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Late blight disease caused by Phytophthora infestans continues to pose a great challenge for 

potato and tomato growers around the world. Despite the numerous efforts conducted to 

alleviate the losses caused by this disease, the pathogen’s diversity has been a key factor in 

disease control failures. Continuous monitoring of pathogen traits such as fungicide 

sensitivity and host preference are essential for selecting the best disease mitigation method. 

The overall objective of this study was to understand the P. infestans population in the USA.  

More specifically, my research objectives were: i) To characterize the phenotypes of the most 

recent and most prevalent strains of P. infestans in the US; ii) To investigate a set of rare and 

diverse genotypes detected in the northeastern US in 2010 and 2011; iii) To study the 

phenotypic diversity (mating type, host preference, sensitivity to mefenoxam, the effect of 

temperature on release of zoospores and the effect of temperature on mycelial growth) of a 

diverse panel of P. infestans from the US, Mexico and the Netherlands and determine the 

genetic relatedness among them; iv) To conducted a genome-wide association study to 

identify genetic markers associated with important phenotypic traits; and v) To investigate the 

characteristics of mefenoxam acquired resistance. Differences in mating type, mefenoxam 

sensitivity, pathogenicity on potato and tomato, and zoospore release at different temperatures 

were identified between the recent genotypes of P. infestans in the US (US-8, US-22, US-23, 



 

and US-24). The genetic characteristics of the rare and diverse genotypes detected in the 

northeastern US were consistent with a recombinant population. The phenotypic analyses 

conducted on strains from the US, Mexico and the Netherlands, revealed a broad range of 

phenotypic responses. Eleven association hits for mating type in P. infestans where found 

with a P < 1e-5. The phenomenon of acquired resistance was not unique to certain strains of 

P. infestans; originally sensitive genotypes US-22, US-23, and US-24 were all able to acquire 

resistance after a single transfer through mefenoxam containing media. Thirty-two genes were 

found to be significantly differentially expressed in response to mefenoxam in all originally 

sensitive genotypes studied. 
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  CHAPTER 1 

Introduction 

1.1 Late blight disease: historic and modern economic importance 

Late blight has been a major threat to global food security ever since the Irish potato famine 

of the mid-19th century. This disease is a continuing problem on potato and tomato crops 

worldwide. Around 365 million tons of potatoes are produced worldwide, making it the fifth 

largest crop in the world (Food and Agriculture Organization of the United Nations 2012). 

Under suitable environmental conditions the disease can spread rapidly and can cause 

complete crop loss. The extent of economic damage due to late blight depends on several 

factors including climate, variety of potato or tomato grown, use of crop protection agents, 

and general cultural practices.  

 Globally, late blight costs billions of dollars annually. Management mostly involves 

the use of fungicides and cultural procedures designed to reduce the introduction, survival, or 

infection rate of the causal organism, Phytophthora infestans. The worldwide cost of potato 

late blight alone exceeds $5 billion per year, including $1 billion spent on fungicides 

(Judelson, USAblight). On tomatoes, the disease can be and has been equally devastating. The 

most recent example occurred in 2009 in the northeastern United States when infected tomato 

transplants were distributed via large national retail stores who obtained transplants from a 

national supplier (Fry et al. 2013). The subsequent pandemic in the mid-Atlantic and 

northeastern regions eliminated tomato plants in many organic farms and home gardens.  
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1.2 Biology of Phytophthora infestans 

1.2.1 Taxonomic classification 

Late blight disease is caused by the oomycete pathogen Phytophthora infestans. Despite the 

resemblance between oomycetes and fungi (growth via filamentous hyphal tips, nutrition via 

absorption, and reproduction via spores), oomycetes are evolutionarily distinct from fungi. 

Oomycetes are more closely related to brown algae than to true fungi. In contrast to fungi, 

oomycetes have cell walls composed of β-1-3, and β-1-6 glucans, produce biflagellated 

zoospores, produce antheridia and oogonia as gametangia, and are diploid in their vegetative 

state. Taxonomically, oomycetes belong to the phylum Oomycota, which are part of the 

kingdom Protista. It is believed that oomycetes may have evolved from the encapsulation of a 

photosynthetic eukaryote, with the plastid being lost secondarily in oomycetes (Fry 2008).  

1.2.2 Life cycle 

Phytophthora infestans is a hemibiotrophic pathogen having an initial biotrophic infection 

phase during which the pathogen spreads within the host tissue, followed by a necrotrophic 

phase during which host cell death is induced (Dodds and Rathjen 2010). Leaves, stems, 

tubers (in the case of potatoes) and fruits (in the case of tomatoes) are all susceptible (Figure 

1.1). Phytophthora infestans has a polycyclic life cycle, that is, it has multiple cycles of 

infection during a single epidemic. Lesions on infected leaves produce sporangia, some of 

which are dispersed to other parts of the same leaves, other leaves, or other plants. When 

these sporangia settle on new healthy tissue, some can cause new infections. These new 

infections result in new lesions, new sporangia, and then additional infections. Therefore, the 
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asexual life cycle of P. infestans can be completed rapidly with production of massive 

numbers of sporangia that are readily dispersed. 

 

Figure 1.1 Typical late blight symptoms on A. potatoes and B. tomatoes. 

 
 Phytophthora infestans reproduces both sexually and asexually (Figure 1.2). Sexual 

reproduction serves both as a source of variation and survival, whereas asexual reproduction 

serves as a mechanism for dispersion and rapid population growth. Sporangia, the asexual 

spores, are readily dislodged, particularly in response to changes in relative humidity, and can 

be aerially dispersed to other plant tissues (Erwin and Ribeiro 1996). Sporangia germinate 

either by formation of a germ tube that eventually grows to form a mycelium (direct 

germination) or by differentiation of the cytoplasm within the sporangium into discrete 

zoospores that are then released through an exit pore (indirect germination). Direct 

germination is favored at temperatures at and above the optimum for mycelial growth (20-

25ºC). On the other hand, indirect germination is favored at temperatures below 15ºC. When 

sporangia are deposited on a surface and exposed to free moisture and cool temperatures, they 

may germinate indirectly by releasing between 8 and 12 biflagellated zoospores, each capable 

of initiating an infection. Thus, low temperatures (10-15ºC) are more likely to lead to 

successful infections than are high temperatures (22-26ºC).  

W.#E.#Fry# W.#E.#Fry#

A.# B.#
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 Phytophthora infestans is heterothallic, requiring both mating types (designated as A1 

and A2) for sexual reproduction to occur. When individuals of opposite mating types are 

present in the same field and infect the same leaf, hormones are produced that move from one 

thallus to the other, stimulating the production of oogonia and antheridia (female and male 

gametangia, respectively). Each thallus is bisexual; thus, although infrequent in practice, 

selfing can occur within a single isolate in culture (Judelson 1996; Judelson, 1997a; Shattock 

et al., 1986). Therefore, sex determination is not linked to mating type (Fry 2008, Judelson 

1997b). When antheridia and oogonia meet, fertilization leads to the production of a sexual 

spore called oospore. The oospore serves both as a survival structure and as a source of 

variation via sexual recombination. As survival structures, oospores have been demonstrated 

to persist for up to four years in the soil (Mayton et al. 2000, Turkensteen et al. 2000). They 

survive very low temperatures well, but not higher temperatures, being unable to survive 2 h 

at 46ºC or 12 h at 40ºC (Fay and Fry 1997). As sources of variation, oospores produced from 

a mating between an A1 and an A2 strain are typically hybrids (Judelson 1997c, Shattock et 

al. 1986).  

 In locations with primarily asexual reproduction, the contribution of an occasional 

oospore to the population structure is likely to be minimal, because most progeny appear to be 

dramatically less fit than either parent (Mayton et al. 2000). With sexual reproduction limited 

or absent, mycelia in infected tubers may be the main mechanism for overwintering. 
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Figure 1.2 Life cycle of Phytophthora infestans.  

1.3 Markers used to describe clonal lineages of Phytophthora infestans 

A clonal lineage is a descendant from a single individual, and variation within a lineage arises 

Sexual'

W.'E.'Fry' P.'B.'Hamm' W.'E.'Fry'
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W.'E.'Fry'
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Oospore'

Antheridium''Oogonium'

300,000'
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Direct'germina8on' Indirect'germina8on'

Asexual'

H.D.'Thurston' W.'E.'Fry'

W.'E.'Fry'W.'E.'Fry'

W.'E.'Fry'

W.'E.'Fry'
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by mutation or mitotic recombination (Goodwin 1997, Grünwald et al. 2012). Clonal lineages 

are typically quite distinct and commonly defined using a set of genetic and phenotypic 

markers (Figure 1.3). The most common markers used to determine the genotype of a P. 

infestans isolate include: i) two allozymes, glucose-6-phosphate isomerase and peptidase; ii) a 

restriction fragment length polymorphism (RFLP) assay using a moderately repetitive DNA 

probe, RG57 (Goodwin et al. 1994b), which provides information on more than 25 different 

loci; iii) mitochondrial haplotyping, historically done using restriction enzyme digestion of 

PCR products for RFLP analysis that allowed the identification of four different haplotypes 

(Griffith and Shaw 1998), and more recently, five mitochondrial loci that allow identification 

of at least 36 different mitochondrial haplotypes in P. infestans (Martin et al. 2012); iv) 

twelve microsatellite loci that have been demonstrated to reveal polymorphisms among P. 

infestans isolates (Li et al. 2013); and v) the determination of the isolate’s mating type.  

 

Figure 1.3 Genetic and phenotypic markers used to define clonal lineages of Phytophthora 

infestans. 
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1.4 Population genetics of Phytophthora infestans worldwide 

Epidemics that cause significant crop loss involve millions of infection events involving an 

entire population of the pathogen and their host plants. For the establishment of an adequate 

pest management strategy, the determination of methods to control the entire pathogen 

population is therefore required. It is crucial to know whether growers are facing one or 

multiple populations, how these differ from one another, if they are recombining through 

sexual reproduction, and if the pathogen is restricted to a specific host. The efficiency of 

control of the pathogen depends on knowledge of its diversity, geographical distribution, and 

population subdivision. In general, if the pathogen has high genetic variation, the likelihood 

of overcoming host resistance or adapting to fungicides is higher (McDonald and McDermott 

1993). 

 In the case of P. infestans, migrations have had a major impact on the population 

dynamics of this plant pathogen (Figure 1.4). Sporangia may be dispersed in water, aerially, 

or through infected plant parts (probably the most likely avenue for long-distance dispersal). 

Phytophthora infestans was first described in the mid 1840s (Berkeley 1846). The most 

famous epidemic occurred in Europe in 1845 and lead to the potato famine in Ireland. Until 

the early 1980's, Mexico was the only place in the world where the two mating types, A1 and 

A2, could be found and sexual reproduction occurred (Grünwald and Flier 2005). 
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Figure 1.4 Migration events out of Mexico that have played a major role on the population 

dynamics of Phytophthora infestans worldwide.  

1.4.1 Phytophthora infestans in Mexico 

Mexico has been considered the center of origin of P. infestans due to the high genetic 

diversity of the pathogen in this region, the presence of the two mating types (A1 and A2), 

and the presence of two close relatives, Phytophthora ipomoeae and Phytophthora miriabilis, 

which are endemic to central Mexico (Goss et al. 2014). The populations of P. infestans in the 

central highlands of Mexico are reproducing sexually given that the two mating types occur in 

h"p://commons.wikimedia.org/4

A1#1842#

First#migra/on#

Mexico#
(center4of4origin)4

*4
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a 1:1 ratio (Goodwin et al. 1992, Grünwald et al. 2001), oospores are formed ubiquitously on 

leaves, stems, and tubers (Fernandez-Pavia et al. 2002, Flier et al. 2001, Gallegly and Galindo 

1958), and neutral genetic markers show that the isolates in this region are highly diverse 

(Grünwald et al. 2001, Tooley et al. 1985).  

 Evidence suggests that at least two different migration events out of Mexico occurred 

since the 1840’s (Goodwin 1997). The first global migration of P. infestans out of Mexico 

resulted in founder events because the pathogen was being introduced into previously 

unoccupied territories. The first migration event occurred before 1842 from central Mexico 

into the United States (Stevens 1933). The pathogen then probably migrated from the United 

States into Europe in 1845 (Bourke 1964) and from Europe it spread to almost all potato 

growing areas around the world (Cox and Large 1960). Populations founded in this initial 

migration experienced a severe genetic bottleneck that greatly reduced their level of genetic 

variation. Probably only a few genotypes (which did not include the A2 mating type) were 

introduced into the United States from Mexico and only a limited number of these were 

transported subsequently from the United States into Europe.  

 A second migration event occurred after the summer of 1976 when 25,000 tons of 

potatoes were shipped from Mexico to Europe. In the early 1980’s the A2 mating type was 

first discovered in Europe, the pathogen’s diversity increased, and new genotypes of greater 

fitness rapidly replaced the old clonal lineages.  

1.4.2 Phytophthora infestans in Europe 

Phytophthora infestans populations in Europe have undergone at least two migration events. 

The first one took place in the mid-19th century introducing isolates from the United States 
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into Europe and the second one in the late 1970's introducing isolates from Mexico into 

Europe. Analyses of herbarium specimens collected between 1845 and 1896 suggested that 

populations in Europe were dominated by a single genotype designated HERB-1 (Yoshida et 

al. 2014). This lineage apparently persisted for 50 years until it was replaced by the closely 

related US-1 clonal lineage (Yoshida et al. 2014). From Europe, US-1 was spread panglobally 

(Goodwin 1997). The second migration introduced both A1 and A2 mating type individuals. 

The introduction of the A2 mating type into Europe enabled sexual reproduction of the 

pathogen and displaced the older A1 population that had been dominant in most parts of the 

world. The first reports of the A2 mating type in Europe came from Switzerland (Hohl and 

Iselin 1984), followed by reports from many other European countries, such as Germany, 

England, Netherlands, Scotland, and Sweden (Daggett et al. 1993, Frinking et al. 1987, Kadir 

and Umaerus 1987, Malcolmson 1985, Tantius et al. 1986). 

 Despite the presence of the A2 mating type throughout Europe, its frequency has 

varied significantly. Low frequencies of the A2 mating type have been observed in Ireland 

(Cooke et al. 2006, Griffin et al. 2002), France (Lebreton et al. 1998), and the United 

Kingdom (Cooke et al. 2003, Day et al. 2004, Shattock et al. 1990), whereas higher 

frequencies of the A2 mating type have been observed in the Netherlands (Zwankhuizen et al. 

2000), Poland (Kapsa 2001, Sujkowski et al. 1994), Hungary (Bakonyi et al. 2002), Norway 

(Hermansen et al. 2000), and Finland (Hermansen et al. 2000, Lehtinen et al. 2007). The 

distribution of the different mating types can provide information on the likelihood of sexual 

reproduction and the subsequent formation of oospores. An even distribution of the A1 and 

A2 mating types as is observed in the Nordic countries, increases the chances for sexual 

reproduction to occur and is also the expected result from a sexual population (Lehtinen et al. 
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2008, Yuen and Andersson 2013). Additional lines of evidence that provide support for sexual 

recombination in the Nordic region of Europe include field observations consistent with a 

soil-borne source of inoculum such as those reported by Andersson et al. (1998) in Sweden, 

Lehtinen and Hannukkala (2004) and Hannukkala et al. (2007) in Finland, Evenhuis et al. 

(2007) in the Netherlands, and Bødker et al. (2006) in Denmark. A limited number of studies 

have surveyed individual fields for the presence of oospores in leaf tissue (Andersson et al. 

1998, Dahlberg et al. 2002, Drenth et al. 1993, Hanson and Shattock 1998, Hermansen et al. 

2002, Hjelm 2003, Lehtinen and Hannukkala 2004). In a study conducted by Lehtinen and 

Hannukkala (2004), oospores were observed in stems collected from fields with histories of 

late blight as well as early infections. 

 Interestingly, population genetic analyses conducted in Western Europe have shown a 

dominance of asexual clones and numerous rare genotypes (Cooke et al. 2003, Cooke et al. 

2012, Cooke et al. 2006, Day et al. 2004, Knapova and Gisi 2002). Since 2005, an A2 lineage 

designated as 13_A2 has increased in frequency from approximately 12 to 70% in Great 

Britain over three seasons (Cooke et al. 2008). The 13_A2 genotype was first recorded in the 

Netherlands in 2004 (Cooke et al. 2007). Isolates of the 13_A2 lineage are highly aggressive 

on cultivated potatoes, they outcompete other aggressive lineages in the field, they have 

overcome previously effective forms of plant host resistance, and they seem to be resistant to 

the systemic fungicide metalaxyl (Cooke et al. 2012, Detourne et al. 2007, Shaw et al. 2007).  

1.4.3 Phytophthora infestans in Africa and Asia 

It is believed that P. infestans was first introduced in Africa in 1941 (Nattrass and Ryan 

1951). In northern Africa (Morocco and Egypt) both A1 and A2 mating types have been 
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reported (Baka 1997, El-Kornay 1994, Hammi et al. 2001, Hammi et al. 2002, Sedegui et al. 

2000, Shaat 2002). In Morocco, some diversity has been documented and both mating types 

have been found within the same field, creating the potential for sexual reproduction (Hammi 

et al. 2001, Sedegui et al. 2000). Further south in Africa, it seems that the A1 mating type 

predominates (Fry et al. 2009) and despite the presence of distinct genotypes (Forbes et al. 

1998, Goodwin et al. 1994a, Pule et al. 2008, Schiessendopper and Molnar 2002), the US-1 

clonal lineage seems to prevail. Metalaxyl-resistant individuals of P. infestans are often 

present in Africa (Fontem et al. 2005, Hammi et al. 2002, Kankwatsa et al. 2003, McLeod et 

al. 2001, Mukalazi et al. 2001, Olanya et al. 2001, Sedegui et al. 2000).  

 As is the case in southern Africa, the US-1 clonal lineage still seems to persist in 

several countries in Asia, including Japan, Nepal, Taiwan, and Thailand (Guo et al. 2008, 

Kato and Naito 2001, Koh et al. 1994, Le et al. 2008, Nishimura et al. 1999). However, other 

lineages of both the A1 and the A2 mating type have been reported in Bangladesh (Forbes 

2004), China (Zhang et al. 1996), India (Singh et al. 1994), Indonesia (Nishimura et al. 1999), 

Israel (Cohen 2002, Grinberger et al. 1989), Japan (Akino et al. 2008), Korea (Park et al. 

