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The central theme of this work are Hamiltonian torus actions on symplectic

manifolds. We investigate the invariants of the action, and use the action to

answer questions about the invariants of the manifold itself.

In the first chapter we concentrate on equivariant cohomology ring, a topo-

logical invariant for a manifold equipped with a group action. We consider a

Hamiltonian action of n-dimensional torus, T n, on a compact symplectic mani-

fold (M,ω) with d isolated fixed points. There exists a basis {ap} for H∗T (M ;Q)

as an H∗(BT ;Q) module indexed by the fixed points p ∈ MT . The classes ap

are not uniquely determined. The map induced by inclusion, ι∗ : H∗T (M ;Q) →

H∗T (MT ;Q) = ⊕dj=1Q[x1, . . . , xn] is injective. We will use the basis {ap} to give

necessary and sufficient conditions for f = (f1, . . . , fd) in ⊕dj=1Q[x1, . . . , xn] to be

in the image of ι∗, i.e. to represent an equiviariant cohomology class on M . When

the one skeleton is 2-dimensional, we recover the GKM Theorem. Moreover, our

techniques give combinatorial description of H∗K(M ;Q), for a subgroup K ↪→ T ,

even though we are then no longer in GKM case.

The second part of the thesis is devoted to a symplectic invariant called the

Gromov width. Let G be a compact connected Lie group and T its maximal torus.

The Thi orbit Oλ through λ ∈ t∗ is canonically a symplectic manifold. Therefore

a natural question is to determine its Gromov width. In many cases the width is

known to be exactly the minimum over the set {〈α∨j , λ〉;α∨j a coroot, 〈α∨j , λ〉 > 0}.



We show that the lower bound for Gromov width of regular coadjoint orbits of the

unitary group and of the special orthogonal group is given by the above minimum.

To prove this result we will equip the (open dense subset of the) orbit with a

Hamiltonian torus action, and use the action to construct explicit embeddings of

symplectic balls. The proof uses the torus action coming from the Gelfand-Tsetlin

system.
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CHAPTER 1

INTRODUCTION

This work consists of two independent results: one about an equivariant coho-

mology ring, and the second about Gromov width. We study both in the context

of Hamiltonian torus actions, but in two very different ways. In this introduction

we only give basic definitions and postpone the proper explanation of the problems

to the introductions of the main chapters.

Let (M,ω) be a connected symplectic manifold. The action of a (compact) torus

T ∼= (S1)k is called Hamiltonian if there exists a T -invariant map Φ: M → t∗,

called the momentum map, such that

ι(ξM)ω = −d 〈Φ, ξ〉 ∀ ξ ∈ t,

where ξM is the vector field on M generated by ξ ∈ t. Two different sign conven-

tions are commonly used by symplectic geometers. The above one is widely used

while working with symplectic toric manifolds. In this convention, the isotropy

weights of the induced T -action on the tangent space at a fixed point can be iden-

tified with the generators of edges of the polytope Φ(M) corresponding to the given

symplectic toric manifold. It will be convenient to use this convention in Chapter 2

where we talk about the equivariant cohomology of symplectic toric manifolds and

more general GKM spaces. The second convention defines the momentum map as

a function satisfying

ι(ξM)ω = d 〈Φ, ξ〉 .

This choice of sign means that the isotropy weights of the action are pointing

outside of the momentum map image. However we will use this convention in

Chapters 3 to 5. The reason is that we want to relate the momentum map image
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of the Gelfand-Tsetlin action with the Gelfand-Tsetlin polytope, which has already

appeared in numerous mathematical works.

The notion of a Hamiltonian torus action comes from physics. Every symmetry

of a physical system X has a corresponding conserved quantity, such as angular

momentum. This conserved quantity is a real-valued function H on the phase

space T ∗X called the Hamiltonian. We can use the (non-degenerate) symplectic

form to turn the differential of H into a vector field, and this provides a flow on

the manifold. When this flow is periodic, with same period, it gives rise to a

(Hamiltonian) circle action on the symplectic manifold T ∗X.

The first example of a Hamiltonian action is a circle acting on a 2-sphere by

rotation about the z-axis, presented on Figure 1.1. The north and south poles

are fixed, and the momentum map is simply given by the z coordinate (the height

function).

Lie(S1)∗

S2

Figure 1.1: Hamiltonian S1 action on S2.

An important class of examples of symplectic manifolds is given by coadjoint

orbits of Lie groups. A Lie group G acts on g∗, the dual of its Lie algebra, through
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the coadjoint action. Each orbit O of the coadjoint action is naturally equipped

with the Kostant-Kirillov symplectic form:

ωξ(X, Y ) = 〈ξ, [X, Y ]〉, ξ ∈ Oλ ⊂ g∗, X, Y ∈ g ∼= TξOλ.

The action of G on an orbit O is Hamiltonian, and the momentum map is just

inclusion O ↪→ g∗.

When G = U(n) the group of (complex) unitary matrices, a coadjoint orbit can

be identified with the set of Hermitian matrices with a fixed set of eigenvalues. If

all eigenvalues are distinct, the orbit is a manifold of full flags in Cn. For example,

U(2) orbit through diag(λ1 > λ2) is a full flag in C2, i.e. CP 1 ∼= S2, and consists

of matricesA =

 a c+ id

c− id b

 ; a, b, c, d ∈ R, χA(t) = (t− λ1)(t− λ2)


=
{
A; a+ b = λ1 + λ2, (a− b)2 + 4c2 + 4d2 = (λ1 − λ2)2

}
.

In Chapter 2 we consider symplectic manifolds with Hamiltonian torus actions.

We use information coming from momentum map to find a convenient presenta-

tion of their equivariant cohomology ring. In the three subsequent Chapters we

concentrate on the symplectic invariant called the Gromov width. We equip a

manifold with a Hamiltonian torus action and use it to find lower bounds for its

Gromov width.
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CHAPTER 2

EQUIVARIANT COHOMOLOGY

2.1 Introduction

Suppose that a compact Lie group G acts on a compact, closed, connected and

oriented manifold M . Unless otherwise stated, all the manifolds considered here

are assumed to be compact, closed and connected. Let EG → BG denote

the classifying bundle for G. The equivariant cohomology ring H∗G(M ;R) :=

H∗(M ×G EG;R), with coefficients in a ring R, encodes topological information

about the manifold and the action. In the case of a Hamiltonian action on a sym-

plectic manifold, a variety of techniques has made computing H∗G(M ;R) tractable.

The work of Goresky-Kottwitz-MacPherson [11] describes this ring combinatori-

ally when G is a torus, R a field, and the action has very specific form. We give

a more general description that has a similar flavor. A theorem of Kirwan [22]

states that the inclusion of the fixed points induces an injective map in equivariant

cohomology. We quote this result below, following Tolman and Weitsman [36].

Theorem 2.1.1 (Kirwan, [22]). Let a torus T act on a symplectic compact con-

nected manifold (M,ω) in a Hamiltonian fashion and let ι : MT → M de-

note the natural inclusion of fixed points into manifold. Then the induced map

ι∗ : H∗T (M ;Q) → H∗T (MT ;Q) is injective. If MT consists of isolated points then

also ι∗ : H∗T (M ;Z)→ H∗T (MT ;Z) is injective.

If there are d fixed points then H∗T (MT ;Q) = ⊕dj=1Q[x1, . . . , xn], where n is the

dimension of the torus. Therefore we can think about an equivariant cohomology

class in H∗T (MT ;Q) as a d-tuple of polynomials f = (f1, . . . , fd), with each fj in
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Q[x1, . . . , xn]. The goal of this paper is to give necessary and sufficient conditions

for a d-tuple of polynomials to be in the image of ι∗, that is to represent an

equiviariant cohomology class on M . By abuse of language we will say that a

d-tuple of polynomials f = (f1, . . . , fd) ’is’ an equivariant cohomology class if it

is the image under ι∗ of an honest (unique) equivariant cohomology class on M .

The following result of Chang and Skjelbred [3] guarantees that we only need to

consider the case of an S1 action.

Theorem 2.1.2 (Chang, Skjelbred, [3]). The image of ι∗ : H∗T (M ;Q) →

H∗T (MT ;Q) is the set ⋂
H

ι∗MH (H∗T (MH ;Q)),

where the intersection in H∗T (MT ;Q) is taken over all codimension-one subtori H

of T , and ιMH is the inclusion of MT into MH .

In fact the only nontrivial contributions to this intersection are those codimen-

sion 1 subtori H which appear as isotropy groups of some elements of M (that is

MH 6= MT ). Therefore we will consider a circle acting on a compact, connected

and closed symplectic manifold (M,ω) in a Hamiltonian fashion with isolated fixed

points and momentum map µ : M → Lie(S1)∗. In this Chapter we use the con-

vention where ι(ξM)ω = −d 〈µ, ξ〉 for all ξ ∈ Lie(S1).

Recall the Atiyah-Bott, Berline-Vergne (ABBV) localization theorem. For a

fixed point p let e(p) be the equivariant Euler class of tangent bundle TpM , which

in this case is equal to the product of weights of the torus action (see for example

Lemma 2.2 in [37]).

Theorem 2.1.3 (ABBV Localization, [1][2]). Let M be a compact oriented mani-

fold equipped with an S1 action with isolated fixed points, and let α ∈ H∗S1(M ;Q).
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Then as elements of H∗(BS1;Q) = Q[x],∫
M

α =
∑
p

α|p
e(p)

,

where the sum is taken over all fixed points.

Let FrH∗S1(MS1
;Q) denote the Q(x)-vector space of fractions of H∗S1(MS1

;Q).

We extend the notion of integration to FrH∗S1(MS1
;Q). Define a Q(x)-linear

functional ∫
: FrH∗S1(MS1

;Q)→ Q(x)

by ∫
α =

∑
p

α|p
e(p)

.

The functional
∫

agrees with
∫
M

on H∗S1(M ;Q). Consider the Q(x)-bilinear pairing

〈 , 〉 : FrH∗S1(MS1

;Q)× FrH∗S1(MS1

;Q)→ Q(x)

given by

〈α, β〉 =

∫
α · β.

When restricted toH∗S1(M ;Q)×H∗S1(M ;Q), this pairing is the equivariant Poincaré

pairing. The pairing induces the map

Φ : H∗S1(M ;Q)→ HomQ[x](H
∗
S1(M ;Q);Q[x]),

defined by Φ(α)(β) := 〈α, β〉. The Main Theorem is:

Theorem 2.1.4. Let a circle act on a closed compact connected symplectic man-

ifold M in a Hamiltonian fashion, with isolated fixed points. The equivariant

Poincaré pairing

〈 , 〉 : H∗S1(M ;Q)×H∗S1(M ;Q)→ Q[x]

is a perfect pairing, that is, the map Φ : H∗S1(M ;Q)→ HomQ[x](H
∗
S1(M ;Q);Q[x])

defined by Φ(α)(β) := 〈α, β〉 is an isomorphism.
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Knutson in [23, Section 1.3] proved that the equivariant Poincaré pairing is

non-degenerate, therefore the map Φ is injective. We recall the proof in Sec-

tion 2.2. Every fixed point p ∈MS1
defines an equivariant cohomology class [p] ∈

H∗S1(M ;Q). Therefore every Q[x]-homomorphism in HomQ[x](H
∗
S1(M ;Q);Q[x]) ex-

tends uniquely to an Q(x)-linear map from Q(x)-vector space FrH∗S1(MS1
;Q) to

Q(x). All such maps are given by β → 〈α, β〉, for some α ∈ FrH∗S1(MS1
;Q).

To prove surjectivity of Φ we need to show that α ∈ H∗S1(M ;Q). The fact that

β → 〈α, β〉 maps H∗S1(M ;Q) to Q[x] implies that α ∈ H∗S1(MS1
;Q), as for any

fixed point p, 〈α, e(p)〉 = α|p must be in Q[x]. Therefore, to prove the surjectivity

part of the theorem we only need to show that if an element α ∈ H∗S1(MS1
;Q)

satisfies

∀β∈H∗
S1

(M ;Q) 〈α, β〉 ∈ Q[x], (2.1)

then α ∈ H∗S1(M ;Q). We now review some background and reformulate the theo-

rem in a form which is more useful for applications.

Let a circle act on a closed compact connected symplectic manifold M in a

Hamiltonian fashion, with isolated fixed points. It turns out that with these as-

sumptions we are in the Morse Theory setting.

Theorem 2.1.5 (Frankel [6], Kirwan [22]). In the above setting, the momentum

map µ is a perfect Morse function on M (for both ordinary and equivariant co-

homology). The critical points of µ are the fixed points of M , and the index of a

critical point p is precisely twice the number of negative weights of the circle action

on TpM .

The Morse function is called perfect if the number of critical points of index

k is equal to the dimension of k-th cohomology group. The action of a torus of

higher dimension also carries a Morse function. For ξ ∈ t we define Φξ : M → R,
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the component of momentum map along ξ, by Φξ(p) = 〈Φ(p), ξ〉. We call ξ ∈ t

generic if 〈η, ξ〉 6= 0 for each weight η ∈ t∗ of T action on TpM , for every p in the

fixed set MT . For a generic, rational ξ, Φξ is a Morse function with critical set

MT . This map is a momentum map for the action of a subcircle S ↪→ T generated

by ξ ∈ t. Using Morse Theory, Kirwan constructed equivariant cohomology classes

that form a basis for integral equivariant cohomology ring of M . Then the existence

of a basis for rational equivariant cohomology ring of M follows. We quote this

theorem with the integral coeficients, and action of T , although here we work

mostly with rational coefficients and circle actions.

Theorem 2.1.6 (Kirwan, [22]). Let a torus T act on a symplectic compact man-

ifold M with isolated fixed points, and let µ = Φξ : M → R be a component of

momentum map Φ along generic ξ ∈ t. Let p be any fixed point of index 2k and

let w1, . . . , wk be the negative weights of the T action on TpM . Then there exists

a class ap ∈ H2k
T (M ;Z) such that

• ap|p = Πk
i=1wi;

• ap|p′ = 0 for all fixed points p′ ∈MT \ {p} such that µ(p′) ≤ µ(p).

Moreover, taken together over all fixed points, these classes are a basis for the

cohomology H∗T (M ;Z) as an H∗(BT ;Z) module.

In the above theorem we use the convention that empty product is equal to 1.

We will call the above classes Kirwan classes. These classes may be not unique.

Goldin and Tolman give a different basis for the cohomology ring H∗T (M ;Z) in

[10]. They require ap|p′ = 0 for all fixed points p′ 6= p of index less then or equal

2k (where 2k is index of p). Goldin and Tolman’s classes, if they exist, are unique.

Therefore they are called canonical classes. For our purposes, it is enough to
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have some basis for the rational equivariant cohomology ring with respect to circle

action, and with the following property

(?) elements of the basis are in such a bijection with the fixed points that a class

corresponding to a fixed point of index 2k evaluated at any fixed point is 0

or a homogeneous polynomial of degree k.

We will call elements of a basis satisfying condition (?) generating classes. Kir-

wan classes and Goldin-Tolman canonical classes satisfy the above condition.

The hypothesis of Theorem 2.1.4 is that a circle acts on a closed compact

connected symplectic manifold M in a Hamiltonian fashion, with isolated fixed

points. Denote the fixed points by p1, . . . , pd. Let {ap} be the basis of H∗T (M ;Q),

satisfying condition (?). Its existence is guaranteed by Theorem 2.1.6. A choice of

basis allows us to restate the surjectivity part of Theorem 2.1.4 (condition 2.1) in

more applicable form.

Theorem 2.1.7. (Surjectivity of Φ from Theorem 2.1.4.)

Let f = (f1, . . . , fd) ∈ ⊕dj=1 Q[x] = H∗S1(MS1
;Q). Then f is an equivariant coho-

mology class on M if and only if for every fixed point p of index 2k, 0 ≤ k < n we

have
d∑
j=1

fj ap(pj)

e(pj)
∈ Q[x], (2.2)

where ap(pj) denotes ι∗pj(ap), with ιpj : pj ↪→ M the inclusion of the fixed point pj

into M .

Note that if p is a fixed point of index 2n, this condition is automatically

satisfied. This is because ap is nonzero only at p, and there its value is the Euler

9



class e(p). Therefore it is sufficient to check the above condition only for points of

index strongly less then 2n = dimM .

Remark 2.1.8. If f is a cohomology class, then so is f · ap. Applying the Local-

ization Theorem to the class f · ap we see that conditions (2.2) must be satisfied.

The interesting part of the theorem is that they are sufficient to describe H∗T (M)

as a subring of H∗T (MT ).

Example 2.1.9. Recovering the GKM Theorem. Consider the standard

Hamiltonian S1 action on S2 by rotation with weight ax. The isolated fixed points

are south and north poles which we will denote by p1 and p2 respectively. The

Goldin-Tolman class associated to p1 is 1. It exists due to Theorem 1.6 in [10] as

the momentum map is index-increasing. Theorem 2.1.7 then says that f = (f1, f2)

represents equivariant cohomology class if and only if

f1 a1(p1)

e(p1)
+
f2 a1(p2)

e(p2)
=
f1

ax
+

f2

−ax =
f1 − f2

ax
∈ Q[x].

The above condition is exactly the same as the condition (1) in [9]. Using the

solution for this special case, together with the Chang-Skjelbred Lemma, Goldin

and Holm recover the GKM Theorem in Section 1 and 2 of [9].

Let M be a compact, connected, symplectic manifold with a Hamiltonian, effective

action of a torus T and with finitely many fixed points. Let N ⊂ M be the set

of points whose orbits under the G action are 1-dimensional. The one-skeleton

of M is the closure N . The manifold M is called a GKM manifold if N has

finitely many connected components Nα.

Theorem 2.1.10 ([11] and [9],[36]). Let M be a GKM manifold with a Hamil-

tonian torus action by G. Let MG be the fixed point set, and N be the one-

skeleton. Let r : MG ↪→ M be the inclusion of the fixed point set to M and

j : MG ↪→ N be the inclusion to N . The induced maps r∗ : H∗G(M) → H∗G(MG)

and j∗ : H∗G(N)→ H∗G(MG) on equivariant cohomology have the same image.
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Theorem 2.1.7 is useful only if we know the restrictions to the fixed points of

a set of generating classes (whose existence is guaranteed by Theorem 2.1.6). It is

not surprising that there is a translation from the values of generating classes at

fixed points to relations defining H∗T (M) ⊂ H∗T (MT ). Our translation provides a

particularly combinatorial description that is easy to apply in examples. Although

we cannot compute these classes in general, there are algorithms that work for a

wide class of spaces, for example GKM spaces, including symplectic toric manifolds

and flag manifolds (see [38]). For the sake of completeness we will describe an

algorithm for obtaining Kirwan classes for symplectic toric manifolds in Section 2.3.

The choice of ap assigned to fixed point p may be not unique, even for symplectic

toric manifolds. In the case when momentum map is so called “index increasing”

and the manifold is a GKM manifold, uniqueness was proved by Goldin and Tolman

in [10].

A particularly interesting application of our theorem is when we want to restrict

the action of T to an action of a subtorus S ↪→ T such that MS = MT , and

compute ι∗(H∗S(M)) ⊆ H∗S(MS) = H∗S(MT ). We call this process specialization

of the T action to the action of subtorus S. Having generating classes for T action

we can easily compute generating classes for S action using the projection t∗ → s∗.

Theorem 2.1.7 gives relations that cut out ι∗(H∗S(M)) ⊆ H∗S(MT ). In particular

we can use this method to restrict the torus action on a symplectic toric manifold

to a generic circle, i.e. such a circle S for which MS = MT (see Example 2.4.2).

A priori we only require that MS is finite, as we still want to describe H∗S(M) by

analyzing the relations on polynomials defining the image ι∗(H∗S(M)) ⊆ H∗S(MS) =

⊕Q[x1, . . . xk]. However it turns out that this requirement implies MT = MS.

We can explain this fact using Morse theory. If Φ : M → t∗ is a momentum

map for T action and ξ ∈ t is generic, then Φξ, a component of Φ along ξ, is a

11



perfect Morse function with critical set MT . Therefore
∑

dimH i(M) = |MT |.

Similarly, taking µ = prs∗ ◦ Φ for the momentum map for S action, and any

generic η ∈ s, we obtain µη which is also a perfect Morse function for M . Thus

|MS| =
∑

dimH i(M) = |MT |. As obviously MT ⊂ MS, the sets must actually

be equal.

Consider restriction of the GKM action of T to a generic subcircle S:

HT (M)

HS(M)

HT (M
T )

HS(M
S)

GKM relations

GKM relations not enough

GKM relations are sufficient to describe the image of H∗T (M) in H∗T (MT ), but their

“projections” are not sufficient to describe the image of H∗S(M) in H∗S(MT ). How-

ever projecting generating classes and using Theorem 2.1.7 to construct relations

from such a basis will give all the relations we need.

