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The proliferation of available data in marketing has placed an emphasis on the

applicability of extant marketing models to big data. To tackle this problem,

methods from machine learning have been increasingly applied by the market-

ing community. This line of research is a subset of research in marketing that is

becoming interdisciplinary. A number of marketing researchers have success-

fuly adopted methods from other seemingly unrelated fields in their research.

In that vein, this thesis examines the applicability of Bayesian Nonparametric

methods (from the field of machine learning) to marketing.

The first chapter of this thesis provides a very brief survey of marketing re-

search papers that have enhanced pure marketing models using methods from

machine learning. The second chapter describes the Dirichlet Process, a key

component of Bayesian Nonparametric analysis and provides two synthetic

data applications. Going forward, we study the applicability of Bayesian Non-

parametric methods to model Heterogeneity across multiple markets. Bayesian

Nonparametric methods have been used in marketing and economics literature

to model heterogeneity in discrete choice models, but past applications have

only been limited to data from a single market. So as to compare heterogene-

ity in consumer preferences across multiple markets, we use the Hierarchical

Dirichlet Process (HDP) which lets multiple “groups” of data “share statistical

strength”.



Heterogeneity across multiple markets is modeled using the HDP in two dif-

ferent contexts (B2C and B2B) in this thesis. Our work shows that the HDP pro-

vides a convenient “middle ground” to other extreme modeling options, which

are (1) ignore heterogeneity of preferences across markets and (2) model each

market separately. Another aspect of the HDP is the ease with which it can

be incorporated into models of discrete choice. The models developed and es-

timated in this thesis are also helpful for the marketing manager. In the B2C

application, the results of the model provide the manager with a practical way

of tailoring targeting activities towards consumers with varying preferences.

Finally, in the B2B application, we find that based on the Stage of the selling

process, some marketing activities play a larger role than others in converting

sales leads into clients. These results provide a data driven basis for the man-

ager to appropriately allocate marketing dollars to activities based on the selling

process.
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CHAPTER 1

MARKETING AND MACHINE LEARNING: A BRIEF OVERVIEW

“We are drowning in information but starved for knowledge” – John Naisbitt

“Data are becoming the new raw material of business” – Craig Mundie

“Not everything that can be counted counts, and not everything that counts can be

counted” – William Bruce Cameron

1.1 Introduction

As Kevin Murphy [79] puts it, machine learning can be thought of as a set of

tools for automated data analysis (i.e. a collection of algorithms that can auto-

matically detect deep patterns in data). The need (and also the cause for the

growth) of machine learning comes from the abundance of user data available

from the Internet and company databases [79], making traditional methods of

data analysis cumbersome. Hal Varian [113] acknowledges this phenomenon

and advocates the use of machine learning in econometrics, citing the need to

scale extant estimation methods to big data.

Many of the methods put forward in machine learning have actually been

used in economics and marketing, but they were just given a different name.

For example, the problem of classification (a fundamental concept in machine

learning), where different data points are allocated to groups or “clusters” based

on certain attributes, lies at the core of many marketing models (as a strategy to

model heterogeneity). Some of these methods have also been discussed in [113].

In the past 40 years, there has been a movement towards the use of sophis-
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ticated models that appropriately explain the data, rather than apply reduced

form models without testing whether they are a good approximation [89]. With

sophistication, there is always the issue of computational burden, and with the

advent of big data, this problem is compounded. However, this problem can be

alleviated with the use of machine learning techniques in conjunction with mar-

keting (or econometric) mdoels. This helps managers make informed decisions

based on data analysis rather than gut feel, as described in [102]. In [102], the

authors use Support Vector Machine and Neural Network algorithms to clas-

sify customers who were most likely to convert into mobile internet users. They

found that their algorithm came up with conversion rates far better than the cur-

rent best marketing practices adopted by mobile network operators. Dzyabura

and Hauser [31] develop an “active machine learning” method to select ques-

tions adaptively, when consumers use heuristic decision rules and from their

analysis, find that this startegy of using adaptive questions provides better in-

formation about these decision rules than existing methods.

This chapter is a very brief note on the use of machine learning concepts in

marketing (and economics), citing work done in the past, and the possibility

of future work along those lines. The next sections introduce machine learning

concepts, and their use in marketing literature. This is by no means a com-

prehensive list (or a description of concepts), as that would warrant a book by

itself.
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1.2 Convex Optimization

Even though convex optimization is more of an optimization technique than

a machine learning concept, its uses in machine learning are widespread [20].

Indeed, the topics in optimization and machine learning are acknowledged to

be “intertwined” [12]. Although by definition, convex optimization appears to

apply to a very narrow range of problems (i.e. problems where the objective

and constraint functions are convex), it is surpisingly applicable to a larger set

of problems [53, 54, 19, 64]. In the field of partial identification, Beresteanu,

Molchanov and Molinari [13] study econometric models with convex moment

predictions, and exploit the convexity property to use algorithms in convex op-

timization to recover the partially identified set of parameters. Empirical Static

games [9, 32] also belong to the category of models with convex moment predic-

tions, and Beresteanu, Molchanov and Molinari [13] apply their methodology

there too. Convex optimization has also been creatively used to model hetero-

geneity in conjoint analysis models [37, 109]).

1.3 Dynamic Programming

To repeat the idea from the previous section, dynamic programming could be

interpreted as more of a (recursive) optimization technique than a concept in

machine learning [14, 11]. There are various flavors of this idea, the more rele-

vant one (in terms of being considered a machine learning concept) being that

of reinforcement learning [111, 10, 88]. The use of dynamic programming in

structural economics began with the seminal papers of Wolpin, [117], Pakes [85]

and Rust [92]. The idea was extended (empirically) to a mulple player setting

3



(dynamic games) in Pakes and McGuire [86] and Ericson and Pakes [34]. A

survey of these methods is given in Aguirregabiria and Mira [1]. Marketing

models with forward looking consumers also use this solution concept, with

the dynamic link between periods being the idea that consumers buy products

with an intent to reap rewards later (i.e. frequent flyer programs on airlines). In

marketing, the applications of these models have been diverse, to the sales of

digital cameras [95, 99], video games [80], supermarket pricing strategies [33]

and salesforce compensation [73] to name a few.

Warren Powell [88] discusses various strategies of reducing the computa-

tional burden in dynamic programming problems, approximating value func-

tions being one of them (this borrows a lot from machine learning and statis-

tical learning theory). These methods were applied in replicating the results

of Ericson and Pakes [34], by Farias, Saure and Weintraub [39]. Bhat, Farias

and Moallemi [15] extend the ideas in approximate dynamic programming to a

“practical non-parametric” version, which is a dimension-independent approx-

imation.

In the recent past, there has been a push towards a bayesian approach to

dynamic structural models. A key advantage of this method is obviating the

need to use dynamic programming methods [44]. These ideas were further de-

veloped in Imai, Jain and Ching [56] and Norets [82]. Norets [83] uses MCMC

and Artifical Neural Networks to approximate the Dynamic Programming so-

lution as a function of the parameters and state variables so as to avoid solving

the dynamic program at each iteration (he also shows that this methodology is

applicable in a variety of situations).

One of the many issues encountered in the area of reinforcement learning

4



is the trade-off between exploration and exploitation (i.e. “when does one stop

learning and start exploiting the information they’ve learnt in the past?”) [27].

This is also faced in a class of problems called bandit problems. A number of

solutions have been proposed in the past, one of the early ones being provided

by Gittins [46] and Gittins and Jones [47]. Recently, these methods have been

used in problems of experience goods provision as applied to antidepressants,

[30]) and learning from experience, as applied to diaper sales [71].

1.4 Support Vector Machines

Support Vector Machines (SVM) are a special case of sparse kernel machines1

[79]. The idea is to define a loss function for data analysis (using kernel meth-

ods), which would ensure a sparse solution, and that would mean that predic-

tions would only depend on a select set of training data, called support vectors

(and hence the name support vector machines for kernel models with modi-

fied loss functions ensuring sparse solutions). In marketing literature, Cui and

Curry [28] test the predictive power of SVMs, and assess their strengths and

weaknesses against traditional marketing models. Evgeniou, Pontil and Toubia

[37] briefly mention how modifying some of their (conjoint) model parameters

gives rise to a SVM specification 2. In economics, adding to the work of partial

identification in models with convex moment predictions in [13], Molinari and

Bar [77] provide a solution for the issue of finding sharp identification regions

for high dimensional parameters, using SVMs.

1Loosely put, a kernel machine is a Generalized Linear Model (GLM) with the input feature
vector being a function of the data point and the chosen “centroid” of the data

2[109] gives a thorough description of machine learning and optimization concepts as ap-
plied to conjoint analysis estimation and question design.
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1.5 Latent Dirichlet Allocation

First introduced in Blei, Ng and Jordan [18], Latent Dirichlet Allocation (LDA)

provides an unsupervised method to extract latent dimensions (among other

things) for “collections of discrete data such as text corpora”. The LDA is struc-

tured as a three-level hierarchical bayesian model, where depending on the hi-

erarchy, variables are modeled as infinite or finite mixtures over the underlying

set of probabilities. Tirunillai and Tellis [106] use LDA to extract the valence

expressed in user generated content, and extend the model to study context

specific valence in product reviews across 15 firms in 5 markets over 4 years

(this exercise also shows the scalability of LDA to big data).

1.6 Bayesian Nonparametrics

In Bayesian Nonparametrics, the term “nonparametrics” is a misnomer, since it

would imply that this class of models is parameter free. Instead, these models

allow for infinitely many parameters, choosing relevant ones as data become

available [84]. Given the structure of bayesian models, defining a prior on a

set of possible distributions (a feature of nonparametric problems) which was

large enough and resulted in a posterior distribution which was tractable (an-

alytically or computationally) was a challenge. Ferguson [40] was one of the

first to come up with an attractive solution (that of a Dirichlet Process prior),

the properties of which are described in Teh [104]. One of the main advan-

tages of a bayesian nonparametric paradigm (especially dirichlet process mix-

ture models) is the ability of these models to infer the number of clusters (or

latent groups) in a given dataset, effectively modeling for heterogeneity [43].
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Bayesian nonparametric methods have been used in different contexts in mar-

keting and economics in the past. Burda, Harding and Hausman [23] model

supermarket choices, allowing a few key individual and alternative specific pa-

rameters of interest to be nonparametric, whereas the others are drawn from a

multivariate normal, and this eliminates the independence of irrelevant alter-

natives assumption. They find a complex multi-modal preference distribution,

differentiating between customers who strongly value lower prices (or shop-

ping convenience) and the others. Li and Ansari [69] apply centered Dirich-

let Process Mixtures to model endogeneity and heterogeneity in discrete choice

models and they find the semiparametric model to outperform traditional mod-

eling specifications. Dzyabura and Hauser [31] apply variational techniques to

approximate the posterior in a setting where consumers are using heuristic de-

cision rules when answering questions.

1.7 Structure of The Thesis

As mentioned earlier, this particular chapter was not meant to be a compre-

hensive description of machine learning methods in marketing. However, this

serves as a starting point, in that it shows the concepts of machine learning that

have been employed so far in marketing research. This thesis shares the same

theme – of using an idea from machine learning, namely Bayesian Nonpara-

metrics, and applying it in two different contexts in marketing literature. The

next chapter introduces the Dirichlet Process, and shows two synthetic data ap-

plications which demonstrate the flexibility of the Dirichlet Process prior and

its ease in being “embedded” in more involved marketing models. Chapter 3

introduces the Hierarchical dirichlet Process [105], and decribes an application

7



where across market heterogeneity can be modeled flexibly while maintaining

model parsimony. This thesis concludes with Chapter 4, which also uses the

same technique to model heterogeneity across markets, but in a B2B context,

where the selling process of the firm being studied plays a key role in model

development.
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CHAPTER 2

THE DIRICHLET PROCESS

Very loosely put, the Dirichlet Process is the infinite dimensional version of

the dirichlet distribution. In one of its earliest applications, Ferguson [40] used

it as a prior distribution that was key to extending the framework of Bayesian

analysis to common nonparametric problems. To elaborate, consider an exam-

ple where we have N data points, and we know before hand that these data were

generated from a normal distribution. In this example, the data are completely

determined by the posterior mean (µ) and variance (σ2) parameters, as shown in

the Directed Acyclic Graph (DAG henceforth), 2.1 below (in Figure 2.1, the rect-

angle enclosing the shaded data bubble (xi) is called a plate [16], which indicates

the number of data points observed). However, very rarely do we know before-

hand what the the underlying distribution for a given data sample is, and the

DAG in Figure 2.1 could very well be an oversimplification of the problem. In

the past, nonparametric methods (in a frequentist context) have been proposed

to deal with this issue [68].

xi

µ σ

N

Figure 2.1: A Simple Bayesian Model

Modeling data nonparametrically in a Bayesian context is a little more in-

volved, since ideally, according to Feguson [40] the prior being used should

have a “large” support, and the posterior distributions from a data fitting exer-

9



cise should be “manageable analytically”. The Dirichlet process, is considered

to be a “distribution over distributions” (Antoniak [8]) which satisfies both the

aforementioned conditions [40]. Hence, a draw from a dirichlet process is a

probability distribution. Going back to our simple example in Figure 2.1, we

now consider the case where we leave the distribution of the data unspecified,

and place a Dirichlet Process prior on it. A Dirichlet Process is specified by

a concentration parameter α > 0 and a base distribution H [101, 42]. A DAG

representing this model is given in Figure 2.2

xi

G

H

α

N

Figure 2.2: A Simple Dirichlet Process Model

G is a random distribution, specifically, a draw from a Dirichlet Process

with concentration parameter α and base distribution H, denoted G ∼ DP(α,H)

(hence, G has a Dirichlet Process Prior [108]). The data xi are draws from G. By

construction, G is a discrete distribution [42], i.e. it places point masses at dif-

ferent distinct values of xi, and there is a chance of repetition of xi values with

probability 1 (also a reason why a model specified according to the DAG in Fig-

ure 2.2 might not be appropriate for our simple example). To understand what

G looks like, we need to understand what structure the Dirichlet Process prior

places on the distribution. Following the notation in Tomlinson [108], let χ be

the support of G. If B1, B2, . . . , BK is an arbitrary partition of χ, then the (discrete)

10



probability vector G = (G(B1),G(B2), . . . ,G(BK)), by definition is distributed ac-

cording to [107, 108]:

(G(B1),G(B2), . . . ,G(BK)) ∼ Dir(αH(B1), αH(B2), . . . , αH(BK)) (2.1)

Where H(Bi) =
∫

x∈Bi
dH(x). We began this section by saying that the Dirichlet

Process is the infinite dimensional version of the dirichlet distribution. How-

ever, once we take a finite partition of the support of the random distribution

G, the probabilities assigned to these partitions are distributed according to a

dirichlet distribution (with the dimensionality equaling the size of the parti-

tion). Note that by definition, since B1, B2, . . . , BK is a partition of χ,
K∑

i=1
G(Bi) = 1.