2008), Nepal (Shrestha et al. 1998), Pakistan (Ahmad and Mirza 1995), Siberia (Elansky et al. 

2001), and Thailand (Nishimura et al. 1999).  

1.4.4 Phytophthora infestans in South America 

The Andes are considered to be the center of origin of potato (Ames and Spooner 2008) and 

thus they have been proposed as the center of origin of P. infestans (Abad and Abad 1997, 

Gomez-Alpizar et al. 2007). However, the absence of sexual reproduction, and presence of 

clonality in South America are in conflict with this idea (Fry et al. 2009). Both mating types 
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are found in southern South America (Argentina, Brazil, Paraguay, and Uruguay) (Forbes 

2004). Yet, no evidence of sexual recombination in field populations has been documented. In 

Bolivia, the vast majority of isolates collected are of the A2 mating type, whereas in Chile, 

Colombia, Ecuador, Peru, and Venezuela, P. infestans isolates of the A1 mating type seem to 

predominate (Forbes 2004). Despite the presence of both mating types in South America, the 

high degree of host specificity seems to play an important role in impeding sexual 

reproduction (Oliva et al. 2002, Perez et al. 2001).  

1.4.5 Phytophthora infestans in North America 

Late blight was first detected in the northeastern United States in the early 1840's (Stevens 

1933). Data suggest that P. infestans was first introduced into the United States from Mexico 

(Fry et al. 1993, Goodwin et al. 1994a, Stevens 1933), probably through potato tubers that 

were imported by curious botanists or agronomists who visited Mexico during the 19th 

century (Goodwin 1997). This first migration event introduced the US-1 clonal lineage (A1 

mating type) as well as other genotypes that appear to be related to the US-1 clonal lineage 

(Goodwin 1997, Goodwin  et al. 1994b). The second important migration seems to have taken 

place from northwestern Mexico in the late 1970's when the US-6 clonal lineage (A1 mating 

type) was introduced. In contrast to the US-1 genotype, which mainly infected potato crops, 

the US-6 clonal lineage was able to infect both potatoes and tomatoes. In the early 1990s, two 

new genotypes, US-7 and US-8, were detected in the United States and Canada. These 

genotypes were probably initially introduced into the United States through infected tomato 

fruits that were imported from northwestern Mexico (Goodwin 1997). In contrast to the 

previous genotypes of P. infestans found in the United States and Canada, US-7 and US-8 
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were of the A2 mating type and were highly resistant to the fungicide metalaxyl (Goodwin et 

al. 1996). The US-8 clonal lineage, which mainly infects potatoes and is a very efficient 

colonizer of potato tubers, rapidly spread throughout the United States. During 1994 and 

1995, this genotype was detected in 23 different states (Fry and Goodwin 1997). On tomatoes, 

populations of P. infestans seem to be erratic, with strains detected in one year not necessarily 

being the same as those from the previous year. Lineages that have been prevalent on 

tomatoes include US-6, US-7, US-11, and US-17 (Fry et al. 2009).      

 The widespread occurrence of both A1 and A2 mating type strains in the United States 

and Canada increased the probability of sexual recombination in these countries. Yet, most 

populations in a single field have been monomorphic for mating type and thus sexual 

recombination is expected to be rare (Goodwin et al. 1995, Goodwin et al. 1998, Peters et al. 

1998). However, studies conducted by Goodwin et al. (1995) and Gavino et al. (2000) in the 

1990s have suggested that some populations in British Columbia and in the Columbia Basin 

of Oregon and Washington might have contained recombinant genotypes. One of these 

recombinant genotypes is believed to be lineage US-11 (Gavino et al. 2000).  

 In 2009, North America was again reminded of how devastating late blight could be. 

A late blight pandemic began in mid-June over much of the northeastern United States. A 

single genotype of P. infestans, designated as US-22, was dispersed via infected tomato 

transplants that were shipped to garden centers in large retail stores throughout the Northeast 

(Figure 1.5). Both employees in the garden centers as well as home gardeners were unaware 

of the disease and did not recognize its symptoms. Consequently, infected transplants were 

planted in home gardens throughout the Northeast (Fry et al. 2013). In addition, the 

environmental conditions during the summer of 2009 were favorable for the development of 
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the disease. Nights were cool (optimal for indirect germination), days were warm (stimulating 

mycelia growth), and rain occurred relentlessly during the start of the pandemic, making it 

challenging for growers to apply fungicides. Unfortunately, knowledge regarding the 

sensitivity of US-22 to mefenoxam (formerly metalaxyl) and its host preference did not 

become available until after the epidemic was well established (see Chapter 2 and Danies et 

al. (2012)). In contrast to US-8, which had been the prevalent genotype until then, US-22 was 

sensitive to mefenoxam and was able to infect both potatoes and tomatoes.  

 In addition to US-8 and US-22, two other genotypes of P. infestans were present in the 

United States in 2009. These genotypes were designated as lineage US-23 and lineage US-24. 

Lineage US-23 was present in the East (Pennsylvania) and in the South, whereas lineage US-

24 was reported in the upper Midwestern United States (Fry et al. 2013). Results of 

phenotypic analyses of these two lineages are included in Chapter 2. From 2010 until today, 

lineage US-23 has prevailed. This lineage has shown to be a great pathogen in both potato and 

tomato crops (Danies et al. 2012). Fortunately, US-23 is sensitive to mefenoxam, thus 

allowing the use of this highly efficient fungicide for management purposes.  

 Interestingly, in 2011, clonal lineage US-11 was detected on tomatoes in California. 

This lineage had been prevalent in the mid-1990s and had not been reported in recent years 

(Hu et al. 2012). Additionally, several new and rare genotypes were detected in the East 

during the summers of 2010 and 2011 (see Chapter 3). Most of these genotypes were found 

in a region that centered around central New York State. The genetic characteristics of this 

population of P. infestans are consistent with a recombinant population. The ratio of A1 to A2 

mating types among these genotypes was close to the 1:1 ratio expected for sexual 

recombination. Fortunately, these strains have not been detected since 2011. However, the 
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fact that this population existed indicates that sexual recombination in the United States is 

possible and may happen again. 

 

Figure 1.5 Genotypes of Phytophthora infestans in the United States from 1997 to 2014 (Fry 

et al. 2015). 

1.5 Implications of having a simple population structure  

Because of the fact that in any given year only a limited number of clonal lineages has been 

reported in the United States, it seems reasonable to characterize these for epidemiologically 

important phenotypic traits, such as fungicide sensitivity and host preference. Knowledge 

about prevalent strains of P. infestans aids disease control. For example, if isolates causing an 

outbreak on potato are known to be nonaggressive on tomato, then fungicide sprays on nearby 

tomato fields can be reduced. These phenotypic analyses can take weeks or months, but if 

genotyping through molecular techniques assigns strains to a lineage of known phenotype, 
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results can be obtained within one day.  

 In countries where P. infestans is able to survive mainly as clonal lineages, disease 

control measures are directed towards pathogen-free planting material and towards the 

reduction of sporangia that may come from other infected plant material, such as potato cull 

piles, and tubers or seeds that remain on the soil from the previous cropping season. On the 

other hand, in countries where P. infestans regularly reproduces sexually, disease 

management strategies become more challenging. An immediate consequence of the 

continuous sexual reproduction of the pathogen is the presence of an initial source of 

inoculum in the soil that restricts the frequency with which potatoes can be grown.  

1.6 Finding genetic markers associated with phenotypic traits of agronomic importance 

As mentioned earlier, phenotypic analysis may take weeks to months, thus making it 

challenging to obtain results in time for management decisions. This is usually the case when 

we are faced with a new genotype of the pathogen that has not been previously characterized. 

The 2009 late blight pandemic in the northeastern United States clearly exemplifies this; 

information regarding the fungicide sensitivity of the strain causing the 2009 pandemic 

became available until after the epidemic was well established, and thus farmers were not 

aware that this new genotype, US-22, was sensitive to the highly effective fungicide 

mefenoxam.  

 Hence, an understanding of the genetic basis of complex traits that can be used for late 

blight management is critical to rapidly predict the pathogen’s phenotype. Informed 

management decisions have tangible economic and environmental benefits by leading to 

lower on-farm expenses, reduced fungicide applications, more effective disease suppression, 



 

 - 18 -  

and increased sustainable production. Despite the scientific efforts to identify the genetic basis 

behind these epidemiologically important pathogen traits, not much is known presently. New 

technologies and analysis methods are driving plant pathology and plant disease management 

from data-poor to a data-rich environment. Next-generation sequencing of plant pathogens is 

revolutionizing the field as newly abundant data enable and facilitate the discovery and use of 

millions of single nucleotide polymorphisms (SNPs) in diverse genomes. Genotyping by 

sequencing (GBS) is a next-generation sequencing protocol that has allowed SNP discovery 

and genotyping of a variety of organisms, including P. infestans.  

 As a first step in determining the genetic basis of some important phenotypic traits in 

P. infestans, I systematically assessed five traits (mating type, host preference, sensitivity to 

mefenoxam, the effect of temperature on release of zoospores, and the effect of temperature 

on mycelial growth) of a diverse panel of P. infestans: The panel consisted of i) the dominant 

clones in the US from the 1990s to 2013, ii) a recombinant population detected in 

northeastern US in 2010 and 2011 (Danies et al. 2014), and iii) a natural sexual population 

from Mexico (Chapter 4). The phenotypic analyses revealed a broad range of phenotypic 

responses. Additionally, I conducted a genome-wide association study to identify genetic 

markers associated with mating type for these isolates. Eleven SNP markers gave association 

hits for mating type with a P < 1e-5.  

 There may not be a ‘silver bullet’ against late blight. The pathogen’s diversity is a key 

factor in disease control failures. Continuous monitoring of pathogen traits such as fungicide 

sensitivity, host preference, and the effect of temperature on growth are essential to selecting 

the best disease mitigation method.   
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1.7 Evolutionary potential of Phytophthora infestans  

Why has P. infestans prevailed for more than a century? To better answer this question, I will 

analyze the evolutionary potential of P. infestans according to the framework proposed by 

McDonald and Linde (2002) to predict how mutation, population size, migration, mode of 

reproduction, and selection govern this pathogen’s evolution. The interactions between these 

evolutionary processes in P. infestans have allowed the pathogen to rapidly adapt to control 

strategies such as genetically resistant cultivars, making management of late blight disease a 

constant challenge (Fry W. E. 2008).  

 The genome of P. infestans has approximately 240 megabases, several times larger 

than that of related species within the genus Phytophthora (Haas et al. 2009). This expansion 

results from the proliferation of repetitive DNA that accounts for approximately 74% of the 

genome (Haas et al. 2009). Phytophthora infestans’ genome is organized in an unusual way, 

having blocks of gene-dense regions where repeat content is relatively low and the order of 

the genes is conserved, separated by gene-sparse regions in which gene order is not 

conserved, and repeat content is high (Haas et al. 2009). The gene-sparse regions are enriched 

in genes that code for secreted proteins implicated in pathogenesis, show copy number 

variation, and have high non-synonymous to synonymous substitution rates (Raffaele et al. 

2010).  

1.7.1 Mutation 

The P. infestans genome contains a strikingly rich and diverse population of mobile 

(transposable) elements (Haas et al. 2009). These mobile elements have the potential for 

creating or reversing mutations, leading to changes in the DNA sequence of individual genes. 
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Consistent with a model of repeat-driven expansion of the P. infestans genome, Haas et al. 

(2009) reported that the vast majority of repeat elements in the genome are highly similar to 

their consensus sequences in their respective transposon family, indicating a high rate of 

recent transposon activity.  

 When mutations are coupled with directional selection, virulent or pesticide-resistant 

strains have the potential to increase in frequency rapidly (McDonald and Linde 2002). This is 

particularly advantageous in an organism such as P. infestans, given that this pathogen can 

produce an extremely large number of sporangia within individual plants. These large 

populations of sporangia make it more likely that new mutants with higher fitness will emerge 

within a host, are able to multiply within the infected host, and spread to new, uninfected 

hosts before the mutation is lost through genetic drift (see below) or chance (McDonald and 

Linde 2002).  

 Like many other pathogens, P. infestans secretes proteins that are able to change the 

host’s physiology and facilitate colonization. These secreted proteins implicated in 

pathogenesis are most commonly known as effector proteins. The genome of P. infestans 

revealed large families of genes encoding for these secreted effector proteins. Haas et al. 

(2009) found approximately 60% more predicted RXLR genes in P. infestans, than in 

Phytophthora sojae and Phytophthora ramorum. Furthermore, approximately half of these 

RXLR effectors were unique to P. infestans (Haas et al. 2009). Many of these effector 

proteins are known to interact with plant resistant (R) proteins. When an R protein recognizes 

the presence of an effector, the plant mounts a defense response that is usually accompanied 

by localized cell death to restrict the growth of the pathogen (Jones and Dangl 2006). Hence, 

to be successful, the pathogen needs to mutate or eliminate the effector gene that is being 
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recognized by the plant, or acquire a new effector to suppress the immune response. Effector 

genes are localized in the highly dynamic and expanded gene-sparse regions of the P. 

infestans genome and therefore have the potential to evolve rapidly (Raffaele et al. 2010). 

This genome plasticity has certainly played a crucial role in the rapid adaptability of P. 

infestans to host plants and highlights its evolutionary potential (Haas et al. 2009).  

 Another example of P. infestans’ ability to quickly adapt to adverse environments is 

the observation of individuals belonging to ‘sensitive’ clonal lineages becoming tolerant of 

the fungicide mefenoxam upon a single passage through mefenoxam-containing medium (see 

Chapter 5 or Childers et al. (2014)). Although we only tested three different ‘sensitive’ 

lineages of P. infestans, we suspect that the ability to acquire mefenoxam-resistance may be a 

general characteristic of mefenoxam-sensitive isolates of P. infestans. Given the speed and 

consistency of acquired resistance, an epigenetic mechanism seems likely.  

1.7.2 Population size 

The disease cycle of P. infestans can be remarkably rapid with penetration, colonization, 

sporulation, and dispersal occurring in less than five days (Fry and Goodwin 1997). Each 

individual late blight lesion can produce as many as 300,000 sporangia per day (Legard et al. 

1995) and multiple lesions may occur on a single leaflet. Because large populations produce a 

higher number of mutations than small populations, the chances of a favorable mutation 

occurring in large populations is greater. The greater number of favorable mutations that will 

remain in the population will result in the larger population being more genetically diverse 

over time than the smaller population. In addition, small populations are more at risk of losing 

particular genes due to genetic drift, the random change in allele frequency due to chance. 
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Because of the impact of population size on the evolutionary potential of the pathogen, any 

disease management program that keeps pathogen population sizes small contributes to its 

control by limiting the genetic diversity in the pathogen population (McDonald and Linde 

2002). Phytophthora infestans may undergo regular significant reductions in population size 

as a result of crop rotations or annual climatic extremes (in countries where winters are 

severe). These reductions in population size may eliminate the majority of individuals, 

making the pathogen less diverse and slower to adapt than populations that maintain a large 

size year round (McDonald and Linde 2002).  

1.7.3 Migration 

Migration is a process in which particular alleles or complete genotypes (individuals) in the 

case of clonally reproducing individuals, are exchanged among geographically separated 

populations (McDonald and Linde 2002). Migrations have played an important role in the life 

history of P. infestans. One important consequence of this process has been the introduction 

of the A2 mating type into places where only the A1 mating type had been detected 

previously. The presence of the two mating types has allowed the occurrence of sexual 

reproduction outside of Mexico, where P. infestans is believed to have originated. Sexual 

reproduction creates new combinations of alleles and results in the production of oospores, 

which are resistant to adverse environmental conditions. Another important consequence of 

migration has been the introduction of mefenoxam-resistant strains in places where only 

sensitive isolates occurred before. 

 The fact that P. infestans is able to infect potato tubers has allowed this pathogen to 

move great distances, introducing genes as well as whole genotypes into new populations. As 



 

 - 23 -  

a result of intercontinental travel and commerce, humans have allowed the pathogen to move 

beyond its natural dispersal limits (Fry et al. 1993, Fry et al. 2013, Goodwin et al. 1994a, 

Goodwin et al. 1996, McDonald and Linde 2002). It is because of this that quarantine 

measures or any disease management tactic that limits the movement of individuals among 

populations would limit the spread of P. infestans (McDonald and Linde 2002). 

1.7.4 Mode of reproduction 

Plant pathogens may reproduce sexually through meiosis or asexually through mitosis and 

some may display both modes of reproduction. The mode of reproduction affects how gene 

diversity is distributed within and among individuals in a population (McDonald and Linde 

2002). Pathogens that are able to reproduce both sexually and asexually possess a greater 

evolutionary potential than those that can reproduce solely by either sexual or asexual 

reproduction. As mentioned before, the sexual cycle serves both as a source of variation and a 

strategy for survival. Sexual reproduction may limit the usefulness of some disease control 

strategies given that a recombining pathogen population has the potential of creating new 

combinations of virulence alleles as rapidly as breeders can introduce resistance genes 

(McDonald and Linde 2002). The asexual cycle on the other hand serves as a mechanism for 

dispersal and rapid population growth that facilitates the rapid dispersion of newly generated 

mutants that possess an increased fitness under the conditions the pathogen is growing. 

1.7.5 Selection 

Selection is the main force that drives changes in allele frequencies. Pathogen populations 

exposed to major gene resistance, or complete resistance conditioned by a single gene, will 
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face stronger selective pressure and therefore evolve more quickly than populations that are 

exposed to the weaker selection imposed by incomplete resistance, or quantitative resistance 

conditioned by multiple genes of partial effect (McDonald and Linde 2002, Poland et al. 

2009). This selection pressure together with the genetic plasticity of P. infestans, particularly 

associated with genes involved in pathogenesis, is recognized as one of the main causes for 

failure of R genes in cultivated potatoes as a disease management strategy (Wastie 1991). 