The GKM Theorem is a very powerful tool that allows us to compute the image

under ι∗ of H∗T (M) ↪→ H∗T (MT ). However this theorem cannot be applied if for

some codimension 1 subtorus H ↪→ T we have dim MH > 2. Goldin and Holm

in [9] provide a generalization of this result to the case where dim MH ≤ 4 for

all codimension 1 subtori H ↪→ T . An important corollary is that, in the case of

Hamiltonian circle actions, with isolated fixed points, on manifolds of dimension

2 or 4, the rational equivariant cohomology ring can be computed solely from the

isotropy weights of the circle action at the fixed points. In dimension 2 this is

given for example by the GKM Theorem. In dimension 4 one can apply the algo-

rithm presented by Goldin and Holm in [9] or use the fact that any such S1 action

is actually a specialization of a toric T 2 action (see [19]). If one wishes to com-

pute the integral equivariant cohomology ring, one will need an additional piece

of information, so called “isotropy skeleton” ([8]). Godinho in [8] presents such an

12



algorithm. Information encoded in the isotropy skeleton is essential. There cannot

exist an algorithm computing the integral equivariant cohomology only from the

fixed points data. Karshon in [18](Example 1), constructs two 4-dimensional S1

spaces with the same weights at the fixed points but different integral equivari-

ant cohomology rings. This suggests that we should not hope for an algorithm

computing the rational equivariant cohomology ring from the isotropy weights at

the fixed points for manifolds of dimension greater then 4. More information is

needed. Tolman and Weitsman used generating classes to compute the equivariant

cohomology ring in case of semifree action in [37]. Their work gave us the idea for

constructing necessary relations described in the present paper using information

from generating classes. Our proof was also motivated by the work of Goldin and

Holm [9] where the Localization Theorem and dimensional reasoning were used.

2.2 Proof of Theorem 2.1.4

Let a circle act on a manifold M in a Hamiltonian fashion with isolated fixed points

which we denote p1, . . . , pd.

Proof. Injectivity of Φ. We show that the map

Φ : H∗S1(M ;Q)→ HomQ[x](H
∗
S1(M ;Q);Q[x])

is injective, following [23, Section 1.3]. Take an element α ∈ H∗S1(M ;Q) such that

Φ(α) = 0, that is, for any β ∈ H∗S1(M ;Q) one has 〈α, β〉 = 0. In particular, for any

fixed point pj we have 0 = 〈α, [pj]〉 = α|pj . Injectivity of the map H∗S1(M ;Q) →

H∗S1(MS1
;Q) (see Theorem 2.1.1) implies that α = 0.

13



Surjectivity of Φ (proof of Theorem 2.1.7). As explained in the Intro-

duction, surjectivity of Φ is equivalent to Theorem 2.1.7. Let {ap} be a basis of

H∗S1(M ;Q), satisfying condition (?). We want to show that if f = (f1, . . . , fd) ∈

⊕dj=1 Q[x] = H∗S1(MS1
) satisfies relations (2.2):

d∑
j=1

fj ap(pj)

epj
∈ Q[x],

for every fixed point p, then f is in the image, ι∗(H∗S1(M ;Q)), of injective, degree

preserving map ι∗. By abuse of notation we say such f is an equivariant cohomology

class of M . Recall that Q[x] is a PID. Let R be a submodule of ⊕dj=1 Q[x] consisting

of all d-tuples f = (f1, . . . , fd) satisfying all of the above relations. As a submodule

of a free module over PID, R itself is free. Hamiltonian S1-spaces are equivariantly

formal, that is H∗S1(M ;Q) ∼= H∗(M ;Q) ⊗ H∗(BS1;Q) as modules. We already

noticed that all the above relations are necessary. Therefore ι∗(H∗S1(M ;Q)) is a

free Q[x] submodule of R ⊂ ⊕dj=1 Q[x] We show that for any k the number of

generators of degree k part of ι∗(H∗S1(M ;Q)) is equal to the number of generators

of the degree k part of R. It then follows that ι∗(H∗S1(M ;Q)) = R as needed.

We first analyze ι∗(H∗S1(M ;Q)). The momentum map is a Morse function.

Therefore the idex of a fixed point is well defined. Let bk be the number of fixed

points of index 2k. Then d =
∑n

k=0 bk is the total number of fixed points. By

Theorem 1.3 of Frankel and Kirwan, we know that bk is also the 2k-th Betti number

of M . The fact H∗S1(M ;Q) ∼= H∗(M ;Q)⊗H∗(BS1;Q) implies that the equivariant

Poincaré polynomial for M is

P S1

M (t) = PM(t)P S1

pt (t) = (b0 + b1t
2 + . . .+ bnt

2n)(1 + t2 + t4 + . . .) =

= b0 + (b0 + b1)t2 + . . .+ (b0 + b1 + . . .+ bk)t
2k + . . .+ dt2n + dt2(n+1) + . . . .

Therefore ι∗(H∗S1(M ;Q)) is a free Q[x] submodule of R, where degree k piece is a

vector space over Q of dimension (b0 + b1 + . . .+ bk).
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We now analyze and count the relations defining R. For any f = (f1, . . . , fd) ∈

⊕dj=1 Q[x] = H∗S1(MS1
) we introduce the notation

fj(x) =

Kj∑
k=0

rjkx
k,

with rjk ∈ Q. Then rjk are independent variables. Relations of type

d∑
j=0

sjrjk = 0

for some constants sj’s are called relations of degree k, as they involve the coeffi-

cients of xk. Notice that if f ∈ (⊕dj=1 Q[x])k is a homogeneous element of degree

k then it automatically satisfies all relations of degrees different then k. For any

fixed point p of index 2(k − 1), a generating class ap associated with it assigns to

each fixed point pj either 0 or a homogeneous polynomial of degree (k−1). Denote

by cpj the rational number satisfying

ap(pj)

e(pj)
= cpj x

k−1−n.

If f is an equivariant cohomology class of M then f · ap is also. The Localization

Theorem gives the relation∫
M

apf =
d∑
j=1

fj ap(pj)

epj
∈ Q[x].

We may rewrite this in the following form:∫
M

apf =
d∑
j=1

fj ap(pj)

e(pj)

=
d∑
j=1

fjc
p
j x

k−1−n

=
d∑
j=1

cpj

 Kj∑
l=0

rjlx
l

 xk−1−n

=
d∑
j=1

cpj

 Kj∑
l=0

rjlx
k−1−n+l

 ∈ Q[x].
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Using the convention rjl = 0 for l > Kj, we can write

∫
M

apf =
d∑
j=1

cpj

(
n−k∑
l=0

rjlx
k−1−n+l

)
+

d∑
j=1

cpj

 Kj∑
l=n−k+1

rjlx
k−1−n+l


=

n−k∑
l=0

(
d∑
j=1

cpjrjl

)
xk−1−n+l +

d∑
j=1

cpj

 Kj∑
l=n−k+1

rjlx
k−1−n+l

 .

The second component is an element of Q[x] as all the exponents of x are non-

negative. Thus
∫
M
apf is in Q[x] if and only if all the coefficients of x in the first

component (that is coefficients of negative powers of x) are 0. Therefore for any

fixed point p and any l = 0, . . . , n− k, where 2(k− 1) is the index of p, we get the

following linear relation of degree l:

d∑
j=1

cpjrjl = 0.

Note that these relations are independent. We will show this by explicit com-

putation. It is enough to show that for any l all the relations of degree l are

independent, as relations of different degree involve different subset of variables

{rjk}. Suppose that in some degree l these relations in rjl’s are not independent.

That is, there are rational numbers sp, not all zero, such that

∀rjl 0 =
∑
p

sp

(
d∑
j=1

cpjrjl

)
=

d∑
j=1

(∑
p

spc
p
j

)
rjl

As rjl are independent variables, we have
∑

p spc
p
j = 0, for all j = 1, . . . , d. Multi-

plying both sides by e(pj)x
k−1−n we obtain

∑
p

spe(pj)c
p
jx

k−1−n = 0.

Recall the definition of cpj to notice that the above equation is equivalent to

∑
p

spap(pj) = 0.
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That means
∑

p spap vanishes on every fixed point and therefore is the 0 class,

although it is a nontrivial combination of classes ap. This contradicts the indepen-

dence of the generating classes ap’s.

Now we count the relations just constructed. As noted above, a fixed point of

index 2(k−1) gives relations of degrees 0, . . . , n−k. Therefore a relation of degree

n− k is obtained from each fixed point of index 2(k − 1) or less. That means we

get a relation of degree k for each fixed point of index 2(n− k− 1) or less, in total

(b0 + b1 + . . .+ bn−k−1)

relations of degree k. The subspace of (⊕dQ[x])k ∼= Qd of elements satisfying all

relations of degree k is of dimension d−(b0 +b1 + . . .+bn−k−1). Every homogeneous

element f ∈ (⊕dQ[x])k satisfying all degree k relations also satisfies all relations of

other degrees (as coefficients of xl are 0 for l 6= k). Moreover, the form of conditions

(2.2) implies that for any g ∈ Q[x], gf also satisfies all the relations (2.2). Therefore

degree k part of R is the subspace of (⊕dQ[x])k of elements satisfying all relations

of degree k, and its dimension is d− (b0 + b1 + . . .+ bn−k−1). By the definition of

d and Poincaré duality,

d− (b0 + b1 + . . .+ bn−k−1) = bn−k + . . .+ bn = b0 + b1 + . . .+ bk.

This means that the degree k part of R, Rk, is a vector space over Q of dimension

(b0 + b1 + . . .+ bk) containing a vector subspace ι∗(H∗S1(M ;Q))k, degree k part of

ι∗(H∗S1(M ;Q)), of the same dimension. Therefore they must be equal. The two

graded submodules: ι∗(H∗S1(M ;Q)) and R, are equal in each degree. This implies

ι∗(H∗S1(M ;Q)) = R.
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2.3 Generating classes for Symplectic Toric Manifolds

A symplectic toric manifold is a connected symplectic manifold (M,ω)

equipped with an effective Hamiltonian action of a torus T of dimension dimT =

1
2

dimM . Let M2n be a compact symplectic toric manifold with momentum map

image a Delzant polytope Φ(M) = P ⊂ t∗. In particular P is simple, rational and

smooth. The Lie algebra dual, t∗, is isomorphic to Rn, though not canonically.

One of the conventions is to identify S1 with R/Z. Then the exponential map

Lie(S1) ∼= R→ S1 is of the form t→ e2πit. With this identification, the function

C 3 z → −π k |z|2 ∈ R ∼= Lie(S1)

is a momentum map for the S1 action on (C, ωstandard) by rotation with weight

k. Therefore we can think of P as a Delzant polytope in Rn. Denote by M1 the

union of all T -orbits of dimension 1. Closures of connected components of M1 are

spheres, called the isotropy spheres. Denote by V the vertices of P , and by E the

1-dimensional faces of P , also called edges. Vertices correspond to the fixed points

of the torus action, while edges correspond to the isotropy spheres. Fix a generic

ξ ∈ Rn, so that for any p, q ∈ V we have 〈p, ξ〉 6= 〈q, ξ〉. Orient the edges so

that 〈i(e), ξ〉 < 〈t(e), ξ〉 for any edge e, where i(e), t(e) are initial and terminal

points of e. Let wi(e)(e) = −wt(e)(e) denote the isotropy weights of T action on

tangent spaces to isotropy sphere Φ−1(e), TΦ−1(i(e))Φ
−1(e) and TΦ−1(t(e))(Φ

−1(e))

respectively. Note that wi(e)(e) is the primitive integral vector in direction of ~e.

We denote it by prim(~e). For any p ∈ V let Gp denote the smallest face containing

p and all points q ∈ V with 〈p, ξ〉 < 〈q, ξ〉 which are connected with p by an edge.

We will call Gp the flow up face for p. We define the class ap ∈ H∗S1(MS1
) by

ap(q) =


0 for q ∈ V \Gp∏

r prim(r − q) for q ∈ Gp
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where the product is taken over all r ∈ V \Gp such that r and q are connected by

an edge of P . We use convention that empty product is 1. If k edges terminate

at p then the n − k edges starting from p belong to the face Gp (as polytope is

simple, exactly n edges meet at each vertex). The smoothness of P implies that

these n − k edges span an (n − k) affine hyperplane Hp of Rn and the face Gp

is the intersection Gp = P ∩ Hp. Moreover, it also implies that for any q ∈ Gp

there are n − k edges meeting q that are contained in the face Gp and k edges

connecting q to vertices outside the face Gp. Therefore the class ap assigns to

each fixed point 0 or a homogeneous polynomial of degree k. Such classes satisfy

the GKM conditions and thus are in the image of the equivariant cohomology of

M . The class ap constructed this way is the canonical equivariant extension (see

[26], Corollary 3.5) of the cohomology class Poincaré dual to the submanifold of

M mapping to the face Gp. These two facts can be proved using the notion of the

axial function introduced in [16]. The classes we have just defined are also linearly

independent, which follows easily from the fact that ap can be nonzero only at

vertices q greater or equal to p in the partial order given by the orientation of

edges. Our first example is a set of generating classes for CP 2 presented in Figure

2.1

1

1

1

0 −x

−y

0

0

y(y − x)

Figure 2.1: Generating classes for CP 2.

Next we give an example where the generating classes are not unique. The

above algorithm gives the basis presented on Figure 2.2. However classes in Figure

2.3 also form a basis.
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1

1

1

1 0

−x− y

y − x

0

0

0

−y

−y

0

0

0

0

0

−y

−y

0

0

0

0

0

−y

−y

0

0

0

0

0

−y

−y

0

0

0

y(y − x)

Figure 2.2: The basis of the equivariant cohomology ring given by the above
algorithm.

1

1

1

1 0

0

−y

−y

0

0

0

y(y − x)

0

(−x− y)

(n+ 1)y − x

ny

0

0

−y

−y

0

0

0

y(y − x)

Figure 2.3: Different basis of the equivariant cohomology ring.

This algorithm is also very useful while dealing with specialization, that is while

restricting toric T action on M to an action of some subtorus S ↪→ T . As explained

in the introduction, if S is generic then MT = MS. Using above algorithm we

can find a basis of H∗S(M) even if we do not have the isotropy weights for the

full T n action. It is enough to know the isotropy weights of S action, the fact

that this action is a specialization of some toric action and positions of isotropy

spheres for that toric action. These weights are just projections of T weights under

pr : t∗ → s∗. That is the S weight on edge e is pr (prim(t(e)−i(e)) ). The positions

of isotropy spheres for the toric action allow us to find the flow up face Gp for any
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fixed point p. The above algorithm gives that

ap(q) =


0 for q ∈ V \Gp∏

r pr (prim(r − q) ) for q ∈ Gp

where the product is taken over all r ∈ V \Gp such that r and q are connected by

an isotropy sphere. Having generating classes for S action, we may apply Theorem

2.1.7 to obtain all relations needed to describe ι∗(H∗S1(M)). This gives us a method

for computing equivariant cohomology for a circle action that happens to be part

of a toric action.

2.4 Examples

Example 2.4.1. Consider the product of CP 2 blown up at a point and CP 1

C̃P 2 × CP 1 = {([x1 : x2][y0 : y1 : y2][z0 : z1])|x1 y2 − x2 y1 = 0},

and the following T 3 action on this space:

(eiu, eiv, eiw) · ([x1 : x2][y0 : y1 : y2][z0 : z1]) = ([eiux1 : x2][e
ivy0 : eiuy1 : y2][e

iwz0 : z1]).

This is a symplectic toric manifold and its momentum map image is the polytope

is shown in Figure 2.4.1. Using the algorithm from Section 2.3 we can compute

1

2

3

7

8

5

6

4

Figure 2.4: Moment polytope for C̃P 2 × CP 1.

generating classes for the equivariant cohomology with respect to T action. They

are presented in the table below.
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class v1 v2 v3 v4 v5 v6 v7 v8

A1 1 1 1 1 1 1 1 1 1

1

1

1

1

1

1

1

A2 0 y 0 0 y − x y 0 y − x 0

y

0

0

y − x

y − x

y

0

A3 0 0 x 0 x 0 x x 0

0

x

x

x

x

0

0

A4 0 0 0 z 0 z z z 0

0

0

z

z

0

z

z

A5 0 0 0 0 x(x− y) 0 0 x(x− y) 0

0

0

0

x(x− y)

x(x− y)

0

0

A6 0 0 0 0 0 yz 0 (y − x)z 0

0

0

0

(y − x)z

0

yz

0

A7 0 0 0 0 0 0 xz xz 0

0

0

xz

xz

0

0

0

A8 0 0 0 0 0 0 0 xz(y − x) 0

0

0

0

xz(y − x)

0

0

0

We want to compute equivariant cohomology with respect to the action of S1 ↪→

T 3 given by u→ (u, 2u, u). More precisely, our action is:

eiu · ([x1 : x2], [y0 : y1 : y2], [z0 : z1]) = ([eiux1 : x2], [ei2uy0 : eiuy1 : y2], [eiuz0 : z1]).

Note that we still have the same eight fixed points, namely:
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v1 = ([0 : 1], [0 : 0 : 1], [0 : 1]),

v2 = ([0 : 1], [1 : 0 : 0], [0 : 1]),

v3 = ([1 : 0], [0 : 1 : 0], [0 : 1]),

v4 = ([0 : 1], [0 : 0 : 1], [1 : 0]),

v5 = ([1 : 0], [1 : 0 : 0], [0 : 1]),

v6 = ([0 : 1], [1 : 0 : 0], [1 : 0]),

v7 = ([1 : 0], [0 : 1 : 0], [1 : 0]), and

v8 = ([1 : 0], [1 : 0 : 0], [1 : 0]).

The isotropy weights of this circle actions are:

fixed point weights index

v1 u, 2u, u 0

v2 u,−2u, u 2

v3 −u, u, u 2

v4 u, 2u,−u 2

v5 −u,−u, u 4

v6 u,−2u,−u 4

v7 −u, u,−u 4

v8 −u,−u,−u 6

We compute generating classes for the S1 action from the classes for the T action

using the projection map x 7→ u, y 7→ 2u, z 7→ u. They are presented in the table

below, together with a row with 2u3

e(vi)
that is useful for further computations.
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v1 v2 v3 v4 v5 v6 v7 v8

2u3

e(vi)
1 -1 -2 -1 2 1 2 -2

A1 1 1 1 1 1 1 1 1

A2 0 2u 0 0 u 2u 0 u

A3 0 0 u 0 u 0 u u

A4 0 0 0 u 0 u u u

A5 0 0 0 0 u2 0 0 u2

A6 0 0 0 0 0 2u2 0 u2

A7 0 0 0 0 0 0 u2 u2

A8 0 0 0 0 0 0 0 u3

We keep denoting by fj the restriction of f to a fixed point vj. The condition

that
8∑
j=1

fj A1

e(Vj)
=

∫
M

f A1 ∈ Q[u],

implies that:

f1
u3

+ −f2
u3

+ −2f3
u3

+ −f4
u3

+ 2f5
u3

+ f6
u3

+ 2f7
u3

+ −2f8
u3

∈ Q[u].

Thus

f1 − f2 − 2f3 − f4 + 2f5 + f6 + 2f7 − 2f8 ∈ (u3) Q[u],

Similarly, using class the A2 we get

−f2 + f5 + f6 − f8 ∈ (u2) Q[u],

Other classes give:

−f3 + f5 + f7 − f8 ∈ (u2) Q[u],

−f4 + f6 + 2f7 − 2f8 ∈ (u2) Q[u],

f5 − f8 ∈ (u) Q[u],

2f6 − 2f8 ∈ (u) Q[u], and

f7 − f8 ∈ (u) Q[u].
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Therefore f = (f1, . . . , fd) represents equivariant cohomology class if and only if it

satisfies:

• the degree 0 relations:

(fi − fj) ∈ (u)Q[u], for every i and j,

• the degree 1 relations:

−f3 + f5 + f7 − f8 ∈ (u2) Q[u]

−f2 + f5 + f6 − f8 ∈ (u2) Q[u]

−f4 + f6 + 2f7 − 2f8 ∈ (u2) Q[u]

f1 − f2 − 2f3 + 2f5 ∈ (u2) Q[u]

• the degree 2 relation:

f1 − f2 − 2f3 − f4 + 2f5 + f6 + 2f7 − 2f8 ∈ (u3)Q[u].

Example 2.4.2. In the case of the specialization for a T n action on M2n (i.e. a

symplectic toric manifold) to the action of some generic S1 (i.e. with MS1
= MT ),

we can proceed using this simple algorithm.

The isotropy weights of T n action are easy to read from moment polytope - they

are just primitive integer vectors in the directions of the edges. To get the isotropy

weights for our chosen S1-action, we just need to use the appropriate projection

π : t∗ → (s1)∗. To compute the basis of generating classes we use the method from

Section 3 with ξ a generator of our S1 to get a T -basis, and then we project with

π. If the fixed points are p1, . . . , pd, we denote by a1, . . . , ad the generating classes

assigned to them and by G1, . . . , Gd the faces of moment polytope that are the flow

up faces of the corresponding fixed point. Recall that for any v ∈ (Qn)∗ ⊂ (Rn)∗

we denote by prim(v) ∈ (Zn)∗ the primitive integral vector in direction of v. Using

this notation, and the construction from Section 2.3, Theorem 2.1.7 states that

f = (f1, . . . , fd) ∈ ⊕dj=1 Q[x] is an equivariant cohomology class of M if and only
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if for any fixed point pl we have

d∑
j=1

fj al(pj)

e(pj)
=

∑
{j | pj∈Gl}

fj
∏

r π(prim(r − pj))
e(pj)

∈ Q[x],

where the product is taken over all vertices r not in Gl such that r and pj are con-

nected by an edge. The equivariant Euler class e(pj) is a product of all weights at

pj because the representation of S1 on TpjM splits as a direct sum of 1-dimensional

representations (see for example Lemma 2.2 in [37]). Therefore, up to a multipli-

cation by a rational constant, e(pj) is equal to

∏
r

π(prim(r − pj)),

where the product is taken over all vertices r connected to pj. Thus the above

condition is equivalent to

∑
{j | pj∈Gl}

fj∏
r π(prim(r − pj))

∈ Q[x],

where product is taken over all fixed points r ∈ Gl that are connected with pj by an

edge in Gl.

