
EXTREME VALUE THEORY FOR LONG RANGE DEPENDENT
STABLE RANDOM FIELDS

ZAOLI CHEN AND GENNADY SAMORODNITSKY

Abstract. We study the extremes for a class of a symmetric stable random fields with
long range dependence. We prove functional extremal theorems both in the space of sup
measures and in the space of cadlag functions of several variables. The limits in both
types of theorems are of a new kind, and only in a certain range of parameters these
limits have the Fréchet distribution.

1. Introduction

Extreme value theorems describe the limiting behaviour of the largest values in in-
creasingly large collections of random variables. The classical extremal theorems, begin-
ning with Fisher and Tippett (1928) and Gnedenko (1943), deal with the extremes of i.i.d.
(independent and identically distributed) random variables. The modern extreme value
theory techniques allow us to study the extremes of dependent sequences; see Leadbetter
et al. (1983) and the expositions in Coles (2001) and de Haan and Ferreira (2006). The ef-
fect of dependence on extreme values can be restricted to a loss in the effective sample size,
through the extremal index of the sequence. When the dependence is sufficiently long, more
significant changes in extreme value may occur; see e.g. Samorodnitsky (2004), Owada and
Samorodnitsky (2015b). The present paper aims to contribute to our understanding of the
effect of memory on extremes when the time is of dimension larger than 1, i.e. for random
fields.

We consider a discrete time stationary random field X =
(
Xt, t ∈ Zd

)
. For n =

(n1, . . . , nd) ∈ Nd we would like to study the extremes of the random field over growing
hypercubes of the type

[0,n] =
{
0 ≤ k ≤ n

}
, n→∞ ,

where 0 is the vector with zero coordinates, the notation s ≤ t for vectors s = (s1, . . . , sd)
and t = (t1, . . . , td) means that si ≤ ti for all i = 1, . . . , d, and the notation n→∞ means
that all d components of the vector n tend to infinity. Denote

Mn = max
0≤k≤n

Xt .
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What limit theorems does the array (Mn) satisfy? It was shown by Leadbetter and Rootzén
(1998) that under appropriate strong mixing conditions, only the classical three types of
limiting distributions (Gumbel, Fréchet and Weibull) may appear (even when forcing n→
∞ along a monotone curve). In the case when the marginal distributions of the field X
have regularly varying tails, this allows only the Fréchet distribution as a limit.

In this paper we will discuss only random fields with regularly varying tails, in which
case the experience from the classical extreme value theory tells us to look for limit theorems
for the type

(1.1)
1

bn
Mn ⇒ Y as n→∞

for some nondegenerate random variable Y . The regular variation of the marginal distri-
butions means that

(1.2) P (X(0) > x) = x−αL(x), α > 0, L slowly varying,

see e.g. Resnick (1987). Notice that the assumption is only on the right tail of the distri-
bution since, in most cases, one does not expect a limit theorem for the partial maxima as
in (1.1) to be affected by the left tail of X(0).

If the random field X consists of i.i.d. random variables satisfying the regular variation
condition (1.2), then the classical extreme value theory tells us that the convergence in (1.1)
holds if we choose

(1.3) bn = inf
{
x > 0 : P (X(0) > x) ≤ (n1 · · ·nd)−1

}
,

in which case the limiting random variable Y has the standard Fréchet distribution. We are
interested in understanding how the spatial dependence in the random field X affects the
scaling in and the distribution of the limit not only in (1.1), but in its functional versions,
which can be stated in different spaces, for example in the space D(Rd+) of right continuous,
with limits along monotone paths, functions (see Straf (1972)), or in the space of random
sup measuresM(Rd+); see O’Brien et al. (1990). We will describe the relevant spaces below.

If the time is one-dimensional, and the memory in the stationary process is short,
then the standard normalization (1.3) is still the appropriate one, and the limits both in
(1.1) and its functional versions change only through a change in a multiplicative constant;
see Samorodnitsky (2016) and references therein. However, when the memory becomes
sufficiently long, both the order of magnitude of the normalization in the limit theorems
changes, and the nature of the limit changes as well; see Samorodnitsky (2004) and Owada
and Samorodnitsky (2015b). Furthermore, the limit may even stop having the Fréchet dis-
tribution (or Fréchet marginal distributions, in the functions limit theorems); see Samorod-
nitsky and Wang (2017). It is reasonable to expect that similar phenomena happen for
random fields, but because it is harder to quantify how long the memory is when the time
is not one-dimensional, less is known in this case.

In this paper we will concentrate on the case where the random field X is a symmetric
α-stable (SαS) random field, 0 < α < 2. Recall that this means that every finite linear
combination of the values of the values of the random field has a one-dimensional SαS
distribution, i.e. has a characteristic function of the form exp{−σα|θ|α}, θ ∈ R, where
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σ ∈ [0,∞) is a scale parameter that depends on the linear combination; see Samorodnitsky
and Taqqu (1994). The marginal distributions of SαS random fields satisfy the regular
variation assumption (1.2) with 0 < α < 2 that coincides with the index of stability. In this
case a series of results on the relation between the sizes of the extremes of stationary SαS
random fiels and certain ergodic-theoretical properties of the Lévy measures of these fields
is due to Parthanil Roy and his coworkers; see Roy and Samorodnitsky (2008), Chakrabarty
and Roy (2013), Sarkar and Roy (2016). These results are made possible because of the
connection between the structure of the SαS random fields and ergodic theory established
by Rosiński (2000).

This paper contributes to understanding the extremal limit theorems for SαS random
fields and their connection to the dynamics of the Lévy measures. In this sense our paper
is related to the ideas of Rosiński (2000). However, we will restrict ourselves to certain
Markov flows. This will allow us to avoid, to a large extent, the language of ergodic theory,
and state everything in purely probabilistic terms. There is not doubt, however, that our
results could be extended to more general dynamical systems acting on the Lévy measures
of SαS random fields. The generality in which work is sufficient to demonstrate the new
phenomena that may arise in extremal limit theorems for random fields with long range
dependence. We will exhibit new types of limits, some of which will have non-Fréchet
distributions, both in the space of random sup measures and in the space D(Rd+).

This paper is organized as follows. In Section 2 we introduce the class of stationary
symmetric α-stable random fields we will study in this paper. In Section 3 we provide some
background on random closed sets and random sup measures, and describe the limiting
random sup measure that appears as the weak limit the extremal theorem in Section 4.
Finally, in Section 5 we prove versions of our extremal limit theorems in the space D(Rd+).

Notation: For a function g on an arbitrary set with values in a linear space we
denote the set of zeros of g by Z(g). Arithmetic operations involved vectors are per-
formed component-wise. Thus, if x = (x1, . . . , xd) and y = (y1, . . . , yd), then, say, xy =
(x1y1, . . . , xdyd). This extends to sets: if A = A1× · · · ×Ad, then xA = x1A1× · · · ×xdAd.

