνκλ

UpµUqνUrκUsλv
AO
µνκλ (3.25)

As is well known, the four-index transformation should be carried out in four

quarter-transformation steps corresponding to the four contractions with the

coefficient matrices above. In our parallel transformation scheme, we con-

sider the four steps in two stages; in the first stage we perform two quarter-

transformations to construct half-transformed Coulomb and exchange interme-

diates J,K

Jab(ν, κ) =
∑
µλ

UaµUbλv
AO
µνκλ (3.26)

Kab(ν, κ) =
∑
µλ

UaµUbλv
AO
µνλκ (3.27)

while in the second stage, we perform the remaining quarter transformations

on the J , K intermediates to obtain the final integrals

[Jab]pq = vapqb =
∑
νκ

Jab(ν, κ)UpνUqκ (3.28)
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[Kab]pq = vapbq =
∑
νκ

Kab(ν, κ)UpνUqκ (3.29)

Note that for the purposes of optimizing the active orbitals, we only need the

integrals that appear in the augmented Hessian. Thus, the ab indices in Eqns.

3.26 and 3.27 only need to run over the active orbitals while the pq indices need

to run over all the closed-shell, active, and external orbitals.

In the first stage, we parallelize the construction of the J,K intermediates by di-

viding up the intermediates according to their untransformed AO indices. For

example, the construction of Jab(ν, κ) is divided amongst the processors accord-

ing to the pair of indices (ν, κ); each processor is then responsible for construct-

ing the J intermediates for all (ν̄, κ̄) ∈ proc. This allows us to also partition the

AO integrals amongst the processors according to the same divided pair of in-

dices (ν̄, κ̄); e.g. to construct Jab(ν̄, κ̄) for (ν̄, κ̄) ∈ procwe only need AO integrals

such as vAOµν̄κ̄λ for (ν̄, κ̄) ∈ proc to be stored on that processor.

Once all J and K intermediates are constructed, we parallelize the second stage

with respect to the transformed ab indices of the J , K intermediates. Thus ab

is divided amongst the processors, and each processor constructs the final in-

tegrals vāpqb̄, vāpb̄q for all {āb̄} ∈ proc. Since the first stage is parallelized over

a pair of AO indices (ν, κ) (and the J and K intermediates are divided across

the processors accordingly) while the second stage is parallelized over the two

transformed indices (ab), we need to redistribute the intermediates J and K

amongst the processors between the first and second stages. This is the main

communication step.

In addition to above parallelization, further efficiencies can be gained by using

the permutational and spatial symmetries of the integrals. Our complete par-

allelized algorithm, which uses these symmetries, is presented in pseudo-code
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in Alg. (6) in the Appendix (A.2). The cost of the four-index integral transfor-

mation as implemented is O((K4k+K3k2)/np) for CPU, O((K4 +K2k2)/np) for

disk space, O(K2k2/np) for memory, and O(K2k2) for overall communication,

where K is the total number of orbitals, k is the number of active orbitals, and

np is the number of processors.

To complete our efficient implementation of orbital optimization, we have also

parallelized the remaining steps in the Augmented Hessian Newton-Raphson

solver. These additional steps take up only a small part of the computational

time and have an overall cost O(K2k3/np) for CPU time, O(K2k2/np) for mem-

ory, O(Kk) for communication.

3.7 Localization schemes

Since DMRG is an inherently localized wavefunction ansatz, we need to local-

ize the orbitals before we perform a DMRG calculation with them. The need for

locality in DMRG algorithm becomes very apparent when we look at the con-

nectivity in DMRG and the way we break up the system into site functions. For

an efficient DMRG algorithm only nearby sites or orbitals should be strongly

correlated and the correlations should decrease rapidly with distance. Thus,

the active space orbitals have to be localized after each orbital rotation and the

active integrals transformed into this local basis before each DMRG calculation.

There are a few commonly used localization methods :

• Boys localization.

• Edmiston-Ruedenberg localization.
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• Pipek-Mezey localization.

Table 3.2: Characteristics and computational cost of various localization
schemes.

Localization scheme Criterion for localization Cost scaling

Boys Maximize distance between O(N3)

orbital centroids

Edmiston-Ruedenberg Maximize orbital O(N5)

self-repulsion energy

Pipek-Mezey Minimize number of atoms O(N3)

that an orbital spans

Boys localization and Edmiston-Ruedenberg (ER) localization [14] have been

the most widely used of the localization schemes and they have a very physi-

cally rational way of localizing the orbitals. In the Boys method the localization

is done by maximizing the separation of orbital centroid and the ER method

consists of maximizing the orbital self-repulsion energy.

Pipek-Mezey localization (PML) [15] scheme follows a different approach. It

does not use the Coulombic properties as the criterion for localization. However

using this technique the localized orbitals look quite similar to the ER localized

orbitals.

In the PML scheme, a measure of delocalization is defined as

di = [
n∑

A=1

(Qi
A)2]−1 = [

n∑
A=1

(
∑
µ∈A

m∑
ν=1

CiµCiνSµν)
2]−1, (3.30)

where Qi
A is the gross Mulliken population of orbital i on atom A, Ciµ is the

MO coefficient of µth AO on ith MO and the Sµν is the AO overlap between the
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AOs µ and ν. The number of atoms is given as n. Thus, the di is the average

number of atoms that the orbitals are delocalized on and serves as an efficient

measure of delocalization. The PML scheme is to minimize this di. It shows

better convergence than the Boys localization and has a cheaper computational

cost scaling than ER localization.

In our work, we have used the Pipek-Mezey localization scheme.

3.8 Natural orbitals

In order to facilitate fast convergence in the orbital rotation step, natural or-

bitals are used. Natural orbitals are defined as the orbital basis obtained from the

eigenfunctions of the spinless one particle reduced density matrix.

3.9 Complete orbital optimized DMRG-CASSCF algorithm

With the description of the density matrix evaluation in Sec. 3.5 and the orbital

optimization and integral transformation in Sec. 3.6, we now have the basic

ingredients to perform the DMRG-CASSCF algorithm, according to the general

outline in Sec. 3.2.

The complete DMRG-CASSCF algorithm is as follows:

1. Localize the active space orbitals.

2. Transform the AO integrals to the active space basis and build the active

space Hamiltonian.
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HF orbitals

Divide into core, active and virtual space

Localize active orbitals by Pipek-Mezey method

Make effective active integrals

Run DMRG with active integrals

Make 1 and 2 particle reduces density matrices in active space

Rotate orbitals to minimize energy

Check convergence
ConvergedNot converged

1

Figure 3.4: Flowchart of DMRG-CASSCF method. Starting with the
Hartree-Fock orbitals (localized in the active space), the eval-
uation of DMRG wavefunction, reduced density matrix and
orbital rotation are done self-consistently until the energy con-
verges.

3. Perform the DMRG calculation using the active space Hamiltonian.

4. From the converged DMRG wavefunctions at each block configuration,

assemble the one- and two-particle density matrices.
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5. Using the density matrices, obtain the orbital gradient and orbital step

from the Augmented Hessian Newton-Raphson solver.

6. From the orbital step, determine the new active space orbitals.

7. Goto 1. until convergence in the energy.

Steps 1.-6. constitute a single DMRG-CASSCF macro-iteration.

3.10 Conclusion

We have described how to efficiently implement orbital optimization using den-

sity matrix renormalization group wavefunction. By virtue of the compact na-

ture of the DMRG wavefunction, this now enables us to handle much larger

active spaces than are possible with traditional CASSCF algorithm.
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CHAPTER 4

APPLICATION OF DMRG-CASSCF TO POLYENES AND β-CAROTENE

(Some parts of this chapter are taken from Ref. [1].)

4.1 Introduction

Polyenes are the simplest conjugated systems, consisting of alternating singly

and doubly bonded carbons arranged in a chain. They are valuable models

not only to understand conjugated polymers of materials interest (e.g. poly-

acetylene is simply an infinite polyene) but also biological molecules such as

the carotenoid and retinal families of pigments involved in photosynthesis and

vision. These class of compounds are also important as they played a major

role in the development of molecular orbital theory and are thus, important to

electronic structure theory at its birth.

In these systems, the functionality of the molecules relies on the low-lying π-π∗

excited states of the conjugated backbone, which serve as the conduits for en-

ergy transfer. The excited states are labeled by their symmetry under the C2h

point group, giving rise to Ag, Bg, Au, Bu symmetry labels. Furthermore, they

are usually given an additional +/− label to indicate their approximate particle-

hole symmetry. In Hamiltonians (such as the Hückel Hamiltonian) which sup-

port symmetric sets of energy states around the Fermi level, there is an addi-

tional symmetry associated with rotating the molecular orbital diagram so that

the bonding and anti-bonding levels swap places [2]. Although particle-hole

symmetry is not a true symmetry of the ab-initio electronic Hamiltonian, it is

still customary to use such labels for the polyenes, in particular, because the
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+/− states have very different qualitative electronic structure; valence bond

studies of the Hubbard model [3] show that the + states consist mainly of ionic

valence bond structures, while the − states consist mainly of covalent valence

bond structures [4–6].

4.2 Motivation

In our study of conjugated polymers using DMRG-CASSCF, we have looked

at singlet states and henceforth we shall be considering singlet states only. The

ground state of the polyenes is known to always be ofA−g symmetry. The lowest

dipole-allowed singlet transition, which has a predominantly HOMO→LUMO

excitation character, has B+
u symmetry. However, contrary to what one might

expect, this 1A−g → 1B+
u transition is not the lowest singlet transition [7, 8].

Rather, as shown by Aoyagi et al. in octatetraene [8], there is a lower dipole

forbidden excitation, later identified as the 2A−g state, which can be rational-

ized in valence bond language as arising from a pair of singlet-triplet excita-

tions in the two separate double bonds that recouple to form a singlet state [9–

17]. Following the observation of the 2A−g state in octatetraene, there has been

much debate over the correct ordering of the 2A−g and 1B+
u excited states in the

shorter polyenes, compounded both by experimental difficulties in observing

the dipole-forbidden 2A−g state as well as theoretical challenges in achieving a

balanced description of the two states, which are dominated by very different

kinds of correlation, namely static correlation in the 2A−g state and dynamic cor-

relation in the 1B+
u state as also the correct degree of valence-Rydberg mixing

that occurs in the very small polyenes, C4H6 and C6H8. Thus, despite repeated
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G.S.(1Ag−) 1Bu+

1
Figure 4.1: Ground state 1A−g and first optically active 1B+

u excited state of
C4H6.

reinvestigations since they were first observed 70 years ago [18, 19], the spectra

of the polyenes have remained a mystery [20–24].

In longer polyenes and the biologically active carotenoid and retinal pigments,

questions about the low-lying spectrum are not restricted simply to the 2A−g and

1B+
u state ordering. Recent studies using resonance Raman excitation profiles

(RREP) and electronic absorption spectroscopy on substituted polyenes in the
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carotenoid family, have indicated the presence of additional dark states below

the 1B+
u state [25–29]. In particular, for the all-trans-carotenoids with (the num-

ber of double bonds) n = 9 − 11, Sashima et al. observed a 1B−u state between

the 2A−g and 1B+
u [26, 30]. More recently, Furuichi et al. observed a 3A−g level

between the 1B−u and 1B+
u states in carotenoids with n = 11− 13, and assigned

the tentative state ordering of 1A−g < 2A−g (S1) < 1B−u (S2) < 3A−g (S∗) < 1B+
u (S3)

[29]. The assignment was made by extrapolating from the earlier PPP-MRDCI

calculations by Tavan and Schulten on short polyenes (n = 2 − 8), which had

predicted the existence of these additional states [6, 31].

To understand the long polyenes and carotenoids, there have been a number

of density functional studies on them, but these calculations generally find that

the low-lying state ordering in longer polyenes is dependent on the exchange-

correlation functional [32–34].

To better understand the electronic structure of these low-lying states, the start-

ing point would be to carry out an ab-initio multireference calculation, using the

complete π-valence space. However, the large number of active π orbitals in

the longer polyenes means that it is not possible to perform such calculations

with traditional CAS algorithms for these systems. Hirao and coworkers [4, 35]

carried out incomplete valence CASSCF and CASCI-MRMP using a (10,10) active

space on the polyene series up to C28H30 and observed reasonable agreement

with experiment. With our new orbital optimized DMRG-CASSCF procedure

(described in Chapter III), we can now re-examine the low-lying excitations

in these systems correlating the complete π- valence space even for the longer

polyenes and carotenoids. By using a complete valence space as active orbitals,

we can get a balanced and physically motivated active space.
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4.3 Computational details

The polyene molecular geometries for C8H10,C12H14,C16H18,C20H22,C24H26

were optimized at the density functional level using the B3LYP functional

[36, 37] as implemented in GAUSSIAN03 [38]. The polyene molecules were con-

strained to haveC2h symmetry, with theC2 axis as the z-axis. The cc-pVDZ basis

[39] was used for all calculations.

In our DMRG-CASSCF calculations we used a complete π-valence space i.e. in

C24H26, this was a (24o, 24e) active space. To generate this active space, we

first performed a restricted Hartree-Fock calculation in PSI3 [40, 41] to obtain

canonical Hartree-Fock molecular orbitals.

From the RHF orbitals, it is not trivial to identify the appropriate π anti-bonding

active orbitals because of significant 2p-3p mixing. Thus, we start by choosing

the π bonding space which is quite straightforward as we can trivially choose

n/2 orbitals from n/2 orbitals of Au and Bg symmetries. Then, we constructed

the anti-bonding component of the active space as a set of projected atomic or-

bitals (PAO), by first projecting out the π bonding space from a set of 2pz atomic

orbitals. These projected atomic orbitals were then symmetrically orthogonal-

ized, then relocalized together with the bonding molecular orbitals, using the

Pipek-Mezey procedure [42](details given in the Appendix A.1), to yield the

complete active space in our calculations. The final set of active orbitals gener-

ated in this way resemble an orthogonal set of 2pz orbitals.

Note that our initial active space does not correspond precisely to an active

space obtained by selecting Hartree-Fock canonical orbitals. Thus DMRG en-

ergies obtained before orbital optimization do not correspond to typical CASCI
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energies, but instead to CASCI energies obtained in our projected-atomic or-

bital (PAO) virtual space. This distinction is noted in our tables with the abbre-

viation DMRG-PAO-CASCI. After orbital optimization, however, our DMRG-

CASSCF energies do correspond to true CASSCF energies, up to the accuracy of

the DMRG calculation.

We carried out state-averaged DMRG-CASSCF calculations in the above active

space with the one-site DMRG algorithm as described in Chapter II and III with

a value of M = 250 and averaging over the 4 lowest eigenstates. The DMRG

sweeps were converged to 10−10Eh in the DMRG energy, which took roughly

30 DMRG sweeps. The number of renormalized states was increased smoothly

from a starting value of M = 50 to the final value of M = 250. To aid the con-

vergence of the DMRG sweeps in the one-site algorithm, we applied a system-

environment perturbation as described in Ref. [43], with a starting magnitude

of 10−3 that smoothly decreased to 0 after 20 sweeps. We estimate the remaining

error in the DMRG energies at the M = 250 level from the exact FCI energies

in the same active space to be less than 0.1mEh. Our DMRG calculations were

combined with orbital rotation in a macro-iteration consisting of a converged

DMRG calculation, an Augmented-Hessian step based orbital rotation, integral

transformation, and orbital localization, as described in Sec. 3.9. Typically 10-15

macro-iterations of the complete DMRG/orbital optimization cycle were neces-

sary to converge the energies to a tolerance of better than 10−6Eh. The conver-

gence of the state energies with the number of macro-iterations is shown in Fig.

4.3.

The spatial and spin symmetries of excited states were assigned as follows.

Firstly, all excited states were restricted to be of singlet spin symmetry through
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the application of a shift λ(Ŝ2 − 〈S〉(〈S〉 + 1)) with λ = 0.5 [44]. To obtain

the spatial symmetry, the ground state was assumed to be 1A−g as established

by prior experimental and theoretical work. To determine whether the excited

states were of Ag or Bu symmetry the transition dipole matrices were calculated

between the states. Additionally, to determine the approximate particle-hole +

or− symmetry we examined the magnitude of the transition dipoles; large tran-

sition dipoles for an allowed transition indicated that the transition involved a

change of particle-hole symmetry between the states.

4.4 Results

4.4.1 Polyenes

Excitation energies

In Table 4.1 we present the energies, symmetries, and oscillator strengths for the

ground state and first three excitations in the polyenes from C8H10 to C24H26.

The DMRG-PAO-CASCI and DMRG-CASSCF entries for the 1A−g ground-states

give the total energy inEh; the other entries give the excitation energies from the

ground state in eV . The estimated error of the DMRG-CASSCF energies from

the exact CASSCF energies in the same active space is less than 0.1mEh. The

notation (n,m) denotes the active space used in the DMRG-PAO-CASCI and

DMRG-CASSCF calculations. Oscillator strengths are in a.u. for the ground-

state, excited state transition. The CASCI-MRMP excitation energies are from

Kurashige et al. [4]; note that these used at most a (10,10) active space. The
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Table 4.1: Energies (in Eh for g.s. and eV for e.s.), symmetries, and oscil-
lator strengths (in a.u.) for the lowest lying singlet excited states
in conjugated polyenes.

Polyenes Symmetry DMRG DMRG Oscillator CASCI- Expt

PAO-CASCI CASSCF Strength MRMP

C8H10 1A−g −308.823021 −308.825879

(8, 8) 2A−g 6.33 4.69 Forbidden 4.26 3.54 1

1B−u 7.49 5.88 0.0565 5.30

3A−g 7.95 6.60 Forbidden 7.20

C12H14 1A−g −462.661260 −462.670591

(12, 12) 2A−g 5.40 3.76 Forbidden 3.19

1B−u 6.30 4.74 0.0620 3.98

3A−g 7.01 5.59 Forbidden 5.12

C16H18 1A−g −616.499262 −616.514639

(16, 16) 2A−g 4.90 3.25 Forbidden 2.50 2.21 2

1B−u 5.60 4.03 0.0502 3.10

3A−g 6.28 4.78 Forbidden 3.99

C20H22 1A−g −770.337112 −770.358327

(20, 20) 2A−g 4.60 2.93 Forbidden 2.04 (1.76) 3

1B−u 5.15 3.57 0.0427 2.51 (2.18) 3

3A−g 5.71 4.20 Forbidden 3.11 (2.47)3

C24H26 1A−g −924.174795 −924.201821

(24, 24) 2A−g 4.42 2.73 Forbidden 1.70 (1.53)3

1B−u 4.85 3.25 0.0384 2.05 (1.80)3

3A−g 5.31 3.78 Forbidden 2.45 (2.02)3

1 [45].
2 [46].
3 [29].
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Figure 4.2: DMRG-CASSCF excitation energies in eV for the 2A−g , 1B−u

and 3A−g states in the conjugated polyenes C8H10 to C24H26 .

experimental numbers in brackets are from measurements on the substituted

polyene, spheroidene [29].

We have also plotted the DMRG-CASSCF excitation energies of the polyenes in

Fig. 4.2.

We see that while our complete π-valence active space DMRG-CASSCF calcu-

lations generally over-estimate the excitation energies, they reproduce the cor-

rect experimental ordering of the lowest excited states with the exception of

the missing 1B+
u state (the HOMO-LUMO excitation), which should lie below

the 3A−g in the shorter polyenes such as C8H10. If we perform a state-averaged

DMRG-CASSCF with 5 states in C8H10, we find that the 1B+
u state lies imme-
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Figure 4.3: Converged DMRG sweep energies in Hartrees vs number of
orbital optimization macro iterations in C20H22.

diately above the 3A−g . This may seem strange given that CASSCF is generally

believed to yield qualitatively correct electronic structure, but it reflects the wis-

dom from earlier studies on butadiene that σ-π correlation is very strong in

the 1B+
u state and must be included to obtain the correct balance between Ry-

dberg and valence characters [10, 12, 47, 48]. Comparing with the calculations

of Kurashige et al. [4], which despite having an incomplete valence active space

include dynamic σ-π correlation through MRMP perturbation theory [49], fur-

ther indicates that σ-π correlation would also lower the excitation energies of

our other excited states.

