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Bacteriocins are ribosomally synthesized antimicrobial peptides or proteins 

produced by bacteria, which usually inhibit the growth of closely related species. 

Bacteriocins produced by Bacillus species have attracted emerging interests by both 

food and pharmaceutical industries due to their broader antimicrobial spectrum, 

compared with the widely used bacteriocins produced by lactic acid bacteria. 

Thurincin H is an anti-listerial bacteriocin produced by Bacillus thuringiensis SF361, 

a strain originally isolated from US domestic honey. Purified thurincin H exhibited a 

broad antimicrobial activity against various foodborne pathogens and spoilage 

microorganisms across several genera, including Bacillus, Carnobacterium, 

Geobacillus, Enterococcus, Listeria, and Staphylococcus.  

A rapid and simple method was developed to produce and purify large 

amounts of thurincin H. The purified thurincin H was characterized regarding its 

thermal and acid stability, and its inhibitory effect against B. cereus spores. Systematic 

conservative and non-conservative site directed mutagenesis were performed to 

identify the critical amino acids in the native thurincin H production pathway, using an 

optimized thurincin H heterologous expression system newly developed in this study. 

The thurincin H gene cluster was confirmed by heterologously expressing a 



bioinformatically identified gene cluster in a sensitive B. thuringiensis strain. The 

sensitive strain acquired complete immunity and produced thurincin H at a higher 

level compared with the natural producer. The bactericidal thurincin H caused cell 

morphology changes in a concentration dependent manner, but did not induce cell 

membrane permeability, which indicated a novel mode of action that is different from 

the generalized pore-forming mechanism for most bacteriocins.  
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CHAPTER 1 

JUSTIFICATION AND INTRODUCTION 

 

 Antimicrobial peptides or proteins are widely produced and used as a defensive 

strategy, by a wide range of organisms that include microorganisms, plants, insects, 

and animals (Bowdish et al., 2005; Ganz, 2003). Bacteriocins are the antimicrobial 

peptides or proteins produced by bacteria, which are genetically encoded and 

ribosomally synthesized (Cotter et al., 2005). Bacteriocins usually exhibit a relatively 

narrow inhibition spectrum of activity against closely related species (Cotter et al., 

2005). It has been suggested that a significant percentage of bacteria can produce at 

least one bacteriocin (Klaenhammer, 1988; Riley, 1998). This competitive advantage 

may assist the bacteriocin-producers in preventing the invasion of other strains or 

species into an occupied niche by limiting nutrient competition of neighboring cells 

(Majeed et al., 2011). 

 Since lactic acid bacteria (LAB) are generally recognized as safe (GRAS status) 

according to the FDA, LAB bacteriocins have been widely applied in food systems to 

ensure food safety, enhance food quality, and minimize economic loss by inhibiting 

the growth of foodborne pathogens and spoilage bacteria. Nisin is widely used in the 

food industry and has been extensively studied, not only from the chemical and 

genetic basis, but also from its application in various foods (Chen & Hoover, 2003). 

Using food grade bacteriocins as natural food preservatives could also provide an 

option for the food processors to face the “natural” food trend challenges that are 

being demanded by consumers. Bacteriocins are considered as “natural” food 
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preservative systems since they are not regarded as chemical preservatives. In addition 

to food systems, the interest of bacteriocin application has been expanded to veterinary 

and human medicines in recent decades (Hillman, 2002; Ryan et al., 1999). As the 

most studied group of bacteriocins, LAB bacteriocins can be divided into three main 

classes based on their structural and chemical characteristics: the class I lantibiotics 

containing lanthionine; the class II non-lanthionine-containing bacteriocins; and the 

class III heat-labile large proteins (Cotter et al., 2005). LAB bacteriocins generally kill 

sensitive strains by forming pores in their cell membrane, causing cell membrane 

potential and proton motive force disruption (Moll et al., 1996). 

 Compared to LAB bacteriocins, Bacillus bacteriocins are attracting increasing 

research interests due to their high diversity and much broader inhibition spectra. 

Research on Bacillus bacteriocins to date indicates their promising application 

potentials in agricultural, environmental and pharmaceutical industries, as well as in 

the food industry as a means to control various spoilage and pathogenic 

microorganisms (Abriouel et al., 2011; Lee & Kim, 2011). The limited in-depth 

research on the bacteriocin structural and chemical characteristics has made it difficult 

to clearly and accurately classify those highly diverse Bacillus bacteriocins, with the 

only systematic classification proposed in 2010 (Abriouel et al., 2011). As 

summarized in the classification, Bacillus spp. also produce a large group of 

lantibiotics, which have similar structures and biochemical characteristics to LAB 

lantibiotics (Abriouel et al., 2011). 

 Thurincin H is a 31 amino acid hydrophobic bacteriocin produced by B. 

thuringiensis SF361, a strain originally isolated from US domestic honey (Lee et al., 
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2009). It forms a hairpin structure with a helical backbone maintained by four pairs of 

unique sulfur to α-carbon thioether bridges, catalyzed by a putative radical S-

adenosylmethionine superfamily enzyme (Sit et al., 2011). Those thioether linkages 

are quite different from all studied LAB bacteriocins (Cotter et al., 2005) or Bacillus 

lantibiotics (Abriouel et al., 2011), and only exist in three other Bacillus bacteriocins 

(Fluhe et al., 2012).  

 Studies on the biochemical and genetic characteristics, structures and 

mechanisms of action for this new type of Bacillus bacteriocins are still limited. 

Further investigation of these bacteriocins is needed to provide insights into their 

unique nature or their relatedness to already-known bacteriocins. Thurincin H for 

example, requires a large scale bacteriocin and purification system to provide 

sufficient purified bacteriocin to perform subsequent biochemical characterizations, 

toxicity evaluation and structure analysis. Completely new heterologous expression 

systems and site directed mutagenesis are needed to facilitate the exploration of 

variants with new characters, structures and functions. Commonly used Escherichia 

coli (Ingham et al., 2005; Lohans & Vederas, 2012) or lactic acid bacteria (Rodriguez 

et al., 2003) expression systems are not suitable since the unique posttranslational 

modification involved in the thurincin H biosynthesis are not compatible. Completely 

novel mechanism of action for thurincin H might exist since it has a unique structure. 

Its mode of action could be not predicted by only comparing the structures of thurincin 

H with other extensively characterized bacteriocins.    
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CHAPTER 2 

 
LARGE SCALE PURIFICATION, CHARACTERIZATION, AND SPORE 

OUTGROWTH INHIBITORY EFFECT OF THURINCIN H, A BACTERIOCIN 

PRODUCED BY BACILLUS THURINGIENSIS SF361 

 

ABSTRACT 
 

Large scale purification of the highly hydrophobic bacteriocin thurincin H 

was accomplished via a novel, rapid, and simple two-step method: ammonia 

sulfate precipitation and C18 solid phase extraction. The inhibition spectrum and 

stability of thurincin H, as well as its antagonistic activity against Bacillus cereus 

F4552 spores were further characterized. In the purification method, secreted 

proteins contained in the supernatant of a 40-hour culture of B. thuringiensis 

SF361 was precipitated by 68% ammonia sulfate and purified by reverse phase 

chromatography with a yield of 18.53 mg/L. Silver stained SDS-PAGE, high-

performance liquid chromatography (HPLC), and liquid chromatography–mass 

spectrometry (LC-MS) confirmed the high purity of the prepared sample. 

Thurincin H exhibited a broad antimicrobial activity against 22 tested bacterial 

strains among 6 different genera including Bacillus, Carnobacterium, Geobacillus, 

Enterococcus, Listeria, and Staphylococcus. There was no detectable activity 

against any of the selected yeast or fungi. The bacteriocin activity was stable for 

30 min at 50°C, and decreased to undetectable levels within 10 minutes at 

temperatures above 80°C. Thurincin H was stable from pH 2-7 for at least 24 
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hours, although gradual loss of activity occurred in alkaline solutions within 24 

hours at room temperature. Thurincin H is germicidal against B. cereus spores in 

brain heart infusion broth, but not in Tris-NaCl buffer. The efficient purification 

method enables the large scale production of pure thurincin H, which is an 

adequate preparation for further downstream biochemical studies. The broad 

inhibitory spectrum of this bacteriocin may be of interest as a potential natural 

biopreservative in the food industry, particularly in acidic and acidified food. 

INTRODUCTION 

Foodborne disease and spoilage caused by microorganisms have long been a 

challenge for public health concerns and the food processing industry. It is estimated 

that 9.4 million illnesses, 55,961 hospitalizations, and 1,351 deaths were caused by 31 

different foodborne pathogens each year in the United States (Scallan et al., 2011). 

Among the bacteria, yeasts, and molds responsible for general food spoilage and their 

resulting economic losses, spore forming bacteria are of particular concerns for the 

food industry due to their high heat resistance, and higher tolerance to drying, freezing, 

and chemical disinfectants (Nicholson et al., 2000). 

Bacteriocins are ribosomally synthesized peptides or proteins produced by 

bacteria that exhibit antimicrobial activity against other bacteria mostly within the 

same species (narrow spectrum) or sometimes across different genera (broad spectrum) 

(Cotter et al., 2005). Bacteriocins produced by Gram-positive bacteria, most 

commonly lactic acid bacteria, have been widely applied in the food industry because 

of their effectiveness against various foodborne pathogens and spoilage 

microorganisms (Settanni & Corsetti , 2008). Bacillus spp. have gained recent 
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research interest since they are considered rich producers of different types of 

antibiotics, antimicrobial proteins or peptides, and antifungal substances (Stein, 2005; 

Abriouel et al., 2011). Bacillus spp. strains generally exhibit a broad inhibition 

spectrum and occasionally inhibit yeasts and molds, even bacterial spores (Abriouel et 

al., 2011). For example, bacteriocin AS-48 was reported to inhibit the outgrowth of B. 

cereus spores (Abriouel et al., 2002).  

Thurincin H is a bacteriocin produced by Bacillus thuringiensis SF361, a strain 

isolated from US domestic honey (Lee et al., 2009). The producer strain inhibits the 

growth of several Gram-positive foodborne pathogens and food spoilage 

microorganisms, such as L. monocytogenes and B. cereus, based on overlay assays 

(Lee et al., 2009). The mature thurincin H is composed of 31 amino acids with a 

molecular mass of 3139.51Da (Lee et al., 2009). According to a recent three 

dimensional NMR spectroscopy study, the helical backbone of mature thurincin H 

folds to form a hairpin structure with helical backbones stabilized by four sulfur to α-

carbon bridges (Sit et al., 2011). 

The objective of this study was to develop an efficient and reproducible 

method to produce and purify large amounts of highly pure thurincin H. Additionally, 

to further evaluate its potential as a natural preservative, the inhibition spectrum, 

stability under various conditions, as well as its antagonistic activity against Bacillus 

spores were determined. 

MATERIALS AND METHODS 

Bacterial strains and culture conditions. The thurincin H producing strain B. 

thuringiensis SF361, and the indicator strain B. cereus F4552, were cultivated in 
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trypticase soy broth (TSB) or on trypticase soy agar (TSA) (BD, Sparks, MD) at 37°C. 

Yeast and fungi were cultivated in potato dextrose agar (PDA) (Hardy diagnostics, 

Santa Maria, CA ) or potato dextrose broth (PDB) (BD, Sparks, MD) adjusted pH to 

3.5 with a 10% sterile tartaric acid solution added after autoclaving. Phosphate 

buffered saline (PBS) at pH 7 was formulated with 8 g NaCl, 0.2 g KCl, 1.44 g 

Na2HPO, and 0.24 g KH2PO4 per liter. In spore germination studies, spores were 

incubated in brain heart infusion (BHI) broth (BD, Sparks, MD) at 30°C for 1 hour 

with 250 rpm shaking. All chemicals and reagents were either autoclaved at 121°C for 

15 minutes or filtrated by polyethersulfone membrane (0.22 μm), prior to use.  

B. cereus F4552 spore preparation and quantification. One milliliter of a 5 

hour B. cereus F4552 culture in TSB was evenly spread on SPO 8 solid agar (Pol et al., 

2001) and incubated at 20°C for 7 days. The resulting spores were transferred from the 

plate surface and resuspended in sterile Milli-Q water (Millipore Corporation, 

Billerica, MA). The suspension was washed three times in ice cold sterile Milli-Q 

water, heat treated at 80°C for 10 min, and stored at -20°C until needed. To determine 

the concentration, spores were serially diluted and plated on TSA plates. Colonies 

were counted after incubating for 16 hours at 37°C and the concentration of spores 

were calculated. Two independently prepared spore crops were used throughout this 

study. 

Quantification of bacteriocin activity. The bacteriocin activity was 

determined by a previously described microtiter plate assay method (Daba et al., 

1991), modified for the current study. In brief, using untreated, clear, flat bottom 96 

micro well plates (Thermo Scientific, Nunc, Denmark), 50 µl of bacteriocin diluted 
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two-fold in the appropriate buffer was mixed with 150 µl of 1.33% (v/v) B. cereus 

F4552 overnight culture in TSB in each well and incubated at 37°C for 8 hours. The 

absorbance at 600 nm (A600) of each well was measured using a Synergy HT Multi-

Mode Microplate Reader (BioTek, Winooski, VT). One arbitrary unit (AU) was 

defined as the amount of bacteriocin in the 50 µl sample that caused a 50% growth 

inhibition when compared with the control groups.  

Total protein concentration measurement. The concentration of total protein 

was measured by the Pierce BCA protein assay kit according to the manufacturer’s 

protocol (Thermo scientific, Rockford, IL). 

Thurincin H production and C18 purification. B. thuringiensis SF361 was 

streaked on a TSA plate and incubated at 37°C for 14 hours. A single colony was 

inoculated into 5 ml of TSB and incubated at 37°C for 12 hours with shaking at 225 

rpm. A 1.5 ml aliquot of this incubation was added into 150 ml and incubated at 37°C 

for 40 hours with shaking at 225 rpm. Pooled supernatants from multiple incubations 

(750 ml in total) were collected after centrifugation (13,000 x g, 4°C, 40 min). The 

crude protein fraction was precipitated using ammonium sulfate at a final 

concentration of 68% saturation. Pelleted precipitates were resuspended in 150 ml of 

PBS and purified using C18 Sep Pak Plus tC18 Environmental Cartridges (Waters, 

Milford , MA). To accomplish this, an SPE cartridge was first equilibrated with 20 ml 

methanol followed by 20 ml PBS buffer. After the supernatant samples were loaded on 

to the cartridge, 20 ml each of increasing concentrations of acetonitrile (30%, 35 %, 

45%, 50%, 100%) were consecutively applied to the column. The supernatant, crude 

protein extract, and each eluted fraction from the cartridge were separately collected 
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and analyzed by high-performance liquid chromatography (HPLC) to evaluate purity 

as described below. Those fractions (35%-50%) eluted from the SPE cartridge were 

pooled, vacuum-centrifuged to remove the acetonitrile mobile phase, and resuspended 

in 60 ml PBS buffer. Three independent preparations were conducted and purification 

results were summarized in Table 2.1. 

High Performance Liquid Chromatography (HPLC). The purity of 

thurincin H preparations was monitored via HPLC using a Jupiter 300 C5 column 

(250 mm x 4.6 mm; 5 µm particle size; 300 Å pore size; Phenomenex, Torrance, CA) 

connected to an Agilent series 1100 HPLC system with in-line degasser, quaternary 

pump, and diode array detector set to monitor at 216 nm (Manns et al., 2012). A 50 µl 

sample was loaded onto the column, and active fractions were resolved using a 

starting mobile phase of 5% acetonitrile in water supplemented with 0.1% 

trifluoroacetic acid (TFA) and linearly increased to 100% acetonitrile (0.1% TFA) 

over a 30 min period at a 1 ml/min flow rate. 