2. A SαS random field with long range dependence

We start with a construction of a family of stationary SαS random fields, 0 < α < 2,
whose memory has a natural finite-dimensional parameterization. It is an extension to
random fields of models considered before in the case of one-dimensional time; see e.g.
Resnick et al. (2000), Samorodnitsky (2004), Owada and Samorodnitsky (2015a,b), Owada
(2016) and Lacaux and Samorodnitsky (2016).

We start with d σ-finite, infinite measures on
(
ZN0 ,B(ZN0)

)
defined by

(2.1) µi :=
∑
k∈Z

π
(i)
k P

(i)
k ,

where for i = 1, . . . , d, P (i)
k is the law of an irreducible aperiodic null-recurrent Markov

chain (Y
(i)
n )n≥0 on Z starting at Y (i)

0 = k ∈ Z. Further, (π
(i)
k )k∈Z is its unique (infinite)
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invariant measure satisfying π(i)
0 = 1. Given this invariant measure, we can extend the

probability measures P (i)
k from measures on ZN0 to measures on ZZ which, in turn, allows

us to extend the measure µi in (2.1) to ZZ as well. We will keep using the same notation
as in (2.1).

We will work with the product space

(E, E) =
(
ZZ × · × ZZ, B(ZZ)× · × B(ZZ)

)
of d copies of

(
ZZ,B(ZZ)

)
, on which we put the product, σ-finite, infinite, measure

µ = µ1 × · × µd .

The key assumption is a regular variation assumption on the return times of the Markov
chains (Y

(i)
n )n≥0, i = 1, . . . , d. For x = (. . . , x−1, x0, x1, x2 . . .) ∈ ZZ we define the first

return time to the origin by ϕ(x) = inf{n ≥ 1 : xn = 0}. We assume that for i = 1, . . . , d
we have

(2.2) P
(i)
0 (ϕ > n) ∈ RV−βi

for some 0 < βi < 1. This implies that

µi ({x : xk = 0 for some k = 0, 1, . . . , n})(2.3)

∼
n∑
k=1

P
(i)
0 (ϕ > k) ∼ (1− βi)−1nP

(i)
0 (ϕ > n) ∈ RV1−βi .

See Resnick et al. (2000).

On ZZ there is a natural left shift operator

T
(
(. . . , x−1, x0, x1, x2 . . .)

)
= (. . . , x0, x1, x2, x3 . . .) .

It is naturally extended to a group action of Zd on E as follows. Writing an element x ∈ E
as x = (x(1), . . . ,x(d)) with x(i) = (. . . , x

(i)
−1, x

(i)
0 , x

(i)
1 , x

(i)
2 . . .)

)
∈ ZZ for i = 1, . . . , d, we set

for n = (n1, . . . , nd) ∈ Zd,

(2.4) Tnx = (Tn1x(1), . . . , Tndx(d)) ∈ E .
Even though we are using the same notation T for operators acting on different spaces, the
meaning will always be clear from the context. Note that each individual left shift T on(
ZN0 ,B(ZN0), µj

)
is measure preserving (because each (π

(j)
i )i∈Z is an invariant measure.) It

is also conservative and ergodic by Theorem 4.5.3 in Aaronson (1997). Therefore, the group
action T = {Tn : n ∈ Zd} is conservative, ergodic and measure preserving on (E, E , µ).

Equipped with a measure preserving group action on the space (E, E) we can now
define a stationary symmetric α-stable random field by

(2.5) Xn =

∫
E
f ◦ Tn(x)M(dx), n ∈ Zd ,

where M is a SαS random measure on (E, E) with control measure µ, and

(2.6) f(x) = 1(x(i) ∈ A, i = 1, . . . , d), x = (x(1), . . . ,x(d)) .
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where A = {x ∈ ZZ : x0 = 0}. Clearly, f ∈ Lα(µ), which guarantees that the integral in
(2.5) is well defined. We refer the reader to Samorodnitsky and Taqqu (1994) for general in-
formation on stable processes and integrals with respect to stable measures, and to Rosiński
(2000) on more details on stationary stable random fields and their representations.

The random field model defined by (2.5) is attractive because the key parameters
involve in its definition have a clear intuitive meaning: the index of stability 0 < α < 2 is
responsible for the heaviness of the tails, while 0 < βi < 1, i = 1, . . . , d (defined in (2.2)) are
responsible for the “length of the memory”. The latter claim is not immediately obvious,
but its (informal) validity will become clearer in the sequel.

The following array of positive numbers will play the crucial role in the extremal limit
theorems in this paper. Denote for n = 1, 2, . . . and i = 1, . . . , d,

b(i)n =
(
µi ({x : xk = 0 for some k = 0, 1, . . . , n})

)1/α
,

and let

(2.7) bn =

d∏
i=1

b(i)ni , n = (n1, . . . , nd) ∈ Nd0 .

Then bαn = µ(Bn), where

Bn = {x = (x(1), . . . ,x(d)) ∈ E : x
(i)
ki

= 0 for some 0 ≤ ki ≤ ni, each i = 1, . . . , d} .

Therefore, we can define, for each n ∈ Nd0, a probability measure ηn on (E, E) by

(2.8) ηn(·) = b−αn µ(· ∩Bn) .

This probability measure allows us to represent the restriction of the stationary SαS random
field X in (2.5) to the hypercube [0,n] = {0 ≤ k ≤ n} as a series, described below, and
that we will find useful in the sequel. It is useful to note also that the measure ηn is
the product measure of d probability measures on

(
ZZ,B(ZZ)

)
: ηn = η

(1)
n1 × · × η

(d)
nd for

n = (n1, . . . , nd) ∈ Nd0, where for i = 1, . . . , d and n ≥ 0,

(2.9) η(i)
n (·) = (b(i)n )−αµi

(
· ∩ {x ∈ ZZ : xk = 0 for some 0 ≤ k ≤ n}

)
.

The restriction of the stationary SαS random field X in (2.5) to the hypercube [0,n]
admits, in law, the series representation

(2.10) Xk = bnC
1/α
α

∞∑
j=1

εjΓ
−1/α
j 1Ad ◦ Tk(Uj,n), 0 ≤ k ≤ n ,

with Ad = A×·×A the direct product of d copies of A and A is in (2.6), where the constant
Cα is the tail constant of the α-stable random variable:

Cα =

(∫ ∞
0

x−α sinxdx

)−1

=

{
1−α

Γ(2−α) cos(πα/2) α 6= 1

2/π α = 1
.