From the variation of the CASSCF and the CASCI excitation energies we can

see the effect of the relaxation energy for each excitation (see Fig. 4.3 and Table
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4.1). The effect is least predominant in the ground state and most in the first

excited 21A−g state. Thus the orbital rotation greatly improves the first excitation

energy 1A−g → 2A−g . However, the 1A−g → 1B−u is still greatly over-estimated,

thus, indicating the need for inclusion of dynamic correlation.

Effect of active space

To better understand the effect of using a complete π valence space on the excita-

tion energies, we have performed some small benchmark CASSCF calculations

on C12H14 with 4− 12 active orbitals. These results are presented in Fig. 4.4.

Figure 4.4: Change in CASSCF energies of the low-lying states of C12H14

as a function of increasing the active space from (4,4) to (12,12)
(i.e. complete valence active space).

As can be seen, there is a very strong dependence of the excitation energies on
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Figure 4.5: DMRG-CASSCF excitation energies for the low-lying singlet
excited states of polyenes ranging from C12H14 to C24H26. The
excitation energies are plotted against 1/(2n+ 1) where n is the
number of double bonds. The ratio of the slopes for the dif-
ferent states are found to be 2:3.0:3.8 as compared to 2:3.1:3.8
experimentally. Inset: The same plot for the CASCI-MRMP en-
ergies from Kurashige et al. (Ref. [4]). As can be seen, these
show a different and less linear dependence on 1/(2n+ 1).

the size of the active space, and even the order of the excitations changes. Thus,

while an incomplete valence active space can yield an excited state ordering in

better agreement with experiment, one is tempted to argue that it does not do

so for the right reason.
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Linear 1/(2n+ 1) fit

In Fig. 4.5, we plot our DMRG-CASSCF excitation energies as a function of

the inverse chain length of the polyenes. Also shown (as an inset) is the same

plot for the excitation energies obtained by Kurashige et al. [4]. It is easy to

show that in a finite Hückel model with n sites, the excitation energies have

a sin(kπ/2(2n + 1)) chain length dependence, where k is a quasi-momentum

number that labels the excitation. For long chains, this implies an asymptotic

linear dependence on the inverse chain length 1/(2n + 1). Tavan and Schulten

conjectured that this asymptotic behavior held also in interacting systems, and

presented evidence from MRD-CI calculations on short-chain Hubbard (n up

to 7) and Pariser-Parr-Pople models (n up to 8) to support the conjecture [31].

The experimental resonance Raman excitation profiles from Sashima et al. [25]

and Furuichi et al. [29] were also approximately fitted to the same inverse chain

length behavior, although only over a small range of n = 9 − 13. We see from

our results that while the 2A−g and 1B−u excitation energies fit the asymptotic

1/(2n + 1) behavior well, the 3A−g state shows curvature more indicative of the

sinusoidal dependence expected when k ∼ 2n + 1. This is consistent with in-

terpreting the 3A−g as an excitation labeled by a larger quasi-momentum than

2A−g . Interestingly, the excitation energies of Kurashige et al. show quite dif-

ferent chain-length dependence, with all three states showing much stronger

curvature when their excitation energies are plotted against 1/(2n + 1) in Fig.

4.5 (inlay). Fitting our excitation energies for C16H20, C20H24, C24H26 (n = 8− 12)

to the asymptotic dependence 1/(2n+ 1), we obtain slopes of 27.67eV , 41.34eV ,

52.63eV for the 2A−g , 1B−u , 3A−g excitations, in reasonable agreement with the

experimental slopes of 31.39eV , 49.07eV and 59.63eV . The ratio of the slopes

for the different states is found to be 2 : 3.0 : 3.8 as compared to 2 : 3.1 : 3.8
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experimentally.

Nature of the excited states

Table 4.2: Single particle nature of the polyene excitations (in %). For a
given excited state (e.g. 2A−g ), the excitation weight of the tran-
sition i → j is given by [〈1A−g |a†iaj|2A−g 〉]2. The total excitation
weight is the sum of weights for all transitions; 100% indicates
that the given excited state corresponds entirely to single exci-
tations from the ground state. The transition labels n → m′

are interpreted as follows: 1, 2, 3 . . . denote HOMO, HOMO-
1, HOMO-2 . . . natural orbitals, while 1′, 2′, 3′ denote LUMO,
LUMO+1,LUMO+2 natural orbitals. As the polyenes increase in
length, the total weight of the single excitations in the low-lying
states becomes very small, < 16%.

State Excitation No. of conjugated double bonds

weight 4 6 8 10 12

2A−g 2→ 1′ 10.9 8.6 6.6 5.3 4.3

1→ 2′ 6.7 5.9 4.8 4.0 3.3

Total 20.0 18.0 15.4 13.5 12.1

1B−u 3→ 1′ 14.5 10.2 7.9 6.3 5.2

1→ 3′ 7.0 5.6 4.6 3.9 3.3

Total 25.3 21.8 18.6 16.3 14.7

3A−g 4→ 1′ 21.3 12.8 9.3 7.1 5.6

1→ 4′ 8.2 6.0 4.7 3.8 3.1

Total 32.9 25.0 20.9 18.0 15.9

From the one particle transition density matrices we can analyze the single-

particle character of our excitations. Given the density matrix element wij =
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〈g.s.|a†iaj|excited〉 where i, j are natural orbitals in the ground state, we define

the weight of the i → j excitation as w2
ij . The total single excitation weight is

then
∑

ij w
2
ij . In Table 4.2 we give the largest excitation weights and the total sin-

gle excitation weights for the low-lying polyene excited states as a function of

the number of conjugated bonds. We see the 2A−g , 1B−u and 3A−g states are dom-

inated by many-particle excitations from the ground state (i.e. they have small

single-particle excitation weights) and indeed the single-particle character of the

excitations decreases even more as the chain-length increases. Remarkably, in

C24H26 only < 16% of the excitation character of these states can be considered

to be of a single-particle nature! These results are consistent with the analysis

by Wormer and Dreuw using coupled cluster and propagator techniques [50].

Natural Orbital basis

Natural orbitals are defined as the orbitals in the basis of the eigenvectors |φi〉
of the one particle reduced density matrix, ρ

ρ =
∑
i

ρii|φi〉〈ψi|. (4.1)

In this basis, since the density matrix is diagonal, there are minimal interaction

between the orbitals and thus, the orbital rotation is fastest converging in this

basis. The natural orbitals of C8H10 after the DMRG-CASSCF is converged are

shown as a representative example.
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Figure 4.6: Natural Orbitals of C8H10.

4.4.2 Beta-Carotene

Carotenoids, the family of substituted polyenes, are the primary light harvest-

ing pigments in the LH2 complex. Light harvesting proceeds by the absorption

of visible light (in the green region) by the carotenoid molecules to form the

singlet excited carotene (by the excitation of an electron from the ground state

S0 to optically active excited state S2), followed by a fast internal conversion

into an intermediate dark S1 state from where the energy is transferred to the

chlorophyll or bacteriochlorophyll molecule for photosynthesis. However, this

rather simple three state model of light harvesting by carotenoid molecules was

seriously questioned with the observation of various other excited states (Sx,

S∗ etc) [25–30] in between S1 and S2 states. Many essential questions remain
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Figure 4.7: s-cis β-carotene.

unanswered as to the precise mechanism of this energy transfer [32–34, 50–53].

While the absorption of light places the carotenoid in the dipole allowed excited

state, there can be a fast internal conversion to the aforementioned dark states

of the polyene backbone, and thus multiple pathways for energy transfer to the

bacteriochlorophyll.

We have chosen to study s-cis β-carotene (see Fig. 4.7) as a representative

carotenoid. It is the dominant natural conformer although the all-trans form

is also studied. Crystalline β-carotene has Ci symmetry with a conjugated back-

bone that lies almost entirely on the xy plane except for end groups which are

twisted out of plane [54, 55]. (In the biological setting, carotenoid pigments usu-

ally adopt a twisted configuration in the conjugated backbone[56, 57]). There

are 11 conjugated double bonds in the backbone. Our study employed the same

calculation procedure as described in Sec. 4.3 with the exception that we used

a 6-31G basis set in the DMRG-CASSCF calculation due to the large size of the

molecule. State-averaged DMRG-CASSCF calculations were performed with 4

states and a (22,22) complete π-valence space, in the manner described in Sec.

4.3.
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Table 4.3: DMRG-CASSCF energies, symmetries, and oscillator strengths
for the lowest lying singlet excited states in β-carotene with the
complete π-valence (22,22) active space. Total energies in Eh, ex-
citation energies in eV , oscillator strengths in a.u.. The estimated
error of the DMRG-CASSCF energies from the exact CASSCF
energies in the same active space is less than 0.1mEh. Oscillator
strengths are for the ground-state, excited state transition.

Symmetry DMRG-CASSCF Excitation Oscillator Expt

total energy energy Strength

1A−g −1546.914545

2A−g −1546.804503 2.99 Forbidden 1.81 1

1B−u −1546.781125 3.63 0.2025 2.05 1

3A−g −1546.755822 4.31 Forbidden (2.22) 2

1[26].
2Excitation measured for lycopene [29].

In Table 4.3 we present the energies, symmetries, and oscillator strengths for the

ground state and first three excitations in β-carotene. We reproduce the state

ordering 1A−g < 2A−g < 1B−u < 3A−g as assigned by Furuichi et al. [29] (note that

the 1B+
u which does not appear in our calculation indeed lies above the 3A−g

state in this molecule). However, just as in the polyenes, the excitation energies

from the DMRG-CASSCF procedure are generally over-estimated in compari-

son with experiment, most likely due to the lack of σ-π dynamic correlation.

A question that has received some attention in the literature is the effective

conjugation length of carotenoids, since the presence of substituents and non-

planar geometries are expected to modify this from the naive value deduced

from the Lewis structure [58]. Formally, β-carotene has 11 double bonds in the
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Figure 4.8: Polyene and carotene excitation energies vs. number of dou-
ble bonds: the β-carotene excitation energies when fitted to the
polyene excitation energies give an effective conjugation length
of 9.5− 9.7.

polyene backbone, but by comparing the excitation energies of the polyenes

with our β-carotene excitation energies, we can estimate a reduced conjugation

length of 9.5-9.7 bonds, which is very close to the experimental estimate of 9.7 of

Onaka et al. [28]. This reduced conjugation length results from the twist in the

carotene end-groups. In Fig. 4.9 we plot the DMRG-CASSCF natural orbitals

corresponding to the HOMO, HOMO-1, LUMO, and LUMO+1. As can be seen,

there is very little density in these orbitals on the carotene end-groups, and this

is consistent with our reduced effective conjugation length.
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(a) Lowest Unoccupied Natural Orbital + 1

(b) Lowest Unoccupied Natural Orbital

(c) Highest Occupied Natural Orbital

(d) Highest Occupied Natural Orbital -1

Figure 4.9: Natural orbitals of β carotene corresponding to the HOMO-
1 through LUMO+1 states. These orbitals participate in the
lowest-lying singlet excitations in β carotene and contain little
density on the nonplanar end groups.
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4.5 Conclusion

In this chapter, we have described the application of DMRG-CASSCF to low-

lying excitations of polyenes from C8H10 to C24H26 as well as light harvesting

pigment β-carotene. Thus, we have used DMRG-CASSCF with up to (24,24)

active space. The calculations have reproduced the state ordering of the dark

states that have been recently observed by resonance Raman studies. However,

since we have not considered the dynamic σ − π correlation which plays a sig-

nificant role in the optically active HOMO-LUMO 1B+
u transition, the excitation

energy for this state is overestimated.

With the application of DMRG-CASSCF to linear polyenes and carotenoids, we

conclude the static correlation part of the thesis. To include the dynamic correla-

tion, we will consider perturbative as well as canonical transformation methods

in the next few chapters.
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CHAPTER 5

DYNAMIC CORRELATION - CUMULANT APPROXIMATED

N -ELECTRON VALENCE PERTURBATION THEORY

(Some parts of this chapter are taken from Ref. [1].)

5.1 Dynamic correlation

Dynamic correlation, as defined in Chapter I, is the electronic correlation that

arises due to the cusp like nature of the wavefunction at the limit of electron

electron coalescence. Therefore, it is very slowly convergent with the number of

basis functions. Dynamic correlation is generally a quantitative correction to the

qualitatively correct static correlated wave-function, i.e. the effect of dynamic

correlation to the chemically important correlations is relatively lower than the

effect of static correlation. However, the inclusion of dynamic correlation is

crucial to obtain physical observables with experimental accuracy.

The dynamic correlation methods that can be used for multireference problems

can mainly be divided into three groups - perturbative methods, multirefer-

ence configuration interaction methods and the multireference coupled cluster

(MRCC) [2–4] methods.
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5.2 Cumulant approximated n-electron valence perturbation

theory

Among the dynamic correlation methods for multireference problem, the con-

figurational interaction methods are the most accurate but very expensive com-

putationally. The MRCC methods lack the simple structure and accuracy of the

single reference coupled cluster methods.

Thus, considering that the dynamic correlation is generally a small quantita-

tive correction (to the chemically relevant observables) and the need for a lower

computationally scaling method, perturbation theory, even at the second-order

level, can be viewed as a practical and easiest tool to handle this kind of correla-

tion. Perturbation theory on top of an arbitrary set of configurations in the va-

lence space is known as multireference perturbation theory. The most popular

forms today are the (essentially equivalent) complete active space second order

perturbation theory (CASPT2) [5] and multireference Møller Plesset perturba-

tion theory (MRMP) [6, 7] and more recently, n-electron valence perturbation

theory (NEVPT2) [8].

Despite the many predictive successes of multireference perturbation theory,

such methods face a number of limitations. A severe one is the high com-

putational cost as a function of the number of active orbitals, which prohibits

their application to large molecules with many active orbitals. For example,

current implementations of NEVPT2 are limited to 14 active orbitals, but much

larger active spaces are accessible through methods such as the density matrix

renormalization group, [9–16], restricted-active-space self-consistent field, [17],

or generalized valence bond methods [18]. Improved algorithms (in particu-
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lar, efficient choices of when to employ internal contraction [19]) ameliorate but

do not remove the sharp increase in complexity of the multireference perturba-

tion theory as the number of active orbitals and determinantal configurations

increases.

In this chapter, we explore the possibility of constructing approximate forms of

multireference perturbation theory which are not at the outset limited to small

active spaces. We take as our starting point the n-electron valence perturba-

tion theory in its strongly contracted form (SC-NEVPT2), which is one of the

simplest (and yet remarkably successful) multireference perturbation theories

available [20]. The basic idea of the work is quite simple. The complexity

of multireference perturbation theories can be understood to arise from their

dependence on contributions from high-order (three- and four-body) density

matrices involving the active orbitals. We will explore the possibility of ap-

proximating these density matrices via the one- and two-body density matrices

using cumulant type expansions, removing any dependence on any more com-

plex quantities. Naturally, this will introduce a degree of error, and our aim is

to establish how tolerable such an error really is. To be successful, the error in-

troduced by such cumulant type approximations should not be larger than the

intrinsic error of second-order multireference perturbation theory.

Cumulant approximations have been employed by many different workers in

electronic structure [21–25]. In earlier work from our group, cumulant and op-

erator decompositions have played a role in the formulation of the canonical

transformation method, an exponential based description of dynamical correla-

tion for multireference problems [26–28]. Unlike the stated objective of reduced

density matrix methods, we are not trying here to use the cumulants as the pri-
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mary variational descriptors of the electronic structure; instead, they are intro-

duced as computational approximations to quantities that arise naturally in the

multireference perturbation theory. Nonetheless, while our goals and presenta-

tion are different from some works in the reduced density matrix area, some dif-

ferences can be viewed as simply matters of terminology and philosophy (e.g. is

multireference perturbation theory to be described as a four-body density ma-

trix energy functional - to be approximated as a two-body density matrix energy

functional, or as an internally contracted wavefunction based method where cu-

mulants are used to approximate certain intermediates) and so there are many

natural connections.

5.3 Theory

5.3.1 Strongly contracted n-electron valence perturbation the-

ory

We present a brief review of second order n-electron valence perturbation the-

ory (NEVPT2). Our presentation closely follows that given in Ref. [8, 29].

NEVPT2 is a second-order Rayleigh-Schrödinger perturbation theory, which

differs from other kinds of multireference perturbation theory such as CASPT2

in its choice of zeroth order Hamiltonian and the representation of the first order

wavefunction. Consider the zeroth order wavefunction Ψ[0] (with zeroth order

energy E[0]) which is the solution of some two-electron Hamiltonian Hact in a

CASCI problem (typically obtained through a CASSCF calculation). We first es-
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tablish some notations. We shall refer to core orbitals (doubly occupied in all

CASCI configurations), active orbitals (variable occupancy in all CASCI con-

figurations) and virtual orbitals (unoccupied in all CASCI configurations) (see

Chapter I). Core orbitals will be associated with labels i, j, k . . ., active orbitals

with labels a, b, c . . ., and virtual orbitals with labels r, s, t . . .. The zeroth order

Hamiltonian in NEVPT2 is the Dyall Hamiltonian [30], which consists of Fock

type operators in the core and virtual spaces and the CASCI Hamiltonian Hact

in the active space, i.e.

H [0] = fcore +Hact + fext (5.1)

fcore =
∑
i

εia
†
iai + C

Hact =
∑
ab∈act

heff
aba
†
aab +

∑
abcd∈act

vabcda
†
aa
†
bacad

fext =
∑
r

εra
†
rar (5.2)

H [0]Ψ[0] = E[0]Ψ[0] (5.3)

(Note that the one-body part of Hact includes the Coulomb field from the core

electrons, i.e. heff
ab = hab+

∑
i∈core(ii|ab)− (ia|ib) and C is a constant 2

∑
i∈core hii+∑

ij∈core 2(ii|jj) − (ij|ij) −∑
i∈core εi chosen so that the expectation value of the

Dyall Hamiltonian with Ψ[0] is the CASCI energy. The core and virtual orbitals

are taken to be canonical orbitals of Fock operators defined using CASCI one-

particle density matrices).

From H [0], we define a Rayleigh-Schrödinger series in terms of the perturbation

V = H − H [0]. It is seen that E[1] vanishes since 〈Ψ[0]|H|Ψ[0]〉 = 〈Ψ[0]|H [0]|Ψ[0]〉.
The first non-vanishing contribution to the energy is thus at 2nd order, which

requires the first-order correction to the wavefunction Ψ[1]. In the so-called

strongly contracted NEVPT2 (SC-NEVPT2) which is of interest here, Ψ[1] is ex-
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panded in terms of a highly restricted set of “perturber” functions. These are clas-

sified into eight spaces, (0), (+1), (−1), (+2), (−2), (+1)′, (−1)′, (0)′ which differ

by the pattern of excitations involving core and virtual orbitals, and the num-

ber of particles or holes introduced into the active space. (The number (+1) for

example, denotes 1 particle introduced into the active space. Note also that we

are using round brackets to label these eight spaces, whereas square brackets

are used to denote orders of perturbation theory).

The perturber functions in each of the eight spaces are contracted sets of deter-

minants, where the contraction coefficients are defined from the perturbation V .