Tricine SDS-PAGE and silver staining. Thurincin H preparations were 

visually monitored on a three-layer tricine gel system consisting of a loading layer (4% 

acrylamide, 30% solution, 29:1 ratio; Bio-Rad, Hercules, CA), a stacking layer (10% 

acrylamide), and a resolving layer (15% acrylamide supplemented with 9% glycerol) 

as previously described (Manns et al., 2012). An appropriate amount of each sample 

and 2 µl of Precision Plus Protein Dual Xtra Standards Marker (Bio-Rad) ranging 

from 2 kDa to 250 kDa were boiled for 5 min in PAGE buffer (Schägger H, 2006), 

rapidly chilled on ice, and loaded onto the gel built on a mini-Protean III gel platform 

(Bio-Rad, Hercules, CA). After 120 min at 110 V, gels were thoroughly washed using 
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Milli-Q water and fixed in 5% glutaraldehyde for 1 hour with gentle shaking. Gels 

were rinsed multiple times and silver-stained using the recommended standard 

protocol (Bio-Rad, Hercules, CA). 

Liquid Chromatography–Mass Spectrometry (LC-MS). LC-MS was 

performed at the Proteomics and Mass Spectrometry Facility at Cornell University 

Institute of Biotechnology to determine the accurate molecular weight mass (Ithaca, 

NY). 

Minimum Inhibitory Concentration (MIC) of thurincin H against 

different bacterial strains. The MICs of thurincin H against 27 different bacteria 

were determined by the microtiter plate assay method described earlier. The lowest 

concentration (μg/ml) of purified thurincin H that allowed 50% growth of each strain 

was determined as the MIC (Eijsink et al., 1998). At least three independent assays 

were performed for each strain. 

Inhibition against yeast and fungi. Inhibition to different yeasts and fungi 

strains were evaluated via a spot on lawn assay (Fujita et al., 2007). Fifty microliters 

of 48 hour cultures of yeast or fungi incubated in PDB were inoculated into 8 ml soft 

PDA (0.75% agar) and overlaid on a PDA base plate. Ten microliters of thurincin H 

(500 µg/ml) were spotted on top and incubated at 30°C. The presence/absence of clear 

inhibition zones were periodically checked within 24-48 hours. At least three assays 

were conducted for each strain. 

Acidic and basic stability. Pure thurincin H resuspended in sterile water was 

mixed with sterile pH-adjusted TSB (varying integrally from 1 to 12, 8.2, 8.4, 8.6, and 

8.8) at a 1:10 ratio. The initial bacteriocin activity of diluted thurincin H in TSB (at pH 
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7) was 320 AU/ml. After a 24-hour incubation time at 22°C, each mixture was 

neutralized by HCl or NaOH. Residual activity was measured by microtiter plate 

method. Six independent experiments were performed. 

Thermal stability. Thurincin H (640 AU/ml) in PBS buffer was heated in a 

water bath at varying temperatures (50°C, 60°C, 70°C, 80°C, 90°C) for a set time 

period and immediately cooled on ice after treatment. Residual bacteriocin activity 

was measured by microtiter plate method. Six independent experiments were 

performed. 

Inhibitory effect of thurincin H against B. cereus spores. Fifty microliters of 

thurincin H (500 µg/ml) diluted 1:2 in Tris-NaCl buffer (10 mM Tris, 10 mM NaCl, 

pH 7.4) was added to the wells of an untreated, clear, flat bottom 96 micro well plate 

(Thermo Scientific, Nunc, Denmark) and mixed with 150 µl of B. cereus F4552 spores 

resuspended in BHI. The final concentrations of spores in the mixture were 104, 105, 

106, and107 CFU/ml. Tris-NaCl buffer served as a negative control. The minimum 

concentration that caused 50% inhibition of spore outgrowth was determined. Two 

independent experiments in triplicate were performed. 

Effect of thurincin H on spore hydration. Absorbance of spore suspension at 

600 nm (A600) decreased as the spore rehydration in the germinating process caused 

alteration in its light-scattering behavior (Moir & Smith, 1990; Hornstra et al., 2005). 

Using a 96 well microtiter plate, a 150 µl aliquot of B. cereus spores resuspended in 

BHI or Tris-NaCl was combined with 50 µl of purified thurincin H in Tris-NaCl buffer 

to a final concentration of 100 µg/ml, 10 µg/ml, or 0 µg/ml (negative control). The 

final concentration of spores in presence/absence of thurincin H was approximately 
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107 CFU/ml. A600 was immediately read for 1 hour at a 2 min intervals. Before each 

reading, plates were automatically shaken rapidly for 30 s. The result was presented as 

the percentage of A600 at each time point normalized to the initial point. Two 

independent experiments were performed in duplicate. 

Inhibitory effect upon germination. Spores were resuspended in BHI or Tris-

NaCl buffer with or without thurincin H at a concentration of approximately 

107CFU/ml and incubated in 30°C for 60 min. For the experimental group, the final 

concentration thurincin H was 100 µg/ml. After 60 min, all samples were immediately 

serially diluted with 0.1% peptone water and plated on TSA plate. Two independently 

prepared spores crops were assayed in triplicate. 

RESULTS AND DISCUSSION 

Bacteriocin production and purification. Based on a preliminary time-course 

study between incubation time and bacteriocin activity of cell-free supernatant, initial 

bacteriocin activity was detected after 8 hours, reached a stable activity maximum 

between 36 hours and 46 hours, and remained stable for at least 90 hours throughout 

an incubation time course at 37°C (data not shown). This bacteriocin activity curve is 

consistent with previous reports indicating the production of bacteriocins are triggered 

under conditions of high stress, such as overpopulation and nutrient limitation during 

early stationary phase (Riley & Gordon, 1999; Singh & Banerjee, 2008). For the three 

independent thurincin H purification trials, the supernatant was harvested after 40 

hours of incubation at 37°C. 

Based on the HPLC result of cell free supernatant in Figure 2.1 (A), most of 

the compounds residing in the supernatant were eluted prior to thurincin H (22.1 min). 
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No significant peaks were detected after 22.1 min, indicating the strong 

hydrophobicity of thurincin H. Following the ammonia sulfate precipitation step, the 

concentration and purity of thurincin H was significantly increased and was the 

dominant peak in the elution profile (Figure 2.1, B). The strongly hydrophobic nature 

of thurincin H was exploited to optimize its large scale purification using high 

capacity C18 cartridges. One hundred and fifty milliliters of crude protein extract 

resuspended in PBS buffer was loaded onto a C18 cartridge and eluted with increasing 

concentrations of acetonitrile. A single HPLC resolved peak resulted from the 35%, 

45%, and 50% acetonitrile eluates as shown in Figure 2.1 (C). Each step of the 

purification process was visually assessed via silver-stained SDS-PAGE as the effects 

of each stage is shown, culminating in the presence of one single band for the final 

purified thurincin H (Figure 2.1, D). With a molecular mass below 4 kDa, 5% (v/v) 

glutaraldehyde demonstrated superior fixing results compared with acidified methanol 

(40% methanol and 10% acidic acid mixture). For further confirmation of purity and 

identity, the LC-MS data showed an intact molecular mass of 3139.52 Da, which is 

consistent with the previously reported molecular mass of thurincin H (data not shown) 

(Lee et al., 2009). 

The hydrophobic nature of thurincin H was critical in devising a scaled-up 

purification process. The amino acid sequence showed that thurincin H is overall 

negatively charged, while the 3D structure elucidated by NMR demonstrated that the 

uncharged residues form a hydrophobic region on one side of the hairpin loop 

structure (Sit et al., 2011). This unique feature formed theoretical basis for the 

purification method as thurincin H binds to the C18 column more tightly than most of 
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the substances in the supernatant shown in Figure 2.1 (A). 

Thurincin H was previously purified in small quantities using hydrophobic 

octyl-sepharose CL-4B cartridge (GE Healthcare, Piscataway, NJ). Subsequent to a 

crude ammonia sulfate precipitation and application to the cartridge, thurincin H was 

eluted by a continuously decreasing gradient of ammonia sulfate followed by an 

increasing gradient of ethanol in water (Lee et al., 2009). This laborious purification 

method is not feasible to purify large quantities of pure thurincin H, since the thurincin 

H peak overlap with neighboring contaminating peaks leading to a decreased yield as 

shown by the chromatography results. Furthermore, hundreds of samples had to be 

collected in order to simply identify the target thurincin H. This new C18 purification 

cartridge and the columns in HPLC both used carbon chain-based hydrophobic 

stationary phase as well as a similar composition for the mobile phase/eluent. A range 

of 35-50% acetonitrile was sufficient to elute the pure thurincin H from the cartridge, 

greatly increasing the reproducibility of the method compared with using a gradient-

based mobile clean-up and elution scheme. This new purification method is simple 

and fast, giving an 81% bacteriocin activity recovery rate (Table 2.1) in only two steps.  

This is far superior than most purification methods, since usually more than two 

purification steps were applied during the entire purification process, resulting is 

cumulative losses at each step (Pingitore et al., 2007).  
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Figure 2.1 Purification of thurincin H. (A) HPLC of 40 hour supernatant. (B) HPLC 
of semi-purified thurincin H after ammonia sulfate precipitation. (C) Thurincin H after 
C18 purification. (D) SDS-PAGE and silver staining. Lane (1), Bio-Rad Precision Plus 
Protein™ Dual Xtra Standards; Lane (2), supernatant; Lane (3), semi-purified 
thurincin H after ammonia sulfate precipitation; lane (4), thurincin H after C18 
purification.  
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Table 2.1 Purification summary of thurincin H# 

 
#Values shown in the table are means and standard deviations of three independent purification experiments. † The total activity of 
the supernatant was arbitrarily made as 100% yield and 1 fold of purification, serving as the starting point for subsequent 
purification results to compare. *Concentration of total concentration of protein was measured using BCA protein assay with results 
accurate to μg/ml.  
 

Purification 
Step 

Volume Protein 
Concentration 

Total 
Protein 

Bacteriocin 
Activity 

Total 
Activity 

Specific 
Activity 

Yield Purification 
factor 

Unit (ml) (mg/ml) (mg) (AU/ml) (AU) (AU/mg ) % (fold) 

Supernatant 750 5.506* 4129.500±115.564 267±80 200250±69282 48±18 100%† 1† 

Ammonia sulfate 
precipitation 

150 0.523 78.450±3.813 1280±554 192000±55426 2447±637 96%±34% 50±18 

C18 purification 
（single peak on 

HPLC） 

60 0.232 13.920±6.622 2702±1001 162120±39105 11647±2561 81%±9% 240±163 
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Antimicrobial spectrum and MIC. A larger scale purification of thurincin H 

permitted an accurate examination of its inhibitory spectrum, allowing for a better 

comparison with the previously described spectrum (Lee et al., 2009). Instead of 

showing a typically narrow spectrum like lactic acid bacteriocins (Drider et al, 2006), 

thurincin H exhibited a wide antimicrobial spectrum against one or more species 

across several genera including Bacillus, Listeria, Carnobacterium, Enterococcus, 

Staphylococcus and Geobacillus. Among all the 22 sensitive strains, 14 of them are 

spore formers in or close to the Bacillus genus. The MICs were strain dependent, 

ranging from 0.28 nM to 21.9 nM for Gram-positive strains. None of the three Gram-

negative bacteria were inhibited by thurincin H (Table 2.2). 

Thurincin H is ineffective against any of the 9 selected yeast strains (Candida 

albicans 3153A, Dekkera anomala, Geotrichum candidum 755, Pichia stipitis CBS 

6054, Rhodotorula mucilaginosa, Saccharomyces bisporus, Saccharomyces cerevisiae, 

Zygosaccharomyces baillii, and Zygosaccharomyces bisporus) or the 10 mold strains 

(Aspergillus flavus, Aspergillus niger 2270, Byssochlamys fulva G -1, Byssochlamys 

fulva H25, Neosartorya fischeri, Penicillium expansum 7861, Penicillium 

vermiculation, Rhizopus oligosporus, Rhizopus oryzae, and Talaromyces flavus). 

Several Bacillus strains were reported to inhibit growth of yeast and mold, but such 

studies only tested either the crude supernatant or a partially purified solution of 

bacteriocin (Abriouel et al., 2011). Those substances that inhibit the yeast or mold 

cannot be traced specifically to the bacteriocin in questions, and any inhibitory effects 

may be due other substances in solution. For example, the thurincin H producer B. 

thuringiensis SF361 also produces a 13.484 kD antifungal protein, YvgO, which 
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inhibits a wide variety of filamentous fungi ranging across several genera, including 

Aspergillus, Penicillium, and Byssochlamys (Manns et al., 2012). Furthermore, a 

highly purified bacteriocin is required to verify the activity of the specific bacteriocin 

under review, as more than one antimicrobial compounds are often produced by the 

same strain. For instance, Bacillus subtilis JM4 was reported to produce two 

antimicrobial peptides that differed by only one amino acid, subpeptin JM4-A and 

subpeptin JM4-B (Wu et al., 2005). 
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Table 2.2 MIC of thurincin H against different bacteria 

Strains Medium Incubation
(Hour) 

Temp 
(℃) 

MIC 

(μg/ml) (nM)

Bacillus cereus F4552 TSB 12 37 1.7  0.54 

Bacillus cereus F4810 TSB 12 37 1.7 0.54 

Bacillus cereus Northland TSB 12 37 4.70  1.50 

Bacillus cereus Northview P2E018 TSB 12 37 7.05  2.25 

Bacillus licheniformis TSB 12 37 68.75 21.90 

Bacillus megaterium LRB89 TSB 17 37 0.44  0.14 

Bacillus subtilis ATCC 6537 TSB 14 37 4.60  1.47 

Bacillus subtilis CU1065(WT) TSB 17 37 36.94  11.77 

Bacillus subtilis LRB90 TSB 14 37 9.23  2.94 

Bacillus subtilis LRB91 TSB 14 37 2.31  0.73 

Bacillus subtilis ATCC 6633 TSB 14 37 1.15  0.37 

Bacillus thuringiensis SF361 TSB 12 37 18.44  5.87 

Bacillus thuringiensis EG10368 TSB 12 37 0.85  0.27 

Carnobacterium piscicola CU216 APT 12 30 0.88  0.28 

Enterobacter agglomerans J-1 TSB 12 37 -‡ - 

Enterococcus mundtii EM TSB 12 37 68.75  21.90 

Geobacillus stearothermophilus ATCC 12980 TSB 24 50 0.88  0.28 

Listeria innocua ATCC 2283 TSB 17 37 0.88  0.28 

Listeria ivanovii ATCC 19119 TSB 12 37 0.88  0.28 

Listeria monocytogenes F2 586 1053 TSB 17 37 1.76  0.56 

Listeria monocytogenes 2289 TSB 17 37 1.76  0.56 

Paenibacillus larvae subsp larvae ATCC 25747 TSB 12 37 - - 

Pseudomona syringae pv. papulans 51 TSB 12 37 - - 

Staphylococcus aureus ATCC 9144 TSB 14 37 36.94  11.77 

Staphylococcus aureus ATCC 8095 TSB 14 37 18.44  5.87 

Streptococcus faecalis ATCC 8043 TSB 12 37 - - 

Vibrio parahaemolyticus G1-166 (03:k6) TSB 12 37 - - 

‡ The growth of the strain was not inhibited by the applied thurincin H in the experiment. 
§There was no discernible deviation in the assay of the MICs for all samples measured. 
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Stability. Similar to many acid-stable yet alkaline-labile class I and class II 

lactic acid bacteriocins (Chen & Hoover, 2003), thurincin H is stable from pH 2-7 up 

to at least 24 hours. Bacteriocin activity was partially lost in pH 8-9 solutions, and 

completely lost at pH 9-11 within 24 hours at room temperature, as shown in Figure 

2.2 (A).  

When thurincin H was exposed to elevated temperatures in PBS buffer, the 

bacteriocin activity remained for 30 min at 50°C but half of the activity dropped at 

50°C by 60 min, at 60°C by 10 min, and at 70°C in less than 10 min. Thurincin H lost 

most of its activity within 3 min temperatures above 80°C, as in Figure 2.2 (B). 

Compared with thurincin H, some lactic acid bacteria could remain stable after 

extreme heat treatments (eg. plantaricin LP84, 20 min at 121°C) (Suma et al., 1998). 

Samples treated at 100°C for 10 min and at pH 10 for 12 hours (and 

subsequently neutralized) were analyzed via HPLC and LC-MS. The peak 

representing the intact thurincin H at 22.1 min completely disappeared and several 

novel, yet earlier eluting peaks dominated the HPLC spectra (data not shown). 