Furthermore, {εj} is a iid sequence of Rademacher random variables, {Γj} is the sequence
of the arrival times of a unit rate Poisson process on (0,∞), and {Uj,n} are iid E-valued ran-
dom elements with common law ηn. The sequence {εj}, {Γj} and {Uj,n} are independent.
See Samorodnitsky and Taqqu (1994) for details.
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3. Stable regenerative sets and random sup measures

In this section we describe the limiting object one obtains in an extremal limit theorem
from the random fieldX of the previous section. We start with a bit of technical background
information on random closed sets and random sup measures. The reader should consult
Molchanov (2017) for more details.

Let E be a locally compact and second countable Hausdorff topological space (it will
be Rd or [0, 1]d in our case). We denote by G,F ,K the families of open, closed, compact sets
of E, respectively. The Fell topology on the space F of closed sets has a subbasis consisting
of the sets

FG = {F ∈ F : F ∩G 6= ∅}, G ∈ G
FK = {F ∈ F : F ∩K = ∅}, K ∈ K .

The Fell topology is metrizable and compact.

A random closed set is a measurable mapping from a probability space to F equipped
with the Borel σ-field B(F) generated by the Fell topology. A specific random closed set
in R, the so-called stable regenerative set, is the key for describing the main results of this
paper.

For 0 < β < 1 let (Lβ(t), t ≥ 0) be the standard β-stable subordinator. That is, it is
an increasing Lévy process with Laplace transform Ee−θLβ(t) = e−tθ

β , θ ≥ 0. The β-stable
regenerative set is defined to be the closure of the range of the β-subordinator, viewed as a
random closed set of R:

(3.1) Rβ
d

:= {Lβ(t) , t ≥ 0} .

See e.g. Fitzsimmons and Taksar (1988). Products of shifted stable regenerative sets
produce random closed subsets of Rd as follows.

For 0 < βi < 1, i = 1, . . . , d, let R(i)
βi
, i = 1, . . . , d be independent βi-stable regenerative

sets. Let v(i) > 0, i = 1, . . . , d, and denote R̃(i)
βi

= v(i) +R
(i)
βi
. Then

R̃β :=

d∏
i=1

R̃
(i)
βi

(3.2)

is a random closed subset of Rd. Such random closed sets have interesting intersection
properties. The following proposition follows from Lemma 3.1 of Samorodnitsky and Wang
(2017).

Proposition 3.1. Let {R̃β,j}j≥1 be independent random closed sets in Rd as defined by
(3.2). Suppose that the corresponding shift vectors (v

(i)
j , i = 1, . . . , d)j≥1 satisfy v(i)

j1
6= v

(i)
j2

if j1 6= j2 for each i = 1, . . . , d. Then for any m = 1, 2, . . .,

P (∩mj=1R̃β,j 6= ∅) = 0 or 1 .

The probability is equal to 1 if and only if m < mini=1,...,d(1− βi)−1.
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The next object to define is a sup measure. For simplicity we take E be the space
[0, 1]d or Rd. The details of the presentation below can be found in O’Brien et al. (1990).
A map m : G → [0,∞] a called sup measure if m(∅) = 0 and for an arbitrary collection of
open sets {Gγ} we have m(∪γGγ) = supγm(Gγ).

The sup derivative d∨m of a sup measure m is defined by

(3.3) d∨m(t) := inf
t∈G

m(G), G ∈ G .

It is automatically an upper semi-continuous function. Conversely, for any function f :
E→ [0,∞], its sup integral i∨f is defined as

(3.4) i∨f(G) := sup
t∈G

f(t), G ∈ G .

If f is upper semi-continuous, then f = d∨i∨f . Furthermore, m = i∨d∨m, and one can
use (3.4) to extend the domain of a sup measures to sets that are not necessarily open, by
setting

m(B) := sup
t∈B

d∨m(t), B ⊂ E .

On the space SM of all sup measures we introduce a topology, the so-called sup vague
topology, by saying that a sequence {mn} of sup measures converges to a sup measure m if

lim sup
n→∞

mn(K) ≤ m(K) for all K ∈ K and lim inf
n→∞

mn(G) ≥ m(G) for all G ∈ G.

The space of sup measures with sup vague topology is compact and metrizable; see Theorem
2.4. in Norberg (1990), and we will often use the notation M(E) for the space of sup
measures on E.

A random sup measure is a measurable map from a probability space into SM equipped
with the Borel σ-field induced by the sup vague topology. For a random sup measure η,
a continuity set is an open set G such that η(G) = η(Ḡ) (the closure of G) a.s., and a
useful criterion for weak convergence in the sup vague topology of random sup-measures
is as follows. Let {ηn}n≥1 be a sequence of random sup measures, and η a random sup
measure. Then ηn ⇒ η if and only if

(3.5) (ηn(B1), . . . , ηn(Bm))⇒ (η(B1), . . . , η(Bm))

for arbitrary disjoint open rectangles B1, . . . , Bm in E that are continuity sets for η.

We are now ready to construct the random sup measure that will appear as the limit
in the extremal limit theorem in the space SM of the next section. We will define this
measure through its sup derivative, which is a random upper semi-continuous function. Let
0 < βi < 1, i = 1, . . . , d. We start with d independent families of iid βi-stable regenerative
sets {R(i)

βi,j
}j≥1, i = 1, . . . , d. Furthermore, let (Uα,j , Vβ,j)j≥1 be a measurable enumeration

of the points of a Poisson point process on R× Rd, independent of the stable regenerative
sets, with the mean measure

αu−1−αdu
d∏
i=1

(1− βi)v−βii dvi, u, v1, . . . , vd > 0 .
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Then the triples (Uα,j , Vβ,j , Rβ,j)j≥1 form a Poisson point process on R×Rd×F(Rd) with
the mean measure

(3.6) αu−1−αdu

(
d∏
i=1

(1− βi)v−βii dvi

)
dP̃β, u, v1, . . . , vd > 0 .

Here P̃β is a probability measure on F(R)d defined by

P̃β = (Pβ1 × · · · × Pβd) ◦H
−1 ,

with Pβ being the law of the β-stable regenerative set, in (3.1), and H : (F(R))d → F(Rd)
is defined by

H(F1, . . . , Fd) = F1 × · · · × Fd .
Let

(3.7) ηα,β(t) =

∞∑
j=1

Uα,j1{t∈Vβ,j+Rβ,j} t ∈ Rd .

Several observations are in order. First of all, by Proposition 3.1, on event of probability
1, for each t the series in (3.7) has less than

`(β) := min
i=1,...,d

(1− βi)−1

non-zero terms, so there are no convergence issues. On the same event the function defined
by (3.7) is upper semi-continuous. Indeed, for any finite ` the function∑̀

j=1

Uα,j1{t∈Vβ,j+Rβ,j} t ∈ Rd

is upper semi-continuous since each terms in this finite sum is upper semi-continuous due
to the fact that each shifted product of stable regenerative sets is a closed set. Moreover, it
is easy to check that, on each compact set, the uniform distance between this function and
that defined in (3.7), goes to zero as `→∞; see p. 10 in Samorodnitsky and Wang (2017).