We first divide V into eight components which connect the reference wavefunc-

tion and the eight different spaces

V =
∑

i<j,r<s

V
(0)
ijrs +

∑
i<j,r

V
(+1)
ijr

+
∑
r<s,i

V
(−1)
rsi +

∑
i<j

V
(+2)
ij

+
∑
r<s

V (−2)
rs +

∑
i

V
(+1)′

i

+
∑
r

V (−1)′

r +
∑
ir

V
(0)′

ir , (5.4)

where the eight component perturbations are defined through (using the com-
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pact second quantized notation e.g. arsij = a†ra
†
saiaj),

V
(0)
ijrs = 〈rs||ij〉arsij

V
(+1)
ijr =

∑
a

〈ra||ji〉araij

V
(−1)
rsi =

∑
a

〈rs||ia〉arsai

V
(+2)
ij =

∑
a<b

〈ab||ji〉aabij

V (−2)
rs =

∑
a<b

〈rs||ba〉arsab

V
(+1)′

i =
∑
a<b,c

〈ab||ic〉aabci +
∑
aj

〈aj||ij〉aajji +
∑
a

〈a|h|i〉aai

V (−1)′

r =
∑
a,b<c

〈ra||cb〉arabc +
∑
aj

〈rj||aj〉arjja +
∑
a

〈r|h|a〉ara

V
(0)′

ir =
∑
ab

〈ra||ib〉arabi +
∑
j

〈rj||ij〉arjji + 〈r|h|i〉ari . (5.5)

Note that orbital labels of the component perturbations refer to only inactive

(core or virtual) orbitals; all active indices are summed over.

The perturber functions are then generated by applying each of the component

perturbations to the zeroth order wavefunction and normalizing. Thus the eight

classes of perturber functions are

Φ
(0)
ijrs =

1√
N

(0)
ijrs

V
(0)
ijrsΨ

[0]

Φ
(+1)
ijr =

1√
N

(+1)
ijr

V
(+1)
ijr Ψ[0] (5.6)

. . .

where we have introduced the norm e.g. N (+1)
ijr = 〈Ψ[0]|V (+1)†

ijr V
(+1)
ijr |Ψ[0]〉. Note

that every perturber function is orthogonal to every other perturber function.

Consequently, in contrast to internally contracted CASPT2 or partially con-
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tracted NEVPT2, there is no need for diagonalization of the overlap matrix be-

tween perturber functions. This feature of the strongly contracted theory is ad-

vantageous if we want to perform calculations with a large active space (e.g.

with DMRG or another method), where the overlap diagonalization may prove

to be a bottleneck.

Now that we have defined the perturber functions, we can expand the first order

wavefunction in terms of this restricted basis

Ψ[1] =
∑

i<j,r<s

c
(0)
ijrsΦ

(0)
ijrs +

∑
i<j,r

cijrΦ
(+1)
ijr + . . . (5.7)

This defines the strongly-contracted NEVPT2 approximation to the first order

wavefunction. The coefficients and energy contribution can be obtained us-

ing the the standard Rayleigh-Schrödinger expressions, evaluated in sum-over-

states form. Taking the (+1) subspace as an example, (and dropping the (+1)

labels below for convenience), we have

cijr = −〈Φijr|V |Ψ〉
Eijr − E[0]

= −〈Φ
(+1)
ijr |V (+1)

ijr |Ψ〉
Eijr − E[0]

= −
√
Nijr

Eijr − E[0]
(5.8)

E[2] = −
∑
i<j,r

Nijr

Eijr − E[0]
(5.9)

where Eijr is the zeroth order energy of the perturber function i.e.

〈Φ(+1)
ijr |H [0]|Φ(+1)

ijr 〉.
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Table 5.1: Highest rank reduced density matrices appearing in the en-
ergy contributions for the eight subspaces of NEVPT2. The
energy expression involves a numerator and denominator (see
Eqn. 5.9); the highest rank reduced density matrices contribut-
ing to the numerator and denominator separately are shown in
columns 3 and 4. Active space density matrices do not con-
tribute to the energy of the (0) space.

Subspace All Num. Denom.

(0) n.a. n.a. n.a.

(+1) 2 1 2

(−1) 2 1 2

(+2) 3 2 3

(−2) 3 2 3

(+1)′ 4 3 4

(−1)′ 4 3 4

(0)′ 3 2 3

5.3.2 Cumulant approximated strongly contracted NEVPT2

Evaluating matrix elements in NEVPT2 for the coefficients and for the energy

contributions is not a simple matter computationally. This can be understood

because matrix elements involving perturber functions that allow active orbital

relaxation (i.e. semi-internal type excitations in (+1)′, (−1)′ spaces, of the form

arcab|Ψ〉) involve long strings of active orbital operators. We can examine the

complexity of NEVPT2 by reducing all matrix element expressions to traces of

reduced density matrices with appropriate integrals. Depending on the sub-

space in NEVPT2, different density matrices are involved (see Table 5.1) but in

the worst case (for the (−1)′, (+1)′ subspaces), just as in other multireference
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perturbation theories such as CASPT2, four-particle reduced density matrices

formally appear. This greatly increases the complexity of these multireference

perturbation theories relative to the single-reference counterpart, Møller-Plesset

theory. For example, the computational scaling of the NEVPT2 implementation

described in Ref. [29] isO(n9
act) to construct the intermediate expressions in sub-

spaces (+1)′, (−1)′. This presents a fundamental limitation if we wish to use the

NEVPT2 method in conjunction with a reference function obtained in a large

active space. As noted in the early articles on NEVPT2 [8], the theory is gen-

eral and can in principle be combined with non-CASCI references (such as a

GVB reference, or a DMRG reference) which are not limited to the small active

spaces of CASCI.

One way to reduce the complexity of NEVPT2 theory (and multireference per-

turbation theories in general) is to remove the explicit or implicit dependence

of the energy expressions on high particle density matrices. (By implicit de-

pendence, we refer to such algorithms, often used in CASPT2 implementations,

where the higher particle density matrices are not explicitly constructed, and

instead where their contributions are computed directly on the fly using the

determinantal expansion of the CASCI wavefunction). Ideally we would hope

that no quantities more complex than the one- and two-particle active space

density matrices should appear. This is achieved in the following cumulant ap-

proximated strongly contracted NEVPT2 (cu-SC-NEVPT2) and cumulant with

diagonals approximated strongly contracted NEVPT2 (cud-SC-NEVPT2) meth-

ods.

cu-SC-NEVPT2: In the cu-SC-NEVPT2 approximation, we use cumulant ap-

proximations of the 3- and 4-particle density matrices in terms of the 1- and
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2-particle density matrices. For the density matrices, we use the notation

γabcdef = 〈aabcdef〉. These approximations are then given as

γabcdef ⇒
∑

(−1)xγadγ
bc
ef (9 terms)− 2

∑
(−1)xγadγ

b
eγ

c
f (6 terms)

= γadγ
bc
ef − γaeγbcdf + γafγ

bc
de

− γbdγacef + γbeγ
ac
df − γbfγacde + γcdγ

ac
ef − γceγacdf + γcfγ

ac
de

− 2(γadγ
b
eγ

c
f − γadγceγbf + γbdγ

c
eγ

a
f − γbdγaeγcf

+ γcdγ
a
eγ

b
f − γcdγbeγaf ) (5.10)

γabcdefgh ⇒
∑

(−1)xγabefγ
cd
gh(18 terms)− 2

∑
(−1)xγaeγ

b
fγ

c
gγ

d
h(24 terms). (5.11)

Note that in the case of the four-particle density matrix we have not written out

all terms explicitly, but these can be obtained by attaching appropriate signs to

the additional contributions arising from permutation of indices: this is denoted

by the parity factor (−1)x which takes the appropriate +1,−1 sign according

to the permutation. To obtain the cu-SC-NEVPT2 energy and coefficients, we

simply substitute the approximate 3- and 4-particle density matrices as defined

above into the matrix element expressions in NEVPT2 (e.g. as defined in the

appendix of Ref. [29]). Note that the contributions of subspaces (0), (+1), (−1)

are not affected by the cumulant approximation.

cud-SC-NEVPT2: To improve on the cumulant approximated strongly-

contracted NEVPT2, we have investigated a better approximation to the 3- and

4-particle density matrices. In a typical basis, the largest elements of the 3-

particle and 4-particle density matrices occur along the diagonals and thus it

would appear most important to include information about these elements first.

This can be done by incorporating the exact 3- and 4-particle diagonal elements

of the density matrices. This does not increase the complexity of the theory

over that of cu-SC-NEVPT2 since the number of 4-particle diagonal elements
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(from which the 3-particle diagonals are readily obtained) is n4
act, which is the

same number of elements as in the two-particle density matrix. We can also in-

corporate some additional information of the same complexity concerning the

off-diagonal elements of the 3- and 4-particle density matrices, as long as we

consider subsets of elements which are labeled by 4 indices or fewer. Thus, in

the cumulant with diagonals approximated SC-NEVPT2 theory, we construct

the 3-particle density matrix via the cumulant approximation Eqns. 5.10 and

5.11 but then replace selected diagonal and off-diagonal terms with their exact

values, in particular elements γabcabc , γ
abc
bac , γ

abc
cab . . .. In the case of the 4-particle den-

sity matrix, since we now have explicit information from the 3-particle density

matrix beyond the cumulant approximation, to be consistent we construct the

4-particle density matrix from its cumulant expansion in terms of 1, 2, and 3-

particle density matrices where the 3-particle density matrix has been corrected

as above. This expansion is given by

γabcdefgh =
∑

(−1)xγaeγ
bcd
fgh(16 terms)

+
∑

(−1)xγabefγ
cd
gh(18 terms)

− 2
∑

(−1)xγaeγ
b
fγ

cd
gh(72 terms)

+ 6
∑

(−1)xγaeγ
b
fγ

c
gγ

d
h(24 terms). (5.12)

From this cumulant approximated 4-particle density matrix, we then replace

the following four-indexed diagonal and off-diagonal elements with their exact

values, γabcdabcd , γ
abcd
bacd , γ

abcd
cabd . . ..

In our implementation the 4-particle density matrix is not kept in memory due

to earlier precontraction with integrals of the 1-, 2-, and 3- particle density ma-

trices used in the cumulant expansion, which lowers the overall computational

scaling.
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5.3.3 False intruders from cumulant approximations

Intruder states are perturber states (i.e. excited from the reference) which are

near degenerate with the reference configuration with respect to the zeroth or-

der Hamiltonian (but are not so with the true Hamiltonian). They give rise

to a zeroth order problem which appears near-degenerate when no such near-

degeneracy exists in the real system and are a common problem in multiref-

erence perturbation theories such as CASPT2. NEVPT2 theory was developed

in part to address the problem of intruder states. The use of the two-electron

Hamiltonian in the active space (via the zeroth order Dyall Hamiltonian) en-

sures a better estimate of the relative energies of the perturber states and refer-

ence state, reducing the risk of possible intruders.

However, in the cumulant based approximations that we have introduced, in-

truder states can re-appear. This is because the energy denominators in the

NEVPT2 theory are no longer evaluated exactly, and the errors of the cumulant

approximations may lead to falsely small denominators. We refer to intruders

that arise in this way as “false intruders”. Consider, for example, the expression

for the second-order energy in the (−1)′ subspace. Rewriting Eqn. (5.9) using

the fact that HactΨ
[0] = E[0]Ψ[0], we have

E[2] = −
∑
r

Nr

Er − E[0]

= −
∑
r

Nr

εr − 〈Ψ[0]|V (−1)′†
r [HD, V

(−1)′
r ]|Ψ[0]〉

. (5.13)

Both the numerator and the denominator are approximated, the numerator

requiring a 3-particle density matrix and the denominator (by virtue of the

〈Ψ[0]|V (−1)′†
r [HD, V

(−1)′
r ]|Ψ[0]〉 term) requiring a four-particle density matrix. We

can imagine two kinds of errors introduced by the cumulant approximation to
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the denominator. In the first case, the denominators may all simply be poor

e.g. somewhat shifted, but no divergences occur. In the second case, the the cu-

mulant approximation to 〈Ψ[0]|V (−1)′†
r [HD, V

(−1)′
r ]|Ψ[0]〉 ≈ εr and a false intruder

appears, with a corresponding divergent contribution to the energy.

To ameliorate the effects of possible false intruders, we have incorporated level

shifts into our cu-SC-NEVPT2 and cud-SC-NEVPT2 methods. We use imagi-

nary level shifts as investigated by Forsberg and Malmqvist [31]. When using

the level shift, we have also evaluated the cumulant approximated NEVPT2 en-

ergies using the level-shift corrected energy expression of Ref. [31], which is

designed to minimize the effect of the level-shift when there are no intruder

states. The correction corresponds to evaluating the second-order energy from

the Hylleraas functional with the first-order wavefunction coefficients deter-

mined with the level-shift. Note that when using level-shifts with cumulant

approximated SC-NEVPT2 we need not apply the level-shift to every subspace,

only the subspace in which the false intruder is observed. In the tables and fig-

ures, we list the value of the level-shift in parentheses e.g. cu-SC-NEVPT2(0.2)

means the value of the applied imaginary level shift was 0.2i a.u..

5.4 Test-cases

We have incorporated the cu-SC-NEVPT2 and cud-SC-NEVPT2 approximations

into the existing NEVPT2 implementation in the development version of DAL-

TON [32]. To assess the accuracy of these approximations, we have studied a

number of benchmark quantum chemistry problems: the singlet-triplet gap of

CH2 and SiH2, the nitrogen and chromium dimer potential energy curves, and
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excitation energies in short polyenes. Unless otherwise specified, benchmark re-

sults for ordinary SC-NEVPT2 were obtained with DALTON, while benchmark

results for CASSCF, FCI, and CASPT2 were obtained with MOLPRO [33]. (In the

latter case the “rs2” variant was used in all cases except for the polyenes, where

the “rs2c” variant” was used).

5.4.1 Test-case I: Singlet-triplet gaps in CH2 and SiH2

As a first test of the accuracy of the cumulant approximated SC-NEVPT2 meth-

ods, we calculated the ground-state singlet-triplet splittings in CH2 and SiH2.

These are small quantities and thus very sensitive to any errors made in the dif-

ferential correlation between the singlet and triplet states. The same systems

have been used in earlier studies to benchmark the accuracy of multireference

perturbation theory [20].

For CH2, the geometry was taken from Ref. [34] and the basis set (double-zeta

with polarization quality) was also taken from Ref. [34]. (Note that different

polarization functions are used for the singlet and triplet states for CH2). The

CASSCF active space consisted of 2a1, 3a1, 4a1, 1b1, 2b1, and 1b2 orbitals. The

1a1 orbital was a core orbital (always doubly occupied) in the CASSCF calcu-

lation and was treated as a frozen (i.e. an uncorrelated orbital) in all NEVPT2,

CASPT2, and FCI calculations. The energies of the 1A1 and 3Bu states were ob-

tained at the state-specific CASSCF level, and these states were subsequently

used in the NEVPT2 and CASPT2 calculations.

For SiH2, the geometry was taken from Ref. [35] and the basis set (which was

of double-zeta with polarization quality) was also taken from Ref. [35]. The
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Table 5.2: Ground-state singlet-triplet gap in CH2 (see text for basis and
geometry). The values in brackets with cu-SC-NEVPT2 and
cud-SC-NEVPT2 denote the imaginary level shift in units of a.u.
used.

Method Singlet energy/Eh Triplet energy/Eh Gap kcal/mol

FCI -39.027183 -39.046229 11.95

CASSCF -38.945529 -38.965954 12.82

CASPT2 -39.012184 -39.037061 15.61

SC-NEVPT2 -39.006707 -39.028498 13.67

cu-SC-NEVPT2(0.1) -39.003499 -39.042508 24.48

cud-SC-NEVPT2(0.1) -39.006470 -39.029253 14.30

CASSCF active space consisted of 4a1, 5a1, 6a1, 2b1, 3b1, 2b2 orbitals, with all

lower orbitals held as core orbitals in the CASSCF calculation, and frozen in

subsequent NEVPT2, CASPT2, and FCI calculations. The energies of the 1A1

and 3Bu states were obtained at the state-specific CASSCF level, and these states

were subsequently used in the NEVPT2 and CASPT2 calculations.

Discussion: As can be seen from tables 5.2, 5.3, the pure cumulant based cu-SC-

NEVPT2 result is poorly balanced between the singlet and triplet states, while

the cumulant with diagonals cud-SC-NEVPT2 approximation performs signifi-

cantly better. In fact, the cu-SC-NEVPT2 gaps are worse than the CASSCF gaps!

The cud-SC-NEVPT2 gaps are of similar quality (relative to the FCI result) to

the standard SC-NEVPT2 or CASPT2 singlet-triplet gaps.
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Table 5.3: Ground-state singlet-triplet gap in SiH2 (see text for basis and
geometry). The values in brackets with cu-SC-NEVPT2 and
cud-SC-NEVPT2 denote the imaginary level shift in units of a.u.
used.

Method Singlet energy/Eh Triplet energy/Eh Gap kcal/mol

FCI -290.110206 -290.082219 17.50

CASSCF -290.042910 -290.016811 16.38

CASPT2 -290.095403 -290.071351 15.09

SC-NEVPT2 -290.088824 -290.062222 16.69

cu-SC-NEVPT2(0.1) -290.083694 -290.072706 6.90

cud-SC-NEVPT2(0.1) -290.089888 -290.064103 16.18

To better understand the origin of the errors in the cumulant approximated

methods, we can analyze the contributions to the errors from each subspace

of the NEVPT2 calculations, which we do now for the CH2 singlet and triplet

states. Since all the core orbitals are frozen (uncorrelated) in the CH2 calcula-

tion, all correlation energies in subspaces that involve excitations to and from

core orbitals vanish. This means that only subspaces (−2) and (−1)′ contribute

to the correlation energy. We compare the first-order wavefunction norm and

energy contributions of these subspaces for the singlet and triplet states and the

various SC-NEVPT2 approximations in Table 5.4.

We see that in both cu-SC-NEVPT2 and cud-SC-NEVPT2, the first-order wave-

function norm and second-order energy contribution of the (−2) space is well

approximated; errors in the correlation energy for this space are less than 0.5

mH. From table 5.1 we recall that the (−2) subspace requires a 3-particle cumu-

lant approximation in the denominators appearing in the NEVPT2 coefficient
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Figure 5.1: Energy denominators for respective virtual indices in the (−1)′

subspace for the 3B1 state of CH2 using SC-NEVPT2, cu-SC-
NEVPT2, cud-SC-NEVPT2.

and energy expressions. The largest errors arise in the (−1)′ space. In partic-

ular, the cu-SC-NEVPT2 correlation energy in this space for the triplet state is

over-estimated by -14 mEh, giving rise to the spuriously large singlet-triplet

gap. Consistent with this is the error in the wavefunction norm in this sub-

space, which is more than twice the correct norm. From table 5.1 we recall that

the (−1)′ subspace requires both 3- and 4-particle cumulant approximations, and

is thus expected to be associated with larger errors.

We can further break up the error contribution by the error in the numerator

and denominator of the sum-over-states expression for the energy Eqn. 5.13.

Although the numerators that require at most the 3-particle density matrix are

approximated well using the cumulant approximation, the main source of error

lies in the values of the denominators that are usually too small. In Fig. 5.1
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Figure 5.2: Energy contributions for respective virtual indices in the (−1)′

subspace for the 3B1 state of CH2 using SC-NEVPT2, cu-SC-
NEVPT2, cud-SC-NEVPT2.

we plot (as a function of virtual index) the denominators for the (−1)′ subspace

in the SC-NEVPT2, cu-SC-NEVPT2 and cud-SC-NEVPT2 theories. While the

cud-SC-NEVPT2 denominators appear to be close to the SC-NEVPT2 ones, the

denominators obtained without introduction of the diagonal elements (i.e. for

cu-SC-NEVPT2) seem to be too small for many of the virtual indices. How-

ever, although we see that errors in the denominators of the cu-SC-NEVPT2 ex-

pressions no doubt contribute to the overly large wavefunction norm and over-

estimated correlation energies in this subspace, we do not really have a case of a

vanishing denominator and diverging energy (see Fig. 5.2) contribution due to

a false intruder state. For this reason, the effect of a level-shift correction is quite

small. Indeed, the cu-SC-NEVPT2 singlet-triplet gap calculated with imaginary

level shifts of 0.1, 0.2, and 0.4 a.u. in the (−1)′ subspace, calculated with the

corrected level-shift energies as in Ref. [31], remains 24.48 kcal/mol. One can
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see that a better estimation of the denominator is needed than that given by the

pure cumulant approximation. It appears, that for these systems, the primary

errors in the cumulant approximation can be corrected by incorporating the ad-

ditional “diagonal” elements, as used in the cud-SC-NEVPT2 method, and that

this method gives a qualitatively balanced description of the dynamic correla-

tion, but the results may be less satisfactory in other cases.