Since the vector of probabilities follows a dirichlet distribution, all the proper-

ties derived in the appendix apply. Specifically, for a given partition Bi, we have

the following:

G(Bi) ∼ Beta

αH(Bi),
∑
j,i

αH(B j)

 = Beta (αH(Bi), α(1 − H(Bi))) (2.2)

E(G(Bi)) =
αH(Bi)

αH(Bi) +
∑
j,i
αH(B j)

= H(Bi) (2.3)

Var(G(Bi)) =
αH(Bi)

(∑
j,i
αH(B j)

)
α2(α + 1)

=
H(Bi)(1 − H(Bi))

α + 1
(2.4)

Cov(G(Bi),G(B j)) = −
αH(Bi)αH(B j)
α2(α + 1)

= −
H(Bi)H(B j)
α + 1

(2.5)

While 2.2 follows from theorem 3 in the appendix, the rest follow from the-

orem 5 and by using the fact that
K∑

i=1
H(Bi) = 1. Note that in 2.5, the prob-

abilities assigned to different partitions are correlated negatively, irrespective
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of the distance between these partitions. This property is referred to as the

“lack of smoothness” [42]. If G were smooth, then two adjacent partitions

would be more strongly dependent that two partitions which are far away and

this is violated in 2.5. Given this prior distribution (under the current parti-

tion), it is fairly straightforward to get the posterior distribution of G, given

observed data xi. Given a data point x1 ∈ Bi, we have under the prior P,

Pr(x1|G) = G(Bi). The posterior is given by Pr(G|x1) ∝ Pr(x1|P)Pr(P). Since from

2.1, G ∼ Dir(αH(B1), . . . , αH(BK)), Pr(G|x1) is given by:

Pr(G|x1) ∝ G(Bi) ∗
Γ(α)

K∏
j=1
Γ(αH(B j))

G(B1)(αH(B1)−1) . . . . . .G(BK)(αH(BK )−1)

=⇒ Pr(G|x1) ∝ G(Bi) ∗G(B1)(αH(B1)−1) . . .G(Bi)(αH(Bi)−1) . . .G(BK)(αH(BK )−1)

=⇒ Pr(G|x1) ∝ G(B1)(αH(B1)−1) . . .G(Bi)(αH(Bi)) . . .G(BK)(αH(BK )−1)

=⇒ G|x1 ∼ Dir(αH(B1), . . . , αH(Bi) + 1, . . . , αH(BK)) (2.6)

Extending the result in 2.6 for N such data points xi, we get:

G|x1, . . . , xN ∼ Dir

αH(B1) +
N∑

i=1

δxi∈B1 , . . . , αH(BK) +
N∑

i=1

δxi∈BK

 (2.7)

Where δxi∈Bi = 1 if xi ∈ Bi or 0 otherwise. The result in 2.7 can be extended

further [42] to obtain:

G|x1, . . . , xN ∼ DP

αH +
N∑

i=1

δxi

 (2.8)

Note that in 2.8, the posterior for G is a Dirichlet Process with equal weights

placed on the data points xi. As α approaches 0, the posterior for G approaches
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the empirical distribution function of the data [42]. Using the posterior distribu-

tion of G in 2.7, we now compute the posterior predictive distribution of a new

data point xN+1. Specifically, we compute Pr(xN+1 ∈ Bk|x1, . . . , xN) where Bk is a

parition of χ defined earlier. This is given by:

Pr(xN+1 ∈ Bk|x1, . . . , xN) =
∫

Pr(xN+1 ∈ Bk|G, x1, . . . , xN)Pr(G|x1, . . . , xN)dG (2.9)

The integrand in Equation 2.9 is straightforward to calculate since conditioning

on G, the probability that a new data point will belong to the partition Bk is

given by G(Bk). Using this result and the fact that the posterior distribution of G

is given by 2.7, we get:

Pr(xN+1 ∈ Bk|x1, . . . , xN) =
∫

G(Bk) ∗ f ∗
K∏

j=1

G(B j)
(αH(B j)+

∑
xi∈B j

δxi−1)
dG

Pr(xN+1 ∈ Bk|x1, . . . , xN) =
∫

f ∗G−k(·)G(Bk)
(αH(Bk)+

∑
xi∈Bk

δxi )
dG (2.10)

Where f = Γ(α+N)
K∏

j=1
Γ(αH(B j)+

∑
xi∈B j

δxi )
and G−k(·) =

∏
j,k

G(B j)
(αH(B j)+

∑
xi∈B j

δxi−1)
. The integral in

Equation 2.10, is given by a standard result from Euler [29].

Pr(xN+1 ∈ Bk|x1, . . . , xN) = f ∗

∏
j,k
Γ(αH(B j) +

∑
xi∈B j

δxi)Γ(αH(Bk) +
∑

xi∈Bk

δxi + 1)

Γ(α + N + 1)

Substiuting for f above, we get:

Pr(xN+1 ∈ Bk|x1, . . . , xN) =
Γ(α + N)
Γ(α + N + 1)

Γ(αH(Bk) +
∑

xi∈Bk

δxi + 1)

Γ(αH(Bk) +
∑

xi∈Bk

δxi)

Pr(xN+1 ∈ Bk|x1, . . . , xN) =
αH(Bk) +

∑
xi∈Bk

δxi

α + N

Pr(xN+1 ∈ Bk|x1, . . . , xN) =
α

α + N
H(Bk) +

N
α + N

∑
xi∈Bk

1
N
δxi (2.11)

The result in 2.11 can be further extended and re-written [42, 104] as:

xN+1|x1, . . . , xN ∼
α

α + N
H(Bk) +

N
α + N

∑
xi

1
N
δxi (2.12)
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In Equation 2.12, δxi = 1 if xN+1 = xi, or 0 otherwise. The form of the predictive

distribution in 2.12 gives us a strategy to draw data points from the base dis-

tribution H of the Dirichlet Process directly, a procedure called the “Polya urn

scheme” [17, 108, 104]. Following the convention in Tomlinson [108], we can

draw data points directly from a Dirichlet Process with concentration α and H,

without needing the random distribution G, as shown below:

x1 ∼ H

x2 ∼
α

α + 1
H +

1
α + 1

δx1

x3 ∼
α

α + 2
H +

1
α + 2

(δx1 + δx2)

...

xN+1 ∼
α

α + N
H +

1
α + N

N∑
i=1

δxi

The first data point is drawn from the base distribution directly. The next data

point is now drawn from H with probability α
α+1 , and it equals the previously

drawn data point (x1) with probability 1
α+1 .This sampling scheme shows that

there is a non-zero probability of data points being repeated, and this prob-

ability depends on the number of data points being drawn (N) and the con-

centration parameter (α). If α is large enough, initially, we might get a larger

number of unique draws [17, 108, 104, 42], but as N increases, we might get

repeated draws. This data drawing procedure also highlights another feature

of the resultant draws: if a particular data point, say xi, is drawn more than

the others, then the next data point drawn, say xN+1 will more likely equal xi.

This phenomenon is referred to as the “rich gets richer” property [42] and also

has a culinary analogy built around it, called the “chinese restaurant process”

[104]. More importantly, the draws from a random probability measure G with a

Dirichlet Process prior exhibit a clustering property (i.e. out of the N xi’s drawn
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from G, only k < N of those are unique values. Tomlinson [108] and Antoniak

[8] derive the probability of k unique values in a sample of draws from G)

Figure 2.3: Draws From a Dirichlet Process

Figure 2.3 shows draws of data from a dirichlet process for different values

of N, α and H, with the associated probability masses placed at the data points.

In the plots shown, N = 100 data points were generated for each plot in the first

column, and N = 1000 were generated for each plot in the second column. For

the plots in the first row in Figure 2.3, α = 1 and H ∼ N(0, 1) for both. It is clear

that since α < N in this case, as we keep drawing more data points, we tend

to pick out already existing data. For the plots in the second row, α = 1,H ∼

N(1, 1.52) for both. To ensure comparability of plots from the first row to the

second, data were generating by using the same random seed, due to which

the plots in the first and second row look completely similar, except for a subtle
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difference: the values of the x-axis “shift” rightwards, which makes sense since

the mean of the base distribution H used to generate these data is higher than in

the previous case. In the third row, H ∼ N(0, 1), but α = 10 now. Since a higher

value of α is used, more unique values of the data are generated, in contrast to

the previous cases.

Since draws from a Dirichlet Process tend to be repeated, the process might

not be ideally suited to model data directly, but can be used to model cluster

memberships in mixture models [108, 104]. Instead of placing a Dirichlet Pro-

cess Prior directly on the data, this prior is placed on the parameters of the

distribution which is assumed to generate the xi’s. Figure 2.4 shows a simple

Dirichlet Process Mixture model (alternatively referred to as a Bayesian Non-

parametric mixture model). The only difference between the DAG in Figure 2.2,

and this one is the θi, on which the Dirichlet Process prior is placed. In Fig-

ure 2.4, G is a random probability measure which is distributed according to a

Dirichlet Process with concentration parameter α and base distribution H. The

draws from G are represented by θi. Each θi has an associated data point xi, that

is generated from θi based on some distributional assumption. As an example,

xi can be modeled as being normally distributed with parameters θi = (µi,Σi).

Given the discreteness property of G discussed earlier, not all values of θi are

unique. Let the unique values of {θi}Ni=1 be denoted by {ϕl}Kl=1, where K is the total

number of unique values (or alternately, the total number of clusters). Hence,

different values of xi could “share” the value of the underlying parameter ϕl that

generates them, and these particular values belong to the same cluster (ϕl is the

cluster specific parameter). In addition, the values of xi that do not share the

same value of underlying ϕl belong to different clusters.
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Figure 2.4: A Simple Dirichlet Process Mixture Model

In model form, this amounts to the following structure being placed on the

data xi:

G ∼ DP(α,H)

θi|G ∼ G

xi|θi ∼ F(θi)

Where F(·) could be any distribution function (usually a Normal distribu-

tion). As discussed earlier, the number of unique cluster specific parameters

generated from G can be controlled by changing the value of α. When α is

larger, more clusters (i.e. more ϕl values or unique values of θi) are created and

vice versa. When applying these models to data, the number of clusters are

chosen during the estimation process. This is convenient, since in typical fre-

quentist models applied to mixture data, the researcher starts with a guess for

the number of underlying clusters and then estimates the model 1. This process

1However, as Orbanz [84] mentions, Bayesian nonparametric mixture models update them-
selves (by appropriately changing the number of clusters) as more data become available, and
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is repeated till the “best” number of clusters is obtained [16]. The number of

clusters determined by the Bayesian nonparametric mixture model depends on

α, on which a Gamma prior is placed [35] or usually chosen to be equal to 1

[81, 23, 69].

The applications of the Dirichlet Process to mixture models was first dis-

cussed by Antoniak [8]. Since then, there have been many applications and

extensions of the Dirichlet Process to mixture models in Statistics [35, 50, 42],

Machine Learning [104], Neuroscience [43] and Marketing [63, 23, 69].

Two broad approaches exist in the literature of applying Dirichlet Process

based models to data. Escobar and West [36] formally outline a procedure to in-

corporate Bayesian Nonparametric techniques in general hierarchical Bayesian

models, while Neal [81] presents a comprehensive collection of MCMC meth-

ods for the implementation of Dirichlet Process models. These algorithms were

also used in marketing applications by Kim, Menzefricke and Feinberg [63] and

Burda, Harding and Hausman [23]. A key step in these algorithms, which Neal

[81] discusses at length in his paper, is to treat the random distribution G as

something that needs to be “integrated out” 2. Due to this, the algorithms de-

scribed in Neal [81] need some form of book keeping at each iteration of the

sampling process, to check the number of “active clusters” (clusters which are

non empty). In addition, since G is effectively removed from the sampling pro-

cess, there is no inference being made on the structure of G (for example, we

don’t know the probability mass Gplaces on each of the θ’s drawn from it).

Another approach to inference in Dirichlet Process mixture models is due to

would be misspecified when applied to data where the number of underlying clusters is as-
sumed to be finite

2Quotations, since by definition, G is discrete
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Sethuraman [93]. He defines a stick breaking construction of the draws from

a Dirichlet Process. Since G ∼ DP(α,H) is a discrete distribution, it places a

some probability mass on points drawn from H, usually referred to as atoms

[84]. These probability masses should sum to 1, so each one of these treated

as part of a stick of unit length, so to speak. Each of these probabilities, once

generated, is “broken off” from this stick of unit length. Each probability mass

is constructed as follows:

V1 ∼ Beta(1, α) P1 = V1

V2 ∼ Beta(1, α) P2 = V2(1 − V1)

...

Vk ∼ Beta(1, α) Pk = Vk

k−1∏
i=1

(1 − Vi)

... (2.13)

The Vi’s are called the stick breaking weights [42]. Given these probability

masses, G ∼ DP(α,H) is then given by:

G(·) =
∞∑
j=1

P jδϕ j(·) ϕ j|H ∼ H (2.14)

Where ϕ j are the unique values of θi, and xi ∼ F(θi) This representation enables

us to make inferences on G directly, rather than getting rid of it [42]. By defi-

nition, the stick breaking probabilities Pk in Equation 2.13 should be computed

for large k (as k → ∞ in 2.13). Ishwaran and Zarepour [58] show that these stick

breaking probabilities need not be computed for large k (in 2.13 note that in prin-

ciple, the probabilites Pk are computed for k → ∞). They show that when α = 1,

restricting k to 25 approximates G well (they show via plots that the probability

left over, what they refer to as the “tail probability”, is a very small number).
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Hence, the stick breaking probabilities for k = 25 can be constructed by setting

Pk = 1 −
k−1∑
i=1

Pi, which simplifies to:

Pk = 1 − (P1 + P2 + · · · + Pk−1)

=⇒ Pk = 1 −
V1 + V2(1 − V1) + · · · + Vk−1

k−2∏
i=1

(1 − Vi)


=⇒ Pk = (1 − V1) −

V2(1 − V1) + · · · + V24

k−2∏
i=1

(1 − Vi)


=⇒ Pk = (1 − V1) − V2(1 − V1) −

V3(1 − V1)(1 − V2) · · · + Vk−1

k−2∏
i=1

(1 − Vi)


=⇒ Pk = (1 − V1)(1 − V2) −

V3(1 − V1)(1 − V2) · · · + Vk−1

k−2∏
i=1

(1 − Vi)


...

=⇒ Pk =

k−1∏
i=1

(1 − Vi) (2.15)

In addition to the advantage of making inferences on G, Ishwaran and James

[57] also argue that Gibbs sampling methods for stick breaking priors (a more

general class of priors of which the one just described is a member) are simpler

to understand and implement. Recently, in marketing literature, Li and Ansari

[69] use a stick breaking approach to sample from a centered dirichlet process

[118] in their application. In the rest of this thesis, Gibbs sampling algorithms

for stick breaking priors are used.

2.1 Synthetic Data Applications

This section shows how Bayesian nonparametric models can be applied to

model (1) mixture data and (2) heterogeneity in a mixed logit model, using syn-

20



thetic data. As we will see, the second example is an extension of the first.

2.1.1 Mixture Model

We first generate 1000 data points from a mixture of 3 gaussian distributions (of

varying means and variances), as shown in Equation 2.16 3:

x ∼ 0.1 ∗ N(−1, 0.22) + 0.5 ∗ N(0, 1) + 0.4 ∗ N(1, 0.42) (2.16)

We augment a Bayesian nonparametric mixture model to these data. A DAG

representing the model is shown in Figure 2.5.

xi

θi

G

H

α

N

Figure 2.5: Dirichlet Process Mixture Model Applied to Synthetic Data

The priors and hyperparameters assumed are shown below:

α = 1

H = N(µ0, σ
2/κ0) InvGamma(σ2|a/2, b/2)

3This is a slightly modified version of an exercise in chapter 23 of Gelman, Carlin, Stern,
Dunson, Vehtari and Rubin [42]
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Where µ0 = 0, κ0 = 0.01 and a = b = 1. Since H is a Normal-Gamma prior, the θ’s

drawn from it contain a mean and variance parameter, i.e. θ = (µ, σ2). For the

stick breaking construction of G, we choose k = 25 clusters, and construct the

stick breaking probabilities as described in 2.15. To signify that these probabili-

ties P = {P1, . . . , P25} are generated from a stick breaking process, the expression

P ∼ stick(α) is used henceforth. Define z = {1, 2, . . . , k}. These are the cluster

indicators. Note that by definition, Pr(z = i) = Pi, where Pi is the stick breaking

probability as defined in 2.15. For convenience, let zi denote the cluster a given

data point xi belongs to, and let ϕk be the unique cluster specific parameter for

cluster k, drawn directly from the base distribution H. Then the underlying

cluster specific parameter that generates xi is given by ϕzi . In Equation form:

ϕk|H ∼ H

P ∼ stick(α)

zi ∼ discrete(1, 2, · · · , 25) (2.17)

xi|{ϕk}25
k=1, zi ∼ N(ϕzi) ϕzi = (µzi , σ

2
zi
)

In Equation 2.17, zi equals one of {1, 2, . . . , k}with probabilities given by the vec-

tor P. xi is chosen to be distributed normally so to maintain the conjugacy of the

prior and posterior. Before taking the model to data, we randomly assign data

points to one of the 25 clusters. The Gibbs algorithm steps used for inference

are shown below:
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Algorithm 1 At each iteration m,

• For each data point xi, compute:

Pr(zi = k| . . . ) =
Pk p(xi|µ j, σ

2
j)

25∑
l=1

Pl p(xi|µl, σ
2
l )

for k = {1, 2, . . . , 25} , where p(·|µ, σ2) is the normal density with mean µ

and variance σ2

• Compute nk which is the number of data points xi assigned to each of the

clusters k = {1, 2, . . . , 25}. This is nk =
N∑

i=1
δzi(k), where δzi(k) = 1 if zi = k or

0 otherwise.

• Get cluster specific posterior parameters. For each k = {1, 2, . . . , 25}

ank = a + nk, κnk = κ0 + nk

µ̂nk =
κ0µ0 + nk x̄nk

κnk

, bnk = b +
κ0nk

κnk

(x̄nk − µ0)2 +
∑
zi=k

(xi − x̄nk)
2

where x̄nk =
1
nk

∑
zi=k

xi is the cluster specific mean.

• For each cluster k, draw the posterior means and variances:

σ2
nk
∼ InvGamma(ank/2, bnk/2), µnk ∼ N(µ̂nk , σ

2
nk
/κnk)

• Update the stick breaking weights (Vk), using the following result:

Vk ∼ Beta(1 + nk, α +

25∑
l=k+1

nl)

Generate the stick breaking probabilities

P1 = V1, P2 = V2(1 − V1), . . . , P25 =

24∏
l=1

(1 − Vl)
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The results of the estimation are shown in Table 2.1. The actual number of

clusters and the data points assigned in each are given in Table 2.2.