We now define a random sup measure as the sup integral of the random upper semi-
continuous function in (3.7), and we will use the same notation, ηα,β, for this sup measure.
That is,

(3.8) ηα,β(B) = sup
t∈B

∞∑
j=1

Uα,j1{t∈Vβ,j+Rβ,j}, B ∈ B(Rd) .

Remark 3.1. The random sup measure ηα,β defined by (3.8) is stationary, in the sense
that for every x ≥ 0, ηα,β(·+x)

d
= ηα,β. This follows from the shift invariance of the law the

random upper semi-continuous function in (3.7) as in Proposition 3.2 in Samorodnitsky and
Wang (2017) dealing with the case d = 1. The argument in that proposition also shows that
the random sup measure ηα,β is self-similar, in the sense that for any c1 > 0, . . . , cd > 0,

ηα,β ◦ pc1,...,cd
d
=

d∏
i=1

c
(1−βi)/α
i ηα,β ,

where pc1,...,cd : Rd → Rd is the multiplication functional pc1,...,cd(t1, . . . , td) = (c1t1, . . . , cdtd).



EXTREME VALUE THEORY FOR RANDOM FIELDS 9

Importantly„ ηα,β is a Fréchet random sup measure if and only if the sets (Vβ,j +
Rβ,j), j = 1, 2, . . . are a.s. disjoint. According to Proposition 3.1, a necessary and sufficient
condition for this is βi ≤ 1/2 for some i = 1, . . . , d.

The restriction of the random sup measure ηα,β in (3.8) to the hypercube [0,1] has a
somewhat more convenient representation. Let {R(i)

βi,j
}j≥1, i = 1, . . . , d be as stable regen-

erative sets as above, and let {V (i)
j }j≥1 be d independent families of iid random variables

on [0, 1] with distributions given by

(3.9) P (V
(i)

1 ≤ x) := x1−βi , x ∈ [0, 1] .

Let now {Γj} be the sequence of the arrival times of a unit rate Poisson process on (0,∞).
Assume that the families {V (1)

j }j≥1, . . . , {V (d)
j }j≥1, {R(1)

β1,j
}j≥1, . . . , {R(d)

βd,j
}j≥1 and the Pois-

son process are independent. Denoting

R̃
(i)
βi,j

= V
(i)
j +R

(i)
βi,j

, 1 ≤ i ≤ d, j ≥ 1

and

R̃β,j =

d∏
i=1

R̃
(i)
βi,j
⊂ Rd ,

an alternative representation for the random upper semi-continuous function in (3.7) re-
stricted to [0,1] is

(3.10) ηα,β(t) =

∞∑
j=1

Γ
−1/α
j 1{t∈R̃β,j}, t ∈ [0, 1]d ,

with the corresponding change in (3.8).

4. Convergence of the random sup measures

In this section we establish the first functional extremal theorem for the stationary
random field X in (2.5). The random field naturally induces a family of random sup-
measures {ηn}n∈Nd by

(4.1) ηn(B) := max
k/n∈B

Xk, B ∈ B([0,∞)d) .

In the following theorem we prove an extremal theorem in the space of the random sup
measures.

Theorem 4.1. For all 0 < α < 2 and 0 < βi < 1, i = 1, . . . , d,

(4.2)
1

bn
ηn ⇒

(
Cα
2

)1/α

ηα,β, n→∞ ,

where ηα,β is the random sup-measure defined in (3.7). The weak convergence holds in the
space of sup measuresM(Rd) equipped with the sup vague topology.
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To simplify the notation, we will show the weak convergence inM([0,1]). Note that
by (2.10) we can represent, in law, the sup measure in the left hand side of (4.2) as

(4.3)
1

bn
ηn(B) = max

k/n∈B
C1/α
α

∞∑
j=1

εjΓ
−1/α
j 1Ad ◦ Tk(Uj,n), B ∈ B([0, 1]d) .

As it is often done, we prove Theorem 4.1 via a truncation argument. We fix an ` ∈ N
and construct a truncated random sup-measure ηn,` so that

(4.4)
1

bn
ηn,`(B) = max

k/n∈B
C1/α
α

∑̀
j=1

εjΓ
−1/α
j 1Ad ◦ Tk(Uj,n), B ∈ B([0, 1]d) .

Note that we can write

Uj,n(k) =
(
U

(1)
j,n1

(k1), . . . , U
(d)
j,nd

(kd)
)

for n = (n1, . . . , nd) and k = (k1, . . . , kd), with independent components in the right hand
side, where U (i)

j,n has the law η(i) given in (2.9), i = 1, . . . , d. Therefore, the set of zeroes of
Uj,n satisfies

Z(Uj,n) = Z(U
(1)
j,n1

)× · · · × Z(U
(d)
j,nd

) .

To proceed, we need to introduce new notation. Let S ⊂ N. We set

Î
(i)
S,n = ∩j∈SZ(U

(i)
j,n), i = 1, . . . , d, n ≥ 1, ÎS,n = ∩j∈SZ(Uj,n), n ∈ Nd,

I
(i)
S = ∩j∈SR̃(i)

βi,j
, i = 1, . . . , d, IS = ∩j∈SR̃β,j .

At this stage the random objects described above do not need to be defined on the same
probability space. We need the following extension of Theorem 5.4 of Samorodnitsky and
Wang (2017).

Proposition 4.1. (
1

n
ÎS,n

)
S⊂{1,...,`}

⇒ (IS)S⊂{1,...,`}, n→∞ ,

in
(
F([0,1])

)2` .
Proof. By Theorem 5.4 of Samorodnitsky and Wang (2017), for each i = 1, . . . , d and
S ⊂ {1, . . . , `},

1

n

[
Î

(i)
S,n ∩ [0, 1]

]
⇒ I

(i)
S ∩ [0, 1], n→∞ ,

in the sense of weak convergence of random closed sets. By Corollaries 1.7.13 and 1.7.14
in Molchanov (2017) applied to rectangles of the type

∏d
i=1[ai, bi], 0 ≤ ai ≤ bi ≤ 1, i =

1, . . . , d, we conclude that for every S ⊂ {1, . . . , `},
1

n
ÎS,n ⇒ IS , n→∞ ,

(F([0,1]). By Theorem 2.1 (ii) in Samorodnitsky and Wang (2017), this implies the joint
convergence in the proposition. �
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For S ⊂ {1, . . . , `} we define now

(4.5) Î∗S,n = ÎS,n ∩

 ⋃
j∈{1,...,`}\S

Z(Uj,n)

c

,

the set of times where only the Markov chains corresponding to j ∈ S reach 0. Similarly
we define

(4.6) I∗S = IS ∩

 ⋃
j∈{1,...,`}\S

R̃β,j

c

,

As in the case of the one-dimensional time, for large n the sets Î∗S,n and I∗S are likely to be
alike.