Furthermore, Abu-El Samen et al. (2003) showed that P. infestans has the ability to 

continuously change in virulence even during asexual reproduction.  

1.8 Risk posed by Phytophthora infestans for overcoming control methods 

Phytophthora infestans has a high evolutionary potential and thus poses a great risk of 

overcoming major resistance genes and evolving to counteract other control methods, such as 

fungicide application (McDonald and Linde 2002). The pathogen’s genome plasticity, with 

the presence of transposable elements and repeat-rich regions, fosters the emergence of a high 

number of mutations. This increases the likelihood that mutations overcoming resistance 

genes or pesticide activity will be present in the pathogen population. The generation of such 

beneficial mutations coupled with strong directional selection greatly increases the chances 

that advantageous mutations will persist in the population. The multiple mechanisms used by 

P. infestans to move between hosts have allowed the transmission of virulent and/or 

fungicide-resistant genotypes across large geographical areas.  

 A mixed reproductive system (sexual and asexual) gives P. infestans a high 

evolutionary potential. The sexual cycle creates new combinations of alleles through 

recombination. These recombined genotypes are then exposed to different crop environments, 
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which may include new resistance genes or pesticide products containing new active 

ingredients. Those genotypes (combinations of alleles) that are the fittest will be held together 

through asexual reproduction and may increase to high frequencies in selected clones 

(McDonald and Linde 2002).  

 Based on predictions by McDonald and Linde (2002) regarding the relative risk of 

plant pathogens for overcoming resistance, P. infestans possesses the highest possible ‘risk 

value’. Understanding the evolutionary potential of pathogens will prove useful to optimize 

the management of resistance genes and pesticides to maximize their usefulness and minimize 

the losses that result from reduced efficacy of these control methods (McDonald and Linde 

2002).  

1.9 Objectives and scope of this dissertation 

The overall objective of this work was to understand the population genetics of P. infestans in 

the United States. I initially investigated epidemiologically important phenotypic 

characteristics of the recently emerged clonal lineages (US-22, US-23, and US-24) in the 

United States (Chapter 2). Subsequently, I investigated a set of rare and diverse genotypes 

detected in a region that centered around central New York State in 2010 and 2011 (Chapter 

3). Next, I systematically assessed five traits (mating type, host preference, sensitivity to 

mefenoxam, the effect of temperature on release of zoospores, and the effect of temperature 

on mycelial growth) of a diverse panel of P. infestans: The panel consisted of i) the dominant 

clones in the US from the 1990s to 2013, ii) a recombinant population detected in 

northeastern US in 2010 and 2011 (Danies et al. 2014), and iii) a natural sexual population 

from Mexico (Chapter 4). For these isolates I conducted a genome-wide association study to 
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identify genetic markers associated with mating type. Finally, in Chapter 5, I investigate the 

characteristics of mefenoxam-acquired resistance. More specifically, I addressed the 

following three questions: 1) Is the phenomenon of acquired resistance unique to certain 

strains of P. infestans? 2) How fast does acquired resistance to mefenoxam occur? and 3) 

What are the gene expression difference between initially sensitive isolates and their 

derivatives with acquired mefenoxam resistance?  
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CHAPTER 2* 

Phenotypic characterization of recent clonal lineages of Phytophthora infestans in the 

United States 

2.1 Abstract 

Phytophthora infestans, the causal agent of late blight disease, has been reported in the United 

States and Canada since the mid XIX century. Due to the lack of, or very limited, sexual 

reproduction, the populations of P. infestans in the United States are primarily reproducing 

asexually and thus show a simple genetic structure. The emergence of new clonal lineages of 

P. infestans (US-22, US-23 and US-24) responsible for the late blight epidemics in the 

northeastern region of the United States in the summers of 2009 and 2010 stimulated an 

investigation into phenotypic traits associated with these genotypes. Mating type, differences 

in sensitivity to mefenoxam, differences in pathogenicity on potato and tomato, and 

differences in rate of germination were studied for clonal lineages US-8, US-22, US-23 and 

US-24. Both A1 and A2 mating types were detected. Lineages US-22, US-23 and US-24 were 

generally sensitive to mefenoxam while US-8 was resistant. US-8 and US-24 were primarily 

pathogenic on potato while US-22 and US-23 were pathogenic on both potato and tomato. 

Indirect germination was favored at lower temperatures (5 and 10ºC) whereas direct 

germination, though uncommon, was favored at higher temperatures (20 and 25ºC). 

Sporangia of US-24 released zoospores more rapidly than did sporangia of US-22 and US-23. 

                                                
* Danies G, Small IM, Myers K, Childers R, Fry WE. 2013. Phenotypic characterization of recent clonal 
lineages of Phytophthora infestans in the United States. Plant Disease 97: 873-881. 
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The association of characteristic phenotypic traits with genotype enables the prediction of 

phenotypic traits from rapid genotypic analyses for improved disease management. 

2.2 Key words 

Phytophthora infestans, clonal lineage, sensitivity to mefenoxam, pathogenicity on potato and 

tomato, germination rate, late blight 

2.3 Introduction  

Phytophthora infestans, the causal agent of late blight disease, has been reported in the United 

States since the 1840s (Stevens 1933). Since its introduction, it is hypothesized that the 

pathogen population has been primarily reproducing clonally, and new clonal lineages have 

emerged mainly by mitotic recombination, mutation, or migration events (Goodwin S. B. et 

al. 1994). Due to the simple population structure of P. infestans in the United States, it has 

been possible to group individuals into clonal lineages based on neutral markers such as 

mating type, mitochondrial haplotype, nuclear DNA fingerprint patterns and allozyme 

genotype (Goodwin S. B. et al. 1994). More recently, this approach has been complemented 

with the use of microsatellite markers (Myers et al. 2010, Small et al. 2012). 

Isolates within lineages are recognized to be more similar to each other than to isolates 

in a different clonal lineage for characteristics such as metalaxyl or mefenoxam resistance and 

host preference (Goodwin S. B. et al. 1995a, Goodwin S. B. et al. 1996, Lambert and Currier 

1997, Legard et al. 1995, Miller et al. 1998). Several studies have characterized previously 

dominant clonal lineages and demonstrated the existence of considerable, predictable 

variation among different clonal lineages in epidemiologically important phenotypic traits. 
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Some examples include, phenylamide fungicide resistance in clonal lineages US-7 and US-8 

(Goodwin S. B. et al. 1998), and that US-8 is pathogenic mainly on potatoes while US-7, US-

11 and US-17 are pathogenic on both potatoes and tomatoes (Goodwin S. B. et al. 1998, 

Legard et al. 1995).  

Environmental variables such as temperature and relative humidity have a significant 

impact on the development of late blight. Early studies conducted by Melhus (1915) and 

Crosier (1934) indicated that indirect germination was predominant at temperatures below 

20˚C. In a study by Mizubuti and Fry (1998) differential effects of temperature on sporangia 

germination were reported; the optimal temperature for indirect germination was lower for 

lineages US-7 and US-8 than it was for US-1. Clonal lineages US-7 and US-8 germinated 

indirectly at temperatures below 15˚C. The differential effects of temperature on sporangia 

germination may differentially influence the efficacy of sporangia to initiate infection, and are 

therefore important for disease epidemiology and disease management. 

The re-emergence of late blight in Northeastern United States and Canada in the 

summers of 2009 and 2010 revealed the existence of new clonal lineages of P. infestans (Hu 

et al. 2012). Both potatoes and tomatoes were infected by the new clonal lineages.  

Knowledge regarding the sensitivity of the new genotypes to the fungicide mefenoxam, their 

host preference, and other epidemiological characteristics could provide information 

important to disease management decisions. The objective of this study was to investigate 

epidemiologically important phenotypic characteristics of the recently emerged clonal 

lineages in the United States and Canada. Sensitivity to the systemic fungicide mefenoxam, 

pathogenicity on potato and tomato and the effect of temperature on sporangium germination 

were investigated for clonal lineages US-8, US-22, US-23 and US-24. 
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2.4 Materials and Methods 

2.4.1 Isolates and isolation  

Isolates were obtained from throughout the United States and from select provinces in Canada 

during 2009, 2010 and 2011. Sampling of P. infestans isolates is limited to those places where 

the pathogen occurs, and cannot be predicted from one season to another. For this reason a 

predetermined sampling strategy could not be employed. Isolates collected for this study were 

those reported by extension personnel and plant disease diagnostic labs in our network. 

Isolates were maintained on pea agar (Jaime-Garcia et al. 2000), rye B agar (Caten and Jinks 

1968) and on tomato and/or potato leaflets (depending on the isolate) at 15ºC. When the 

source of the isolates was sporulating lesions, a small block of media (rye B and pea agar) 

with antibiotics (ampicillin (100 µg ml-1), rifampicin (125  µg ml-1), and 

pentachloronitrobenzene (25  µg ml-1), was placed in contact with sporangia, which was then 

transferred to Petri plates of agar medium. From the plates, colonies were selected and 

transferred again onto rye B and pea agar media.  

2.4.2 Mating type 

Mating type was determined by pairing an unknown isolate with a known isolate of P. 

infestans, either A1 mating type (US970001 US-17 genotype) or A2 mating type (US040009, 

US-8 genotype), on rye B or pea agar media. Petri plates were kept at 20°C for 10-14 days. 

The hyphal interface of the two colonies was investigated microscopically using 125X 

magnification. Isolates that formed oospores at the interface with the known A1 isolate were 

designated A2 and those that formed oospores with the known A2 isolate were designated A1. 
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The known isolates (A1 and A2) were paired as positive controls, while negative controls 

consisted of pairing the known isolates with themselves (same mating type).  

2.4.3 Mitochondrial haplotype  

Mitochondrial DNA haplotype was determined using PCR-RFLP analysis, as described by 

Griffith and Shaw (1998), with two primer pairs (F1-R1 and F2-R2). Reference US-1 and US-

8 isolates were included as positive controls. 

2.4.4 Glucose-6-phosphate isomerase 

Mycelia and/or sporangia obtained from cultures grown on rye B or pea agar or from infected 

leaflets were used to determine glucose-6-phosphate isomerase (GPI) allozyme genotypes. 

Analyses were carried out using cellulose acetate electrophoresis as described by Goodwin S. 

B. et al. (1995b). One or more reference isolates representing US-1 (SA960008), US-8 

(US040009), and/or US-17 (US970001) were included in all GPI analyses. 

2.4.5 DNA extraction and RFLP analysis with probe RG-57 

DNA extractions and subsequent RFLP analysis with the RG-57 DNA probe were performed 

using a method modified from Goodwin S. B. A. et al. (1992). Southern blot analysis was 

conducted using the Amersham gene images AlkPhos direct labeling and detection system 

(GE Healthcare) according to the manufacturer’s instructions. The US-1 (SA960008) 

reference isolate was used in RG-57 analyses. Presence or absence of all fingerprint fragments 

was scored visually.  
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2.4.6 Multiplex microsatellite marker analysis 

Simple sequence repeats (SSRs) were analyzed for all isolates, using protocols developed 

previously (Lees et al. 2006) and described in the Protocol section March 2008 by the 

Eucablight Network (www.eucablight.org). Three separate multiplex reactions were 

conducted using three panels of primers (Table 2.1). Master mixes were prepared. Amounts 

per single reaction are shown in Table 2.2. 

 
Table 2.1 Phytophthora infestans microsatellite primer information. 

 
a Size ranges. 

 PCR amplification was conducted with a standardized set of thermocycling 

conditions: initial activation step of 95°C for 10 min, followed by 28 cycles of 95°C for 20 

sec, 58°C for 25 sec, 72°C for 60 sec and a final extension step of 72°C for 20 min. Post PCR 

processing was conducted by dispensing 9.5 µl of size standards in high-deionized formamide 

mix, 0.05 µl of Genescan-500 LIZ size standard (ABI, PN 4322682) and 9.45 µl of Hi-Di™ 

Cooke allele size range (bp)
US lineages size range (bp)a

F: TGCCCCCTGCTCACTC 106-166 (16)
R: GCTCGAATTCATTTTACAGACTTG 106-147 (modified)

Pi02F F: CAGCCTCCGTGCAAGA 142-168
Pi02R R: AAGGTGCGCGAAGACC 154-166

F: AAAATAAAGCCTTTGGTTCA 203-225
R: GCAAGCGAGGTTTGTAGATT 213-226

F: TGCTATTTATCAAGCGTGGG 138-212
R: TACAATCTGCAGCCGTAAGA 127-159

F: AACTATCTATCGGCGTGCAT 252-255
R: CAGGCCGCAATTGTAAGA 255-257

F: AGCGGCTTACCGATGG 160-172
R: CAGCGGCTGTTTCGAC 166-170

F: ATGACGAAGATGAAAGTGAGG 272-281
R: CGTATTTTCCTGTTTATCTAACACC 269-279

F: TGCCGACGACAAGGAA 203-209
R: CGGTCTGCTGCTGCTC 203-206

F: CACAGCACGCGGAATC 173-177
R: ACGCCGAGTGTCCTGA 173-177

Pi70F F: ATGAAAATACGTCAATGCTCG 189-195
Pi70R R: CGTTGGATATTTCTATTTCTTCG 187-193

F: GAGAACGCACAATGTAAGGC 177-211
R: ACATAAATACACGCTGAACGG 177-181

6-FAM 58 (AAG) 8 (16)

Pi89Fcap  
Pi89R 6-FAM 58 (AT) 9 (16)

Pi33Fcap  
Pi33R VIC 58 (CAG) 5 (16)

Pi16Fcap  
Pi16R NED 58 (GA) 7 (16)

Pi04Fcap  
Pi04R NED 58 (GT) 6 (16)

Pi63F  
Pi63Rlong 6-FAM 58 (GAG) 8 (16)

PiG11Fcap  
PiG11R VIC 56 or 58 (TC) 26 (14)

Pi56Fcap  
Pi56RLong PET 58 (AT)10 (16)

(16)

Pi4BFcap 
Pi4BR NED 58 (TC) 34 (14)

D13F 
D13RLong 6-FAM 56 (CT) 27

PET 58 (TG) 11

Primer Primer sequence Label Annealing 
tempereature Repeat Reference
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Formamide (ABI, PN 4311320), and 0.5 µl each of the PCR products from panel 1-3 

reactions into each well of a 96-well ABI 3730xl plate. PCR products were analyzed on an 

ABI 3730xl capillary system with POP-7™ Polymer (ABI, PN 4335615). PCR amplicons 

were compared to a set of size standards and alleles were scored accordingly (Lees et al. 

2006). 

 
Table 2.2 Polymerase chain reaction (PCR) reactions for simple sequence repeat analysis for 

Phytophthora infestans isolatesa. 

 Volume (µl) 

Reagents Plate 1 Plate 2 Plate 3 
HPLC grade waterb 7.95 6.79  8.375 
10X Immolase PCR buffer 1.2 1.2 1.25 
10 mM dNTPs 0.125 0.187 0.125  
50 mM MgCl2 0.375 0.42 0.375 
10 µM primersc    
Pi02 0.125 … … 
Pi89 0.275 … … 
Pi4B 0.475 … … 
PiG11 … 0.3 … 
Pi04 … 0.125 … 
Pi70 … 0.375 … 
Pi56 … 0.3 … 
Pi63 … 0.3 … 
Pi16 … … 0.188 
Pi33 … … 0.1 
D13 … … 0.35 
Immolase Taq (5u µl-1) 0.1 0.1 0.1 
Template DNA (~ 1 ng µl-

1) 1 1 1 
a Multiplex PCR reactions were conducted using three panels of primers based on a protocol developed by the 
Eucablight Network (www.eucablight.org) as described in the Protocol section March 2008. Reagents used from 
Bioline. 
b HPLC = high-performance liquid chromatography. 
c Forward and reverse primers.  

2.4.7 Mefenoxam sensitivity assay 

Mefenoxam sensitivity of isolates was assessed as described previously by Therrien et al. 

(1993), except that mefenoxam was used in place of metalaxyl. Isolates were grown on V8 

agar or pea agar amended with Ridomil Gold EC, of which 49% was the active ingredient 
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(mefenoxam) (Syngenta, Greensboro, NC), such that the final concentrations of the active 

ingredient were 0, 5, or 100 ug ml-1. Mycelial plugs (8 mm diameter) were obtained from 

actively growing cultures, transferred to the test plates and incubated for approximately 10 to 

12 days, or until growth on the control mefenoxam plate (0 ug ml-1) was approximately 80% 

of the diameter of the petri plate. Assessment of mefenoxam sensitivity was determined on the 

basis of radial growth of cultures grown on plates amended with mefenoxam (5 or 100 µg ml-

1) compared to non-amended controls. Growth on mefenoxam-amended plates, 5 and 100 µg 

ml-1, was represented as a proportion of the growth on the non-amended control plates.  

 Effects of mefenoxam concentration, lineage and year of collection on colony growth 

were analyzed using JMP 9.0.2 (SAS Institute, Cary, NC, USA). Standard least square 

analysis was used, where replications were considered random terms, while mefenoxam 

concentration, lineage and year of collection were considered as fixed effects. To determine if 

means of colony growth on mefenoxam amended plates, for each lineage, differed between 

years, a Tukey-Kramer HSD test with α = 0.05 was performed.  

2.4.8 Inoculum production 

A sporangial suspension was used for inoculation of potato and tomato leaflets. Sporangia 

were washed from sporulating lesions on tomato or potato leaflets, which had been 

maintained in water-agar moist-chambers at 15°C with a 16-h light period for 8 days prior to 

inoculation. The sporangial suspension was adjusted to 4,000 sporangia ml-1 using a 

haemocytometer and maintained at 4°C for 2 h before being applied, by pipetting 20 µl on a 

leaflet. Leaflets were obtained from four to five weeks old potato cultivar ‘Yukon Gold’ and 

tomato cultivar ‘Rutgers’ plants grown under greenhouse conditions.   
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2.4.9 Potato-tomato pathogenicity 

In order to determine differences in host preference for isolates, each isolate was inoculated 

onto both potato Yukon Gold and tomato Rutgers leaflets. Eight US-8, thirty-four US-22, 

seven US-23 and nine US-24 isolates were used for this study (Supplementary Table 2.1). 