Table 2.1: Estimated Cluster Properties (SD = Standard Deviation)

Cluster N Probability Posterior Mean Posterior SD

1.00 489.00 0.51 0.27 0.92

2.00 349.00 0.31 0.93 0.39

3.00 143.00 0.16 -1.08 0.20

4.00 19.00 0.02 -1.79 0.62

Table 2.2: Actual Cluster Properties (SD = Standard Deviation)

Cluster N Probability Mean SD

1 110 0.10 -1.00 0.20

2 493 0.50 0.00 1.00

3 397 0.40 1.00 0.40

Though the labels of the clusters are switched (a common issue in mixture

modeling [42], and an extra cluster is created (cluster 4), it is evident that the

model does a good job of recovering the underlying clusters in the data. The

estimated cluster means, standard deviations and cluster probabilities are all

close to the actual values. A plot of the actual density of the data (red) and the

estimated density(dotted blue) is shown in Figure 2.6, which again suggests a

good fit.
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Figure 2.6: Plot of Actual vs. Estimated Density

To check for convergence, this model was estimated on the data from 20

different starting points (i.e. with different initial random cluster assignments

in the data). The log-likelihood plot from the exercise (in Figure 2.7) shows

that irrespective of the starting point, the Gibbs sampling algorithm converges

to the same solution (the plot is shown for only the first 50 iterations since the

model converges very quickly). The posterior parameters was also exhibit good

mixing properties. A few sample trace plots are shown in Figure 2.8.
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Figure 2.7: Plot of Log-Likelihood for Different Starting Points

2.1.2 Mixed Logit Model

In Marketing literature, the Dirichlet Process mixture model has been used to

model heterogeneity in models of discrete choice [63, 23, 69]. In this section,

we show how this is done in practice, using a very simple data generating pro-

cess in 1D space. An extension to multiple dimensions is straightforward. To

generate the choice data, 1500 individual level coefficients were generated as a

mixture of 3 Gaussians as shown below:

β ∼ 0.3 ∗ N(1, 0.22) + 0.2 ∗ N(2, 1) + 0.5 ∗ N(3, 0.42) (2.18)

Next, covariates were generated for 4 alternatives and for 100 choice situations

per individual, from a uniform distribution on the range [1, 3]. Next, for all these

choice situations, the utilties were computed (after generating an appropriate
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Figure 2.8: Sample Trace Plots

number of extreme value error terms and then adding them to the deterministic

part of the utility) and the choices were determined (this becomes the dependent

variable in the estimation exercise). Figure 2.9 shows the DAG representing the

model for data augmentation (where T = 100 and N = 1500). Each βi, or indi-

vidual level coefficient, is an outcome of a Dirichlet Process mixture model, but

unlike in the previous data example, we don’t observe them. We only observe

the outcomes yit. An advantage of using a Hierarchical Bayesian framework to

estimate a mixed logit model lies in the fact that the MCMC algorithm picks out

the individual level parameters during estimation [110].

27



yit

βi

θi

G

H

α

T

N

Figure 2.9: A Mixed Logit Model with a Dirichlet Process Mixture Prior on
the Coefficients

In this exercise, we assume βi ∼ F(θzi), where F(·) is the normal distribution,

as before. Since this is not conjugate with the form of the likelihood (the logistic

function), we use a Random Walk Metropolis Hastings step to get a new draw

of βi [91]. Once we get draws of the βi, these become the “data” for the mixture

model, and all the steps in Algorithm 1 apply. The algorithm used for this case

is Algorithm 2.
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Algorithm 2 At each iteration m,

• For each individual i, compute the likelihood: Li(y|βm−1
i ) =

T∏
t=1

Lit

• Get a new draw of βi:

βm
i = β

m−1
i + ρσziη

where η ∼ N(0, 1), ρ = 2.93, from [91] and βi ∼ N(µzi , σ
2
zi
)

• Compute the ratio:

MHR =
Li(y|βm

i )p(βm
i |µzi , σ

2
zi
)

Li(y|βm−1
i )p(βm−1

i |µzi , σ
2
zi
)

where p(·|θzi) is the normal density evaluated at θzi

• Get u ∼ U[0, 1]. Accept βm
i as a new draw only if u < MHR, otherwise set

βm
i = β

m−1
i

• Once {βm
i }1500

i=1 are obtained, these are modeled using a Dirichlet Process mix-

ture, so follow all the steps in Algorithm 1 once (replace βi instead of xi in

Algorithm 1).

Repeat the above process till convergence.

The results of the estimation are shown in Table 2.3. Comparing the results in

this with the actual values in Table 2.4, we find that though the model recovers

the correct number of underlying clusters, the posterior mean for cluster 3 is

way off (1.13) from the actual value (2). This could be attributed to the fact that

the data generated from this cluster was incorrectly assigned to the other two

clusters (since for this cluster, the variance is high compared to the other two).

Kim et al. [63] face similar problems in their application, and suggest some post
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processing to fix this cluster membership problem. However, a density plot of

the estimated and actual data (Figure 2.10) shows that the estimated density

approximates the actual density quite well. In addition, the trace plots of the

individual level coefficients show good mixing (Figure 2.11), and the average

acceptance ratio is 0.2639, which is also good [91].

Table 2.3: Estimated Cluster Properties (SD = Standard Deviation)

Cluster N Probability Posterior Mean Posterior SD

1.00 531.00 0.60 2.97 0.47

2.00 903.00 0.36 1.02 0.29

3.00 66.00 0.04 1.13 1.38

Table 2.4: Actual Cluster Properties (SD = Standard Deviation)

Cluster N Probability Mean SD

1 458 0.30 1.00 0.20

2 291 0.20 2.00 1.00

3 751 0.50 3.00 0.40

To conclude, the Dirichlet Process mixture model is a very flexible technique

which can be used to model heterogeneity and can be easily “embedded” into

commonly used marketing models [36]. However, as seen in the examples

above, there are are some issues with the posterior estimates recovered from

the data [63, 84]. To alleviate some of these issues and broaden the applicabil-

ities of this framework, the Hierarchical Dirichlet Process [105] is introduced

in the next chapter, and it is applied in the context of modeling Heterogeneity

across multiple markets.
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Figure 2.10: Actual vs Estimated Density for Individual Level Coefficients
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Figure 2.11: Trace Plots for Select Coefficients
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CHAPTER 3

MODELING HETEROGENEITY ACROSS MULTIPLE MARKETS

3.1 Introduction and Literature Review

A central idea in the formulation of marketing strategy for brands is segmen-

tation. Market or consumer segmentation involves grouping consumers such

that consumers within a group are relatively homogeneous with respect to their

brand preferences and their responsiveness to the marketing efforts of the firm.

The segmentation exercise is usually followed by targeting and positioning ac-

tivities, wherein the firm chooses one or more target segments to serve, and

formulates marketing plans to address those segments. Most of the concep-

tual or theoretical literature in marketing implicitly assumes that the geographic

segmentation, targeting and positioning exercise is being conducted for a single

market. In practice, however, many brands are marketed in multiple regional or

national markets and there may be substantive differences in the segmentation

structure across these markets. Then a key question facing marketing managers

is that of standardization versus adaptation of the positioning strategies across

these markets.

In the context of international marketing, Szymanski et al. [103] note that

the marketing strategy formulation process comprises a series of decisions per-

taining to the business’s (1) strategic orientation (standardization versus adap-

tation), (2) desired degree of standardization of the strategic resource mix (i.e.

pattern of resource allocation among advertising, promotions, personal selling,

etc.), and (3) the desired degree of standardization of the strategy content (i.e.

decisions on product positioning, brand name, content of advertisements, etc.).
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These same decisions also arise in the management of a national brand with

regard to differences between regional markets.

In this chapter we propose a Hierarchical Bayesian model that can help the

brand manager in developing segmentation, targeting, and positioning strate-

gies for multiple markets. The model presents itself as a natural extension of

extant work in modeling heterogeneity as an outcome of a finite mixture model.

At one end of the spectrum, we impose homogeneity in consumer responses

across markets. Such models are consistent with an approach of complete stan-

dardization of both the strategy content and the resource allocation across mar-

kets. At the other end of the spectrum are models that assume that the segmen-

tation structure is idiosyncratic to each market. Intermediate options impose

homogeneity in segment characteristics (such as brand preferences and market-

ing mix responsiveness), but allow for heterogeneity in the segment sizes across

markets. These models are consistent with an approach of standardizing the

strategic content across markets, but adapting the resource mix to the relative

segment sizes in each market (or groups of markets).

Many different bases of segmentation have been proposed in the marketing

literature [116]. In this chapter we focus on preference and response based seg-

mentation [114], an approach that is especially relevant in frequently purchased

packaged goods categories where market-place purchasing data can be used to

infer differences in brand preferences and marketing-mix responsiveness of con-

sumers. The data are collected via optical scanning of purchases of households

that participate in large-scale longitudinal panels. In addition to purchases,

the market research data providers also collect data on the prices and promo-

tional conditions in the stores in which the panelist households made their pur-
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chases. Consequently, the impact of marketing efforts of firms on households’

purchases can be modeled and estimated. In the past, latent class models were

used to implement preference and response based segmentation.

Latent class models [60, 26, 61] assume that differences between consumers

in a market with respect to preferences for brands and their responsiveness to

marketing activities can be adequately described by a small number of discrete

groups or segments of consumers. Each consumer is assumed to be a mem-

ber of one of these segments. The objective of the estimation methodology is

to uncover the preferences and responsiveness of each of these groups, and the

relative sizes of the groups. The latent class multinomial logit model and its

extensions have been widely applied to the segmentation problem in the mar-

keting literature. We discuss here a few of these studies to serve as a backdrop

for the contribution made by our paper to the literature.

Kamakura and Russell [60] developed preference and response segments

using brand choices of a panel of households. Chintagunta [25] extended the

model to obtain brand positions on a product-market map in addition to the

distribution of preferences across households, while accounting for the effects

of marketing variables on choice behavior. Using a nested logit formulation,

Bucklin and Gupta [21] identified preference and response segments on the ba-

sis of consumers brand choice and category purchase incidence behavior. Ka-

makura, Kim and Lee [59] used a finite mixture of nested logit models to identify

segments that differ not only in their brand preferences and marketing mix re-

sponsiveness, but also in terms of their choice process. Gupta and Chintagunta

[51] and Kamakura et al.[62] incorporated observable descriptors of consumers

into the model, to simultaneously profile the preference and response segments.
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All these applications have focussed on segmentation of consumers within

a single market. In a survey paper, Steenkamp and Ter Hofstede, [100] exam-

ine the different methods used by researchers in the past to tackle the issue of

segmentation across multiple markets. They acknowledge that finite mixture

models present a powerful approach to model different segments, specifically

mentioning the desirable properties of Bayesian sampling-based approaches.

The key advantage of using a Bayesian approach is the capability to model

within segment heterogeneity, something that is lacking in latent class mod-

els. In addition, Allenby and Rossi, [5], claim that a continuous representation

of heterogeneity would be more useful, and Andrews, Ainslie, and Currim [7]

find that a logit model with a continuous representation of heterogeneity tends

to fit the data better. A drawback of a continuous representation of heterogene-

ity is the modeler’s reliance on correctly specifying the underlying probability

distribution [100]. However, that concern has been alleviated with the advent

of Bayesian Nonparametric methods [35, 36, 104], and recent work in marketing

has made use of these techniques [63, 69]. However, to the best of our knowl-

edge, these concepts have not been used to model heterogeneity across multiple

markets.

A key advantage of Nonparametric Bayesian methods is the fact that the

researcher can leave the number of latent clusters unspecified and the model

will decide the number of clusters based on the data. It is worth noting that this

feature of Nonparametric Bayesian models is not a panacea, since researchers

in machine learning have noted that these models tend to be misspecified [84] if

there is reason to believe that the number of underlying clusters in the data are

finite. A common issue is the creation of “extra” clusters by the model which

might not exist in the data. Kim, Menzefricke and Feinberg [63] study this issue
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using a Dirichlet Process prior to model heterogeneity in their data, and they

find that some post processing of clusters after estimation is needed. To handle

this issue while also accounting for the fact that there are multiple markets in

our data, we use the Hierarchical Dirichlet Process [105] (HDP henceforth) as a

prior on the coefficients in our model.

The HDP was developed in the machine learning literature to model topics

in different document types (blogs, news, etc.), while allowing the documents to

share common topics (a news article about college sports and college education

might differ theme-wise, but might contain common topics, such as education,

for example) but also differ in the content. This is what Teh et al. [105] call

allowing the different groups (document types) to “share statistical strength”.

In the context of our application, the different markets play the role of the dif-

ferent document types, where customer types (topics) could be shared between

markets. This feature of the HDP helps researchers find a suitable “middle-

ground” between having to ignore heterogeneity across markets and modeling

each market separately.

In section 3.2 we describe the HDP, which will be used to estimate the coef-

ficients in the proposed model and the estimation algorithm. In section 3.3 we

describe an application of the proposed model to household scanner panel data

from 73 regional markets in the US. In section 3.4 we discuss estimation results

and managerial implications of the empirical application. We summarize and

conclude in section 3.5.
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3.2 Model Details

3.2.1 The Hierarchical Dirichlet Process

The HDP was first discussed by Teh et al. [105], as a method to model multiple

groups of documents, allowing the topics within them to be modeled separately

while allowing these groups to “share statistical strength”. This is accomplished

by letting these groups share the “atoms” drawn from the base distribution. A

DAG of the proposed HDP model is shown in Figure 3.1. The HDP simply

x ji

θji

Gj

G

α

H

γ

N j

J

Figure 3.1: A Hierarchical Dirichlet Process Model

extends the Dirichlet Process discussed in the previous chapter by placing a

Dirichlet Process Prior on the base distribution (G) that generates the unknown

prior distribution (G j), which is placed on the underlying parameters (θ ji) that

generates the observed data (x ji). Similar to the stick breaking construction [93]
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for the Dirichlet Process mentioned in chapter 2, Teh et al. [105] discuss a stick

breaking construction of the HDP, which is explained here. We start with the

random probability measure G ∼ DP(γ,H). A stick breaking construction of G

would entail the following steps:

P ∼ stick(γ) (3.1)

ϕk|H ∼ H

G =
∞∑

k=1

Pkδϕk

Where the notation in Equation 3.1 indicates that P is generated by using a stick

breaking construction, as described in chapter 2. The ϕk’s are drawn directly

from H, and these become the “atoms” of G [105]. Moving below G in the DAG

in Figure 3.1, we now look at each of the G j’s ( j = 1 to J). For each j, G j ∼

DP(α,G). Note that the concentration parameter α for each j is the same, and

while this can be varied by j, we keep it fixed here (changing α by j changes the

way G j varies around G, as discussed in Teh et al. [105]). By construction, G j

and G share the atoms ϕk generated from H [105]. Let π j = (π jk)∞k=1 be the stick

breaking weights of G j, then by the stick breaking construction [93], we have:

G j =

∞∑
k=1

π jkδϕk (3.2)

We set about finding the distribution of the weights π jk in Equation 3.2. Fol-

lowing the strategy in Teh et al. [105], we take a partition of the probability

space on which G, and by construction G j, are defined. Denote this partition as

B = {B1, . . . , Br}. From the Equation 2.1 defined in chapter 2, we have:

(G j(B1),G j(B2), . . . ,G j(Br)) ∼ Dir(αG(B1), αG(B2), . . . , αG(BK)) (3.3)

Note that G j(Bl) adds the probabilities (π jk) of its atoms (ϕk) lying in the partition

Bl (the same concept applies to G, just that the probabilities in this case are given
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by Pk). Let Kl = {k : ϕk ∈ Bl} for l = 1, . . . , r. Then, G j(Bl) =
∑

k∈Kl

π jk and G(Bl) =∑
k∈Kl

Pk. Putting these results in 3.3 gives us:

(
∑
k∈K1

π jk, . . . ,
∑
k∈Kr

π jk) ∼ Dir(α
∑
k∈K1

Pk, . . . , α
∑
k∈Kr

Pk) (3.4)

Extending the result in Equation 3.4 further, we get π j ∼ DP(α, P). Now that

the distribution of the π ji’s is obtained, we comment on the nature of the draws

θ ji (moving further down the DAG in Figure 3.1), from G j. As θ ji’s are draws

from a random probability measure with a Dirichlet Process prior, they exhibit

a clustering property, as discussed in chapter 2, and are sampled from the set of

unique atoms (ϕk)∞k=1 with probabilty π j = (π jk)∞k=1. Each θ ji is now the underlying

parameter for the observed data x ji. Denote z ji as an indicator for the cluster to

which x ji belongs. By definition, if z ji = 3, then θ ji = ϕz ji = ϕ3 and x ji|z ji, (ϕk)∞k=1 ∼

F(ϕz ji) = F(z3). Now we put all these results together to get:

P|γ ∼ stick(γ) ϕk|H ∼ H

π j|α, P ∼ DP(α, P) z ji|π j ∼ π j

x ji|z ji, (ϕk)∞k=1 ∼ F(ϕz ji)

(3.5)

To get a stick breaking construction formulation for the π ji’s from equation 3.4,

we use standard properties of the Dirichlet Distribution, derived in the ap-

pendix. Consider a partition {B1, B2, B3}, such that (1, . . . , k − 1) ∈ B1, k ∈ B2

and (k + 1, k + 2, . . . ) ∈ B3 [105]. The distribution of these partitions is derived

(by using the same idea as in equation 3.4) below:

(
k−1∑
l=1

π jl, π jk,

∞∑
l=k+1

π jl) ∼ Dir(α
k−1∑
l=1

Pl, αPk, α

∞∑
l=k+1

Pl) (3.6)

Removing the first element, and by using Theorem 4 in the appendix, we get:

1

1 −
k−1∑
l=1
π jl

(π jk,

∞∑
l=k+1

π jl) ∼ Dir(αPk, α

∞∑
l=k+1

Pl) (3.7)
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Defining π′jk =
π jk

1−
k−1∑
l=1

, we have:

(π′jk,
∞∑

l=k+1

π′jl) ∼ Dir(αPk, α

∞∑
l=k+1

Pl)

=⇒ (π′jk, 1 − π′jk) ∼ Dir(αPk, α

∞∑
l=k+1

Pl) (3.8)

=⇒ (π′jk, 1 − π′jk) ∼ Dir

αPk, α

1 − k−1∑
l=1

Pl


=⇒ π′jk ∼ Beta

αPk, α

1 − k−1∑
l=1

Pl

 (3.9)

Where in Equation 3.8, we use the fact that
∞∑

l=k+1
π′jl = 1 − π′jk and in equation 3.9,

that 1 −
k−1∑
l=1

Pl =
∞∑

l=k+1
Pl. To get π jk, we generate π′jk using Equation 3.9 and then

set π jk = π
′
jk

k−1∏
l=1

(1 − π′jl) [105].