Lemma 4.1. For an open rectangle B ⊂ [0, 1]d, let Hn(B) be the event

(4.7) Hn(B) :=
⋃

S⊂{1,...,`}

({
1

n
ÎS,n ∩B 6= ∅

}
∩
{
1

n
Î∗S,n ∩B = ∅

})
Then, limn→∞ P (Hn(B)) = 0.

Proof. Write B = B1 × · · · ×Bd, with B1, . . . , Bd open rectangles in [0, 1]. Denoting

Î
(i)∗
S,n := Î

(i)
S,n ∩

 ⋃
j∈{1,...,`}\S

Z(U
(i)
j,n)

c

, i = 1, . . . , d, S ⊂ {1, . . . , `}, n = 1, 2, . . . ,

we have

Hn(B) ⊂
⋃

S⊂{1,...,`}

⋃
i=1,...,d

({
1

ni
Î

(i)
S,ni
∩Bi 6= ∅

}
∩
{

1

ni
Î

(i)∗
S,ni
∩Bi = ∅

})
.

The right hand side above is a finite union events, and the probability of each one is
asymptoticly vanishing by Lemma 5.5 in Samorodnitsky and Wang (2017). �

Remark 4.1. The argument of Lemma 5.5 in Samorodnitsky and Wang (2017) shows also
the following version of the lemma: let

H∗n =
⋃

ai>0,i=1,...,d

Hn

(
d∏
i=1

(0, ai)

)
.

Then limn→∞ P (H∗n) = 0. We will find this formulation useful in the sequel.

We are now ready to prove convergence of the truncated random sup-measures.

Proposition 4.2. Let ` ≥ 1, and define a random sup-measure ηα,β,` by

(4.8) ηα,β,`(B) = sup
t∈B

∑̀
j=1

Γ
−1/α
j 1{t∈R̃β,j}, B ∈ B([0, 1]d) .

Then
1

bn
ηn,` ⇒

(
Cα
2

)1/α

ηα,β,`, n→∞
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in the space of sup measuresM([0,1]) equipped with the sup vague topology.

Proof. We start by observing that an alternative expression for the random sup-measure
ηα,β,` is

(4.9) ηα,β,`(B) = max
S⊂{1,...,`}

1{IS∩B 6=∅}
∑
j∈S

Γ
−1/α
j .

Since stable subordinators do not hit fixed points, by (3.5) it suffices to show that for any m
disjoint open rectangles Br =

∏d
i=1(a

(r)
i , b

(r)
i ), r = 1, . . . ,m in [0, 1]d, we have a convergence

of random vectors:

1

bn
(ηn,`(B1), . . . , ηn,`(Bm))⇒

(
Cα
2

)1/α

(ηα,β,`(B1), . . . , ηα,β,`(Bm)) .

It is clear that for any r = 1, . . . ,m, on the compliment of the event Hn(Br),

max
k/n∈Br

∑̀
j=1

εjΓ
−1/α
j 1Ad ◦ Tk(Uj,n) = max

S⊂{1,...,`}
1{(1/n)ÎS,n∩Br 6=∅}

∑
j∈S

εjΓ
−1/α
j .

Since ÎS,n is decreasing as the set S increases, we can choose, for a fixed S, the set S′ =
{j ∈ S : εj = 1} to obtain

max
S⊂{1,...,`}

1{(1/n)ÎS,n∩Br 6=∅}

∑
j∈S

εjΓ
−1/α
j = max

S⊂{1,...,`}
1{(1/n)ÎS,n∩Br 6=∅}

∑
j∈S

1(εj = 1)Γ
−1/α
j .

Hence, on the compliment of the event Hn(B1) ∪ · · · ∪Hn(Bm),

1

bn
(ηn,`(B1), . . . , ηn,`(Bn)) = C1/α

α

 max
S⊂{1,...,`}

1{(1/n)ÎS,n∩Br 6=∅}

∑
j∈S

1{εj=1}Γ
−1/α
j


r=1,...,m

.

By Proposition 4.1 the random vector in the right hand side converges weakly as n →∞
to the random vector

C1/α
α

 max
S⊂{1,...,`}

1{IS∩Br 6=∅}
∑
j∈S

1{εj=1}Γ
−1/α
j


r=1,...,m

.

Since, by Lemma 4.1, the event Hn(B1) ∪ · · · ∪ Hn(Bm) has an asymptotically vanishing
probability, the random vector

1

bn
(ηn,`(B1), . . . , ηn,`(Bm))

converges weakly to the same limit. The claim of the proposition follows by noticing that the
thinned Poisson random measure (1{εj=1}Γ

−1/α
j )j≥1 has the same law as (2−1/αΓ

−1/α
j )j≥1

and using (4.9). �

We now deal with the part of the random sup measure in Theorem 4.1 that is left after
the truncation procedure above. The following proposition is crucial.
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Proposition 4.3. For all δ > 0,

(4.10) lim
`→∞

lim sup
n→∞

P

 max
0≤k≤n

∣∣∣∣∣∣
∞∑

j=`+1

εjΓ
−1/α
j 1Ad ◦ Tk(Uj,n)

∣∣∣∣∣∣ > δ

 = 0 .

Proof. Clearly,

P

 max
0≤k≤n

∣∣∣∣∣∣
∞∑

j=`+1

εjΓ
−1/α
j 1Ad ◦ Tk(Uj,n)

∣∣∣∣∣∣ > δ

(4.11)

≤P

 max
0≤k≤n

∣∣∣∣∣∣
∞∑

j=`+1

εjΓ
−1/α
j 1(Γj > bαn)1Ad ◦ Tk(Uj,n)

∣∣∣∣∣∣ > δ/2


+P

 max
0≤k≤n

∣∣∣∣∣∣
∞∑

j=`+1

εjΓ
−1/α
j 1(Γj ≤ bαn)1Ad ◦ Tk(Uj,n)

∣∣∣∣∣∣ > δ/2

 .

By symmetry,

P

 max
0≤k≤n

∣∣∣∣∣∣
∞∑

j=`+1

εjΓ
−1/α
j 1(Γj > bαn)1Ad ◦ Tk(Uj,n)

∣∣∣∣∣∣ > δ/2


≤ 2P

 max
0≤k≤n

∣∣∣∣∣∣
∞∑
j=1

εjΓ
−1/α
j 1(Γj > bαn)1Ad ◦ Tk(Uj,n)

∣∣∣∣∣∣ > δ/2

 .