5.4.2 Test-case II: Nitrogen and chromium potential energy

curves

As a more stringent evaluation of the cu-SC-NEVPT2 and cud-SC-NEVPT2 ap-

proximations, we carried out calculations on the nitrogen and chromium bind-

ing curves. The correct description of multiple bond-stretching is amongst the

hardest problems in benchmark quantum chemistry. Furthermore, it is well

known from CASPT2 studies that intruder state problems can arise at many

geometries along such potential energy curves [36].

For N2 we studied the lowest singlet 1Σg and lowest triplet 3Σu states. We used

Dunning’s correlation consistent quadruple zeta basis (cc-pVQZ) [37, 38] and

the CASSCF active space consisted of all 2s and 2p orbitals (10e, 8o) active space.

The 1s-derived orbitals were kept doubly occupied in the CASSCF reference and

correlated in the subsequent CASPT2 and NEVPT2 calculations as core orbitals.

For Cr2 we studied the lowest singlet state using the Wachters+f atomic natural

orbital basis [37, 39, 40] and a CASSCF active space containing all 3d and 4s

orbitals (12e, 12o) active space. All other occupied orbitals were correlated as

core orbitals.
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Figure 5.3: 1Σg binding curve of N2 using cu-SC-NEVPT2 and NEVPT2
theory. The cu-SC-NEVPT2 calculations are carried out using
a variety of imaginary level shifts in the (−1)′ subspace (value
indicated in brackets).

Discussion: Shown in Fig. 5.3 is the 1Σg binding curve using both cu-SC-

NEVPT2 and SC-NEVPT2 theory. What is immediately apparent is that the

cu-SC-NEVPT2 curve has several divergences arising from false intruder states

which do not appear in the original SC-NEVPT2 theory. These divergences oc-

cur even close to the equilibrium region, but can be smoothed out by applying

a sufficiently large imaginary level shift in the (−1)′ subspace. The magnitude

of the necessary level shift (1.2 a.u.) may seem rather large as compared to typ-

ical shifts employed in CASPT2 theory. However, the physical meaning of the

contribution 〈Ψ[0]|V (−1)′†
r [HD, V

(−1)′
r ]|Ψ[0]〉 in the (−1)′ subspace is that of a gen-

eralized ionization energy, and, as observed in Fig. 5.1, the typical value of

such energies in the parent SC-NEVPT2 theory is O(1) a.u.. Thus it is natural
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Figure 5.4: 1Σg binding curve of N2 using cud-SC-NEVPT2 and NEVPT2
theory. The cu-SC-NEVPT2 calculations are carried out using
a variety of imaginary level shifts in the (−1)′ subspace (value
indicated in brackets).

to require a level shift of this magnitude to correct divergences. Such a large

level shift however does give rise to a significantly vertically shifted curve in

the dissociation region.

In Fig. 5.4 is the corresponding 1Σg binding curve using cud-SC-NEVPT2 and

SC-NEVPT2 theory. The cud-SC-NEVPT2 curve does not suffer from false in-

truders in the equilibrium region and instead closely follows the parent SC-

NEVPT2 curve. However, at approximately 2.2Å we observe divergences once

again. These can be also be smoothed out using an imaginary level shift, leading

to a similarly vertically shifted curve in the dissociation region. In Fig. 5.5 we

plot the 3Σu binding curve using cud-SC-NEVPT2 and SC-NEVPT2 theory. Note

that unlike CASPT2 calculations in ANO basis sets [36], SC-NEVPT2 does not
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Figure 5.5: 3Σu binding curve of N2 using cud-SC-NEVPT2 and NEVPT2
theory. The cud-SC-NEVPT2 calculations are carried out using
a variety of imaginary level shifts in the (−1)′ subspace (value
indicated in brackets).

exhibit any intruder problems for this state. As for the ground state, there are

no false intruders in the cud-SC-NEVPT2 curve until one reaches the stretched

region, near 2Å. Although it is possible to remove these intruders with a large

imaginary level shift, the resulting smoothed curve has a very different shape

in the stretched region and is not entirely satisfactory. It should not be surpris-

ing that the quality of the cud-SC-NEVPT2 curve degrades at longer distances.

At such stretched geometries, there are many fractional occupation numbers

and consequently, the 3-particle and 4-particle density matrices are less diag-

onally dominant, even in the natural orbital basis. Thus, the amount of infor-

mation provided by incorporating the diagonal elements of these quantities is

decreased.
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In Table 5.5 we show the spectroscopic constants (obtained by numerical fitting

of the potential energy curve) for the 1Σg and 3Σu states of N2. While the bare

(i.e. without level-shift) cu-SC-NEVPT2 spectroscopic constants are quite poor,

application of the imaginary level shift, which smoothes over the equilibrium

region of the curve actually produces quite reasonable spectroscopic constants

of an accuracy comparable to standard CASPT2 and SC-NEVPT2. Only the dis-

sociation energy is somewhat large, and this can be attributed to the vertical

shift of the dissociated region of the curve due to the level shift as discussed

above. cud-SC-NEVPT2 spectroscopic constants with or without level shifts are

quite reasonable for both states, and are again comparable in accuracy to stan-

dard CASPT2 and SC-NEVPT2. This reflects the relatively good behavior of the

cud-SC-NEVPT2 approximation in the equilibrium region.

In Fig. 5.6 we show the Cr2 binding curve computed using SC-NEVPT2 and

the cud-SC-NEVPT2 approximation with a variety of imaginary level shifts. In

this challenging system, even the cud-SC-NEVPT2 approximation shows strong

false intruder behavior in the equilibrium region. By applying successively

larger imaginary level shifts, we can smooth out the divergences, but the general

quality of the potential energy curve is not so good. At larger level shifts, we

obtain a double well with cud-SC-NEVPT2, rather than the shouldered single-

well type curve that is believed to characterize Cr2, and in particular the well

at longer bond-distances appears deeper than the well at the normal Cr2 bond-

length. It should be noted, however, that the Cr2 binding curve is very sensi-

tive to the level of theory employed, and, for example, SC-NEVPT3 [41], CIPT2

[42], and internally contracted CI using the n-electron valence states [41] all pro-

duce curves with a double well structure not unlike our approximate cud-SC-

NEVPT2 curve.
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Table 5.5: Spectroscopic constants for the nitrogen molecule calculated
with CASSCF, CASPT2, SC-NEVPT2, cu-SC-NEVPT2 and cud-
SC-NEVPT2. The imaginary level shifts (in a.u.) given in brack-
ets.

N2
1Σg

Method re/Å De/eV ωe/cm−1

Expt. 1.0977 9.91 2359

CASSCF 1.1069 9.23 2496

CASPT2 1.1012 9.51 2454

SC-NEVPT2 1.1021 9.77 2460

cu-SC-NEVPT2(0.0) 1.1537 11.24 3930

cu-SC-NEVPT2(1.2) 1.0980 9.94 2470

cud-SC-NEVPT2(0.0) 1.1002 9.87 2466

cud-SC-NEVPT2(1.2) 1.0997 9.98 2467

N2
3Σu

Method re/Å De/eV ωe/cm−1

Expt. 1.2866 3.68 1461

CASSCF 1.3027 2.79 1548

CASPT2 1.2879 3.56 1513

SC-NEVPT2 1.2905 3.54 1522

cud-SC-NEVPT2(0.0) 1.2922 3.78 1521

cud-SC-NEVPT2(0.7) 1.2917 3.79 1522

cud-SC-NEVPT2(1.2) 1.2892 3.82 1524
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Figure 5.6: Cr2 binding curve using cud-SC-NEVPT2 and SC-NEVPT2 the-
ory. The cud-SC-NEVPT2 calculations are carried out using a
variety of imaginary level shifts in the (−1)′ subspace (value
indicated in brackets).

5.5 Test-case III: Excited states in polyenes

An area of considerable success for multireference perturbation theory calcula-

tions, particularly those employing CASPT2 or MRMP theory, has been the de-

scription of excited states of small to medium sized organic molecules [43, 44].

As examples of such systems, here we have chosen short-chain polyenes to as-

sess the behavior of the cumulant approximations to SC-NEVPT2.

The geometries of the C4H6, C6H8, C8H10, C10H12 in the all-trans configurations

were optimized at the DFT/B3LYP [45, 46] using Dunning’s correlation consis-

tent cc-pVDZ basis [37, 38]. The subsequent wavefunction calculations were

carried out in Dunning’s correlation consistent cc-pVDZ basis. The CASSCF ac-
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tive space was chosen to be the full π-valence space. The excited CASSCF states

as listed in tables 5.6, 5.7, 5.8 and 5.9 for the NEVPT2 calculations were obtained

by state-specific CASSCF using the DALTON CASSCF algorithm, while the ex-

cited CASSCF states for the CASPT2 comparison calculations were obtained

through state-averaged CASSCF using the MOLPRO CASSCF algorithm. For

the state-averaged CASSCF, the state-average incorporated the lowest 3 states

of Ag symmetry (for the Ag calculations) and the lowest 2 states of Bu symmetry

(for the Bu calculations) while the CASPT2 correction was calculated in a state-

specific way (i.e. the density matrix of the given state, rather than the average

density matrix was used in the construction of the zeroth order Hamiltonian).

The CASPT2 calculations used the “rs2c” variant as implemented in MOLPRO.

In all CASPT2 and NEVPT2 calculations the σ electrons were correlated as core

orbitals.

Discussion: The primary effect of dynamical correlation on the low-lying va-

lence excited states in polyenes is to lower the energy of the “ionic” excited

state 1B+
u relative to the covalent excited states 2A−g , 3A−g , 1B−u . Of particu-

lar interest is the crossing point, i.e. the length of polyene at which the 1B+
u

state becomes degenerate with the 2A−g state. Comparing the cu-SC-NEVPT2,

cud-SC-NEVPT2, and parent SC-NEVPT2 methods in tables 5.6, 5.7, 5.8 and 5.9

we observe that the cumulant approximated methods do reproduce the low-

ering of the 1B+
u state relative to the covalent excited states (as compared to

CASSCF). Furthermore, the cu-SC-NEVPT2 and cud-SC-NEVPT2 preserve the

state-ordering of the parent SC-NEVPT2 method, and with these methods the

1B+
u and 2A−g states become nearly degenerate in C10H12 just as in the parent

SC-NEVPT2 method. The cumulant approximated excitation energies are con-

sistently too low compared to the SC-NEVPT2 excitation energies, and this un-
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derestimation appears to get worse as the polyene chain gets longer. Most of

the excitation error can be traced to the error in the ground-state energy: both

cu-SC-NEVPT2 and cud-SC-NEVPT2 place the energy of the ground-state too

high, leading to an overall decrease in all the excitation energies. Examining the

contributions of the different subspaces, once again we observe that the largest

error in the cumulant approximated methods occurs in the (−1)′ subspace. Un-

like in the previous test-cases, the cud-SC-NEVPT2 method does not perform

any better than the cu-SC-NEVPT2 method. Overall, we observe that the cumu-

lant approximated theories give a qualitatively reasonable picture of the excita-

tion energies in these conjugated molecules, although the quantitative accuracy

for large conjugated systems remains to be seen.

5.6 Conclusions

In this chapter, we have explored the possibility of constructing approximations

to multireference perturbation theory that do not depend on three- and four-

particle density matrices, with the view to enabling dynamical correlation cal-

culations in conjunction with very large active spaces. As our parent multirefer-

ence perturbation theory, we have investigated the strongly-contracted variant

of the n-electron valence perturbation theory. Our strategy has been to employ

cumulant type approximations to the three- and four-particle density matrices

that appear in the formulation using the one- and two-particle density matrices

and quantities of similar complexity. We have proposed two cumulant approxi-

mated methods: cumulant approximated SC-NEVPT2 (cu-SC-NEVPT2) and cu-

mulant with diagonals approximated SC-NEVPT2 (cud-SC-NEVPT2). The lat-

ter incorporates additional exact information about diagonal and off-diagonal
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elements of the three- and four-particle density matrices with the same com-

plexity O(n4
act) as the two-particle density matrices. We find that an undesir-

able feature introduced by using cumulant approximations is the re-emergence

of intruder states in the perturbation theory (which do not usually appear in

the strongly-contracted NEVPT2 theory) due to the inaccurate representation

of denominators by their cumulant approximated form. We have assessed the

cumulant approximations in several benchmark test systems. We find that the

cumulant approximated methods, when augmented by appropriate level shifts

to deal with possible intruder state problems do provide a qualitatively correct

picture of dynamical correlation in many cases. We find also that the cud-SC-

NEVPT2 theory has much weaker intruder state problems than the pure cumu-

lant cu-SC-NEVPT2 theory. The accuracy of the cumulant approximated theo-

ries is necessarily degraded from the parent multireference perturbation theory,

although in many cases the cumulant derived error is within the intrinsic error

range associated with multireference second-order perturbation theory. While

the cumulant approximated theories may be used with care as a practical means

to obtain information on qualitative effects of dynamical correlation in systems

with many active orbitals where the parent multireference perturbation theo-

ries cannot be applied, we would clearly like more reliable approximations to

the denominators in the SC-NEVPT2 method.
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CHAPTER 6

CANONICAL TRANSFORMATION THEORY : APPLICATION TO THE

2A−G AND 1B+
U STATES IN POLYENES

(Some parts of this chapter are taken from Ref. [1].)

6.1 Introduction

Canonical transformation (CT) theory [2–4] is a recently developed method that

is capable of handling the dynamic correlation in strongly correlated systems

when applied on top of a multireference wavefunction, such as one obtained

from complete active space self consistent field (CASSCF) or density matrix

renormalization group (DMRG) calculations.

The accuracy and computational scaling of the theory has already been demon-

strated on potential energy curves of small molecules such as H2O, N2, FeO

and others [2–5]. When compared to other multireference dynamic correlation

methods, it has been seen that the accuracy is decidedly superior to complete

active space perturbation theory (CASPT2) and comparable to size-consistency

corrected multireference configuration interaction (MRCI) methods. However,

as the computational scaling (O(n6) where n is the number of electrons) is much

better than that of the MRCI methods, CT theory is in principle tractable for

much larger systems.

In this chapter, we applied the CT theory to the problem of low-lying electronic

excitations in all-trans polyenes. The continuing relevance of polyene chemistry

is due to the fact that polyene chromophores play a major role in biologically

important photo-processes, ranging from light-harvesting to vision. All-trans
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polyenes have C2h point group symmetry. Additionally, polyenes have an ap-

proximate particle-hole symmetry (that is exact in the Hückel model) and states

are often labeled by an approximate +/- particle-hole label. We shall henceforth

restrict the discussion to the singlet states only. The ground state is 1A−g , and

the π excitations are variously of A−g , B+
u , and B−u symmetry. The B+

u states

are those with strong dipole-allowed transitions from the ground-state. The

dark states are the A−g states (completely forbidden transitions from the ground

state) and B−u states (weakly allowed transitions from the ground state). The es-

sential problem is the position and number of dark states (below the 1B+
u state)

as a function of polyene length, which remains a matter of considerable debate

[6–11].

The primary theoretical challenges are [12–21]:

1. From a valence-bond perspective the various excited states are very dif-

ferent in their “covalent” and “ionic” characters with varying amounts of

dynamic and static correlation. The A−g and B−u states are predominantly

composed of double excitations relative to the ground state while the B+
u

states have more single excitation character. Reaching a balanced treat-

ment is exceedingly difficult, and theoretical methods often give contra-

dictory results.

2. Due to valence-Rydberg mixing (between the π∗ and carbon 3p), large ba-

sis sets are needed to obtain meaningful results.

3. When comparing to experiments, non-vertical excitation processes have

to be considered. These require definite knowledge about the excited state

geometry which is not trivial due to the presence of avoided crossings and

a complicated potential surface.
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Because of these many challenges, the correct description of polyene excited

states from a theoretical perspective needs a multiconfigurational structure with

dynamic correlation, along with large basis sets to include the possible mixing

between valence and Rydberg states.

Short polyenes were first studied using semi-empirical Hamiltonians with a

variety of methods such as full configuration interaction (FCI), MRCI, valence

bond theory and effective valence shell Hamiltonians [22–24]. While much valu-

able insight has been provided by these calculations, the typical semi-empirical

parametrization is biased towards the HOMO-LUMO (1B+
u ) transition. Us-

ing ab-initio Hamiltonians (with realistic basis sets) recent studies have em-

ployed coupled cluster (CC), multireference perturbation theories (MRMP and

CASPT2) and multireference CI [13–21, 25–28]. CC methods tend to place pre-

dominantly “covalent” (i.e. dark) excited states too high in energy while MRMP

and CASPT2 place such states too low. In our view, ab-initio MRCI calculations

are probably the most reliable but due to their prohibitive cost have not been

applied to molecules larger than butadiene. Our previous studies have shown

that the typical accuracy of CT is comparable to that of MRCI, but the superior

scalability allows us to address excited states even in the longer polyenes. This,

together with the possibility of benchmarking the CT theory for excited states,

is the basic motivation of the current work.

6.2 Theory

In this chapter, we will briefly review the CT theory. The details of the CT theory

are given in Refs. [2, 3, 5].
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CT theory is based on an exponential ansatz,

Ψ = eAΨ0 (6.1)

where Ψ0 is a multiconfigurational wavefunction, generally obtained from a

CASSCF calculation. A is an anti-Hermitian excitation operator A† = −A that

connects the active and external spaces. At the singles doubles (SD) level of the

theory, A contains the single, double and semi-internal single excitations,

A = Aai (a
a
i − aia) + Aabij (aabij − aijab) + Aakij (aakij − aijak). (6.2)

The indices ijk... and abc... denote active and external indices respectively, and

the excitation operators, aai = a†aai and aabij = a†aa
†
bajai. Using the above notation,

the energy and the amplitudes are obtained from

〈Ψ0|H̄|Ψ0〉 = E (6.3)

〈Ψ0|[H̄, A]1,2|Ψ0〉 = 0 (6.4)

where H̄ is the CT effective Hamiltonian defined by the Baker-Campbell-

Hausdorff expansion,

H̄ = H + [H,A]1,2 +
1

2!
[[H,A]1,2, A]1,2 + ... (6.5)

The subscript 1, 2 denotes an operator and cumulant decomposition (see Refs.

[2, 3]) where the many body terms generated in the commutators are effectively

reduced to 1 and 2 body operators. Because of the operator decomposition, H̄

is a two body Hamiltonian just like H . The energy and amplitude expressions

(6.4) require only 1 and 2 body active density matrices. (The fact that energy and

amplitude expressions (6.4) require only 1 and 2 body active density matrices,

make CT a two body density matrix functional theory and this is the basis of the

connection to some recent work by Mazziotti on contracted Schrödinger equa-

tions [29].) Note that here we are applying the decompositions already at the
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first (linear commutator). This defines the linear CT approximation (referred to

in Ref. [5]), and all calculations in this chapter use this approximation, although

we will not be using the “L” label for simplicity. The use of the operator and

cumulant decomposition to simplify Eqns. 6.3 and 6.4 results in the favorable

cost scaling of the CT theory (n2
actn

4
ext) [2, 3].