3.2.2 Estimation Algorithm

We place a HDP mixture prior on the coefficients of a standard logit model. This

is done to capture the across-market variation in heterogeneity. This is an exten-

sion of the mixed logit model example studied in Chapter 2. As mentioned in

the previous chapter, directly applying a Dirichlet Process mixture prior on the

coefficients might not be appropriate in this situation. Orbanz [84] discusses

how a Dirichlet Process mixture model could be misspecified when the number

of underlying clusters is finite and unknown since more clusters are created as

we keep collecting data. By placing a HDP mixture prior on the coefficients,

we methodologically restrict the number of clusters created [105], while also

acknowledging across-market (or group) variation. The HDP creates “market

types” (indexed by j) based on the household level preference and response
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coefficients β ji that generate the observed choices in the data y jit. A directed

acyclic graph representing the model is shown in Figure 3.2. Moving from top

to bottom, we have G, which is a random probability measure generated from

a Dirichlet Process with base distribution H and concentration parameter γ. For

each “market type” j, G j ∼ DP(α,G) is generated, and this becomes the base

distribution from which θ ji is generated. β ji is modeled as distributed normally

with parameters θ ji. These β ji are then used in the logit model to compute the

choice probability. The algorithm used to estimate the posterior cluster and

market-type specific parameters is a slight modification of algorithm 2 in Chap-

ter 2. We have an extra step here, where we generate the G j’s for each market

type j. The estimation algorithm is described below. As discussed in Train [110],

household level parameters are modeled, since Hierarchical Bayesian methods

are easier to augment with data in that setup.
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Algorithm 3 At each iteration m,

• For each individual i, compute the likelihood: L ji(y|βm−1
ji ) =

T∏
t=1

L jit

• Get a new draw of β ji:

βm
ji = β

m−1
ji + ρσz jiη

where η ∼ N(0, Is), ρ = 2.93/
√

s, where s = dim(β ji) from [91] and β ji ∼

N(µz ji , σ
2
z ji

)

• Compute the ratio:

MHR =
L ji(y|βm

i )p(βm
i |µz ji , σ

2
z ji

)

L ji(y|βm−1
ji )p(βm−1

ji |µz ji , σ
2
z ji

)

where p(·|θ ji) is the normal density evaluated at θ ji

• Get u ∼ U[0, 1]. Accept βm
ji as a new draw only if u < MHR, otherwise set

βm
ji = β

m−1
ji

• Once {βm
ji}10462

i=1 are obtained, these are modeled using a HDP mixture, so

follow all the steps in Algorithm 1 once. When using the stick breaking

construction for π j, use the beta distribution derived in Equation 3.9

• In addition, update P ∼ stick(γ) using the procedure outlined in Teh et al.

[105]

Repeat the above process till convergence.
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Figure 3.2: A Mixed Logit Model with a Hierarchical Dirichlet Process
Mixture Prior on the Coefficients

3.3 Empirical Application

The proposed model was applied to the ACNielsen Company’s national scanner

panel data on purchases of wrapped cheese slices (known as“singles” in indus-

try parlance). The national scanner panel is located in 73 regional markets in

the US . We include for analysis purchases of a 10,462 households over a period

of twelve quarters. The households in the data made 136,772 purchases in the

category over this period. We restricted our analysis to the eight largest brand-

sizes in the category; these items account for over 80% of category sales volume.

Products are in two sizes - 12 ounces and 16 ounces. The eight items include six
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national brand items and two private label items. The national brand items also

differ on the fat-content attribute. The six items include three fat-free and light

items (known in the industry as better for you (BFY) products), and four regular

items. Detailed information on five marketing mix variables is available in the

data to explain brand choices of consumers. These variables are:

1. Regular price (equalized to 12 oz. pack size)

2. Price cut (equalized to 12 oz. pack size). This variable is defined as (Regu-

lar price - Shelf price).

3. In-store Display only (indicator variable).

4. Feature ad only (indicator variable).

5. Feature ad with in-store display (indicator variable).

Descriptive statistics of the data are in Table 3.11 The four items of National

Brand 1 jointly hold 52.17% market share, the private label items account for

32.05%, and the balance is accounted for by National Brand 2. We are unable

to disclose brand names because of confidentiality requirements of the data

provider. The three BFY items hold 20.15% market share. The national brands

are generally priced higher than the private label brands. Also, the BFY items

have a higher regular price on average. We find that price and non-price pro-

motion activity occurs on both the national brands and the private labels.

1Share was computed based on 136,772 purchases in the data made by 10,462 households
in 73 markets. Regular Price and Price Cut entries are normalized per 12 oz. pack. Average
Price cut is based only on occasions when there was a price cut. Display Only, Feature Only and
Display + Feature: percentage of category purchase occasions.
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Table 3.1: Descriptive Statistics of Cheese Slices Data

Brand Type Share

(%)

Avg.

Reg.

Price

(per 12

oz.) ($)

Avg.

Price

Cut

(per 12

oz.) ($)

Dis

Only

(%)

Ftr

Only

(%)

Dis

/Ftr

(%)

Natl.Br.1 Reg.

12 oz.

28.09 2.13 0.114 1.377 3.351 1.489

Natl.Br.1 Reg.

16 oz.

9.44 2.37 0.098 0.209 0.707 0.151

Natl.Br.1 Fat

Free 12 oz.

11.52 2.77 0.067 0.029 0.537 0.036

Natl.Br.1 Light

12 oz.

3.11 2.68 0.069 0.011 0.167 0.004

Natl.Br.2 Fat

Free 12 oz.

5.52 2.72 0.040 0.004 0.243 0.003

Natl.Br.2 Reg.

12 oz.

10.26 2.17 0.134 0.763 0.931 0.121

Pvt. Lbl Reg. 12

oz.

21.84 1.74 0.095 0.780 1.527 0.429

Pvt. Lbl Reg. 16

oz.

10.21 1.82 0.064 0.075 0.650 0.088

N = 136,772 purchase occasions
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3.4 Results

The model was estimated using Algorithm 3. For each household i, we estimate

the posterior distribution of the brand preference and marketing variables re-

sponse coefficients. Results are shown in Tables 3.2 and 3.3 . As can be seen,

the model “chooses” J = 3 market types, with varying segment specific means

and segment probabilities (π j). For each segment, the segment specific posterior

means are provided with the 95% credible interval. There are no segment spe-

cific posterior estimates for the Private Label Reg. 16 oz. pack since that is taken

as a base item.

Table 3.2: Segment Probabilities for Different Market Types

Market Type

(Type Size)

Segment I Segment II Segment

III

Segment

IV

Market Type I

(0.604)

0.19 0.42 0.28 0.11

Market Type II

(0.161)

0.33 0.51 0.16 -

Market Type III

(0.235)

0.31 0.28 0.22 0.19

The model recovers “shared segments” from all market types and the seg-

ment probability placed on each of these segments. For ease of exposition, each

segment is assigned a label, based on the characterisitics of the segment specific

means recovered by the model. Segments I and IV prefer the National Brand

Regular items (Segment I has stronger preferences than Segment IV) and so are

called NBR1 and NBR2. Segment II prefers the private label items (since the
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Table 3.3: Posterior Segment Means for Different Market Types

Covariates Segment I Segment II Segment III Segment IV

Natl.Br.1

Reg. 12

3.77

[3.46, 4.08]

-0.94

[-1.20, -0.68]

1.55

[1.31, 1.79]

2.09

[2.03, 2.17]
Natl.Br.1

Reg. 16

3.45

[3.18, 3.72]

-2.32

[-2.66, -1.98]

0.35

[0.22, 0.48]

1.11

[0.93, 1.29]
Natl.Br.1 F.F.

12

0.57

[0.29, 0.85]

-2.29

[-2.42, -2.18]

4.65

[4.51, 4.79]

0.18

[-0.11, 0.47]
Natl.Br.1

Light 12

-0.82

[-0.96, -0.68]

-3.53

[-3.76, -3.29]

2.97

[2.79, 3.15]

-0.31

[-0.55, -0.07]
Natl.Br.2 F.F.

12

-0.74

[-0.95, -0.53]

-3.33

[-3.64, -3.02]

3.39

[3.34, 3.46]

-0.36

[-0.50, -0.22]
Natl.Br.2

Reg. 12

2.71

[2.49, 2.93]

-1.45

[-1.63, -1.27]

0.61

[0.27, 0.95]

0.90

[0.81, 0.99]
Pvt. Lbl Reg.

12

0.92

[0.57, 1.27]

0.89

[0.77, 1.03]

1.02

[0.87, 1.17]

0.48

[0.25, 0.71]
Pvt. Lbl Reg.

16

- - - -

Regular Price -0.35

[-0.57, -0.13]

-0.98

[-1.27, -0.69]

-0.03

[-0.041,

-0.019]

-0.61

[-0.72, -0.50]

Price Cut 1.21

[0.94, 1.48]

1.79

[1.44, 2.14]

0.68

[0.49, 0.87]

1.51

[1.38, 1.64]
Display Only 1.14

[1.01, 1.27]

1.03

[0.83, 1.23]

0.79

[0.71, 0.87]

0.56

[0.31, 0.81]
Feature Only 1.36

[1.22, 1.50]

1.04

[0.93, 1.15]

0.79

[0.68, 0.90]

0.69

[0.59, 0.80]
Display +

Feature

2.08

[2.00, 2.16]

2.52

[2.23, 2.81]

2.01

[1.81, 2.23]

1.12

[0.81, 1.43]
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fixed effect coefficient posterior means are all negative) and is called PL. Seg-

ment III shows the highest preference for the “Better For You” items, and is

called BFY.

Comparing the posterior means of the segment specific coefficients, we find

substantial differences in consumer preferences. As discussed above, each of

the segments (with the exception of NBR1 and NBR2) prefers a different type of

product. In addition, we also find that the PL segment is most price sensitive

among all segments, which is understandable since this segment of consumers

prefers the cheaper PL product (similarly, this segment is also sensitive to price

cuts). The PL segment is followed by the NBR2 and NBR1 segments in terms of

price sensitivity, and the BFY segment is least price sensitive.

The NBR1 and NBR2 segments represent consumers with varying prefer-

ences over the choice of NBR products. The HDP model “picked out” enough

variation in the coefficients of the mixed logit model to create two segments that

preferred NBR products, but to a varying extent. This can also be attributed to

the fact that the National Brands account for 67.94% of all sales in the product

category, allowing the co-existence of segments NBR1 and NBR2, which pre-

fer the same product type, one more (NBR1) than the other (NBR2). Note that

NBR2 does not prefer National Brand Regular products as strongly as NBR1,

and are more sensitive to price and price cuts (when compared to NBR1). By

comparing the coefficient of “Display + Feature” with the separate coefficients

of “Display only” and “Feature only” we note that there is a positive interac-

tion effect in segments PL and BFY, but a negative interaction effect in segments

NBR1 and NBR2. The results indicate that within each market-type the nature

of the interaction effect may vary by segment.
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When examining the different market types suggested by the model, we in-

terpret the probabilities placed by the model on the different segments (π j) to

be segment sizes, and we find substantial heterogeneity in these sizes between

market types. In fact, we find that in market type II, the NBR2 segment does not

exist (is of size 0). While the size of the PL segment is almost the same in market

types I and II, it is nearly halved in market type III. Moreover, in market type III,

there are more households that prefer the national brand regular type products,

when compared to the Private Label or Better For You category. Market type

II clearly has a bigger chunk of consumers who prefer the Private Label prod-

uct, and can be labeled the price sensitive market (owing to the price sensitive

characteristic of the PL segment). Market Type I is more of a mixed bag: though

the PL segment is the largest, this market type has the largest BFY segment of

all market types. We also estimate the “size” of the market types, as shown in

Table 3.2. Market type I is the largest of all occuring market types, followed by

market type III and market type II.

Since our model allows segment sizes to vary by market type, we’re able to

identify different market types, and also the variation in preferences within each

of these market types. From a managerial perspective, this is important, since it

gives the manager the flexibility to change the marketing mix based on market

type and segment specific characteristics. Based on the the market type and

segment properties, it is quite possible that the optimal marketing plan could

lead to very different decisions for different segments. The results of the model

help the manager compare segments by market type, and customize targeting

activities accordingly.
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3.5 Conclusion

In this chapter we propose a method to model heterogeneity to assist brand

managers who need to adapt or standardize marketing strategy to multiple

markets. The proposed models are generalizations of the latent class discrete

choice model that is used commonly in the marketing econometrics literature.

We place a HDP mixture prior on the coefficients of the logit model. This model

presents a compromise between fitting a model where we ignore heterogeneity

across markets and fitting a separate model by market while placing a Dirichlet

Process prior on the model coefficients for heterogeneity. The proposed model

places a restriction on the extent of heterogeneity between markets permitted

in the segment characteristics and the segment probabilities. The restrictions

enhance comparability of the segmentation structure between markets. The

models are applied to brand choices of cheese slices made by households in 73

regional markets in the U.S. The results support the proposed model in terms

of fit to the data, and help demonstrate the managerial value of the model in

understanding similarities and differences across markets in the segmentation

structure. There are plenty of ways in which the work presented here can be

extended. While we model heterogeneity at the household level, we do not cap-

ture the time changing preferences of these households (β ji is assumed to be

constant with time). In addition, we also enforce the concentration parameter

(α) for all market types j to be the same. Further extensions of this model could

model the time variation of household level parameters, while also allowing for

data driven α, by placing a diffuse Gamma prior on it and updating it as an

extra step in the algorithm presented here [105].
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CHAPTER 4

FROM SALES LEADS TO CUSTOMERS: TRACKING CONVERSION

USING ONLINE AND OFFLINE ACTIVITY DATA IN A B2B SETTING

4.1 Introduction

A crucial aspect of a firms customer acquisition is to select the “right” customer

to acquire. While the RFM criterion is frequently used for deciding whether or

not a prospective customer is worth pursuing [67], it assumes the availability of

prospective customer transaction data; this is usually not the case. With the pro-

liferation of the Internet and the surge of Internet-based businesses in the last

20 years or so, empirical research has been growing on analyzing web browsing

behavior to predict which customer is more likely to buy a product. Bucklin and

Sismeiro [22] survey several papers that study clickstream data to predict cus-

tomer conversion. Whereas these papers have contributed immensely to under-

standing consumer web browsing behavior, the extant literature has two gaps1

: (1) The combination of offline and online activities is unavailable ; and (2) No

focus on a B2B context [70]. This current research intends to bridge that gap, by

using clickstream data on leads, in addition to their offline activities, to predict

the probability of their conversion into a prospective customer, in a B2B con-

text. Srinivasan [98] identifies several aspects in which B2B marketing differs

from B2C marketing, and the lack of well-defined marketing metrics to mea-

sure the effectiveness of such marketing activities. In this paper, we account

for these differences and study the effectiveness of several online and offline

1The sole exception to this claim is the paper by (Wiesel, Pauwels, and Arts [115]), who have
both online and offline lead request and purchase data in a B2B context and study the effect of
these marketing activities on profit
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marketing activities in converting the sales leads into prospective customers for

a mid-sized B2B software company. Based on lead response behavior to mar-

keting activity, we predict the probability that a lead will convert (or become a

customer of the firm), and also identify the marketing activities that increase the

aforementioned probability.