The sum in the right hand side is a representation, in law, of the restriction to the set 0 ≤
k ≤ n of the random field (b−1

n Yk, k ∈ Zd), where (Yk, k ∈ Zd) is a stationary symmetric
infinitely divisible random field defined, similarly to the original stationary symmetric α-
stable random field in (2.5), by

(4.12) Yk =

∫
E
f ◦ Tk(x) M̃(dx), k ∈ Zd ,

with the distinction that the local Lévy measure ρ̃ of the symmetric infinitely divisible
random measure in (4.12) has the density α|x|−(α+1) restricted to |x| ≤ 1. See Chapter
3 in Samorodnitsky (2016). In particular, each Yk has a Lévy measure with a bounded
support and, hence, has (faster than) exponentially fast decaying tails. See e.g. Sato
(1999) Chapter 5. We conclude by the regular variation (2.3) of the factors in (2.7) that
for n = (n1, . . . , nd),

P

 max
0≤k≤n

∣∣∣∣∣∣
∞∑

j=`+1

εjΓ
−1/α
j 1(Γj > bαn)1Ad ◦ Tk(Uj,n)

∣∣∣∣∣∣ > δ/2


≤ 2P

(
max

0≤k≤n
|Yk| > bn(δ/2)

)
≤ 2

d∏
i=1

(1 + ni)P
(
|Y0| > bn(δ/2)

)
→ 0
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as n→∞. Therefore, the claim of the proposition will follow once we prove that

(4.13) lim
`→∞

lim sup
n→∞

P

 max
0≤k≤n

∣∣∣∣∣∣
∞∑

j=`+1

εjΓ
−1/α
j 1(Γj ≤ bαn)1Ad ◦ Tk(Uj,n)

∣∣∣∣∣∣ > δ

 = 0 .

To this end, let M > 0 and set DM
` := {Γ`+1 ≥ M}. By the Strong Law of Large

Numbers, lim`→∞ P (DM
` ) = 1. Therefore, we may replace the probability in (4.13) by

P

 max
0≤k≤n

∣∣∣∣∣∣
∞∑

j=`+1

εjΓ
−1/α
j 1(Γj ≤ bαn)1Ad ◦ Tk(Uj,n)

∣∣∣∣∣∣ > δ

 ∩DM
`

 .

The above quantity does not exceed

∑
0≤k≤n

P


∣∣∣∣∣∣
∞∑

j=`+1

εjΓ
−1/α
j 1(Γj ≤ bαn)1Ad ◦ Tk(Uj,n)

∣∣∣∣∣∣ > δ

 ∩DM
`

(4.14)

=
d∏
i=1

(ni + 1)P


∣∣∣∣∣∣
∞∑

j=`+1

εjΓ
−1/α
j 1(Γj ≤ bαn)1Ad(Uj,n)

∣∣∣∣∣∣ > δ

 ∩DM
`

 ,

since the probabilities in the sum in (4.14) do not depend on k. Using symmetry, we have

P


∣∣∣∣∣∣
∞∑

j=`+1

εjΓ
−1/α
j 1(Γj ≤ bαn)1Ad(Uj,n)

∣∣∣∣∣∣ > δ

 ∩DM
`


≤P

∣∣∣∣∣∣
∞∑

j=`+1

εjΓ
−1/α
j 1(M ≤ Γj ≤ bαn)1Ad(Uj,n)

∣∣∣∣∣∣ > δ


≤2P

∣∣∣∣∣∣
∞∑
j=1

εjΓ
−1/α
j 1(M ≤ Γj ≤ bαn)1Ad(Uj,n)

∣∣∣∣∣∣ > δ

 .(4.15)

Notice that the Poisson point process (b−αn Γj1Ad(Uj,n))j has the same law as the Poisson
point proces (Γj)j . Therefore, the probability in (4.15) coincides with

P

b−1
n

∣∣∣∣∣∣
∞∑
j=1

εjΓ
−1/α
j 1{Mb−αn ≤Γj≤1}

∣∣∣∣∣∣ > δ

 ≤ P
∣∣∣∣∣∣b−1

n

∞∑
j=jM+1

εjΓ
−1/α
j 1{Mb−αn ≤Γj≤1}

∣∣∣∣∣∣ > δ/2


≤b−pn (δ/2)−pE

∣∣∣∣∣∣
∞∑

j=jM+1

εjΓ
−1/α
j 1{Mb−αn ≤Γj≤1}

∣∣∣∣∣∣
p

for any p > 0, where jM = dM1/αδ/2e. If p > 0 is large enough, then by the regular
variation (2.3),

lim
n→∞

d∏
i=1

(ni + 1)b−pn → 0 .
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Therefore, (4.13) will follow once we check that for any p > 0 we can take M > 0 large
enough so that

(4.16) lim sup
n→∞

E

∣∣∣∣∣∣
∞∑

j=jM+1

εjΓ
−1/α
j 1{Mb−αn ≤Γj≤1}

∣∣∣∣∣∣
p

<∞ .

Let us take p = 2k, an even integer. By the Khintchine inequality (see e.g. (A.1) in Nualart
(1995)), there is a constant cp ∈ (0,∞) such that

E

∣∣∣∣∣∣
∞∑

j=jM+1

εjΓ
−1/α
j 1{Mb−αn ≤Γj≤1}

∣∣∣∣∣∣
p

≤ cpE

 ∞∑
j=jM+1

(
Γ
−1/α
j 1{Mb−αn ≤Γj≤1}

)2p/2

≤cpE

 ∞∑
j=jM+1

Γ
−2/α
j

k

≤ cp

 ∞∑
j=jM+1

(
E(Γ

−2k/α
j )

)1/kk

.

The claim (4.16) now follows since E
(
Γ
−2k/α
j

)
<∞ for j > 2k/α, and

E
(
Γ
−2k/α
j

)
∼ j−2k/α, j →∞ .

�

We are now ready to finish the proof of Theorem 4.1.

Proof of Theorem 4.1 . Once again, by (3.5) it suffices to show that for any m disjoint open
rectangles Br =

∏d
i=1(a

(r)
i , b

(r)
i ), r = 1, . . . ,m in [0, 1]d, we have

1

bn
(ηn(B1), . . . , ηn,`(Bm))⇒

(
Cα
2

)1/α

(ηα,β(B1), . . . , ηα,β,`(Bm)) .

Since by Proposition 4.2

1

bn
(ηn,`(B1), . . . , ηn,`(Bm))⇒

(
Cα
2

)1/α

(ηα,β,`(B1), . . . , ηα,β,`(Bm)) ,

and ηα,β,` increases to ηα,β almost surely, we can use the “convergence together” argument,
as in Theorem 3.2 of Billingsley (1999). To this end we need to check that for each r =
1, . . . ,m and any ε > 0,

lim
`→∞

lim sup
n→∞

P

(
1

bn
|ηn(Br)− ηn,`(Br)| > ε

)
= 0 .