Furthermore, an intact molecular mass for thurincin H was not detected in the heat or 

alkaline processed samples via LC-MS. These results indicated that the loss of activity 

was not simply due to a conformational change, but chemical degradation. The peptide 

backbone of thurincin H after thermal and basic condition treatment might be 

degraded. 
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Figure 2.2 Stability of thurincin H. (A) Thurincin H was stable under acidic 
conditions for 24 hours, but gradually lost activity in alkaline conditions. (B) 
Thurincin H was heat labile. The data in shown in the figure are means of multiple 
different independent experiments, and there was no discernible deviation in the 
microtiter bacteriocin activity assays for all the samples measured.  
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Effect of thurincin H on Bacillus spore outgrowth. The MICs of thurincin H 

against B. cereus F4552 spores were 3.8 μg/ml for 104 CFU/ml, and 7.6 μg/ml for 105-

107 CFU/ml at 30°C in BHI for 12 hours. At the same incubation medium and 

temperature, no optical density increase of B. cereus was observed at the concentration 

of equal to or higher than 2 times of MIC for up to one week. After incubating 

thurincin H with spores for one week at 30°C, the suspension was centrifuged and 

plated out on BHI agar plate. No colonies were found on the plates, which indicated 

that no viable spores or germinated spores or vegetative cells exist in the mixture (data 

not shown).  

To determine if thurincin H could induce or block spore germination initiation, 

the A600 of spores incubated in the presence of thurincin H was measured (Stewart et 

al., 1981). As shown in Figure 2.3 (A), when spores were resuspended in Tris-NaCl 

buffers (restricting germination), the A600 remained stable with or without the presence 

of thurincin H. When spores were resuspended in a nutrient-rich BHI broth 

(encouraging germination), the A600 dropped at the same level in the presence or 

absence of thurincin H. These results indicate that thurincin H could neither induce 

spore germination initiation in nutrient deficient conditions nor block spore 

germination initiation in nutrient sufficient conditions. 

To determine if thurincin H kills intact spores before spore germination 

initiation, thurincin H was mixed with B. cereus spores in Tris-NaCl buffers or BHI 

nutrient broth. The results showed that the spores were killed only when germination 

is induced by matrix nutrients. Spores in Tris-NaCl buffer in presence of thurincin H, 

did not kill spores compared with control, as seen in Figure 2.3 (B). This indicates that 
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germination is a prerequisite for the bacterial sporicidal action of thurincin H.  
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Figure 2.3 Inhibitory effect of thurincin H against Bacillus spores. (A) Thurincin H 
does not prevent Bacillus spore germination initiation in BHI or induce Bacillus spore 
germination initiation in Tris-NaCl buffer. (B) Germination is required for the action 
of thurincin H. Error bars describe the standard deviation for three independent 
experiments. * shows significant lower value, p<0.05. 
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CONCLUSIONS 

A new large scale production and purification system exploiting the strongly 

hydrophobic feature of thurincin H was developed. Highly pure thurincin H showed a 

wide inhibition spectrum against primarily Gram-positive bacteria, but not against 

tested yeasts and molds. Nascent studies involving potential biological modes of 

action reveal that germination initiation is a prerequisite for the sporicidal action of 

thurincin H. 
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CHAPTER 3 

DEVELOPMENT OF A HETEROLOGOUS EXPRESSION SYSTEM FOR THE 

SYSTEMATIC SITE-DIRECTED MUTAGENESIS OF THURINCIN H, A 

BACTERIOCIN PRODUCED BY BACILLUS THURINGIENSIS SF361 

 

ABSTRACT 

Thurincin H is an antimicrobial peptide produced by Bacillus thuringiensis 

SF361. With a helical back bone, the 31 amino acids of thurincin H form a hairpin 

structure maintained by four pairs of very unique sulfur to α-carbon thioether 

bonds. The production of thurincin H depends on a putative gene cluster containing 

10 open reading frames. The gene cluster includes three tandem structural genes 

(thnA1, thnA2 and thnA3) encoding the three identical 40 amino acid thurincin H 

prepeptides, and seven other genes putatively responsible for prepeptide processing, 

regulation, modification, exportation, and self-immunity. A heterologous thurincin 

H expression system was developed by transforming a thurincin H deficient host 

with the novel expression vector pGW133. The host, designated B. thuringiensis 

SF361thnH-, was constructed by deletion of the three tandem structural genes from 

the chromosome of the native thurincin H producer. The thurincin H expression 

vector pGW133 was constructed by cloning the thurincin H native promoter, thnA1, 

and a Cry protein terminator into the E. coli-B. thuringiensis shuttle vector pHT315. 

Thirty three different pGW133 variants, each containing a different point mutation 

in the thnA1 gene, were generated and separately transformed into B. thuringiensis 
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SF361thnH-. Those site-directed mutants contain either a single radical or 

conservative amino acid substitution on the thioether linkage-forming positions, or a 

radical substitution on other non-alanine amino acids. Bacteriocin activities of B. 

thuringiensis SF361thnH- carrying different pGW133 variants against three 

different indicator strains were subsequently compared.  

INTRODUCTION 

Bacteriocins are ribosomally synthesized, antimicrobial peptides or proteins 

produced by bacteria, usually with a narrow inhibitory spectrum, although notable 

exceptions exist (Cotter et al., 2013). Bacteriocins produced by lactic acid bacteria (LAB) 

have been extensively studied and used as natural food preservatives. Due to the fact that 

lactic acid bacteria are generally recognized as safe (GRAS status), they have been 

investigated as potential agents for preventing spoilage and enhancing the safety of foods. 

The LAB bacteriocins can be divided into three main classes: the class I lantibiotics, 

containing a lanthionine thioether bond linking the sulfur atom of cysteines with the β-

carbon of other amino acids; the class II non-lanthionine-containing bacteriocins; and the 

class III heat-labile large proteins (Cotter et al., 2005). In recent years, bacteriocins 

produced by Bacillus spp. have gained increasing research interest since many of them 

exhibit a broader antimicrobial spectrum compared with most lactic acid bacteriocins, 

anticipating potential applications in the food, agricultural, and pharmaceutical industries 

in controlling various spoilage and pathogenic microorganisms (Abriouel et al., 2011; Lee 

& Kim, 2011). One Bacillus bacteriocin, thurincin H, is an antimicrobial peptide 
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produced by Bacillus thuringiensis SF361, a strain originally isolated from US domestic 

sunflower honey. It exhibits inhibitory activity against a wide range of Gram-positive 

bacteria including different foodborne pathogens and spoilage bacteria, such as Listeria 

monocytogenes, Bacillus cereus, and Micrococcus spp.(Lee et al., 2009). Thurincin H 

contains four pairs of unique sulfur to α-carbon thioether bridges (Figure 3.1) which is 

quite different from those extensively studied group of class I lantibiotics, since the 

structure of lantibiotics was maintained by sulfur to β-carbon bridges (Willey & van der 

Donk, 2007). 

As elucidated by bioinformatics studies, the thnP-thnI gene cluster is responsible 

for the production of mature active thurincin H. It is composed of three tandem thurincin 

H prepeptide genes (thnA1, thnA2 and thnA3), as well as the thnP, thnB, thnD, thnE, thnT, 

thnR, thnI genes, putatively required for thurincin H prepeptide processing, regulation, 

modification, exportation, and immunity. It was proposed that thnA1, thnA2 and thnA3 

genes are first translated into three identical 40 amino-acid thurincin H prepeptides and 

subsequently modified by ThnB, a member of the radical S-adenosylmethionine (SAM) 

superfamily of enzymes, to form the thioether bonds. The leader peptide is subsequently 

cleaved and mature thurincin H is exported to the extracellular environment (Lee et al., 

2009). The mature 31 amino acids of thurincin H feature a helical backbone that is folded 

over to a hairpin structure maintained by linking the sulfur atoms of the four cysteines 

(Cys4, Cys7, Cys10 and Cys13) to the α-carbons of one asparagine (Asn19), two 

threonines (Thr22 and Thr25) and one serine (Ser28) (Sit et al., 2011b).  
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In this study, a heterologous thurincin H expression system was constructed by 

introducing the newly constructed expression vector pGW133 to B. thuringiensis 

SF361thnH-, in which the three tandem structural genes (thnA1, thnA2 and thnA3) were 

in-frame deleted from the chromosome of the native thurincin H producer. The expression 

vector was developed based on the E. coli-B. thuringiensis shuttle vector pHT315 

(Arantes & Lereclus, 1991). A commonly used expression system such as Escherichia 

coli (Ingham et al., 2005; Lohans & Vederas, 2012) or lactic acid bacteria (Rodriguez et 

al., 2003) was not used in the expression of thurincin H since the genes in the thnP-thnI 

gene cluster are indispensable for the biosynthesis and maturation of the thurincin H. 

These genes might not exist or could not be expressed in those commonly used hosts. 

 Using the newly developed expression system, systematic site-directed 

mutagenesis was performed on the mature thurincin H to explore the altered bacteriocin 

activity of 33 thurincin H variants, aiming to determine the critical amino acids that are 

critical for its inhibitory activity. Specifically, radical and conservative single site directed 

mutagenesis were performed to mutate the sulfur to α-carbon bond forming amino acids. 

Additionally, radical single site directed mutagenesis was performed to mutate all the 

non- sulfur to α-carbon bond forming amino acids. 

MATERIALS AND METHODS 

Bacterial strains, culture conditions, plasmids and primers. Both Bacillus and 

E. coli strains used in this study were cultivated at 37°C in trypticase soy broth (TSB) or 

on trypticase soy agar (TSA) (BD, Sparks, MD). B. cereus F4552 was used as the 
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indicator strain for testing the antimicrobial activity of the constructed heterologous 

expression system. E. coli DH5α was used for cloning recombinant plasmids. E. coli K12 

ER2925 (NEB, MA) was used to produce demethylated plasmids as a preparation for B. 

thuringiensis transformation (Macaluso & Mettus, 1991). Erythromycin (25 μg/ml) or 

ampicillin (100 μg/ml) was supplemented in TSA plates used to select transformants of B. 

thuringiensis or E. coli, respectively. B. cereus F4552, B. thuringiensis EG10368, and 

Listeria monocytogenes 2289 were used as indicator strains in evaluating the bacteriocin 

production activity of each constructed mutant. All chemicals and reagents were either 

autoclaved at 121°C for 15 min or filtered through a polyethersulfone (PES) membrane 

(0.22 μm; Celltreat, China). All plasmids and primers used in expression vector 

construction are listed in Table 3.1. Primers used in site directed mutagenesis are listed in 

Table 3.2. All primers used in this study were synthesized by Integrated DNA 

Technologies (Coralville, Iowa). All DNA sequencings were performed at the 

Biotechnology Resource Center at Cornell University (Ithaca, NY) by an Applied 

Biosystems Automated 3730xl DNA Analyzer using Big Dye Terminator chemistry and 

AmpliTaq-FS DNA Polymerase. 
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Table 3.2 Plasmids and primers used in developing expression system 
Plasmids                             Description                           References 
pMAD Vector for efficient allelic replacement, thermosensitive, 

carrying bgaB, EryR AmpR 
(Arnaud et al., 
2004) 

pMADΔthnA1A2A3 pMAD carrying the upstream and downstream DNA sequences 
of thnA1, thnA2 and thnA3, used for homologous recombination 

This study 
 

pHT315 E. coli-B. thuringiensis shuttle vector, 6.5 KB, EryR AmpR (Arantes & 
Lereclus, 
1991) 

pGW131 thnA1, thnA2 and thn A3 genes with native promoter (Pnat) and 
native terminator (Tnat), cloned in pHT315 

This study 
 

pGW132 thnA1 gene with native promoter (Pnat) and native 
terminator(Tnat), cloned in pHT315 

This study 

pGW133 thnA1 gene with native promoter (Pnat) and Cry protein 
terminator(Tcry), cloned in pHT315 

This study 

Primers                            Sequence                              Restriction  
enzyme 

DEL1 gatggaggatccaataccaattttgtttttagactttctttcatgcttatccatat BamHI 
DEL2 gatggaaagcttttgtactactggtgtttccatttgacc   HindIII 
DEL3 gatggaaagcttggagctagtactgcaagttaaaatttaaaaatgtgagag HindIII 
DEL4 gaaggaccatggtgcatatcaatttgcacaaatgttttcgactt NcoI 
DTC1 cattgttaaatatggattccttaatttgctcctttatctgttg NA 

DTC2 cgctctcgtttgggtttttatgaactacc NA 

TH01 gatggactgcaggtaaatatatgtcacaaaatattaaagaaacacacacaaaatgtttg PstI 

TH02 gatggtgaattcgtttttagtttatgtattacaaaaatcccatactcgttttcg EcoRI 
TH03 atggaaacaccagtagtacaaccaagg  NA 
TH04 ttagcttgcagtactagcccctgt  NA 
TH05 gatggactgcaggtaaatatatgtcacaaaatattaaagaaacacacacaaaatgtttgaaa

ttttttgattgtttttagaaaacatagggagttatactttagtcgcaccacacaatacagaaaag
ggggtaggtcaaatggaaacaccagtagtacaaccaagg 

PstI 

TH06 gatggtgaattcgtttttagtttatgtattacaaaaatcccatactcgttttcgataaatttatagg
acttattcttaacataactgtttgtcattagaataagtcctaatttaatttcaccataaacactctc
acatttttaaattttagcttgcagtactagcccctgt 

EcoRI 

TH07 gatggtgaattctagtaaaacggacatcactccgtttcaatggaggtgatgtccgttttattta
atttcaccataaacactctcacatttttaaatttta 

EcoRI 

DTC3 ctgcaaggcgattaagttgggtaac NA 
DTC4 cggataacaatttcacacaggaaacagcta   NA 
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 Bacteriocin activity assays. Bacteriocin activity on TSA plates was detected 

using a deferred antagonism assay as previously described (Birri et al., 2010) with 

modifications. B. thuringiensis SF361 (on TSA) and B. thuringiensis SF361thnH- carrying 

different plasmids (on TSA with 25μg/ml Erythromycin) were incubated for 12 h at 37°C. 

Single colonies were subsequently spotted on TSA and incubated for at 37°C for 15 h. 

Fifty microliters of overnight indicator strain culture was inoculated into 8 ml soft TSA 

(50°C, 0.75% agar) and overlaid on top of the plates. After an incubation at 25°C for 12 h, 

the diameter of the inhibition zones around the colonies were measured.  

 Bacteriocin activity in liquid medium was detected by a previously described 

microtiter plate assay (Daba et al., 1991) modified for the current study. In brief, using 

untreated, clear, flat bottom 96 micro well plates (Thermo Scientific, Nunc, Denmark), 50 

µl of bacteriocin diluted two-fold in the appropriate buffer was mixed with 150 µl of 1.33% 

(v/v) B. cereus F4552 overnight culture in TSB and incubated at 37°C for 8 h. The 

absorbance at 600 nm (A600) of each well was measured using a Synergy HT Multi-Mode 

Microplate Reader (BioTek, Winooski, VT). One arbitrary unit (AU) was defined as the 

amount of bacteriocin in the 50 µl sample that caused a 50% growth inhibition compared 

with control group.  

 General DNA manipulation. General molecular cloning methods used in this 

study were performed as previously described by Sambrook and Russell (Sambrook & 

Russell, 2001), unless otherwise indicated. PrimeSTAR® Max DNA Polymerase (Takara, 

R045) was used for all PCR reactions, including colony PCR, using a total 50 µl mixture 
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volume. The PCR protocol includes a template denaturation step at 98°C (1 min) 

followed by 30 cycles of denaturing at 98°C (10 s), annealing at 55°C (10 s), and 

polymerization at 72°C (30-60 s), with one final extension at 72°C (7 min). Generally, to 

construct recombinant plasmids, PCR products were purified, double digested with high 

fidelity restriction enzymes (NEB, MA) for 2 h at 37°C and ligated to the double digested 

plasmids overnight at 16°C by T4 ligase. Recombinant plasmids were transformed using 

commercial competent E. coli DH5α by the heat shock method according to the standard 

protocol (NEB, MA). Plasmids were purified from E. coli DH5α using QIAprep Spin 

Miniprep Kit (QIAGEN) and passed through E. coli K12 ER2925 to produce a 

demethylated plasmid in preparation for electroporation into B. thuringiensis strains 

(Macaluso & Mettus, 1991). Recombinant plasmids were transformed to B. thuringiensis 

strains as previously described (Lereclus et al., 1989). Sequences of all recombinant 

plasmids were confirmed by DNA sequencing. 