This work helps B2B marketing managers in the two major ways:

1. Shift focus on the marketing activities that increase the chances of a lead

becoming a customer.

2. Reduce the uncertainty in attributing a specific marketing action to a

change in lead behavior, facilitating easier ROI calculation (in the case

where a lead eventually becomes a customer).

Even though this study uses data from a mid-size B2B software firm, the issues

faced by the firm in determining which marketing activities are effective in lead

conversion are shared amongst other B2B firms in various industries [98]. The

framework employed in this research project is not limited to the context of

the firm being studied, and can be applied to any other B2B firm that keeps a

database of online and offline activities of their leads.

4.2 Theoretical Background and Literature Review

As mentioned earlier, previous research that has studied customer acquisition

using clickstream data has been focused primarily in a B2C setting [22]. Since

the process of customer acquisition (via marketing communication) in a B2C
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context varies markedly from that in a B2B context [98], the modeling ap-

proaches used in the B2C context must be modified appropriately. Table 4.1

(adapted from Anderson and Narus [6]) presents a generic example of the type

of marketing communications that are used to acquire customers in a B2B con-

text, which is similar to the strategy followed by the firm being studied in this

project. In the B2C context, a lot of the work studied the antecedents of pur-

Table 4.1: Marketing Communications Mix of B2B firms

Communication

Objectives

Potential

Customers

Communication Tools

Awareness Leads Advertising, direct mail, publicity, in-

dustry conferences

Interest Inquiries Brochures, videos, recorded demon-

strations, websites, trade shows

Evaluation Prospects Telemarketing, Field Sales Visits

Trial New

Customers

Field Sales Visits, inside sales calls

Purchase Established

Customers

Transactional and relationship teams,

key account management, thought

leadership

chase behavior on ecommerce websites. To ascertain the contribution of dif-

ferent types of predictors to the purchasing behavior at an online store, Van

Den Poel and Buckinx, [112] include variables from four different categories in

predicting online-purchasing behavior (general clickstream behavior, more de-

tailed clickstream information, customer demographics and historical purchase

behavior). They use backward and forward variable selection techniques as

described in Furnival and Wilson [41] and they find predictors from all four cat-
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egories prominently featured in the best subset of predictor variables (hence in-

dicating the importance of clickstream data). Sismeiro and Bucklin [94] model

online buying with clickstream data by framing the buying process as a com-

pletion of a sequence of tasks, instead of a single stage decision process, to find

that visitor browsing experiences and navigational behavior predict “task com-

pletion” well. However, past research found that repeat visits to a website was

not diagnostic of buying propensity (as found in Moe and Fader [75]s setting)

and offering sophisticated decision aids did not guarantee increased conver-

sion rates. Moe [74] modeled observed choices in two choice stages, products

viewed and products purchased in clickstream data. She found that product

attributes considered in stage 1 were different from that in stage 2, and that

consumers tend to use simpler decision rules based on a subset of attributes in

earlier stages. These “criterion” attributes along with the preference parameters

estimated from her model, would prove important in designing targeting strate-

gies. Moe and Fader [76] find that modeling customer conversion behavior as a

combination of visit effects and purchasing threshold has better statistical prop-

erties when compared to logistic regression models used in past research2 . Park

and Fader [87] model browsing behavior at multiple websites to test whether

using clickstream data from only one website could lead to biased results. They

find that analysis of clickstream data collected from a single website lead to bi-

ased estimates, as they are inherently incomplete and do not capture shopping

behavior across multiple websites. Montgomery, Li, Srinivasan, and Liechty

[78] study detailed webpage transition choices (path data) and found that nav-

igational behavior of customers was best explained by two modes of behavior

(deliberation and browsing). Allowing for customers to switch between these

2Visit effects = store visits (that play different roles in the purchasing process). Purchasing
threshold = psychological resistance to online purchasing, which depends on customer experi-
ence with the purchase process.
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two modes in a single browsing session was found to be a better representation

of customer browsing behavior.

Another gap in this literature is the absence of offline data. In the context

of this research, offline data on a lead refers to any activities of the lead that

did not involve the internet. Wiesel, Pauwels, and Arts [115], do have online

and offline information during different stages of the purchase funnel, but the

objectives of their research are different from ours, in that they study the impact

of marketing communications on pre-defined purchase funnel metrics and firm

profit. In our work, we have access to the offline activities of leads, and we

incorporate that information into our modeling framework, with the goal of

predicting the probability of conversion of a lead as a customer of the company.

As Srinivasan [98] points out, the “substantial differences” between the B2B

and B2C marketplaces merits a sophisticated examination of the B2B market-

place, so that marketers are more careful when measuring the “performance of

their marketing actions”. Srinivasan [98] identifies key differences between the

B2B and B2C marketplaces, of which the most relevant ones to this project are

the following:

1. There are many stages in the buying process;

2. There are many participants in the buying process;

3. Usually, there are complex integrated marketing communications in-

volved; and

4. Buying situations vary considerably.

Extending the research work done in customer acquisition from a B2C to a
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B2B context will involve incorporating these key differences into our modeling

framework. Specifically, we address the following:

1. Which marketing activities (online or offline) increase the chances of a lead

to transition between the many Stages of a buying process? ;

2. Which marketing activities increase the speed of transition in different

Stages of the buying process? ;

3. Given the outcome of a lead conversion, what is the ROI on various online

and offline marketing activities pursued by the firm? ; and

4. Given multiple leads belonging to the same company, how does the firm

prioritize which leads to pursue?

4.3 Data

We use data from a collaborating firm which is a mid-sized B2B firm, that of-

fers a unique software to implement the PAXOS algorithm [65, 66]. A practical

implementation of this algorithm is considered impossible by computer science

academics even today. Their software is used mainly for Application Lifecycle

Management (ALM), though in the recent past, the firm has also offered reliable

solutions for replication and backup of big data. The ALM software industry

currently represents a $ 5.45 billion dollar market 3, with a Compound Annual

Growth Rate (CAGR) of 4.51% 4. Big Data, on the other hand, is a $ 125 billion

dollar market, steadily growing in size each year (Press 2014). The firm collects

3investors.rallydev.com/download/Rally+Q1+Investor+Presentation-3.pdf
4http://www.sandlerresearch.org/global-application-lifecycle-management-market-2014-

2018.html
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data on a set of prospective customers called “leads” whose basic information

is known (demographic and professional). They have weblogs of lead visits,

and also information on their offline interactions with the firms sales and mar-

keting activities For example, they collect data on whether these leads attended

webinars conducted by the company, visited the firm information booth at tech

conferences, filled information request forms and called for product informa-

tion, etc. Hence, in addition to online information, the firm also has data on

the offline “path” of their leads. Figure 4.1 gives a breakdown of lead activities

data to which the firm has access. Data were obtained for leads for the period

Figure 4.1: A Breakdown of Lead Activity Data

28th June 2012 to 19th September 2015. The database consisted of 0.54 million

leads, belonging to 10, 000 firms around the world. After cleaning the data to

remove inactive leads (leads who havent shown any interest in the marketing
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communications of the firm in the period of observation) and duplicated en-

tries (the lead database possessed by the firm was put together from different

lead sources) the number of leads boils down to 135,245 5 . Table 4.2 shows a

sample of the online activity information that the company has on a particular

lead during a week in the month of July 2015. In this particular data sample,

the firm keeps track of the fact that the lead opened an email (sent by the firm),

and registered for a webinar which was scheduled to be held a week later. The

firm also keeps a record of the leads attendance of the webinar. Similarly, the

collaborating firm also has information on lead attendance at trade shows and

offline information requests, to name a few. In order to build a comprehensive

model, we study both the online and offline data for model free evidence. The

final model also needs to take into the account the selling process employed by

the firm being studied. We begin by analyzing the clickstream data of the leads

in the data set, a sample of which was shown in Table 4.2. Following the con-

vention in Montgomery et al. (2004), we classify the various webpages present

into 4 broad categories: Home, Account, Downloads and Information. The cat-

egory Home refers to the home page of the company. Account refers to all the

personalized webpages that appear once a lead logs in using his/her account

information on the company webpage. Download refers to all the webpages

where a free download of a trial version of the software product (binary hence-

forth) is available (in the data, a visit to a download page resulted in a binary

download 94% of the time). Information refers to all the webpages containing

software descriptions, news, blogs, etc. The categorization of webpages differs

a little from that of Montgomery et al. (2004), since the firm we are studying

does not sell its product directly on its webpage, nor does it sell different cate-

5The loss of a large number of leads can be explained due to the fact that most of the data
in the company database were outdated since they were purchased from another lead database
firm in 2010.
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Table 4.2: A Sample of Activities for a Given Lead during the month of July
2015 (Campaign Name was anonymized by company request)

Date-Time Campaign Name Activity Type

2015-07-09

15:09:51

Email Batch

Program-2076-send-

email-campaign

Visit Web Page

2015-07-09

15:26:12

Interesting Mo-

ments.Opens Email

Interesting Moment

2015-07-09

15:26:16

Interesting Mo-

ments.Clicks Link in

Email

Interesting Moment

2015-07-09

23:07:17

Add to YYYY Cam-

paign
2015-07-09

23:07:33

07162015 - Git - We-

binar - Modernizing

Development Work-

flow with Git.01 -

Registers

Interesting Moment

2015-07-16

23:05:53

07162015 - Git - We-

binar - Modernizing

Development Work-

flow with Git.03 - At-

tends On Demand

Interesting Moment

gories of products (unlike in their paper), hence the lack of categories such as

shopping cart, order or category. To understand what pages on the company

website drive traffic, the monthly average number of page hits was computed,

and a plot of the same is shown in Figure 4.2 (with the links anonymized). The

category-wise information for (monthly) average webpage traffic is also given
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in Table 4.3. Table 4.3 also contains category-wise information for average web-

page traffic for the leads who converted, and for those who didn’t.

Figure 4.2: Average Number of Webpage Hits

Table 4.3: Average Monthly Webpage Traffic in the Data

Category Abbreviation Page

Requests

(%)

Page

Requests

(Con-

verted)

(%)

Page

Requests

(Not Con-

verted)

(%)

Home H 7.79 1.9 8.3
Account A 9.89 7.13 10.13
Downloads D 11.32 16.71 10.85
Information I 71 74.26 70.72

From Table 4.3, it is evident that pages in the information category tend
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to dominate the other categories in terms of the average number of visits per

month. The leads in the database appear to be more interested in reading about

the product first, followed by downloading a trial version of the software of-

fered by the company.

In addition, we also check if the page visit behavior of leads who became

clients of the firm differed from those who didnt. The third column of Table

4.3 shows the average monthly webpage visits of leads who eventually became

clients of the firm in the sample period contained in the data, while the fourth

column shows the same for those who didn’t. Comparing the different columns,

we notice that for the most part, the percentage of page requests to pages in the

Information and Account categories doesnt change by much. However, for the

leads who converted, the percentage of downloads is significantly higher. At the

same time, the percentage of page requests in the home category is significantly

lower for the same leads. This comparison appears to indicate that the leads

who converted spend more time on the downloads page than on the home page,

and that the number of downloads could be an antecedent of lead conversion.

In addition to the average page hits, we also explored the individual page

visits of each of the leads, to see if there was any web browsing path informa-

tion, which could be exploited for more insights [55, 78]. However, the average

number of distinct page categories visited by leads per session was 2, with a

standard deviation of 0.2497, indicating that there is not much path information

to be exploited in this case. A possible explanation for the low number of dis-

tinct category page views could be due to the design of the website [78], which

may not be conducive to leads exploring other parts of the website. Another

explanation could be that the leads in our data knew exactly what they were
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looking for (given that the firm sells a product that needs a certain level of skill

with programming software), and hence there is not much exploration on the

company website.

Another important difference of this setting from that of Montgomery et al.

[78], has to do with the website “form-filling” activity that all of the leads have

to do, to download a binary. The leads interested in downloading the product

need to fill out an information form online (i.e. professional information such

as employment, contact details, etc.). This helps the company store new lead

information and track future visits by this lead to the website. This is also useful

in collecting information on those leads who havent created an account with the

company website.

As mentioned earlier, the firm also has offline data of lead activities. These

activities include trade show attendance, conferences and offline information

requests. To understand which of these activities are important in terms of

driving product sales, we again compare the offline activities of the leads who

converted in our data set to those leads who didnt. Table 4.4 shows the mean

(yearly) participation of these leads in the various offline activities offered by

the company. When mean attendance is compared between the two types of

leads, it is evident that the leads more likely to convert put in the effort needed

to gather more information (i.e. attending the trade show at a different city and

seek out the company’s information desk). While the mean attendance of the

leads who became clients is understandably higher, it is also instructive to take

a closer look at the mean information requests. The leads who eventually be-

came clients tended to request information twice as much as those who didnt.

But we also note that when moving from the leads who converted to those who
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Table 4.4: Average Yearly Offline Activity Participation

Offline Activity Mean

Attendance

(Converted)

Standard

Deviation

(Converted)

Mean

Attendance

(Not Con-

verted)

Standard

Deviation

(Not Con-

verted)

Trade Shows 7.21 1.14 1.36 0.33
Conferences 4.21 2.23 2.3 0.99
Information Requests 23.85 12.62 11.08 4.1

do not, the relative reduction in the mean number of information requests is less

when compared to the mean attendance numbers. This can be attributed to the

fact that information requests are easier to carry out (either over the phone or by

setting up a time to talk via email), when compared to attending trade shows

and conferences. These metrics show that trade show attendance could be a

good indicator of a lead becoming a prospective client. We find confirmation

of this finding in previous literature on the value of trade shows. Gopalakr-

ishna, Lilien, Williams and Sequeira [49] find that trade shows help in generat-

ing product awareness and interest, while providing positive economic returns

to the firm. Gopalakrishna and Lilien [48] also note that trade shows are more

effective than advertising or personal selling in generating product awareness.

These findings indicate the importance (to the firm) of trade show attendance

by leads, so as to spread awareness of the product in the early stages.

The model free evidence guides our decision to include certain variables in

our model (the number of binary downloads, trade show and conference atten-

dance and information requests). In addition, we also need to take into consid-

eration the selling process followed by the firm being studied, since that also

affects the choice of the model to be used for this application. The selling pro-
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cess adopted by the firm being studied helps us understand how the leads were

targeted, which in turn informs us of the modeling approach to be used. The

next section describes the selling process.

4.4 B2B selling process

The collaborating firm stores all the information they have on their leads in a

database managed by a well-known marketing automation software, which as-

signs “lead scores” to all the leads present in their database. Based on a certain

threshold value, any leads with a score above this threshold are targeted first

by the sales force. These leads are called “Marketing Qualified Leads” or MQL.

Once these leads are exhausted, the sales force shifts attention to the leads with

lower score values. Of these leads, the leads that make it to the next Stage are

called the “Sales Qualified Leads” or SQL. These leads usually request a demon-

stration of the product, after which they take a call on whether to buy the prod-

uct or not. If they (i.e. the firm they work for) choose to buy the product, they

request a few changes and then negotiate a buying price (unlike in the B2C con-

text, prices in a B2B context vary by the customer firm [119]. Figure 4.3 shows

the multiple Stages involved in the conversion of a lead into a customer of the

firm. The firm uses a marketing automation software to develop lead attractive-

ness scores to enable a customer’s “conversion path”. However, in the past, the

firm has noticed that the lead scores were not accurate, with sales force calling

on leads with higher lead scores only to discover that they were not really inter-

ested, and leads with lower lead scores actually converting to customers (this

is also the reason the sales team calls leads with a lower lead score once theyve

exhausted all the leads with a higher lead score). In between these Stages, all
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of these leads may indulge in any of the online or offline activities described

before.

Given the selling process, it is clear to see that for a given company (employ-

ing the lead in question), there are many people involved in the decision making

process leading to a purchase (Srinivasan 2012). The data also include a ranking

for the lead in the firm on a scale of 1-5 (1: position of higher decision making

power, and 5: position of least power in the company), which we include in the

covariates to be used in the model. Finally, in the absence of price information,

we use firm size information as a proxy (our reasoning being that a larger client

firm might be willing to pay a higher price, given the uniqueness of the prod-

uct, than a smaller client firm, which is also consistent with the information we

received from the data provider).
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Figure 4.3: Different Stages in the Conversion of a Lead Company
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4.5 Model Description

The challenge in modeling this lead conversion behavior is accounting for the

different Stages in the conversion path, while incorporating the insights on the

antecedents of conversion behavior from online and offline lead activity data.