This is, however, an immediate conclusion from Proposition 4.3. �

Remark 4.2. Note that the limiting sup measure in Theorem 4.1 is Fréchet only when
βi ≤ 1/2 for some i = 1, . . . , d. See Remark 3.1.

The stationary random field X in (2.5) induces another family of random sup measures
{η̃n}n∈Nd via

(4.17) η̃n(B) := max
k/n∈B

|Xk|, B ∈ B([0,∞)d) .
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This family of random sup-measures satisfies the following analogue of Theorem 4.1.

Theorem 4.2. For all 0 < α < 2 and 0 < βi < 1, i = 1, . . . , d,

(4.18)
1

bn
η̃n ⇒

(
Cα
2

)1/α

max
(
η

(1)
α,β, η

(2)
α,β

)
, n→∞ ,

where η(1)
α,β and η(2)

α,β are two independent copies of the random sup measure defined in (3.7).
The weak convergence holds in the space of sup measuresM(Rd) equipped with the sup vague
topology.

Proof. Once again, we will show the weak convergence inM([0,1]). We continue using the
notation of the proof of Theorem 4.1. The same argument as in the that proof works once
we show that, in the obvious notation, for any ` = 1, 2, . . .,

(4.19)
1

bn
η̃n,` ⇒

C
1/α
α

2
max

(
η

(1)
α,β,`, η

(2)
α,β,`

)
, n→∞ ,

where

(4.20)
1

bn
η̃n,`(B) = max

k/n∈B

∣∣∣∣∣∣
∑̀
j=1

εjΓ
−1/α
j 1Ad ◦ Tk(Uj,n)

∣∣∣∣∣∣ , B ∈ B([0, 1]d) .

Outside the vanishing event Hn(B1) ∪ · · · ∪Hn(Bm) we now have

1

bn
(η̃n,`(B1), . . . , η̃n,`(Bn)) =C1/α

α

max

 max
S⊂{1,...,`}

1{(1/n)ÎS,n∩Br 6=∅}

∑
j∈S

1{εj=1}Γ
−1/α
j ,

max
S⊂{1,...,`}

1{(1/n)ÎS,n∩Br 6=∅}

∑
j∈S

1{εj=−1}Γ
−1/α
j


r=1,...,m

.

Using again Proposition 4.1 and Lemma 4.1 we conclude that, as n→∞,

1

bn
(η̃n,`(B1), . . . , η̃n,`(Bn))⇒C1/α

α

max

 max
S⊂{1,...,`}

1{IS∩Br 6=∅}
∑
j∈S

1{εj=1}Γ
−1/α
j ,

max
S⊂{1,...,`}

1{IS∩Br 6=∅}
∑
j∈S

1{εj=−1}Γ
−1/α
j


r=1,...,m

.

The statement of the theorem now follows since (1{εj=1}Γ
−1/α
j )j and (1{εj=−1}Γ

−1/α
j )j are

two independent Poisson random measures, each with the same law as (2−1/αΓ
−1/α
j )j≥1,

and using (4.9). �

Remark 4.3. It is interesting to observe that in the case 0 < βi ≤ 1/2 for some i = 1, . . . , d,
the sup measure ηα,β is a Fréchet random sup measure, and so (4.2) can be reformulated
as

(4.21)
1

bn
η̃n ⇒ C1/α

α ηα,β, n→∞ .
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See Remark 3.1. However, if 0 < βi > 1/2 for all i = 1, . . . , d, then the random sup measure
ηα,β is not max-stable, so (4.21) is no longer a valid statement of Theorem 4.2.

5. Convergence of the partial maxima processes

In this section we prove another version of a functional extremal theorem for the
stationary random field X in (2.5). This time we will be working in the space D(Rd+),
and the limit will itself be a random field. The random field X induces an array of partial
maxima random fields {Mn} by

Mn(t) := max
0≤k≤nt

Xk, t ∈ Rd+ .

The random sup measure ηα,β in (3.7) also induces a random field Wα,β, by

Wα,β(t) := ηα,β([0, t]), t ∈ Rd+ .

Remark 5.1. It follows immediately from Remark 3.1 that the random field
(
Wα,β(t), t ∈

Rd+
)
is self-similar, in the sense that for any c1 > 0, . . . , cd > 0

(
Wα,β((c1t1, . . . , cdtd)), t ∈ Rd+

) d
=

(
d∏
i=1

c
(1−βi)/α
i Wα,β(t), t ∈ Rd+

)
.

This is, of course, what a multivariate version of Lamperti’s theorem requires from the limit
in any functional extremal theorem; see e.g. Theorem 8.1.5 in Samorodnitsky (2016).

The following functional extremal theorem is the main result of this section.

Theorem 5.1. For all 0 < α < 2 and 0 < βi < 1, i = 1, . . . , d,

(5.1)
(

1

bn
Mn(t), t ∈ Rd+

)
⇒

((
Cα
2

)1/α

Wα,β(t), t ∈ Rd+

)
in the Skorohod J1 topology on the space D(Rd+).

Proof. The usual reference for multiparameter weak convergence is Straf (1972). For our
purposes there is little difference between the properties of weak convergence in D(Rd+)
for d = 1 and d > 1. We will show weak convergence in D([0,1]), and we use the series
representation (2.10). By (4.3) we can write, in law,

(5.2)
1

bn
Mn(t) = max

0≤k/n≤t
C1/α
α

∞∑
j=1

εjΓ
−1/α
j 1Ad ◦ Tk(Uj,n), t ∈ [0,1] .

We again use a truncation argument. For ` ∈ N, we define random fields Mn,` by

(5.3)
1

bn
Mn,`(t) = max

0≤k/n≤t
C1/α
α

∑̀
j=1

εjΓ
−1/α
j 1Ad ◦ Tk(Uj,n), t ∈ [0,1] .

Similarly, starting with the truncated random sup measure ηα,β,` we define a random field
Wα,β,` by

Wα,β,`(t) := ηα,β,`([0, t]), t ∈ [0,1] .
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We start by proving that

(5.4)
(

1

bn
Mn,`(t), t ∈ Rd+

)
⇒

((
Cα
2

)1/α

Wα,β,`(t), t ∈ [0,1]

)
.

Note that the representation (4.9) can be written, in law, as

(5.5) Wα,β,`(t) = max
S⊂{1,...,`}

1{IS∩[0,t]6=∅} 21/α
∑
j∈S

1{εj=1}Γ
−1/α
j , t ∈ [0, 1]d .