6.2.1 State averaged CT for excited states

In order to apply CT theory to excited states of the same symmetry in a sta-

ble numerical way, it is convenient to use a form of state averaging. Since the

amplitude equations depend only on the 1 and 2 body density matrices γ1, γ2

(due to the operator and cumulant decomposition) we can formally write the

amplitude equation (6.4) as a functional of these density matrices

R[γ2] = 0⇒ A (6.6)

(where we have omitted γ1 since it can be obtained from γ2). The corresponding

state averaged amplitudes Asa are defined from an amplitude equation where

γ2 is substituted by the state averaged γsa2 of the reference problem,

γ
kl(sa)
ij =

∑
m

〈Ψm
0 |aklij |Ψm

0 〉 (6.7)

where Ψm
0 is the mth state of the reference system in the state averaged calcula-

tion. This gives

R[γsa2 ] = 0⇒ Asa. (6.8)

From the state averaged Asa we obtain the energies of the individual excited

states by defining a state specific effective Hamiltonian H̄m for each excited state

using the amplitudes Asa but the state specific density matrices γm1 , γm2 (defined
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from the mth reference state) in the operator and cumulant decomposition

H̄m = H + [H,Asa]1,2(m) +
1

2!
[[H,Asa]1,2(m), A

sa]1,2(m) + ... (6.9)

where the subscript 1, 2(m) denotes that the operator and cumulant decomposi-

tion is carried out with the density matrices γm1 , γm2 . When we take the expecta-

tion value of the state specific effective Hamiltonian H̄m with the mth reference

state, we get an appropriate CT energy for the mth excited state,

Em = 〈Ψm
0 |H̄m|Ψm

0 〉. (6.10)

6.2.2 Converging CT equations

There are a few numerical issues with the canonical transformation theory asso-

ciated with converging the amplitude equations (6.4), in particular because the

Jacobian associated with the amplitude equation can be nearly singular when

using a multireference wavefunction. These convergence issues are discussed

in detail in Refs. [3, 5, 30]. Here we use two of the methods for convergence

described in [30].

Overlap truncation threshold method

In this method, spaces of excitation operators are truncated based on the over-

lap matrix of the first-order interacting space. Two truncation thresholds (with

units of overlap) are used: τ1 associated with the single excitations and semi-

internal single excitations, and τ2 associated with the double external excita-

tions. Naturally, the thresholds should be chosen with care. There are two pos-

sible strategies. One is to choose the minimum possible threshold for which the
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CT amplitude equations converge [5, 30]. However at this threshold, the energy

is relatively sensitive to the changes in the threshold and further the conver-

gence of the amplitude equations is very slow. Another strategy is to choose an

appropriate threshold by probing all thresholds within reasonable limits (0.01 to

0.5) and finding a plateau in which the energy change is minimal. In this work,

we have used the latter technique to define the appropriate thresholds.

Strongly contracted CT

The threshold technique of removing singularities in the Jacobian can be te-

dious since in principle we should carry out a number of CT calculations to

decide on an appropriate threshold. In addition, it also requires diagonalization

of the first-order interacting space overlap matrix, which in principle becomes

prohibitively expensive (O(n9
act)) with active spaces with more than 30 orbitals

which arise in DMRG calculations. One way to bypass these problems is to

remove singularities based on a physically motivated subset of the excitation

degrees of freedom. This yields the strongly contracted variant of CT, which

uses a small set of “strongly contracted” excitations or perturber functions, as

introduced in n-electron valence perturbation theory (NEVPT2) [31, 32], to span

the first-order interacting space. The overlap matrix of the perturber functions is

then diagonal by construction. While even within this smaller parametrization,

there can still be some small eigenvalues of the Jacobian, generally these are

much more easily removed than for the full Jacobian. A single universal thresh-

old (0.1Eh) is used in all calculations, corresponding to a cutoff of the smallest

perturber function excitation energy as measured with the Dyall Hamiltonian

[30].
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6.3 Computational methodology

6.3.1 Overview

Starting from a complete active space self-consistent field (CASSCF) calculation

in a π-active space (of varying size) and with large basis sets saturated with Ryd-

berg functions, we have performed canonical transformation calculations using

the ORZ code on the all-trans polyenes, C4H6, C6H8 and C8H10 at their equilib-

rium geometries, using both the overlap threshold method (CTSD thresh) and

strong contraction method (sc-CTSD) to converge the amplitude equations. For

comparison, CASPT2 (the partially uncontracted rs2c variant implemented in

MOLPRO) [33, 34], MRCI (with and without the Q Davidson correction) [35, 36]

and multireference averaged coupled pair functional (MRACPF) [37–39] calcu-

lations were carried out using the MOLPRO package [40]. We now give further

details on the basis set, active space, and geometries used.

6.3.2 Basis set

To account for the possibility of valence-Rydberg mixing in the 1B+
u states, we

need to include additional diffuse p functions in the carbon atomic basis. Fol-

lowing Ref. [25] we started from Dunning’s cc-pVDZ [41] basis and augmented

the carbon basis with up to 3 additional p functions, to saturate the p basis. The

p exponents used were 0.04041, 0.01080 and 0.00250 (the first two are the p ex-

ponents found in the d-aug-cc-pVDZ basis). From now on we will refer to the

carbon basis sets thus formed (with one, two or three additional functions) as

aug′-cc-pVDZ (3s3p1d), d-aug′-cc-pVDZ (3s4p1d) and t-aug′-cc-pVDZ (3s5p1d)
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where the ′ indicates that the basis sets are augmented only in their p functions.

Dunning’s cc-pVDZ basis was used for hydrogen.

6.3.3 Active space

To take into account the multireference nature of the valence-Rydberg mixing,

we used both π(n, n) and “double” π(n, 2n) active spaces where n is the number

of C atoms. The double π space allows Rydberg 3p configurations to mix with

the valence states in a multireference way.

6.3.4 Geometry

The polyenes haveC2h symmetry and were oriented in the xy plane, i.e. with the

C2 axis as the z axis. The molecular geometries were optimized at the density

functional level using the B3LYP functional [42, 43] as implemented in GAUS-

SIAN03 [44]. The basis set used for the optimization was Dunning’s cc-pVDZ

basis [41].

6.4 Results and discussions

6.4.1 Butadiene

The low-lying electronic spectrum of butadiene has been intensively studied

both experimentally and theoretically. Owing to many Rydberg peaks and pos-

132



sible excited state geometrical relaxation, the spectrum is very broad and there

have been many different interpretations [6, 15, 19–21]. Theoretical predictions

also greatly vary depending on the level of correlation and the basis sets used

[13, 15, 23, 45–52].

Effect of active space and basis set

To gain some understanding of the problem, the effects of active space and ba-

sis set were first probed at the CASSCF and MRCI level of correlation with

the cc-pVDZ and augmented basis sets aug′-cc-pVDZ, d-aug′-cc-pVDZ and

t-aug′-cc-pVDZ described earlier. Table 6.1 gives the 1B+
u excitation energies

using the (4e, 4o) and (4e, 8o) active spaces with various basis sets. While there

is some change in the 1B+
u excitation energy when doubling the active space size

using the valence basis cc-pVDZ, there is a significant decrease in the excitation

energies when using the augmented cc-pVDZ basis sets which contain Rydberg

functions. (In the CASSCF level the decrease when doubling the active space is

0.42 eV in the cc-pVDZ basis and 0.69 eV in the most augmented basis, while the

MRCI decrease in excitation energies goes from 0.14 eV to 0.35 eV .) This follows

from our general understanding that the considerable valence-Rydberg mixing

in butadiene needs both valence and Rydberg states to be present in the active

space. We also observe that the effect of increased active space is much greater

at the CASSCF level of theory than at the MRCI level and we would expect the

effect to be smaller still with corrected MRCI methods, such as MRACPF, which

incorporate even more correlation out of the active space.

The excitation energy converges from above when augmenting the basis but

appears to reach a plateau at the doubly augmented level. This indicates that
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the d-aug′-cc-pVDZ basis is probably the smallest carbon basis set that should

be used for the butadiene spectrum. One more point can be noted from the

table. The expectation value 〈x2〉 which defines the extent of the wavefunction

or its diffuseness also increases with augmenting the basis set. With these basis

sets and active spaces, the 1B+
u state is probably too diffuse, especially at the

CASSCF level. Previous studies have found that the diffuseness can be reduced

by appropriate state averaging, but we have not performed such calculations

here [26].

Butadiene excitation energies from canonical transformation theory

In table 6.2, CASPT2, MRCI, MRCI with Davidson correction (MRCI+Q) and

MRACPF excitation energies for the 1B+
u state are presented alongside CT exci-

tation energies for this state using both the overlap truncation threshold (CTSD

thresh) and strongly contracted (sc-CT) variants.

Especially for the larger basis sets, there is reasonable agreement between the

different methods: at the t-aug′-cc-pVDZ level the theoretical excitation ener-

gies range from 6.60 eV (CASPT2(4,4)) to 7.02 eV (MRCI(4,4)). As expected the

CASPT2 excitation energies are considerably lower than those obtained from

MRCI and its variants. As we regard the MRCI calculations to be more reli-

able we find it encouraging that the CT excitation energies are quite compara-

ble to those obtained from MRCI type methods. (Compared to the literature,

we should note that there is some variation in the reported CASPT2 and MRCI

results. This is because the 1B+
u state is quite sensitive both to the composition

of the active space and the kind of basis used. Reported CASPT2/MRMP 1B+
u

excitation energies range from 6.48 eV [27] to 6.12 eV [49], while those for MRCI
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Table 6.2: 1B+
u excitation energies (in eV ) for butadiene with various cor-

relation methods and basis sets. The active spaces used are (4e,
4o) and (4e, 8o). The τ1 and τ2 reported correspond to the CT
truncation thresholds used for the particular calculations.

Method and Active space DZp1 DZp+p2 DZp+2p3 DZp+3p4

CASSCF(4,4) 8.12 7.56 7.08 7.08

CASSCF(4,8) 7.70 6.92 6.39 6.39

CASPT2(4, 4) 6.32 6.14 6.60 6.60

CASPT2(4, 8) 6.47 6.45 6.65 6.71

MRCI(4, 4) 7.17 7.01 7.02 7.02

MRCI(4, 8) 7.03 6.77 6.67 6.67

MRCI+Q(4, 4) 6.73 6.67 6.88 6.88

MRCI+Q(4, 8) 6.70 6.70 6.71 6.71

ACPF(4, 4) 6.71 6.46 6.62 6.62

ACPF(4, 8) 6.67 6.62 6.72 6.72

CTSD thresh(4, 4) 6.936 n.c.5 n.c. −−
CTSD thresh(4, 8) 7.026 6.827 6.818 −−
sc-CTSD(4, 4) 6.86 n.c. n.c. −−
sc-CTSD(4, 8) 7.05 6.75 6.72 −−
Expt. 5.929

1DZp = cc-pVDZ. 2DZp+p = aug′-cc-pVDZ.
3DZp+2p = d-aug′-cc-pVDZ. 4DZp+3p = t-aug′-cc-pVDZ.
5n.c. = not converged.
6τ1 = 0.15, τ2 = 0.05.
7τ1 = 0.20, τ2 = 0.05.
8τ1 = 0.25, τ2 = 0.05.
9[8, 53, 54].
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Table 6.3: 2A−g excitation energies (in eV ) for butadiene with various corre-
lation methods and basis sets. The active spaces used are (4e, 4o)
and (4e, 8o).The τ1 and τ2 reported correspond to the CT trunca-
tion thresholds used for the particular calculations.

Method and Active space DZp1 DZp+p2 DZp+2p3 DZp+3p4

CASSCF(4,4) 6.65 6.59 6.59 6.59

CASSCF(4,8) 6.69 6.54 6.54 6.54

CASPT2(4, 4) 6.48 6.385 6.456 6.456

CASPT2(4, 8) 6.47 6.28 6.355 6.386

MRCI(4, 4) 6.70 6.67 6.67 6.67

MRCI(4, 8) 6.66 6.60 6.53 6.53

MRCI+Q(4, 4) 6.67 6.63 6.63 6.63

MRCI+Q(4, 8) 6.63 6.58 6.50 6.50

CTSD thresh(4, 4) 6.518 n.c.7 n.c. −−
CTSD thresh(4, 8) 6.669 6.4910 n.c. −−
sc-CTSD(4, 4) 6.55 n.c. n.c. −−
sc-CTSD(4, 8) 6.72 6.59 6.58 −−
Expt. 5.4− 7.311

1DZp = cc-pVDZ.
2DZp+p = aug′-cc-pVDZ.
3DZp+2p = d-aug′-cc-pVDZ.
4DZp+3p = t-aug′-cc-pVDZ.
5level shift = 0.2 a.u.
6level shift = 0.25 a.u.
7n.c. = not converged.
8 τ1 = 0.2, τ2 = 0.05.
9 τ1 = 0.2, τ2 = 0.05.
10 τ1 = 0.3, τ2 = 0.05.
11[8, 53, 55, 56].
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range from 7.05 eV [14] to 6.23 eV [45]. Our 1B+
u excitation energies are on the

high side, since our active space seems to favor a Rydberg-like state.) Despite

the general agreement between the methods, there is quite different behavior

with respect to the basis set and active space dependence. In particular, CASPT2

appears to have a fairly strong basis set dependence and the excitation energy

converges from below, while MRCI type methods have only a weak basis set

dependence. This reflects the different balance of valence and Rydberg states

at these two levels of approximation. While CT excitation energies converge

from above much like the MRCI-type methods, convergence problems with the

CT theories prevent application to the largest t-aug′-cc-pVDZ basis. The sc-CT

calculations converge much more easily than the overlap truncation CT calcu-

lations, at least at the truncation thresholds considered here.

Compared to the estimated experimental “vertical” excitation energy of 5.92 eV ,

all the theoretical predictions seem too high. This, however could be due to the

excited state geometry relaxation which has been proposed as one of the reason

for the broad experimental excitation spectrum. Previous theoretical studies

[25, 47, 51, 57] show that allowing the geometry of the 1B+
u excited state to

relax and become out of plane leads to a much better agreement between the

theoretical and experimental 1B+
u excitation energies.

While the CT excitation energies are broadly comparable to the MRCI results,

the CT theory allows application to much larger active spaces. We have taken

advantage of this to examine the effect of incorporating the σ framework into

the active space. By performing a sc-CT calculation with a (10e, 14o) active space

that includes the 3 bonding and antibonding carbon framework σ orbitals, we

find that the 1B+
u excitation energy changes by only 0.10 eV . This suggests that σ
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framework effects can be adequately captured at the dynamic correlation level.

Table 6.3 shows the analogous calculations for the 2A−g state. These results were

obtained by state averaging over the 1A−g and 2A−g states. (This could not be

carried out with the MRACPF method implemented in MOLPRO and so those

results are missing from the table). The effect of active space and basis sets is

much less for the 2A−g state than for the 1B+
u state since dynamic correlation is

less important in this state and there is no single-particle valence-Rydberg mix-

ing (for symmetry reasons). All methods predict that the 2A−g state is very close

in energy to the 1B+
u state, 0.47 eV being the largest separation at the MRCI(4,4)

level. Once again, the CT calculations yield results quite comparable to those

from MRCI methods. Because of the different basis set dependence of the en-

ergy of the two states, the ordering of the states can change with basis set size.

With the largest basis sets, however, all methods seem to predict that the 2A−g

lies below the 1B+
u state, although as mentioned above, our 1B+

u excitation en-

ergies are probably a bit high. Overall our 2A−g excitation energies are in good

agreement with recent MRCI predictions [13, 26].

CT truncation thresholds

Since the overlap truncation threshold method for converging the CT equations

yields results that depend in principle on the threshold, here we show a thresh-

old analysis for the butadiene molecule. Figs. 6.1 and 6.2 illustrate the threshold

dependence of the CT total energy for the ground state and 1B+
u states (using

the aug′-cc-pVDZ basis for C) while Fig. 6.3 shows the dependence of the 1B+
u

excitation energy on threshold. For the singles and semi-internal singles trunca-

tion threshold τ1 we see that there is a plateau around 0.2-0.3 in τ1, and thus for
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Figure 6.1: Threshold analysis of the ground state total energy of C4H6

with aug′-cc-pVDZ basis set. The energies are in Eh. The dot-
ted lines in the plot of energy vs. τ1 mark the plateau region
where the change in energy with threshold change is minimal.
The plot of energy vs. τ2 shows that the energy is insensitive to
changes in τ2 in the range 0.01− 0.1.
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Figure 6.2: Threshold analysis of the total energy of 1B+
u state of C4H6 with

aug′-cc-pVDZ basis set. The energies are in Eh. The dotted
lines in the plot of energy vs. τ1 mark the plateau region where
the change in energy with threshold change is minimal. The
plot of energy vs. τ2 shows that the energy is insensitive to
changes in τ2 in the range 0.01− 0.1.
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Figure 6.3: Dependence of the 1A−g → 1B+
u excitation energy of C4H6 on

the CT truncation threshold used. Since both ground state and
1B+

u excited state exhibit plateaus in the region τ1 = 0.2− 0.3, a
similar plateau is observed in the excitation energy. The value
of τ2 is kept fixed at 0.05.

this state, we used τ1 = 0.2. The energies are much less sensitive to the doubles

threshold τ2: this could be kept constant throughout all the calculations with

τ2 = 0.05. For the other active spaces, states and basis sets, a similar thresh-

old analysis was carried out to determine reasonable values of τ1 which were

reported in tables 6.2 and 6.3.

While the results of the threshold truncated CT (see previous section) appear

quite reasonable it is clear that there can be situations when the determination of

an appropriate threshold is not simple. Furthermore threshold analysis involves

a number of tedious calculations. For this reason in the higher polyenes we used

only the strongly contracted variant of CT to circumvent the kind of threshold
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analysis described here.

6.4.2 Longer polyenes

Table 6.4: 1B+
u excitation energies (in eV ) for hexatriene with various cor-

relation methods and basis sets. The active spaces used are (6e,
6o) and (6e, 12o). MRCI and MRCI+Q methods are carried out
with only (6e, 6o) active space.

Method and Active space DZp1 DZp+p2 DZp+2p3

CASSCF(6, 6) 7.40 7.28 7.28

CASSCF(6, 12) 6.71 6.37 6.21

CASPT2(6, 6) 5.07 4.83 4.83

CASPT2(6, 12) 5.46 5.70 6.224

MRCI(6, 6) 6.42 6.28 6.27

MRCI+Q(6, 6) 5.95 5.80 5.79

sc-CTSD(6, 6) 5.90 5.75 5.78

sc-CTSD(6, 12) 6.03 6.08 6.09

Expt. 4.93− 5.25

1DZp = cc-pVDZ.
2DZp+p = aug′-cc-pVDZ.
3DZp+2p = d-aug′-cc-pVDZ.
4level shift = 0.1 a.u.
5[58, 59].

Analogously to the preceding calculations on butadiene, we computed verti-

cal excitation energies to the lowest 2A−g and 1B+
u states using CT (with only

the strongly contracted variant) and a variety of multireference quantum chem-

ical methods in all-trans hexatriene and all-trans octatetraene. In these larger
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Table 6.5: 2A−g excitation energies (in eV ) for hexatriene with various cor-
relation methods and basis sets. The active spaces used are (6e,
6o) and (6e, 12o). MRCI and MRCI+Q methods are carried out
with only (6e, 6o) active space.

Method and Active space DZp1 DZp+p2 DZp+2p3

CASSCF(6, 6) 5.55 5.48 5.48

CASSCF(6, 12) 5.55 5.52 5.53

CASPT2(6, 6) 5.21 5.21 5.28

CASPT2(6, 12) 5.23 5.28 5.32

MRCI(6, 6) 5.57 5.55 5.55

MRCI+Q(6, 6) 5.51 5.51 5.53

sc-CTSD(6, 6) 5.57 5.54 5.55

sc-CTSD(6, 12) 5.55 5.50 5.50

Expt. 5.7− 6.454

1DZp = cc-pVDZ.
2DZp+p = aug′-cc-pVDZ.
3DZp+2p = d-aug′-cc-pVDZ.
4[59].

systems some new considerations come into play in the quantum chemistry.

For example, already for the hexatriene molecule, the steep cost scaling of the

MRCI methods prevents the use of a double π-active space, and in octatetraene,

the MRCI calculations simply were not feasible in a reasonable amount of time.

This limitation of course does not apply to the CT theory, with its n6 (where n is

system size) computational scaling.

Tables 6.4 and 6.5 show the excitation energies for the various methods for the

hexatriene molecule. Examining first the 1B+
u state of hexatriene, there is ar-
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Table 6.6: 1B+
u excitation energies (in eV ) for octatetraene with various cor-

relation methods and basis sets. The active spaces used are (8e,
8o) and (8e, 16o).