Consider, for example, vertex v3 in the Example 2.4.1 above. The face G3 is the

face spanned by v3, v5, v7, v8. The isotropy weights at v3 corresponding to edges

that are in G3 are u, u, for v5: u,−u, for v7: −u, u and for v8: −u,−u. Therefore

relation we get is:

f3

u2
+

f5

−u2
+

f7

−u2
+
f8

u2
∈ Q[u].

After clearing denominators, we obtain relation f3 − f5 − f7 + f8 ∈ (u2)Q[u].
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CHAPTER 3

LOWER BOUNDS FOR GROMOV WIDTH OF COADJOINT

ORBITS

3.1 Introduction

In 1985 Mikhail Gromov proved the nonsqueezing theorem which is one of the

foundational results in the modern theory of symplectic invariants. The theorem

says that a ball B2N(r) of radius r, in a symplectic vector space R2N with the

usual symplectic structure, cannot be symplectically embedded into B2(R)×R2N−2

unless r ≤ R.

This motivated the definition of the invariant called the Gromov width. Con-

sider the ball of capacity a

B2N
a =

{
z ∈ CN

∣∣∣ π N∑
i=1

|zi|2 < a
}
,

with the standard symplectic form ωstd =
∑
dxj ∧ dyj. The Gromov width of a

2N -dimensional symplectic manifold (M,ω) is the supremum of the set of a’s such

that B2N
a can be symplectically embedded in (M,ω).

In the rest of the thesis we focus on the Gromov width of coadjoint orbits of

Lie groups. A Lie group G acts on itself by conjugation

G 3 g : G→ G, g(h) = ghg−1.

Derivative at the identity element gives the action of G on its Lie algebra g, called

adjoint action. This induces the action of G on g∗, the dual of its Lie algebra, called

the coadjoint action. Each orbit O of the coadjoint action is naturally equipped
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r R

B2N (r)

∃ iff r ≤ R

Figure 3.1: Gromov’s non-squeezing theorem.

with the Kostant-Kirillov symplectic form:

ωξ(X, Y ) = 〈ξ, [X, Y ]〉, ξ ∈ g∗, X, Y ∈ g.

For example, when G = U(n) the group of (complex) unitary matrices, a coadjoint

orbit can be identified with the set of Hermitian matrices with a fixed set of

eigenvalues. With this identification, the coadjoint action of G on an orbit O is

simply action by conjugation. It is Hamiltonian, and the momentum map is just

inclusion O ↪→ g∗.

Choose a maximal torus T ⊂ G and a positive Weyl chamber t∗+. Every coad-

joint orbit intersects the positive Weyl chamber in a single point. Therefore there

is a bijection between the coadjoint orbits and points in the positive Weyl chamber.

Points in the interior of the positive Weyl chamber are called regular points.

We prove the following theorem.

Theorem 3.1.1. Let M := Oλ be the coadjoint orbit of G, G = U(n) or SO(n),

through a regular point λ ∈ t∗+. The Gromov width of M is at least the minimum

min{ |〈α∨, λ〉| ;α∨ a coroot}.
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In the case of U(n) and SO(2n+ 1), this theorem can be strengthened to cover

a class of orbits that are not regular (then one needs to take the minimum only

over the positive numbers in the above set; see Theorem 4.0.2 and [33, Theorem

7.1]).

This particular lower bound is important because in many known cases it de-

scribes the Gromov width, not only its lower bound. Karshon and Tolman in [20]

showed that the Gromov width of complex Grassmannians is given by the above

formula. Zoghi in [40] analyzed orbits satisfying some additional integrality condi-

tions. He called an orbit Oλ indecomposable if there exists a simple root α such

that for each root α′ there exists a positive integer k (depending on α′) such that

k 〈α∨, λ〉 = 〈(α′)∨, λ〉.

In particular spherically monotone regular orbits are indecomposable. A sym-

plectic manifold (M,ω) is called spherically monotone if there exists k > 0 such

that for any class X in the image of Hurewicz homomorphism π2(M) → H2(M)

have that the first Chern class c1(TM)[X] = k ω(X). For example, the coad-

joint orbit of U(n) through diag(λ1, . . . , λn) ∈ t∗U(n) is spherically monotone if

λ1 − λ2 = . . . = λn−1 − λn. It is indecomposable if there is k such that for any i, j

there is an integer mij such that λi − λj = mij(λk − λk+1). Zoghi proved that for

compact connected simple Lie group G the formula min{ |〈α∨, λ〉| ;α∨ a coroot}

gives an upper bound for Gromov width of regular indecomposable G-coadjoint

orbit through λ ([40, Proposition 3.16]). Combining this result with the results

about the lower bound for the U(n) case which he proved in [40] (I just reproved

his result), and about lower bounds for the SO(n) case proved here in Chapter

5, we obtain the formula for Gromov width of regular, indecomposable coadjoint

orbits of U(n) and SO(n). Table 3.1 summarizes the results about the Gromov

width of coadjoint orbits known at the moment.
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Table 3.1: Results about the Gromov width of coadjoint orbits.

lower bound upper bound Gromov width

U(n), regular
√

([32],[40])

U(n), regular,

indecomposable
√ √ √

([40])

Grassmannians

(U(n), non-regular)
√ √ √

([20], [27])

a class of

non-regular, U(n)
√

([32])

any cpt, ctd G, regular

indecomposable
√

([40])

SO(n), regular
√

([33])

SO(n), regular

indecomposable
√ √ √

([33]+[40])

To prove Theorem 3.1.1 we recall an action of the Gelfand-Tsetlin torus on an

open dense subset of the coadjoint orbit. We then use the theorem of Karshon

and Tolman [20] (Proposition 3.2.6) to obtain symplectic embeddings of balls.

Coadjoint orbits come equipped with the Hamiltonian action of the maximal torus

of the group. One can apply the Karshon and Tolman’s result to the region centered

with respect to this standard action and obtain a lower bound for Gromov width

of the orbit. This is how Zoghi proved in [40] the lower bounds of Gromov width

of regular U(n) coadjoint orbits. If the root system is non-simply laced, the lower

bound obtained this way is weaker (i.e. lower) then the lower bound we prove

here. This phenomenon is explained in the Appendix A. In other words, the lower
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bounds for SO(2n + 1) we prove here could not be obtained using the standard

action of maximal torus.

3.2 Centered actions

Centered actions were introduced in [21]. For completeness and to set notation

we include the details here following [20]. Let (M,ω) be a connected symplectic

manifold, equipped with a symplectic action of a torus T ∼= (S1)dimT . The action

of T is called Hamiltonian if there exists a T -invariant map Φ: M → t∗, called

the momentum map, such that

ι(ξM)ω = d 〈Φ, ξ〉 ∀ ξ ∈ t, (3.1)

where ξM is the vector field on M generated by ξ ∈ t. We will identify Lie(S1)

with R using the convention that the exponential map exp : R ∼=Lie(S1) → S1 is

given by t→ e2πit, that is S1 ∼= R/Z.

At a fixed point p ∈MT , we may consider the induced action of T on the tangent

space TpM . There exist ηj ∈ t∗, called the isotropy weights at p, such that this

action is isomorphic to the action on (Cn, ωstd) generated by the momentum map

ΦCn(z) = Φ(p) + π
∑
|zj|2(−ηj).

The isotropy weights are uniquely determined up to permutation. Note that with

our sign convention in equation 3.1 the isotropy weights are pointing out of the

momentum map image. For example, standard S1 action on C2 by rotation with

speed one gives the following momentum map image:

NOT
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By the equivariant Darboux theorem, a neighborhood of p in M is equivariantly

symplectomorphic to a neighborhood of 0 in Cn. However, this theorem does

not tell us how large we may take this neighborhood to be. Let T ⊂ t∗ be an

open convex set which contains Φ(M). The quadruple (M,ω,Φ, T ) is a proper

Hamiltonian T-manifold if the action is effective and Φ is proper as a map to

T , that is, the preimage of every compact subset of T is compact.

For any subgroup K of T , let MK = {m ∈ M | a ·m = m ∀a ∈ K} denote its

fixed point set.

Definition 3.2.1. A proper Hamiltonian T -manifold (M,ω,Φ, T ) is centered

about a point α ∈ T if α is contained in the momentum map image of every

component of MK, for every subgroup K ⊆ T .

We now quote several examples and non-examples, following [20].

Example 3.2.2. A compact symplectic manifold with a non-trivial T -action is

never centered, because it has fixed points with different momentum map images.

Example 3.2.3. Let a torus T act linearly on Cn with a proper momentum map

ΦCn such that ΦCn(0) = 0. Let T ⊂ t∗ be an open convex subset containing the

origin. Then Φ−1
Cn(T ) is centered about the origin.

A Hamiltonian T action on M is called toric if dimT = 1
2

dimM.

Example 3.2.4. Let M be a compact symplectic toric manifold with momentum

map Φ: M → t∗. Then ∆ := Im Φ is a convex polytope. The orbit type strata in

M are the momentum map pre-images of the relative interiors of the faces of ∆.

Hence, for any α ∈ ∆, ⋃
F face of ∆

α∈F

Φ−1(rel-int F )
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is the largest subset of M that is centered about α.

When the dimension of the torus acting on a compact symplectic manifold is

less then half of the dimension of the manifold, one can easily find a centered

region from an x-ray of the Hamiltonian T -space M . The x-ray of (M,ω, φ) is

the collection of convex polytopes φ(X) over all connected components X of MK

for some subtorus K of T (for more details see [35]). For the toric symplectic

manifold, an x-ray is exactly the collection of faces of convex polytope that is the

image of momentum map. Figure 3.2 presents some examples of centered regions,

that we can see directly from the x-rays of M .

α α

Figure 3.2: The regions centered around α.

Example 3.2.5. Let (M,ω,Φ, T ) be a proper Hamiltonian T -manifold. Then

every point in t∗ has a neighborhood whose preimage is centered. This is a con-

sequence of the local normal form theorem and the properness of the momentum

map.

Proposition 3.2.6. (Karshon, Tolman, [20]) Let (M,ω,Φ, T ) be a proper Hamil-

tonian T -manifold. Assume that M is centered about α ∈ T and that Φ−1({α})
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consists of a single fixed point p. Let −η1, . . . ,−ηn be the isotropy weights of T

action on TpM . Then M is equivariantly symplectomorphic to{
z ∈ Cn | α + π

∑
|zj|2ηj ∈ T

}
,

where T acts on Cn with weights −η1, . . . ,−ηn.

Note that the above formulation differs from the one in [20] by a minus sign.

This is due to the fact that our definition of momentum map 3.1 also differs by a

minus sign from the definition used in [20]. Recall that the definition of a proper

Hamiltonian T -manifold includes the assumption that the action is effective.

Example 3.2.7. Consider a compact symplectic toric manifold M whose momen-

tum map image is the closure of the following region.

α

η2

η1 5η1

2η2

−η1

−η2

The isotropy weights of the torus action are (−η1) and (−η2), and the lattice lengths

of edges starting from α are 5 and 2 (with respect to lattice of isotropy weights).

The largest subset of M that is centered about α, as described in Example 3.2.4,

maps under the momentum map to the shaded region. The above Proposition tells

us that it is equivariantly symplectomorphic to

{z ∈ C2|α + π(|z1|2η1 + |z2|2η2) ∈ shaded region }.

If z ∈ B4
2 = {z ∈ C2

∣∣∣π(|z1|2 + |z2|2) < 2} then α + π(|z1|2η1 + |z2|2η2) is in the

shaded region. Therefore the 4-dimensional ball B2
2 of capacity 2 embeds into M
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and the Gromov width of M is at least the minimum of lattice lengths of edges of

the moment polytope, starting at α. Note also that the momentum map image of

the embedded ball B2
2 is the triangle with vertices α, α + 2η1 and α + 2η2.

3.3 Gelfand-Tsetlin system of action coordinates

In this Subsection we describe the Gelfand-Tsetlin (sometimes spelled Gelfand-

Cetlin, or Gelfand-Zetlin) system of action coordinates, which originally appeared

in [13]. It is related to the classical Gelfand-Tsetlin polytope introduced in [7].

Let G be a compact, connected Lie group and Oλ its coadjoint orbit. Consider a

sequence of subgroups G = Gk ⊃ Gk−1 ⊃ . . . ⊃ G1. Inclusion of Gj into G gives an

action of Gj on Oλ. This action is Hamiltonian with momentum map Φj, where

Φj is the composition of the G-momentum map Φ and a projection pj : g∗ → g∗j .

Choose maximal tori, TGj , and positive Weyl chambers for each group Gj in the

sequence. Every Gj orbit intersects the positive Weyl chamber (tGj)
∗
+ exactly once.

This defines a continuous (but not everywhere smooth) map sj : g∗j → (tGj)
∗
+. Let

Λ(j) = (λ
(j)
1 , . . . , λ

(j)
rk Gj

) denote the composition sj ◦ Φj:

Oλ Φj //

Λ(j) ""EE
EE

EE
EE

E
g∗j

sj

��
(tGj)

∗
+

The functions {Λ(j)}, j = 1, . . . , k− 1, form the Gelfand-Tsetlin system which

we denote by Λ : Oλ → RN .
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3.4 Smoothness of the Gelfand-Tsetlin functions

The function λ
(j)
k need not be smooth on the whole orbit Oλ. To identify this

subset we will need the following result proved in [4]. This theorem is also true for

orbifolds: see [25, Theorem 3.1].

Theorem 3.4.1. Let G be a compact connected Lie group with a maximal torus T .

Suppose G acts on a compact connected symplectic manifold M in a Hamiltonian

way, with moment map Φ : M → g∗. Then there exists a unique open wall σo of the

Weyl chamber t∗+ with the properties that Φ(M)∩ t∗+ ⊂ σo and Φ(M)∩ t∗+∩σo 6= ∅.

Let σo = σoj be the unique open wall from the above theorem applied to the

Gj ⊂ G action on M = Oλ. We call σ = σo the principal face. Any wall of

positive Weyl chamber (tj)∗+ that contains σ is called a special wall, while all

the others walls are called regular walls. Thus σ is the intersection of all special

walls, and σo = σ \ (∪ regular walls). Intersection of Λ(j)(Oλ) with a wall of (tj)∗+

is defined by a collection of equations of the form λ
(j)
l = λ

(j)
l+1. If a wall τ is special,

i.e. σ ⊂ τ , then its defining equations hold on the whole Λ(Oλ). For any regular

wall τ , there is at least one of its defining equations, and some A ∈ Oλ such that

Λ(A) does not satisfy this equation.

Proposition 3.4.2. The function Λ(j) is smooth on the set U (j) = (Λ(j))−1(σo).

Proof. To simplify the notation, in this proof we write G for Gj and T for its

maximal torus, and π for sj. Recall that the function Λ(j) is a composition of a

smooth function Φj and a map π = sj : g∗ → t∗+. Therefore we only need to

prove smoothness of the map π on Φj(U (j)) = π−1(σo). Note that all points in

σo have the same G-stabilizer (under the coadjoint action of G). Denote it by H.
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Let S be the subset of g∗ equal to π−1(σo). This means that S = (g∗)(H) is an

orbit-type stratum and therefore it is a submanifold of g∗. Consider the smooth,

G-equivariant, surjective map:

G× σo → S

(g, x) → g · x

This map induces G-equivariant bijective map

Θ : G/H × σo → S,

([g], x) → g · x

which is also a diffeomorphism. Notice that the composition, π ◦Θ

G/H × σo → t∗+

([g], x) → x

is just the projection onto second factor, therefore it is smooth. This means that

on S, π is smooth, as a composition of Θ−1 and a smooth projection. It follows

that the function Λ(j) is smooth on the set (Φj)−1(S) = (Λ(j))−1(σo) = U (j).

3.5 The torus action induced by the Gelfand-Tsetlin sys-

tem

At the points where Λ(j) is smooth, it induces a smooth action of T ′Gj ↪→ TGj , a

subtorus of TGj . The process of obtaining this new action, which we denote by

∗, is often referred to as the Thimm trick. If λ is regular then T ′Gj = TGj . An

element t ∈ TGj acts on a point A ∈ Oλ by the standard, coadjoint Gj action of

B−1 t B, where B ∈ Gj is such that Ad∗(B) Φj(A) ∈ (tGj)
∗
+ is the unique point of
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intersection of (tGj)
∗
+ and the Gj-coadjoint orbit through Φj(A). That is

t ∗ A = Ad∗


 B−1 t B

I


 (A).

In this thesis we consider only matrix groups, and for them the coadjoint action

is the action by conjugation. Therefore we will simplify the notation and write

conjugation in place of the coadjoint action:

t ∗ A =

 B−1 t B

I

 A

 B−1 t B

I


−1

. (3.2)

Recall that for regular λ, a matrix A ∈ U (j) if BΦj(A)B−1 ∈ int (tGj)
∗
+, so

the stabilizer of BΦj(A)B−1 in Gj is precisely TGj = T ′Gj . The fact that T ′Gj

commutes with the stabilizer of BΦj(A)B−1 implies that the action is well defined,

as explained below.

If λ is not regular then some of the functions λ
(j)
∗ may be constant on the whole

orbit. Let T ′Gj ↪→ TGj be the subtorus defined by

{(t1, . . . , trankGj) ∈ TGj ; ti = 1 if λ
(j)
i constant on the whole orbit }.

(This definition gives T ′Gj = TGj if none of the functions λ
(j)
∗ is constant on the

whole orbit). Let σj be the unique wall of the positive Weyl chamber (tGj)
∗
+

from Theorem 3.4.1. All points in σoj have the same stabilizer. Note that the

torus T ′Gj commutes with the stabilizer in Gj of points in σoj . Here we analyze

only U(n) and SO(n). In the unitary case, the stabilizer in U(j) of points in

σoj is a product of circles and of groups U(m) (various m ≤ j whose sum is at

most j), one for each longest sequence λ
(j)
i = λ

(j)
i+1 = . . . = λ

(j)
i+m−1 ≡ λi of the

functions λ
(j)
∗ that are constant on the whole orbit. Elements of the torus T ′Gj

are diagonal matrices with diagonal entries equal to 1 in blocks corresponding to

38



the U(m) factors of the stabilizer. Similarly for the SO(n) case. For example,

if λ
(j)
1 = λ

(j)
2 = . . . = λ

(j)
m ≡ λ1, then the stabilizer in U(j) of points in σoj is

U(m)×S1× . . .×S1, while elements of T ′Gj are of the form (1, . . . , 1, tm+1, . . . , tn)

and thus commute with the stabilizer. The action of t ∈ T ′Gj on A ∈ Oλ is given

by equation (3.2), where B ∈ Gj is such that BΦj(A)B−1 ∈ σj ⊂ (tGj)
∗
+. If C is

another element of Gj such that C Φj(A)C−1 ∈ (tGj)
∗
+, then

B Φj(A)B−1 = C Φj(A)C−1 = CB−1B Φj(A)B−1BC−1,

so CB−1 ∈ StabGj(BΦj(A)B−1). Therefore for t ∈ T ′Gj have

C−1tC = C−1tC B−1 t−1 t B = C−1 t t−1C B−1 t B = B−1 t B,

what implies that the action is well defined.

Proposition 3.5.1. The new T ′Gj action defined above is Hamiltonian on the sub-

set U (j) = (Λ(j))−1(σoj ), with momentum map Λ(j). (For non-regular orbits the

momentum map consists only of non-constant coordinates of Λ(j)).

Proof. To simplify the notation, we will denote U (j) simply by U , T ′Gj by T j,

and let tj be the Lie algebra of T j. Take any X ∈ tj and denote by Xnew the

vector field on U generated by X with ∗ action, and by Xstd the vector field on

U generated by X using the standard action by conjugation. As usual, for any

function ϕ : Oλ → g∗j , and any X ∈ gj, we denote by ϕX a function from Oλ to

R defined by ϕX(p) = 〈ϕ(p), X〉, where 〈, 〉 is the standard Gj invariant pairing

between g∗j and gj. Take any A ∈ U . We want to prove that for any vector

Y ∈ TAOλ = TAU

ω(Xnew, Y )|A = d (Λ(j))X (Y )|A. (3.3)

Denote by N the connected symplectic submanifold N := (Φj)−1(σo) ⊂ Oλ, where

σ is the principal face. We refer to N as the principal cross-section. Note that
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U = (Λ(j))−1(σo) = Gj ·N , and so every A ∈ U can be Gj conjugated to an element

of N . We first prove equation (3.3) for A ∈ N .

The proof of theorem 3.8 in [25] implies that

TAOλ = TAN + TA(Gj · A).

This is not a direct sum. Thus to prove the equation (3.3) for A ∈ N , it is enough

to consider two cases: when vector Y is tangent to the principal cross-section, and

when it is tangent to Gj orbit (for the standard action).

Before we start considering the cases, we fix some notation. For any vector

field V on Oλ, denote by ΨV its flow. Recall that ΨV
−t = (ΨV

t )−1. Therefore, for

example ΨXstd
t (Q) = XtQX

−1
t and ΨXstd

−t (Q) = X−1
t QXt.