 Non-thurincin H producing host construction. The non-thurincin H producing 

host (B. thuringiensis SF361thnH-) was constructed by an in-frame deletion of 

thnA1,thnA2 and thnA3 from the wild type producer B. thuringiensis SF361 using a 

homologous recombination method through the theromosentive suicide plasmid pMAD, 

as described by Arnaud (Arnaud et al., 2004). pMAD is a plasmid which carries a bgaB 

gene encoding a thermostable galactosidase for blue and white screening (Arnaud et al., 

2004). A 984 bp BamHI/HindIII DNA fragment (with primer DEL1 and DEL2) and an 

895 bp HindIII/ NcoI DNA fragment (with primer DEL3 and DEL4) corresponding to the 
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regions upstream and downstream of thnA1, thnA2 and thnA3 were amplified by PCR and 

cloned into pMAD. In ligating the fragments into pMAD, the upstream, downstream, and 

digested pMAD were mixted in the same reaction at a ratio of 3:3:1. The recombinant 

plasmid pMADΔthnA1A2A3 transformed E. coli DH5α, was passed through E. coli K12 

ER2925, and subsequently transformed B. thuringiensis SF361 as previously described 

(Lereclus et al., 1989). Tranformants were inoculated in 5 ml TSB, incubated for 3 h at 

42°C followed by 3 h at 30°C, and plated on TSA containing X-Gal (50 μg/ml). White 

colonies were selected for further confirmation. Using primers designed accroding to the 

chromosomal region flanking the thnA1,thnA2 and thnA3 genes (DTC1 and DTC2), DNA 

fragments amplified by colony PCR from the wild type producer and the selected white 

colonies were compared for size differences. The expected sequence in the deletion 

mutant was also confirmed by DNA sequencing.  

 To determine if all other genes neccessary for thurincin H production still function 

properly after the deletion, a complementation experiment was performed. Specifically, a 

fragment containing the native promoter (Pnat), three tandem structural genes (thnA1, 

thnA2 and thnA3), and native terminator (Tnat) was amplified from B. thuringiensis SF361 

using primers TH01 and TH02, and cloned into pHT315, resulting in the plasmid 

pGW131. The pGW131 was transformed into B. thuringinesis SF361thnH- and colonies 

displaying a white morphology with the expected DNA sequence and was plated on TSA 

(Erythromycin 25μg/ml). The bacteriocin production of the deletion mutant and 

transformants were detected using a deferred antagonism assay as described above (Birri 
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et al., 2010) and compared to the wild type producer.  

Construction of heterologous expression vectors. In preparation for site directed 

mutagenesis, two plasmids each carrying a single copy of the structural gene thnA1 under 

the native promoter were constructed. First, thnA1 was amplified using primers TH03 and 

TH04, and purified using QIAquick PCR Purification Kit (Qiagen, USA). Using the 

purified thnA1 gene as a template, an insertion fragment containing the native promoter 

(Pnat), thnA1 gene, and the native terminator (Tnat) was amplified with primers TH05 and 

TH06, cloned into pHT315, resulting in the pGW132 plasmid. Second, using the purified 

pGW132 inserts as the template, another fragment containing the native promoter (Pnat), 

thnA1, and Cry terminator (Tcry) (Wong & Chang, 1986) was amplified with primers 

TH01 and TH07, and cloned into pHT315, resulting in the plasmid pGW133. In plasmid 

pGW133, the reverse primer contained the sequence of the Cry terminator loop. These 

two constructed plasmids (pGW132 and pGW133) were used separately to transform B. 

thuringiensis SF361thnH-. The antimicrobial activity of both transformants was detected 

by the modified deferred antagonism assay as described above.  

 Thurincin H production in broth by B. thuringiensis SF361thnH-pGW133 was 

compared to the wild type producer. Fresh overnight colonies of B. thuringiensis SF361 

and B. thuringiensis SF361thnH- pGW133 from TSA (Erythromycin 25µg/ml) were 

inoculated into 5 ml of TSB and incubated at 37°C for 12 hours with shaking at 225 rpm. 

A 1.5 ml aliquot of this incubation was added into 150 ml TSB and incubated at 37°C for 

up to 90 h with shaking at 225 rpm. Samples were taken every 3 h, centrifuged (8000 x g, 
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4°C, 5 min), filtered (PES membrane, 0.22µM) and stored at -20°C. The antimicrobial 

activity of each sample was quantified by the microtiter plate method as described above. 

Five independent experiments were performed. 

 Site directed mutagenesis. A total of thirty three different pGW133 plasmids, 

each with a different mutated thnA1 gene, was generated by using a QuikChange 

Lightning Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA). Mutagenesis 

reactions were performed in a BioRad T100 thermal cycler by using PfuUltra HF DNA 

polymerase in the kit according to the manufacturer’s guidelines with modifications. Each 

reaction mixture contained 2.5 µl 10x reaction buffer, 18.5 ng plasmid template, 62.5 ng 

of each oligonucleotide primer, 0.5 μl dNTP mix, 0.75 μl QuickSlotion reagent, 0.5μl 

QickChange Lightning Enzyme, and was brought up to 25 μl with sterile Milli-Q water 

(Millipore Corporation, Billerica, MA). The mutagenesis reaction was performed with a 

program of the following conditions: initial one cycle of 95°Cfor 2 min, followed by 18 

cycles of a set of reactions composed of 20 s at 95°C 10 s at 60°C, and 4 min at 68°C, 

with one final cycle of 68°C for 5 min. The resulting products were digested for 5 min at 

37°C using the endonuclease DpnI to eliminate the methylated and hemi-methylated 

DNA containing the non-mutated sequence originating from the template plasmids. The 

nicked vector containing the expected mutation was transformed to E. coli XL10-Gold 

ultracompetent cells and the nick was sealed by E. coli DNA repair systems. Plasmids 

were purified, passed through E. coli K12 ER2925, and transformed B. thuringiensis 
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SF361thnH-. The DNA sequences of all mutated plasmids were verified by DNA 

sequencing. 

Antimicrobial activity assay on plates. Inhibitory activities of the 33 obtained 

site directed mutants were compared to B. thuringiensis SF361thnH-pGW133 by the 

deferred antagonism assay using B. cereus F4552, B. thuringiensis EG10368 and L. 

monocytogenes 2289 as indicator strains, as described above. Four independent sets of 

experiments were performed on each strain.  

RESULTS 

Thurincin H deficient expression host engineered from wild type producer. 

The structural genes thnA1, thnA2 and thnA3 were deleted in-frame based on the double 

crossover homologous recombination method using the thermosenstive plasmid pMAD 

(Figure 3.2, A). The deletion of the thnA1, thnA2 and thnA3 on the white colonies was 

first confirmed by PCR, where the amplicon was run on agarose gels and revealed that the 

product from each deletion mutant was smaller than the wild type (Figure 3.2, B). 

Subsequent confirmation was made by DNA sequencing (data not shown). 

Deletion mutants with the expected DNA sequence lost the ability to inhibit the 

sensitive indicator strain B. cereus F4552 (Figure 3.2, C, colony 2). As further verification, 

pGW131 containing the native promoter (Pnat), thnA1, thnA2 and thnA3, and the thurincin 

H native terminator (Tnat) was constructed and was used to transform the deletion mutants, 

in order to test if it could complement the production of thurincin H prepeptide. The 

results showed that B. thuringiensis SF361 thnH- carrying pGW131 (Figure 3.2, C, colony 
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3) exhibited a similar sized zone of inhibition compared to the wild type (Figure 3.2, C, 

colony 1), indicating that the structural gene in the pGW131 successfully complemented 

the mature thurincin H production and secretion pathway in the constructed mutant.  
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Expression vector construction and optimization. The plasmid construct, 

pGW132, containing the native promoter (Pnat), thnA1, and native terminator (Tnat) was 

preliminarily constructed to express thurincin H in preparation for site direct mutagenesis 

(Figure 3.3, A). B. thuringiensis SF361thnH- pGW132 (Figure 3.3, B, colony 3) exhibited 

a significantly smaller inhibition zone compared with the wild type (Figure 3.3, B, colony 

1).  

To improve the heterologous expression level of thurincin H, the native promoter 

(Tnat) was replaced with a CryIAa protein terminator (Tcry) originally found in B. 

thuringiensis subsp. kurstaki HD1, leading to the construction of pGW133 (Figure 3.3, A). 

The results indicated that bacteriocin activity of B. thuringiensis SF361thnH- pGW133 

was significantly increased compared with pGW132, reaching a similar expression level 

as the wild type (Figure 3.3, colony 4).  

To evaluate the bacteriocin production of B. thuringiensis SF361thnH- pGW133 in 

liquid broth, it was incubated in TSB without antibiotics and compared with the 

bacteriocin production level of the wide type producer under the same conditions. The 

production level of B. thuringiensis SF361thnH- pGW133 reached similar levels as the 

wild type producer (Figure 3.3, C). No selective antibiotics were added to the TSB 

medium during the 90 h production since pHT315 has been reported to be stably 

maintained in a B. thuringiensis host without selective pressure (Arantes & Lereclus, 

1991; Okay et al., 2008). 
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Figure 3.3 Construction of different expression vectors and measurement of their 
bacteriocin production levels. (A) Scheme of plasmids pGW132 and pGW133 
construction; (B) Bacteriocin assay of pGW132 and pGW133 on solid TSA media; 1, WT; 
2, B. thuringiensis thnH-; 3, B. thuringiensis thnH-pGW132; 4, B. thuringiensis 
SF361thnH-pGW133; (C) Bacteriocin activity of B. thuringiensis thnH-pGW133 in TSB.   
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Site directed mutagenesis. Mature thurincin H is composed of six alanines at 

non-sulfur to α-carbon bond forming positions (A11, A12, A23, A24, A27, and A30) in 

addition to 25 other amino acids throughout the rest of the peptide (Figure 3.1). The 33 

single amino acid site-directed mutations on the pGW133 plasmids were categorized into 

three groups: 1) 8 radical substitutions at thioether bond forming positions; 2) 8 

conservative substitutions at thioether bond forming positions; 3) 17 radical substitutions 

at non-thioether bond forming positions (Table 3.3). Those mutants were systematically 

generated to elucidate the tolerance of the biosynthesis, regulation, and transportation 

pathway toward each amino acid substitution in leaderless thurincin H. The results of the 

bacteriocin activity change were measured by deferred antagonism assay and are 

summarized in Table 3.3. 

  In groups 1 and 2, the inhibitory activity was completely lost as a result of any of 

the eight single cysteine-alanine/cysteine-serine mutations. However, in the thioether 

acceptor sites of group 1, bacteriocin activity disappeared in N19A and T22A, was 

partially retained in T25A and S28A. Remarkably, in group 2, relatively high partial 

bacteriocin activities were retained in all four thioether acceptor sites, N19Q, T22S, T25S, 

and S28T. This result indicated that all four cysteines (C4, C7, C10, C13), the donors of 

the thioether bonds, are critical in maintaining the bacteriocin activity. However, the 

thurincin H pathway does have limited tolerance towards amino acid substitution in the 

thioether acceptor positions (N19, T22, T25, and S28).  

In group 3, bacteriocin activity was completely abolished when W (2, 5), L (8, 17, 
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20), and T29 were substituted by alanine. Partial activity was lost when E16, G26, D1, V 

(9, 15, 21), L18 and T3 were mutated. Very high activity was retained when S (6, 14, 31) 

were substituted with alanine. Tryptophan could not be substituted at either position 

probably because the featured indole functional group plays an essential role. As for 

leucine and threonine, their substitutability depended on their positions. Remarkably, all 

three serine-alanine mutations maintained high bacteriocin activity, regardless of their 

positions in the peptide.  
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Table 3.3 Primers used in site directed mutagenesis 
Mutation Primera Sequence 

Radical substitutions (thioether linkages forming positions) 

C4A AM 4 agtagtacaaccaagggactggactgcatggagttgtttagtatgtg 

C7A AM 7 agggactggacttgttggagtgcattagtatgtgcagcatgttct 

C10A AM 10 ggactggacttgttggagttgtttagtagcagcagcatgttctgtg 

C13A AM 13 cttgttggagttgtttagtatgtgcagcagcatctgtggaattattaaatttagttact 

N19A AM 19 gtttagtatgtgcagcatgttctgtggaattattagcattagttactgcggcaacag 

T22A AM 22 gttctgtggaattattaaatttagttgcagcggcaacaggggc 

T25A AM 25 aaatttagttactgcggcagcaggggctagtactg 

S28A AM 28 atttagttactgcggcaacaggggctgcaactgcaagctaaaatttaaaaatg 

Conservative substitutions (thioether linkages forming positions) 

C4S CM4 acaaccaagggactggactagttggagttgtttag 

C7S CM7 actggacttgttggagtagtttagtatgtgcagcatg 

C10S CM10 tggacttgttggagttgtttagtaagtgcagcatgttctg 

C13S CM13 ggagttgtttagtatgtgcagcaagttctgtggaattattaaattta 

N19Q CM19 agtatgtgcagcatgttctgtggaattattacaattagttactgcggcaac 

T22S CM22 tctgtggaattattaaatttagttagtgcggcaacagggg 

T25S CM25 tattaaatttagttactgcggcaagtggggctagtactgcaag 

S28T CM28 ttactgcggcaacaggggctacaactgcaagctaaaattta 

Radical substitutions (none thioether linkages forming positions) 

D1A AM 1 accagtagtacaaccaagggcatggacttgttggagttgtt 

W2A AM 2 caccagtagtacaaccaagggacgcaacttgttggagttgtttagtatg 

T3A AM 3 tagtacaaccaagggactgggcatgttggagttgtttagtatg 

W5A AM 5 tacaaccaagggactggacttgtgcaagttgtttagtatgtgcagc 

S6A AM 6 ccaagggactggacttgttgggcatgtttagtatgtgcagcatgt 

L8A AM 8 ctggacttgttggagttgtgcagtatgtgcagcatgttctg 

V9A AM 9 actggacttgttggagttgtttagcatgtgcagcatgt 

S14A AM 14 gagttgtttagtatgtgcagcatgtgcagtggaattattaaatttagttactg 

V15A AM 15 ttgtttagtatgtgcagcatgttctgcagaattattaaatttagttactgcgg 

E16A AM 16 gtatgtgcagcatgttctgtggcattattaaatttagttactgcg 

L17A AM 17 tatgtgcagcatgttctgtggaagcattaaatttagttactgcggcaac 

L18A AM 18 tgcagcatgttctgtggaattagcaaatttagttactgcggcaacag 

L20A AM 20 tgcagcatgttctgtggaattattaaatgcagttactgcggcaacag 

V21A AM 21 cagcatgttctgtggaattattaaatttagcaactgcggcaacaggg 

G26A AM 26 aaatttagttactgcggcaacagcagctagtactg 

T29A AM 29 ctgcggcaacaggggctagtgcagcaagctaaaatttaaa 

S31A AM 31 cggcaacaggggctagtactgcagcataaaatttaaaaatgtgagagtgt 
a Only one of the two primers (one pair) used in each site directed mutagenesis reaction was listed in this 

table. The other primer of the pair is complementary to the sequence listed above. Codons for the mutated 

amino acids were underlined. 
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Table 3.4 Inhibitory activity of site directed mutants. 

*Size of inhibition zones were measured with the accuracy of 1 mm (± 0.5 mm). Means and standard 

deviations of four independent experiments were presented in the table.   