Method and Active space DZp1 DZp+p2

CASSCF(8, 8) 6.66 6.56

CASSCF(8, 16) 6.16 5.85

CASPT2(8, 8) 4.40 4.413

CASPT2(8, 16) 4.72 5.293

sc-CTSD(8, 8) 5.26 n.c.4

sc-CTSD(8, 16) 5.25 5.29

Expt. 4.45

1DZp = cc-pVDZ.
2DZp+p = aug′-cc-pVDZ.
3level shift = 0.2 a.u.
4n.c. = not converged.
5[60].

guably a weaker basis set dependence than in butadiene: all methods seem to

saturate at the aug′-cc-pVDZ level except for CASPT2(6,12) which appears to

have an intruder state problem for the largest basis set. This would be consistent

with a smaller amount of valence-Rydberg mixing due to the decreased HOMO-

LUMO gap. Unlike in butadiene, the MRCI+Q excitation energies appear quite

different from those of MRCI. We might speculate that this is related to the lack

of size-extensivity of MRCI in this larger molecule. Certainly the sc-CT (which

is size-extensive) excitation energies match very closely the MRCI+Q energies

(in the same active space). There is also much greater disagreement compared

to butadiene between the CASPT2 excitation energies and the MRCI/CT excita-
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Table 6.7: 2A−g excitation energies (in eV ) for octatetraene with various cor-
relation methods and basis sets. The active spaces used are (8e,
8o) and (8e, 16o).

Method and Active space DZp1 DZp+p2

CASSCF(8, 8) 4.72 4.71

CASSCF(8, 16) 4.75 4.71

CASPT2(8, 8) 4.35 4.343

CASPT2(8, 16) 4.37 4.473

sc-CTSD(8, 8) 4.60 n.c.4

sc-CTSD(8, 16) 4.72 4.72

Expt. 3.545

1DZp = cc-pVDZ.
2DZp+p = aug′-cc-pVDZ.
3level shift = 0.2 a.u.
4n.c. = not converged.
5[61, 62].

tion energies for the 1B+
u state with CASPT2 placing the 1B+

u state much lower

in energy. While the agreement with experiment appears best for CASPT2, we

note that the experimental energies are almost certainly not vertical in this sys-

tem. Given the observed intruder state problem for CASPT2 in this molecule as

well as the much higher placement of the level by MRCI, MRCI+Q and CT theo-

ries, we consider it likely that the CASPT2 1B+
u state is simply too low. Looking

at the 2A−g state in hexatriene, we see a repeat of the butadiene situation, where

the effect of basis set, active space and correlation method is less significant than

in the 1B+
u state. The sc-CT results closely follow those of MRCI+Q, while the

CASPT2 excitation energies are somewhat smaller. All lie in reasonable agree-
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ment (≈ 5.5eV as compared to the lowest experimental value of 5.7 eV ) with

the very wide range of reported experimental 2A−g excitation energies and all

methods predict that the 2A−g vertical excitation lies below the 1B+
u vertical ex-

citation.

Tables 6.7 and 6.6 give the excitation energies for the octatetraene molecule. As

discussed previously, only CASPT2 and sc-CT calculations were feasible for this

system. Convergence in this system is non-trivial: all the CASPT2 calculations

required a level shift of 0.2 a.u., while the sc-CT calculation in the smaller (8e, 8o)

active space could not be converged for the augmented basis set. However, as

far as we are aware the CT calculations represent the first time that dynamic

correlation beyond second order perturbation theory has been used to study the

spectrum of this molecule. We see results broadly consistent with what was ob-

served in hexatriene, namely that the CASPT2 excitation energies are lower than

those obtained using sc-CT. (The 5.29 eV excitation energy for the augmented

basis with double π active space with CASPT2 may be due to an intruder state

problem since we needed to use a level shift.) Both are considerably higher

than the experimental values, but this is almost certainly due to excited state

relaxation.

6.5 Conclusion

In this chapter, CT theory has been applied to study the lowest two singlet ex-

cited states of the all-trans polyenes, butadiene, hexatriene, and octatetraene.

These calculations employed both large active spaces (“single” and “double” π

active spaces) as well as realistic Rydberg augmented basis sets. In all the cases
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examined, the CT theory excitation energies closely resemble those from size-

consistency corrected multireference configuration interaction theory, but the

superior cost scaling of CT theory allows it to be applied to considerably larger

problems, in this case, the excited states of octatetraene.

While discrepancy remains between theory and experiment for the 2A−g and

1B+
u states in all the polyenes considered, the convergence of the different the-

oretical methods for butadiene suggests that the primary source of the errors

is likely to be non-vertical character in the experimental transitions. The study

of non-vertical processes is naturally computationally intensive, and we believe

that the accuracy and favorable scaling of CT theory will make it a useful tool

for this problem, particularly for larger systems that are not currently treatable

by other high-level methods.
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CHAPTER 7

APPLICATION OF DMRG-CASSCF AND DYNAMIC CORRELATION

METHODS TO THE CAROTENOID EXCITED STATES

7.1 Introduction

Photosynthesis is the process of converting sunlight into chemical energy which

occurs in photosynthetic bacteria, cyanobacteria, algae and green plants. Dur-

ing photosynthesis green plants use the sunlight as the source of energy and

convert simple raw materials like carbon dioxide and water into sugar, carbo-

hydrates, protein and lipids, all of which serve as food for living organisms.

Carotenoids are one of the major groups of accessory pigments involved in

absorption of light in photosynthetic centers apart from the chlorophyll itself.

They are long chained conjugated hydrocarbons distinguished from one an-

other by their end groups. Carotenoids absorb light in the region of ultraviolet

to about 550 nm in the visible range depending on their degree of conjugation as

well as the type of end groups, in particular the presence or absence of oxygen

or hydroxy groups.

The two major functions of carotenoids in the photosynthetic center are [1, 2]:

1. Light harvesting

While light harvesting the carotenoid molecules absorb visible light (near

the green region which is not effectively absorbed by the chlorophyll), and

are excited into a singlet excited state. This excited singlet then transfers

energy to the chlorophyll or bacteriochlorophyll. Therefore, in the light

154



harvesting process the light energy (in certain regions of the spectrum) is

absorbed by the carotenoids, and rapidly transferred to the chlorophyll

reaction center to perform photochemistry. The mechanism of this fast

transfer depends on the energy of the excited states of the carotenoids as

also their relative orientation and distance with the chlorophyll molecules.

The light harvesting process in photosynthesis can be written as

Car + hν → 1Car∗

1Car∗ + Chl → Car +1 Chl∗, (7.1)

where Chl refers to the chlorophyll or bacteriochlorophyll molecules and

Car refers to the carotenoid molecules.

2. Photo protection

The photo protective role of carotenoids is through the mediation of the

triplet excited states of carotenoids,

Chl + hν → 1Chl∗

1Chl∗ → 3Chl∗

3Chl∗ + Car → 3Car∗ + Chl. (7.2)

Carotenoids prevents the formation of the singlet oxygen or rapidly

quench the singlet oxygen if formed, as given by the following equations,

3Chl∗ + O2 → O∗2(1∆g)

O∗2(1∆g) + Car → O2 +3 Car∗. (7.3)

Thus, the carotenoids prevent the accumulation of singlet oxygen which

causes photo-oxidation of the plant cells.
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Some other functions of carotenoids such as stabilizing the lipid phase of

the thylakoid membrane are known [2]. However, in our discussion of the

carotenoid excited state spectrum, we will concentrate mainly on the light har-

vesting role of the carotenoids, i.e. the singlet excited states of the carotenoid

molecules.

In the process of light harvesting, involving the absorption of visible light by

carotenoids and the subsequent transfer of energy to the chlorophyll molecule,

there is the involvement of low-lying bright as well as dark singlet excited states

of the carotenoid molecule. For a long time, the low-lying spectra of carotenoids

involved in the light harvesting process was known to consist of three states, the

ground state 1A−g (known as the S0 state), the optically allowed excited state 1B+
u

(known as the S2 state) and the intermediate dark excited state 2A−g (known as

the S1 state). This three state light harvesting mechanism [3, 4] can be under-

stood pictorially as shown in Fig. 7.1. Here it should be noted that the labels A

and B in the symmetry of the ground and excited states in carotene are approx-

imate labels (since carotenoids lack the σh plane of symmetry). However, this

notation of labeling the excited states is used to preserve the analogy with the

polyene molecules which form the backbone of the carotenoid chromophores.

7.2 Low-lying excited states of carotenoids

There are over 600 carotenoids that have been isolated to date. The common

feature among all of them is the polyene backbone structure. There are some

special features such as the presence of carbonyl or hydroxy groups in some

of the carotenoids, e.g. peridinin and spheroidene. The effect of presence of
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Figure 7.1: Light harvesting mechanism involving three states of
carotenoids: S0, S1 and S2. This was the accepted mecha-
nism for a long time, till new dark states were observed in
between S1 and S2 states in the carotenoids, thus complicating
the scenario.

carbonyl groups in the carotenoids has been studied over the last few years [5].

However, we are going to consider only the simple hydrocarbon carotenoids in

this chapter.

The relatively simple picture of three state light harvesting presented above has

been questioned due to recent observation of several excited states between the

S1 and S2 states [6, 7]. In 1999 Sashima et al. [8, 9] observed the first of these

intermediate states in spheroidene by resonance Raman spectroscopy and gave

the label Sx to this excited state. His work suggested that the symmetry of this

state could be 1B−u . In 2002, Cogdell and coworkers [10] observed another state

S∗ in β-carotene and lycopene. They measured a very fast (50 fs) relaxation of S2
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to S∗ thus, casting suspicion upon the original (3 state) mechanism of light har-

vesting. Furuichi et al. [11] observed another low-lying excited state the same

year in bacterial carotenoids and suggested that the state might be 3A−g state by

comparison with semi-empirical results by Tavan and Schulten [12, 13]. Larsen

et al. [14] observed S‡ state in 2003 in β-carotene using dispersed multipulse

transient absorption. Several experiments have been carried out since then to

understand the dynamics of processes during light harvesting [15].

S0(1A
−
g )

S1(2A
−
g )

S2(1B
+
u )

S∗

1B−
u

3A−
g

?

1

Figure 7.2: Schematic diagram of the possible mechanisms of light har-
vesting. With the observation of new dark states in carotenoids
between S1 and S2, there can be several pathways through
which the light harvesting process can occur.

Theoretically, the light-harvesting mechanism in carotenoids have been stud-
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ied mainly by comparing with the polyene (of equivalent conjugation length)

predictions made by the Parr-Pariser-Pople model Hamiltonian [12, 13]. Incom-

plete valence CASSCF calculations have been carried out on the ab-initio Hamil-

tonian of the rhodopin glucoside (carotenoid present in photosynthetic purple

bacteria) molecule in light harvesting complex II by Sundström and coworkers

[16]. Density functional theory [17–20] has proved to be a useful tool to study

such systems. However, due to the importance of the multireference nature of

these excited states, density functional theory has its shortcomings (explained

in Chapter I). Therefore, the correct strategy to understand these excited states

would be to explicitly correlate all the valence π orbitals of the hydrocarbon

backbone.

The main problems that we are trying to address are:

1. The exact number and positions of the dark states between the S1 and S2

states in the carotenoid molecules.

2. A complete understanding of the dark states, their nature, symmetry and

detailed excitonic structure.

The first step towards answering these questions would be to carry out a com-

plete explicit electron correlation study of the valence π space. We have already

tackled this part of the problem with our DMRG-CASSCF method in the Chap-

ter IV of this thesis. However, what remains to be done is the complete analysis

of all the dark states below the S2(1B+
u ) state, i.e. their excitonic nature. Since

we have self-consistently solved for the correct active space and correlated the

complete π space of the chromophore, we presumably have the correct qualita-

tive nature of the excited state wavefunctions. There is also the question of the
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exact number and position of the dark states, the answer to which necessitates

the calculation of the exact dynamic correlation on these various excited states.

Since we already have the DMRG-CASSCF qualitative wavefunction of the ex-

cited states, we are in a position to tackle the second question.

7.3 Nature of states

Since the carotenoid backbone is very similar to that of the conjugated hydro-

carbons, with minor differences due to the steric and polar effects of the ligands

attached to them, we can try to understand the nature of the low-lying excited

states in carotenoids in a manner analogous to the excitonic states of the linear

polyenes [21].

7.3.1 Theory

An exciton consists of an electron and a hole bound together by Coulomb in-

teraction. The concept of excitonic states have originally been used to describe

semi-conductors in solid state physics. The idea of excitons in linear polyenes

follows directly from the same concept used in solid state physics. In linear

polyenes, when an electron is excited (generally by photo-excitation) from the

“valence band” (formed by the occupied electronic states in the ground state) to

the “conduction band” (the virtual electronic states), a positively charged hole

is created in the valence band and a negatively charged electron is moved to

the conduction band. The electron-hole pair are bound to each other due to

Coulomb interaction and create a bound state called the “exciton”.
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To understand the different types of excitons that are created, we first try to

understand the systems in the weakly and strongly coupled limits (which is

similar to the weakly and strongly correlated systems explained in Chapter

I). The HOMO-LUMO gap in weakly coupled systems is greater than the on-

site Coulomb repulsion, while in strongly coupled systems the HOMO-LUMO

gap is lower than the on-site Coulomb repulsion. In the intermediate coupling

regime the HOMO-LUMO gap and the on-site Coulomb repulsion are similar

in magnitude.

Weakly correlated systems give rise to Mott-Wannier (MW) excitons. (Actually

in these systems there can be 2 kinds of excitons: Mott-Wannier excitons, which

have long electron-hole correlation length and Frenkel excitons where the elec-

tron and hole are in the same position. But, for simplicity in the case of linear

polyenes in the weakly coupled limit all the excitons are referred to as Mott-

Wannier excitons.) Mott-Wannier excitons can be simply viewed, in the real

space picture as an electron in a conduction band of localized molecular orbitals

bound to a hole in the valence band molecular orbitals. The excitation opera-

tor that creates this type of excitons (we will call this the MW operator) can be

written as,

Ŝ†ij =
1√
(2)

(âc†iσâ
v
jσ ± âc†iσ′ âv†jσ′) (7.4)

where + creates a singlet exciton and - creates a triplet exciton, and σ and σ′

denote particles of opposite spin. Sij denotes a particle-hole excitation from the

ground state with the hole in the localized ith molecular orbital and the electron

in the jth molecular orbital. The operators âc† creates a particle (electron) in the

conduction band and âv annihilates a particle (i.e. creates a hole) in the valence

band. Pictorially this can be seen as the MO diagram in Fig. 7.3. In order to

define a particle-hole correlation function or Mott-Wannier correlation function,
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MW exciton

1

Figure 7.3: Molecular orbital picture of a Mott-Wannier exciton. The hole
in the conduction band is bound to the electron excited to the
valence band, thus forming the MW exciton (denoted by the
dark green ellipse in the figure).

we can project the MW operator Ŝij onto the ground state wavefunction, and

obtain the dot product with the excited state wavefunction and this projected

state, given by

Φ(~R,~s) = 〈ΦMW |Ŝij|GS〉, (7.5)

where ~R = ~r1+~r2
2

and ~s = ~r1 − ~r2, ~r1 and ~r2 being the position vectors of the

electron and hole respectively.

However, in the strong coupling limit the situation is quite different. Instead

of fully-occupied and vacant molecular orbitals, there are half-filled Hubbard

orbitals, corresponding to one electron per π orbital. The excitons, thus created
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Figure 7.4: Molecular orbital picture of a Mott-Hubbard exciton. The hole
in the lower Hubbard band is bound to the electron excited to
the upper Hubbard band, thus forming the MH exciton.

can be of two types:

1. Holon-doublon exciton

If one electron in the lower Hubbard band is excited to the upper Hubbard

band, the hole thus created in the lower Hubbard band is bound to the

electron in the upper Hubbard band. This is a Mott-Hubbard exciton or

holon-doublon exciton. In the real space picture, an electron from one of

the half filled molecular orbitals is excited into one of the other molecular

orbitals, thus creating one vacant molecular orbital (hole or holon) and one

doubly occupied molecular orbital (doublon) (see Fig. 7.4). A correlation

function similar to that for Mott-Wannier excitons can be formulated by

noting that the operators h†i and d†i defined by,

h†i =
∑
σ

aiσ(1− niσ′) (7.6)

d†i =
∑
σ

a†iσniσ′ (7.7)
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create a holon and a doublon respectively, in second quantized notation.

In the Eqns. 7.6 and 7.7, σ and σ′ denote particles of opposite spins and

ni denotes the occupancy of the ith orbital given by a†iai. The MH corre-

lation function (or holon-doublon correlation function) can be defined by

the transition expectation value of the operator, h†id
†
j with the ground and

excited states, given by

Φ(~R,~s) = 〈ΦMH |h†id†j|GS〉, (7.8)

where ~R = ~r1+~r2
2

and ~s = ~r1 − ~r2, ~r1 and ~r2 are the position vectors of the

holon and doublon thus created.

2. Bimagnon exciton

When two electrons in the Hubbard band simply change their spins, the

pair of magnons (singlet-triplet excitations) recouple to form a resultant

bimagnon exciton (singlet). The pictorial description of this state is given

in Fig. 7.5.

The bimagnon operator can be written in second quantization as,

Mij = a†iσa
†
jσ′aiσ′ajσ + a†iσ′a

†
jσaiσajσ′ (7.9)

(a and a†, σ and σ′ are defined as above) and thus analogous to the MW

and MH cases, the bimagnon exciton correlation function can be defined

as

Φ(~R,~s) = 〈ΦBM |Mij|GS〉, (7.10)

where ~R = ~r1+~r2
2

and ~s = ~r1 − ~r2, ~r1 and ~r2 are the position vectors of the

magnons (or spin flips).

The conjugated hydrocarbons lie in the intermediate region (between the

strongly and weakly coupled, i.e the HOMO-LUMO gap is comparable to the
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Figure 7.5: Molecular orbital picture of a bimagnon exciton. Two coupled
singlet-triplet (magnon) excitations create the bimagnon exci-
ton.

on-site Coulomb repulsion) and therefore the carotenoid molecules formed by

the conjugated hydrocarbon chromophore lie in the intermediate region. Thus,

the excited state multireference wavefunctions of these systems are a mixed de-

scription of all these excitons.

7.3.2 Computational details

The geometry of the s-cis β-carotene molecule was optimized in the 6-31G basis

set at the density functional level using the B3LYP functional [22, 23] as imple-

mented in GAUSSIAN03 [24]. The initial integrals were obtained from RHF cal-

culations in PSI3 [25, 26] followed by the PAO technique described in Chapter

IV and localized by Pipek-Mezey localization scheme [27].

State averaged (four state) DMRG-CASSCF calculations with M = 250 was per-

formed on this molecule with intermediate localization of the active orbitals by
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the PML scheme. After the active space orbitals were optimized for these four

states, nine state averaged DMRG calculations were done with M = 600 and

M = 1000 (M being the no. of states retained in the DMRG calculation as ex-

plained in Chapter II).

The validity of the four state averaged orbitals being used for the complete nine

state averaged DMRG calculations was checked by varying the state averaging

at the CASSCF level in C12H14 molecule.

7.3.3 Results and Discussion

Figure 7.6: s-cis β-carotene.

Effect of state averaging

From table 7.1, it is clear that the excitation energies of the excited states of

C12H14 (C and H atoms in Dunning’s cc-pVDZ basis set [28]) are not very sensi-

tive to the degree of state averaging in the optimization of the active space, i.e.

the composition of the active space is not sensitive to the degree of state aver-

aging. This proves the validity of our calculations on β-carotene, where we will

be performing DMRG-CASSCF calculation with four state averaging and with

this four state optimized active space, we will perform DMRG (equivalent to

CASCI) to obtain all the nine states that are needed to target the 1B+
u optically

active state.
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Table 7.1: Effect of orbital optimization using different state averaging
schemes. n state averaged refers to orbital optimization with
n state averaged CASSCF followed by 5 state averaged CASCI
calculation to obtain the excitation energies of the low-lying ex-
cited states of C12H14 (in eV ). The basis set used is Dunning’s
cc-pVDZ.