Plants were grown in the greenhouse (ca 25°C daytime and 20°C nighttime) and when four to 

five weeks old, recently matured leaflets were harvested. Inoculations were carried out in 150 

mm Petri plates containing 75 ml of water agar (1.5%) in the smaller half – which served as 

the lid (top).  Leaflets were placed (abaxial side up) on the base of the moist chamber. Each 

moist chamber contained five potato or five tomato leaflets, abaxial side up.  All five leaflets 

were inoculated with 20 µL of a sporangial suspension (described above) of the same isolate, 

deposited on one side of the main vein of the leaflet.  After the leaflets were inoculated, the 

petri plate was sealed with parafilm and incubated at 15°C with a 16-h light period. The 

experiment was conducted at least twice for each isolate.  

 Lesion size and number of sporangia per lesion were measured at six days after 

inoculation. Lesion areas were estimated by taking two perpendicular measurements (length 

and width) starting from the widest diameter, using a ruler. Subsequently, the number of 

sporangia produced on each lesion was determined. Individual lesions were excised and 

placed into 14-ml disposable polypropylene culture tubes with 3 ml of preservative solution 

(0.04 M copper sulfate, 0.2 M sodium acetate, acetic acid, pH 5.4) (Spielman et al. 1991). The 

tubes were then vortexed for 10 seconds to dislodge and suspend sporangia, and aliquots 

counted with a haemocytometer. Haemocytometer counts were repeated at least twice. The 

total number of sporangia per lesion was then calculated by averaging all the independent 

counts. The assay was conducted at a standardized temperature of 15°C. Lesion area and 
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sporulation was compared between potato and tomato for each clonal lineage separately. The 

statistical significance of differences in mean lesion size and sporangia production between 

hosts, for each clonal lineage, was determined using a Student’s t test with α = 0.05.  

2.4.10 Temperature effect on sporangium germination 

The effect of temperature on sporangium germination was assessed. Three 400-µL droplets of 

1.5% water agar were dispensed into three independent circular silicone-molds placed on top 

of a glass microscope slide. A 20 µl droplet of a suspension consisting of 4,000 sporangia ml-1 

was deposited on each water agar droplet. Three isolates for each lineage (US-8, US-22, US-

23 and US-24) were used for this study (Supplementary Table 2.1). Inoculated slides were 

placed in incubators at 10, 15, 20, and 25°C with no light. After 16 h, total germination 

(direct, indirect and no-germination) was determined by microscopic observation of each 

water agar droplet. For each isolate three replicates were conducted at each temperature, and 

the experiment was repeated at least twice. In a second experiment, germination was assessed 

at 5 and 10ºC.   

Effects of temperature and lineage on germination (indirect or direct) were analyzed 

using JMP 9.0.2 (SAS Institute, Cary, NC, USA). Standard least square analysis was used, 

where replications were considered random terms, while temperature and lineage were 

considered as fixed effects. To determine if mean germination differed between temperatures, 

for each lineage, a Tukey-Kramer HSD test with α = 0.05 was performed. 

2.4.11 Effect of temperature on the rate of sporangium germination 

Sporangia were observed at 30, 90, 120, 240, and 960 minutes after incubation at 15 and 4°C. 

Inoculation was performed as described above. For the 15°C assay, a single slide with three 
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independent repetitions (three circular water agar droplets that had each been inoculated with 

20 µl of the same sporangial suspension) was assessed for the five time points studied, for 

each isolate. Total germination (direct, indirect and no-germination) was counted at the first 

30-minute assessment and thereafter only indirect germination (sporangia that had released 

their zoospores) was recorded. This was possible since slides could be incubated and assessed 

at 15°C for the duration of the assay. For the 4°C assay, independent measurements of total 

germination were carried out for each respective time point. That is, a different slide with 

three circular water agar droplets that had each been inoculated with 20 µl of the same 

sporangial suspension was assessed for each of the five time points studied. This was due to 

the difficulty of maintaining slides at 4°C while assessing germination microscopically. Three 

isolates were included for each of the four clonal lineages studied (US-8, US-22, US-23, and 

US-24) (Supplementary Table 2.1). Percentage of total germination that was indirect was 

calculated for each of the time points considered. The experiment was conducted at least 

twice for each isolate.  

Effects of time and lineage on indirect germination were analyzed using JMP 9.0.2 

(SAS Institute, Cary, NC, USA). A standard least square analysis was used, where 

replications were considered random terms, while time and lineage were considered as fixed 

effects. To determine if mean germination, within a lineage, differed between time periods 

studied, a Tukey-Kramer HSD test with α = 0.05 was performed. To study differences in the 

rate at which indirect germination occurred over time (from 0 to 240 min after exposure of 

sporangia to 4 or 15ºC) data were transformed to achieve linearity. Data were adequately 

described by a negative exponential model (Madden et al. 2007) for all lineages studied. 

Slopes representing the rate of indirect germination over time were compared using a t test 
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with α = 0.05. 

2.5 Results 

2.5.1 Isolates and isolation 

In 2009, 2010 and 2011, approximately 350 samples were received and processed. In 2009 

approximately 71 samples were received from 6 states (FL, ME, NJ, NY, TN, and VA) within 

the United States and 57 of these were isolated into culture and characterized. In 2010, 

approximately 81 samples were received from 14 states within the United States (CT, HI, ID, 

KY, LA, MA, MD, ME, MT, NH, NY, PA, WA, and WI) and one province of Canada (ON). 

Among these, 69 were successfully isolated into culture and characterized. In 2011 

approximately 204 samples were received from 17 states within the United States (CA, CT, 

DE, FL, ID, ME, MN, ND, NH, NY, OH, OR, PA, RI, VA, WA, and WI) and one province of 

Canada (ON). Among these, 116 were successfully isolated and characterized. Isolation was 

successful on both pea and rye B agar, with rapid growth observed on pea agar.   

Clonal lineages were defined according to mating type, mitochondrial haplotype, Gpi 

genotype, RG-57 DNA fingerprint profile (Table 2.3), and microsatellite genotype (Table 

2.4). Clonal lineages US-8 and US-22 were A2 mating type, whereas clonal lineages US-23 

and US-24 were A1 mating type. All four clonal lineages were determined to have the Ia 

mitochondrial haplotype. Each lineage was described by a unique genotype at the locus for 

glucose-6-phosphate isomerase. US-8 was 100/111/122; US-22 was 100/122; US-23 was 

100/100 and US-24 was 100/111 (Table 2.3). Each lineage showed a unique RFLP fingerprint 

as determined by RG57, with 10 bands being polymorphic for these four lineages (Table 2.3). 

Alleles at eleven microsatellite loci successfully distinguished the four clonal lineages studied 
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(Table 2.4). Furthermore, for the isolates studied, two variants were identified within US-22 

based on microsatellite results. These variants differed from the typical US-22 at markers 

Pi89 (Var1 - eight isolates) and D13 (Var2 - one isolate). Similarly one variant was identified 

within US-24 at marker Pi02 (Table 2.4).   

 
Table 2.3 Summary of multilocus genotypes of four Phytophthora infestans lineages in the 

United States and Canadaa. 

 
a MT = mating type, Hap = mitochondrial haplotype, and GPI = glucose-g-phosphate isomerase. 
 

 
Table 2.4 Observed allele sizes for four clonal lineages of Phytophthora infestans amplified 

with 11 microsatellite markers.  

 
a SSR = simple-sequence repeat. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 24a 25

US-8 A2 la 100/111/122 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1
US-22 A2 la 100/122 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 1
US-23 A1 la 100/100 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1
US-24 A1 la 100/111 1 0 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1

Clonal 
lineage

Mating 
type GPI RG57Mitochondrial 

haplotype

SSR markera

Pi02 … … … … 162 … 162
Pi02 162 162 162 162 164 162 164
Pi02 164 164 164 164 166 164 166
Pi4B 213 213 213 213 213 217 217
Pi4B 226 213 213 213 217 226 226
Pi89 179 177 177 177 179 177 177
Pi89 179 179 181 179 179 179 179
Pi04 166 166 166 166 170 166 166
Pi04 170 170 170 170 170 170 170
Pi56 255 255 255 255 253 255 255
Pi56 255 255 255 255 255 255 255
Pi70 190 190 190 190 190 190 190
Pi70 190 193 193 193 190 193 193
PiG11 155 131 131 131 140 155 155
PiG11 155 155 155 155 155 155 155
Pi63 279 279 279 279 270 279 279
Pi63 279 279 279 279 279 279 279
D13 106 Null Null 147 134 106 106
D13 110 Null Null 147 134 110 110
Pi16 173 177 177 177 177 173 173
Pi16 177 177 177 177 177 177 177
Pi33 203 203 203 203 203 203 203
Pi33 203 206 206 206 206 206 206

US-24 var 1 
(US110159)

Size (bp) for each lineage (isolate identity)
US-8 

(US100028)
US-22 

(US090042)
US-22 var1 
(US100001)

US-22 var2 
(US110002)

US-23 
(BL2009P4)

US-24         
(ND822P)
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The predominant clonal lineages sampled were US-8, US-22, US-23, and US-24. 

Although US-8 is a well-characterized lineage it was included in the study for comparative 

purposes. In 2009, only US-8 and US-22 were identified, with a total of 11 US-8 and 43 US-

22 isolates. In 2010 and 2011 a total of 11 and 3 US-8, 33 and 25 US-22, 6 and 61 US-23 and 

9 and 50 US-24 isolates were collected, for each year respectively. The summary data for host 

of origin for all three years for each clonal lineage were as follows (P=potato; T=tomato); for 

US-8, 25 (P) and 0 (T); for US-22, 15 (P) and 86 (T); for US-23, 13 (P) and 54 (T); and for 

US-24, 57 (P) and 2 (T).   

2.5.2 Sensitivity to mefenoxam 

Sensitivity to mefenoxam was assessed for 206 isolates (Supplementary Table 2.1). In 

general, US-8 was resistant, US-22 and US-23 were sensitive, and US-24 was generally 

sensitive (Figure 2.1). Eight, ninety-seven, ninety-four and seventy-five percent of the isolates 

belonging to clonal lineages US-8, -22, -23 and -24 respectively, grew less than forty percent 

relative to the control (0 µg ml-1) on mefenoxam amended plates (5 and 100 µg ml-1). 

Differences in mefenoxam sensitivity between years, for each clonal lineage, were analyzed 

using a standard least square model. For US-8, US-22 and US-23 mefenoxam sensitivity did 

not vary significantly among the years studied (US-8, P = 0.36; US-22, P = 0.36 and US-23, 

P = 0.39) (Figure 2.2). However, for US-24, isolates collected in 2011 were less sensitive to 

mefenoxam than those collected in 2010 (P = 0.005) (Figure 2.2).  
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Figure 2.1 Response of Phytophthora infestans isolates to mefenoxam. Relative growth (as 

percentage of control) at 5 µg ml-1 (left) and 100 µg ml-1 (right) relative to control (0 µg ml-1). 

Sample sizes for each lineage are US-8, n = 24; US-22, n = 75; US-23, n = 50; US-24, n = 57, 

for a total sample size of 206 isolates. US-8 has been described as resistant given that 92% of 

the isolates grew more than 40% relative to the control (0 µg ml-1) on mefenoxam amended 

plates (5 and 100 µg ml-1), US-22 and US-23 have been described as sensitive given that 97 

and 94% of the isolates respectively grew less than 40% relative to the control, and US-24 has 

been described as generally sensitive given that 75% of the isolates grew less than 40% 

relative to the control.  
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Figure 2.2 Sensitivity to mefenoxam of four Phytophthora infestans clonal lineages in three 

consecutive years. Data represent the relative (radial) growth of isolates on medium 

containing mefenoxam at 5 and 100 µg ml-1 relative to growth with no mefenoxam. The 

number of isolates in the clonal lineages for 2009, 2010 and 2011 were respectively: US-8, n 

= 10, 11, and 3; US-22, n = 25, 32, and 18; US-23, n = 0, 6, and 44; US-24, n = 0, 9, and 48, 

respectively, for a total sample size of 206 isolates. Error bars represent one standard error 

from the mean.  

 

Due to the diversity in microsatellite genotype for the US-22 lineage (one dominant 

genotype and two variants), we tested whether there was diversity in mefenoxam sensitivity 

associated with either variant. US-22 variants at Pi89 (Var1 – eight isolates) were only 

collected in 2010 whereas diversity at marker D13 (Var2 – one isolate) was only found in 

2011.  US-22 Var1 did not differ significantly in its sensitivity to mefenoxam from the typical 

US-22 isolates collected and analyzed from 2010 (P = 0.75). Similarly, Var2, which was 
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represented by a single isolate, did not differ significantly in its sensitivity to mefenoxam 

relative to the typical US-22 isolates analyzed from 2011 (P = 0.54).  

2.5.3 Potato-tomato pathogenicity 

The relative pathogenicity of the four clonal lineages on potato and tomato was assessed by 

measuring lesion size and sporulation at six days post inoculation (dpi). Lesion area ranged 

from 1.4 cm2 (US-24, on tomato) to 7.9 cm2 (US-8, potato) (Figure 2.3). US-8 and US-24 

produced larger lesions on potato than on tomato (P < 0.0001). While both US-22 and US-23 

had slightly larger mean lesion areas on tomato in comparison to potato, these differences 

were not significant (P = 0.17 and P = 0.25, respectively). For each of the clonal lineages 

studied, sporulation differed significantly between hosts (P < 0.0001) (Figure 2.3). Mean 

sporulation ranged from 341 sporangia ml-1 (US-24 on tomato) to 16,308 sporangia ml-1 (US-

23 on tomato). US-8 and US-24 sporulated more profusely on potato than on tomato, with a 

mean sporulation of 7,244 and 2,950 sporangia ml-1 on potato leaflets, respectively, versus 

1,158 and 341 sporangia ml-1 on tomato, respectively. In contrast, lineages US-22 and US-23 

sporulated more profusely on tomato leaflets with a mean sporulation of 2,598 and 5,476 

sporangia ml-1 on potato leaflets, respectively, versus 11,669 and 16,308 sporangia ml-1 on 

tomato, respectively. When comparing among lineages, we found that US-22 and US-23 are 

pathogenic to both potato and tomato (Figure 2.3). However, it seems that US-23 might be 

even more aggressive than US-22 on both potatoes and tomatoes. US-24 is pathogenic mainly 

on potatoes, and not at all aggressive to tomato. These pathogenicity characteristics are 

similar to those of US-8 (Figure 2.3). 

To determine whether Var1 isolates (eight isolates total) within the US-22 lineage 
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differed in host preference when compared to the typical US-22 isolates, these were analyzed 

as separate groups. For lesion area, no significant interaction was observed between the two 

US-22 genotypes and hosts (P = 0.47). For both genotypes, there may have been a trend 

toward larger lesion area on tomato than potato (P = 0.09). However, Var1 isolates produced 

smaller lesions on both potato and tomato than did the predominant US-22 isolates (P = 0.04). 

For Var1 isolates lesion areas on potato and tomato were 4.98 and 5.40 cm2, respectively, and 

for typical US-22 isolates lesion areas on potato and tomato were 5.55 and 6.58 cm2, 

respectively. For mean sporulation, the interaction between pathogen genotype (US-22 Var1 

and the typical US-22 genotype) and host was significant (P = 0.01). This was due to reduced 

sporulation of Var1 on tomato compared to the typical US-22 (P = 0.002). Sporulation on 

potato and tomato was 2,577 and 8,234 sporangia ml-1 respectively, for Var1, and 2,602 and 

12,345 sporangia ml-1 respectively, for the typical US-22 isolates.  
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Figure 2.3 Pathogenicity on potato and tomato for isolates within four clonal lineages of 

Phytophthora infestans. A, Lesion areas produced on potato and tomato. B, Sporangia 

produced per infection site on potato and tomato. Clonal lineages US-8, US-22, US-23 and 

US-24 include 8, 34, 7 and 9 isolates, respectively. Bars represent mean lesion area for A and 

mean sporulation (per infection site) for B for all isolates within each clonal lineage. Error 

bars represent one standard error from the mean. The asterisk (*) indicates a significant 

difference within a clonal lineage for either sporulation or lesion size for potato versus 

tomato. Lesion areas and sporulation were measured at 6 days post inoculation.  

2.5.4 Temperature effect on total sporangial germination 

The influence of temperature on sporangial germination was tested. In one experiment, 

germination was evaluated after 16 h at 10, 15, 20 and 25ºC (Figure 2.4) and in a second 

experiment germination was assessed after 16 h at 5 and 10ºC. Indirect germination was 

highest at 5 and 10ºC, with germination decreasing as temperature increased to 20ºC. There 

were no significant differences in germination between temperatures 20 and 25ºC. Direct 

germination was not commonly observed, but when it occurred it was mostly observed at 

higher temperatures (20 and 25ºC) (Figure 2.4). In these two experiments, US-8 and US-23 

showed greater direct germination in comparison with US-22 and US-24 (P < 0.01). The 

isolates in US-22 Var1 did not differ significantly from the typical US-22 genotype in either 

indirect or direct germination at any temperature. Differences in indirect germination between 

US-8 and US-24 at 10ºC were significant (P < 0.0262). Overall, US-8 displayed the lowest 

indirect germination at 10ºC.  
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Figure 2.4 Proportion of sporangia that had germinated within 16 h at 10, 15, 20 and 25ºC. 

Data points indicate the mean percentage of germination of three isolates in three independent 

experiments. Error bars represent one standard error from the mean.   

2.5.5 Effect of temperature on the rate of sporangial germination  

The rate at which sporangia released zoospores was affected strongly by temperature and 

there were some large differences among clonal lineages (Figure 2.5). Germination was much 

faster at 4°C than at 15°C. For example, within 90 min more than 30% of the isolates had 

released zoospores at 4°C, whereas at 15°C less than 20% of the isolates had released their 

zoospores. Sporangia of US-24 released zoospores more rapidly than did sporangia of the 

other lineages at either 4 or 15°C (Figure 2.5).  For example, within 30 min at 4°C, more than 

75% of the US-24 sporangia had liberated zoospores, whereas zoospore release from the other 

lineages ranged from about 20% to about 35% (Figure 2.5A). At 15°C, zoospore release was 

slower for all lineages, but still US-24 released zoospores from more sporangia than did the 

other lineages (P < 0.05). After 30 min at 15°C, 13% of the US-24 sporangia had released 
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zoospores but only 4% of the US-23 sporangia had released zoospores (Figure 2.5B).      