  

  

Mutation

Sizes of inhibition zones (mm)# 

B. cereus

F4552 

B. thuringiensis  

EG10368 

L. monocytogenes

2289 

GROUP 1 

Radical 

Substitution 

(thioether linkages forming position)

C4A - - - 

C7A - - - 

C10A - - - 

C13A - - - 

N19A - - - 

T22A - - - 

T25A 13.9±0.4 12.0±0.0 - 

S28A 13.7±0.4 11.8±0.8 9.8±0.5 

  

 

GROUP 2 

Conservative 

Substitution 

(thioether linkages 

forming position) 

C4S - - - 

C7S - - - 

C10S - - - 

C13S - - - 

N19Q 8.6±1.0 9.0±0.0 - 

T22S 11.7±0.7 9.6±0.6 - 

T25S 10.3±0.4 8.8±0.8 - 

S28T 13.5±0.6 11.0±0.9 - 

 

 

 

 

 

GROUP 3 

Radical 

Substitution 

(None thioether 

Linkages forming 

position) 

D1A 8.8±0.7 6.8±0.5 - 

W2A - - - 

T3A 6.2±0.9 7.5±0.5 - 

W5A - - - 

S6A 14.4±0.7 12.8±0.8 10.1±0.6 

L8A - - - 

V9A 9.9±0.7 8.3±0.5 - 

S14A 14.6±0.4 12.0±1.1 10.5±0.0 

V15A 9.9±0.7 10.5±0.9  

E16A 10.1±1.4 8.8±0.3 - 

L17A - - - 

L18A 10.9±0.8 10.1±1.2 - 

L20A - - - 

V21A 7.1±0.8 8.3±0.8 - 

G26A 9.0±0.0 8.1±0.3 - 

T29A - - - 

S31A 15.2±0.9 13.7±0.8 9.9±0.6 

No Substitution + Control 16.3±1.5 14.1±1.2 10.3±0.8 
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DISCUSSION 

 In-frame deletion and complementation. A deletion mutant of the wild type 

producer was chosen as the expression host in our study since there are generally always 

potential technical limitations to the express proteins or peptides in other hosts. For 

example, the structural gene of the protein might contain rarely used codons in the desired 

host (Gustafsson et al., 2004) or the proteins expressed in the desired host might be 

degraded by native proteolytic enzymes (Jensen et al., 2000; Murashima et al., 2002; 

Narayanan & Chou, 2009). In this particular case of the extensive modified thurincin H, 

the sulfur to α-carbon bonds were very unique and are only reported to exist in three other 

bacterial peptides to date (Kawulka et al., 2004; Liu et al., 2010; Sit et al., 2011a). These 

bonds are not reported in proteins expressed by commonly used expression hosts such as 

E. coli (Richard et al., 2004) or lactic acid bacteria (Rodriguez et al., 2003), rendering the 

deletion mutant a logical host for expression of sited directed mutants.   

 During construction of B. thuringiensis SF361thnH- by homologous 

recombination, five of the 65 white colonies from the X-gal plates were radomly selected 

for DNA sequencing. All five potential mutants possessed the expected sequence without 

incorporating any changes in the regions flanking the gene cluster, indicating a high 

heterlogous recombination accuracy. In addition, this in-frame deletion method did not 

introduce any antibiotic resistance markers into the chromosome.  

 The pGW131 complementation experiment indicated that the thurincin H 

prepeptide translated from the plasmids was correctly modified by the chromosome and 
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encoded the radical SAM enzyme to form the unique sulfur to α-carbon thioether bonds. 

In addition, cleavage of the leader prepeptide and transportation of the peptide to the 

extracellular environment were not affected. The deletion mutant still does not show 

increased sensitivity to the active thurincin H, likely due to the protection of the intact 

putative immunity protein on the chromosome. 

 Construction of the heterologous expression vector. To construct a plasmid for 

site directed mutagenesis, the expression vector had to carry only one structural gene for 

the mutagenesis reaction, and express sufficient mature thurincin H to facilitate 

downstream studies. As stated in the results, pGW131 successfully complemented 

thurincin H production in the deletion mutant, but it is not a sufficient vector for site 

directed mutagenesis since the three tandem copies of the structural gene makes it 

difficult for the primers to specifically bind to an accurate position. Thereafter, according 

to the requirements, pGW132 was constructed. However, the bacteriocin activity of 

pGW132 was lower than the wild type, even though multiple copies (15 copies/cell) of 

this plasmid exist in each cell (Arantes & Lereclus, 1991).  

 To sufficiently improve the production of the thurincin H, our method was to 

improve the mRNA stability by changing the thurincin H native terminator in pGW132 to 

a more stable Cry protein terminator, resulting in pGW133. This strategy was inspired 

from the remarkably high production of Cry proteins in B. thuringiensis species. One 

reason for high Cry protein production is due to the longer mRNA half-life caused by its 

stable terminator (Agaisse & Lereclus, 1995). It was reported that the 3’ terminal 
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fragment of the cryIAa gene from B. thuringiensis subsp. kurstaki HD1 forms a strong 

Rho-independent terminator (ΔG=-13.4 kcal /mol), which was predicted to reduce 3’-5’ 

exoribonuclease sensitivity (Wong & Chang, 1986). Compared with the Cry terminator, 

the native thurincin terminator is less GC rich and forms a less strong Rho-independent 

stem loop (ΔG=-9.16kcal/mol). In previous research, the fusion of this Cry terminator to 

the penP gene in E. coli and B. subtilis enhanced the mRNA stability and consequently 

protein expression (Wong & Chang, 1986). To our knowledge, this is the first time mRNA 

stability enhancement was used as a strategy to improve the bacteriocin production level. 

As such, it could be considered as an alternative in future research for the heterologous 

expression of bacteriocins.  

    Comparing the production of the three plasmids constructed in our research, 

pGW131 contains high copies (15 copies) of the structural genes (Arantes & Lereclus, 

1991), but its production level is similar to wild type. This might be caused by limited 

regulation and posttranslational modification systems. Thurincin H was found to inhibit 

the growth of its producer B. thuringiensis SF361 at a relatively high concentration 

(unpublished data). Self-toxicity was found to be a limiting factor for the natural producer 

to express higher levels of bacteriocin, despite the fact that the immunity protein usually 

protects the producer up to a certain level (Heinzmann et al., 2006; Kim et al., 1998). It is 

also possible that only a certain level of promoter activation could be initiated, even when 

extra promoter binding sites existed in the cell. This could be due to sigma factor 

limitation, or RNA polymerase limitation, or other unknown reasons. In this case, less 
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thurincin H prepeptide mRNA would be transcribed in B. thuringiensis SF361thnH-

pGW132 than in the wild type. This might also explain why three repeated prepeptide 

structural genes exist after the native promoter in the wild type producer, since a higher 

copy numbers increases the bacteriocin prepeptides production, giving the producer an 

evolutionary advantage. 

Technically, in constructing pGW132 and pGW133, two rounds of PCR were used 

to amplify the inserts since the forward and/or reverse primers were longer than 

commonly used primers. Long primers with secondary hairpin structures (TH05&TH06, 

TH01&07) can easily to lead to nonspecific binding, causing multiple PCR products. 

When genomic DNA of B. thuringiensis was used as template, multiple bands and smears 

were amplified due to non-specific binding (data not shown). To eliminate non-specific 

binding, thnA1 encoding the thurincin H prepeptide was first amplified by PCR and 

purified as a template. 

In some heterologous expression systems for less-extensively modified 

bacteriocins, only the mature bacteriocin encoding sequence was incorporated in the 

expression vector (Ingham et al., 2005; Richard et al., 2004). However, in our constructed 

system, the leader peptide was included in all the expression vectors, since generally the 

leader peptide of the bacteriocin can be involved in keeping the bacteriocin prepeptide in 

an inactive state inside the cell, facilitating transportation of the bacteriocin across the 

membrane, and can play an essential role in the formation of lanthionine/ 

methyllanthionine in lantibiotics (Riley & Gillor, 2007). Similarly, it was suggested that 
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in the maturation of subtilosin A, formation of the three pairs of sulfur to α-carbon 

thioether bonds is the first modification on the prepeptide and is dependent on the leader 

peptide (Fluhe et al., 2012). To maintain this critical functionality, the prepeptide 

sequence was required. 

Most bacteriocins are consistently produced on appropriate solid media, but some 

bacteriocins can only be produced in liquid media under certain conditions, either by high 

inoculation rates or artificial induction (Gobbetti, 2013; Maldonado-Barragan et al., 2009; 

Quadri et al., 1997). Production of thurincin H from B. thuringiensis SF361thnH-

pGW133 in TSB could reach the similar level of production as the WT without the 

presence of antibiotics in TSB. The high yield of thurincin H in liquid is of essential 

importance because this system could be easily used as a heterologous expression system 

for site directed mutagenesis experiments to produce thurincin H variants. Those variants 

could be purified from the liquid for further research.   

Site directed mutagenesis. Genetic engineering has been used as a tool to 

construct bacteriocin mutants with new features. For example, replacing the threonine at 

residue 6 with isoleucine in subtilosin A not only enhanced its bactericidal activity, but 

also rendered the mutant hemolytic (Huang et al., 2009). Deferred antagonism assays 

were conducted to evaluate the bacteriocin activity of B. thuringiensis SF361thnH-

pGW133 transformed by mutant variants of the thurincin H structural gene. The method 

could only detect the active bacteriocin that had been secreted into the extracellular 

environment, and therefore reflects the tolerance of the entire biosynthesis, regulation, 
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and transportation pathway against a different amino acid point mutation. In the mutants 

that lost activity, it is possible that any step in the biosynthesis was affected, such as the 

mutation completely abolishing bacteriocin production, or the recognition of the radical 

SAM enzyme which modifies thurincin H derivatives (Fluhe et al., 2012), or the 

transportation, etc. However, the bacteriocin activity loss caused by thioether bond amino 

acid substitution, as in group 1 and 2, were highly likely to be a result of interference of 

the thioether bond formation. It was reported that the three pairs of sulfur to α-carbon 

thioether bonds in subtilosin A were sensitive to single amino acid substitution and none 

of the thioether bonds were formed if any of the six amino acids (C4, C7, C13, F22, T28, 

and F31) in the sulfur to α-carbon bond forming positions was substituted with alanine in 

vivo. However, their study only detected the thioether bond formation using high 

performance liquid chromatography and high resolution mass spectrometry, and did not 

directly report the bacteriocin activity of their mutants (Fluhe et al., 2012). In the 

thurincin H variants, partial activity was retained with some of the mutants (T25A, S28A, 

N19Q, T22S, T25S, S28T) containing substitutions in the four thioether bonds. It is 

possible that partial thioether bonds were formed, or the complete four pairs of thioether 

bonds were formed, but bacteriocin activity was lost due to the amino acid substitutions.  

CONCLUSIONS 

A heterologous expression system was developed to sufficiently express adequate 

levels thurincin H from one structural gene. This structural gene was under the native 

promoter and included a modified Cry protein terminator which significantly improved 
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the expression level through enhancing mRNA stability. Our research analyzed a 

complete, systematic site directed mutagenesis on thurincin H, which is representative of 

bacteriocins produced by Bacillus spp. with unique sulfur to α-carbon thioether bonds. 

These thurincin H variants could be sufficiently purified, and new features of the variants 

could be explored in future research, such as 3D structural changes, inhibitory spectrum 

changes, and thermal stability changes.   
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CHAPTER 4 

HETEROLOGOUS EXPRESSION OF RECOMBINANT AND NATIVE THURINCIN 

H IN AN ENGINEERED NATURAL PRODUCER 

 

ABSTRACT 

The Bacillus bacteriocin, thurincin H, exhibits a wide inhibitory spectrum of 

activity against various foodborne pathogens such as Listeria monocytogenes, and 

dairy spoilage bacteria, especially different Bacillus species. Previously, we 

constructed three plasmids to express native thurincin H heterologously in an 

engineered natural producer, B. thuringiensis SF361thnH-. This host is deficient in 

thurincin H production since the structural genes thnA1, thnA2 and thnA3 were in-

frame deleted from the chromosome of the natural producer B. thuringiensis SF361. 

The expression vectors were constructed by cloning the native thurincin H promoter, 

three (or one) copies of structural genes, and the native (or Cry protein) terminator 

into the E. coli-B. thuringiensis shuttle vector pHT315. In this study, three 

corresponding expression vectors (pGW134, pGW135, and pGW136) were 

constructed to express recombinant thurincin H-His6 in the same host, in which a 

six-histidine tag was fused to the C terminus of each structural gene. The resulting 

low bacteriocin production indicated that the His tag might negatively interfere with 

subsequent post-translational modification or exportation after the thurincin H-His6 

prepeptide was translated. In order to overexpress native thurincin H, two 
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additional plasmids (pGW137 and pGW138) were constructed, consisting of the 

sporulation-dependent Cry protein dual promoter BtI and BtII, the thnA1 structural 

gene, and the thurincin H native or Cry protein terminator. However, the 

production was low on LB plates and was abolished on sporulation plates. It is 

possible that the resulting thurincin H prepeptide was not correctly modified or 

exported to the extracellular environment due to the undesired biochemical and 

physiological changes during the sporulation phase.  

SHORT COMMUNICATIONS 

Thurincin H is an antimicrobial peptide composed of 31 amino acids produced by 

Bacillus thuringiensis SF361, which was originally isolated from US honey (Lee et al., 

2009). It exhibits inhibitory activity against different foodborne pathogens and spoilage 

bacteria, such as Listeria monocytogenes, Micrococcus and Bacillus species, which are 

common pathogens in various dairy products (Konosonoka et al., 2012; Lee et al., 2009). 

Thurincin H contains four pairs of unique sulfur to α-carbon thioether bonds catalyzed by 

the putative radical S-adenosylmethionine superfamily enzyme (ThnB) present to 

maintain the hairpin structure with a helical back bone (Sit et al., 2011). As elucidated by 

bioinformatics studies, the 8.14-kb thnP-thnI gene cluster is responsible for the thurincin 

H production and exportation pathway. This gene cluster consists of three tandem 

thurincin H prepeptide genes (thnA1, thnA2 and thnA3), as well as the thnP, thnB, thnD, 

thnE, thnT, thnR, thnI genes, related to thurincin H prepeptide processing, regulation, 

modification, export, and self-immunity (Lee et al., 2009). 
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Heterologous expression of bacteriocins or recombinant bacteriocins with a 

purification tag has been a research interest to increase the yield or to simplify the 

purification process. For extensively modified bacteriocins, like lantibiotics, usually 

similar species were used as the expression hosts in which the natural systems are still 

available to modify certain unique bonds (Rodriguez et al., 2003). In this study, we 

constructed five plasmids based on the E. coli-B. thuringiensis shuttle vector pHT315, 

aiming to express sufficient C terminal His-tagged thurincin H, or overexpress native 

thurincin H using a previously constructed B. thuringiensis SF361thnH- as an expression 

host. 

Both E. coli and Bacillus strains were cultivated in trypticase soy broth (TSB) or 

on trypticase soy agar (TSA) (Difco, BD, MD) at 37°C. General molecular cloning 

methods used in this study were performed as previously described by Sambrook and 

Russell (Sambrook & Russell, 2001). Generally, to construct a recombinant plasmid 

based on pHT315, an insertion fragment was amplified using one step or two-step PCR 

by PrimeSTAR® Max DNA Polymerase (Takara, R045; Dalian, China) in a total volume 

of 50 µl. The PCR conditions include a template denaturation step at 98°C (1 min) 

followed by 30 cycles of denaturing at 98°C (10 sec), annealing at 55°C (10 sec), and 

polymerization at 72°C (60 sec), with one final hold at 72°C (7 min). Transformants of E. 

coli and Bacillus were selected on TSA plates supplemented with 100 µg/ml ampicillin 

and 25 µg /ml erythromycin, respectively. Recombinant plasmids were purified from E. 

coli using QIAprep Spin Miniprep Kit (QIAGEN, Hilden, Germany) and passed through 
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E. coli K12 ER2925 to produce demethylated plasmids as a preparation for B. 

thuringiensis transformation (Macaluso & Mettus, 1991). Recombinant plasmids were 

transformed to B. thuringiensis strains as previously described by Lereclus et al (Lereclus 

et al., 1989). Bacterial strains and primers used in this study were listed in Table 4.1. 
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Table 4.1 Bacterial strains and plasmids used in this study. 