State Excitation energy

2 state averaged 3 state averaged 4 state averaged

2A−g 3.84 3.79 3.77

1B−u 4.86 4.77 4.74

3A−g 5.75 5.66 5.60

1B+
u 6.03 6.00 5.99

Position of excited states

Table 7.2 shows the excitation energies and oscillator strengths of the s-cis β-

carotene molecule excited states obtained by DMRG-CASSCF calculations with

6-31G basis set. The excitation energies are over-estimated mainly due to the ab-

sence of dynamic correlation in our calculations. From other theoretical work on

long polyenes [29], it follows that carotene (and long polyene) excited states (es-

pecially the optically active 1B+
u state) are considerably influenced by dynamic

correlation. Another possible cause for the discrepancy between the experimen-

tal and calculated excitation energies can be from the geometric relaxation of the

excited states.

Thus, while our DMRG-CASSCF calculation excitation energies are not quan-

titatively correct, they do show that there are a number of dark states that are

below or near the 1B+
u state and the correct number and position of dark states

167



Table 7.2: The excitation energies (in eV ) and oscillator strengths (in a.u.)
of the β-carotene excited states calculated by using 4 state aver-
aged DMRG-CASSCF (M = 250) followed by 9 state averaged
DMRG (M = 1000).

State Excitation Energy Osc. Strength Expt.

2A−g 2.99 Forbidden 1.76 1

1B−u 3.63 0.2025 2.18 2

3A−g 4.32 Forbidden 2.22 2

4A−g 4.55 Forbidden -

2B−u 4.91 0.1693 -

3B−u 5.20 0.1930 -

5A−g 5.39 Forbidden -

1B+
u 5.50 0.7824 2.47 2

1[9] (for lycopene and β-carotene).
2Excitation measured for lycopene [11] (for lycopene).

can only be predicted after the consideration of the dynamic correlation in this

problem. However, since the static correlation is generally sufficient to obtain

the correct qualitative description of the excited states, we are now in a position

to analyze and understand the nature of these dark states.

Nature of excited states

From the definitions of the Mott-Wannier, Mott-Hubbard and bimagnon cor-

relation functions, we can calculate the relative importance of these kinds of

excitons to the low-lying excited states in β-carotene. The % weight of these

different excitons in the excited states are listed in the Table 7.3. We can further

obtain the quantum numbers associated with the center of mass and relative
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(a) Mott-Wannier exciton. (b) Mott-Hubbard exciton.

Figure 7.7: Mott-Wannier and Mott-Hubbard correlation functions corre-
sponding to 1B+

u state (see Eqns. 7.5 and 7.8). There are no
nodes in the correlation function when plotted against ~R =

~r1 + ~r2 and ~s = ~r1 − ~r2, ~r1 and ~r2 being the position of the elec-
tron and hole (in case of MW exciton) and holon and doublon
(in case of MH exciton) in units of repeat distance.

(a) 2A−g state is made up of
bimagnon exciton n = 1,
K = 1.

(b) 1B−u state is made up of
bimagnon exciton n = 1,
K = 2.

(c) 3A−g state is made up of
bimagnon exciton n = 1,
K = 2.

(d) 4A−g state is made up of
bimagnon exciton n = 2,
K = 1.

Figure 7.8: Bimagnon correlation function corresponding to 2A−g , 1B−u ,
3A−g and 4A−g states (see Eqn. 7.10). The number and position
of nodes reflect the n and k values listed in the table 7.3.
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Table 7.3: Nature of the β-carotene excited states. % of the Mott-Wannier
(MW), Mott-Hubbard (MH) and Bimagnon (BM) nature of ex-
cited states are tabulated. The n and K values denote the center
of mass momemtum quantum number and the quantum num-
ber associated with the reversal of relative coordinates. The val-
ues of n and K reported are for the type of exciton that forms
the majority of the contribution to the respective excited states.

State MW MH BM n K

nature nature nature

2A−g 8 1 91 1 1

1B−u 10 1 89 1 2

3A−g 12 1 87 1 3

4A−g 6 1 93 2 1

2B−u 13 9 86 1 4

3B−u 8 1 91 1 5

5A−g 14 1 85 1 6

1B+
u 81 17 2 1 1

coordinate momenta, corresponding to the excitons, by plotting the correlation

functions in the real and conjugate space and noting the number and position

of nodes in the correlation functions(see Figs. 7.7 and 7.8).

From the table 7.3, we observe that all the optically forbidden B−u and A−g ex-

cited states below the 1B+
u state is made up of bimagnon excitons, i.e. in the

valence bond language they are formed by the coupling of two singlet to triplet

excitations. On the other hand, the optically allowed state 1B+
u can be described

quite well as a Mott-Wannier exciton, i.e. described well within a single de-

terminant weakly interacting picture. This re-asserts our knowledge about the
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1B+
u state that it is made predominantly by the HOMO-LUMO transition and

the dynamic correlation forms the most important part of the electronic corre-

lation needed to describe this state. (Due to the predominant HOMO-LUMO

transition and single-configurational character, static correlation plays a minor

role in this state.)

7.4 Excitation energies - Inclusion of dynamic correlation

There is yet another major question that remains to be answered in the

carotenoid excitation spectra: the precise position of the dark states relative to

the 1B+
u state, which may be involved in the process of light harvesting. As ex-

plained in the previous section, static correlation is not enough to answer this

question. We need to include dynamic correlation on top of the static correlated

qualitatively correct wavefunctions to obtain quantitatively correct excitation

energies.

In the Chapter V and VI, we have described two dynamic correlation methods

that can be applicable to large strongly correlated systems: cumulant approxi-

mated NEVPT2 and canonical transformation theory.

7.4.1 Cumulant approximated NEVPT2

Cumulant approximated NEVPT2 (cu-SC-NEVPT2) is the relatively computa-

tionally cheaper and easier way of incorporating dynamic correlation in the

strongly correlated systems, although not the most accurate.
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Computational details

The geometry of lycopene molecule (C40H56) was optimized by the same proce-

dure as used for β-carotene. The C22 backbone (almost planar which forms the

most important component of the chromophore) coordinates of the optimized

lycopene molecule were taken, and H atoms were attached to this C22 back-

bone, followed by the re-optimization of the H atoms keeping the C22 frame-

work fixed at the density functional level using the B3LYP functional [22, 23] as

implemented in GAUSSIAN03 [24] using 6-31G basis set. The initial localized or-

bitals for the “model lycopene” molecule (out of plane C22H24) with Dunning’s

cc-pVDZ basis [28] for the C atoms and STO-6G basis for the H atoms was ob-

tained from PSI3 [25, 26].

The DMRG-CASSCF (4 state averaged with M = 250) and subsequent DMRG

(9 state averaged with M = 1000) calculations were performed exactly as in

the case of β-carotene. The information about the one and two particle density

matrices along with the final optimized wavefunction was used to calculate the

cumulant approximated NEVPT2 (cu-SC-NEVPT2) energies.

Results

Figure 7.9: Lycopene.

Table 7.4 shows the excitation energies in eV of the six lowest energy states (in

the cu-SC-NEVPT2 level) of lycopene (model compound). Although the 2A−g ,

1B−u and 3A−g excitation energies matched reasonably well with the experimen-

tally observed excitation energies, the ordering of the ground and excited states
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Table 7.4: Excitation energies (in eV ) of the lycopene model compound by
DMRG-CASSCF and cu-SC-NEVPT2 methods. The basis and
geometry as explained in text.

State DMRG-CASSCF cu-SC-NEVPT2 Expt.

2A−g 2.80 1.67 1.76 1

1B−u 3.36 2.71 2.18 1

3A−g 3.95 2.80 2.22 2

4A−g 4.15 3.30 -

2B−u 4.51 5.25 -

1B+
u 5.16 1.21 2.47 2

1[9] (for lycopene and β-carotene).
2Excitation measured for lycopene [11] (for lycopene).

was found to be 1A−g < 1B+
u < 2A−g < 1B−u < 3A−g < 2B−u < 4A−g . The po-

sitioning of 1B+
u state below the 2A−g state is almost certainly an artifact of the

calculation. Since the cumulant approximated NEVPT2 is not a very powerful

dynamic correlation method, it seems to have problems describing states which

have a higher degree of dynamic correlation (e.g. 1B+
u ).

There is one more concern about using this method to obtain the correct exci-

tation energy and number of the dark states. As explained in Chapter V, this

method uses an imaginary level shift to correct for possible false intruder states

due to the cumulant errors in the higher body reduced density matrices. In the

case of carotenoids, the energy of the ground and excited states are very sen-

sitive to the value of level shift used and level shift analysis is inadequate to

decide on an appropriate level shift. The values listed in the table 7.4 are with

no level shift.
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7.4.2 CT theory

Due to the uncertainty of the level shift analysis in cumulant approximated

NEVPT2, a more rigorous method for calculating dynamic correlation would

be to calculate the strongly contracted CT energies (see Chapter VI) with the

state averaged DMRG-CASSCF reference wavefunction and the one- and two-

particle density matrices of the individual states.

7.5 Conclusion and future directions

In this chapter, we have described the application of DMRG-CASSCF and dy-

namic correlation methods like cu-NEVPT2 and CT theory to understand the

nature and positions of the low-lying excitations in carotenoids, like β-carotene

and lycopene. While our DMRG-CASSCF calculations get the correct qualita-

tive picture of these low-lying dark and optically active states, we are yet to

obtain sufficient quantitative accuracy in our calculations. Extensively state av-

eraged DMRG-CASSCF calculations on these compounds give us the excitonic

nature of the low-lying excitations.

However, the dynamic correlation methods are still not adequate to handle such

large and complicated systems. The cu-SC-NEVPT2 calculations give a rea-

sonable estimate of the dynamic correlation in the dark states (which are not

extremely dynamically correlated). However, the predominantly dynamically

correlated 1B+
u state excitation energy obtained by this method is not accurate

as the perturbative technique (in the approximate form) is not powerful enough

to handle the high degree of dynamic correlation. Thus, the addition of dynamic
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correlation with sufficient accuracy requires further work.

C

O OH
O

O
O

O
OH

H

Figure 7.10: Peridinin.

There is another aspect of the carotenoid problem that requires attention: the

effect of conjugated carbonyl groups to the excitation spectrum in carotenoids,

like peridinin. With our DMRG-CASSCF, we have a technique that is capable

of explicitly correlating the complete π valence space. Therefore, we have a

tool to understand the nature of the excited state in the carotenoid molecules

containing carbonyl and hydroxy groups. This would be an interesting direction

for future work.
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CHAPTER 8

FUTURE DIRECTIONS: IMPROVING THE STATIC AND DYNAMIC

CORRELATION METHODS

8.1 Need for improvement in the static correlation methods

DMRG and its orbital optimized counterpart give us a method to accurately ob-

tain the static correlation in strongly correlated “pseudo one dimensional” sys-

tems of essentially infinite length. However, the method needs to be extended

to treat general large systems in more than one dimension.

In order to establish a viable strategy to extend the DMRG algorithm to higher

dimensions let us consider a general two dimensional lattice and try to use

DMRG to solve for the static correlation in the lattice. The lattice sites must be

ordered in one dimension and one possible ordering scheme can be as shown

in Fig. 8.1. However, as can be seen from the figure this ordering scheme does

not account for several of the required correlations, those between the sites on

the rows. The current strategy in such situations is to retain a larger number of

states M in the DMRG calculation so that, even with the absence of direct cor-

relations between these sites, we can recover some of the correlations indirectly

through the large number of states that are retained. Thus, with the increase in

size of the system in its second dimension, M needs to be increased and many

of the natural benefits of the DMRG algorithm in one dimension are lost.

However, for a better method that can naturally handle two dimensional sys-

tems we need to incorporate these correlations without the extra computational

cost of increasing M states that are retained. Following the matrix product state
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Figure 8.1: DMRG applied to a 2D lattice: as can be seen from the figure,
this scheme is inefficient to consider correlations between the
rows of sites.

(MPS) formulation, intuitively we can think of incorporating the correlations by

using another set of auxiliary indices, j. Thus, if the MPS wavefunction is given

by,

Ψn1n2n3... ≈
∑

n1n2n3...

∑
i1i2i3...

Ψn1
i1

Ψn2
i1i2

Ψn3
i2i3
.. (8.1)

the new wavefunction which can be viewed as the tensor product state can be

given by,

Ψn1n2n3... ≈
∑

n1n2n3...

∑
i1i2i3...

∑
j1j2j3...

Ψn1
i1j1

Ψn2
i1i2j2

Ψn3
i2i3j3

... (8.2)

where the extra indices j1, j2 · · · introduce correlations that were originally ab-

sent in the matrix product state formulation and yet were necessary due to the

second dimension in the problem.

This class of tensor product states (TPS) has been used in quantum information

theory and of late been used to solve certain Bosonic problems and spin Hamil-
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Figure 8.2: Projected entangled pair states applied to a 2D lattice: here the
auxiliary index j introduces the correlation between the rows
of sites.

tonians by the ansatz known as projected entangled pair states (PEPS) [1, 2] and

multi-scale entanglement renormalization ansatz (MERA) [3]. Recently, there

has been some efforts to use these methods for fermionic systems. However,

there are generally many numerical issues with the equations and therefore,

a stable and efficient implementation of these methods for quantum chemical

systems is an interesting direction for further research.

8.2 Need for improvement in the dynamic correlation methods

In this thesis, we have described two dynamic correlation methods for large

multireference systems: cumulant approximated NEVPT2 and canonical trans-

formation theory. However, from the applications of the methods to large sys-
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tems, we know that the methods have several short comings. There are two

aspects of the dynamic correlation methods that need improvement.

1. Accuracy

Cumulant approximated NEVPT2 has its inadequacies when treating sys-

tems that have a very large dynamic correlation while being inherently

multireference (see Chapter VII). CT theory also has convergence prob-

lems with such complicated systems. One of the main causes of these

problems in both these methods is the cumulant approximation of the

higher (more than 2) body terms. Thus, this problem can be amelio-

rated by introducing some more information about the higher body re-

duced density matrices. While this would have some computational cost

overhead, the creation of the three body reduced density matrix from the

DMRG wavefunction can be possible. Therefore, using the information

about the 3RDM from the DMRG wavefunctions the accuracy and conver-

gence of both the methods (cu-SC-NEVPT2 and CT) can be improved.

2. Scalability

The computational scaling of the CT theory, while better than the mul-

tireference CI methods, is quite steep (O(n2
actn

4
vir) ≈ O(n6) where n is the

system size or total number of orbitals, nact and nvir are the numbers of

active orbitals and virtual orbitals respectively). Therefore, any attempt to

use CT theory for very large systems would become prohibitively expen-

sive. For a method to be truly applicable for very large systems the scaling

should be linear or quadratic with the system size. Since electron cor-

relations are essentially short-range, it also seems physical that the com-

putational scaling of most methods should not be higher than quadratic
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scaling. However, the reason for the unphysically high scaling of most

methods is the canonical nature of the orbitals which forces us to correlate

all the orbitals while in reality two electrons that are sufficiently far away

from each other hardly interact. Therefore, by using localized orbitals and

constraining the excitations to contain only the important ones (i.e. the

excitations from and to orbitals that are adjacent or near to each other), we

can achieve a local CT theory.

8.3 Evaluation of three-particle reduced density matrix from

the DMRG wavefunction

The elements of the three-particle reduced density matrix (3RDM) are given by,

γijklmn = 〈a†ia†ja†kalaman〉. (8.3)

Since the number of elements in the 3RDM is k6, where k is the number of the

lattice sites, naively one would think that the evaluation of the 3RDM would

scale as O(k6) with a storage cost O(M2k6) since each of the terms has a M ×M
matrix representation. The computational as well as storage cost would be pro-

hibitively expensive. However, we can use the canonical representations at dif-

ferent lattice sites similar to that used for the calculation of lower body reduced

density matrices (in Chapter III) and reduce the cost of the three-particle re-

duced density matrix calculation.

The pseudo-code for the three-particle RDM evaluation is given in Algs. (3) and

(4). Alg. (4) describes how to partition the evaluation of different density matrix

elements amongst the block configurations as we traverse a DMRG sweep.
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Algorithm 3: COMPUTE(nl, np, nr, left, sitep, right). Note nl, np, nr ≤ 3

and nl + np+ nr = 6, i.e. the number of indices in the three-
particle density matrix γ.

for all opl= operators with nl indices on block left do

(If parallel, loop only over opl stored on current proc)

for all opp= operators with np indices on block sitep do

for all opr= operators with nr indices on block right do

γ(np, nl, nr) = parity(opl, opp, opr)× 〈Ψ|opl ⊗ opp⊗ opr|Ψ〉
end for

end for

end for

(If parallel, accumulate contributions from all procs to root processor)

The different functions that are put together in Alg. (4) to form the complete

three-particle density matrix can be understood by noting that there are a few

major types of density matrix elements depending on how many operators are

situated on different lattice sites.

• γijklmn such that 4 operators are on one site which gives rise to COMPUTE

functions with arguments [4, 0, 2], [4, 2, 0], [4, 1, 1] in the first configuration

and [0, 4, 2], [2, 4, 0], [1, 4, 1] in the sweep through the blocks and [0, 2, 4],

[2, 0, 4], [1, 1, 4] in the final configuration.

• γijklmn such that 3 operators are on one site which gives rise to COMPUTE

functions with arguments [2, 3, 1], [1, 3, 2], [3, 3, 0] in the the sweep through

the blocks and [0, 3, 3], [1, 2, 3], [2, 1, 3] in the final configuration.

• γijklmn such that 2 operators are on one site, which gives rise to COMPUTE

functions with arguments [3, 2, 1] in the sweep though the blocks.
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Algorithm 4: Evaluating three-particle density matrix by assembling
across a DMRG sweep.

left= site 1, sitep= site 2, right= sites 3 . . . k

COMPUTE(4, 1, 1, left, sitep, right)

COMPUTE(4, 0, 2, left, sitep, right)

COMPUTE(4, 2, 0, left, sitep, right)

for sitep= 2 to k-1 do

left= sites 1 . . . p− 1, right= sites p+ 1 . . . k

COMPUTE(1, 4, 1, left, sitep, right)

COMPUTE(0, 4, 2, left, sitep, right)

COMPUTE(2, 4, 0, left, sitep, right)

COMPUTE(2, 3, 1, left, sitep, right)

COMPUTE(1, 3, 2, left, sitep, right)

COMPUTE(3, 3, 0, left, sitep, right)

COMPUTE(3, 2, 1, left, sitep, right)

COMPUTE(2, 2, 2, left, sitep, right)

COMPUTE(3, 1, 2, left, sitep, right)

end for

left= sites 1 . . . k − 2, sitep= site k − 1, right= site k

COMPUTE(1, 1, 4, left, sitep, right)

COMPUTE(2, 0, 4, left, sitep, right)

COMPUTE(0, 2, 4, left, sitep, right)

COMPUTE(0, 3, 3, left, sitep, right)

COMPUTE(1, 2, 3, left, sitep, right)

COMPUTE(2, 1, 3, left, sitep, right)
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• γijklmn such that only one operator is on one site, which gives rise to COM-

PUTE functions with arguments [3, 1, 2] in the sweep through the blocks.

The actual calculation of the density matrix elements is carried out by the func-

tion COMPUTE in Alg. (3), which computes all density matrix elements that may

be assembled from nl index operators on the left block, np index operators on

site p, and nr index operators on the right block.

The resultant computational complexity can be understood if we look more

closely at the density matrix element γijklmn ∀ i 6= j 6= k 6= l 6= m 6= n since

these are the most computationally expensive elements. In the pseudo-code

it is calculated using the COMPUTE function with [3, 1, 2] arguments (Alg. 5),

i.e. the left block has 3 indices, the site (dot) has one index and the right block

has 2 indices. That is we choose a block configuration such that i, j, k lie in the

left block, l in the dot in between the blocks and m,n in the right block, i.e.