 

Figure 2.5 Proportion of sporangia that had germinated at 30, 90, 120, 240 and 960 min at A, 

4ºC or B, 15ºC. Data points are the means obtained for three isolates in three independent 

experiments. Error bars represent one standard error from the mean.  

2.6 Discussion 

Several important phenotypic characteristics of the four dominant clonal lineages of P. 

infestans identified in samples from the 2009, 2010 and 2011 epidemics in the United States 

were determined. These lineages were initially defined on the basis of mating type, 

mitochondrial haplotype, Gpi genotype, and RG-57 DNA fingerprint profile, but subsequently 

B.

A.



 

 - 62 -  

refined by the addition of microsatellite markers. The microsatellite markers identified some 

genotypic diversity within some clonal lineages.   

The ability to categorize individuals into clonal lineages has been helpful for the study 

of migration patterns and population biology of P. infestans (Goodwin S. B. et al. 1998). 

Once the phenotype is known, it is possible to make lineage-specific management 

recommendations. This study reports phenotypes for sensitivity to mefenoxam, host 

preference and germination at different temperatures for the recently important clonal lineages 

in the United States (US-22, US-23 and US-24).   

Sensitivity to mefenoxam was tested in an in vitro assay comparing three different 

concentrations of the active ingredient (0, 5 and 100 µg ml-1). The recently described clonal 

lineages (US-22, US-23 and US-24) were generally sensitive to mefenoxam (Figure 2.1). US-

8, which has been dominant on potatoes in the United States since the mid-1990s (Fry and 

Goodwin 1997), and is now being displaced by novel clonal lineages, has maintained stable 

resistance to mefenoxam. Notably, US-24 showed an increase in the mean colony growth, on 

mefenoxam-amended plates, for isolates from 2011 in comparison with isolates from 2010, 

indicating a potential decrease in sensitivity to mefenoxam. As far as we know, there has not 

been an increased use of mefenoxam, so we do not know of a factor to explain the decreased 

sensitivity. This decrease in sensitivity might be the result of a new better-fit subpopulation of 

the pathogen, although a deeper analysis must be performed to confirm this hypothesis. 

Knowledge regarding the sensitivity of the lineages to mefenoxam is important in terms of 

selecting the most appropriate fungicide.   

Host preference was studied on potato (Yukon Gold) and tomato (Rutgers). Clonal 

lineages US-8 and US-24 showed a preference for potato as a host and were not at all 
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aggressive on tomato. In contrast, US-22 and US-23, showed a preference for tomato 

although they were also pathogenic on potato. The original host, from which these samples 

were collected, reflected the same findings. In the years studied, 100% of US-8, 15% of US-

22, 19% of US-23 and 97% of US-24 isolates were collected from potato. Differences 

observed among clonal lineages on Rutgers and Yukon gold are consistent with the fact that 

US24 and US8 were typically reported on potatoes and not on tomatoes, whereas US22 and 

US23 have been typically reported on both potatoes and tomatoes. 

The lineage-host combination determined the type of growth observed. US-8 and US-

24 caused large necrotic lesions and profuse sporulation on potato, while limited necrosis and 

very little sporulation was observed on tomato. Clonal lineages US-22 and US-23 caused 

necrotic lesions on potato and profuse biotrophic growth on tomato (Figure 2.6). This 

biotrophic growth might have resulted in an underestimation of lesion area given that it was 

difficult to define the boundaries of the lesions.  

 

Figure 2.6 Biotrophic growth was observed on tomato leaflets six days after inoculation and 

incubation at 15°C. A, Growth of an isolate of Phytophthora infestans belonging to clonal 

lineage US-22 on tomato (left) and on potato (right). B, Growth of an isolate of P. infestans 

belonging clonal lineage US-23 on the adaxial side of a tomato leaflet (left) and on the abaxial 

side of the same leaflet (right). 

A. B. 
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Eight members of the US-22 lineage (Var1) differed from others by one allele 

(Supplementary Table 2.1). This variant is apparently less fit on tomato. It was interesting to 

note that this SSR variation is likely to be a neutral change that allows tracking of a sub-clone. 

It is intriguing that the US-22 variant2 changes from null to 147bp at the D13 locus. The 

chance of a back mutation from null to amplification seems slim. However, the SSR analysis 

was performed at least twice for the variant individuals and is unlikely to be an error. We 

presently do not have a satisfactory model to explain this situation. 

It has been known for nearly a century that late blight is highly dependent on 

environmental conditions (Melhus 1915, Sato 1994). When sporangia are deposited on a 

surface and then exposed to free moisture and cool temperatures, they may germinate 

indirectly by releasing between eight to twelve bi-flagellated zoospores, each capable of 

initiating an infection (Erwin and Ribeiro 1996). The effect of temperature on sporangial 

germination has been extensively studied during the early 1900s by Melhus (1915) and 

Crosier (1934) and in the late 1900s by Mizubuti and Fry (1998). Both Crosier (1934) and 

Melhus (1915), found that the optimal temperature for indirect germination was 

approximately 15ºC. Mizibuti and Fry (1998) found similar results for isolates within clonal 

lineage US-1, suggesting that the isolates studied by Melhus and Crosier at the beginning of 

the 1900s  may have belonged to the US-1 clonal lineage. In contrast to US-1, Mizubuti and 

Fry (1998) found that isolates belonging to US-7 and US-8 lineages, germinated indirectly 

better at lower temperatures (approximately 10ºC). These reports are in accordance with the 

results of the present study, where isolates belonging to clonal lineages US-8, US-22, US-23 

and US-24 released zoospores better at 5 and 10ºC than they did at higher temperatures. 

Similar to these previous studies, indirect germination at 20ºC was reduced to less than half 
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the maximum germination recorded. Direct germination was not commonly observed, but 

when it occurred it was mostly observed at higher temperatures (20 and 25ºC). These results 

are consistent with those reported by Melhus (1915) and Crosier (1934). 

Indirect germination rate was also influenced by temperature. Lower temperatures 

(4ºC in comparison to 15ºC) resulted in increased indirect germination rate and increased total 

germination. Differences in rate of indirect germination between clonal lineages were 

observed, with the most striking difference observed for clonal lineage US-24, where indirect 

germination was dramatically faster than that of any of the other three clonal lineages studied. 

As suggested by Mizubuti and Fry (1998), rapid germination might enable the pathogen to 

overcome environmental limitations. The release of zoospores at lower temperatures could 

play an important role in disease development under conditions where low temperatures and 

short wet periods are frequent. Among the clonal lineages studied, US-24 might possess a 

competitive advantage under conditions of short, cool infectious periods. The differences in 

germination rate and response to temperature will be incorporated in the late blight decision 

support model.  

If sexual reproduction continues to remain limited in the United States and Canada, 

populations of the pathogen in these regions will remain relatively simple and perhaps stable. 

An understanding of phenotypic traits associated with unique clonal lineages of P. infestans, 

has direct implications for potato and tomato late blight management. With the availability of 

rapid genotype analyses and rapid communication, in-season disease management may be 

adjusted based on the results of rapid genotypic analyses. 



 

 - 66 -  

2.7 Acknowledgements 

This work was supported by the USDA National Institute of Food and Agriculture program 

on global food security, by USDA RIPM, and by the College of Agriculture and Life Sciences 

at Cornell University.  

2.8 References 

Caten CE, Jinks JL. 1968. Spontaneous variability of single isolates of Phytophthora 

infestans. I. Cultural variation. Canadian Journal of Bototany 46: 329-348. 

Crosier W. 1934. Studies in the biology of Phytophthora infestans (Mont.) De Bary. Cornell 

University Agricultural Experiment Station, Ithaca, NY. (Memoir 155). 

Erwin DC, Ribeiro OK. 1996. Phytophthora Diseases Worldwide. American 

Phytopathological Society Press, St. Paul, MN. 

Fry WE, Goodwin SB. 1997. Re-emergence of potato and tomato late blight in the United 

States and Canada. Plant Disease 81: 1349-1357. 

Goodwin SB, Cohen BA, Fry WE. 1994. Panglobal distribution of a single clonal lineage of 

the Irish potato famine fungus. Proceedings of the National Academy of Sciences USA 

91: 11591-11595. 

Goodwin SB, Sujkowski LJ, Fry WE. 1995a. Rapid evolution of pathogenicity within clonal 

lineages of potato late blight disease fungus. Phytopathology 85: 669-676. 

Goodwin SB, Schneider RE, Fry WE. 1995b. Cellulose‑acetate electrophoresis provides rapid 

identification of allozyme genotypes of Phytophthora infestans. Plant Disease 79: 1181-

1185. 

Goodwin SB, Sujkowski LS, Fry WE. 1996. Widespread distribution and probable origin of 

resistance to metalaxyl in clonal genotypes of Phytophthora infestans in the United States 

and Western Canada. Phytopathology 86: 793-799. 



 

 - 67 -  

Goodwin SB, Smart CD, Sandrock RW, Deahl KL, Punja ZK, Fry WE. 1998. Genetic change 

within populations of Phytophthora infestans in the United States and Canada: during 

1994 to 1996: Role of migration and recombination. Phytopathology 88: 939-949. 

Goodwin SBA, Drenth A, Fry WE. 1992. Cloning and genetic analyses of two hghly 

polymorphic; moderately repetitive nuclear DNAs from Phytophthora infestans. Current 

Genetics 22: 107-115. 

Griffith GW, Shaw DS. 1998. Polymorphisms in Phytophthora infestans: four mitochondrial 

haplotypes are detected after PCR amplification of DNA from pure cultures or from host 

lesions. Applied and Environmental Microbiology 64: 4007-4014. 

Hu C-H, Perez F, Donahoo R, McLeod A, Myers K, Ivors K, Secor G, Roberts P, Deahl K, 

Fry WE, Ristaino JB. 2012. Recent genotypes of Phytophthora infestans in eastern USA 

reveal clonal populations and reappearance of mefenoxam sensitivity. Plant Disease 96: 

1323-1330. 

Jaime-Garcia R, Trinidad-Correa R, Felix-Gastelum R, Orum TV, Wasmann CC, Nelson MR. 

2000. Temporal and spatial patterns of genetic structure of Phytophthora infestans from 

tomato and potato in the Del Fuerte Valley. Phytopathology 90: 1188-1195. 

Lambert DH, Currier AI. 1997. Differences in tuber rot development for North American 

clones of Phytophthora infestans. American  Potato Journal 74: 39-43. 

Lees AK, Wattier R, Shaw DS, Sullivan L, Williams NA, Cooke DEL. 2006. Novel 

microsatellite markers for the analysis of Phytophthora infestans populations. Plant 

Pathology 55: 311-319.  

Legard DE, Lee TY, Fry WE. 1995. Pathogenic specialization in Phytophthora infestans: 

aggressiveness on tomato. Phytopathology 85: 1362-1367. 

Madden LV, Hughes G, van den Bosch F. 2007. The study of plant disease epidemics. 

American Phytopathological Society, St. Paul, MN. 



 

 - 68 -  

Melhus IE. 1915. Germination and infection with the fungus of the late blight of potato 

(Phytophthora infestans). Agricultural Experiment Station of the University of Wisconsin. 

Research Bulletin 37: 1-64. 

Miller JS, Johnson DA, Hamm PB. 1998. Aggressiveness of isolates of Phytophthora 

infestans from the Columbia Basin of Washington and Oregon. Phytopathology 88: 190-

197. 

Mizubuti ESG, Fry WE. 1998. Temperature effects on developmental stages of isolates of 

three clonal lineages of Phytophthora infestans. Phytopathology 88: 837-843. 

Myers K, Small I, Jensen S, Zuluaga P, Guha Roy S, Fry W. 2010. Characterization of 

Phytophthora infestans isolates from potato/tomato in 2010. Northeastern Division 

Meeting of the American Phytopathological Society, October 27-29. 

Sato N. 1994. Effect of sporulating temperature on the limit temperature in indirect 

germination of the sporangia of Phytophthora infestans. Annals of the Phytopathological 

Society of Japan 60: 60-65. 

Small IM, Myers K, Danies G, Guha Roy S, Bekoscke K, Fry W. 2012. Characterization of 

recent clonal lineages of Phytophthora infestans in the United States using microsatellite 

markers. Annual Meeting of the American Phytopathological Society, August 4-8. 

Spielman lJ, Drenth A, Davidse LC, Sujkowski LJ, Gu W, Tooley PW, Fry WE. 1991. A 

second world-wide migration and population displacement of Phytophthora infestans? 

Plant Pathology 40: 422-430. 

Stevens NE. 1933. The dark ages in plant pathology in America: 1830 – 1870. Journal of the 

Washington Academy of Sciences 23: 435-446. 

Therrien CD, Tooley PW, Spielman lJ, Fry WE, Ritch DL, Shelly SE. 1993. Nuclear DNA 

content, allozyme phenotypes and  metalaxyl sensitivity of Phytophthora infestans from 

Japan. Mycological Research 97: 945-950. 

 



 

 - 69 -  

2.9 Supplemental Material 
 
Supplementary Table 2.1 Phytophthora infestans isolates used in this study.  
 

Clonal 
lineage Isolate 

Location  
County/State abbreviation 

or Country 

Original 
host Year Collector 

US-8 US090010 M Genesee/NY Potato 2009 Don Sweet 1 

 US090015 M Franklin/NY Potato 2009 CPDDC2 

 US090016 M Steuben/NY Potato 2009 CPDDC2 

 US090024 M Wyoming/NY Potato 2009 James McCormick3 

 US090025 M Wyoming/NY Potato 2009 James McCormick3 

 US090027 M Wyoming/NY Potato 2009 James McCormick3 

 US090028 M Wyoming/NY Potato 2009 James McCormick3 

 US090034 M Wayne/NY Potato 2009 Amara Camp4 

 US090046 M Tompkins/NY Potato 2009 William E. Fry4 

 US090047 M Tompkins/NY Potato 2009 William E. Fry4 

 US100021 MP Erie/PA Potato 2010 Andrew Muza5 

 US100024 MPG Shelburne/ON Canada Potato 2010 Eugenia Banks6 

 US100025 MP Shelburne/ON Canada Potato 2010 Eugenia Banks6 

 US100026 M Shelburne/ON Canada Potato 2010 Eugenia Banks6 

 US100027 MPG Shelburne/ON Canada Potato 2010 Eugenia Banks6 

 US100028 MP Shelburne/ON Canada Potato 2010 Eugenia Banks6 

 US100031 MPG Shelburne/ON Canada Potato 2010 Eugenia Banks6 

 US100036 M Yates/NY Potato 2010 Carol MacNeil4 

 US100037 MP Yates/NY Potato 2010 Carol MacNeil4 

 US100048 MP Wayne/NY Potato 2010 Carol MacNeil4 

 US100068 M Bonners Ferry/ID Potato 2010 Niklaus Grunwald7 

 US110063 M Erie/PA Potato 2011 Andrew Muza5 

 US110097 M Bonners Ferry/ID Potato 2011 Niklaus Grunwald7 

 US110098 M Bonners Ferry/ID Potato 2011 Niklaus Grunwald7 

      
US-22 US080004 P Suffolk/NY  Tomato 2008 Margaret McGrath4 

 
US090002 M Tompkins/NY Tomato 2009 Keith Perry4 

 
US090003 M Chenango/NY Tomato 2009 Steve Markarian8 

 
US090004 M Suffolk/NY  Tomato 2009 Margaret McGrath4 

 
US090005 M Suffolk/NY  Tomato 2009 Margaret McGrath4 

 
US090007 M Sullivan/NY Tomato 2009 Teresa Rusinek9 

 
US090009 M Tompkins/NY Tomato 2009 CPDDC2 

 
US090011 M Onondaga/NY Tomato 2009 CPDDC2 

 
US090012 P Westchester/NY Tomato 2009 CPDDC2 

 
US090017 MP Essex/NY Tomato 2009 CPDDC2 

 
US090018 M Clinton/NY Tomato 2009 Fran Behan10 

 
US090021 M Tioga/NY Potato 2009 CPDDC2 

 
US090022 M Otsego/NY Tomato 2009 CPDDC2 

 
US090030 M Onondaga/NY Tomato 2009 CPDDC2 

 
US090031 M Orange/NY Tomato 2009 CPDDC2 

 
US090038 PG Tompkins/NY Potato 2009 CPDDC2 
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US090039 M Oneida/NY Potato 2009 CPDDC2 