Strains Properties References 

E. coli DH5α Cloning host, produced methylated plasmid NEB, MA 

E. coli K12 ER2925 Dam dcm, produce demethylated plasmid NEB, MA 

B. thuringiensis SF361 Thurincin H producer strain, carrying the putative 

thurincin H producing gene cluster 

(Lee et al., 2009) 

B. thuringiensis 

SF361thnH- 

Thurincin H producer strain with in-frame 

deletion of the thnA1, thnA2 and thnA3 genes 

See chapter 3 

B. cereus F4552 Indicator strain, sensitive to thurincin H (Lee et al., 2009) 

Plasmid Properties References 

pHT315 E. coli-B. thuringiensis shuttle vector, 6.5 KB, 

EryR AmpR 

(Arantes and Lereclus, 

1991) 

pGW131 thnA1 gene with native promoter (Pnat) and native 

terminator(Tnat), cloned in pHT315 

See chapter 3 

pGW134 thnA1his6, thnA2 his6 and thnA3 his6 genes with 

native promoter (Pnat) and native terminator (Tnat), 

cloned in pHT315 

This study 

pGW135 thnA1his6 gene with native promoter (Pnat) and 

native terminator(Tnat), cloned in pHT315 

This study 

pGW136 thnA1his6 gene with native promoter (Pnat) and 

Cry protein terminator(Tcry), cloned in pHT315 

This study 

pGW137 thnA1 gene with BtI&II dual promoter (PBtI&II) 

and Cry protein terminator(Tnat), cloned in 

pHT315 

This study 

pGW138 thnA1 gene with BtI&II dual promoter (PBtI&II) 

and Cry protein terminator(Tcry), cloned in 

pHT315 

This study 

Primers Sequences References 

TH21 gatgatctgcagaatgcacaccatacacaccataca cagtta This study 

TH22 ttagtggtggtggtggtggtggcttgcagtactagcccctgt This study 

TH23 cagaagcttaatttataggacttattcttaacataactgtttgtcattaga

ataagtcctaatttaattagtggtggtggtggtggtg 

This study 

  



 

71 

Table 4.1 (Continued) 
TH24 gatggactgcaggtaaatatatgtcacaaaatattaaag 

aaacacacacaa aatgtttg 

This study 

TH25 gcttgcagtactagcccctgt This study 

TH27 

 
gatggagaattctagtaaaacggacatcactccgtttcaatggaggtg

atgtccgttttatttaatttcaccataaacactctcacatttttaaattttagt

ggtggtggtggtggtggcttgcagtactagcccctgt 

This study 

DTC3 ctgcaaggcgattaagttgggtaac See chapter 3 

DTC4 cggataacaatttcacacaggaaacagcta   See chapter 3 

TH28 gatggactgcagtagttgcactttgtgcattttttcataagatgagtcat

atgttttaaattgtagtaatgaaaaacagtattatatcataatgaattggt

atcttaataaaagagatggaggtaacttatggaaacaccagtagtaca

accaagg 

This study 

TH29 gatggtgaattcgtttttagtttatgtattacaaaaatcccatactcgtttt

c 

This study 

TH30 gatggtgaattctagtaaaacggacatcactccgtttcaatggaggtg

atgtccgttttatttaatttcaccataaacactctcacatttttaaatttta 

This study 

 

A fragment containing the native promoter, thnA1his6, thnA2his6, thnA3his6, and 

the native terminator (noted as PnatthnA1his6thnA2his6thnA3his6Tnat, same as following) 

was synthesized (Figure 4.1, A) by GenScript (Piscataway, NJ) and cloned into pHT315, 

resulting in the plasmid pGW134. Gene synthesis was used to produce the fragment, 

since 18 bp additions of DNA sequences encoding the six-histidine tag after each of the 

three tandem structural genes by PCR is very difficult. Using primers TH21and TH22, the 

fragment containing PnatthnA1his6 was amplified from B. thuringiensis SF361 genomic 

DNA, purified, and used as an amplification template. Using this template, a second 

fragment PnatthnA1his6 Tnat was amplified with primers TH21 and TH23 (Figure 4.1, B), 

and cloned into pHT315, resulting in the plasmid pGW135. Using primers TH24 and 

TH25, a fragment containing PnatthnA1 was amplified from previously constructed 
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pGW131, purified, and used as an amplification template. Using this template, a fragment 

PnatthnA1his6 Tcry was amplified with primers TH24 and TH27 (Figure 4.1, C), and 

cloned into pHT315, resulting in the plasmid pGW136. The bacteriocin production of B. 

thuringiensis SF361thnH- carrying those three plasmids was determined by a modified 

deferred antagonism assay (Birri et al., 2010) against B. cereus F4452. However, 

inhibition zones formed by those constructs were significantly lower than the wild type 

producer (Figure 4.2). In earlier work, two plasmids similar to pGW134 and pGW136 but 

lacking the His tag were constructed. These constructs displayed an inhibitory activity as 

high as the wild type producer (See chapter 3). These results indicated that the 

extracellular thurincin H-His6 was either produced at a lower level or has a lower 

antimicrobial activity due to the His tag. Attempts were also made to produce and purify 

thurincin-His6 in TSB broth. A 1% inoculation of B. thuringiensis SF361thnH-pGW135 

ovenight culture into 150 ml TSB broth was incubated at 37°C for 16 hours with shaking 

at 225 rpm. The supernatant was collected by centrifugation (10000 x g, 20 min, 4°C). 

Crude protein extract was precipitated by 40%-65% saturated ammonia sulfate solution, 

resuspended in 15 ml LEW buffer (50 mM NaH2PO4, 0.3 M NaCl, pH 7.5), and purified 

by High Specific PrepEase Histidine-tagged Protein Purification Kit (USB, Cleveland, 

Ohio) according to the standard protocol. Based on an imidazole gradient concentration 

test, an optimal elution buffer (50 mM NaH2PO4, 0.3 M NaCl, 0.25 M imidazole, pH 8.0) 

was chosen to elute thurincin H-His6 from the nikel column. The 0.25 M imidizole buffer 

did not inhibit B. cereus F4552 (data not shown). A low bacteriocin activity against B. 
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though pGW135 contains 15 copies of His-tagged thurincin H precursor structural genes 

(Lereclus et al., 1989). This indicated that the thurincin H-His6 precursor peptides have 

been translated from plasmid pGW135 and negatively interfered with one or more steps 

of regulation, modification, or exportation along the native thurincin H production 

pathway. While many bacteriocins fused with a His tag have been reported to retain high 

activity, such as bacteriocin 51 (Yamashita et al., 2011) and enterocin P (Herranz & 

Driessen, 2005), a His tag could also impair the expression or activity of other enzymes 

(Freydank et al., 2008; Sabaty et al., 2013), or sometimes result in a change in the crystal 

structure (Loschi et al., 2004). In the case of thurincin H, the low production of thurincin 

H-His6 and native thurincin H production could be caused by several reasons. The 

addition of 6 hydrophilic histidines to the small 31 amino acid hydrophobic thurincin H 

(Sit et al., 2011) might alter the hydrophobicity of thurincin H-His6 prepeptide drastically 

from the native thurincin H. The formation of the unique sulfur to α-carbon thioether 

bonds catalyzed by S-adenosylmethionine enzyme might also be affected, since the 

hydrophilic tag might interfere with the distinguished hydrophobic patch surrounding the 

whole hairpin structure. In some bacteriocin expression systems such as piscicolin 126 

(Gibbs et al., 2004), His tags were fused to the N terminus and cleaved off prior to being 

used for subsequent research. However, in this system, the His-tag could not be added to 

the N-terminus of the thurincin H prepeptide since the 9 amino acid leader peptide will 

eventually be cleaved off the thurincin H prepeptides. 
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thuringiensis SF361thnH- carrying pGW137 and pGW138 exhibited smaller inhibition 

zones compared to that of the wild type producer (Figure 4.4, colonies A, B, C). On SPO 

8 plates, B. thuringiensis SF361thnH- carrying pGW137 and pGW138 did not exhibit any 

inhibition zones. However, the wild type producer still exhibited an inhibition zone on 

this sporulation media (Figure 4.4. colonies D, E, F). The rationale of B. thuringiensis 

species producing high yields of Cry proteins was adapted in the last two plasmid 

constructs (pGW137 and pGW138). The high expression of Cry proteins in B. 

thuringiensis is partially the result of strong overlapping promoters (BtI and BtII), and 

stable mRNA from the strong terminator (Agaisse & Lereclus, 1995). Several proteins 

such as chitinase (Hu et al., 2009) have been heterologously expressed in B. thuringiensis 

strains using the overlapping promoter and terminator based on pHT315. The same 

strategy was attempted in our research to produce thurincin H at higher levels. However, 

the results indicate that a decrease in thurincin H production was observed under these 

experimental conditions. The reason might be that the production of the active thurincin 

H not only depends on the amount of thurincin H precursor peptide, but also heavily 

relies on the cooperation of the other components related to the regulation, modification, 

and export. In addition, the overlapping promoter was turned on once sporulation starts, 

but changes in cellular morphology, biochemistry, and physiology are also induced in the 

cell (Errington, 1993). These changes might negatively affect other steps in the thurincin 

H modification and export pathways. To our knowledge, this is the first time the Cry 

protein promoter and terminator was adopted to express a bacteriocin in B. thuringiensis. 
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Our research indicates that in bacteriocins requiring extensive posttranslational 

modification, posttranslational modification, regulation and exportation need to be taken 

into consideration, not only production and expression level of the structural genes. 

Technically, two step PCR was used to construct the plasmids in order to reduce 

nonspecific binding since some of the primers used in this study were longer than usual 

(up to 156 bp). The B. thuringiensis SF361 genomic DNA contains three tandem 

structural genes which additionally enhance non-specific binding and non-specific 

amplification of fragments. We first amplified a short core fragment to serve as a 

template DNA in PCR, and ensured the sequence accuracy in the final products.   

Our research underscores the risks of using a His-tag system as a means for 

purification in a heterologously expressed bacteriocins, especially those extensively 

modified bacteriocins, such as thurincin H, since the His tag may negatively interfere 

with subsequent modification or exportation steps. A Cry protein promoter and terminator 

should also be carefully considered since changes occurring during sporulation might 

exert a negative effect on the function of other components in the pathway. In future 

research, a xylose inducible expression system will be constructed to control the 

expression time and level of the structural genes.  
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CHAPTER 5 

NATURALLY SENSITIVE BACILLUS THURINGIENSIS EG10368 PRODUCES 

THURINCIN H AND ACQUIRED IMMUNITY AFTER HETEROLOGOUS 

EXPRESSION OF THE ONE-STEP AMPLIFIED THURINCIN H GENE CLUSTER 

 

ABSTRACT 

Heterologous expression of bacteriocin genetic determinants (or operons) has 

long been a research interest for the functional analysis of genes involved in 

bacteriocin expression, regulation, modification, and immunity. Previously, in order 

to identify new bacteriocin operons, genomic libraries of the bacteriocin producer 

strains were usually required. This method is tedious and time consuming. For the 

first time, we directly amplified an 8.14-kb bioinformatically identified thurincin H 

gene cluster using a one-step PCR with 100% accuracy. This amplified gene cluster 

was cloned into pHT315, resulting in plasmid pGW139, and subsequently 

transformed to Bacillus thuringiensis EG10368, a strain naturally sensitive to 

thurincin H. Heterologous expression of the gene cluster makes the sensitive B. 

thuringiensis EG10368 produce thurincin H at a higher level compared to the wild 

type producer, B. thuringiensis SF361. Moreover, B. thuringiensis EG10368pGW139 

becomes completely immune to thurincin H. The results indicate that one-step PCR 

method is a promising tool to accurately amplify long bacteriocin gene clusters used 

in further functional analysis and can be an effective way to produce bacteriocins at 
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a higher level without the need for cloning large chromosomal fragments. 

 

SHORT COMMUNICATION 

Thurincin H is bacteriocin produced by B. thuringiensis SF361. It exhibits a broad 

inhibitory spectrum, especially against various spore forming Bacillus species such as 

Bacillus cereus, a toxin producing pathogen often associated with dairy products (Lee et 

al., 2009; Schoeni & Wong, 2005). The secondary structure of the 31 amino acid 

leaderless mature thurincin H peptide forms a hairpin structure with a helical backbone 

maintained by four pairs of very unique sulfur to α-carbon thioether bridges (Sit et al., 

2011). This unique thioether bond is quite different from the more common sulfur to β-

carbon thioether bonds existing in extensively studied lantibiotics produced by lactic acid 

bacteria (Cotter et al., 2005).  

As elucidated by bioinformatics studies, the 8.14-kb thnP-thnI gene cluster is 

responsible for the production and exportation of mature, active thurincin H. It consists of 

three tandem bacteriocin-like precursor genes (thnA1, thnA2 and thnA3), as well as thnP, 

thnB, thnD, thnE, thnT ,thnR, thnI, genes which have the putative functions related to 

thurincin H prepeptide processing, regulation, modification, exportation, and self-

immunity (Lee et al., 2009). The objective of this study was to accurately amplify the 

thurincin H gene cluster using a rapid one-step PCR method and test if the gene cluster 

can be heterologously expressed at high levels in the sensitive strain B. thuringiensis 

EG10368. 
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Bacillus and E. coli strains used in this study were cultivated in trypticase soy 

broth (BD, Sparks, MD) or on trypticase soy agar (BD, Sparks, MD) at 37°C. The E. coli-

B. thuringiensis shuttle vector pHT315 (Arantes & Lereclus, 1991) was used as a 

thurincin H gene cluster cloning and expression vector. E. coli DH5α was used as a 

cloning host for the pGW139 recombinant plasmid. E. coli K12 ER2925 (NEB, MA) was 

used to produce demethylated plasmids, used to increase the efficiency of transformation 

to B. thuringiensis (Macaluso & Mettus, 1991). Erythromycin (25 μg/ml) or ampicillin 

(100 μg/ml) was used to select B. thuringiensis or E. coli transformants, respectively. All 

strains, plasmids, and primers used in this study are listed in Table 5.1.  
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Table 5.1 Strains, plasmids, and primers used in this study 

Strains                                 Properties                        Reference   

E. coli DH5α Host for cloning thurincin H gene cluster to plasmids 

pHT315 

NEB, MA 

E. coli K12 ER2925 dam dcm strain, produce demethylated plasmids NEB, MA 

B. thuringiensis SF361 Thurincin H producer strain (Lee et al., 2009)

B. thuringiensis 

EG10368 

Sensitive to thurincin H (Lee et al., 2009)

B. thuringiensis 

EG10368pGW139 

B. thuringiensis EG10368 carrying recombinant 

plasmid pGW139 

This study 

B. cereus F4552 Sensitive to thurincin H (Lee et al., 2009)

B. thuringiensis 

SF361thnH- 

Native thurincin H producer with a deletion of thnA1, 

thnA2 and thnA3 genes 

(Lee et al., 2009)

Plasmids                               Properties                        Reference  

pHT315 pHT315 E. coli-B. thuringiensis shuttle vector, 6.5 KB, 

EryR AmpR 

(Arantes & 

Lereclus, 1991)

pGW139 pHT315 carrying the 8.14-kb thurincin H gene cluster, 

EryR AmpR 

This study 

Primers                                Sequences                       Reference    

TH81 gatggactgcagttattgggaaatcgctttatagacatcaagcaaaccatta This study 

TH82 gatggtgaattcctatatttctgaagtatacaatgtgaccattccatg tgttctattt This study 

SequencingPrimer_1 ctgcaaggcgattaagttgggtaac See chapter 3 

SequencingPrimer_2 cggataacaatttcacacaggaaacagcta  See chapter 3 

SequencingPrimer_3 ttattgggaaatcgctttatagacatcaagcaaacc This study 

SequencingPrimer_4 ttagtaacatcaagagcatcattaccagccgcagcaa This study 

SequencingPrimer_5 gatccaggtgaaatgttatcttttaaatcaggatg This study 

SequencingPrimer_6 agcatgaactgtagtaataggtatgaaagtt This study 

SequencingPrimer_7 aacaggaagtagtacaccaaataaaatacttaga This study 

SequencingPrimer_8 taacatggatgttccccccaatatatgaaagcataatct This study 

SequencingPrimer_9 atctgcatgatgggatagggctaatgcaactgcaaa This study 

SequencingPrimer_10 catctgcatgaatacctatactacgagccatttga This study 

SequencingPrimer_11 attataaattataaaaagcagtttaacaagatatactgcgattaaa This study 

SequencingPrimer_12 cttttggtcaaattagactttctaggagaaaaataaataatca This study 

SequencingPrimer_13 ttttataggagatgattaaagtgaatggctatttattttgga This study 

SequencingPrimer_14 aaacagatgtaatgtaagatgtcgtcattgctatgga This study 

SequencingPrimer_15 cataatgaaattagccgaaaatgatgttcgtttacg This study 

SequencingPrimer_16 attttttaacttacaagcacctcaaatggact This study 

SequencingPrimer_17 attatcgcaccgataccatatattattggctatat This study 

SequencingPrimer_18 gcagaaatgtatgaaaccttaaatggaatagaggatataaaat This study 

SequencingPrimer_19 tgtttcaggaggtcaagcacaatttatagccttttta This study 

SequencingPrimer_20 aagtgaaaatagaacacatggaatggtcacattgtatacttcagaaatatag This study 
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To amplify the 8.14-kb thurincin H gene cluster, 100 ng of purified B. 

thuringiensis SF361 genomic DNA was used as the PCR reaction (50 μl) template. 