. . . •i . . . •j . . . •k . . . •l . . . •m . . . •n . . . . The corresponding matrix element

may then be evaluated using a†ia
†
ja
†
k on the left block, and al on site and aman on

right block, and thus no operator matrices with more than three orbital indices

appear on either block (see Fig. 8.3).

By the appropriate choice of partitioning between the left and right blocks, we

can arrange things such that we never manipulate operators with more than

three orbital labels on either the left or right blocks for any ijklmn. During a

DMRG sweep we iterate through all block configurations where the dividing

site •p ranges from site 2 to site k−1. At each block configuration, we then eval-

uate all the three-particle density matrix elements which do not require more

than three-index operators on either the left or right blocks, and assemble the

contributions of all the block configurations at the end of the DMRG sweep. The
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Algorithm 5: Pseudo-code for COMPUTE(3, 1, 2) function called during the
sweep through the block configuration in the three-particle
density matrix calculation.

Initialize array of length i ≥ j ≥ k ∈ left
for all i ∈ left do

for all j ≤ i ∈ left do

for all k ≤ j ∈ left do

Build operator ôiôj ôk save in array

end for

end for

end for

for all iproc ∈ 1, 2 . . . nproc do

for all l ∈ • do

for all m ∈ right do

for all n ≤ m ∈ right do

Load operator ômôn

Build operator ôlômôn

γijklmn = parity(ijklmn)〈Ψ|ôiôj ôk ⊗ ôlômôn|Ψ〉
end for

end for

end for

end for
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Figure 8.3: Evaluation of a 3-RDM element γ135689. We can obtain this ele-
ment e.g. at the block configuration where indices 1, 3, 5 are on
the left block and indices 6 on the site • and 8, 9 are on the right
block (corresponding to calling COMPUTE(3, 1, 2) in Alg. 5.

total memory and storage cost is thus reduced to O(M2k3).

We consider the different steps in building these elements.

• The creation of the operators a†ia
†
ja
†
k on left block and alaman on site (in

between the blocks) and right block which has k3 matrix multiplications

of size M ×M thus giving rise to the computational cost of M3k3.

• The final multiplication of these operators on each block to get the final

density matrix element γijklmn =
∑

A,B Lijk(A,B)Rlmn(A,B) where there

are k6 indices ijklmn and A and B are each of dimension M resulting to

the computational cost of M2k6.

Therefore, the total computational cost is O(M2k6 + M3k3). The computational

costs of each of the different objects that build up the complete three-particle
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Table 8.1: Computational cost of various steps of the evaluation of the
three-particle density matrix. k is the no. of orbitals and M is
the number of states retained after each decimation step in the
DMRG algorithm.

Configuration Args. to the Total computational

COMPUTE functions cost

First [4, 1, 1] O(M3k)

[4, 0, 2] O(M3k2)

[4, 2, 0] O(M3)

Sweep [1, 4, 1] O(M3k2)

[0, 4, 2] O(M3k2)

[2, 4, 0] O(M3k2)

[2, 3, 1] O(M3k3)

[1, 3, 2] O(M3k3)

[3, 3, 0] O(M3k3)

[3, 2, 1] O(M3k3 +M2k6)

[2, 2, 2] O(M3k2 +M2k6)

[3, 1, 2] O(M3k3 +M2k6)

Final [1, 1, 4] O(M3k)

[2, 0, 4] O(M3k2)

[0, 2, 4] O(M3)

[0, 3, 3] O(M3)

[1, 2, 3] O(M3k)

[2, 1, 3] O(M3k2)

reduced density matrix are given in Table 8.1.
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Thus, exploiting the canonical property of the DMRG wavefunction we can for-

mulate an efficient algorithm to evaluate the three-particle density matrix with

a total per-sweep computational cost of O(M3k3 +M2k6) and a memory cost of

O(M2k3).

8.4 Lower scaling canonical transformation method

CT theory [4, 5] has been introduced (in Chapter VI) as a rigorous size-extensive

theory capable of describing dynamic correlation in bonding situations where

there is also significant static correlation. It has also been applied to excited

state problems with considerable dynamic and static correlations. Despite the

very desirable properties of size-extensivity and high accuracy, there is need

to reduce the computational cost scaling (O(n2
actn

4
vir) ≈ O(n6) where n is the

system size) to O(n2) in order to use it for really large systems.

Lower and affordable cost scaling is known to be attainable by exploiting the

short range nature of the electron correlation. Local correlation methods such

as local coupled cluster [6] and local Møller Plesset perturbation theory [7] have

been developed which recover about ≈ 98% of the correlation energy obtained

from a corresponding non local full correlation calculation. Analogous to these

methods, a local canonical transformation method can be envisaged.

It is intuitively clear that for a localized treatment of the electron correlation,

we need localized orbitals. Localized fully-occupied and active orbitals can be

easily obtained by separately localizing these subspaces using Pipek-Mezey lo-

calization scheme [8]. However, the virtual orbitals cannot be localized satisfac-

torily with this method. Orthonormal linearly independent local virtual orbitals
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can be generated from projected atomic orbital (PAO) localization. A complemen-

tary virtual orbital space can be obtained by projecting out the core and active

orbitals from the complete space of atomic orbitals. We can define a projection

operator in the occupied space (containing the core or fully-occupied and the

active spaces),

P̂ =
nocc∑
i=1

|Ψi〉〈Ψi|

=
∑
µνi

|Φµ〉CµiCνi〈Φν |

=
∑
µν

|Φµ〉Dµν〈Φν | (8.4)

where C denotes the molecular orbital coefficients, Dµν =
∑nocc

i=1 CµiCνi denotes

the density matrix elements and Φ refers to atomic orbitals (AO) while Ψ refers

to the molecular orbitals (MO). Thus, the projection of the AO basis on the oc-

cupied space is given by,

P̂ |Φµ〉 =
∑
ν

|Φν〉(PAOS)µν =
∑
ν

|Φν〉Pµν . (8.5)

where PAO
µν =

∑
i∈occCµiCνi and S is the overlap matrix in the AO basis. Since,

the projection matrices R (on the virtual space) and the P (on the occupied

space) are such that R + P = 1, we can define the final projection matrix that

forms the virtual space by projecting out the core and the active orbitals given

by,

R = 1−P (8.6)

Thus, the projected virtual orbital |Ψi〉 is formed by,

{|Ψi〉} = {R|Φi〉} (8.7)

where Φi is an atomic orbital. These virtual orbitals have redundancies or linear

degeneracies as they form n orbitals spanning a space of nvir orbitals. However,
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a non-redundant set of virtual orbitals can be defined in terms of the linear com-

binations of these PAOs, and nvir non-redundant virtual PAOs can be obtained

by orthogonalizing the redundant virtual PAOs.

The locality of the orbitals allow us to group them into pairs of orbitals that in-

teract strongly with each other based on their relative distances. The lower com-

putational scaling of the local CT method arises from constraining the excitation

operator A to contain only excitations from neighboring groups of orbitals,

A = Aai (a
a
i − aia) + Aabij (aabij − aijab) + Aakij (aakij − aijak)

A = A
[i]
i (a

[i]
i − ai[i]) + A

[ij]
ij (a

[ij]
ij − aij[ij]) + A

[ij′]
ij (a

[ij′]
ij − aij[ij′]) (8.8)

where i, j, k . . . denote orbitals in the active space and a, b, c . . . denote orbitals

in the external space (fully occupied and virtual). The orbitals [ij] denote the or-

bitals in the external space that form the neighboring pairs with active orbitals

i or j, [i] denotes the orbitals in the external space that form the neighboring

pairs with active orbital i and [ij′] denote the orbitals in the external and ac-

tive space respectively that form the neighboring pairs with active orbitals i or

j. This forms the so-called local correlation space. Since the number of orbitals

(active or external) close to ith active orbital is a constant, the scaling of the op-

eratorA can be reduced from n2
actn

2
ext to n2

act (nact and next denote the numbers of

orbitals in active and external space respectively) which is affordable even for

large systems.

While very efficient implementations of this constrained excitations can be en-

visaged, due to the complicated nature of the CT equations, the first step to-

wards achieving quadratic scaling local CT theory would be to partition the

system completely and carry out a large number of small CT calculations. In

other words the non-local CT calculation for the complete large system can be

192



reduced into a large number of smaller CT calculations. Say, if we have a large

system and divide it into n parts A,B,C . . . N , the first approximation would

be to perform n CT calculations on each of the parts A,B,C . . . N . Thereby the

energy of system parts can be written as,

EA = Tr[ΓA, e
−AAHAe

AA ]

EB = Tr[ΓB, e
−ABHBe

AB ]

... (8.9)

where EA and EB are the energies of the system parts A and B, and HA and HB

denote the parts of the Hamiltonian that are located on A and B respectively,

and the density matrices (ΓA, ΓB) and amplitudes are also defined in the respec-

tive parts of the system. While this method would work for a system which can

be partitioned into A and B such that there is negligible electronic interaction in

between A and B, this would not be sufficient to describe real systems in which

A and B interact. In such cases we would have to define EAB and EABC , etc

terms such that A, B and C are neighboring parts of the system which interact

strongly, and EAB and EABC form the energies of the combined system parts

A+B and A+B +C respectively . Following this scheme of partitioning up to

the fourth order term or EABCD, the final energy expression would look like,

Etotal = (EA + EB + EC + · · · ) + (∆EAB + ∆EAC + · · · )

+(∆EABC + ∆EABD + · · · ) + (∆EABCD + ∆EABCE + · · · ) (8.10)

where the only contributions of ∆EAB, ∆EABC and ∆EABCD are computed

when A,B,C,D are neighboring parts of the system. In Eqn. 8.10, the terms

∆EAB, ∆EABC and ∆EABCD refer to the corrections in contributions to the en-
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ergy, given by

∆EAB = EAB − (EA + EB)

∆EABC = EABC − (∆EAB + ∆EAC + ∆EBC)− (EA + EB + EC)

∆EABCD = EABCD − (∆EABC + ∆EABD + ∆EBCD)−

(∆EAB + ∆EAC + · · · )− (EA + EB + EC + ED). (8.11)

Since, we have used up to 4 body terms EABCD it might seem that the scaling

of the local method thus formed would be O(n4). However, we are taking into

account only those 2,3,4 body terms that obey the criterion that the system parts

contributing to the terms are near each other and therefore, strongly interact

with each other. Using this constraint on the small CT calculations performed,

it can be shown geometrically that the number of CT calculations isO(n), where

n is the number of system parts which is proportional to the system size. Thus,

we have a possible local CT method that would scale as O(n) with the system

size.
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APPENDIX A

A.1 Pipek-Mezey localization scheme

The measure of delocalization defined in the Pipek-Mezey localization scheme

is given by,

di = [
n∑

A=1

(Qi
A)2]−1 = [

n∑
A=1

(
∑
µ∈A

m∑
ν=1

CiµCiνSµν)
2]−1 (A.1)

where Qi
A is the gross Mulliken population of orbital i on atom A, Ciµ is the MO

coefficient of µth AO on ith MO and Sµν is the AO overlap between the AOs µ

and ν. The number of atoms is given as n. Thus, di is the average number of

atoms that the orbitals are delocalized on and serves as an efficient measure of

delocalization. The PML scheme is to minimize this di.

The average of this quantity is defined as the mean localization quantity

D−1 =
1

N

N∑
i=1

d−1
i , (A.2)

where N is the total number of molecular orbitals.

The global localization criterion is thus

P =
N∑
i=1

n∑
A=1

(Qi
A)2 = maximum, (A.3)

where N is the number of MOs.

This criterion is followed by a converging iteration of 2 × 2 rotations on the

delocalized canonical orbitals as the starting orbitals to get the localized orbital
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and the angle of rotation in given by,

γst = SIGN(Bst)
1

4
cos−1(− Ast√

A2
st +B2

st

)

−π
4
≤ γst ≤ π

4

Ast =
n∑

A=1

(Qst
A)2 − 1

4
[Qs

A −Qt
A]2

Bst =
1

2

∑
µ∈A

m∑
ν=1

[CsνCtµ + CsµCtν ]Sµν . (A.4)
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A.2 Algorithm for parallel four-index integral transformation

Algorithm 6: Parallel four-index integral transformation algorithm.

Stage 1: Assemble J and K intermediates

Divide AO integrals vAOµνκλ by a factor (2− δµλ)(2− δνκ)(2− δµλ,νκ)
for ν̄, κ̄ (ν̄ ≥ κ̄) ∈ proc do

for a, µ, λ s.t. µ ≥ λ, µλ ≥ ν̄κ̄ do

Ma
µ(ν̄, κ̄) += vAO

µν̄κ̄λ Uaλ; Na
λ(ν̄, κ̄) += vAO

µν̄κ̄λ Uaµ

Na
µ(ν̄, κ̄) += vAO

µκ̄ν̄λ Uaλ; Na
λ(ν̄, κ̄) += vAO

µκ̄ν̄λ Uaµ

end for

for a, λ do

Na
λ(ν̄, κ̄) +=Ma

λ(ν̄, κ̄)

end for

for a, µ, λ s.t. µ ≥ λ, ν̄κ̄ ≥ µλ do

Laµ(ν̄, κ̄) += vAO
ν̄µλκ̄ Uaλ

end for

for a, b, λ s.t. a ≥ b do

Jab(ν̄, κ̄) +=Ma
λ(ν̄, κ̄)Ubλ +M b

λ(ν̄, κ̄)Uaλ + Laλ(ν̄, κ̄)Ubλ + Lbλ(ν̄, κ̄)Uaλ

end for

for a, b, λ do

Kab(ν̄, λ) += Na
λ(ν̄, κ̄)Ubκ̄

end for

end for

for a, b s.t. a ≥ b do

write Jab, Kab, and Kba on disk

end for
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Stage 2: Redistribute J and K, transform to final integrals.
for a, b (a ≥ b) do

read Jab, Kab, Kba from disk and send to proc(a, b)
end for
for ā, b̄ (ā ≥ b̄) ∈ proc, ν, κ (ν ≥ κ) do
Jāb̄(κ, ν) += Jāb̄(ν, κ)

end for
for ā, b̄ (ā ≥ b̄) ∈ proc, ν, κ do
Kāb̄(κ, ν) += Kb̄ā(ν, κ)

end for
for ā, b̄ (ā ≥ b̄) ∈ proc, p, q, ν, κ do
vāpqb̄ += Jāb̄(ν, κ)UpνUqκ (eqn. (3.28))
vāpb̄q += Kāb̄(ν, κ)UpνUqκ (eqn. (3.29))

end for

A.3 Algorithms for computing different elements of the two-
particle density matrix from the DMRG wavefunction

In order to compute the two-particle density matrix with a reasonable cost, we

use the canonical representation of the DMRG wavefunctions at different sites.

By using the flexibility, the memory requirement can be reduced to O(M2k2)

and the computational cost can be reduced to O(M2k4).
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Algorithm 7: Pseudocode for COMPUTE(4, 0, 0) function called during the
first configuration of the sweep in the two-particle density
matrix calculation.

for i ∈ left do

for j ∈ left do

for k ∈ left do

for l ∈ left do

Build operator ôiôj ôkôl

γ(ijkl) = parity(ijkl)〈Ψ|ôiôj ôkôl ⊗ 1• ⊗ 1right|Ψ〉
end for

end for

end for

end for

Algorithm 8: Pseudocode for COMPUTE(3, 1, 0) function called during the
first configuration of the sweep in the two-particle density
matrix calculation.

for i ∈ left do

for j ∈ left do

for k ∈ left do

Build operator ôiôj ôk

for l ∈ • do

γ(ijkl) = parity(ijkl)〈Ψ|ôiôj ôk ⊗ ôl ⊗ 1right|Ψ〉
end for

end for

end for

end for
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Algorithm 9: Pseudocode for COMPUTE(3, 0, 1) function called during the
first configuration of the sweep in the two-particle density
matrix calculation.

for i ∈ left do

for j ∈ left do

for k ∈ left do

Build operator ôiôj ôk

for l ∈ right do

γ(ijkl) = parity(ijkl)〈Ψ|ôiôj ôk ⊗ 1• ⊗ ôl|Ψ〉
end for

end for

end for

end for
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Algorithm 10: Pseudocode for COMPUTE(2, 1, 1) function called during
first configuration of the sweep in the two-particle density
matrix calculation.

for i ∈ left do

for j ∈ left do

Load operator ôiôj

for k ∈ • do

Load operator ôk

Build operator ôiôj ôk

for l ∈ right do

γ(ijkl) = parity(ijkl)〈Ψ|ôiôj ⊗ ôk ⊗ ôl|Ψ〉
end for

end for

end for

end for
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Algorithm 11: Pseudocode for COMPUTE(1, 2, 1) function called during
the sweep through the block configuration in the two-
particle density matrix calculation.

Initialize array of length i ≥ j ∈ • ⊗ k ∈ left
for i ∈ • do

for j ≤ i ∈ • do

Load operator ôiôj

for k ∈ left do

Build operator ôiôj ⊗ ôk and save in array

end for

end for

end for

for l ∈ right do

γ(ijkl) = parity(ijkl)〈Ψ|ôiôj ôk ⊗ ôl|Ψ〉
end for
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Algorithm 12: Pseudocode for COMPUTE(2, 1, 1) function called during
the sweep through the block configuration in the two-
particle density matrix calculation.

Initialize array of length i ≥ j ∈ left⊗ k ∈ •
for i ∈ left do

for j ≤ i ∈ left do

Load operator ôiôj

for k ∈ • do

Build operator ôiôj ⊗ ôk and save in array

end for

end for

end for

for l ∈ right do

γ(ijkl) = parity(ijkl)〈Ψ|ôiôj ôk ⊗ ôl|Ψ〉
end for
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Algorithm 13: Pseudocode for COMPUTE(2, 0, 2) function called during
the final configuration of the sweep in the two-particle den-
sity matrix calculation.

Initialize array of length i ≥ j ∈ left
for i ∈ left do

for j ≤ i ∈ left do

Build operator ôiôj save in array

end for

end for

for iproc ∈ 1, 2 . . . nproc do

for k ∈ right do

for l ≤ k ∈ right do

Load operator ôkôl

γ(ijkl) = parity(ijkl)〈Ψ|ôiôj ⊗ 1• ⊗ ôkôl|Ψ〉
end for

end for

end for
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Algorithm 14: Pseudocode for COMPUTE(1, 3, 0) function called during
the sweep through the block configuration in the two-
particle density matrix calculation.

for i ∈ left do

Load operator ôi

for j ∈ • do

for k ∈ • do

for l ∈ • do

Build operator ôj ôkôl

γ(ijkl) = parity(ijkl)〈Ψ|ôi ⊗ ôj ôkôl ⊗ 1right|Ψ〉
end for

end for

end for

end for
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Algorithm 15: Pseudocode for COMPUTE(0, 3, 1) function called during
the sweep through the block configuration in the two-
particle density matrix calculation.

for i ∈ • do

for j ∈ • do

for k ∈ • do

Build operator ôiôj ôk

for l ∈ right do

Load operator ôl

γ(ijkl) = parity(ijkl)〈Ψ|1left ⊗ ôiôj ôk ⊗ ôl|Ψ〉
end for

end for

end for

end for
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Algorithm 16: Pseudocode for COMPUTE(0, 4, 0) function called during
the sweep through the block configuration in the two-
particle density matrix calculation.

for i ∈ • do

for j ∈ • do

for k ∈ • do

for l ∈ • do

Build operator ôiôj ôkôl

γ(ijkl) = parity(ijkl)〈Ψ|1left ⊗ ôiôj ôkôl ⊗ 1right|Ψ〉
end for

end for

end for

end for

Algorithm 17: Pseudocode for COMPUTE(0, 0, 4) function called during
the final configuration of the sweep in the two-particle den-
sity matrix calculation.

for i ∈ right do

for j ∈ right do

for k ∈ right do

for l ∈ right do

Build operator ôiôj ôkôl

γ(ijkl) = parity(ijkl)〈Ψ|1left ⊗ 1right ⊗ ôiôj ôkôl|Ψ〉
end for

end for

end for

end for
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