Case 1: Take Y ∈ TAN ⊂ TAOλ. We want to compute ω(Xnew, Y )|A =

〈A, [Xnew, Y ]〉. Notice that on the principal cross section functions Φj and Λ(j) are

equal, and the standard and the new actions of T j coincide. Therefore the vector

fields Xstd and Xnew have equal values and flows on N . Using the formula

[Xnew, Y ] = lim
t→0

(ΨXnew
−t )∗(Y )− Y

t
= [Xstd, Y ].

we have that, if Y ∈ TAN , then 〈A, [Xnew, Y ]〉 = 〈A, [Xstd, Y ]〉. The fact that

functions Φj and Λ(j) agree on all of the N , means also that for Y ∈ TAN we have

d(Φj)X(Y ) = d(Λ(j))X(Y ).

Therefore

ω(Xnew, Y )|A = 〈A, [Xnew, Y ]〉 = 〈A, [Xstd, Y ]〉

= ω(Xstd, Y )|A = d(Φj)X(Y )|A

= d(Λ(j))X(Y )|A.
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Case 2: Take Y ∈ TA(Gj · A). That is Y = Ystd for some Y = d
dt
Yt|t=0 ∈ gj

and the integral curve of Y through A is ΨY
t (A) = YtAY

−1
t . As before, we start

by analyzing [Xnew, Y ] at A. We have:

[Xnew, Y ]|A = lim
t→0

(ΨXnew
−t )∗(Y )|ΨXnewt (A) − Y |A

t
.

The point A is in N , so ΨXnew
t (A) = Xt ·A = XtAX

−1
t . Now we need to understand

the expression:

(ΨXnew
−t )∗(Y )|ΨXnewt (A) =

d

dv
ΨXnew
−t (Yv ΨXnew

t (A)Y −1
v ) |v=0.

To compute the value of ΨXnew
−t on Yv ΨXnew

t (A)Y −1
v , we need to find an element C

of Gj that would conjugate Φj(ΨXnew
−t ) to some element in (tj)∗+. We have

Φj(Yv ΨXnew
t (A)Y −1

v ) = Φj(YvXtAX
−1
t Y −1

v )

= YvXt Φj(A)X−1
t Y −1

v .

Therefore, for

C = X−1
t Y −1

v

we have that

CΦj(Yv ΨXnew
t (A)Y −1

v )C−1 = Φj(A) ∈ (tj)∗+.

This means that the new action of Xt at a point Yv ΨXnew
t (A)Y −1

v is the same as

standard action of

C−1XtC = YvXtXtX
−1
t Y −1

v = YvXt Y
−1
v ,

so

ΨXnew
−t (Yv ΨXnew

t (A)Y −1
v )

= (YvX
−1
t Y −1

v )(YvXtAX
−1
t Y −1

v )(YvXtY
−1
v )

= Yv AY
−1
v .

Therefore

[Xnew, Y ]|A = lim
t→0

(ΨXnew
−t )∗(Y )|ΨXnewt (A) − Y |A

t
= lim

t→0

Y |A − Y |A
t

= 0,
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and

ω(Xnew, Y )|A = 〈A, [Xnew, Y ]〉 = 0.

Notice that the function Λ(j) is constant on Gj orbits, because Φj is Gj-equivariant

and the whole Gj orbit intersects (tj)∗+ in a unique point. Thus, for Y ∈ TA(Gj · A),

d (Λ(j))X (Y ) = 0.

and equation (3.3) for A in N follows.

Now we want to prove equation (3.3) for all C ∈ U . Let B be an element of

Gj such that BCB−1 = A ∈ t∗+. Take any X ∈ t and Y ∈ TCU . Using the Gj

invariance of ω and of Λ(j), and equation (3.3) at the principal cross section, we have

ω(Xnew, Y )|B−1AB = ω(
d

dt
(B−1XtB · C)|t=0,

d

dt
(ΨY

t (C))|t=0 )

= ω(
d

dt
B(B−1XtB · C)B−1|t=0,

d

dt
B(ΨY

t (C))B−1|t=0)

= ω(
d

dt
(XtBB

−1ABB−1X−1
t )|t=0,

d

dt
(ΨBY B−1

t (A))|t=0)

= ω(Xnew, BY B
−1)|A = d (Λ(j))X(BY B−1)|A

=
d

dt
[ (Λ(j))X(BΨY

t (C)B−1)) ]|t=0 =
d

dt
[ (Λ(j))X(ΨY

t (C)) ]|t=0

= d (Λ(j))X(Y )|C ,

which is exactly what we needed to show.

Putting these actions together we obtain a Hamiltonian action of the Gelfand-

Tsetlin torus

TGT := T ′Gk ⊕ . . .⊕ T
′
G1

on the open dense subset,

U :=
⋂
j

U (j).
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We call a wall of (tN)∗+ special if there is a j such that the image of this wall under

projection (tN)∗ → (tj)∗ is a special wall as defined in the Section 3.4. Other walls

of (tN)∗+ will be called regular.
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CHAPTER 4

COADJOINT ORBITS OF THE UNITARY GROUP

In this section we consider coadjoint orbits of U(n). Multiplying by a factor of

i, we can identify the Lie algebra u(n) with the space of Hermitian matrices. The

pairing in u(n)

(A,B) = trace(AB)

gives us the identification of u∗(n) with u(n). From now on, we will identify u∗(n)

with the space of Hermitian matrices.

Let T = T n be the standard maximal torus in U(n) (given by diagonal ma-

trices). We identify its Lie algebra dual, t∗ with diagonal Hermitian matrices and

choose the positive Weyl chamber, (t∗)+, to be

(t∗)+ := {diag(λ11, λ22, . . . , λnn); λ11 ≥ λ22 ≥ . . . ≥ λnn}.

The coadjoint orbits in u(n)∗ are in one-to-one correspondence with the points

of (t∗)+. Precisely, for any (λ11, λ22, . . . , λnn) ∈ (t∗)+ the corresponding coadjoint

orbit is the set of all Hermitian matrices with eigenvalues (λ11, λ22, . . . , λnn). We

use coordinates {eij}, with eij corresponding to (i, j)-th entry of a matrix. Then

∆ = {eii − ejj | i 6= j} is a root system and Σ = {eii − ei+1,i+1 | i = 1, 2, . . . , n− 1}

is the set of positive roots. The pairing of λ ∈ t∗ with a coroot (eii − ejj)∨ gives

〈(eii − ejj)∨, λ〉 = 2
〈eii − ejj, λ〉

〈eii − ejj, eii − ejj〉
= (λi − λj).

Therefore for λ in our chosen positive Weyl chamber

min{|〈α∨, λ〉| ;α∨ a coroot} = min{λ1 − λ2, . . . , λn−1 − λn}.

The above observation helps us to translate the condition from Theorem 3.1.1 into

explicit condition on eigenvalues λj. This Section is devoted to proving Theorem
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3.1.1 for G = U(n). In fact we prove even stronger result, covering also some

non-regular orbits:

Theorem 4.0.2. Consider the U(n) coadjoint orbit M := Oλ in u(n)∗ through a

point diag (λ1, λ2, . . . , λn) where

λ1 > λ2 > . . . > λl = λl+1 = . . . = λl+s > λl+s+1 > . . . > λn, s ≥ 0.

The Gromov width of M is at least the minimum min{λi − λj |λi > λj }.

Remark 4.0.3. In fact the hypothesis can be weakened. The only necessary con-

dition is that the Gelfand-Tsetlin polytope associated to Oλ contains at least one

good vertex. These notions will be explained in Section 4.3.

4.1 The standard action of maximal torus

Under our identifications, the coadjoint action of U(n) on u(n)∗ is by conjugation:

A · ξ = AξA−1. Restricted to an orbit Oλ, this action is Hamiltonian with mo-

mentum map the inclusion Oλ ↪→ u(n)∗. The standard T n action on Oλ is the

action of the maximal torus T n ⊂ U(n). The fixed points of this action are the

diagonal matrices. In particular, λ is a fixed point and the isotropy weights of T n

action on TλOλ are given by the positive roots Σ. The T n action is Hamiltonian

with momentum map µ : Oλ → (tn)∗ ∼= Rn that maps a matrix A = (aij) to the

diagonal n × n matrix diag (a11, . . . , ann). However the dimension of torus acting

effectively is less then half of the dimension of the coadjoint orbit, so this action

is not toric. If Oλ is regular then this action is effective but dimT n = n while

dimOλ = 1
2
n(n − 1). Let Q = µ(Oλ) ⊂ (tn)∗ denote the momentum map image

for the standard T n action. The vertices of Q correspond to the T n-fixed points,
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that is, the diagonal matrices in Oλ. If λ is generic, then the vertices correspond

exactly to permutations on n elements. Thus there are exactly n! of them. If λ is

non-generic, say

λ1 = . . . = λl1 > λl1+1 = . . . = λl1+l2 > . . . > λn−ls+1 = . . . = λn,

then the vertices correspond to cosets Sn/(Sl1 × . . . × Sls), and there are exactly

n!
l1!...ls!

of them.

Recall that GKM manifold is a manifold M equipped with a faithful action of

a torusK of dimension l > 1 such that the set of zero dimensional orbits in the orbit

space M/K is zero dimensional and the set of one dimensional orbits in M/K is one

dimensional (see Example 2.1.9 or [11], [12], [36]). The coadjoint orbit Oλ with the

standard T n action is an example of GKM manifold. In particular this means that

the closure of every connected component of the set {x ∈ Oλ; dim(T n · x) = 1}

is a sphere. The closure of {x ∈ Oλ; dim(T n · x) = 1} is called 1-skeleton of

Oλ. Denote by Q1 the image of 1-skeleton under the momentum map. The GKM

assumption forces Q1 to be a (1
2

dimOλ)-valent graph with vertices V ert(Q1) =

V ert(Q) corresponding to T n-fixed points and edges corresponding to closures of

connected components of the 1-skeleton. Note that not all edges in Q1 are edges

of the polytope Q. Images of two fixed points, F and F ′, are connected by an

edge in Q1 if and only if they differ by one transposition of two different diagonal

entries. Therefore there are exactly

D := [ l1(l2 + . . . ls) + l2(l3 + . . .+ ls) + . . .+ ls−1ls ] =
∑
i<j

lilj

edges leaving any vertex of Q1 and thus dim Oλ = D dim(S2) = 2D. In the case

of generic λ, the moment polytope of Oλ is called a permutahedron.

Denote the diagonal entries of F by F11, . . . , Fnn. Let p < q be indices from

{1, . . . n} such that Fpp 6= Fqq and F ′ is the matrix obtained from F by switching
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p-th and q-th entry. The edge joining µ(F ) and µ(F ′) is an µ-image of a sphere in

Oλ. This sphere is the orbit of SU(2) action on F and is obtained in the following

way. Denote Fpp = vi, Fqq = vk. For any z ∈ CP1 = C∪ {∞} let Iz be the matrix

obtained from the identity matrix by changing four entries (j, k) with j, k ∈ {p, q}

in the way presented below and let Fz = IzFI
−1
z be the matrix obtained from F

by conjugation with Iz. This means that Fz differs from F only at four entries

(j, k) with j, k ∈ {p, q}. The matrices have the following shapes

Iz =



I
...

...

. . . 1
Z

. . . −z̄
Z

. . .

... I
...

. . . z
Z

. . . 1
Z

. . .

...
... I


, Fz =



. . .
... 0

... 0

. . . (vi+|z|2vk)
Z

. . . z̄(vi−vk)
Z

. . .

0
...

. . .
... 0

. . . z(vi−vk)
Z

. . . (vk+|z|2vi)
Z

. . .

0
... 0

...
. . .


where Z =

√
1 + |z|2. Then

µ({Fz; z ∈ CP1}) = µ(F )µ(F ′).

Moment image of the standard torus action is also explained in [38],[28].

There are also other natural actions on Oλ. For any j = 1, . . . , n, we have a

natural embedding ιj : U(j)→ U(n)

ιj(B) =

 B 0

0 Id

 ,

where B ∈ U(j). Using this embedding we obtain a U(j) action (and also an

action of maximal torus T j) on Oλ: for B ∈ U(j) and ξ ∈ Oλ, we define

B · ξ = ιj(B) ξ (ιj(B))−1.

To simplify the notation, we will often write B instead of ιj(B). Both of these

actions are also Hamiltonian. The momentum map for the U(j) action is the
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projection

Φj : Oλ → u(j)∗

sending every matrix to its j × j top left minor.

4.2 Gelfand-Tsetlin system for the unitary group

In this subsection we apply the general construction of the Gelfand Tsetlin system

to the case G = U(n). The main reference for this part is the work of Mikhail

Kogan [24] (see also [13], [30], [17]). Consider the sequence of subgroups

U(n) ⊃ U(n− 1) ⊃ . . . ⊃ U(2) ⊃ U(1).

For each U(j) in the sequence choose the maximal torus Tj to be the set of diagonal

matrices in U(j) and the positive Weyl chamber, (tj)∗+, to consist of diagonal

Hermitian j × j matrices with non-increasing diagonal entries. Recall that the

momentum map for the U(j) action on Oλ is denoted by Φj and maps A ∈ Oλ
to j × j top left submatrix of A. Denote the eigenvalues of Φj(A), ordered in a

non-increasing way, by

λ
(j)
1 (A) ≥ λ

(j)
2 (A) ≥ . . . ≥ λ

(j)
j (A).

We will use the notation Λ(j) = (λ
(j)
1 , . . . , λ

(j)
j ) : Oλ → Rj, for a function sending A

to (λ
(j)
1 (A), . . . , λ

(j)
j (A)) ∈ Rj. For j = n, we just get Φn(A) = A and λ

(n)
k (A) = λk.

The Gelfand -Tsetlin system of action coordinates is the collection of the

functions λ
(j)
k for j = 1, . . . , n− 1 and k = 1, . . . , j. We will denote them by

Λ : Oλ → RN ,

where

N := (n− 1) + (n− 2) + . . .+ 1 =
n(n− 1)

2
.
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Notice that Λ(j) is the composition of Φj and a map sj : u(j)∗ → (tj)∗+ ⊂ Rj

sending a point in u(j)∗ to the unique point of intersection of its U(j) orbit with

the positive Weyl chamber.

Oλ Φj //

Λ(j) ##FF
FF

FF
FF

F u(j)∗

sj

��
(t(j))∗+

Here we identify (tj)∗ with Rj by diag(a1, . . . , aj)→ (a1, . . . , aj).

The components of sj are U(j) invariant, so they Poisson commute. After

precomposing them with Φj, we get a family of Poisson commuting functions on

Oλ (see Proposition 3.2 in [13]). These are exactly λ
(j)
1 , λ

(j)
2 , . . . , λ

(j)
j . For l < j

denote by κlj : u(j)∗ → u(l)∗ the transpose of the map u(l)→ u(j) induced by the

inclusion. The functions

λ
(j)
1 , λ

(j)
2 , . . . , λ

(j)
j , λ

(l)
1 ◦ κlj, λ(l)

2 ◦ κlj, . . . , λ(l)
l ◦ κlj

Poisson commute on u(l)∗ by Proposition 3.2 in [13] and the fact that first j of them

are U(j) invariant. Therefore the Gelfand-Tsetlin functions Poisson commute on

Oλ.

These functions are smooth at points where the eigenvalues do not coincide

”unnecessarily”, meaning they coincide but not on the whole orbit Oλ. If λ is

not a regular point, then some of the Gelfand-Tsetlin functions may be forced

to coincide by the min-max inequalities. Precisely, the unique open wall from

Theorem 3.4.1 applied to the U(j) action is

σoj = {x = (x1, . . . , xj) ∈ t∗U(j)| xi 6= xi+1 unless λi = . . . = λi+n−j+1}.

Following notation from Section 3.5, let T ′U(j) ↪→ TU(j) be the subtorus consisting

of elements (t1, . . . , tn) with ti = 1 if λ
(j)
i is constant on the orbit. Note that
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for λ regular σoj is simply the interior of the positive Weyl chamber intt∗+, and

T ′U(j) = TU(j). Propositions 3.4.2 and 3.5.1 applied to this case give

Proposition 4.2.1. The function Λ(j) is smooth at the preimage (Λ(j))−1(σoj ) =

U (j). Moreover, the ∗ action of the torus T ′U(j) ↪→ TU(j) on (Λ(j))−1(σoj ) is Hamil-

tonian and Λ(j) is a momentum map.

Putting the actions together we obtain the Hamiltonian action of the Gelfand-

Tsetlin torus in U(n) case, T = TGT = T ′U(n−1) ⊕ . . . ⊕ T ′U(1)
∼= (S1)D, D =∑n−1

i=1 dim(T ′U(i)), on the dense open subset

U := ∩j U (j)

of the coadjoint orbit Oλ where all functions Λ(j) are smooth. This action is called

the Gelfand-Tsetlin action and its momentum map is Λ. If the orbit is regular

then D = N = 1
2
n(n− 1).

Notice that the standard action of T n, described in the Section 4.1, is a part

of the TN action on U . One can easily compute the T n-momentum map µ, which

mapps a matrix to its diagonal entries, from Λ. Of course λ
(1)
1 (A) = a11. Using

the fact that the trace of Φ2(A) is a11 + a22 = λ
(2)
1 (A) + λ

(2)
2 (A) we compute the

value a22. Continuing this process we obtain all the diagonal entries of A, that is

we obtain µ(A). This defines the projection pr : (tN)∗ → (tn)∗, which on the image

of Λ is given by the following formula

pr({λ(j)
l }) =

(
λ

(1)
1 , (λ

(2)
1 +λ

(2)
2 −λ(1)

1 ) , . . . ,
∑
i

λ
(n−1)
i −

∑
i

λ
(n−2)
i ,

∑
i

λ
(n)
i −

∑
i

λ
(n−1)
i

)
.

This means µ = pr ◦ Λ. Under this projection, the Gelfand-Tsetlin polytope P ,

described below, maps to the momentum map image, Q, of the standard maximal

torus action. Here is an example for a regular SU(3) coadjoint orbit, Oλ.
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Q = µ(Oλ) ⊂ R2 P = Λ(Oλ) ⊂ R3

Figure 4.1: The momentum map images for the standard and Gelfand-
Tsetlin actions on a regular SU(3) coadjoint orbit.

Proposition 4.2.2. The Gelfand-Tsetlin action on a U(n)-coadjoint orbit Oλ is

effective for all λ.

Proof. Suppose that

R = (Rn−1, . . . , R1) ∈ T ′U(n−1) ⊕ . . .⊕ T ′U(1) = TGT ,

Rj = diag(rj,1, . . . , rj,j, 1, . . . , 1), is a global stabilizer. Let

R̃ :=

 Rn−1

1

 . . .

 R1

In−1

 =



∏
j r1,j ∏

j r2,j

. . .

rn−1,n−1

1


.

Note that for any k = 1, . . . , n− 1

(Φn−1)−1(σon−1) ⊂ (Φk)−1(σok).

Therefore for any A =

 Φn−1(A) X

X∗ c

 ∈ (Φn−1)−1(σon−1) have

R ∗ A = R̃ A R̃−1 = R̃

 Φn−1(A) X

X∗ c

 R̃−1 =

 Φn−1(A) R̃X

X∗R̃−1 c

 .
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Let λ be of the form

(λ1 = . . . = λl1 > λl1+1 = . . . = λl1+l2 > . . . > λl1+...+ls−1+1 = . . . = λl1+...+ls).

Denote λl1+...+lj by wj. In this notation

λ =


w1 Il1

. . .

ws Ils

 .

Fix any j = 1, . . . , s and take ε > 0 such that wj − ε > wj+1. For any

X = (0, . . . , 0, xl1+...+lj−1+1, . . . , xl1+...+lj , 0, . . . , 0)T

such that |xl1+...+lj−1+1|2 + . . .+ |xl1+...+lj |2 = lj(w
2
j − (wj − ε)2 ), the matrix

w1 Il1
. . .

(wj − ε) Ilj X

. . .

ws Ils

X∗
∑
λi − ljε


is in (Φn−1)−1(σon−1) (see Lemma B.0.1). Therefore R stabilizes this matrix if and

only if

R̃X = X.

As R is a global stabilizer, considering similar matrices for other j we see that

R̃ = I. In particular this means that in Rn−1 the coordinate rn−1,n−1 must be

equal to 1.
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Now consider matrices of the form

w1 Il1
. . .

(wj − ε) Ilj X 0

. . .

ws Ils

X∗ c1 0

0 0 c2



.

Torus T ′U(n−1) acts trivially on such matrices. Therefore R = (Rn−1, . . . , R1) acts

in the same way as (I, Rn−2, . . . , R1). Using similar argument as above we show

that  Rn−2

I2

 . . .

 R1

In−1

 = In.

In particular in Rn−2 the coordinate rn−2,n−2 must be equal to 1. Together with the

condition R̃ = In this means that rn−1,n−2 = 1. Repeating these steps consecutively

one shows that Ri = I for all i. Therefore R = I ∈ TGT is the unique global

stabilizer and the action is effective.

4.3 The Gelfand-Tsetlin polytope for the unitary group

In this subsection we analyze the image Λ(Oλ) in RN , where N := n(n − 1)/2.

The classical mini max principle (see for example Chapter I.4 in [5]) implies that

λ
(l+1)
j (A) ≥ λ

(l)
j (A) ≥ λ

(l+1)
j+1 (A).

We use the following notation for these inequalities:

Al,j : λ
(l+1)
j (A) ≥ λ

(l)
j (A),

Bl,j : λ
(l)
j (A) ≥ λ

(l+1)
j+1 (A).