 
US090040 MP Chautuaqua/NY Tomato 2009 CPDDC2 

 
US090041 M NJ Tomato 2009 CPDDC2 

 
US090042 M Chautuaqua/NY Tomato 2009 CPDDC2 

 
US090043 M* Oswego/NY Tomato 2009 CPDDC2 

 
US090044 P Tompkins/NY Tomato 2009 CPDDC2 

 
US090048 P Lincoln/ME Potato 2009 Rob Johanson11 

 
US090049 M Lincoln/ME Potato 2009 Rob Johanson11 

 
US090050 M Montgomery/VA Tomato 2009 Dave Schmale12 

 
US090051 M Montgomery/VA Tomato 2009 Dave Schmale12 

 
US090053 M Montgomery/VA Potato 2009 Dave Schmale12 

 
US090054 M FL Tomato 2009 Ryan Donahoo13 

 
US090055 M FL Tomato 2009 Ryan Donahoo13 

 
US090056 M TN Tomato 2009 Steve Bost14 

 
US100009 MP Suffolk/NY Potato 2010 Margaret McGrath4 

 
US100012 MP Suffolk/NY Potato 2010 Margaret McGrath4 

 
US100013 M Chenango/NY Tomato 2010 CPDDC2 

 
US100014 MP Livingston/NY Tomato 2010 Christine Smart4 

 
US100015 MP Marquette/WI Potato 2010 Amanda Gevens15 

 
US100017 M Broome/NY Tomato 2010 Linda Dabulewicz16 

 
US100018 MP Hampshire/MA Tomato 2010 Rob Wick17 

 
US100020 MP Clarion/PA Tomato 2010 PSPDC18 

 
US100035 MP Tioga/NY Tomato 2010 Tom Zitter4 

 
US100038 MP Chenango/NY Potato 2010 CPDDC2 

 
US100040 MP  ME Tomato 2010 CPDDC2 

 
US100041 MP Tompkins/NY Tomato 2010 Cliff Kraft4 

 
US100042 MP PA Tomato 2010 PSPDC18 

 
US100043 MP* Suffolk/NY Tomato 2010 Margaret McGrath4 

 
US100044 MP Madison/NY Tomato 2010 CPDDC2 

 
US100045 MP NH Tomato 2010 Cheryl Smith19 

 
US100046 MP PA Tomato 2010 PSPDC18 

 
US100047 MP PA Tomato 2010 PSPDC18 

 
US100049 MP Hillsboro/NH Tomato 2010 Cheryl Smith19 

 
US100050 MP Hartford/CT Tomato 2010 Joan Allen20 

 
US100051 MP Hartford/CT Tomato 2010 Joan Allen20 

 
US100052 MP Hartford County CT Tomato 2010 Joan Allen20 

 
US100053 MPG Rockingham/NH Tomato 2010 Cheryl Smith19 

 
US100056 MP St Lawrence/NY Tomato 2010 CPDDC2 

 
US110023 M* Knox/ME Tomato 2011 Bruce Watt21 

 
US110024 M Lincoln/ME Tomato 2011 Bruce Watt21 

 
US110025 M Waldo/ME Tomato 2011 Bruce Watt21 

 
US110026 M Knox/ME Tomato 2011 Paul Meinersmann22 

 
US110048 M Knox/ME Tomato 2011 Bruce Watt21 

 
US110049 M Waldo/ME Tomato 2011 Bruce Watt21 

 
US110050 M Knox/ME  Tomato 2011 Bruce Watt21 

 
US110051 M* Kennebec/ME Tomato 2011 Bruce Watt21 

 
US110052 M* Knox/ME  Tomato 2011 Bruce Watt21 

 
US110053 M Columbia/NY Tomato 2011 Chuck Bornt4 
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US110055 M Sommerset/ME Tomato 2011 Bruce Watt21 

 
US110056 M Penobscot/ME Tomato 2011 Bruce Watt21 

 
US110070 M Chenango County NY Tomato 2011 Rebecca Hargrave4 

 
US110088 M St. Lawrence County NY Tomato 2011 Paul Hetzler4 

 
US110096 M Penobscot/ME Tomato 2011 Bruce Watt21 

 
US110111 M Montgomery/NY Tomato 2011 Jesse Walter23 

 
US110140 M Madison/NY Tomato 2011 Gina Bisco24 

 
US-22x US100001 MP Lafayette Parish/LA Tomato 2010 Don Ferrin25 

 
US100003 MP Boone/KY Tomato 2010 Kenneth W. Seebold Jr.26 

 
US100004 M Clark/KY Tomato 2010 Kenneth W. Seebold Jr.26 

 
US100005 M Fayette/KY Tomato 2010 Kenneth W. Seebold Jr.26 

 
US100006 MP Boone/KY Tomato 2010 Kenneth W. Seebold Jr.26 

 
US100007 MP Boone/KY Tomato 2010 Kenneth W. Seebold Jr.26 

 
US100010 MP Suffolk/NY Tomato 2010 Margaret McGrath4 

 
US100011 MPG Suffolk/NY Tomato 2010 Margaret McGrath4 

      US-22y US110002 M Waldo/ME Tomato 2011 Bruce Watt21 

US-23 BL2009 P4 PG - - 2009 
 
Ken Deahl27 

 
US100002 M* St. Mary's/MD Tomato 2010 Benjamin Beale28 

 
US100008 MP* New Haven/CT Tomato 2010 Sharon Douglas29 

 
US100016 MPG Waukesha/WI Tomato 2010 Amanda Gevens15 

 
US100054 MP Grafton/NH Tomato 2010 Cheryl Smith19 

 
US100055 MPG Grafton/NH Tomato 2010 Cheryl Smith19 

 
US100064 MP St. Mary's/MD Tomato 2010 Benjamin Beale28 

 
US110001 MP Hartford/CT Tomato 2011 Sharon Douglas29 

 
US110005 M* Suffolk/NY Tomato 2011 Margaret McGrath4 

 
US110006 M* Suffolk/NY Tomato 2011 Margaret McGrath4 

 
US110007 M* Suffolk/NY Tomato 2011 Margaret McGrath4 

 
US110008 M Suffolk/NY Potato 2011 Margaret McGrath4 

 
US110009 M Suffolk/NY Tomato 2011 Margaret McGrath4 

 
US110010 M* Suffolk/NY Tomato 2011 Margaret McGrath4 

 
US110011 M* Suffolk/NY Tomato 2011 Margaret McGrath4 

 
US110012 M Suffolk/NY Potato 2011 Margaret McGrath4 

 
US110013 M* Suffolk/NY Tomato 2011 Margaret McGrath4 

 
US110014 M Suffolk/NY Tomato 2011 Margaret McGrath4 

 
US110015 M Suffolk/NY Tomato 2011 Margaret McGrath4 

 
US110016 M Suffolk/NY Tomato 2011 Margaret McGrath4 

 
US110018 M* Suffolk/NY Tomato 2011 Margaret McGrath4 

 
US110019 M Cambria/PA Potato 2011 Beth Gugino30 

 
US110020 M Greene/VA Potato 2011 Mary Ann Hansen31 

 
US110027 M Northumberland/PA Tomato 2011 Beth Gugino30 

 
US110029 M Washington/RI Tomato 2011 Heather Faubert32 

 
US110041 M Waukesha/WI Tomato 2011 Amanda Gevens15 

 
US110042 M Aroostook/ME Potato 2011 Steve Johnson21 

 
US110043 M* Aroostook/ME Tomato 2011 Steve Johnson21 

 
US110044 M Aroostook/ME Potato 2011 Steve Johnson21 

 
US110045 M* Aroostook/ME Tomato 2011 Steve Johnson21 
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US110047 M Grafton/NH  Tomato 2011 Cheryl Smith19 

 
US110059 M Clinton/NY Tomato 2011 Jolene Wallace4 

 
US110062 M* Aroostook/ME Potato 2011 Steve Johnson21 

 
US110067 M New Haven/CT  Tomato 2011 Sharon Douglas29 

 
US110068 M Hartford/CT Tomato 2011 UCPDC33 

 
US110076 M Snyder/PA Tomato 2011 Beth Gugino30 

 
US110077 M Montour/PA Tomato 2011 Beth Gugino30 

 
US110080 M Cambria/PA Potato 2011 Beth Gugino30 

 
US110081 M Suffolk/NY Tomato 2011 Margaret McGrath4 

 
US110087 M Berks/PA Tomato 2011 Robert E. Leiby34  

 
US110089 M* Aroostook/ME Potato 2011 Steve Johnson21 

 
US110090 M Victoria/NB, Canada Potato 2011 Steve Johnson21 

 
US110091 M* Aroostook/ME Potato 2011 Steve Johnson21 

 
US110095 M* New Haven/CT Tomato 2011 Sharon Douglas29 

 
US110107 M Centre/PA Tomato 2011 Sharon Douglas29 

 
US110108 M Suffolk/NY Tomato 2011 Margaret McGrath4 

 
US110109 M Suffolk/NY Tomato 2011 Margaret McGrath4 

 
US110110 M Suffolk/NY Tomato 2011 Margaret McGrath4 

 
US110136 M Lehigh/PA  Tomato 2011 Robert E. Leiby34 

 
US110137 M Bedford/PA Tomato 2011 Beth Gugino30 

      US-24 ND822i P - - - Ken Deahl27 

 
US100057 MPG MT Potato 2010 Susie Siemsen35 

 
US100058 MP MT Potato 2010 Susie Siemsen35 

 
US100059 MPG MT Potato 2010 Susie Siemsen35 

 
US100060 MP MT Potato 2010 Susie Siemsen35 

 
US100061 MP MT Potato 2010 Susie Siemsen35 

 
US100062 M* MT Potato 2010 Susie Siemsen35 

 
US100063 MPG MT Potato 2010 Susie Siemsen35 

 
US100066 MP MT Tomato 2010 Susie Siemsen35 

 
US100067 MP Othello/WA Potato 2010 Dennis Johnson36 

 
US110003 M ND Potato 2011 Gary Secor37 

 
US110004 M* ND Potato 2011 Gary Secor37 

 
US110021 M* Adams/MN Potato 2011 Gary Secor37 

 
US110022 M Caribou/ME Potato 2011 Steve Johnson21 

 
US110030 M ND Potato 2011 Gary Secor37 

 
US110031 M ND Potato 2011 Gary Secor37 

 
US110032 M ND Potato 2011 Gary Secor37 

 
US110033 M ND Potato 2011 Gary Secor37 

 
US110034 M ND Potato 2011 Gary Secor37 

 
US110035 M ND Potato 2011 Gary Secor37 

 
US110036 M ND Potato 2011 Gary Secor37 

 
US110037 M ND Potato 2011 Gary Secor37 

 
US110038 M ND Potato 2011 Gary Secor37 

 
US110046 M Aroostook/ME Potato 2011 Steve Johnson21 

 
US110099 M WA Potato 2011 Niklaus Grunwald7 

 
US110100 M George/WA Potato 2011 Niklaus Grunwald7 

 
US110101 M WA Potato 2011 Niklaus Grunwald7 
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US110104 M Adams/WA Potato 2011 Niklaus Grunwald7 

 
US110105 M Adams/WA Potato 2011 Niklaus Grunwald7 

 
US110113 M Tompkins/NY Potato 2011 William Fry4 

 
US110115 M Tompkins/NY Potato 2011 William Fry4 

 
US110116 M Tompkins/NY Potato 2011 William Fry4 

 
US110117 M Tompkins/NY Potato 2011 William Fry4 

 
US110118 M Tompkins/NY Potato 2011 William Fry4 

 
US110119 M Tompkins/NY Potato 2011 William Fry4 

 
US110120 M Tompkins/NY Potato 2011 William Fry4 

 
US110121 M Tompkins/NY Potato 2011 William Fry4 

 
US110122 M Tompkins/NY Potato 2011 William Fry4 

 
US110126 M Tompkins/NY Potato 2011 William Fry4 

 
US110127 M Tompkins/NY Potato 2011 William Fry4 

 
US110129 M Tompkins/NY Potato 2011 William Fry4 

 
US110130 M Tompkins/NY Potato 2011 William Fry4 

 
US110131 M Tompkins/NY Potato 2011 William Fry4 

 
US110132 M Tompkins/NY Potato 2011 William Fry4 

 
US110133 M Tompkins/NY Potato 2011 William Fry4 

 
US110134 M Tompkins/NY Potato 2011 William Fry4 

 
US110147 M Linn/OR  Tomato 2011 Niklaus Grunwald7 

 
US110149 M ND Potato 2011 Gary Secor37 

 
US110150 M Clay/MN Potato 2011 Gary Secor37 

 
US110151 M Clay/MN Potato 2011 Gary Secor37 

 
US110152 M Yuma/CO Potato 2011 Gary Secor37 

 
US110153 M Walsh/ND Potato 2011 Gary Secor37 

 
US110154 M Walsh/ND Potato 2011 Gary Secor37 

 
US110155 M Walsh/ND Potato 2011 Gary Secor37 

 
US110156 M* Walsh/ND Potato 2011 Gary Secor37 

 
US110157 M Grand Forks/ND Potato 2011 Gary Secor37 

 
US110158 M Grand Forks/ND Potato 2011 Gary Secor37 

      US-24z US110159 M Cass/ND Potato 2011 Gary Secor37 
M Isolates used for the sensitivity to mefenoxam assay 
P Isolates used for the potato-tomato pathogenicity assay 
G Isolates used for the germination assays 
x US-22 Variant at marker Pi89 (Var1)  
y US-22 Variant at marker D13 (Var2)  
z US-24 Variant at marker Pi02  
* Microsatellite data missing. 
1 Scottsville, NY 
2 CPDDC: Cornell Plant Disease Diagnostic Clinic 
3 Bliss, NY 
4 Cornell University 
5 Penn State 
6 Guelph, ON, Canada 
7 USDA-ARS Corvallis, OR 
8 New York State Agriculture and Markets 
9 Kingston, NY 
10 Plattsburgh, NY 
11 Dresden, ME 
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12 Blacksburg, VA 
13 University of Florida 
14 University of Tennessee  
15 University of Wisconsin-Madison 
16 Harpursville, NY 
17 University of Massachusetts Amherst 
18 PSPDC: Penn State Plant Disease Clinic 
19 University of New Hampshire 
20 University of Connecticut 
21 University of Maine 
22 Warren, ME 
23 St. Johnsville, NY 
24 Chittenango, NY 
25 Baton Rouge, LA 
26 University of Kentucky 
27 USDA-ARS Beltsville, MD 
28 University of Maryland 
29 New Haven, CT 
30 Penn State University 
31 Virginia Tech University 
32 University of Rhode Island 
33 UCPDC: University of Connecticut Plant Disease Clinic  
34 Harrisburg, PA 

35Montana State University 
36 Washington State University 
37 North Dakota State University 
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CHAPTER 3* 

An ephemeral sexual population of Phytophthora infestans in the northeastern United 

States and Canada 

3.1 Abstract 

Phytophthora infestans, the causal agent of late blight disease, has been reported in North 

America since the mid-nineteenth century. In the United States the lack of or very limited 

sexual reproduction has resulted in largely clonal populations of P. infestans. In 2010 and 

2011, but not in 2012 or 2013, 20 rare and diverse genotypes of P. infestans were detected in 

a region that centered around central New York State. The ratio of A1 to A2 mating types 

among these genotypes was close to the 50:50 ratio expected for sexual recombination. These 

genotypes were diverse at the glucose-6-phosphate isomerase locus, differed in their 

microsatellite profiles, showed different banding patterns in a restriction fragment length 

polymorphism assay using a moderately repetitive and highly polymorphic probe (RG57), 

were polymorphic for four different nuclear genes and differed in their sensitivity to the 

systemic fungicide mefenoxam. The null hypothesis of linkage equilibrium was not rejected, 

which suggests the population could be sexual. These new genotypes were monomorphic in 

their mitochondrial haplotype that was the same as US-22. Through parentage exclusion 

testing using microsatellite data and sequences of four nuclear genes, recent dominant 

lineages US-8, US-11, US-23, and US-24 were excluded as possible parents for these 
                                                
* Danies G, Myers K, Mideros MF, Restrepo S, Martin FN, Cooke DEL, Smart CD, Ristaino JB, Seaman AJ, 
Gugino BK, Grünwald NJ, Fry WE. 2014. An ephemeral sexual population of Phytophthora infestans in the 
Northeastern United States and Canada. PLoS ONE 9: doi: 10.1371/journal.pone.0116354. 
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genotypes. Further analyses indicated that US-22 could not be eliminated as a possible parent 

for 14 of the 20 genotypes. We conclude that US-22 could be a parent of some, but not all, of 

the new genotypes found in 2010 and 2011. There were at least two other parents for this 

population and the genotypic characteristics of the other parents were identified. 

3.2 Key words 

Phytophthora infestans, population genetics, sexual reproduction, clonal lineages, potato late 

blight 

3.3 Introduction  

Phytophthora infestans, a plant pathogenic oomycete, is a major constraint to potato and 

tomato production globally (Fry W. E. 2008). This pathogen reproduces both sexually and 

asexually, the former only when both mating types, A1 and A2, occur in the same location. 

Sexual reproduction is apparently uncommon worldwide with the exception of some regions 

such as central Mexico and northern Europe (Fry W. E. 2008, Grünwald and Flier 2005, 

Grünwald et al. 2001). Sexual reproduction results in the production of spores (oospores) 

(Flier et al. 2001) resistant to environmental extremes, which serve as a source of primary 

inoculum when present in the soil (Fernandez-Pavia et al. 2004). Oospores are able to survive 

in a dormant state for several years until conditions are optimal for the spores to germinate 

and cause infection (Drenth et al. 1995). In the United States there is no evidence for 

continual sexual reproduction even though both mating types exist. This apparent lack of 

widespread sexual reproduction has resulted in clonal populations of P. infestans. A clonal 

lineage is a descendant from a single individual and variation within a lineage arises by 
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mutation or mitotic recombination (Goodwin S. B. 1997, Grünwald et al. 2012). The diverse 

clonal lineages of P. infestans present in the United States have likely been introduced via 

migrations (Goodwin S. B. et al. 1995b, Goodwin S. B. et al. 1994b).  

Historically, clonal lineages of P. infestans have been defined based on mating type, 

mitochondrial haplotype, nuclear DNA fingerprint patterns, and allozyme genotype (Goodwin 

S. B. et al. 1994b). More recently, microsatellite markers have been utilized to characterize 

USA populations (Myers et al. 2010, Small et al. 2012). Individuals within a lineage have the 

same multi-locus genotype (MLG) with only minor variation. Clonal lineages in the United 

States have typically been quite distinct, commonly defined using a subset of the markers 

identified above. Individual isolates within a clone also share phenotypic traits such as 

fungicide sensitivity, host preference, and aggressiveness (Cooke et al. 2012, Danies et al. 

2013, Goodwin S. B. et al. 1995b, 1996, Lambert and Currier 1997, Legard et al. 1995, Miller 

J. S. et al. 1998). However, mutations at pathogenicity loci occur rapidly (Goodwin S. B. et al. 

1995b).  

Twenty-four diverse genotypes or clonal lineages of P. infestans have been detected 

and have been dominant in the past 40 years in the United States (Fry W. E. et al. 2013). 

Several lineages of P. infestans may coexist in the United States in any particular year but 

epidemic populations have typically been composed of one or rarely a few lineages. In the 

summers of 2010 and 2011 (but not in 2012 or 2013), greater diversity was detected in west-

central New York State than had been observed in the entire United States in the previous ten 

years.  