PrimeSTAR® Max DNA Polymerase (Takara, R045A; Dalian, China) was used as the 

master mix. TH81 and TH82 were used as primers, along with the restriction enzymes 

PstI and EcoRI. The DNA polymerase from Takara claimed to be able to amplify up to 10 

kb from E. coli genomic DNA with an extension time of 5 kb/sec. The manufacture’s 

standard PCR protocol failed to amplify the gene cluster from B. thuringiensis SF361 

genomic DNA (data not shown). To adapt the protocol to serve the current system’s needs, 

the extension time in each of the 30 amplification cycles was afterwards modified to be 4 

mins (about 2 kb/min), with an additional 7 minutes extension time at the end. The 

optimized PCR method includes a template denaturation step at 98°C (1 min), followed 

by 30 cycles of denaturing at 98°C (10 sec), annealing at 55°C (10 sec), and 

polymerization at 72°C (4 mins), with one final hold at 72°C (7 min). PCR products 

showed a single band on a 1.5% agarose gel (Figure 5.1). With the modified conditions, a 

PCR product approximately 8 kb in length was amplified as expected.  

Molecular cloning experiments were performed as described by Sambrook and 

Russell (Sambrook & Russell, 2001). Generally, the purified PCR product was double 

PstI-HF/ EcoRI-HF digested (NEB, MA), purified, and ligated overnight at 16°C to the 

double PstI-HF/ EcoRI-HF digested pHT315 at a ratio of 1:1 by T4 ligase (NEB, MA). 

The ligation mixture was first transformed to E. coli DH5α. The recombinant plasmid 

pGW139 was purified from the transformants, and DNA sequencing of the thurincin H 
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gene cluster inserts in pGW139 was performed at the Biotechnology Resource Center at 

Cornell University (Ithaca, NY). DNA sequencing results showed 100% accuracy when 

compared with reported sequences (GenBank: FJ977580.1). Primers used in sequencing 

the gene cluster are listed in Table 5.1. Purified pGW139 was subsequently passed 

through E. coli K12 ER2925 and transformed to B. thuringiensis EG10368 strains as 

previously described (Lereclus et al., 1989).  

 

  

Figure 5.1 Amplification of thurincin H gene cluster by PCR. (A) 1 Kb plus DNA ladder 
(Invitrogen, Carlsbad, California). (B) 8.14-kb thurincin H gene cluster amplified by one-
step PCR. 
 
 

To test the inhibitory activity of B. thuringiensis EG10368 and B. thuringiensis 

EG10368pGW139, a deferred antagonism assay was performed as previously described 

using B. thuringiensis SF361 as a positive control and B. thuringiensis EG10368 as an 

indicator strain (Birri et al., 2010) . Inhibition zones formed around the wild-type 

producer B. thuringiensis SF361 (Figure 5.2, A) but not around B. thuringiensis EG10368 

(Figure 5.2, B), indicating that B. thuringiensis EG10368 itself does not produce self-

active antimicrobial compounds. The obvious inhibition zone formed around B. 

A   B 
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thuringiensis EG10368pGW139 was larger than the wild type (Figure 5.2, C), indicating 

that mature thurincin H was produced from the gene cluster carried in pGW139 at a 

higher level than the wild type producer. Similar results were obtained using B. cereus 

F4552 as an indicator strain (data not shown). To test if immunity was acquired by B. 

thuringiensis EG10368pGW139, B. thuringiensis EG10368 was overlaid on top of those 

three colonies described above. Remarkably, no inhibition zones were formed around any 

of those colonies (Figure 5.2, D, E, F). This result indicates that the originally sensitive B. 

thuringiensis EG10368 acquired complete immunity after pGW139 was transformed into 

it. Since those two strains are in the same Bacillus species and share highly similar 

genetic machinery, it is very probable that all the genes in the 8.14-kb gene cluster were 

able to be expressed and function in sensitive strain B. thuringiensis EG10368. However, 

the concrete functions of each gene in the cluster need to be further confirmed. 

pGW139 was constructed based on the high copy number plasmid pHT315 (15 

copies per cell) (Arantes & Lereclus, 1991), theoretically resulting in 15 fold expression 

of the gene cluster compared with the wild type producer B. thuringiensis SF361. B. 

thuringiensis EG10368pGW139 expressed a higher level of thurincin H compared with 

the wild type producer (Figure 5.2, C). Similarly, we also found that transforming 

pGW139 into B. thuringiensis SF361thnH- (a WT producer with thnA1, thnA2 and thnA3 

deleted in-frame) led to a higher inhibitory activity compared with the wild type producer 

(data not shown). Those two results are likely caused by the high copy numbers of genes 

related to thurincin H biosynthesis, regulation, modification, exportation, and immunity, 
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since it was reported that separately expressing additional copies of bacteriocin precursor 

genes, regulatory components, or immunity proteins led to increased extracellular 

bacteriocin production. An example of this has been reported for nisin Z (Cheigh et al., 

2005). Nisin Z production was increased by introducing multiple copies of the structural 

genes (nisZ), a two-component regulatory system (nisRK), or the immunity protein 

(nisFEG), into the wild type producer Lactococcus lactis subsp. lactis A164 (Cheigh et al., 

2005). Furthermore, additional copies of subtilin immunity genes spaIFEG were also 

integrated into the genome of the producer strain Bacillus subtilis ATCC 6633 and 

improved the production of the lantibiotic subtilin, since the tolerance level of B. subtilis 

ATCC 6633 toward subtilin was enhanced (Heinzmann et al., 2006).  

Previously, in screening new bacteriocins or bacteriocin gene clusters, genomic 

libraries were routinely constructed to screen for the bacteriocin producing DNA 

fragment, requiring a large amount of laborious of work (Roh et al., 2010). With the 

increasing numbers of complete bacterial genomes available, genome mining using 

different web servers such as BAGEL (de Jong et al., 2006) is becoming an emerging 

strategy for identifying new putative bacteriocins and bacteriocin gene clusters (Wang et 

al., 2011). To our knowledge, no research has been reported to directly amplify those 

whole putative bacteriocin gene clusters for functional confirmation. Our one-step PCR 

method perfectly complemented the needs to analyze the functions of those 

bioinformatically identified putative bacteriocin genes or gene clusters. The combination 

of genome data mining and our method, provide a new strategy of screening new 
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In conclusion, a simple one step PCR method was developed to accurately 

amplify the 8.14-kb thurincin H gene cluster. Heterologous expression of the thurincin H 

gene cluster using the high copy plasmid pHT315 in the naturally sensitive strain B. 

thuringiensis EG10368 led to a higher thurincin H production in the extracellular 

environment when compared with the wild type producer. The sensitive strain also 

acquired complete immunity. Our method provides a new strategy to study the functions 

of putative bacteriocin gene clusters and to heterologously express higher levels of 

bacteriocins. Any genes within the thurincin H gene cluster could be directly amplified 

using the above method and separately studied in future research.  
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CHAPTER 6 

THURINCIN H CAUSES VIABILITY DECREASE AND MORPHOLOGICAL 

CHANGES IN BACILLUS CEREUS F4552 

ABSTRACT 

Thurincin H is an anti-listerial bacteriocin produced by Bacillus thuringiensis 

SF361. This bacteriocin is a hydrophobic anionic peptide folded to form a hairpin 

structure by four pairs of sulfur to α-carbon thioether bonds. It exhibits inhibitory 

activity against a wide range of Gram-positive foodborne pathogens and spoilage 

bacteria that include Listeria monocytogenes, B. cereus, B. subtilis, and some lactic 

acid bacteria. Incubation of B. cereus F4552 with thurincin H for 1 hour resulted in 

a significant decrease in cell viability. However, thurincin H did not cause decrease 

in optical density or changes in the cell membrane permeability. Under scanning 

electron microscopy, B. cereus F4552 treated with thurincin H (32 MIC) showed 

regular rod-shaped cells, while cells treated with thurincin H (256 MIC) showed loss 

of cell integrity and rigidity. These results suggest that thurincin H might not act on 

the bacterial cell membrane to cause intracellular contents efflux like most 

extensively studied lantibiotics, but rather kills sensitive bacteria through a novel 

mechanism. 

INTRODUCTION 

Antimicrobial peptides have been widely found in most living organisms: 
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prokaryotes, plants, and animals including vertebrates and invertebrates (Garcia-Olmedo 

et al., 1998; Lehrer & Ganz, 1999; Tossi et al., 2000). These antimicrobial peptides and 

proteins have diverse chemical structures and play essential roles in the innate immunity 

and early defense systems to protect their hosts (Zasloff, 2002). Bacteriocins are 

antimicrobial peptides produced by bacteria. They are ribosomally synthesized peptides 

and exhibit antimicrobial activity against other bacteria mostly within the same species, 

or sometimes across different genera (Cotter et al., 2005). Bacteriocins produced by 

Gram-positive bacteria, most commonly lactic acid bacteria, have been extensively 

studied and are currently used by the food industry because of their GRAS status 

(generally recognized as safe) and effectiveness against various foodborne pathogens and 

spoilage microorganisms (Settanni & Corsetti, 2008).  

Bacteriocins produced by lactic acid bacteria can be divided into three main 

classes: the class I lantibiotics containing lanthionine; the class II non-lanthionine-

containing bacteriocins; and the class III heat-labile, large proteins (Cotter et al., 2005). 

Class II bacteriocin can be further divided into three subcategories: class IIa containing 

pediocin-like bacteriocins, class IIb containing two-peptide bacteriocins, and class IIc 

containing other bacteriocins (Drider et al., 2006). Recently, Bacillus spp. have gained 

recent research interest since they produce a diverse array of bacteriocins (Abriouel et al., 

2011; Stein, 2005), usually with a broader inhibition spectra compared to bacteriocins 

produced by lactic acid bacteria (Abriouel et al., 2011).  
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One Bacillus bacteriocin, thurincin H, is an antimicrobial peptide produced by B. 

thuringiensis SF361, a strain originally isolated from US domestic sunflower honey. It 

exhibits inhibitory activity against a wide range of Gram-positive bacteria including 

different foodborne pathogens and spoilage bacteria, such as Listeria monocytogenes, 

Bacillus cereus, and Micrococcus spp. (Lee et al., 2009). Thurincin H contains four pairs 

of unique sulfur to α-carbon thioether bridges which are different from the extensively 

studied class I lantibiotics, since the structure of lantibiotics is maintained by sulfur to β-

carbon bridges. 

The objective of this study was to preliminarily characterize the mode of action of 

thurincin H.  

MATERIALS AND METHODS 

Chemicals, bacterial strains and culture conditions. The indicator strain B. 

cereus F4552 was cultivated in trypticase soy broth (TSB; BD, Sparks, MD) or on 

trypticase soy agar (TSA; BD, Sparks, MD) at 37°C. Phosphate buffered saline (PBS) at 

pH 7 was formulated with 8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, and 0.24 g KH2PO4 per 

liter. Nisin from Lactococcus lactis (2.5%, balanced with sodium chloride and denatured 

milk solids) was purchased from Sigma-Aldrich (St. Louis, MO). All chemicals and 

reagents were autoclaved at 121°C for 15 minutes prior to use. 

Thurincin H purification and purity confirmation. Thurincin H was produced 

by B. thuringiensis SF361. The thurincin H sample used in this study was purified using 
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ammonia sulfate precipitation and C18 solid phase extraction. The purity of thurincin H 

was confirmed by HPLC and LC-MS as previously described (See chapter 2).  

Growth of B. cereus with the presence of thurincin H. The relation between 

different levels of thurincin H and its effect on B. cereus growth was assayed by 

incubating the indicator strain with thurincin H in 96 well plates. In brief, 50 µl of two-

fold diluted thurincin H in PBS buffer was prepared in untreated clear flat bottom 96 

microtiter plates (Thermo Scientific, Nunc, Denmark), mixed with 150 µl of 1.33% (v/v) 

B. cereus F4552 overnight culture in TSB in each well and incubated at 37°C for 15 hours. 

The final inoculation of B. cereus was 1% (v/v). The absorbance at 600 nm (A600) for 

each well was measured by the Synergy HT Multi-Mode Microplate Reader (BioTek, 

Winooski, VT) for up to 15 hours at 1 hour intervals. Seven independent experiments 

were performed. 

Bactericidal effect of thurincin H on B. cereus viability. The bactericidal effect 

of thurincin H was assessed by incubating exponential phase B. cereus F4552 with 

purified thurincin H in PBS buffer. An overnight culture of B. cereus was diluted 100 fold 

in 5 ml TSB and incubated at 37°C for 4 hours. Cultures were centrifuged (5000 x g, 4°C, 

5 min) and resuspended in an equal volume of thurincin H (16 MIC). Samples were taken 

for viability counts every 10 minutes for up to1 hour. Nisin (16 MIC) was used as a 

positive control and PBS buffer was used as negative control. Four independent 

experiments were performed. 
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Effect of thurincin H on B. cereus optical density. The effect of thurincin H on 

the optical density of B. cereus F4552 was assessed by incubating exponential phase B. 

cereus F4552 with the purified thurincin H. An overnight culture of B. cereus was diluted 

100 fold in 5 ml TSB and incubated at 37°C for 4 hours. Cultures were centrifuged (5000 

x g, 4°C, 5 min) and resuspended in an equal volume of PBS buffer containing thurincin 

H at a concentration of 256 MIC and 32 MIC. Two hundred microliters of the culture 

suspension was added to each well of 96 well microtiter plates and incubated at 37°C for 

up to 1 hour. The absorbance (A600) was read every 6 minutes by the Synergy HT Multi-

Mode Microplate Reader. Nisin (8 MIC and 2 MIC) were used as positive controls and 

PBS buffer was used as a negative control. Five independent experiments were performed. 

Membrane permeability. To determine if thuricin H alters the membrane 

permeability of sensitive cells, LIVE/DEAD BacLight Bacterial Viability Kit (Molecular 

probe, L7012, Eugene, Oregon) was used according to the manufacturers 

recommendations (Swe et al., 2009). An overnight culture of B. cereus was diluted 100 

fold in 5 ml TSB and incubated at 37°C for 4 hours. Bacterial cells were collected by 

centrifugation and resuspended in an equal volume of PBS buffer containing thurincin H 

(256 MIC). Cells suspensions were incubated at 37°C with gentle shaking. One hundred 

microliters of the cell suspension sample was taken out every 15 min for up to 60 minutes. 