Furthermore, from the argument in Proposition 4.2 we know that outside of an event An

whose probability goes to zero as n → ∞, the random field
(
(1/bn)Mn,`(t), t ∈ [0,1]

)
coincides with the random field

max
S⊂{1,...,`}

1{(1/n)ÎS,n∩[0,t]6=∅}C
1/α
α

∑
j∈S

1{εj=1}Γ
−1/α
j , t ∈ [0,1] ;

see Remark 4.1. Therefore, (5.4) will follows once we prove that max
S⊂{1,...,`}

1{(1/n)ÎS,n∩[0,t]6=∅}

∑
j∈S

1{εj=1}Γ
−1/α
j , t ∈ [0,1]

(5.6)

⇒

 max
S⊂{1,...,`}

1{IS∩[0,t]6=∅}
∑
j∈S

1{εj=1}Γ
−1/α
j , t ∈ [0,1]

 .

Since the Fell topology on F([0, 1]d) is separable and metrizable (see Salinetti and Wets
(1981)), by the Skorohod representation theorem, we can find a common probability space
for
(
ÎS,n, S ⊂ {1, . . . , `}

)
and

(
Is, S ⊂ {1, . . . , `}

)
such that the convergence in Proposition

4.1 becomes the almost sure convergence. On that probability space we will prove a.s.
convergence in (5.6).

For i = 1, . . . , d and S ⊂ {1, . . . , `} denote

t
(i)
S,n = inf

{
t > 0 : t ∈ n−1

i Î
(i)
S,ni

}
, t

(i)
S = inf

{
t > 0 : t ∈ I(i)

S

}
.

Then the a.s. convergence in Proposition 4.1 implies that t(i)S,n → t
(i)
S a.s. as n → ∞

for every i = 1, . . . , d and S ⊂ {1, . . . , `}. If we denote tS,n =
(
t
(1)
S,n, . . . , t

(d)
S,n

)
and tS =(

t
(1)
S , . . . , t

(d)
S

)
for S ⊂ {1, . . . , `}, then tS,n → tS a.s. as n→∞. Since stable subordinators

do not hit fixed points, the 2` points tS , S ⊂ {1, . . . , `} are distinct. Furthermore, given
(εj ,Γj)j∈S , these points determine the realization of the random field in the right hand side
of (5.6), while the 2` points tS,n, S ⊂ {1, . . . , `} determine the realization of the random
field in the left hand side of (5.6). Therefore, any homeomorphism of [0, 1]d onto itself that
fixes the origin and moves tS,n to tS for each S ⊂ {1, . . . , `} makes the values of the field in
the left hand side of (5.6) equal to the values of the field in the right hand side of (5.6). The
convergence tS,n → tS for each S guarantees that these homeomorphisms can be chosen to
converge to the identity in the supremum norm. Hence a.s. convergence in (5.6).
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To complete the proof we use, once again, the “convergence together” argument in
Theorem 3.2 of Billingsley (1999). The first step to this end is to show that

(5.7)
(
Wα,β,`(t), t ∈ [0,1]

)
⇒
(
Wα,β(t), t ∈ [0,1]

)
as `→∞ in the Skorohod J1 topology on the space D([0,1]). Since we can represent the
random field in the right hand side of (5.7), in law, as

(5.8) Wα,β(t) = sup
S⊂N

1{IS∩[0,t] 6=∅} 21/α
∑
j∈S

1{εj=1}Γ
−1/α
j , t ∈ [0,1] ,

we will use the representations in law, (5.5) and (5.8), and prove a.s. convergence of the
random fields in the right hand sides of these representations. Furthermore, we will show
this a.s. convergence in the uniform distance. To this end, fix t ∈ [0,1] and note that
by Proposition 3.1, with probability 1, any set S ⊂ N such that IS ∩ [0, t] 6= ∅ must be
of cardinality smaller than mini=1,...,d(1 − βi)

−1. Furthermore, for any such S, the set
S ∩ {1, . . . , `} contributes to the maximum in the right hand side in (5.5). Therefore,

0 ≤ sup
S⊂N

1{IS∩[0,t] 6=∅} 21/α
∑
j∈S

1{εj=1}Γ
−1/α
j − max

S⊂{1,...,`}
1{IS∩[0,t]6=∅} 21/α

∑
j∈S

1{εj=1}Γ
−1/α
j

≤ 21/α min
i=1,...,d

(1− βi)−1Γ
−1/α
`+1 .

That is,

sup
t∈[0,1]

∣∣∣∣∣∣sup
S⊂N

1{IS∩[0,t] 6=∅} 21/α
∑
j∈S

1{εj=1}Γ
−1/α
j − max

S⊂{1,...,`}
1{IS∩[0,t] 6=∅} 21/α

∑
j∈S

1{εj=1}Γ
−1/α
j

∣∣∣∣∣∣
≤ 21/α min

i=1,...,d
(1− βi)−1Γ

−1/α
`+1 → 0

as `→∞, proving the a.s. convergence in the uniform distance.

For the second ingredient in the “convergence together” argument we use again the
uniform distance and prove that for any ε > 0,

lim
`→∞

lim sup
n→∞

P

(
1

bn
sup

t∈[0,1]
|Mn(t)−Mn,`(t)| > ε

)
= 0, .

By (5.2) and (5.3) it is enough to prove that

lim
`→∞

lim sup
n→∞

P

 sup
t∈[0,1]

max
0≤k/n≤t

∣∣∣∣∣∣
∞∑

j=`+1

εjΓ
−1/α
j 1Ad ◦ Tk(Uj,n)

∣∣∣∣∣∣ > ε

 = 0 .

This is, however, an immediate consequence of Proposition 4.3. �

Theorem 5.1 has a natural counterpart for the partial maxima of the absolute values
of the random field (2.5). It can be obtained along the same lines as we obtained Theorem
4.2. We omit the argument.

Theorem 5.2. Let 0 < α < 2 and 0 < βi < 1, i = 1, . . . , d. Define

M̃n(t) := max
0≤k≤nt

|Xk|, t ∈ Rd+ .
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Then

(5.9)
(

1

bn
M̃n(t), t ∈ Rd+

)
⇒

((
Cα
2

)1/α

max
(
W

(1)
α,β(t),W

(2)
α,β(t)

)
, t ∈ Rd+

)

in the Skorohod J1 topology on the space D(Rd+). Here
(
W

(1)
α,β(t), t ∈ Rd+

)
and

(
W

(2)
α,β(t), t ∈

Rd+
)
are two independent copies of the limiting process in Theorem 5.1.

Remark 5.2. The structure of the limit in Theorem 5.2 together with Remark 5.1 immedi-
ately implies that the random field in the right hand side of (5.9) is self-similar, Furthermore,
as in Remark 4.3, in the case 0 < βi ≤ 1/2 for some i = 1, . . . , d, and only in that case, the
limiting random field in Theorem 5.2 is Fréchet. In this case an alternative way of stating
the theorem is (

1

bn
M̃n(t), t ∈ Rd+

)
⇒
(
C1/α
α Wα,β(t), t ∈ Rd+

)
.
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