The primary objective of this study was to determine whether the diverse population 

of P. infestans detected around west-central New York State in 2010 and 2011 was a result of 
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sexual reproduction. Genetic markers with different mutation rates (nuclear and mitochondrial 

genes) were used to address the following two working hypotheses: (1) These rare and diverse 

genotypes of P. infestans are the outcome of one or more recombination events; and (2) if so, 

one of the currently dominant clonal lineages in the USA might be a parental genotype. The 

hypothesis that these genotypes might represent a sexual population was not rejected. Parental 

exclusion tests failed to eliminate lineage US-22 as a potential parent for most of the NYS-

2010/11 population. Other parents must be involved, and the genotypic characteristics of 

these other parents are inferred. 

3.4 Materials and Methods 

3.4.1 Isolates  

Isolates used in this study were those obtained from samples submitted by persons with 

extension responsibilities. Samples were infected tomato or potato leaflets showing typical 

late blight symptoms. The samples were submitted voluntarily by the owners of the affected 

plants. The domestic permit for submission of samples was APHIS permit P526P-13-03974 

(or its predecessor) and the international permit for submission of samples was APHIS permit 

P526P-14-00763 (or its predecessor). In total there were 59 isolates including 20 USA 

reference isolates and 39 isolates detected in an area that centered around west-central New 

York State in 2010 and 2011. The population detected in and around New York State in 2010 

and 2011 is referred to as the NYS-2010/11 population and the individuals are referred to as 

GDT-01 through GDT-20 (Supplementary Table 3.1). Cultures were maintained and DNA 

was extracted as previously described (Danies et al. 2013). Different sets of genetic markers, 

an allozyme test using the glucose-6-phosphate isomerase, a restriction fragment length 
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polymorphism assay using a moderately repetitive DNA probe RG57, mitochondrial 

haplotyping, 12 microsatellite loci, and four nuclear gene sequences as well as the mating 

type of each isolate were used to determine the isolate’s genotype.  

3.4.2 Initial diversity assays 

3.4.2.1 Mating type 

Mating type was determined by pairing an unknown isolate with a known isolate of P. 

infestans, either A1 mating type (US970001 US-17 genotype) or A2 mating type (US040009, 

US-8 genotype), on rye B (Caten and Jinks 1968) or pea (Jaime-Garcia et al. 2000) agar 

media. Petri plates were kept at 20°C for 10-14 days. The hyphal interface of the two colonies 

was investigated microscopically using 125X magnification. Isolates that formed oospores at 

the interface with the known A1 isolate were designated A2 and those that formed oospores 

with the known A2 isolate were designated A1. The known isolates (A1 and A2) were paired 

as positive controls, while negative controls consisted of pairing the known isolates with 

themselves (same mating type). 

3.4.2.2 Glucose-6-phosphate isomerase 

Mycelia and/or sporangia obtained from cultures grown on rye B, pea agar or from infected 

leaflets were used to determine glucose-6-phosphate isomerase (GPI) allozyme genotypes. 

Analyses were carried out using cellulose acetate electrophoresis as previously described 

(Goodwin S. B. et al. 1995a). At least one reference isolate representing US-1 (SA960008), 

US-8 (US040009), and/or US-17 (US970001) was included in all GPI analyses. 
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3.4.2.3 DNA extaction and RFLP analysis with probe RG57 

DNA extractions and subsequent restriction fragment length polymorphism (RFLP) analysis 

with the RG57 DNA probe were performed using a method modified from Goodwin S. B. A.  

et al. (1992). Southern blot analysis was conducted using the Amersham gene images 

AlkPhos direct labeling and detection system (GE Healthcare) according to the 

manufacturer’s instructions. The US-1 (SA960008) reference isolate was used in RG57 

analyses. Presence or absence of known fingerprint fragments was scored visually. 

3.4.2.4 Mefenoxam sensitivity assay 

Mefenoxam sensitivity of isolates was assessed as described previously by Therrien et al. 

(1993), except that mefenoxam was used in place of metalaxyl. Isolates were grown on pea 

agar amended with Ridomil Gold SL (Syngenta, Greensboro, NC) such that the final 

concentrations of the active ingredient (mefenoxam) were 0, 5, or 100 µg ml-1. Mycelial plugs 

(8 mm diameter) were obtained from actively growing cultures, transferred to the test plates 

and incubated for approximately 10 to 12 days, or until growth on the control mefenoxam 

plate (0 µg ml-1) was approximately 75 to 90% of the diameter of the petri plate. Assessment 

of mefenoxam sensitivity was determined on the basis of radial growth of cultures grown on 

plates amended with mefenoxam (5 or 100 µg ml-1) compared to non-amended controls. 

Growth on mefenoxam-amended plates, 5 and 100 µg ml-1, was represented as a proportion of 

the growth on the non-amended control plates.  

3.4.2.5 Mitochondrial haplotyping 

Mitochondrial haplotype was determined following the protocol reported by Martin et al. 

(2012). This protocol was designed to determine the smallest number of loci needed to 
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classify mitochondrial haplotypes for P. infestans. In total five loci were sequenced. The first 

locus included the rpl5-rns region that includes the downstream part of P3 and most of P5. 

The second locus included regions rns-cox2, as well as orf79. The third locus included 

regions cox1-nad9, including atp-9 and the downstream half of the P4 region. The fourth 

locus included nad3-nad5. The fifth locus included regions nad6-nad4L as well as the 

upstream half of the P6 region. This procedure has allowed the identification of at least 36 

different mitochondrial haplotypes in P. infestans. The first step of this mitochondrial 

haplotyping protocol was to sequence the second and fifth loci for all isolates. This would 

allow the discrimination of at least 27 haplotypes. Based on the results obtained from 

sequencing loci two and five, it was only necessary to sequence locus three in all isolates to 

distinguish between haplotypes.  

3.4.3 Multiplex microsatellite marker analysis 

Twelve microsatellite loci previously demonstrated to reveal polymorphisms (Li et al. 2013) 

were genotyped for all isolates. Genotyping was conducted using the QIAGEN Type-it 

Microsatellite PCR Kit (QIAGEN, Cat. No. 206243). Amplifications were done as described 

by the manufacturer. PCR conditions were: 95 °C for 5 min followed by 30 cycles of 95 °C 

for 30 s, 58 °C for 90 s, and 72 °C for 20 s, and a final extension at 60 °C for 30 min. PCR 

products were analyzed on an ABI 3730xl capillary system with POP-7 Polymer (ABI, PN 

4335615). PCR amplicons were compared with a set of size standards and alleles were scored 

accordingly (Li et al. 2013). At least one reference isolate representing US-8 (US100028), 

US-11 (US110028), US-22 (US090042), US-23 (BL2009P4) and/or US-24 (ND822Pi) was 

included in all microsatellite analyses.  
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3.4.4 Analyses using microsatellite data 

The R package Poppr 1.0.5 (Kamvar et al. 2014), which allows analysis of populations with 

mixed modes of reproduction (sexual and asexual) was used to analyze the microsatellite data. 

The 59 isolates were arbitrarily clustered into three groups according to their occurrence over 

time in the United States. Group one contained eight isolates including lineages of P. 

infestans that had been prevalent in the United States at one time, but not for the past 10 years 

(US-1, US-6, US-7, US-12, US-14, US-16, US-17, and US-19). Group two contained 12 

isolates including lineages of P. infestans that were dominant over the past five years (US-8, 

US-11, US-22, US-23 and US-24) or that were first described during the past five years in the 

United States (US-20 and US-21). Group three contained the 39 NYS-2010/11 P. infestans 

isolates that are the focus of this study (GDT-01 to GDT-20). 

 To detect signs of linkage disequilibrium across the microsatellite loci, a standardized 

index of association that corrected for the number of loci (řd) (Agapow and Burt 2001) was 

calculated using clone corrected data.  

Two different types of analyses were conducted to determine if the GDT isolates 

cluster as a single population and to observe if any of the previously known clonal lineages 

cluster with them. Population structure was inferred using the program structure 2.3 

(Pritchard et al. 2000) by testing the number of population clusters (K) between 1 and 10 

using the admixture model (Falush et al. 2003). A total of 10 independent runs of 100,000 

iterations with burn-in period of 50,000 MCMC iterations were conducted. The results from 

structure were post-processed using Structure Harvester (Earl and Vonholdt 2012 ). The ∆K 

method according to Evanno et al. (2005) was used to evaluate the rate of change in the log 

probability of data between successive K values to infer the number of populations.  
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To visually assess between-population differentiation, and assess the contribution of 

individual alleles to population structuring, a discriminant analysis of principal components 

(DAPC) was done using the adegenet package for R (Jombart 2008). This multivariate 

method extracts information from genetic data and identifies genetic clusters using the k-

means clustering algorithm based on the Bayesian Information Criterion (Jombart1 et al. 

2011). This clustering algorithm finds a given number of groups that maximizes the variation 

between groups, and describes the relationships between these clusters.   

3.4.5 Nuclear gene sequencing 

Genes known to be polymorphic within P. infestans (Blair J. E.  et al. 2012, Blair J. E. et al. 

2008, Karlovsky and Prell 1991, Tyler et al. 2006) were chosen for sequencing (Table 3.1). 

PCR conditions for nuclear loci were the following, in a final volume of 20 µl: 1X PCR buffer 

with a final MgSO4 concentration of 2 mM, 200 µM dNTPs, 0.5 µM of each primer, one unit 

of Platinium® Taq High Fidelity (Invitrogen), and ~10 ng template DNA. Thermal cycling 

protocols used an initial denaturation step at 94 ºC for two minutes; 35 cycles of 94 ºC for 30 

sec, locus-specific annealing temperature for 30 seconds (Table 3.1), 68 ºC extension for 45 

seconds; and a final extension at 68 ºC for 5 minutes.  

 PCR products were visualized on a 1% agarose gel to confirm amplicon size. An 

enzymatic purification protocol was used following the manufacturer’s instructions (ExoSAP-

IT, Affymetrix), and products were sequenced using BigDye terminator chemistry, and 

analyzed on an ABI 3730 instrument (Applied Biosystems) at the Cornell University 

Sequencing Core Facility. ABI trace files were analyzed using Geneious Pro v4.8.5 (). 

Sequence alignments were generated using MUSCLE (Edgar 2004) with default settings. 
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Bases with overlapping peaks in the electropherograms were considered heterozygous and 

coded according to IUPAC convention. Sequences were deposited to GenBank under the 

accession numbers [KM249146-KM249175]. 

 
Table 3.1 Nuclear loci sequenced, primers, and amplified conditions used in this study. 

Locus Primer name Primer sequence (5’ – 3) Ta
a Reference 

PITG_11126 
(Conserved 
Hypothetical Protein) 

PITG11126_F1 GGGGACTTCGCTGTTTGTTA 59.0 ºC (Tyler et 
al. 2006) 

PITG11126_R1 ATGTTCATGTACGGCTGACG   
PUA (Conserved 
Hypothetical Protein) 

PUA_F AGGTCAAGTCCTCGCAGCAG 67.0 ºC (Blair J. E.  
et al. 
2012) 

PUA_R AGGTCGTCRCCMAAGTG   
β –tubulin Btub_F1 GCCAAGTTCTGGGAGGTCATC 58.4 ºC (Blair J. E. 

et al. 
2008) 

Btub_R1 CCTGGTACTGCTGGTACTCAG   
TRP1 (N-(5’-
phosphoribosyl)anthrani
late isomerase indole-3-
glycerol-phosphate 
synthase) 

TRP1_F3 GGGTAACATCCTGGAGGAGA 63.0 ºC (Karlovsk
y and Prell 

1991) 
TRP1_R3 TCGTACTTGACCACGTCTGC   

a Annealing temperature of primers for PCR.  

3.4.6 Analyses using nuclear gene sequences 

Haplotype phase of nuclear gene sequences with two or more heterozygous sites were 

determined by cloning PCR products for a subset of genotypes and sequencing inserts. 

Cloning of PCR products was done using the TOPO® TA Cloning® Kit for Subcloning, with 

One Shot® TOP10 chemically competent Escherichia coli cells (Invitrogen). Isolates cloned 

were SA960008 (US-1) and US100032 (GDT-15) for PITG_11126; SA960008 (US-1), 

Coffey7629 (US-6), US100019 (GDT-19) and US110040 (US-23) for PUA; US100033 

(GDT-16) for β-tubulin; and SA960008 (US-1), US940494 (US-12), US050007 (US-11), and 

US110040 (US-23) for TRP1. Polyploids were identified (US-1, US-11, and US-23) and all 

sequences were included in our downstream analyses. Nucleotide diversity indices and the 
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polymorphic level for the four nuclear genes studied were calculated using DNAsp v. 5.10.01 

(Librado and Rozas 2009). To test for neutral evolution, Tajima’s D (Tajima 1989) was 

calculated using DnaSP v. 5.10.01.  

 Jmodeltest (Posada 2008) was used to estimate a nucleotide substitution model. 

Maximum likelihood (ML) gene trees were inferred using PhyML (Guindon and Gascuel 

2003), implemented in the South of France bioinformatics platform (http://www.atgc-

montpellier.fr/phyml/), using the substitution model selected by jmodeltest (K80 for 

PITG_11126, TN93 for TRP1, JC69 for β-tubulin and PUA). The transition/transversion 

ratio, proportion of invariable sites, and gamma distribution parameter were estimated from 

the data in PhyML using 6 rate categories. Data sets were bootstrapped using 1000 samples.  

 Gene trees were also inferred using MrBayes [70], implemented in CIPRES 

Science Gateway (Miller M. A. et al. 2010). The same nucleotide substitution model was used 

as for PhyML. One million MCMC generations were run, using a sample frequency of 500 

generations and a burn-in of 25% of the total run. Two runs using four chains each (one cold 

and three heated chains) were performed. The default priors were used. 

3.4.7 Parentage exclusion analysis 

A visual parentage exclusion analysis (Jones and Arden 2003) was possible given that out of 

the 59 isolates (including USA reference isolates as well as GDT isolates) there were 37 

unique P. infestans genotypes after clone correcting. This analysis is based on the fact that a 

particular offspring has two alleles for each autosomal marker corresponding to one from each 

of its progenitors. Based on this analysis, a genotype was excluded as a potential parent of one 

of the NYS-2010/11 isolates, if neither of the alleles present at a particular locus in the 
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candidate parent was present in the candidate progeny (a flow diagram with a chain of logic is 

shown on Supplementary Figure 3.1). Both microsatellite alleles and nuclear gene sequences 

were used for this analysis. 

3.5 Results 

In 2010 and 2011 we confirmed that there were individuals of P. infestans of opposite mating 

type from west-central New York and surrounding areas (Figure 3.1). We detected only A1 

individuals in some counties, and only A2 individuals in other counties. However, both A1 

and A2 individuals were reported from yet other counties. Thus, it was clear that this outbreak 

differed from most recent outbreaks in the United States in that there was a large region in 

which both mating types were admixed. 
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Figure 3.1 Spatial occurrence of the NYS-2010/11 population of Phytophthora infestans 

detected in western New York State. Genotypes that are underlined are those detected in 2010 

all other genotypes were detected in 2011. Genotypes shown in bold are those that were found 

in several counties (GDT-01, GDT-04, and GDT-08). In New York State we detected only A1 

individuals in six counties, and only A2 individuals in another three counties. However, both 

A1 and A2 individuals were reported from yet two other counties. Because of our limited 

sample size, we cannot conclude with certainty that both mating types were not present in 

counties where only a single mating type was detected. 

 

 Further analyses confirmed that these individuals constituted a diverse population. 

These genotypes displayed different banding patterns for the allozyme glucose-6-phosphate 

isomerase locus (Supplementary Table 3.2), showed different banding patterns at four loci in 

a restriction fragment length polymorphism assay using the moderately repetitive and highly 

polymorphic probe RG57 (Supplementary Table 3.2), differed in their microsatellite profiles 

(Supplementary Table 3.3), were polymorphic for four different nuclear genes 

(Supplementary Table 3.4 – Supplementary Table 3.7) and differed in their sensitivity to the 

systemic fungicide mefenoxam (Figure 3.2). However, they were monomorphic for their 

mitochondrial haplotype (Supplementary Table 3.2). 



 

  - 88 - 

 

Figure 3.2 Response of Phytophthora infestans isolates to mefenoxam. Relative growth (as 

percentage of control) at 5 µg ml-1 (top) and 100 µg ml-1 (bottom) relative to control 0 µg ml-1 

is presented. Sample sizes for each multilocus genotype can be found in Supplementary Table 

3.1. 

 The 39 NYS-2010/11 isolates represented 20 distinct multi-locus genotypes (MLGs). 

Based on their genotypic profile these new and diverse genotypes were named GDT-01 to 

GDT-20. In addition to individuals from NY, there were individuals from Ohio, Pennsylvania 

and Ontario, Canada that also appeared to belong to this population (Supplementary Table 

3.1). There were cases, where the same genotype was found in several New York state 

counties (Figure 3.1). 
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3.5.1 Population genetic analyses and recombination tests using microsatellite markers 

In total, 50 microsatellite alleles were detected in the entire collection of genotypes. The 

number of alleles per locus ranged from two (for locus Pi04) to eight (for PiG11 and 

PinfSSR4) (Supplementary Table 3.8). Using the microsatellite loci, we tested the different 

groups against the null hypothesis of sexual reproduction by measuring the extent of linkage 

equilibrium across the microsatellite loci. When all isolates were analyzed together this null 

hypothesis was rejected (P = 0.001). This null hypothesis was rejected also for Group 1 (old 

isolates) alone (P = 0.001) and for Group 2 isolates (lineages that have been dominant in the 

United States over the past five years or those that have been detected for the first time during 

the past five years) alone (P = 0.002). However, for the NYS-2010/11 isolates (Group 3), we 

failed to reject the null hypothesis (P=0.1490). Thus this group seemed to have characteristics 

of a sexually reproducing population.   

3.5.2 Genetic structure analysis 

The population structure based on microsatellite data consisted of two distinct clusters 

(Supplementary Figure 3.2) and the ∆K analysis indicated that K = 2 was most likely the 

correct minimum number of clusters. Interestingly, US-22 clustered with the NYS-2010/11 

population (Supplementary Figure 3.2). Supplementary Figure 3.2, shows the results for K = 2 

to K = 5. At K ≥ 3, population subdivision for the USA reference isolates was large relative to 

population subdivision for the GDT isolates and lineage US-22. 