(4.1)
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The inequalities (4.1) cut out a polytope in RN , which we denoted by P , and

Λ(Oλ) is contained in this polytope.

Proposition 4.3.1. The image Λ(Oλ) is exactly P.

Proof. The Proposition follows from successive applications of the following lemma

(Lemma 3.5 in [30], see also [14]), as explained below.

Lemma 4.3.2. For any real numbers a1 ≥ b1 ≥ a2 ≥ . . . ≥ ak ≥ bk ≥ ak+1 there

exist x1, . . . , xk in C and xk+1 in R such that the Hermitian matrix

A :=



b1 0 x̄1

. . .
...

0 bk x̄k

x1 . . . xk xk+1


,

has eigenvalues a1, . . . , ak+1.

Now let c1, . . . , ck−1 be numbers such that b1 ≥ c1 ≥ b2 . . . ≥ bk−1 ≥ ck−1 ≥ bk.

Applying Lemma 4.3.2 again, we get that there exist y1, . . . , yk−1 in C and yk in R

such that the Hermitian matrix

B :=



c1 0 ȳ1

. . .
...

0 ck−1 ȳk−1

y1 . . . yk−1 yk


,

has eigenvalues b1, . . . , bk. Therefore there is an invertible matrix C ∈ U(k) such

that CBC−1 = diag(b1, . . . , bk). Denote by X the column vector (x1, . . . , xk)
T .

Notice that

0

C
...

0

0 . . . 0 1




B C−1X

XTC xk+1





0

C−1
...

0

0 . . . 0 1


=


CBC−1 C C−1X

XTC C−1 xk+1


= A
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Therefore the Hermitian matrix
B C−1X

XTC xk+1


has desired values of the Gelfand-Tsetlin functions λ

(k+1)
∗ , λ

(k)
∗ , λ

(k−1)
∗ . Continuing

this process, we construct a matrix A in Oλ such that Λ(A) = L, for any chosen

point L in the polytope P .

The polytope P ⊂ RN is called the Gelfand-Tsetlin polytope. We think of

RN as having coordinates {x(j)
k }, indexed by pairs (j, k), for j = 1, . . . , n− 1, and

k = 1, . . . , j, so that x
(j)
k -th coordinate of Λ(A) is λ

(j)
k (A).

Lemma 4.3.3. Let Λ(A), A ∈ Oλ, be a point in the polytope P, with coordinates

{λ(j)
k (A)}. Suppose that for any (j, k), j = 1, . . . , n− 1, k = 1, . . . , j, we have that

λ
(j)
k (A) = λ

(j+1)
k (A) or λ

(j)
k (A) = λ

(j+1)
k+1 (A).

Then Λ(A) is a vertex of the polytope P.

Proof. For any pair (j, k) pick one equality, Aj,k or Bj,k, that is satisfied by Λ(A)

(if both are satisfied pick either one of them). Arrange these inequalities to be of

the form:

(linear combination of variables x
(j)
k ) ≤ real constant.

Sum all of these N inequalities together, forming the inequality

CX ≤ Z,
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where X = (x
(n−1)
1 , . . . , x

(1)
1 ) ∈ RN is the variable, and Z,C ∈ RN are constants.

Every X ∈ P has to satisfy CX ≤ Z, as this is just a sum of N of the 2N

inequalities defining P . Therefore P∩{X; CX = Z} is a face of P , (see Definition

2.1 in [39]). Note that X ∈ P satisfies CX = Z if and only if all of the N

inequalities defining P we have summed, are equalities for X. This determines the

values of all x
(j)
k in terms of λ1, . . . , λn. Therefore

P ∩ {X; CX = Z} = {Λ(A)}

is a 0-dimensional face, in other words a vertex of P .

To emphasize the main idea of this proof, we give the following example.

Example 4.3.4. Let n = 3, λ = (5, 5, 4) and Λ(A) = (λ
(2)
1 (A), λ

(2)
2 (A), λ

(1)
1 (A)) =

(5, 4, 5). We need to choose inequalities Aj,k, Bj,k, one for each pair (j, k), that are

equalities for Λ(A). For λ
(2)
1 (A) we have a choice as both of them are equations.

Say we pick B2,1, B2,2 and A1,1. The set of rearranged inequalities is

−x(2)
1 ≤ −λ2 = −5

−x(2)
2 ≤ −λ3 = −4

x
(1)
1 − x(2)

1 ≤ 0

Summing these inequalities together we obtain

−2x
(2)
1 − x(2)

2 + x
(1)
1 ≤ −9.

This inequality is satisfied on all P. An element X ∈ P satisfies −2x
(2)
1 − x(2)

2 +

x
(1)
1 = −9 if and only if

−x(2)
1 = −5

−x(2)
2 = −4

x
(1)
1 = x

(2)
1 .
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Thus, we see that (5, 4, 5) is the unique solution to these inequalities in P.

Lemma 4.3.5. The map Λ sends every T n-fixed point to a vertex of P.

Proof. For a diagonal matrix F = diag(F1,1, . . . , Fn,n), the set of eigenvalues of

Fj+1 := Φj+1(F ) is obtained from the set of eigenvalues of Fj := Φj(F ) by adding

Fj+1,j+1. Let s be such that

λ(j)
s (F ) ≥ Fj+1,j+1 > λ

(j)
s+1(F ).

Then

∀l≤s λ
(j)
l (F ) = λ

(j+1)
l (F )

∀l>s λ
(j)
l (F ) = λ

(j+1)
l+1 (F ).

Therefore Λ(F ) is a vertex of P , by Lemma 4.3.3.

Lemma 4.3.6. Let Λ(A), for A ∈ Oλ, be a point in the polytope P, with coordi-

nates {λ(j)
k (A)}. Suppose that there exists exactly one pair of indices (j0, k0) such

that both inequalities Aj0,k0 and Bj0,k0 at the point A are strict. That is, for all

(j, k) 6= (j0, k0), j = 1, . . . , n− 1, k = 1, . . . , j, we have one of the equalities

λ
(j)
k (A) = λ

(j+1)
k (A) or λ

(j)
k (A) = λ

(j+1)
k+1 (A).

Then Λ(A) is contained in the interior of an edge of P.

Proof. Proceed similarly as in the proof of Lemma 4.3.3. For any (j, k) 6= (j0.k0)

choose one of the inequalities Aj,k, Bj,k that is equality for Λ(A). Arrange these

inequalities to be of the form:

(linear combination of variables x
(j)
k ) ≤ real constant.
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Sum all of these N − 1 inequalities together forming the inequality

CX ≤ Z.

As before, this gives an inequality valid for P , and P ∩ {X; CX = Z} is a face

of P . The equation CX = Z determines the values of all x
(j)
k , with (j, k) 6=

(j0, k0), in terms of λ1, . . . , λn and x
(j0)
k0

. These uniquely determined values are

x
(j)
k = λ

(j)
k (A). For any assignment of the value for x

(j0)
k0

, the equation CX = Z

will still hold. In order to have X ∈ P we need to pick the value for x
(j0)
k0

in the

open interval (x
(j0+1)
k0+1 , x

(j0+1)
k0

) = (λ
(j0+1)
k0+1 (A), λ

(j0+1)
k0

(A)). Note that λ
(j0+1)
k0

(A) 6=

λ
(j0+1)
k0+1 (A) because if they were equal, then they would also be equal to λ

(j0)
k0

(A)

what contradicts our assumptions. Thus we really are choosing the value for x
(j0)
k0

from the open, non-degenerate interval (λ
(j0+1)
k0+1 (A), λ

(j0+1)
k0

(A)). Therefore

P ∩ {X; CX = Z} ∼= (λ
(j0+1)
k0+1 (A), λ

(j0+1)
k0

(A))

is a 1-dimensional face of P .

Proposition 4.3.7. For any λ, the dimension of the polytope P is half of the

dimension of Oλ and P ⊂ (tGT )∗ ⊂ (tN)∗ ∼= RN .

Proof. Fix λ ∈ (tn)∗+, not necessarily generic. Let l1, . . . , ls be the integers such

that l1 + . . .+ ls = n and

λ1 = . . . = λl1 > λl1+1 = . . . = λl1+l2 > . . . > λn−ls+1 = . . . = λn.

Consider the coadjoint orbit M := Oλ in U(n). The dimension of Oλ was already

computed in Section 4.1 and is equal to

2D := 2 [ l1(l2 + . . . ls) + l2(l3 + . . .+ ls) + . . .+ ls−1ls ] = 2
∑
i<j

lilj.
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If some lj > 1, then the (lj − 1) functions λ
(1)
l1+...+lj−1+1 = . . . = λ

(1)
l1+...+lj−1 have

to be equal to λl1+...+lj−1+1 due to inequalities (4.1). Lemma 4.3.2 implies that

the image Λ(1)(Oλ) in (tn−1)∗ ∼= Rn−1 has dimension equal to the number of non-

constant functions from λ
(1)
∗ that is

n− 1−
s∑
j=1

(lj − 1).

Inequalities (4.1) force also (lj − 2) of functions λ
(2)
∗ to be equal to λl1+...+lj−1+1,

as well as lj − 3 of functions λ
(3)
∗ , etc. The number of our functions λ∗∗ that are

constant is

l1(l1 − 1)

2
+ . . .+

ls(ls − 1)

2
.

The remaining functions form the system of action coordinates, consisting of

n(n− 1)

2
−
(
l1(l1 − 1)

2
+ . . .+

ls(ls − 1)

2

)
=
∑
i<j

lilj = D

independent functions (see Proposition 4.3.1 and its proof). Therefore the dimen-

sion of the image Λ(Oλ) is D. Recall from Section 3.5 that the Gelfand-Tsetlin

torus TGT ∼= (S1)D is a subtorus of TU(n−1)⊕ . . .⊕ TU(1)
∼= (S1)N corresponding to

D non-constant functions λ
(∗)
∗ . Therefore P ⊂ (tGT )∗ ⊂ RN .

If F is a face of P containing some x ∈ Λ(U), then, by the definition of U , x is

not on any regular wall. Therefore any point of the interior F also cannot be on

any regular wall, so it is in U .

Lemma 4.3.8. If λ is generic, then the images of fixed points of the standard T n

action are in U . If λ is non generic but there is only one eigenvalue that is repeated

- then there is a T n-fixed point that is in U .

Proof. If λ is generic, then for any T n-fixed point F and any k, the matrix Φj(F )

is a diagonal matrix with all diagonal entries distinct. Therefore Λ(F ) is not on
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any regular wall, so it is in U .

Now assume that λ is of the form

λ1 > λ2 > . . . > λl1 = λl1+1 = . . . = λl1+s > λl1+s+1 > . . . > λn.

Let {v1 > v2 > . . . > vn−s} = {λ1 > λ2 > . . . > λl > λl1+s+1 > . . . > λn} be the

set of distinct eigenvalues. Consider the T n-fixed point

F =

 A 0

0 λl1Ids


where A is any diagonal (n− s)× (n− s) matrix with spectrum {v1, v2, . . . , vn−s}.
The figure below presents the values of Gelfand-Tsetlin functions λ

(j)
k at F , for

j ≥ n− s For j ≤ n− s the values λ
(j)
1 (F ), . . . , λ

(j)
j (F ) are all distinct.

v1 . . . vl1−1 vl . . . vl1 vl1+1 . . . vn−s

v1 . . . vl1−1 vl . . . vl1 vl1+1 . . . vn−s

. . .
. . .

... . . .

vl1 . . . vl1−1 vl1 vl1+1 . . . vn−s

Therefore λ
(k)
j = λ

(k)
j+1 at F if and only if this equation is valid for the whole orbit.

This shows that the fixed point F of the form described above is in the set U .

We call Λ images of such T n-fixed points, OTnλ ∩ U , good vertices of P .

For example, in the case of regular SU(3) orbit the Gelfand-Tsetlin polytope (see

Figure 4.1) has 6 good vertices. The unique vertex with 4 adjacent edges is not a

good vertex. In fact, preimage of this vertex is Oλ \ U .

Now consider a non-regular example: λ = (5, 4, 4, 4, 3, 1). Here is the T n-fixed

point that maps to a good vertex, and its Gelfand-Tsetlin functions (the bold ones
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are constant on the whole orbit)

F =



1

5

3

4

4

4


,

5 4 4 3 1

5 4 3 1

5 3 1

5 1

1

Note that the vertex Λ(diag(1, 4, 4, 4, 3, 5)) is not a good vertex.

Proposition 4.3.9. For any good vertex VF = Λ(F ) there are exactly D edges in

P emanating from Λ(F ).

Proof. All the Λ preimages of interiors of faces containing Λ(F ), are also in U .

Thus around F we have a smooth, Hamiltonian action of TD on U . The local

normal form theorem, (see for example [21]), gives that, in a suitably chosen basis,

the image of momentum map is a D dimensional orthant. In particular this proves

that there are exactly D edges starting from this point.

Note that there may be more than D edges starting from vertices of P that are

not good vertices.

4.4 Proof of the lower bounds for Gromov width of U(n)

coadjoint orbits

Let Oλ be a coadjoint orbit such that the Gelfand-Tsetlin polytope P contains at

least one good vertex. In particular λ can be of the form

λ1 > λ2 > . . . > λl1 = λl1+1 = . . . = λl1+s > λl1+s+1 > . . . > λn, s ≥ 0.
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Recall that D denotes half of the dimension of Oλ, which is equal to the dimension

of the Gelfand-Tsetlin torus TGT , and that P ⊂ (tGT )∗ ⊂ (tN)∗ ∼= RN . We are

to show that the Gromov width of Oλ is at least min{λi − λj |λi > λj}. Let

Λ(F ) = VF be a good vertex of P and T be an open subset of t∗ such that

Λ(Oλ) ∩ T =
⋃

F face of P
VF∈F

(rel-int F)

and let W = Φ−1(T ). Then W is the largest subset of M centered around VF

(compare with Example 3.2.4). According to the Proposition 3.2.6 there is an

equivariant symplectomorphism

Ψ :
{
z ∈ CD | VF + π

∑
|zj|2ηj ∈ T

} ∼=−→W ,

where −η1, . . . ,−ηD are the isotropy weights of TD action on TFOλ. The vectors

η1, . . . , ηD spanD edges of P starting from VF . We call them the edge generators.

For the edge in the direction of ηl, there is a number cl ∈ R such that the edge is

precisely cl ηl. This is equivalent to saying that the edge is of lattice length cl with

respect to the weight lattice, because for the coadjoint U(n) action all isotropy

weights are primitive with respect to the lattice they span. Let

{v1 > v2 > . . . > vn−s}

be the set of distinct eigenvalues. We prove the main theorem by showing that

for any edge, cl is at least the minimum min{vi − vi+1} = min{λi − λj |λi > λj}.

Moreover, we will show that for any good vertex there is an edge leaving from this

vertex, with the length equal to the minimum of vi − vi+1 times the length of the

edge generator. This means that the lower bound we prove is the best possible

we can get from this particular action. Let us emphasize that there might exist

symplectic embeddings of bigger balls, however this method fails to find them.
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Proposition 4.4.1. The length of any edge in P starting from a good vertex VF

is at least min{vi − vi+1} times the length of the edge generator. Moreover, there

is an edge with length exactly the min{vi − vi+1} times the length of its generator.

Proof. Recall from Section 3.5 that the momentum maps for the standard and the

Gelfand-Tsetlin torus actions are related through projection pr, µ = pr ◦ Λ. We

continue to denote the polytope µ(Oλ) by Q and its one-skeleton (image of points

whose orbits have dimension at most 1) by Q1 We will show that for any edge

e ∈ P starting from VF there is an edge e′ in Q1 (possibly not and edge but just a

line segment in Q) such that pr(e) ⊂ e′. This will help us to analyze edges of P .

Denote the diagonal entries of F by F11, . . . , Fnn. Let p < q be indices from

{1, . . . , n} such that vi = Fpp 6= Fqq = vk and F ′ is the matrix obtained from F by

switching p-th and q-th entry. There is an edge in Q1 joining µ(F ) and µ(F ′), and

it is an µ-image of a sphere S := {Fz; z ∈ C ∪ {∞}} in Oλ defined in the Section

4. We will analyze Λ(S).

Assume that vk < vi. The other case is proved in a similar way. First observe

that for j < p the matrices (Fz)j := Φj(Fz) and (F )j := Φj(F ) are both equal

to diag (F1,1, . . . , Fj,j). Also for j ≥ q the matrices (Fz)j and Fj have the same

eigenvalues. This is because the eigenvalues of this 2× 2 matrix (vi+|z|2vk)
Z

z̄(vi−vk)
Z

z(vi−vk)
Z

(vk+|z|2vi)
Z

 ,
where Z =

√
1 + |z|2, are vi and vk. Therefore, for j < p or j ≥ q, we have

∀Fz∈S λ(j)
m (Fz) = λ(j)

m (F ), (4.2)

for any m = 1, . . . , n − j. Denote by ρ(|z|) = (vi+|z|2vk)
Z

. While a goes to ∞, ρ
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decreases its value from vi to vk. Let

i′ = min{l ; vl ∈ {F11, . . . , Fqq}, vi > vl}.

This implies that i + 1 ≤ i′ ≤ k. Note that i′ is not necessarily i + 1, as it might

happen that vi+1 is a diagonal entry of F that does not sit in a submatrix (F )q.

Lemmas 4.4.2 and 4.4.3 below show that the set Λ({Fz | ρ(|z|) ∈ [vi′ , vi]}) is an edge

of P starting from VF . Now we need to compute it’s length relative to the length of

the edge generator (= −isotropy weight). Notice that the projection pr (induced

by inclusion T n ↪→ TGT ) maps the isotropy weights of TGT action to the isotropy

weights of T n action. If e = clηl is the edge of P , then pr(e) = clpr(ηl) is the part of

the corresponding edge e′ of Q1 starting from the vertex µ(F ). The edge generator

in the direction pr(ηl) is −epp + eqq (because the isotropy weight of the standard

action of maximal torus is epp − eqq). We will denote Z̃ := {Fz | ρ(|z|) = vi′} and

Ṽ := Λ(Z̃), regardless of the fact if it is a vertex or an interior point of and edge

in P . Notice that Ṽ , has values of Λ that are different from those of F in exactly

(q − p) places. Precisely, for every p ≤ j < q, there is exactly one s such that

λ
(j)
s (F ) = vi while λ

(j)
s (Z̃) = vi′ . Recall from section 3.5 that the k− th coordinate

of pr({λ(∗)
∗ }) is given by

( pr({λ(∗)
∗ }) )k =

k∑
s=1

λ(k)
s −

k−1∑
s=1

λ(k−1)
s

for k > 1 and is equal to λ
(1)
1 for k = 1. Therefore µ(F ) = pr(Λ(F )) and µ(Z̃) =

pr(Λ(Z̃)) differ only at p-th and q-th coordinates:

( pr(Λ(F )) )p =

p∑
s=1

λ(p)
s (F )−

p−1∑
s=1

λ(p−1)
s (F )

=

p∑
s=1

λ(p)
s (Z̃) + vi − vi′ −

p−1∑
s=1

λ(p−1)
s (Z̃) = ( pr(Λ(Z̃)) )p + vi − vi′
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( pr(Λ(F )) )q =

q∑
s=1

λ(q)
s (F )−

q−1∑
s=1

λ(q−1)
s (F )

=

q∑
s=1

λ(q)
s (Z̃) + vi − vi′ − (

q−1∑
s=1

λ(q−1)
s (Z̃) + vi − vi′ )

= ( pr(Λ(Z̃)) )q − (vi − vi′)

Thus

µ(F )µ(Z̃) = (vi − vi′)(−epp + eqq),

and the edge e of P is at least (vi − vi′) multiple of the weight spanning it. Recall

from definition of i′ that (vi − vi′) ≥ (vi − vi+1).

In case where vk > vi, ρ(|z|) would be increasing its value from vi to vk and

we would prove in an analogous way that the edge joining F and F ′ is at least

(vi−1 − vi) multiple of the edge generator.

Notice that different pairs of p and q (such that Fpp 6= Fqq) give different

edges. This follows, for example, from the fact that for j < p or j ≥ q, we have

λ
(j)
s (Fz) = λ

(j)
s (F ). Therefore we found D distinct edges of P starting from VF .

The Proposition 4.3.9 gives that these must be all the edges.

Now suppose that m is the index such that the minimum of {vi − vi+1 | i =

1, . . . , s} is equal to vm − vm+1. There are indices p < q such that Fp,p = vm

and Fq,q = vm+1, or Fp,p = vm+1 and Fq,q = vm. Let F ′ be the diagonal matrix

obtained from F by switching p-th and q-th entry. Then Z̃ = F ′, Ṽ = Λ(F ′) and

the edge of P between these two vertices is exactly (vm − vm+1) multiple of the

edge generator.

The above proof used two lemmas that we formulate and prove below.
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Lemma 4.4.2. For z such that vi >
(vi+|z|2vk)

Z
= ρ(|z|) > vi′ the point Λ(Fz) is in

the interior of an edge of P.

Proof. Let m be such that

λ(q−1)
m (Fz) = vi > ρ(|z|) = λ

(q−1)
m+1 (Fz).