Given the detailed information we have on lead activities, we break the conver-

sion path into three Stages (as shown in Figure 4.3). In each Stage, we have a

record of the online and offline activities of the lead, and the time spent by the

lead in between Stages (in days). We model the outcome of moving from one

Stage to the next as a binary Probit, with an outcome of 1 indicating that a lead

has successfully moved on to the next Stage of the conversion path. In addi-

tion, we also model the time spent by the lead in each Stage. The time spent in

each Stage is non-zero if the lead makes it to that Stage (or is zero otherwise),

and is a continuous variable. As an illustrative example, consider a particular

Stage in the selling process, as shown in Figure 4.4. Initially, a binary Probit

models the chances of a lead getting past Stage 1. Once the lead gets past Stage

1 (i.e. his/her company shows initial interest in buying the product), we model

the time spent between Stages 1 and 2 as a Tobit regression (since the observed

variable for the leads who do not make it to Stage 2 is the maximum time in

days as observed in the data these leads might convert sometime in the future,

given the broad applicability of the product. These leads also participate in var-

ious online and offline activities, but in our sample, do not transition between

Stages).
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Figure 4.4: Stage to Stage Transition Structure
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In model form, for a lead i, this would be:

yi1 = 1(Xi1βi + ϵi1 > 0)

ti2 = Xi2βi + ϵi2 i f yi1 = 1, 0 otherwise

Where Xi1 is the covariate matrix that includes information on lead activity for

lead i (number of binary downloads, trade show and conference attendance, in-

formation requests, job position of lead in company, price charged) before Stage

1, and Xi2 contains the same information, but for the time period between Stage

1 and Stage 2. ϵi1, ϵi2 are the error terms, where ϵi1 ∼ N(0, 1) (for identification

purposes) and ϵi2 ∼ N(0, σ2) (where σ is to be estimated). We build similar

models for each Stage of the conversion path due to availability of lead activity

data at each Stage (given a lead made it to that particular Stage). These models

belong to a class of discrete-continuous choice models, first discussed by Hane-

mann [52]. Though in his work, the continuous variable was used to model the

quantity of a product purchased, given it was chosen in the first place. Mod-

els of discrete-continuous choice have also been applied in marketing [96] and

transportation research [72, 38]. We chose this modeling approach over other

benchmark time series models used in this literature for three reasons:

1. A lack of time series persistence in the lead behavior (i.e. no clear indica-

tion of a time series dependence in lead activities as discussed in the data

section);

2. Sparsity of activities (covariates), which renders a linear model (as is the

norm in B2C literature to model conversion behavior using clickstream

data) to be inappropriate for our application unless copulas are used to

capture contemporaneous correlations [97]. Given the sparsity of time se-

ries data in the model, we compute aggregate values for the variables to
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be used in the model for each of the leads, in each Stage. These in turn

are used as the covariates in the discrete continuous choice model imple-

mented; and

3. The nuances of the specific selling process employed by the firm being

studied cannot be captured by the dynamic time series models (VAR mod-

els) used in this stream of literature.

Certain features of the B2B setting and the nature of the product being sold by

the collaborating firm guide our choice of estimation of this model. Firstly, in

a B2B setting, buying situations vary considerably [98]. In addition, there is

heterogeneity in the customers documented usage of ALM software6. Since the

collaborating firm provides software to a global audience, it caters to a lot of

geographical markets. As an example, Figure 4.5 shows a plot of all the leads in

the USA, and their interest in the intended usage of the firms product. Given (1)

the varied usage of the firm’s product (2) the many markets all over the world

the firm caters to and (3) the varied buying situations, the coefficients β in the

equations above cannot be assumed to be the same across leads. One approach

to account for this heterogeneity is to use a finite mixture model approach [4].

However, it is not clear how to choose the number of mixture components be-

fore estimation. Early work in the field of Bayesian Nonparametric models has

tackled this issue by placing a Dirichlet Process Prior on the heterogeneous

quantity of interest [35, 108, 63, 23, 69]. The idea is to model the coefficients

as a draw form an infinite mixture model [57, 35], without having to specify

the number of underlying clusters beforehand. Irrespective of the convenience

of placing a Dirichlet Process Prior on coefficients in our model, researchers in

6Singh, M (2014), “The Other (and very real) Benefits of Application Lifecycle Man-
agement!” http://blog.digite.com/the-other-and-very-real-benefits-of-application-lifecycle-
management/
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Figure 4.5: A Map Showing Lead Locations in the US, and their Product
Interests (ALM; Big Data; Git)

the past have stated that modeling mixture data using Bayesian Nonparametric

methods is inherently misspecified [84], since the model might “decide” to cre-

ate extra latent clusters which might not exist in the given data [63]. In addition,

previous applications using the Dirichlet Process Prior to model Heterogeneity

have only focused on settings in a single market [23, 69]. The challenge we face

here is to model the coefficients so as to account for Heterogeneity across and

within markets. So as to tackle this issue, we model the coefficients as draws

from a Hierarchical Dirichlet Process Mixture [105], (HDP) and estimate the

discrete-continuous choice model of lead conversion behavior using a Bayesian

framework. The advantages of using a HDP Mixture to model heterogeneity

are three fold:
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1. A HDP model imposes a structure on the coefficients in the model, such

that they reflect the different preferences in the data and not make the

model too unwieldy to estimate at the same time [105].

2. A HDP corrects for the case where we might not have enough information

on lead activities in a particular Stage of the conversion path. It auto-

matically “checks” if the lead in question exhibits similar choice patterns

to other existing leads (on whom we have enough information) and uses

that information to fit the model. In other words, it pools information

appropriately where necessary, so as to “share statistical strength” [105]

3. As more data become available, the HDP Mixture framework keeps ad-

justing the ideal number of component mixtures based on model fit (i.e. it

“learns” with newer data).

Fang [38] estimates a Bayesian discrete-continuous choice model of household

vehicle usage, but does not account for household level heterogeneity. We build

on the framework she uses and account for the heterogeneity of lead behavior.

The modeling novelty in this work is to estimate this discrete-continuous choice

model, while accounting for lead heterogeneity across markets using a HDP

mixture; these features, to the best of our knowledge, have not been attempted

earlier in B2B lead conversion models.

A DAG which represents the Probit model implemented in the paper is

shown in Figure 4.6 (the graph is similar for the continuous part of the model).

H is the base distribution (assumed to be a diffuse Normal Inverse Wishart dis-

tribution) and α and γ are the concentration parameters (both are set to 1 in

this case, following past literature [69, 105]. A Bayesian procedure is used to

estimate this model for two reasons:
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1. When modeling discrete choice models with individual level heterogene-

ity, a Bayesian procedure tends to “pick-out” individual level parameters

during the estimation process, since that makes the estimation process eas-

ier [110].

2. The computational cost of evaluating multiple integrals in the Probit

model can be avoided by introducing latent variables that need to be esti-

mated [38, 3, 24].

y jil

β ji

θji

Gj

G

α

H

γ

L

N

J

Figure 4.6: A Probit with a Hierarchical Dirichlet Process Mixture Prior on
the Coefficients

The DAG in Figure 4.6 succinctly represents the dependency structure in

the model. The HDP models heterogeneity across markets by specifying differ-

ent “market types” (j), based on the variation present in the data being mod-
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eled (Teh et al. [105], analogously use the HDP to model different “document

types”). This serves as an alternative to either (i) ignoring heterogeneity across

multiple markets (which might give incorrect results), or (ii) modeling the het-

erogeneity in each market separately (which could be cumbersome). As can be

noted from the DAG in Figure 4.6, in a given Stage, we have 1 observation for

each individual (lead) belonging to a market type j (since we aggregate data in

a Stage due to sparsity). Since there are multiple leads belonging to a firm, we

have L such observations. Econometrically, the model would be unidentified

if we were to place an individual level coefficient on each of the leads (due to

only 1 observation per lead, per Stage). Instead, we treat all the leads belonging

to the same company i to “share” the same distribution of the coefficient (β ji in

the graph). From a theoretical standpoint in B2B literature, this approach (of

modeling heterogeneity at the firm level) has been used previously to model

tradeshow attendance [49, 48] and pricing decisions in a B2B context [119].

Given the firm level coefficient β ji, the likelihood is computed for all leads L

belonging to the company. For a given market type j , the likelihood contribu-

tion of a lead l belonging to firm i is computed using the approach in Greenberg

[50]. To introduce conjugacy and avoid the integrations involved in computing

the probabilities in the Probit model, Greenberg [50] introduces latent variables,

which can be treated as parameters to be estimated (and later discarded). An

outline of the Gibbs sampling scheme is provided below (the market type sub-

script j is suppressed for clarity). Let yil be the observed data for a lead l in

company i , in a given Stage. Introducing latent data y∗il and following the pro-

cedure in Greenberg [50], the likelihood contribution of this lead in the given
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Stage is:

p(yil|y∗il) = 1(yil = 0)1(y∗il ≤ 0) + 1(yil = 1)1(y∗il ≥ 0) (4.1)

y∗il = Xilβil + ϵil (4.2)

Assuming a normal prior on βil, we get the following expression for the poste-

rior:

π(βil, y∗il|yil) =
∏

l

{1(yil = 0)1(y∗il ≤ 0) + 1(yil = 1)1(y∗il ≥ 0)} f (y∗il|βil)π(βil) (4.3)

Where y∗il|il ∼ N(Xilβil, 1) (which follows from equation 4.2). The indicator func-

tions in equation 3 serve the purpose of truncating the normal appropriately,

based on the observed data yil . To model heterogeneity using the HDP, we

place a HDP mixture prior on the parameters of the normal prior for βil. If

βil ∼ N(µ,Σ), then (µ,Σ) ∼ HDP(α, γ,H). Hence, in the Gibbs algorithm, once

we obtain draws for the parameters for the distribution of βil , these become the

“data” to be modeled using a HDP mixture model. The algorithm for fitting

these data using the HDP mixture model is described in Teh et al. [105].

Based on the above discussion, the Gibbs sampling steps are (starting with

an initial draw β0
ji):

1. Draw y∗kil ∼ 1(yil = 0)T N(−∞,0](Xilβ
k−1
il , 1) + 1(yil = 1)T N[0,∞)(Xilβ

k−1
il , 1)

2. Draw βk
il ∼ N(µn,Σn); where Σn = (X

′

i Xi + Σ
−1)−1 and µn = Σn(X

′

i y
∗k + Σ−1µ)

3. Model (µn,Σn) ∼ HDP(α, γ,H)

Where k is the number of iterations in the Gibbs sampling algorithm. (The

Gibbs algorithm for the Tobit regression was also implemented similarly using

the technique described in Greenberg [50]).To check if using a HDP Mixture to
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model heterogeneity (referred to as model III) actually fits the data better, we

estimate a different version of the model, where step (iii) in the Gibbs sampling

algorithm now is a Dirichlet Process Mixture (i.e. (µn,Σn) ∼ DP(α,H)), referred to

as model II. Another model was estimated without accounting for heterogeneity

(i.e. ignoring step (iii)), which is referred to as model I. All three models were

“trained” using the lead activity data for the first two and a half years in the

data (28th June 2012 to 31st Dec 2014), and the predictive validity of the model

was checked on the remaining data. A zero inflated probit model was also esti-

mated, but the results didn’t change by much. The results aren’t included here,

and are available upon request. The models were estimated for each Stage, with

40, 000 iterations of the Gibbs sampler each (the Raftery and Lewis [90] diagnos-

tic suggested convergence was reached at this number of iterations).

4.6 Results and Conclusion

4.6.1 Model Fit

Table 4.5 shows a comparison of the fit of different models estimated on the data

for each Stage. For all three Stages, the discrete continuous Probit model with a

HDP mixture prior on the coefficients (model III) is a better fit (according to the

BIC criterion).
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Table 4.5: Log-Likelihood (LL) and BIC comparison for Models in all
Stages. Model I: No Heterogeneity, Model II: DP prior for Het-
erogeneity, Model III: HDP prior for Heterogeneity

Criterion Model I Model II Model III

Stage I
LL -5,637,773 -5,092,328 -4,881,675
BIC 11,275,568 10,184,687 9,763,405

Stage II
LL -2,774,099 -2,724,232 -2,618,174
BIC 5,548,256 5,448,484 5,236,413

Stage III
LL -231,945.4 -213,744 -206,564.5
BIC 463,907.7 427,577 413,226.6

4.6.2 Model Estimates

Tables 4.6, 4.7 and 4.8 show the results of the discrete continuous choice model

estimation for each Stage, by segment (the coefficients are provided with their

95% credible intervals in brackets). Model III recovers j = 4 “market types”

and each of these market types has three segments. Remarkably, the nature of

the coefficients is the same for all segments, except for in segment III, where the

ceofficient of conference attendance in not significant in Stage I, but is significant

in Stage II, unlike in the other segments. We now interpret the coefficients in

each segment, across all Stages and then study the market types recovered by

model III.

Segments I and II

Segments I and II are examined here together, since similar coefficients are sig-

nificant in each Stage for both these segments. In Stage I, across both segments,

the number of downloads appears to increase the chances of a lead to transi-
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tion towards the next Stage and also shortens the time spent in the Stage, but

in the later Stages, it doesnt seem to affect the chances of a lead moving further

along. A possible explanation for this is due to the selling process of the firm

being studied: in later Stages, the product is demonstrated to the leads’ firm

and feedback is obtained regarding changes to be made to the software, and

this event takes precedence over a lead downloading a binary. Tradeshows and

conferences appear to matter in Stage I, which confirms the results in Gopalakr-

ishna et al. and Gopalakrishna and Lilien [49, 48], in that they are important for

spreading awareness about the firms product. The coefficient on information

gathering is positive and significant only in Stage II, indicating that the process

of information gathering might not be that critical in the early and late Stages

of the selling process, but is very important in the middle Stage. However, they

dont seem to matter in later Stages. This can be attributed to the fact that in Stage

II, the process of information gathering is more prevalent, and once enough in-

formation is obtained on the product, attendance of tradeshows or conferences

is unnecessary. The decision making power (as measured by the rank in the

firm) of a lead does not appear to matter for Stage I and II, but does make a

difference in Stage III (the higher the rank (lower in magnitude), the higher the

chances of a lead converting). A possible explanation for this could be that in

the later Stages, a higher ranking executive in the lead firm can take a call on

buying the product, rather than wait for his/her superior to make a decision

on the purchase (in the case of a lower ranking executive in the lead firm). Fi-

nally, segment II is more price sensitive than segment I. While the coefficient of

price negatively affects the outcome of a deal being closed in Stage III in both

segments, it does not affect the transition of a lead in the earlier Stages. Since

the discussion of price for the product is set in Stage III of the selling process, it
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appears to be irrelevant in the earlier Stages. Another key fact to note here is the

positive coefficient of the price term in the continuous model of Stage III. This

indicates that the higher the negotiated price, the longer it takes for a lead firm

to convert into a client of the company.

Segment III

Segment III is the most price sensitive segment, since the magnitude of its price

coefficient is the highest in Stage III, when compared to the price coefficients

in segments I and II. Another key difference is that in Stage I, the coefficient

of conference attendance is not significant, but it is significant in Stage II. This

segment could contain cash-strapped client firms (due to their high price sensi-

tivity), who might not be able to attend both conferences and trade shows in the

first Stage (maybe due to high registration fees). However, once there is an inter-

est in the product, only then do they decide to attend conferences to learn more

about the product, and this happens in Stage II. All the other coefficients in all

Stages are similar in nature to those of segments I and II, so the same inferences

from before apply here.

4.6.3 Market Types

Table 4.9 shows the different market types recovered from the data by model III.