Samples were washed twice by 0.85% NaCl, resuspended in 200 µl of 0.85% NaCl and 

placed on ice. After the treatment, 100 µl of cell suspension was mixed with 0.15 µl 

SYTO9 green-fluorescent nucleic acid stain and propidium iodide red-fluorescent nucleic 
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acid stain (ratio 1:1). After incubating the plate at room temperature for 15 minutes, green 

(excitation wavelength: 485 nm/ 20 nm; emission wavelength: 528 nm/20 nm) and red 

(excitation wavelength: 485 nm/ 20 nm; emission wavelength: 645 nm/40 nm) fluorescent 

signal was measured by a Synergy HT Multi-Mode Microplate Reader. All the samples 

were immediately plated onto TSA to determine the viability count after the fluorescent 

signal measurement. Nisin (2 MIC) was used as a positive control and PBS buffer was 

used as negative control. Three independent experiments were performed. 

Scanning electron microscopy (SEM). An overnight culture of B. cereus was 

diluted 100 fold in 25 ml TSB and incubated at 37°C for 5 hours. Cultures were 

centrifuged (5000 x g, 4°C, 3 min) and resuspended in an equal volume of PBS buffer 

containing thurincin H (32 MIC and 256 MIC), nisin (2 MIC) or PBS buffer (control). 

Cell suspensions were incubated at 37°C for 30 minutes with gentle shaking. Suspensions 

were centrifuged and resuspended in two volumes of PBS buffer to stop the bacteriocin 

treatment. Each sample was diluted and plated for viability counting in duplicate. At the 

same time, the control, nisin-treated, and thurincin H treated B. cereus cells 

(approximately 106 CFU) were deposited onto a 0.22 µm filter membrane. Cells were 

fixed using 2.5% (w/v) glutaraldehyde in 0.05 M sodium cacodylate buffer for 1 h. Fixed 

cells were rinsed three times for 5 minutes with cacodylate buffer. A secondary fixation 

was conducted using 2% (w/v) osmium tetroxide for 30 min, followed by rinsing with 

cacodylate buffer three times as described above. To maintain cell morphology in its 

natural form after bacteriocin treatment, the cells were dehydrated using gradient ethanol 
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solutions of 25% (v/v), 50%, 70%, 95%, and 100%, for 5 min each. B. cereus cells in 

absolute ethanol were critical point-dried with carbon dioxide (Bal-Tec Critical Point 

Dryer CPD 030). Filter membranes with dried cells were mounted to SEM stubs with 

carbon tapes placed on the top. The stubs with samples were coated with evaporated 

carbon. Images were acquired with a Zeiss LEO 1550 field emission scanning electron 

microscope at a voltage of 1.5 kV. The working distance was 2-3 mm. Aperture size was 

30 µm. The accompanying software SmartSEM (Carl Zeiss Microscopy, LLC, Germany) 

was used to scan samples and acquire images. Two images with high and low 

magnifications for each treated sample were presented. 

RESULTS 

Effect of thurincin H on B. cereus growth. The effect of thurincin H against B. 

cereus F4552 in liquid was evaluated in TSB broth in microtiter plate. The results 

indicate that the optical density increase of B. cereus could be partially or completely 

inhibited by adding thurincin H at different concentrations into TSB broth (Figure 6.1). 

This is the rationale of the bacteriocin activity quantification method, and the method to 

determine bacteriocin MIC in microtiter plates (Daba et al., 1991; Faye et al., 2002). The 

time-course results indicated that at 10-13 hours incubation time, at a certain threshold 

concentration of thurincin H, the standard deviations of A600 were significantly high. 

These results suggested that 10-13 hours should be avoided as incubation times for 

bacteriocin activity quantification or MIC determination, since it caused inconsistencies 
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between different independent experiments. In the study of thurincin H, 8 hours was used 

as the incubation time.  
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Figure 6.1 A600 change of indicator strain B. cereus F4552 incubated with thurincin H at 
different concentrations. Means and standard deviations are shown in the figure. 
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Effect of thurincin H on B. cereus viability. Both thurincin H (16 MIC) and 

nisin (16 MIC) resulted in decreased cell viability under the experimental conditions. 

However, thurincin H showed a mild gradual reduction, while nisin caused a rapid drastic 

reduction within 10 minutes (Figure 6.2). The actual concentration in terms of MIC are 

the same for the two bacteriocins, but nisin showed a more dramatic effect and 2 higher 

log reductions than thurincin H at the end of 60 minutes.  

 
Figure 6.2 Bactericidal effect of thurincin H (16 MIC) and nisin (16 MIC) against B. 
cereus F4552. Means and standard deviations of each time point are included.  
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Effect of thurincin H on B. cereus optical density (OD). Thurincin H (256 MIC) 

did not cause any optical density reduction compared with the buffer control (Figure 6.3). 

On the other hand, nisin at 2 MIC and 8 MIC, caused significant decreases in the optical 

density (Figure 6.3). In preliminary experiments, a series of thurincin H concentrations, 

including 2 MIC, 4 MIC, 16 MIC, 64 MIC were tested, and none of them resulted in a 

decrease in optical density (data not shown).  

 

 
Figure 6.3 B. cereus incubated with thurincin H (32 MIC & 256 MIC) and absorbance 
monitored at A600.  
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Membrane permeability studies. Mixtures of SYTO9 green-fluorescent nucleic 

acid stain and the red-fluorescent nucleic acid stain propidium iodide were used in this 

study. When both dyes are mixed with a bacteria population at optimal ratio, bacteria with 

intact Cell membranes of viable cells result in a green fluorescence, while propidium 

iodide only penetrates bacteria with damaged membranes, and result in a red fluorescence 

(Swe et al., 2009). The results from these studies indicate that thurincin H at a relatively 

high concentration (256 MIC) did not alter the cell membrane integrity (Figure 6.4, A) 

while at the same time resulted in 99.99% reduction in the viability count (Figure 6.4, B). 

On the other hand, nisin (2 MIC) caused significant cell membrane damage (Figure 6.4, A) 

with a similar cell viability reduction as thurincin H (Figure 6.4, B).  
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Figure 6.4 Cell membrane permeability and cell viability change of B. cereus F4552 after 
thurincin H and nisin treatment. (A) Green/red fluorescent ratio changed caused by 
thurincin H and nisin (2 MIC); (B) B. cereus cell viability reduction caused by thurincin 
H (256 MIC) and nisin (2 MIC).  
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Morphological changes of B. cereus with thurincin H exposure. Viability cell 

assays indicated that thurincin H (32 MIC) resulted in a 2 log reduction of B. cereus, 

while thurincin H (256 MIC) and nisin (2 MIC) caused a 4 log reduction (data not shown). 

However, thurincin H (32 MIC) treated B. cereus showed a similar morphology to the 

control, with a smoothly surface and regular rod shape (Figure 6.5, CD & AB). Thurincin 

H (256 MIC) treated B. cereus showed a collapsed and flat rod shape (Figure 6.5, EF). 

Nisin treated cells showed coarse, collapsed surface with perforations (Figure 6.5, GH). 

Morphology of all the cells under SEM were consistent and only one field of view was 

presented.  
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Figure 6.5 SEM of B. cereus F4552 cells after thurincin H and control treatments. (A) 
PBS, low magnification; (B) PBS, high magnification; (C) Thurincin H (32 MIC), low 
magnification; (D) Thurincin H (256 MIC), high magnification; (E) Thurincin H (256 
MIC), low magnification; (F) Thurincin H (256 MIC), high magnification; (G) Nisin (2 
MIC), low magnification; (H) Nisin (2 MIC), high magnification. 
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DISCUSSION 

Although hundreds of bacteriocins have been discovered and characterized to date, 

the most extensively studied group of bacteriocins are produced by lactic acid bacteria, 

because of their GRAS status and immediate application by food industry as natural 

preservatives. The mode of action of lantibiotics produced by lactic acid bacteria is 

usually generalized as forming pores in the membrane of sensitive bacteria, with nisin as 

a prototype (Moll et al., 1996). Pore formation in cell membrane results in the dissipation 

of membrane potential and the efflux of small metabolites from sensitive cells, and leads 

to cell death (Cotter et al., 2005). The cell membrane damage effect of nisin showed in 

this study (Figure 6.4) is consistent with previously reported pore forming effects 

(Wiedemann et al., 2004). At high concentrations, nisin can also cause lysis of the cell 

wall (Wiedemann et al., 2004), as shown in the Figure 6.3, the optical density decreased 

significantly within 1 hour of treatment exposure. 

Bacillus bacteriocins are another diverse category of bacteriocins. Most of the 

reported Bacillus bacteriocins have been found to be active on the cell membrane and 

result in efflux of the intracellular contents, similar to that of the lantibiotics produced by 

lactic acid bacteria (Abriouel et al., 2011). One exception is mersacidin, a tetracyclic 

peptide bacteriocin produced by B. subtilis strain HILY-85,54728. This peptide is active 

against methicillin- and vancomycin-resistant S. aureus strains by targeting the cell wall 
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precursor lipid II and thereby inhibiting cell wall synthesis. It does not modify the 

bacterial cell membrane permeability like most other lantibiotics (Brotz et al., 1997). 

Unlike the mode of action of nisin and most bacteriocins with a pore forming 

mechanism, the results of thurincin H mode of action experiments presented here 

suggested that thurincin H did not cause cell membrane damage according to the cell 

membrane permeability studies (Figure 6.4). It also did not cause cell lysis either, since 

decrease in the optical density of the B. cereus indicator strain was not observed (Figure 

6.3). It is possible that the mechanism of action of thurincin H is targeting the cell wall, 

since thurincin H (256 MIC) caused cell wall collapse as observed by SEM at varying 

concentrations of thurincin H. Thurincin H (32 MIC) may not be sufficient concentration 

to cause obvious cell morphology changes under SEM, even though it results in the loss 

of viability of the B. cereus sensitive cells. 

CONCLUSIONS 

The mode of action of thurincin H was preliminary characterized in this study. 

The bactericidal thurincin H resulted in decreased cell viability, but did not cause cell 

membrane permeability or cell wall lysis. Remarkably, B. cereus only showed loss of cell 

integrity when treated with thurincin H at a high concentration. Our studies suggest that 

thurincin H inactivates sensitive indicator strains in a different mechanism compared to 

nisin and most lantibiotics.  
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CHAPTER 7 

CONCLUSIONS AND PROSPECTUS 

CONCLUSIONS 

The hydrophobic bacteriocin, thurincin H, is encoded by three tandem structural 

gene repeats, thnA1, thnA2, and thnA3, that have a single inducible promoter. Mature 

thurincin H, which exhibits a helical backbone, is folded over to form a hairpin structure 

by four unique sulfur to α-carbon thioether bridges (Sit et al., 2011). This type of 

thioether bridges is reported in only four Bacillus bacteriocins (Fluhe et al., 2012), and 

are quite different from the extensively studied group of lantibiotics that contain sulfur to 

β-carbon thioether bridges (Twomey et al., 2002). This uniqueness makes it difficult to be 

heterologously expressed or genetically modified in most commonly used systems.  

Thurincin H was produced and purified from a 40 hour incubated supernatant of B. 

thuringiensis SF361 via a novel, rapid, and simple two-step method: ammonia sulfate 

precipitation and C18 solid phase extraction, with a yield of 18.53 mg/L. The purified 

thurincin H was stable for 30 min at 50°C, and decreased to undetectable levels within 10 

minutes at temperatures above 80°C. Thurincin H was also stable from pH 2-7 for at least 

24 hours, although gradual loss of activity occurred under alkaline conditions within 24 

hours. It was found that thurincin H does not prevent germination initiation of B. cereus 

F4552, and killed the spores only in the presence of nutrients.  

To construct a heterologous expression host for thurincin H, thnA1, thnA2 and 

thnA3 were deleted in-frame from the chromosome of the wild type producer by 
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homologous recombination. The deletion mutants maintained the functions to 

posttranslationally modify thurincin H prepeptides, cleave the leader peptides and export 

the bacteriocin to extracellular environment. Using this deletion mutant as a host, several 

expression vectors were constructed to express native or His-tagged thurincin H. Those 

vectors contained different combinations of native promoter or Cry protein dual 

promoters, one copy or three copies of structural genes, and the native or Cry protein 

terminators, based on an E. coli-B. thuringiensis shuttle vector pHT315. Two of those 

vectors expressed in thurincin H deletion mutants reached similar production levels as the 

wide type producer.  

The plasmid containing the native promoter, one copy of structural gene and the 

Cry protein terminator was selected as the expression vector for subsequent site directed 

mutagenesis. Mutated thurincin H variants were produced by site directed mutagenesis, 

including twenty five single radical amino acid substitutions throughout the thurincin H 

peptide, as well as four additional conservative amino acid substitutions at cysteine sites 

(C4, C7, C10, C13) and the four thioether acceptor sites (N19, T22,T25, S28). Critical 

amino acids which maintained the inhibitory effect of thurincin H were identified, without 

which, the antimicrobial activity was partially or completely compromised.  

The putative thurincin H producing gene cluster was accurately amplified by one 

step PCR and heterologously expressed in the sensitive strain B. thuringiensis EG10368. 

The sensitive strain acquired complete immunity to thurincin H and produced thurincin H 

at a level higher than the wild type producer B. thuringiensis SF361. To our knowledge, 
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this is the first time one step PCR was employed to directly amplify such a long 

bacteriocin gene cluster for functional studies.  

In the mode of action study, thurincin H exhibited a bactericidal effect against 

sensitive strain B. cereus F4552. However, it did not alter cell membrane permeability, 

even at a concentration that most B. cereus cells had been killed. This indicated that 

thurincin H acts on the indicator strains via a novel mode of action, since causing damage 

to cell membrane by forming pores was the generalized killing mechanism for most of 

bacteriocins. Studies on the morphological changes of B. cereus cells treated with 

thurincin H indicated that at a low concentration, cells were killed but regular rod shape 

were observed under scanning electron microscopy, while at a higher concentrations of 

thurincin H treatment, collapsed flat rods lacking of cell rigidity were observed.   

PROSPECTUS 

The author developed methods to purify thurincin H on a large scale basis, which 

is an important prerequisite to subsequent characterizations. The genetic advances made 

in this study also opened doors for further in depth investigation for this bacteriocin. The 

following studies are suggested for future work.  

Thurincin H further characterization and application. Bacteriocins produced 

by lactic acid bacteriocins attracted most extensive research interests in recent decades 

and were widely applied in food industry due to its GRAS status (Berlec & Strukelj, 

2009). Even though Bacillus bacteriocins have a great potential regarding the inhibition 

spectrum, safety concerns are an important issue in its application. In order to receive 
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approval from FDA to use B. thuringiensis SF361 as protective strain, or using its 

fermentation extract as a food additive, B. thuringiensis SF361 will have to be evaluated 

as GRAS by support of further research. An alternative way is to conduct extensive 

research on toxicity of purified thurincin H in animal and human models to evaluate the 

possibility of using pure thurincin H as a food additive. 

New characteristics of mutated thurincin H variants. It was reported that 

proteins with point mutations could acquire completely novel features (Huang et al., 

2009). The inhibitory activities of thurincin H deletion mutant carrying mutated thurincin 

H expression plasmid variants were compared in this study. Those expressing thurincin H 

variants could be further purified according the method established in Chapter 2, and 

further analyzed. Expected features, such as enhanced stability, could also be explored by 

substituting those critical amino acids related to stability with a series of different 

alternative amino acids to screen for expected mutants (von der Osten et al., 1993).     

Functional analysis of genes in the thurincin H cluster. The immunity protein(s) 

were identified to be encoded by genes within the cluster. However, the exact gene(s) 

responsible for immunity needs to be further revealed by expressing specific gene(s) in 

sensitive strains. The functions of all the genes (thnP, thnB, thnD, thnE, thnT, thnR, and 

thnI) in the gene cluster are still putatively identified by bioinformatics studies and need 

to be confirmed by complementation and separate functional analysis studies. 

Further characterization of thurincin H mode of action. Permeability of the B. 

cereus cell membrane was not altered based on results obtained, and are suggested to be 
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further confirmed by potassium (Riazi et al., 2012) or ATP efflux assays (Li et al., 2005). 

Experiments characterizing the disruption of membrane potential (van Kuijk et al., 2012) 

or proton motive force (Pham et al., 2004) are also suggested to monitor the mode of 

action in real time. Both low and high concentrations of thurincin H treatments are 

recommended, which will complement the observations under the scanning electron 

microscopy as described in Chapter 6. 
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