We will show that for any (j, l) 6= (q−1,m), j = 1, . . . , n−1, l = 1, . . . , j, we have

that

λ
(j)
l (Fz) = λ

(j+1)
l (Fz) or λ

(j)
l (Fz) = λ

(j+1)
l+1 (Fz),

and use the Lemma 4.3.6. The matrix (Fz)q := Φq(Fz) is diagonal, thus, repeating

the proof of Lemma 4.3.5 for (Fz)q, we can show that the above claim holds for

j < q − 1 and any l. Also, for j ≥ q the claim holds, due to equations (4.2) and

Lemma 4.3.5. Thus, for j 6= q − 1 and any l, the function λ
(j)
l is equal at Fz to its

lower or upper bound.

Now assume j = q − 1 and notice that

spectrum((Fz)q) = spectrum((Fz)q−1) ∪ {vi, vk} \ {ρ(|z|)}.

The Figure 4.4 presents sequences of ordered eigenvalues of (Fz)q−1 and (Fz)q. This

≥ vi

. . .

ρ

≥ vi

. . .

. . . . . .

. . . . . .

. . .

vi′ ≥ . . . ≥ vk−1

vi′ ≥ . . . ≥ vk−1

= vk < vk

< vk= vk

. . . vi vk

λ(q−1)
∗ (Fz) :

λ(q)∗ (Fz) :

Figure 4.2: Eigenvalues of (Fz)q−1 and (Fz)q.

presentation helps to note that

∀t6=m, λ(q−1)
t (Fz) ≥ vk ⇒ λ

(q−1)
t (Fz) = λ

(q)
t (Fz),
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∀t6=m, λ(q−1)
t (Fz) < vk ⇒ λ

(q−1)
t (Fz) = λ

(q)
t+1(Fz).

Thus by the Lemma 4.3.6, Λ(Fz) is on the edge of P . All eigenvalues of (Fz)q are

equal to some element of the set {v1, . . . , vn−s}. Therefore λ
(q−1)
m (Fz) = ρ(|z|) ∈

(vi′ , vi) is not equal to λ
(q)
m (Fz) nor λ

(q)
m+1(Fz), so Λ(Fz) is not a vertex of P .

Lemma 4.4.3. Λ( {Fz | ρ(|z|) = vi′} ) is a vertex of P.

Proof. Similarly to the proof of Lemma 4.4.2, we show that for (j, l) 6= (q− 1,m),

j = 1, . . . , n − 1, l = 1, . . . , j, the function λ
(j)
l at Fz is equal to its lower or

upper bound (again use Figure 4.4). However this time λ
(q−1)
m (Fz) = ρ(|z|) = vi′ =

λ
(q)
m+1(Fz). We use Lemma 4.3.3 to deduce that Λ( {Fz | ρ(|z|) = vi′} ) is a vertex

of P .

Proof. (of Theorem 4.0.2) Proposition 4.4.1 together with Proposition 3.2.6 give

the proof of Theorem 4.0.2, as explained in the Example 3.2.7.
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CHAPTER 5

COADJOINT ORBITS OF THE SPECIAL ORTHOGONAL GROUP

In this chapter we consider coadjoint orbits of the special orthogonal group.

Let G = SO(2n+ 1) or G = SO(2n). Then the Lie algebra g is the vector space of

skew symmetric matrices of appropriate size. We will identify the Lie algebra dual

g∗ with g using the G invariant pairing in g, (A,B) = −1
2
trace(AB). Throughout

the paper we use the notation

R(α) =

 cos(α) − sin(α)

sin(α) cos(α)

 , L(a) =

 0 −a

a 0


We make the following choices of maximal tori

TSO(2n+1) =





R(α1)

R(α2)

. . .

R(αn)

1





, TSO(2n) =





R(α1)

R(α2)

. . .

R(αn)





where αj ∈ S1. The corresponding Lie algebra duals are

t∗SO(2n+1) =





L(a1)

L(a2)

. . .

L(an)

0





, t∗SO(2n) =





L(a1)

L(a2)

. . .

L(an)





and we choose the positive Weyl chambers to consist of matrices with a1 ≥ a2 ≥
a3 ≥ . . . ≥ an ≥ 0 in the case G = SO(2n + 1), and a1 ≥ a2 ≥ a3 ≥ . . . ≥ an−1 ≥
|an| in the case G = SO(2n). We are using the convention that the exponential

map exp : tSO(2) → TSO(2) is given by L(a) → R(2πa), that is S1 ∼= R/Z. A

point λ ∈ g∗ and a coadjoint orbit through it are called regular if the stabilizer

of λ under coadjoint action is the maximal torus. Coadjoint orbits are in bijection
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with points in the positive Weyl chamber. Under this bijection, the regular points

correspond to the interior of the chamber. Fix a point λ = (λ1, λ2, λ3, . . . , λn), in

the interior of the positive Weyl chamber, t∗+,

λ =





L(λ1)

L(λ2)

L(λ3)

. . .

L(λn)

0



∈ t∗SO(2n+1) if G = SO(2n+ 1)



L(λ1)

L(λ2)

L(λ3)

. . .

L(λn)


∈ t∗SO(2n) if G = SO(2n)

Denote the orbit of the coadjoint action of G on λ by Oλ. The orbit is also a

symplectic manifold, with Kostant-Kirillov symplectic form. The dimension of Oλ
is equal to

dimOλ = dim (g∗)− dimTG =


n(2n+ 1)− n = 2n2 if G = SO(2n+ 1)

n(2n− 1)− n = 2n(n− 1) if G = SO(2n).

In this section we prove the Theorem 3.1.1 for the special orthogonal group.

The analysis of the root system of the special orthogonal groups done in Subsection

5.1, and inequalities imposed on λ, imply that if G = SO(2n + 1) the minimum

min{ |〈α∨, λ〉| ;α∨ a coroot} is equal to

min{λ1 − λ2, . . . , λn−1 − λn, 2λn},
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while for G = SO(2n) the minimum is

min{λ1 − λ2, λ2 − λ3, . . . , λn−1 − λn, λn−1 + λn}.

Below we give precise statement of the Theorem 3.1.1 in the case of special orthog-

onal group.

Theorem 5.0.4. The Gromov width of the coadjoint orbit of the special orthogo-

nal group passing through a point λ = (λ1, . . . , λn) ∈ int t∗+ in the positive Weyl

chamber (chosen above) is at least

min{λ1 − λ2, . . . , λn−1 − λn, 2λn}

if G = SO(2n+ 1), and is at least

min{λ1 − λ2, λ2 − λ3, . . . , λn−1 − λn, λn−1 + λn}

if G = SO(2n).

In the case of G = SO(2n + 1) this result can be strengthened to cover also a

class of orbits that are not regular (see [33, Theorem 7.1]).

5.1 Root system of the special orthogonal group

The root system of a group G consists of vectors in t∗, the dual of the Lie algebra

of the maximal torus of G. The coroot α∨ corresponding to a root α is an element

of t given by the condition x(α∨) = 2 〈α,x〉〈α,α〉 for all x ∈ t∗. Recall that x(α∨) =

−1
2
trace(xα∨). We will often denote this pairing between t and t∗ by 〈, 〉 . We
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identify t∗ (so also t) with Rn by sending matrices



L(a1)

L(a2)

. . .

L(an)

0


∈ t∗SO(2n+1),



L(a1)

L(a2)

. . .

L(an)


∈ t∗SO(2n)

to (a1, a2, . . . , an) ∈ Rn. With this identification, the pairing 〈, 〉 in t∗ is just the

standard scalar product.

The root system of the group SO(2n+1) consists of vectors = ±ej, j = 1, . . . n,

of squared length 1, and vectors ±(ej ± ek), j 6= k, of squared length 2 in the Lie

algebra dual t∗SO(2n+1). Therefore this root system for SO(n) is non-simply laced.

Note that

〈(ej ± ek)∨, λ〉 = 2
〈ej ± ek, λ〉

〈ej ± ek, ej ± ek〉
= λj ± λk

and

〈(ej)∨, λ〉 = 2
〈ej, λ〉
〈ej, ej〉

= 2λj.

Therefore for λ in our chosen positive Weyl chamber

min{|〈α∨, λ〉| ;α∨ a coroot} = min{λ1 − λ2, . . . , λn−1 − λn, 2λn}.

The root system for SO(2n) is simply laced and consists of vectors ±(ej ± ek),

j 6= k, of squared length 2. Note that

〈(ej ± ek)∨, λ〉 = 2
〈ej ± ek, λ〉

〈ej ± ek, ej ± ek〉
= λj ± λk.

Therefore for λ in a positive Weyl chamber

min{|〈α∨, λ〉| ;α∨ a coroot} = min{λ1 − λ2, λ2 − λ3, . . . , λn−1 − λn, λn−1 + λn}.
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5.2 The Gelfand-Tsetlin system for the special orthogonal

group

In this section we apply the general construction of the Gelfand-Tsetlin system to

the case of SO(n). Consider the following sequence of subgroups

Gn = SO(n) ⊃ Gn−1 = SO(n− 1) ⊃ Gn−2 = SO(n− 2) ⊃ . . . ⊃ G2 = SO(2).

For these groups we make the following choices of maximal tori.

TSO(2k+1) =



R(α1)

R(α2)

. . .

R(αk)

1


, TSO(2k) =



R(α1)

R(α2)

. . .

R(αk)


.

The positive Weyl chambers are chosen in an analogous way to the case described

in the Introduction. Take any Gk from this sequence, k = 2, . . . , 2n. The group

Gk injects into G by

Gk 3 B 7→

 B 0

0 I

 .

Therefore it also act on Oλ by a subaction of the coadjoint action. This action

is Hamiltonian with a momentum map Φk : Oλ → so(k)∗ sending a matrix A =

[aij] to the k × k top left submatrix of A, which we denote by Φk(A) or (A)k

for short. The action of the Gelfand-Tsetlin torus is defined using the following

functions. Compose the map Φk with the map sk : so(k)∗ → (tSO(k))
∗
+ sending

A ∈ so(k)∗ to the unique point of intersection of the SO(k)-orbit, SO(k) · A, with

the positive Weyl chamber. Recall that we identify Lie algebra dual (tSO(k))
∗ with

Rb k2 c, as explained in the previous section. The positive Weyl chamber, (tSO(k))
∗
+,

is identified with the subset of points (x1, . . . , xb k
2
c) ∈ Rb k2 c satisfying x1 ≥ x2 ≥

. . . ≥ xb k
2
c, for k odd, and x1 ≥ x2 ≥ . . . ≥ x k

2
−1 ≥ |x k

2
|, for k even.
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The composition sk ◦ Φk : Oλ → (tSO(k))
∗
+ gives us bk

2
c continuous (not every-

where smooth) functions which we denote

Λ(k) := (λ
(k)
1 , . . . , λ

(k)

b k
2
c).

In this notation the superscript keeps track of the dimension of the matrices in the

group (not the dimension of the maximal torus). Note that due to our choices of

positive Weyl chambers, the only Gelfand-Tsetlin functions that can be negative

are {x(k)
k
2

}, for k even.

Oλ Φk //

Λ(k) $$HHHHHHHHH so(k)∗

sk
��

(tSO(k))
∗
+

These functions are related to the following action of TSO(k) denoted by ∗. An

element t ∈ TSO(k) acts on a point A ∈ Oλ by the standard SO(k) action of

B−1 t B, where B ∈ SO(k) is such that B Φk(A)B−1 ∈ (tSO(k))
∗
+:

t ∗ A :=

 B−1 t B

In−k

 A

 B−1 t B

In−k


−1

.

Note that for regular orbits, the unique wall of the positive Weyl chamber from

Proposition 3.4.1 applied to SO(k) action, σok, is simply the interior of the positive

Weyl chamber. Therefore the Propositions 3.4.2 and 3.5.1 give:

Proposition 5.2.1. The function Λ(k) is smooth at the preimage of the interior

of the positive Weyl chamber,

USO(k) := (Λ(k))−1(int (tSO(k))
∗
+).

Moreover, the ∗ action of the torus TSO(k) on USO(k) is Hamiltonian and Λ(k) is a

momentum map.
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If G = SO(2n+ 1), putting together these functions for k = 1, . . . 2n we obtain

a function, denoted by Λ = {λ(k)
j |1 ≤ k ≤ 2n, 1 ≤ j ≤ bk

2
c}, mapping Oλ to RN ,

where

N = n+ 2(n− 1) + 2(n− 2) + . . .+ 2 · 2 = n+ n(n− 1) = n2.

If G = SO(2n), then we obtain a function Λ = {λ(k)
j |1 ≤ k ≤ 2n−1, 1 ≤ j ≤ bk

2
c},

mapping Oλ to RN , with

N = 2(n− 1) + 2(n− 2) + . . .+ 2 · 2 = n(n− 1).

In both cases N is equal to half of the dimension of a regular coadjoint orbit of G.

Putting the actions together we obtain the Hamiltonian action of the Gelfand-

Tsetlin torus T = TGT = TSO(n−1)⊕. . .⊕TSO(2)
∼= (S1)N on the dense open subset

U := ∩k USO(k)

of the coadjoint orbit Oλ where all functions Λ(k) are smooth. This action is called

the Gelfand-Tsetlin action and its momentum map is Λ.

5.3 The Gelfand-Tsetlin polytope for the special orthogo-

nal group

In this section we describe in details the image of Gelfand-Tsetlin functions, Λ(Oλ).

The fact that the image forms a polytope seems to be well known. However we

could not find a reference for this fact. Therefore we prove it below. The following

lemmas are helpful in analyzing the image of Gelfand-Tsetlin functions. Their

proofs are in the Appendix B.
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Lemma 5.3.1. For any real numbers

b1 ≥ a1 ≥ b2 ≥ a2 ≥ . . . ≥ ak−1 ≥ bk ≥ |ak| (5.1)

there exist a real vector Y = [y1, . . . , y2k]
T in R such that the skew symmetric

matrices

A :=



L(a1)

L(a2)

. . .

L(ak)

Y

−Y T 0


and S :=



L(b1)

L(b2)

. . .

L(bk)

0

0 0


.

are in the same SO(2k + 1) orbit. Moreover,

(1) if aj, bj are not satisfying inequalities (5.1), then such Y does not exist,

(2) if j is the unique index from 1, . . . , k such that aj = bm for some m, then

y2j−1 = y2j = 0.

Here is the even dimensional analogue.

Lemma 5.3.2. For any real numbers

a1 ≥ b1 ≥ a2 ≥ b2 ≥ . . . ≥ bk−1 ≥ |ak| (5.2)

there exist a real vector Y = [y1, . . . , y2k−1]T in R such that the skew symmetric

matrices

A :=



L(b1)

L(b2)

. . .

L(bk−1)

0

Y

−Y T 0


and



L(a1)

L(a2)

. . .

L(ak)


.
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are in the same SO(2k) orbit. Moreover,

(1) if aj, bj are not satisfying inequalities (5.2), then such Y does not exist,

(2) if j is the unique index from 1, . . . , k such that bj = am for some m, then

y2j−1 = y2j = 0.

5.4 The polytope for SO(2n+ 1)

Now we are ready to describe the image of the Gelfand-Tsetlin functions for the

case G = SO(2n+ 1), in Rn2
. Let {x(k)

j |1 ≤ k ≤ 2n, 1 ≤ j ≤ bk
2
c} be the basis of

(Rn2
)∗ dual to the standard basis of Rn2

.

Proposition 5.4.1. For SO(2n + 1) the image of the Gelfand-Tsetlin functions

Λ : Oλ → Rn2
is the polytope, which we will denote by P, defined by the following

set of inequalities
x

(2k)
1 ≥ x

(2k−1)
1 ≥ x

(2k)
2 ≥ x

(2k−1)
2 ≥ . . . ≥ x

(2k)
k−1 ≥ x

(2k−1)
k−1 ≥ |x(2k)

k |,

x
(2k+1)
1 ≥ x

(2k)
1 ≥ x

(2k+1)
2 ≥ x

(2k)
2 ≥ . . . ≥ x

(2k+1)
k ≥ |x(2k)

k |,
(5.3)

for all k = 1, . . . , n, where x
(2n+1)
j = λj.

Proof. The above proposition follows from consecutive applications of Propositions

5.3.1 and 5.3.2. We will show only the first two steps as the next ones are analogous.

(Similar procedure for the unitary case is described in the proof of Proposition

4.3.1)

Take any point a = (a
(l)
j ) ∈ Rn2

satisfying inequalities (5.3). Lemma 5.3.1
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implies that there exist a real vector Y1 such that the matrix

A1 :=



L(a
(2n)
1 )

L(a
(2n)
2 )

. . .

L(a
(2n)
n )

Y1

−Y T
1 0


is in the same SO(2k + 1) orbit as λ, i.e. B1A1B

−1
1 = λ for some matrix B1 ∈

SO(2n + 1). Now we apply Lemma 5.3.2 to find a real vector Y2 and a matrix

B2 ∈ SO(2n) such that for the matrix

A2 :=



L(a
(2n−1)
1 )

L(a
(2n−1)
2 )

. . .

L(a
(2n−1)
n−1 )

0

Y2

−Y T
2 0


we have

B2A2B
−1
2 =



L(a
(2n)
1 )

L(a
(2n)
2 )

. . .

L(a
(2n)
n )


.

Therefore the matrix  A2 B−1
2 Y1

−Y T
1 B2 0


has desired values of the Gelfand-Tsetlin functions a

(2n)
∗ , a

(2n−1)
∗ and is in Oλ as

B1

 B2

1


 A2 B−1

2 Y1

−Y T
1 B2 0


 B−1

2

1

 B−1
1
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= B1

 B2A2B
−1
2 Y1

−Y T
1 0

 B−1
1 = B1A1B

−1
1 = λ.

Successively repeating similar steps, one can construct a matrix in Oλ with pre-

scribed values of Gelfand-Tsetlin functions if only these values satisfy inequalities

(5.3).

We can think of the Gelfand-Tsetlin polytope as the set of points whose coor-

dinates fit into the following triangle of inequalities. Let the first row be given by

λ1, . . . , λn (or |λn| in SO(2n) case). Form next rows from the coordinates with the

same superscript so that top left and right left neighbors of the coordinate x
(k)
j are

x
(k+1)
j and x

(k+1)
j+1 . The value of x

(k)
j must be between the values of its top left and

top right neighbors.

. . .

. . .. . .

. . .

. . .

λ1 λ2 λn

x
(2n)
1 x

(2n)
2 x

(2n)
n−1 |x(2n)n |

λn−1

x
(2n−1)
1 x

(2n−1)
2 x

(2n−1)
n−1

5.5 The polytope for SO(2n)

Situation for G = SO(2n) is very similar. Let {x(k)
j |1 ≤ k ≤ 2n− 1, 1 ≤ j ≤ bk

2
c}

be the basis of (RN)∗ = (Rn(n−1))∗ dual to the standard basis of RN .

Proposition 5.5.1. For SO(2n) the image of the Gelfand-Tsetlin functions Λ :

Oλ → Rn(n−1) is the polytope, which we will denote by P, defined by the following
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set of inequalities
x

(2k)
1 ≥ x

(2k−1)
1 ≥ x

(2k)
2 ≥ x

(2k−1)
2 ≥ . . . ≥ x

(2k)
k−1 ≥ x

(2k−1)
k−1 ≥ |x(2k)

k |,

x
(2k+1)
1 ≥ x

(2k)
1 ≥ x

(2k+1)
2 ≥ x

(2k)
2 ≥ . . . ≥ x

(2k+1)
k ≥ |x(2k)

k |,
(5.4)

for all k = 1, . . . , n, where x
(2n)
j = λj for j = 1, . . . , n.

Proof. Analogous to the proof of Proposition 5.4.1.

Here we also can present these inequalities in the form of a triangle of inequal-

ities similar to the SO(2n+ 1) case above.

5.6 Isotropy weights of the Gelfand-Tsetlin action

Notice that Λ(λ) is a vertex of P . This is because at this point all the Gelfand-

Tsetlin functions are equal to their upper bounds. If on the triangle of inequalities

we connect by a line all coordinates of Λ(λ) with the same values, then we obtain

the picture in Figure 5.1.

We will analyze edges starting from Λ(λ). For more details about identifying

vertices and edges of the Gelfand-Tsetlin polytope, see Lemmas 4.3.3 and 4.3.6 or

[39]. Basically, to obtain an edge starting from Λ(λ), we pick one of the inequalities

defining P that are equations at Λ(λ), and consider the set of points in P satisfying

all the same equations that Λ(λ) satisfies, except possibly this chosen one. It is

important to note that in this way we obtain ALL the edges starting from Λ(λ).

This procedure may not work if instead of Λ(λ) we analyze a vertex V ′ of P such

that Λ−1(V ′) is not in a subset of U .
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. . .

. . .

. . .

. . .

λnλ1 λ2 λn−1

SO(2n + 1)

. . .

. . .

. . .

|λn|λ1 λ2 λn−1

. . .

. . .

SO(2n)

Figure 5.1: The values of Gelfand-Tsetlin functions for Λ(λ) in G = SO(2n+
1) and G = SO(2n) cases.

Pick any k ∈ {1, . . . , n} for G = SO(2n + 1), or k ∈ {1, . . . , n − 1} for G =

SO(2n), and j ∈ {1, . . . , k}. Consider the set E := E
(2k)
j , that is the image of

points where all the Gelfand-Tsetlin functions are equal to their upper bound,

apart from the function λ
(2k)
j . That is, E is the line segment consisting of points

a ∈ RN satisfying

a
(m)
l = λl for all m and for all l 6= j,

a
(m)
j = λj for all m > 2k,

a
(m)
j = a

(2k)
j for all m ≤ 2k, (5.5)

a
(2k)
j ∈ [λj+1, λj] if j < k,

a
(2k)
j ∈ [−λk, λk] if j = k.
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The following graphical presentation (of the case j < k) can be helpful.