We see a marked difference of segment probabilities across market types. There

are more markets of type I (market type probability 0.514), in which segments

II and III share the same probability. This tells us that there are more market

types with price sensitive segments. Indeed, all other market types that place a
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higher probability on segment I are smaller in number. As mentioned in earlier

sections, the HDP mixture prior on the coefficients of model III allows us to

compare segments across market types, something that would be hard to do

when modeling each market separately.
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Table 4.6: Segment I Coefficients from Model III for all Stages (with 95%
Credible Intervals)

Stage I Stage II Stage III

Variable Discrete Continuous Discrete Continuous Discrete Continuous

Binary Downloads 2.26 -7.23 1.04 -1.65 0.89 -1.65
[1.23, 3.29] [-9.21, -5.25] [-0.34, 2.42] [-3.75, 0.45] [-1.53, 3.31] [-5.21, 1.99]

Tradeshow Attendance 4.12 -13.27 1.26 -2.47 0.71 -1.12
[2.93, 5.31] [-16.29, -10.25] [-0.52, 3.04] [-6.17, 1.23] [-0.88, 2.3] [-3.67, 1.43]

Conference Attendance 3.13 -15.42 2.85 -1.87 0.94 -1.38
[1.69, 4.57] [-18.37, -12.47] [-1.15, 6.85] [-5.01, 1.27] [-1.62, 3.5] [-5.91, 3.15]

Information Request 1.15 -2.67 3.78 -17.27 0.64 -1.59
[-0.91, 3.27] [-6.37, 1.03] [2.21, 5.35] [-19.56, -14.98] [-0.47, 1.75] [-4.46, 1.28]

Job Position 0.62 -0.33 0.41 -0.33 -2.21 1.65
[-2.33, 3.57] [-1.24, 0.58] [-2.92, 3.74] [-1.63, 0.97] [-3.56, -0.86] [0.67, 2.63]

Price -0.45 0.82 -0.63 0.45 -5.61 13.25
[-1.65, 0.79] [-2.41, 4.05] [-1.82, 0.56] [-2.19, 3.09] [-7.52, -3.6] [11.41, 15.09]
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Table 4.7: Segment II Coefficients from Model III for all Stages (with 95%
Credible Intervals)

Stage I Stage II Stage III

Variable Discrete Continuous Discrete Continuous Discrete Continuous

Binary Downloads 0.69 -2.64 0.39 -0.39 0.37 -0.54
[0.38, 1.02] [-3.37, -1.91] [-0.13, 0.90] [-0.90, 0.11] [-0.64, 1.38] [-1.69, 0.65]

Tradeshow Attendance 1.83 -4.26 0.33 -0.54 0.29 -0.56
[1.3, 2.36] [-5.23, -3.29] [-0.14, 0.79] [-1.35, 0.27] [-0.35, 0.93] [-1.83, 0.71]

Conference Attendance 1.18 -4.64 1.13 -0.62 0.44 -0.59
[0.64, 1.73] [-5.53, -3.75] [-0.45, 2.71] [-1.67, 0.42] [-0.76, 1.65] [-2.57, 1.37]

Information Request 0.57 -0.89 1.74 -8.51 0.30 -0.37
[-0.45, 1.63] [-2.14, 0.35] [1.02, 2.46] [-9.64, -7.38] [-0.22, 0.82] [-1.03, 0.30]

Job Position 0.16 -0.12 0.17 -0.15 -0.59 0.74
[-0.62, 0.95] [-0.45, 0.21] [-1.22, 1.56] [-0.76, 0.45] [-0.95, -0.23] [0.30, 1.17]

Price -0.13 0.35 -0.19 0.11 -8.23 15.29
[-0.49, 0.23] [-1.03, 1.74] [-0.56, 0.17] [-0.55, 0.77] [-9.41, -7.05] [13.37, 17.21]
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Table 4.8: Segment III Coefficients from Model III for all Stages (with 95%
Credible Intervals)

Stage I Stage II Stage III

Variable Discrete Continuous Discrete Continuous Discrete Continuous

Binary Downloads 3.35 -11.38 1.65 -2.26 1.48 -2.49
[1.82, 4.87] [-14.50, -8.26] [-0.54, 3.85] [-5.13, 0.62] [-2.54, 5.50] [-7.86, 3.00]

Tradeshow Attendance 7.04 -19.93 1.76 -3.29 1.16 -2.02
[5.00, 9.07] [-24.47, -15.40] [-0.73, 4.26] [-8.21, 1.64] [-1.44, 3.77] [-6.60, 2.57]

Conference Attendance 1.05 -2.64 4.63 -2.85 1.65 -2.33
[-3.74, 5.84] [-6.94, 1.66] [2.23, 7.03] [-3.27, -2.43] [-2.84, 6.13] [-9.99, 5.33]

Information Request 2.07 -4.07 6.56 -30.88 1.12 -2.15
[-1.64,5.89] [-9.72, 1.57] [3.83, 9.28] [-34.98, -26.79] [-0.82, 3.06] [-6.03, 1.73]

Job Position 0.87 -0.52 0.68 -0.58 -3.12 2.82
[-3.28, 5.03] [-1.95, 0.91] [-4.85, 6.22] [-2.84, 1.69] [-5.02, -1.21] [1.15, 4.50]

Price -0.66 1.38 -0.93 0.62 -7.60 20.44
[-2.40, 1.15] [-4.05, 6.81] [-2.69, 0.83] [-3.03, 4.28] [-10.19, -4.88] [17.61, 23.28]
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Table 4.9: Segment Probabilities for Different Market Types

Market Type

(Type Size)

Segment I Segment II Segment III

Market Type I

(0.514)

0.26 0.37 0.37

Market Type II

(0.122)

0.55 0.29 0.16

Market Type III

(0.214)

0.41 0.24 0.35

Market Type IV

(0.15)

0.63 0.27 0.10

4.6.4 Validation

Finally, in a check of the three different models on the validation data sample,

the proposed model (model III), does better in terms of predicting lead conver-

sion and the time spent between Stages, as shown in Figures 4.7,4.8 and 4.9.

A comparison of the Root Mean Squared Error (RMSE) for these predictions is

shown in Table 4.10. The Figures and the Table show that the predictions from

model III are closer to the actual values, when compared to predictions from

models I and II.

The results of this analysis can be used to decide which activities deserve

a higher share of the marketing budget in a company. If the goal is to attract

new leads, the model recommends investing in tradeshows and conferences to
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Figure 4.7: Actual and Predicted Times spent in Stage I

Table 4.10: RMSE of Predicted Conversion Times

Model Stage I Stage II Stage III

Model I 62.99 61.31 47.11

Model II 23.85 30.26 29.15

Model III 8.81 12.33 4.42

spread awareness. The model also helps the manager focus on the leads that

warrant his/her attention. For example, in Stage I, the manager would want

to focus on leads who have downloaded a binary. In Stage II, he/she would

be well served to study leads who are actively gathering information through

offline channels. In the last Stage, the manager would want to give preference

to the lead who is the higher ranking official in a potential client firm. It should
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Figure 4.8: Actual and Predicted Times spent in Stage II

be noted that the results obtained in this paper indicate the importance of incor-

porating the actual selling process employed in a B2B context. These insights

couldn’t have been gained by disregarding the selling process altogether.

4.7 Future Research

We contribute methodologically to the customer acquisition analysis literature,

by introducing a data driven way to model lead heterogeneity and modeling

the time spent between Stages in a conversion path. This research project uses

novel data on leads collected by our collaborating firm, to optimize marketing

spending and help the sales force target the leads more likely to convert, in a B2B

context. This work will be useful for B2B firms similar to our collaborating firm
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Figure 4.9: Actual and Predicted Times spent in Stage III

as it will help them reduce wasteful marketing spending and efficiently target

leads more likely to become customers. However, some choices in modeling

were driven by the sparsity in the data, and this leaves a lot of room for model

improvement once richer data are available.

We use a continuous representation of heterogeneity in this model, which is

a better fit to the data when compared to discrete representations [7]. The model

used in this chapter can easily be modified and applied to other B2B and B2C

contexts, with the added advantage of modeling for heterogeneity across mul-

tiple markets. Using the HDP to model heterogeneity in consumer search and

purchase for B2C contexts across multiple markets could also offer additional

insight. Another extension of the model used in this chapter is to incorporate

time varying preferences of leads in a company. As of now, these preferences
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(captured by the coefficients in the model) are all fixed over time, and this might

be restrictive in certain applications.
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APPENDIX A

SELECT PROPERTIES OF THE DIRICHLET DISTRIBUTION

The Dirichlet Process was formally introduced by Ferguson [40], where he

showed that this process becomes a finite dimensional distribution over a par-

ticular partition of the probability space over which it (the process) is defined.

Since a majority of the properties of the Dirichlet Process are derived from

the properties of the Dirichlet distribution,this chapter will derive the relevant

properties of this distribution.

A.1 The Dirichlet Distribution

The intent of this section is to walk the reader through some of the basic prop-

erties of the Dirichlet Distribution (its infinite dimensional counterpart, is the

dirichlet process), accompanied by their derivations. These properties will be

used in the later sections of this chapter. This is in no way a comprehensive

study of this distribution, and the interested readers are encouraged to refer to

Ghosh and Ramamoorthi [45] for more.

A.2 Derivation from the Gamma distribution

A dirichlet distributed random variable can be derived from Gamma dis-

tributed random variables. For example, in the two dimensional case, if Z1 &

Z2 are IID random variables such that Z1 ∼ Gamma(α1, 1) & Z2 ∼ Gamma(α2, 1)

(Z1 and Z2 are > 0) and we define Y = Z1
Z1+Z2

(by definition, 0 ≤ Y ≤ 1), then we
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have Y ∼ Beta(α1, α2) (by definition, the Dirichlet is the multivariate generaliza-

tion of the Beta distribution).

A.2.1 Proof

The Two Dimensional Case

The strategy here is to work backwards from the distribution function of Y . The

probability that the random variable Y ≤ y is given by:

P(Y ≤ y) = P
(

Z1

Z1 + Z2
≤ y

)
= P

(
Z1 ≤

yZ2

1 − y

)
=⇒ P(Y ≤ y) =

∫ ∞

0

∫ yZ2
1−y

0

1
Γ(α2)

zα2−1
2 e−z2

1
Γ(α1)

zα1−1
1 e−z1dz1dz2

=⇒ P(Y ≤ y) =
1

Γ(α1)Γ(α2)

∫ ∞

0
zα2−1

2 e−z2

∫
yZ2
1−y

0
zα1−1

1 e−z1dz1

 dz2

The probability density function of Y is obtained by taking the derivative of

P(Y ≤ y) with respect to y (all regularity conditions needed for this operation

to be valid are satisfied here). The Leibniz rule is used to obtain the derivative

under an integral. Formally, if f (x, t) is a function such that the partial derivative

of f with respect to t exists, and is continuous, then:

d
dt

(∫ b(t)

a(t)
f (x, t)dx

)
=

∫ b(t)

a(t)

∂ f
∂t

dx + f (b(t), t) · b′(t) − f (a(t), t) · a′(t)

Taking the derivative of P(Y ≤ y) with respect to y and using Leibniz’s rule, we
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have:

dP(Y ≤ y)
dy

= fY(y) =
1

Γ(α1)Γ(α2)

∫ ∞

0
zα2−1

2 e−z2
∂

∂y

∫
yZ2
1−y

0
zα1−1

1 e−z1dz1

 dz2

=⇒ fY(y) =
1

Γ(α1)Γ(α2)

∫ ∞

0
zα2−1

2 e−z2

( yz2

1 − y

)α1−1

e−
yZ2
1−y

1
(1 − y)2 z2

 dz2

=⇒ fY(y) =
1

Γ(α1)Γ(α2)

∫ ∞

0
zα1+α2−1

2

(
y

1 − y

)α1−1

e−
z2

1−y
1

(1 − y)2 dz2

Setting x = z2
1−y , (dx = dz2

1−y ) and changing the limits of integration appropriately,

we get

fY(y) =
1

Γ(α1)Γ(α2)

∫ ∞

0
(1 − y)α1+α2−1xα1+α2−1

(
y

1 − y

)α1−1

e−x 1
(1 − y)2 (1 − y)dx

=⇒ fY(y) =
1

Γ(α1)Γ(α2)

∫ ∞

0
(1 − y)α2−1xα1+α2−1yα1−1e−xdx

=⇒ fY(y) =
yα1−1(1 − y)α2−1

Γ(α1)Γ(α2)

∫ ∞

0
xα1+α2−1e−xdx (A.1)

Where the definite integral in A.1 is a standard Euler integral of the second kind

[29], and equals Γ(α1 + α2). Putting this back in the previous expression gives

fY(y) =
Γ(α1 + α2)
Γ(α1)Γ(α2)

yα1−1(1 − y)α2−1 (A.2)

Which is the Beta(α1, α2) density.

A Change of Variables Approach

We can prove the above result using a change of variables approach. We define

random variables U and V such that

U =
Z1

Z1 + Z2

V = Z1 + Z2
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Where by definition, 0 ≤ U ≤ 1 and 0 ≤ V ≤ ∞. Solving for Z1 and Z2 in terms of

U and V gives

Z1 = UV (A.3)

Z2 = V(1 − U) (A.4)

The change of variables approach gives us the density of the joint distribution

of U and V from the following formula

fU,V(u, v) = fZ1,Z2(z1, z2)|J(z1,z2)→(u,v)| (A.5)

Where J(z1,z2)→(u,v) is the Jacobian matrix, given by

J(z1,z2)→(u,v) =


∂z1
∂u

∂z1
∂v

∂z2
∂u

∂z2
∂v


Given A.3 and A.4, the Jacobian matrix in this case becomes

J(z1,z2)→(u,v) =

 v u

−v 1 − u


=⇒ |J(z1,z2)→(u,v)| = v(1 − u) + vu = v (A.6)

Substituting for |J(z1,z2)→(u,v)| in A.5 with the result in A.6 gives

fU,V(u, v) = fZ1,Z2(z1, z2) · v (A.7)

Since Z1 and Z2 are IID Gamma(α1, 1) and Gamma(α2, 1) respectively, we have

fZ1,Z2(z1, z2) = fZ1(z1) · fZ2(z2) =
1

Γ(α1)Γ(α2)
zα1−1

1 zα2−1
2 e−(z1+z2)

Substituting this in A.7, and using relations A.3 and A.4, we get

fU,V(u, v) = fZ1,Z2(z1, z2) · v = 1
Γ(α1)Γ(α2)

zα1−1
1 zα2−1

2 e−(z1+z2) · v

=⇒ fU,V(u, v) =
1

Γ(α1)Γ(α2)
(uv)α1−1(v(1 − u))α2−1e−v · v

=⇒ fU,V(u, v) =
1

Γ(α1)Γ(α2)
e−v(uv)α1−1vα2−1(1 − u)α2−1 · v

=⇒ fU,V(u, v) =
1

Γ(α1)Γ(α2)
e−vvα1+α2−1(u)α1−1(1 − u)α2−1 (A.8)
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Note that the above joint distribution A.8 can be factorized into a product of

functions which depending only on u and v

fU,V(u, v) =
1

Γ(α1)Γ(α2)
e−vvα1+α2−1(u)α1−1(1 − u)α2−1

=⇒ fU,V(u, v) =
Γ(α1 + α2)
Γ(α1)Γ(α2)

(u)α1−1(1 − u)α2−1 · 1
Γ(α1 + α2)

e−vvα1+α2−1 (A.9)

=⇒ fU,V(u, v) = fU(u) · fV(v) (A.10)

Equation A.9 gives us the result we need and more:

• fU(u) = Γ(α1+α2)
Γ(α1)Γ(α2) (u)α1−1(1 − u)α2−1 is the Beta(α1, α2) density, which gives us

the result we wanted to prove

• U and V are independent random variables

• fV(v) = 1
Γ(α1+α2)e

−vvα1+α2−1, hence V ∼ Gamma(α1 + α2, 1)

As the next few sections will show, these results are critical to a lot of proofs that

follow, and will be used in the empirical work to be discussed in this thesis.

The N-Dimensional Case

The same results will be dervied for the N-Dimensional Dirichlet Distribution.

Essentially, we want to prove the following:
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Theorem 1 Given Zi ∼ Gamma(αi, 1), are IID, (αi > 0 and 1 ≤ i ≤ n) and we

define the variables Ui =
Zi

N∑
i=1

Zi

and V =
N∑

i=1
Zi. Then:

• (U1,U2, . . . ,UN) ∼ Dir(α1, α2, . . . , αN) = Γ(
∑
αi)

Γ(α1)...Γ(αN )u
α1−1
1 uα1−1

2 . . . uαN−1
N =

Γ(
∑
αi)

Γ(α1)...Γ(αN )u
α1−1
1 uα1−1

2 . . . (1 −
N−1∑
i=1

ui)αN−1

• V ∼ Gamma(
N∑

i=1
αi, 1)

• U = (U1,U2, . . . ,UN) and V are independent

An important point to note here is that by definition,
N∑

i=1
Ui = 1. The N th term is

redundant (in the sense that it can be obtained from the remaining N − 1 terms).

Extending the change of variables approach to the N-dimensional case, we now

set out to find the joint distribution of (U1,U2, . . . ,UN−1,V). We represent the Zi’s

as functions of Ui and V to get:

Zi = UiV 0 ≤ i ≤ N − 1 (A.11)

ZN = (1 −
N−1∑
i=1

Ui)V (A.12)

By definition, the joint density is given by

fU1,U2,...,UN−1,V(u1, u2, . . . , uN−1, v) = fZ1,...,ZN (z1, . . . , zN)|J(z1,z2,...,zN−1,zN )→(u1,u2,...,uN−1,v)|

(A.13)

The Jacobian matrix is given by

J(z1,z2,...,zN−1,zN )→(u1,u2,...,uN−1,v) =



∂z1
∂u1

∂z1
∂u2

. . . ∂z1
∂uN−1

∂z1
∂v

∂z2
∂u1

∂z2
∂u2

. . . ∂z2
∂uN−1

∂z2
∂v

...
...
. . .

...
...

