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ROUNDING OFF TO POWERS OF TWO IN THE

ECONOMIC LOT SCHEDULING PROBLEM

by Robin Roundy

The following approach is often taken in solving the
economic lot scheduling problem (2,3,4,5,6,7,8,9,10,11,12,13,14,
20]. One first finds approximate order intervals for the
products by assuming that each product is produced in equal
amounts and at equal intervals of time, and minimizing a cost
function that has setup and holding costs. The second step in
the procedure is to round off the order intervals Tg thus
computed to integer multiples of B for some positive number
B . The third step is to use these order intervals to find a
feasible schedule.

In the first step, that of finding approximate order
intervals for the products, most authors completely ignore the -
setup time. The choice of order intervals is guided solely by
the setup and holding costs. Exceptions to this rule are Fujita
and Dobson [5,10]. The more successful approach, that taken by
Dobson, was also used in the context of production planning
models by Jackson, Maxwell, and Muckstadt [16]. According to
this approach, the setup and holding costs are minimized sub ject
to a single constraint that states on the average, the total

amount of time spent in setting up the machine does not exceeed



the total amount of time available for setups. A precise
formulation of this problem is given in the sequel.

With regard to the second step, a number of authors have
recommended requiring that the order intervals be powers of two
times B rather than sllowing them to be arbitrary integer
multiples of B (5,11,12,13]. Powers of two are chosen for two
reasons. First, it has been observed empirically that
power—of—two policies are almost always optimal within the class
of policies in which all products are reordered at equal
intervals of time, and that they are near—opitmal when they are
ot optimal [7,8,13,19]. In addition, the special structure of
power—of—two policies makes he third step easier and makes them
easier to implement on the factory floor [18].

Many different types of methods have been used to perform
the third step, that of finding a feasible schedule. We will not
discuss these methods in detail. Methods that require that the
order intervals be equal tend to be complex and often do not
guarantee feasibility. This is largely due to the fact that the
problem of detemining whether a feasible equal-order-interval
schedule exists for a given set of order intervals is NP-complete
[Hsu83]. The third step is much simpler when the order intervals
are allowed to be unequal [3,5,17]

The purpose of this note is twofold. First, we propose a
new way of performing the second step, that of rounding off the

reorder intervals to powers of two. Second, we show that the



cost of implementing the power-of-two order intervals is at most
6% higher than the cost of implementing the approximate order
intervals computed in the first step. Of course, the sverage
difference will be much smeller. Therefore the advantages of
power—of-two order intervals can be had at what is usually a

negligibly small cost.

The First Step: Finding Approximate Order Intervals.

The mathematical formulation of the first step of the
solution procedure, that of finding approximate order intervals

for the products, takes on the following form:

K
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where 97 & {Tn, 1<n<N), N is the number of products, p
is the fraction of the total operating time that is available for
setups, and Kn s Hn s T and Tn are respectively the setup
cost, holding cost coefficient, setup time, and order interval
for product n . It is assumed that Hn > 0 and that Kn tT >

0 for all n .

Let 9% & (Tg, 1 <n <N be the solution to (P). Using

Lagrangean relaxation, it is easily verified that
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The Second Step: Rounding Off the Order Intervals.

Having solved (P), the order intervals Tﬁ are rounded off

to powers of two as follows. We define z and the integers P,

by
Pn =
= <
TX = z 2 ’J._.zn<./§. (5)
We assume that the products are indexed so¢ that z, < zZ.1 for
all n. Foreach i, 1 <i < N, we consider a solution of the
form 7' = (Tl, 1 £ n<N) where
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and al is a positive scalar. Note that the values of q; are

chosen to make
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for all n .
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We wish to choose « 8o as to minimize c¢(¥°) subject to

(2). Let

i
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Then the cost of ' can be written as c(?l) = Kl/a1 + BHat .

The value of a' that minimizes c(?l) is clearly

. i
g = F-.— . (10)
However (2) implies that o' is greater than or equal to

vi = 2 T 2—qn . (11)
n
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Since c(?l} is a convex function of ot , the optimal value of

ot is given by

& = max(st, ) . (12)



This identifies N policies, one for esch value of 1 . We
propose that asmong these N policies, the policy 71* that

L i .
minimizes c¢(¥ ) over 1 be chosen.

ix

We now show that ¥ can be computed in O(N) time.
1 1 1 1 1 ,
Clearly q, K", H , a« , and c¢{(9°) can be computed in
(N} time. Since q; = q;*l for all n ¢ i , it is easy to
verify that given q; s K1 R H1 , and a' we can compute
1+l s K1+1 , Hl+1 , a1+1 and c(71+1) in constant time.

Therefore 71* can be computed in O(N) time.

The Cost Penalty

We now show that the increase in cost that results from
rounding off the order intervals to powers of two is at most
6% , i.e., that c(7'%) s% (V2 + /B ) c(9%) . There are two

cases to consider, Zn fn/Tn < p and Xn 'rn/Tn = o .

Case 1:
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Suppose we were to increase the value of po from its

T
current value to 2. The cost c{¥%) of 9x is

T*
n n
unaffected because 7% is still feasible for (P). However the
i

cost c(?l) of ¥ might increase. Therefore the ratio

0(71*}/C(Y*) will be higher for the new value of p than it was
for the original. Thus the cost penalty for Case 1 is bounded by

the cost penalty for Case 2.
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Suppose we were to use Flg (Ti E 112qn, 1<€1i<N)
instead of using ii . This would be tantamount to choosing ai
so as to make (2) tight for all i , even though this may be a
suboptimal choice of ai .  Therefore c(?i) z c(?i) for all
i.

An upper bound on c(?i*)/c(T*) can be found as follows.
The minimum of c(?i) over i is an upper bound on the cost of
?i* . We use a weighted average of c(?i) over 1 &s an upper

bound on the minimum over i of c(?l) . The weight assigned to

i is wo where

w., = logz(zi/zi¢1) , 1#1;
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By (5) and (7),
2l =2 if n2i and z' =2z if n< i . (17)
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The following lemma is used in the proof.
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Proof. By (15) and (17)

where
= 1 N 1 1
£0o = [x + 4] tog, 2x = [2x + 5] logy § -
z
Since m < n , (5) implies that % < EE <1 . On the interval
n

{% s 1] , the function f is concave and attains its maximum

value of V2 + /.5 at x = /.5 . Therefore
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Theorem 1. c(fi*) < %{J@ + /. B) c(7%) = 1.06 c(7%) .

Proof. Let A =7 /T4, B =HT¥, and D = K /Tk .
—— n nn n n'n n n n

Then by (9), (18), and (11} we have
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and



The remainder of the proof is divided into two parts. In
Part 1 we show that the first term of (18) is within 6% of the

first term of (19), and in Part 2 we show that the second term of
(18) is within 6% of the second term of (19). Since c(?l*) =

min c(71) € min c(F}) < z wic(?l) , this will complete the
i i

proof.

Part 1.

D
Let d B Then d 20 and 2 d_ =1 . We need
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L

to show that D < /2 + /.5 where

By Jensen’s inequality and by Lemma 1,
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