λj−1 λj λj+1

= = =

a
(2k+1)
j−1 a

(2k+1)
j a

(2k+1)
j+1

= > =

a
(2k)
j−1 a

(2k)
j a

(2k)
j+1

= = =

a
(2k−1)
j−1 a

(2k−1)
j a

(2k−1)
j+1

The set E is an edge of P . Proof of this fact in nearly identical as in the unitary

case, described in Lemma 4.3.6. The vertex Λ(λ) belongs to E. Denote by
−◦
E the

half open line segment: E minus the other endpoint, i.e.
−◦
E= Λ(λ)∪ int E. From

the definition of U it follows that if q ∈ U and Λ(q) belongs to a face F of the

polytope P , then Λ−1(int F) is in U . Therefore Λ−1(
−◦
E ) is also contained in U and

is equipped with a smooth action of the Gelfand-Tsetlin torus. Below we analyze

carefully which matrices are in Λ−1(
−◦
E ).

Lemma 5.6.1. Λ−1(
−◦
E ) is a disc invariant under the action of the Gelfand-Tsetlin

torus.

To make the notation easier, we will write A ∼ B if A can be conjugated to B

using a special orthogonal matrix of appropriate size. We also write (A)l for the

l × l top left submatrix of A.

Proof. Applying the Propositions 5.3.2 and 5.3.1 we deduce that, in the G =
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SO(2n+ 1) case, Λ−1(
−◦
E ) consists of matrices M ,

L(λ1)

. . .

L(λj−1)

L(a
(2k)
j )

L(λj+1)

. . .

L(λk)

P

−PT 0

Y

−Y T 0

0

0

L(λk+2)

. . .

L(λn)

0


where

a
(2k)
j ∈ (λj+1, λj] if j < k,

a
(2k)
j ∈ (−λk, λk] if j = k,

and the real vectors P and Y are such that

(M)2k+1 ∼ (λ)2k+1 and (M)2k+2 ∼ (λ)2k+2.

Top right (2k+2)×(2n+1−2k−2) minor, and bottom left (2n+1−2k−2)×(2k+2)

minor of M must be zero in order to have (M)l ∼ (λ)l for all l > 2k + 2.

The Proposition 5.3.1 implies that the l-th coordinate of P , pl, must be zero

for all l 6= 2j − 1, 2j. The traces of ( (M)2k+1 )2 and ( (λ)2k+1 )2 need to be equal,

therefore p2
2j−1 +p2

2j = λ2
j − (a

(2k)
j )2. This gives a circle of solutions for every choice

of a
(2k)
j in (λj+1, λj) and the unique solution of p2

2j−1 = p2
2j = 0 if a

(2k)
j = λj.

Now we analyze conditions on vector Y . We are to have that (M)2k+2 ∼ (λ)2k+2.
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If B ∈ SO(2k + 1) is such that B (M)2k+1B
−1 = (λ)2k+1, then B

1


 (M)2k+1 Y

−Y T 0


 B−1

1

 =

 (λ)2k+1 BY

−Y TB−1 0

 .

Therefore (λ)2k+1 BY

−Y TB−1 0

 ∼
 (M)2k+1 Y

−Y T 0

 = (M)2k+2 ∼ (λ)2k+2.

Denote the coordinates of the vector BY by (v1, . . . , v2k+1). According to the

Lemma 5.3.2 the condition that (λ)2k+1 BY

−Y TB−1 0

 ∼ (λ)2k+2

implies that

v1 = . . . = v2k = 0, v2
2k+1 = λ2

k+1.

Therefore

BY =



0

...

0

λk+1


or BY =



0

...

0

−λk+1


. (5.6)

For any choice of vector P , matrix B is uniquely defined only up to multiplication

by an element of maximal torus of SO(2k+ 1). Every element t of this torus has k

(2× 2) blocks of rotations on the diagonal, the last diagonal entry equal to 1, and

all other entries zero. Therefore we have exactly two solutions to equation (5.6):

Y = B−1(0, . . . , 0,±λk+1)T .

For both of these solutions (M)2k+2 has the desired characteristic polynomial

q2k+2(t) =
∏k+1

l=1 (t2 + λ2
l ). However only one of them will give us matrix in the
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SO(2k + 2)-orbit of (λ)2k+2 as explained in the proof of Lemma 5.3.2 given in the

Appendix B. This means that the vector Y is uniquely defined for every choice of

vector P . Therefore the preimage of E is a disk.

If G = SO(2n) the proof is nearly identical. Just delete last row and column

in the presentation of M . Conditions on X and Y stay the same.

Now we analyze the isotropy weights of the action.

Lemma 5.6.2. The weight of the Gelfand-Tsetlin torus on TλΛ
−1(
−◦
E ) is −w(2k)

j ,

where

w
(2k)
j :=

2k∑
l=2j

x
(l)
j

and E is an edge of P equal to the vector

〈 (ej − ej+1)∨, λ 〉 w(2k)
j = (λj − λj+1)w

(2k)
j if j < k,

〈e∨k , λ〉w(2k)
k = 2λk w

(2k)
k if j = k

Remark 5.6.3. Lemmas 5.6.2 and 5.6.5 find all the isotropy weights of the

Gelfand-Tsetlin torus action at λ. Consider the lattice generated by the isotropy

weights. Notice that for the special orthogonal group the isotropy weights are prim-

itive vectors in the lattice they generate. This fact has an important consequence.

To apply Proposition 3.2.6 we need to find c such that the set E
(2k)
j is equal to the

(−c) times the isotropy weight along E. In our case, the c we need is the same

as the lattice length of E with respect to the weight lattice, exactly because all the

isotropy weights are primitive. We want to point out that this is not necessarily

true in general.
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Proof. To make notation easier we concentrate on the case G = SO(2n+ 1). The

proof for G = SO(2n) is nearly identical.

An element R ∈ TSO(l) of maximal torus of SO(l), with l ≥ 2k + 2, acts on a

matrix M ∈ Λ−1(
−◦
E ) by conjugation with B−1RB

I2n+1−l


where B ∈ SO(l) is such that B(M)lB

−1 = (λ)l ∈ (tSO(l))
∗
+. This action is trivial.

To see this denote by S the bottom left (n+ 1− l)× (n+ 1− l) submatrix of M .

Then B−1RB

I


 (M)l 0

0 S


 B−1R−1B

I

 =

 (M)l 0

0 S

 .

Therefore the functions x
(l)
∗ with l ≥ 2k + 2 are constant on Λ−1(

−◦
E ).

Now consider the action of maximal torus of SO(2k + 1), TSO(2k+1). Let B ∈
SO(2k+ 1) be such that B(M)2k+1B

−1 = (λ)2k+1 ∈ (tSO(2k+1))
∗
+. Denote by S the

bottom right (2n − 2k) × (2n − 2k) submatrix of M . An element R of TSO(2k+1)

has the form

R =



R(α1)

. . .

R(αk)

1


and it acts on M by

 B−1RB

I2n−2k




(M)2k+1

(
Y 0

)
 −Y T

0

 S


 B−1R−1B

I2n−2k


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=



(M)2k+1

(
B−1R−1B Y 0

)
 −Y T (BRB−1)T

0

 S


.

Recall that

BY =



0

...

0

±λk+1


, so RBY =



0

...

0

±λk+1


= B Y, and B−1RBY = Y.

Therefore this action is also trivial.

Now let TSO(l) be the chosen maximal torus of SO(l) for l ≤ 2k. An

element of TSO(l) is of the form R = diag(R(α1), . . . , R(α l−1
2

), 1) or R =

diag(R(α1), . . . , R(α l
2
)). Note that for l ≤ 2k the submatrix (M)l is in the positive

Weyl chamber (tSO(l))
∗
+. Therefore an element R ∈ TSO(l) acts on M simply by

conjugation. Denote by W the top right l× (2n+ 1− l) submatrix of M , and by S

the bottom right (2n+ 1− l)× (2n+ 1− l) submatrix of M . With this notation,

the action of R is the following.

 R

I




(M)l W

−W T S


 R−1

I

 =


(M)l RW

−(RW )T S

 .

Only two of the columns of W maybe be non-zero: column (2k + 2)-nd contains

the first l coordinates of the vector Y , and column (2k + 1)-st contains the first l

coordinates of the vector P . We already showed that the only possibly non-zero

entries of the vector P are p2j−1 and p2j. Therefore the submatrix W has possibly

non-zero entries in the (2k+ 1)-st column if and only if l ≥ 2j. In this case, notice
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that only the j-th circle of TSO(l) acts on the (2k + 1)-st column, with speed 1.

R



0

...

0

p2j−1

p2j

0

...

0



=



0

...

0

R(αj)

 p2j−1

p2j


0

...

0



.

Recall that the vector Y is uniquely determined by the vector P . Therefore, when

we analyze the action of T on TλΛ
−1(
−◦
E ), independent variables are only in W,S, P .

This means that the weight of the Gelfand-Tsetlin torus on TλΛ
−1(
−◦
E ) is

−w(2k)
j := −

2k∑
l=2j

x
(l)
j .

The conditions (5.5) imply that the set E is an edge of the polytope P given by

the vector

(λj − λj+1)w
(2k)
j = 〈 (ej − ej+1)∨, λ 〉 w(2k)

j ,

if j < k, and by the vector

〈 e∨k , λ 〉 w(2k)
k = 2λk w

(2k)
k

if j = k.

Recall that for G = SO(2n+ 1) we were taking k from the set {1, . . . , n}, and

for G = SO(2n) we had k ∈ {1, . . . , n − 1}. Therefore the collection of lattice

lengths of edges E
(2k)
j is

{λ1 − λ2, . . . , λn−1 − λn, 2λ1, . . . , 2λn} for G = SO(2n+ 1)
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{λ1 − λ2, . . . , λn−2 − λn−1, 2λ1, . . . , 2λn−1} for G = SO(2n).

Now we analyze the other edges starting from Λ(λ). We still think of (RN)∗

as having coordinates {x(k)
j }, for appropriate k, j. Pick any k < n and j ≤ k.

Consider the set F := F
(2k+1)
j , that is the image of points where all the Gelfand-

Tsetlin functions are equal to their upper bound, apart from the function λ
(2k+1)
j .

That is, F is the set of points satisfying

a
(m)
l = λl for all m and all l 6= j,

a
(m)
j = λj for all m ≥ 2k + 2, (5.7)

a
(m)
j = a

(2k+1)
j for all m ≤ 2k + 1,

where a
(2k+1)
j ∈ [λj+1, λj], unless G = SO(2n) and k = n − 1, j = n − 1 when

a
(2n−1)
n−1 ∈ [|λn|, λn−1]. Here is graphical presentation

λj−1 λj λj+1

= = =

a
(2k+2)
j−1 a

(2k+2)
j a

(2k+2)
j+1

= > =

a
(2k+1)
j−1 a

(2k+1)
j a

(2k+1)
j+1

= = =

a
(2k)
j−1 a

(2k)
j a

(2k)
j+1

(5.8)

Again, similarly to the unitary case (Lemma 4.3.6), one can show that F is an

edge of P . Let
−◦
F= Λ(λ) ∪ int F denote the edge F without the second endpoint.

From the definition of U and the fact that Λ(λ) ∈ U , it follows that the set

Λ−1(
−◦
F ) is also contained in U . Therefore it is equipped with a smooth action of

the Gelfand-Tsetlin torus.

Lemma 5.6.4. Λ−1(
−◦
F ) is a disc invariant under the action of the Gelfand-Tsetlin

torus.
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Proof. In this proof we again concentrate on the case G = SO(2n + 1) as the

procedure for G = SO(2n) is analogous.

Λ−1(
−◦
F ) consists of matrices M of the form



L(λ1) 0

. . .

L(λj−1)

L(a
(2k+1)
j )

.

..

L(λj+1)

. . .

L(λk) 0

0 . . . 0 0

Y

−Y T 0

0

0

L(λk+2)

. . .

L(λn)

0



where a
(2k+1)
j ∈ (λj+1, λj], unless G = SO(2n) and k = j = n − 1 when a

(2n−1)
n−1 ∈

(|λn|, λn−1], and the real vector Y is such that (M)2k+2 ∼ (λ2k+2). Notice that the

top right and bottom left minors have to be zero to have that (M)l ∼ (λ)l for any

l > 2k + 2. The Proposition 5.3.2 implies that

yl = 0 for all l 6= 2j − 1, 2j, 2k + 1

and that y2k+1 and y2
2j−1 + y2

2j are uniquely defined. If a
(2k+1)
j = λj, then y2j−1 =

y2j = 0, and y2k+1 = −λj. For each a
(2k+1)
j ∈ (λj+1, λj) we have a circle worth

of choices for y2j−1, y2j = 0, and unique choice for y2k+1. Therefore Λ−1(
−◦
F ) is a

2-dimensional disk.

Now we analyze the isotropy weights of the action.
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Lemma 5.6.5. The weight of the Gelfand-Tsetlin torus on TλΛ
−1(
−◦
F ) is −w(2k+1)

j ,

where

w
(2k+1)
j :=

2k+1∑
l=2j

x
(l)
j

and F is an edge of P equal to the vector

〈 (ej − ej+1)∨, λ 〉 w(2k+1)
j = (λj − λj+1)w

(2k+1)
j ,

unless G = SO(2n) and k = n− 1, j = n− 1 when F isan edge of P equal to the

vector (λn−1 − |λn|)w(2n−1)
n−1 .

Proof. For simplicity of notation assume that G = SO(2n + 1). To obtain the

proof in the case G = SO(2n) one only needs to delete the last row and column of

M .

First consider the action of TSO(l) with l ≥ 2k + 2. An element R ∈ TSO(l) of

the maximal torus of SO(l) acts on matrix M ∈ Λ−1(
−◦
F ) by conjugation with B−1RB

I2n+1−l


where B ∈ SO(l) is such that B(M)lB

−1 = (λ)l ∈ (tSO(l))
∗
+. Denote by S the

bottom left (n+ 1− l)× (n+ 1− l) submatrix of M . Have B−1RB

I


 (M)l 0

0 S


 B−1R−1B

I

 =

 (M)l 0

0 S

 .

Therefore the functions x
(l)
∗ for l ≥ 2k + 2 are constant on Λ−1(

−◦
F ) and the action

is trivial.

Now consider the action of TSO(l), for l ≤ 2k + 1. An element R of TSO(l) has
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the form

R =



R(α1)

. . .

R(αb l
2
c)

1


or R =


R(α1)

. . .

R(α l
2
)

 .

Denote by W the top right l× (2n+ 1− l) submatrix of M , and by S the bottom

right (2n + 1 − l) × (2n + 1 − l) submatrix of M . Notice that (M)l ∈ (tSO(l))
∗
+.

Therefore the action of R is the following. R

I


 (M)l W

−W T S


 R−1

I

 =

 (M)l RW

−(RW )T S

 .

Only one of the columns of W maybe be non-zero: column (2k + 2)-nd contains

the first l coordinates of the vector Y . We already showed that the only possibly

non-zero entries of the vector Y are y2j−1, y2j and y2k+1. Therefore the submatrix

W has possibly non-zero entries in the (2k+ 1)-st column if and only if l ≥ 2j− 1.

The action does not change the (2k+ 1, 2k+ 1)-th entry of M , namely y2k+1. This

is because this entry is a part of W only in the case l = 2k+1. In that case, R acts

on this entry by multiplication by its (2k + 1, 2k + 1)-th entry, which is equal to

1. There is however nontrivial action on the (2k+ 1, 2j− 1)-th and (2k+ 1, 2j)-th

entries of M if only l ≥ 2j. The j-th circle of TSO(l) acts on the (2k+1)-st column,
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rotating them with speed 1.

R



0

...

0

y2j−1

y2j

0

...

0



=



0

...

0

R(αj)

 y2j−1

y2j


0

...

0



.

This means that the weight of the Gelfand-Tsetlin torus on TλΛ
−1(
−◦
F ) is

−w(2k+1)
j := −

2k+1∑
l=2j

x
(l)
j .

The condition (5.7) implies that F is an edge of P equal to the vector

(λj − λj+1)w
(2k+1)
j ,

unless G = SO(2n) and k = n − 1, j = n − 1 when F is equal to the vector

(λn−1 − |λn|)w(2n−1)
n−1 .

Note the collection of lattice lengths of edges F
(2k+1)
j is

{λ1 − λ2, . . . , λn−1 − λn} for G = SO(2n+ 1),

{λ1 − λ2, . . . , λn−2 − λn−1, λn−1 − |λn|} for G = SO(2n).

Remark 5.6.6. In this work we explicitly calculated the isotropy weights. The fact

that they are primitive vectors proves that the action is effective.
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Note that there is also another way to obtain the isotropy weights of the ac-

tion on TλOλ. We already know that on the set U ⊂ Oλ where the Gelfand-

Tsetlin functions are smooth, they integrate to a Hamiltonian torus action with

momentum map Λ|U , turning U into a (non-compact) toric manifold. It is easy

to see that neighborhood of λ is in U . Therefore the isotropy weights of the

Gelfand-Tsetlin action on TλOλ are (negative) multiples of the primitive gener-

ators of edges of P starting from Λ(λ). A priori we don’t know if the multiple

is (−1). One could use the description of the Gelfand-Tsetlin action (see Sec-

tion 3.5) to show that the action is effective, as we did in Lemma 4.2.2 for the

unitary case. This would imply that the isotropy weights at the fixed point λ are

(−1)·(primitive vectors generating edges of P starting from Λ(λ)), because for the

case of proper group actions on connected manifolds effectiveness implies local ef-

fectiveness (see Corollary B.42 in Appendix B of [15]).

We summarize the above section in the following corollary.

Corollary 5.6.7. Every edge of P starting from Λ(λ) has lattice length equal to

at least min{ |〈α∨, λ〉| ;α∨ a coroot}.

Proof. Direct application of Lemmas 5.6.2 and 5.6.5 would give us lower bounds

for lattice lengths equal to

min{λ1 − λ2, . . . , λn−1 − λn, 2λ1, . . . , 2λn} if G = SO(2n+ 1),

min{λ1 − λ2, . . . , λn−1 − λn, λn−1 − |λn|, 2λ1, . . . , 2λn−2, 2λn−1} if G = SO(2n).

Inequalities coming from the fact that λ is in the positive Weyl chamber imply

that the minimum over the first set is equal to

min{λ1 − λ2, . . . , λn−1 − λn, 2λn},
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while the minimum over the second set is equal to

min{λ1 − λ2, . . . , λn−1 − λn, λn−1 + λn}.

For example,

2λn−1 > λn−1 + |λn| = λn−1 ± λn,

λn−1 − |λn| = min{λn−1 − λn, λn−1 + λn}.

Analysis of root systems done in Subsection 5.1 gives that in both cases the mini-

mum is equal to min{ |〈α∨, λ〉| ;α∨ a coroot}.

5.7 The proof of lower bounds for Gromov width of SO(n)

coadjoint orbits

.

Proof. To prove the Theorem 5.0.4, we will proceed as in the Example 3.2.7. Recall

that 2N is the dimension of the orbit Oλ, where N = n2 if G = SO(2n + 1) and

N = n(n− 1) if G = SO(2n). The point λ ∈ Oλ is a fixed point for the action of

the Gelfand-Tsetlin torus. Moreover, preimage of Λ(λ) is a single fixed point, {λ}.

From the definition of U it follows that λ ∈ U and that

T :=
⋃

F face of P
Λ(λ)∈F

Λ−1(rel-int F) ⊂ U.

Moreover the action of the Gelfand-Tsetlin torus on T is centered around Λ(λ).

Denote the isotropy weights of the action TGT y TλT = TλOλ by −η1, . . . ,−ηN .

Let r = min{ |〈α∨, λ〉| ;α∨ a coroot}. Corollary 5.6.7 shows that lattice lengths of
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all edges starting from Λ(λ) are at least r. Therefore

Λ(λ) + π
N∑
i=1

|zi|2ηi ∈ T

for any z ∈ B2N
r , ball of capacity r. Proposition 3.2.6 gives symplectic embedding

of the ball of the capacity r. Therefore r is the lower bounds for Gromov width.
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APPENDIX A

CENTERED REGIONS FOR NON-SIMPLY LACED GROUPS

Let G be a compact, connected, non-simply laced Lie group, and T be a choice of

maximal torus. Choose positive Weyl chamber and let p ∈ (t)∗+ be a point in the

interior of this chamber. Consider the coadjoint orbit M , through p, and denote

by 2N the dimension of M . Coadjoint action of the maximal torus T on M is

Hamiltonian. Denote the momentum map for this action by µ : M → t∗. Let

Q1 = µ({x ∈M ; dim(T · x) = 1}) be the image of the 1-skeleton of M . Then Q1

is an N -valent graph contained in the polytope µ(M). (This follows from the fact

that T acts on M in a GKM fashion. For more about GKM manifolds see [11],

[36]). Note that p = µ(p) is the fixed point of this action. Let T ⊂ t∗ be such that

µ−1(T ) is centered around p. In particular, for any edge E of Q1, E∩T 6= ∅ if and

only if p ∈ E. One could apply Proposition 3.2.6 and obtain some lower bound for

Gromov width of M as explained in the Example 3.2.7. In this section we show

that in the case of non-simply laced group, this lower bound is weaker (i.e. lower)

then the predicted Gromov width of the coadjoint orbit,

min {|〈α∨, p〉| ; α∨ a coroot } .