∂zN−1
∂u1

∂zN−1
∂u2

. . . ∂zN−1
∂uN−1

∂zN−1
∂v

∂zN
∂u1

∂zN
∂u2

. . . ∂zN
∂uN

∂zN
∂v


(A.14)
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Given A.11 & A.12, the partial derivatives in the Jacobian matrix A.14 are given

by

∂zi

∂ui
= v 0 ≤ i ≤ N − 1 (A.15)

∂zi

∂u j
= 0 j , i, 0 ≤ j ≤ N − 1 (A.16)

∂zi

∂v
= ui 0 ≤ i ≤ N − 1 (A.17)

∂zN

∂ui
= −v 0 ≤ i ≤ N − 1 (A.18)

∂zN

∂v
= 1 −

N−1∑
i=1

ui (A.19)

Substituting A.15, A.16, A.17, A.18 & A.19 in A.14, we get

J(z1,z2,...,zN−1,zN )→(u1,u2,...,uN−1,v) =



v 0 . . . 0 u1

0 v . . . 0 u2

...
...
. . .

...
...

0 0 . . . v uN−1

−v −v . . . −v 1 −∑N−1
i=1 ui


(A.20)

We need the determinant of the Jacobian matrix, which can be computed

easily after making a few elementary row transformation opertaions

|J(z1,z2,...,zN−1,zN )→(u1,u2,...,uN−1,v)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v 0 . . . 0 u1

0 v . . . 0 u2

...
...
. . .

...
...

0 0 . . . v uN−1

−v −v . . . −v 1 −∑N−1
i=1 ui

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.21)
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Apply the transformation RN → RN +
N−1∑
i=1

Ri (where Ri is the ith row of the

determinant) to get

|J(z1,z2,...,zN−1,zN )→(u1,u2,...,uN−1,v)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v 0 . . . 0 u1

0 v . . . 0 u2

...
...
. . .

...
...

0 0 . . . v uN−1

0 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.22)

Using the result in A.22 in A.13, we get

fU1,U2,...,UN−1,V(u1, u2, . . . , uN−1, v) = fZ1,Z2,...,ZN−1,ZN (z1, z2, . . . , zN−1, zN)vN−1 (A.23)

Since Zi are IID Gamma(αi, 1) distributed

fZ1,...,ZN (z1, . . . , zN) =
N∏

i=1

fZi(zi) =
N∏

i=1

1
Γ(αi)

zαi−1
i e−zi =

 N∏
i=1

1
Γ(αi)

zαi−1
i

 e
−

N∑
i=1

zi
(A.24)

Substituting A.24 into A.23, and using the relations in A.11 & A.12

fU1,...,UN−1,V(u1, . . . , uN−1, v) =

 N∏
i=1

1
Γ(αi)

zαi−1
i

 e
−

N∑
i=1

zi · vN−1

=⇒ fU1,...,UN−1,V(u1, . . . , uN−1, v) =

N−1∏
i=1

1
Γ(αi)

zαi−1
i

 1
Γ(αN)

zαN−1
N e−vvN−1

=⇒ fU1,...,UN−1,V(u1, . . . , uN−1, v) =

N−1∏
i=1

1
Γ(αi)

(uiv)αi−1

 1
Γ(αN)

(v(1 −
N−1∑
i=1

ui))αN−1e−vvN−1

(A.25)
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Since UN = 1 −
N−1∑
i=1

Ui, we put this in A.25 to get

fU1,...,UN−1,V(u1, . . . , uN−1, v) =

N−1∏
i=1

1
Γ(αi)

(uiv)αi−1

 1
Γ(αN)

(uNv)αN−1e−vvN−1

=⇒ fU1,...,UN−1,V(u1, . . . , uN−1, v) =

 N∏
i=1

1
Γ(αi)

(uiv)αi−1

 e−vvN−1

=⇒ fU1,...,UN−1,V(u1, . . . , uN−1, v) =

 N∏
i=1

1
Γ(αi)

(ui)αi−1

 v

(
N∑

i=1
αi−N

)
e−vvN−1

=⇒ fU1,...,UN−1,V(u1, . . . , uN−1, v) =

 N∏
i=1

1
Γ(αi)

(ui)αi−1

 v

(
N∑

i=1
αi−1

)
e−v

=⇒ fU1,...,UN−1,V(u1, . . . , uN−1, v) = Γ

 N∑
i=1

αi

  N∏
i=1

1
Γ(αi)

(ui)αi−1

 1

Γ

(
N∑

i=1
αi

)v

(
N∑

i=1
αi−1

)
e−v

=⇒ fU1,...,UN−1,V(u1, . . . , uN−1, v) =
Γ

(
N∑

i=1
αi

)
N∏

i=1

1
Γ(αi)

 N∏
i=1

(ui)αi−1

 1

Γ

(
N∑

i=1
αi

)v

(
N∑

i=1
αi−1

)
e−v

=⇒ fU1,...,UN−1,V(u1, . . . , uN−1, v) = Dir(α1, α2, . . . , αN) ·Gamma(
N∑

i=1

αi, 1) (A.26)

Which establishes (1) U = (U1,U2, . . . ,UN−1,UN) & V are independent, (2)

(U1,U2, . . . ,UN−1,UN) ∼ Dir(α1, α2, . . . , αN) & V ∼ Gamma(
N∑

i=1
αi, 1). This completes

the proof of theorem 1.

We also prove the following useful property of the Dirichlet Distribution:

Theorem 2 If U = (U1, . . . ,Ui,Ui+1, . . . ,UN) ∼ Dir(α1, . . . , αi, αi+1, . . . , αN) then

U′ = (U1,U2, . . . ,Ui + Ui+1, . . . ,UN) ∼ Dir(α1, α2, . . . , αi + αi+1, . . . , αN)

In general, U′′ = (
k1∑

i=1
Ui,

k2∑
i=k1+1

Ui, . . . ,
N∑

i=k j+1
Ui) ∼ Dir(

k1∑
i=1
αi,

k2∑
i=k1+1

αi, . . . ,
N∑

i=k j+1
αi)

We prove the first part of theorem 2 here. The rest follows by simply extending

the proof. The strategy here is to construct IID Gamma distributed variables
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with appropriate parameters, and then derive the distribution of U′ using the

results in theorem 1. Assume Zi’s are IID ∼ Gamma(αi, 1). From theorem 1, I

have Zi,i+1 = Zi + Zi+1 ∼ Gamma(αi + αi+1, 1). By definition, Zi,i+1 is independent of

Z j’s for 1 ≤ j ≤ N, j , i, i+ 1. We now define U′ = (U1,U2, . . . ,Ui +Ui+1, . . . ,UN) =

(U1,U2, . . . ,Ui,i+1, . . . ,UN), where U j =
Z j

N∑
j,i,i+1

Z j+Zi,i+1

. From theorem 1, it follows that

U′ ∼ Dir(α1, α2, . . . , αi + αi+1, . . . , αN). The second part of theorem 2 follows from

similar reasoning.

Theorem 2 can be used to get the marginal distributions of the Ui’s, where U =

(U1, . . . ,Ui, . . . ,UN). Define U′ = (Ui,
N∑
j,i

U j). From theorem 2, this is distributed

Dir(αi,
N∑
j,i
α j) = Beta(αi,

N∑
j,i
α j). Since

N∑
j,i

U j = 1 − Ui, the density function can be

expressed purely as a function of Ui, which is the marginal distribution of Ui.

Formally:

Theorem 3 If U = (U1, . . . ,UN) ∼ Dir(α1, . . . , αN) then Ui ∼ Beta(αi,
N∑
j,i
α j)

Note that theorem 2 is a more general version of theorem 3. Another key prop-

erty of the Dirichlet Distribution is discussed below:

Theorem 4 If U = (U1, . . . ,UN) ∼ Dir(α1, . . . , αN) and when k < N, then

1

(1−
N∑

j=k+1
U j)

(U1, . . . ,Uk) ∼ Dir(α1, . . . , αk)

Here, we note the term that divides each component of the vector (U1, . . . ,Uk)

is (1 −
N∑

j=k+1
U j), which is nothing but

k∑
j=1

U j, since
N∑

j=1
U j = 1. Assume {Zi}Ni=1, are N

IID Gamma distributed random variables, with Zi ∼ Gamma(αi, 1)∀ i = 1, . . . ,N.

In theorem 1, it was shown that when Ui = Zi/(
N∑

j=1
Z j)∀ i = 1, . . . ,N, then U =
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(U1, . . . ,UN) ∼ Dir(α1, . . . , αN). With this construction, we now have:

Xi =
Ui

1 −
N∑

j=k+1
U j

=
Ui

k∑
j=1

U j

∀ i = 1, . . . , k (A.27)

Since Ui = Zi/(
N∑

j=1
Z j)∀ i = 1, . . . ,N, we put this in A.27 to get:

Xi =
Ui

k∑
j=1

U j

=
Zi

k∑
j=1

Z j

∀ i = 1, . . . , k (A.28)

From theorem 1, we know that X = (X1, . . . , Xk) ∼ Dir(α1, . . . , αk), which com-

pletes the proof. This property of the Dirichlet Distribution is also called the

complete neutral property [2].

With theorem 3, we can easily compute the expected values and the variances

of each of the Ui’s. Setting
N∑
j,i
α j = α−i, Ui is distributed Beta(αi, α−i). We compute

the expected value as follows:

E(Ui) =
∫ 1

0

Γ(αi + α−i)
Γ(αi)Γ(α−i)

uαi−1
i (1 − ui)α−i−1uidui

=⇒ E(Ui) =
∫ 1

0

Γ(αi + α−i)
Γ(αi)Γ(α−i)

uαi
i (1 − ui)α−i−1dui

=⇒ E(Ui) =
Γ(αi + α−i)
Γ(αi)Γ(α−i)

∫ 1

0
uαi

i (1 − ui)α−i−1dui (A.29)

The integral in A.29 takes the form of another integral studied by Euler [29], and

is given by Γ(αi+1)Γ(α−i)
Γ(αi+α−i+1) . Also using the fact that when n ∈ R+,Γ(n + 1) = nΓ(n) in

A.29, we get:

E(Ui) =
Γ(αi + α−i)
Γ(αi)Γ(α−i)

· Γ(αi + 1)Γ(α−i)
Γ(αi + α−i + 1)

=⇒ E(Ui) =
Γ(αi + α−i)
Γ(αi)Γ(α−i)

· αiΓ(αi)Γ(α−i)
(αi + α−i)Γ(αi + α−i)

=⇒ E(Ui) =
Γ(αi + α−i)
Γ(αi)Γ(α−i)

· αiΓ(αi)Γ(α−i)
(αi + α−i)Γ(αi + α−i)

=⇒ E(Ui) =
αi

αi + α−i
(A.30)
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The variance of Ui is computed similarly. Since Var(Ui) = E(U2
i ) − E(Ui)2, we

compute E(U2
i ) first, and then compute the variance, as shown below:

E(U2
i ) =

∫ 1

0

Γ(αi + α−i)
Γ(αi)Γ(α−i)

uαi−1
i (1 − ui)α−i−1u2

i dui

=⇒ E(U2
i ) =

∫ 1

0

Γ(αi + α−i)
Γ(αi)Γ(α−i)

uαi+1
i (1 − ui)α−i−1dui

=⇒ E(U2
i ) =

Γ(αi + α−i)
Γ(αi)Γ(α−i)

∫ 1

0
uαi+1

i (1 − ui)α−i−1dui

=⇒ E(U2
i ) =

Γ(αi + α−i)
Γ(αi)Γ(α−i)

∫ 1

0
uαi+1

i (1 − ui)α−i−1dui

=⇒ E(U2
i ) =

Γ(αi + α−i)
Γ(αi)Γ(α−i)

· Γ(αi + 2)Γ(α−i)
Γ(αi + α−i + 2)

=⇒ E(U2
i ) =

Γ(αi + α−i)
Γ(αi)Γ(α−i)

· αi(αi + 1)Γ(αi)Γ(α−i)
(αi + α−i)(αi + α−i + 1)Γ(αi + α−i)

=⇒ E(U2
i ) =

αi(αi + 1)
(αi + α−i)(αi + α−i + 1)

Var(Ui) = E(U2
i ) − E(Ui)2 =

αi(αi + 1)
(αi + α−i)(αi + α−i + 1)

−
(
αi

αi + α−i

)2

=⇒ Var(Ui) =
αi(αi + 1)(αi + α−i) − α2

i (αi + α−i + 1)
(αi + α−i)2(αi + α−i + 1)

=⇒ Var(Ui) =
αiα−i

(αi + α−i)2(αi + α−i + 1)
(A.31)

The derivation of the covariance between two components of an N-dimensional

Dirichlet random vector U = (U1, . . . ,UN) is a little more involved. From theo-

rem 2, we know that (Ui,U j,
∑

k,i, j
Uk) ∼ Dir(α1, α2,

∑
k,i, j
αk). Let:

V =
∑
k,i, j

Uk

β =
∑
k,i, j

αk

We then have (from theorem 2):

(Ui,U j,V) ∼ Dir(αi, α j, β) (A.32)

We know Cov(Ui,U j) = E(UiU j) − E(Ui)E(U j). We know E(Ui) from A.30 and
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E(UiU j) by definition is given by:

E(UiU j) =
∫ 1

0

∫ 1−u j

0

Γ(αi + α j + β)
Γ(αi)Γ(α j)Γ(β)

uαi−1
i uα j−1

j (1 − ui − u j)β−1uiu jduidu j

=⇒ E(UiU j) =
∫ 1

0

Γ(αi + α j + β)
Γ(αi)Γ(α j)Γ(β)

uα j

j

[∫ 1−u j

0
uαi

i (1 − ui − u j)β−1dui

]
du j (A.33)

Where we used the fact that V = 1 −Ui −U j. Denoting the inner integral in A.33

by I and letting a = 1 − u j, we have:

I =
∫ a

0
uαi

i (a − ui)β−1dui = aαi+β−1
∫ a

0

(ui

a

)αi
(
1 − ui

a

)β−1
dui (A.34)

Set xi = ui/a, so that dui = adxi and the limits of the integral I change from 0 → a

to 0 → 1. Equation A.34 now becomes:

I = aαi+β−1
∫ 1

0
xαi

i (1 − xi)β−1adxi = aαi+β

∫ 1

0
xαi

i (1 − xi)β−1dxi (A.35)

As noted before, the integral in A.35 takes the form of another integral studied

by Euler [29], and is given by Γ(αi+1)Γ(β)
Γ(αi+β+1) . Putting this back in A.35, we get:

I = aαi+β

∫ 1

0
xαi

i (1 − xi)β−1dxi = aαi+β
Γ(αi + 1)Γ(β)
Γ(αi + β + 1)

= (1 − u j)αi+β
Γ(αi + 1)Γ(β)
Γ(αi + β + 1)

(A.36)

Since a = (1 − u j) by definition. Putting A.36 back in A.33 we get:

E(UiU j) =
∫ 1

0

Γ(αi + α j + β)
Γ(αi)Γ(α j)Γ(β)

uα j

j

[
(1 − u j)αi+β

Γ(αi + 1)Γ(β)
Γ(αi + β + 1)

]
du j

=⇒ E(UiU j) =
Γ(αi + α j + β)
Γ(αi)Γ(α j)Γ(β)

Γ(αi + 1)Γ(β)
Γ(αi + β + 1)

∫ 1

0
uα j

j (1 − u j)αi+βdu j

=⇒ E(UiU j) =
Γ(αi + α j + β)
Γ(α j)

αi

Γ(αi + β + 1)

∫ 1

0
uα j

j (1 − u j)αi+βdu j (A.37)

Since Γ(αi + 1) = αiΓ(αi). We find an integral in A.37 which we saw before, and

by the same standard result [29], this integral equals Γ(α j+1)Γ(αi+β+1)
Γ(αi+α j+β+2) . Putting this
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back in A.37, we get:

E(UiU j) =
Γ(αi + α j + β)
Γ(α j)

αi

Γ(αi + β + 1)
Γ(α j + 1)Γ(αi + β + 1)
Γ(αi + α j + β + 2)

=⇒ E(UiU j) =
αiΓ(α j + 1)Γ(αi + α j + β)
Γ(α j)Γ(αi + α j + β + 2)

=⇒ E(UiU j) =
αiα j

(αi + α j + β)(αi + α j + β + 1)
=

αiα j(
N∑

k=1
αk

) (
N∑

k=1
αk + 1

) (A.38)

Since β =
∑

k,i, j
αk by definition, we have αi + α j + β =

N∑
k=1
αk. Let α =

N∑
k=1
αk. The

covariance is now given by:

Cov(Ui,U j) = E(UiU j) − E(Ui)(UJ) =
αiα j

(α)(α + 1)
− αi

α

α j

α
= −

αiα j

(α2)(α + 1)
(A.39)

The three results (expected value, variance and covariance) are formally stated

below:

Theorem 5 If Ui = (U1, . . . ,UN) ∼ Dir(α1, . . . , αN), then

E(Ui) =
αi

α
(A.40)

Var(Ui) =
αiα−i

(αi + α−i)2(αi + α−i + 1)
(A.41)

Cov(Ui,U j) = −
αiα j

(α2)(α + 1)
(A.42)

Where α =
N∑

k=1
αk and α−i = α − αi for i = 1, 2, . . . ,N
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