This observation makes our result for the SO(2n + 1) coadjoint orbits even more

interesting, as the root system for SO(2n+ 1) is non-simply laced.

Let α, β ∈ t∗ be two roots of Euclidean lengths ||α|| > ||β||. For any root η let

ση : t∗ → t∗ denote the reflection through hyperplane perpendicular to η. Then

the image of α under the reflection σβ,

σβ(α) := α− 2
〈β, α〉
〈β, β〉β = α− 〈β∨, α〉 β,
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is also a root (see condition R3 in III.9.2 of [17]). What is more,

||α|| = ||σβ(α)||.

For any root η, the points p and ση(p) are connected by an edge ofQ1. In particular

there exist and edge in Q1 joining p with a point

σα(p) := p− 2
〈α, p〉
〈α, α〉α.

Call this edge E1. Denote by E2 the edge in Q1 from σβ(p) in the direction of

σβ(α), joining σβ(p) with a vertex σσβ(α)(σβ(p)). The definition of centered region

implies that the edge E2 has to be disjoint from T . We want to know how big

portion of the edge E1 is contained in T . Definitely the intersection of edges E1

and E2 is not in T . These edges intersect if there exists t, s such that

σβ(p) + sσβ(α) = p+ tα.

This means:

p+ tα = σβ(p) + sσβ(α) = p− 2
〈β, p〉
〈β, β〉β + s

(
α− 2

〈β, α〉
〈β, β〉β

)
,

tα = −2
〈β, p〉
〈β, β〉 β + sα− 2s

〈β, α〉
〈β, β〉 β,

(t− s)α = − 2

〈β, β〉 ( 〈β, p〉+ s〈β, α〉 ) β.

As α and β are roots of different lengths, the only solution to the above equation

is when t = s and 〈β, p〉+ s〈β, α〉 = 0. The point p was chosen from the interior of

the positive Weyl chamber, thus 〈β, p〉 6= 0. The solution exists if also 〈β, α〉 6= 0

and is

t = s = − 〈β, p〉〈β, α〉 = −2
〈β, p〉
〈β, β〉

(
2〈β, α〉
〈β, β〉

)−1

.

The values of 2〈β,α〉
〈β,β〉 can only be 0,±1,±2,±3 ([17, Chapter 9]). By the above, we

know it is not 0. If 2〈β,α〉
〈β,β〉 = ±1, then ||α|| = ||β|| ([17]) contrary to our assumptions.
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p

σβ(p)

σα(p)

E1

E2

2

2

1

5

α = e1 + e2

e1

β = e2

σβ(α)

Figure A.1: One-skeleton of SO(5) coadjoint orbit

Thus it has to be ±2 or ±3. In both cases we get that the solution

|t| = 2

∣∣∣∣∣ 〈β, p〉〈β, β〉

(
2〈β, α〉
〈β, β〉

)−1
∣∣∣∣∣ < 2

∣∣∣∣ 〈β, p〉〈β, β〉

∣∣∣∣ = 〈β∨, p〉.

This means that the portion of the edge E1 contained in T has length strictly less

then 〈β∨, p〉 ||α||. Therefore the lower bound for Gromov width that we can obtain

from the centered region T is less then 〈β∨, p〉 (the isotropy weight along the sphere

µ−1(E1) is α). It may happen that the minimum min{
∣∣ 〈α∨j , p〉 ∣∣ ;αj a coroot} is

equal to 〈β∨, p〉. In this case, the predicted lower bound of Gromov width of the

orbit is strictly greater then the bound one could get from the centered region for

the standard action of the maximal torus.

For example, consider SO(5) coadjoint orbitM through a block diagonal matrix

p = diag(L(6), L(1), 1) in so(5)∗. The momentum polytope µ(M), together with

the image of 1-skeleton are presented on Figure A.1. Edge lengths are given with

respect to the weight lattice. Preimage of the shaded region is the maximal subset
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centered around p for the standard action of maximal torus. The portion of edge

E1 contained in this region is of length∣∣∣∣ 〈e2, (6, 1)〉
〈e2, e1 + e2〉

∣∣∣∣ = 1.

Therefore using this centered region, we can construct embeddings of a ball of

capacity at most 1. Regions centered at the other fixed points would give the same

result. The Theorem 5.0.4 provides a better lower bound, because the pairings

of p with coroots e∨1 , e
∨
2 , (e1 + e2)∨, (e1 − e2)∨ give (respectively): 12, 2, 7, 5 and

minimum of this set is 2.
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APPENDIX B

PROOFS OF LEMMAS 5.3.1 AND 5.3.2

Proof Lemma 5.3.1. We are given real numbers satisfying inequalities (5.1):

b1 ≥ a1 ≥ b2 ≥ a2 ≥ . . . ≥ ak−1 ≥ bk ≥ |ak|

and we are to show that there exist a real vector Y = [y1, . . . , y2k]
T in R2k such

that the skew symmetric matrices

A :=



L(a1)

L(a2)

. . .

L(ak)

Y

−Y T 0


and S :=



L(b1)

L(b2)

. . .

L(bk)

0

0 0


.

are in the same SO(2k + 1) orbit.

Proof. Two matrices in so(2k + 1)∗ are in the same SO(2k + 1) orbit if and only

if they have the same characteristic polynomial. The characteristic polynomial for

A, χA(t) is

χA(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t a1 −y1

−a1 t −y2

. . .
...

t ak −y2k−1

−ak t −y2k

y1 y2 . . . y2k−1 y2k t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= −y1


−a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 t a2

0 −a2 t

. . .

t ak

−ak t

y2 y3 y4 . . . y2k−1 y2k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− y1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t 0 0 0

0 t a2

0 −a2 t

. . .

t ak

0 −ak t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


+

+y2

(
−a1 (y1

∏
j 6=1

(t2 + a2
j)) + y2 (t

∏
j 6=1

(t2 + a2
j))

)
+ . . .+ t

k∏
j=1

(t2 + a2
j)

= (a1y1y2+y2
1t−a1y1y2+y2

2t)
k∏
j=2

(t2+a2
j)+. . .+(y2

2k−1+y2
2k) t

k−1∏
j=1

(t2+a2
j)+t

k∏
j=1

(t2+a2
j)

= t
k∑
l=1

(y2
2l−1 + y2

2l)
∏
j 6=l

(t2 + a2
j) + t

k∏
j=1

(t2 + a2
j).

The characteristic polynomial for S is χS(t) = t
∏k

j=1(t2 + b2
j). Simplifying t we

get the equation

k∑
l=1

(y2
2l−1 + y2

2l)
∏
j 6=l

(t2 + a2
j) +

k∏
j=1

(t2 + a2
j) =

k∏
j=1

(t2 + b2
j). (B.1)

Case 1. Assume first that a and b are regular, that is

b1 > a1 > b2 > a2 > . . . > ak−1 > bk > |ak|. (B.2)

Then we can write the Equation B.1 as

k∏
j=1

(t2 + a2
j)

(
1 +

k∑
l=1

y2
2l−1 + y2

2l

t2 + a2
l

)
=

k∏
j=1

(t2 + b2
j).

Substituting t = ±ibs for s = 1, . . . , k we get the system of equations

∀s=1,...,k

(
1 +

k∑
l=1

y2
2l−1 + y2

2l

−b2
s + a2

l

)
= 0.

Introduce the notation

wl = y2
2l−1 + y2

2l.
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Solving the Equation B.1 for regular case is equivalent to finding nonnegative

solution in w′s to the system of linear conditions

∀s=1,...,k

k∑
l=1

wl
b2
s − a2

l

= 1. (B.3)

Denote by M = [msl], msl = 1
b2s−a2l

the matrix of this system of equations. Matrices

of this type are called Cauchy matrices. In 1959 Schechter ([34]) proved that

detM =

∏k
i=2

∏i−1
j=1(b2

i − b2
j)(a

2
i − a2

j)∏k
i=1

∏k
j=1(b2

i − a2
j)

6= 0.

Moreover, he showed that the inverse matrix M−1 = [mij] is given by the formula

mij = (b2
j − a2

i )Bj(a
2
i )Ai(b

2
j)

where Bj(x), Ai(x) are the Lagrange polynomials for (b2
i ) and (a2

j). This means

that

Ai(x) =
A(x)

A′(a2
i )(x− a2

i )
and Bi(x) =

B(x)

B′(b2
i )(x− b2

i )
,

with

A(x) =
k∏
i=1

(x− a2
i ) and B(x) =

k∏
i=1

(x− b2
i ).

Therefore, the solution to our system is given by (see also [29, Ch VIII])

wl = −
∏n

j=1(a2
l − b2

j)∏n
j 6=l, j=1(a2

l − a2
j)
.

Notice that, due to inequalities B.2, the numerator is positive if and only if ]{j; j ≥

l} is even, while the denominator is positive if and only if ]{j; j > l} is even. Thus

wl is always positive, as required.

If the inequalities 5.1 are not satisfied, then some wl is negative and therefore

there is no solution in y’s.

Case 2. Suppose that b is regular but a is not, that is there exists j0 such that

aj0 = bm (that is m = j0 or j0 + 1).
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Suppose for a moment that aj0 is the only coordinate of a that is equal to bm,

that is, bm 6= aj for all j 6= j0. Then, substituting t = ibm in Equation (B.1), we

get that

wj0
∏
j 6=j0

(a2
j − b2

m) = 0,

thus wj0 = 0. Therefore y2j0−1 = y2j0 = 0. This means that ever term in Equation

B.1 contains a factor (t2 + b2
m) and we can simplify this factor. Then we arrive at

the equation with just k − 1 variables w1, . . . , ŵj0 , . . . wk and 2k − 2 parameters

which are now regular or at least less degenerate. Repeating this step if necessary,

we get to the equation similar to Equation (B.1) that is regular (and has less

variables and parameters).

Now suppose that aj0 is not the only coordinate of a that is equal to bm. As

b is regular, this can happen if and only if am−1 = bm = am. Now every term in

Equation B.1 contains a factor (t2 + b2
m). We simplify this factor. Introducing new

variables and parameters for j = 1, . . . , k − 1

ãj =


aj j < m

aj+1 j ≥ m
, b̃j =


bj j < m

bj+1 j ≥ m
, w̃j =


wj j < m− 1

wm−1 + wm j = m− 1

wj+1 j > m− 1

we get the equation

k−1∑
l=1

(w̃l)
∏
j 6=l

(t2 + ãj
2) +

k∏
j=1

(t2 + ãj
2) =

k∏
j=1

(t2 + b̃j
2
),

which is regular or at least less degenerate then the one we started with. Repeating

the above steps if necessary, we obtain a regular equation and can find the solution

using the inverse of appropriate Cauchy matrix.

Case 3. Now we deal with the case of b non-regular. Again we will try to

reduce it, step by step, to the regular case. Suppose that bj = bj+1 for some index

j. Then aj is forced by the inequalities (5.3) to be also equal to bj.
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If no other al is equal to aj, then substituting t = ibj we obtain that wj = 0.

Therefore y2j−1 = y2j = 0. This means that every term in the Equation (B.1)

contains the factor (t2 + b2
j). Simplifying this factor we arrive at the equation that

is one step less degenerate.

If there are other al also equal to aj, then every term in the Equation (B.1)

contains the factor (t2 + b2
j). We can simplify this factor and, similarly to the

case above, introduce new variables to obtain an equation that is one step less

degenerate.

It is clear from the proof that if there exists unique index j such that aj = bm,

then y2j−1 = y2j = 0.

Proof of Lemma 5.3.2. Now we proof the even dimensional analogue, that

is Lemma 5.3.2. We are given real numbers satisfying inequalities (5.2) recalled

below:

a1 ≥ b1 ≥ a2 ≥ b2 ≥ . . . ≥ bk−1 ≥ |ak|

and we are to find a real vector Y = [y1, . . . , y2k−1]T in R2k−1 such that the skew

symmetric matrices

A :=



L(b1)

L(b2)

. . .

L(bk−1)

0

Y

−Y T 0


and S :=



L(a1)

L(a2)

. . .

L(ak)


.

are in the same SO(2k) orbit.

If two matrices in so(2k)∗ are in the same SO(2k) orbit, then in particular

they have the same characteristic polynomial. We could proceed as in the odd
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dimensional case and start with comparing the characteristic polynomials of A

and S. This would again involve, for regular case, solving some linear system

of equations, with unknowns {y2
2l−1 + y2

2l, y2k−1}, given by a Cauchy matrix. By

the result of Schechter we know the inverse matrix, but it is still computationally

challenging to show that the solution is nonnegative (except possibly at y2k−1).

For this reason, and to present another approach, we will proceed differently. We

will transform the problem into a problem for the unitary case. In particular we

use the following Lemma, which is a slight strengthening of Lemma 4.3.2 (Lemma

3.5 in [30], see also [14]).

Lemma B.0.1. For any real numbers µ1 ≥ ν1 ≥ µ2 ≥ . . . ≥ µ2k−1 ≥ ν2k−1 ≥ µ2k

there exist x1, . . . , x2k−1 in C and x2k in R such that the Hermitian matrix

A :=



ν1 0 x̄1

. . .
...

0 ν2k−1 x̄2k−1

x1 . . . x2k−1 x2k


,

has eigenvalues µ1, . . . , µ2k. Inequalities between µj and νj are necessary for such

x1, . . . , xk+1 to exist. Moreover

1. The solution is not unique: gives conditions only on the values |x1|, . . . , |x2k−1|

and x2k. The coordinate x2k is uniquely defined by trace condition.

If ν1, . . . , ν2k−1 are distinct then also |x1|, . . . , |x2k−1| are uniquely defined.

If νl = . . . = νl+s, then only the value |xl|2 + . . .+ |xl+s|2 is uniquely defined.

2. If m is the unique index such that µj = νm then xm = 0.

3. Suppose that νl = −ν2k−l, µl = −µ2k+1−l, for l = 1, . . . , k, (so νk = 0). Then

there exists a solution with |xl| = |x2k−l| for l = 1, . . . , k and x2k = 0.

Proof. Here we only prove the additional, strengthening statements 1, 2 and 3.
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1. Equation

det(A− t Id) = Πj(µj − t) (B.4)

only involves |x1|, . . . , |x2k−1| and x2k. Guillemin and Sternberg while proving

the existence of solution (see [14]), also showed that |x1|, . . . , |x2k−1| and x2k are

uniquely defined in a generic situation, that is if ν1, . . . , ν2k−1 are distinct. If they

are not distinct, then dividing equation B.4 by appropriate factors (t − νl)
s we

reduce the problem to the generic one, with new variable y = |xl|2 + . . .+ |xl+s|2,

instead of variables |xl|, . . ., |xl+s|. The same reduction is explained in details in

Case 2 of the proof of Lemma 5.3.1 above.

2. The characteristic polynomial of matrix A is

t
2k−1∏
l=1

(t− νl)−
2k−1∑
i=1

|xi|2
∏
l 6=i

(t− νl).

This must be equal to
∏2k

l=1(t−µl), the characteristic polynomial of S. Therefore,

substituting t = µj we get

0 = t
2k−1∏
l=1

(µj − νl)−
2k−1∑
i=1

|xi|2
∏
l 6=i

(µj − νl) = −|xm|2
∏
l 6=m

(µj − νl).

This means that xm = 0, because m is the unique index such that µj = νm.

3. The trace of A is 0 =
∑2k

l=1 µl =
∑2k−1

l=1 νl + x2k, thus x2k = 0. Notice that

conjugating A with a matrix of permutation switching l with 2k−l, for l = 1, . . . , k,

(which is in U(n)), will give the matrix A′, with the same eigenvalues as A.

A′ :=



ν2k−1 0 x̄2k−1

. . .
...

0 ν1 x̄1

x2k−1 . . . x1 0


=



−ν1 0 x̄2k−1

. . .
...

0 −ν2k−1 x̄1

x2k−1 . . . x1 0


Eigenvalues of (−A′) are {−µl; l = 1, . . . 2k} = {µl; l = 1, . . . 2k}, the same as of

the matrix A. Therefore the sequence (−x2k−1, . . . ,−x1, 0) is also a solution to
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question in the Lemma B.0.1. In case ν1, . . . , ν2k−1 are distinct, then the absolute

values of the solution are uniquely defined. Therefore |xl| = | − x2k−l| = |x2k−l| for

l = 1, . . . , k. If νl = . . . = νl+s, then also ν2k−l = . . . = ν2k−l−s and equation B.4

imposes the same conditions on |xl|2 + . . .+ |xl+s|2 and on |x2k−l|2 + . . .+ |x2k−l−s|2.

Therefore we can alter the solution to satisfy |xl| = |x2k−l| for l = 1, . . . , k.

Now we are ready to prove Lemma 5.3.2.

Proof. Applying the Lemma B.0.1 we get that there exists X = (x1, . . . , x2k−1) ∈
C2k−1, such that the matrix

b1 x1

b2 x3

. . .
...

bk−1 x2k−3

0 x2k−1

−bk−1 x2k−2

. . .
...

−b2 x4

−b1 x2

x1 x3 . . . x2k−3 x2k−1 x2k−2 . . . x4 x2 0


has eigenvalues (a1, . . . , |ak|,−|ak|, . . . ,−a1), and |x2j−1| = |x2j| for j = 1, . . . , k−1.

Conjugating with a permutation matrix (which is also in U(2k)) will not change

the eigenvalues. Therefore there exist a matrix B ∈ U(2k) such that

B



b1 x1

−b1 x2

. . .
...

bk−1 x2k−3

−bk−1 x2k−2

0 x2k−1

x1 x2 . . . x2k−3 x2k−2 x2k−1 0



B−1 =



a1

−a1
. . .

ak

−ak


(B.5)
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Notice that 1 i

i 1


 0 −x

x 0


 1 −i

−i 1

 = 2

 ix 0

0 −ix

 .

Define the matrices Jm ∈ U(2m), Lm ∈ U(2m+ 1) in the following way

Jm :=
1√
2



1 i

i 1

. . .

1 i

i 1


, Lm :=

 Jm 0

0 1

 .

We will suppress m from the notation when the dimension is understood. Have

J


L(a1)

. . .

L(ak)

 J−1 =



ia1

−ia1

. . .

iak

−iak


.

Also

i



b1 x1

−b1 x2

. . .
...

bk−1 x2k−3

−bk−1 x2k−2

0 x2k−1

x1 x2 . . . x2k−3 x2k−2 x2k−1 0



=

 L

1


 L−1

1

 i



b1
. . .

−bk−1

0

X∗

X 0



 L

1


 L−1

1

 =
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=

 L

1





L(b1)

. . .

L(bk−1)

0

iL−1X∗

iX L 0



 L−1

1

 =

=

 L

1

 A

 L−1

1


where

A :=



L(b1)

. . .

L(bk−1)

0

iL−1X∗

iX L 0


Together with Equation B.5 this gives that

S =


L(a1)

. . .

L(ak)

 = J−1 i



a1

−a1

. . .

ak

−ak


J

= J−1B

 L

1

 A

 L−1

1

 B−1 J

Notice that we can choose X so that A is not only in u(2k)∗ but also in so(2k)∗.
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If xj = rj + iwj, then

Y := i L−1X∗ =
1√
2



1 −i

−i 1

. . .

1 −i

−i 1

1





w1 + ir1

w2 + ir2

. . .

w2k−3 + ir2k−3

w2k−2 + ir2k−2

w2k−1 + ir2k−1


=

=
1√
2



w1 + r2 + i(r1 − w2)

w2 + r1 + i(r2 − w1)

. . .

w2k−3 + r2k−2 + i(r2k−3 − w2k−2)

w2k−2 + r2k−3 + i(r2k−2 − w2k−3)

w2k−1 + ir2k−1


.

This vector is real if and only if r2j−1 = w2j and r2j = w2j−1, for j = 1, . . . , k − 1

and r2k−1 = 0. According to Lemma B.0.1, only the absolute values of xj’s are

uniquely defined and |x2j−1| = |x2j| for j = 1, . . . , k − 1. Therefore, if we take any

x2j−1 = r2j−1 +iw2j−1 with prescribed absolute value, and put x2j = w2j−1 +ir2j−1,

x2k−1 = |x2k−1| then vectors i L−1
k X∗ and its transpose conjugate −iX Lk are real

and A ∈ so(2k)∗.

Moreover, the only two matrices in the positive Weyl chamber with the same

characteristic polynomial as the matrix A are

S =


L(a1)

. . .

L(ak)

 , S̃ :=


L(a1)

. . .

L(−ak)

 .

These matrices are O(2k) conjugate but not SO(2k) conjugate. Let R ∈ O(2k)

denote the diagonal matrix with all 1’s on diagonal except the last, 2k-th, entry
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that is equal to −1. Then

S̃ = RS R−1.

If the matrix A we have constructed is in fact in the SO(2k) orbit through S̃, then

the matrix

RAR−1 =



L(b1)

L(b2)

=
. . .

L(bk)

0

−Y

Y T 0


is in the SO(2k) orbit through S. Therefore, if Y is the vector such that matrices

A and S have the same characteristic polynomial, then either Y or −Y is the

solution we need. Again we have that y2
2j−1 + y2

2j = 2r2
2j−1 + 2w2

2j = 2|x2j−1|2 and

y2k−1 = ±|x2k−1| are uniquely defined.
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