In general, the Discriminant Analysis of Principal Components (DAPC) is in 

agreement with the results obtained using structure (Figure 3.3). Based on the Bayesian 

Information Criterion, the number of clusters was eight (Supplementary Figure 3.3). Most of 
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the isolates within the NYS-2010/11 population (19 out of 20) clustered together with US-22. 

GDT-01 was grouped on a separate cluster along with lineage US-17, US-19, and US-21.  

 

Figure 3. 3 Discriminant Analysis of Principal Components (DAPC) using 12 microsatellite 

loci. This scatterplot shows the first two principal components of the DAPC of Phytophthora 

infestans genotypes found in the United States. Groups are shown by different colors and 

inertia ellipses, while dots represent individual strains. Cluster 1 includes lineages US-6, US-

7, US-11, US-12, and US-16; Cluster 2 includes isolates in lineage US-23; Cluster 3 includes 

lineages GDT-02, GDT-07, GDT-13, GDT-18, and GDT-20; Cluster 4 includes lineages 

GDT-03, GDT-04, GDT-08, GDT-08.1, GDT-14 and GDT-15; Cluster 5 includes lineages 

US-8, US-14, US-20, and US-24; Cluster 6 includes lineages GDT-05, GDT-06, GDT-09, 

GDT-10, GDT-11, GDT-12, GDT-16, GDT-17, and GDT-19; Cluster 7 includes lineages US-

1; and Cluster 8 included lineages US-17, US-19, US-21 and GDT-01. 

3.5.3 Population genetic analyses of nuclear loci 

Nucleotide diversity was low for the four nuclear genes studied (Table 3.2). The nuclear gene 

PUA showed the highest number of segregating sites as well as the highest number of 

haplotypes (Table 3.2 and Supplementary Table 3.5). Tajima’s D was not significant 
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indicating that all genes were evolving neutrally (0.51174, -0.75042, 1.01645, and -0.80032 

with p >0.1 for genes PITG_11126, PUA, β-tubulin, and TRP1 respectively). Both negative 

and positive Tajima’s D values were observed, yet these differences are minor and not 

distinguishable from noise. The four nuclear genes did not resolve the same topologies 

(Supplementary Figure 3.4). Clusters (defined according to the occurrence of P. infestans 

isolates over time in the United States) showed no clear grouping. Conflict among the gene 

trees is likely due to recombination among individuals. Even low levels of recombination 

leads to conflict among gene genealogies (Taylor et al. 2000).  

 
Table 3.2 Summary statistics of loci PITG_11126, PUA, β-tubulin and TRP1 from 

Phytophthora infestans in North America. The number of individuals per gene is different 

because for some genes more than one isolate per genotype was sequenced.  

Locus Number of 
individualsa 

Length 
(bp) 

Segregating 
sites 

Genetic 
variability 
(Segregating 
sites/Length) 

πb θ Sitec Number 
of 
haplotypes 

HDd 

PITG_11126 40 776 6 0.00773 0.00190 0.00156 5 0.631 
PUA 48 609 9 0.01478 0.00226 0.00320 9 0.520 
β-tubulin 41 883 3 0.00340 0.00106 0.00068 4 0.517 
TRP1 48 824 6 0.00728 0.00092 0.00142 8 0.435 

a In some cases multiple isolates per multilocus genotype were sequenced. 
b π = Nucleotide diversity (per site) 
c θ site = Watterson’s Theta (per site) 
d HD = Haplotype diversity 
 

3.5.4 Parentage analysis 

If the NYS-2010/11 population represents a population that resulted from recent sexual 

reproduction, it would be interesting to determine the potential parents. We assumed that any 

of the lineages that have been dominant in the United States over the past five years or those 

that have been detected for the first time during the past five years (Group 2) could be 
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potential parents for the GDT isolates. Therefore we conducted a parentage exclusion test 

using microsatellite data. Based on this analysis, a potential parent of a candidate progeny was 

excluded if neither of the alleles present at a particular locus in that potential parent was 

present in the candidate progeny. For example, clonal lineage US-8 has alleles 108 and 112 

for locus D13. Neither of these alleles was present in any of the NYS-2010/11 isolates. Thus, 

US-8 was excluded as a potential parent. Based on similar analyses it was possible to exclude 

lineages US-20, US-21, US-23, and US-24 as possible parents for the NYS-2010/11 isolates. 

 Lineages US-22 and US-11 remained as potential parents for at least some (but not all) 

of the NYS-2010/11 isolates. For example, US-22 was excluded as a parent for GDT-06, 

based on locus PinfSSR4; it was excluded as a potential parent for GDT-11 based on locus 

PinfSSR11 and it was excluded as a parent for GDT-12 based on two microsatellite loci 

PinfSSR4 and PinfSSR11 (Supplementary Table 3.9). Microsatellite data did not exclude US-

22 as a parent for the other 17 GDT isolates. On the other hand, after parentage exclusion 

analysis using microsatellite data, clonal lineage US-11 remained as a potential parent only 

for seven of the twenty NYS-2010/11 isolates, GDT-03, GDT -04, GDT -06, GDT -09, GDT -

10, GDT -14, and GDT -15 (Supplementary Table 3.10).  

 The diversity in the nuclear genes studied enabled further analysis of potential 

parentage of the NYS-2010/11 population. Using sequence analysis of the gene coding for the 

hypothetical protein PITG_11126, it was possible to exclude three additional GDT genotypes 

(GDT-04, GDT-05, and GDT-09) as progeny of US-22 (Supplementary Table 3.4). Analysis 

of the other three genes used in this study (PUA, β-tubulin and TRP1) provided data that were 

consistent with our hypothesis that US-22 is a possible parent for some of the GDT isolates 

(Supplementary Table 3.5 – Supplementary Table 3.7). Analysis of nuclear genes was also 
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applied to US-11 as a potential parent of the GDT isolates. Using sequence analysis of the 

genes coding for the hypothetical proteins PITG_11126 and PUA, it was possible to exclude 

14 GDT isolates as potential progeny of US-11. However, the six genotypes that remained as 

potential progeny of US-11 (GDT-02, GDT-08, GDT-12, GDT-13, GDT-18, and GDT-20) 

had been excluded as potential progeny of US-11 based on the microsatellite data.  

If US-22 is one of the parents for at least some of the isolates within the NYS-

2010/2011 population, it is possible to predict the banding pattern for the glucose-6-phosphate 

isomerase, the mating type and the microsatellite profile for the other putative parent(s). 

Assuming that US-22 is one of the parents, at least one of the other parent(s) must be A1 

mating type. The other parent(s) must have an 111 allele for the glucose-6-phosphate 

isomerase, and must provide the following microsatellite alleles: an allele 110 for the D13 

locus, an allele 189 for the Pi70 locus, an allele 225 for the Pi4B locus, an allele 258 for the 

Pi02 locus, alleles 284 and 288 for the PinfSSR4 locus and an allele 355 for the PinfSSR11 

locus. These predictions are shown in Supplementary Table 3.11. In the same way, it is 

possible to predict the potential genotypes of loci PITG_11126, PUA, β-tubulin and TRP1 of 

putative parent(s) for the GDT isolates when assuming that lineage US-22 is one of the 

parental genotypes for these isolates (Supplementary Table 3.12).  

The mitochondrial haplotype data were interesting but not conclusive regarding parentage. 

Clonal lineage US-22 has the same mitochondrial haplotype (H20) as all of the GDT isolates.  

3.6 Discussion 

The genetic characteristics of the ephemeral population of P. infestans detected in the west-

central region of New York State in 2010 and 2011 are consistent with a recombinant 
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population. Greater diversity was detected in that region during each of 2010 and 2011 than 

had been observed in the entire United States in the previous ten years. The sampling strategy 

or sampling intensity during 2010 and 2011 did not differ from other years. The number of 

samples received by our laboratory in 2010 and 2011 was 51 and 137, respectively. In 2012 

and 2013 the number of samples received was 237 and 274, respectively. Thus, the diversity 

observed during 2010 and 2011 cannot be explained by an increase in the number of samples 

received and analyzed.  

 Our analyses of the NYS-2010/11 population are retrospective because they occurred 

after we became aware that these isolates were indeed unusual. It is challenging to obtain a 

truly random sample of P. infestans, given that late blight outbreaks occur sporadically and 

are typically clonal in the USA. Selection and/or drift may have played an important role prior 

to our analyses and may be an explanation for the disappearance of these genotypes after 

2011. As a result we cannot regard these isolates as a comprehensive sample of a segregating 

population. However, their occurrence in a relatively small geographical area is unusual given 

the population structure of P. infestans in the USA. Only one other population with similar 

characteristics has been reported in the USA – in the Pacific Northwest in the late 1990s 

(Gavino et al. 2000). This population also had characteristics of a recombinant population 

(Gavino et al. 2000).    

 The NYS-2010/11 population displayed diverse banding patterns for the allozyme 

glucose-6-phosphate isomerase, showed different banding patterns in a restriction fragment 

length polymorphism assay using the moderately repetitive and highly polymorphic probe 

RG57, differed in their microsatellite profiles, were polymorphic for four different nuclear 

genes and differed in their sensitivity to the systemic fungicide mefenoxam. The ratio of 
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mating types among the NYS-2010/11 genotypes was close to the 50:50 ratio expected for 

sexual recombination.  

 The population structure of P. infestans in the USA is dramatically different from that 

in Sweden (Yuen and Andersson 2012) and central Mexico (Grünwald and Flier 2005) where 

sexual reproduction is a very common and significant factor in the ecology of P. infestans. 

The sexual population in Sweden is very recent (occurring in the latter part of the 20th 

century) and contributes to earlier and more devastating epidemics than before the occurrence 

of that population (Yuen and Andersson 2012). The sexual population in central Mexico is 

very old, because this location is the likely center of origin of P. infestans (Goss et al. 2014). 

It seems very likely that sexual recombination is still very rare and not a persistent contributor 

to the ecology of P. infestans in the USA. However, the documentation now of two likely 

recombinant populations ((Gavino et al. 2000); and this study) indicate that sexual 

recombination in the USA is certainly possible and there is no reason to believe it will not 

happen again.     

 The genetic structure analyses done using structure and a discriminant analysis of 

principal components showed that the GDT isolates were grouped closely together and US-22 

clustered within the GDT isolates. The index of association tested using microsatellite data 

failed to reject the hypothesis that the NYS-2010/11 individuals were a recombinant 

population. There are two possible scenarios that could explain this occurrence: 1) the 

recombination event(s) happened in or near west-central New York State or 2) the 

recombination event(s) took place somewhere outside New York State and the progeny from 

this event migrated as a cohort to central New York State, presumably on potato tubers or 

tomato transplants. We have no definite evidence of the location of the recombination 
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event(s), or if the oospore population still exists there. The fact that these strains have not 

been detected since 2011 is excellent news. They may have all died out. However, the fact 

that this population existed indicates that sexual recombination in the United States is a 

current possibility, and may happen again. 

 Our data suggest that clonal lineage US-22 could be a parent of some, but not all, of 

the new genotypes detected in 2010 and 2011. This is consistent with the fact that US-22 was 

the dominant lineage throughout the eastern United States in 2009 (Fry W. E. et al. 2013). In 

2009 US-22 represented approximately 90% of the samples received and analyzed by our lab 

(Fry W. E. et al. 2013). At least two more parents are expected based on the nuclear gene 

sequences in the NYS-2010/11 population. This is because some isolates within the NYS-

2010/11 population were homozygous for a site where US-22 was homozygous for a different 

nucleotide.  

 An additional hypothesis is that US-22 is a sibling of the GDT isolates, rather than a 

parent. Although we cannot definitively reject this hypothesis, at least two lines of reasoning 

support parentage rather than sib status for US-22 relative to the NYS-2010/11 population. 

First, US-22 was very widely distributed across the entire eastern part of the USA in 2009, so 

chronologically, US-22 was detected before the GDT isolates (Fry W. E. et al. 2013, Hu et al. 

2012).  Second, 18 of the 20 GDT isolates most similar to US-22 are heterozygous (341/355) 

at the microsatellite locus PinfSSR11 where US-22 is homozygous (341/341) (Supplementary 

Table 3.3).  (The other two GDT isolates are 355/355 at this locus.) Thus, the more 

parsimonious explanation is that US-22 is a parent rather than an unusual sibling, and that the 

other parent is homozygous (355/355) at this locus.  

 It is interesting to note that for the microsatellite locus Pi70 we observed a high 
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frequency of the allele 189 within the NYS-2010/11 population. To date we have only found 

this allele in US-1 and a few Mexican isolates suggesting that a new introduction was also a 

contributor to this population.  

 A recombinant population with characteristics similar to the ones observed for the 

NYS-2010/11 population has been reported in the past in the United States. Gavino et al. 

(2000) reported a group of isolates that were collected in the Columbia basin of Oregon and 

Washington in 1993 that satisfied the expectations of sexual recombination. This population 

was ephemeral with the possible exception of US-11 that may have been one of the 

recombinants and has persisted to the present time as a successful clonal lineage in the United 

States (Fry W. E. et al. 2013). There are similarities between the Columbia basin population 

and the population described here (NYS-2010/11). In both cases opposite mating types were 

present in proximity; much greater neutral marker diversity was found than has been reported 

for most other epidemic populations of P. infestans in the United States and Canada, and 

several possible combinations of alleles occurred at many pairs of polymorphic loci. 

 The likelihood that many different migrations from diverse sources, or that many 

mutations caused the high degree of genotypic diversity found in the NYS-2010/11 

population, seem very low. Migrations have been documented in the past in the United States 

and Canada but these have typically involved movement of single clonal lineages from known 

sources (Fry W. E. and Goodwin 1997, Goodwin S. B. et al. 1994a, Goodwin S. B. et al. 

1994b). If the NYS-2010/11 isolates represent a migrant population it is reasonable to assume 

that these isolates arose at a single place and were then dispersed throughout central New 

York and surrounding areas, possibly via potato seed tubers or tomato transplants. It is 

unlikely that many diverse mutations occurred in such a short period of time in a single clonal 
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lineage (Gavino et al. 2000). In a previous study we investigated the diversity within lineages 

US-22 and US-23 (Danies et al. 2013) and found that mutations do happen but only in a few 

loci. It is thus unlikely that many isolates with many diverse mutations would have arisen 

exclusively in a restricted area of the United States. The mutations known to occur within the 

US-22 and US-23 lineages did not affect the conclusions derived from the parentage 

exclusion analysis. Because of the geographical location of the NYS-2010/11 isolates it is 

likely that they came from the same place. There are five or six states in the northern USA 

that produce seeds/tubers and all of these states have had late blight. The exact location of the 

actual plasmogamy events is unknown. Because of the geographically limited occurrence of 

these diverse GDT individuals, we hypothesize that recombination also occurred in a single 

location.   

 The diverse combination of markers used was essential to infer that the NYS-2010/11 

population is probably recombinant and that US-22 is a likely parent. The banding patterns for 

the RFLP assay using the moderately repetitive, polymorphic probe (RG57) as well as the 

banding patterns for the allozyme glucose-6-phosphate isomerase allowed us to identify the 

diversity and uniqueness among the P. infestans isolates tested. The microsatellite profiles 

permitted us to further discriminate among the isolates, allowed us to eliminate certain 

genotypes as potential parents for the NYS-2010/11 isolates and further allowed the 

prediction of potential parental genotypes. The mitochondrial and nuclear genes studied 

revealed the relatedness among the NYS-2010/11 isolates. The nuclear gene sequences further 

allowed us to eliminate certain NYS-2010/11 genotypes as possible progeny of US-22 or US-

11. 

 The parentage exclusion analysis left only US-22 as a potential parent from the current 
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dominant lineages. If we assume some mutations, then the US-8 lineage might survive the 

parentage exclusion analysis. For example it could be possible that a US-8 derivative could 

have been a parent for the NYS-2010/11 isolates if a mutation occurred that changed either 

allele (108 or 112) at the D13 locus to 110. However, this assumption seems unlikely since no 

derivatives of US-8 with a 110 allele at the D13 locus have been found in the United States. 

Alternatively, if US-8 had a third “null allele” at the D13 locus, it could have donated this 

allele to the GDT isolates. US-8 is known to have some loci with three alleles – i.e. at 

locusPinfSSR4 and at GPI. Consequently, it is not possible to absolutely eliminate the 

possibility that US-8 may have a third “null allele” at the D13 locus. Again, this scenario 

seems highly unlikely given that neither of the other two alleles is present in the GDT isolates.  

 Our best inference is that the NYS-2010/11 isolates represent a progeny that 

originated from at least two recombination events. The geographic location(s) of those 

recombination events remains unknown. The eventual impact of this recombination event 

cannot be predicted at this moment. The fact that individuals from this event were detected 

only in 2010 and 2011 and not in 2012 or 2013 suggests that these isolates were not as 

aggressive or as fit as subsequent dominant clonal lineages. However, the fact that there is 

now evidence for a second recombinant population of P. infestans detected in the USA 

indicates that sexual recombination is certainly possible, and there is no reason to believe that 

such populations will not occur in the future. Diligence in monitoring populations might 

enable the location of a recombination to be identified so that proper mitigation techniques 

could be applied. 
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3.9 Supplemental Material 

 

Supplementary Figure 3.1 Flow diagram showing how the parentage exclusion analyses 

were conducted. A visual parentage exclusion analyses was possible given that there were 

only 37 unique Phytophthora infestans genotypes.  

 

The process 
continues with the 

following locus 

Strain 1  
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Locus 1: 
 Allele(s) in  
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Supplementary Figure 3.2 STRUCTURE analysis of twelve microsatellite loci for 

Phytophthora infestans in the United States. Results for K=2 to K=5 are shown. Each color 

represents one population defined by STRUCTURE. Each isolate is represented by a vertical 

bar, and the length of each colored segment in each vertical bar represents the proportion 

contributed by the ancestral population. The number of inferred populations based on the ΔK 

method according to Evanno et al. [32] was two. Groups one, two, and three on the x-axis 

represent an arbitrary classification of isolates into groups according to their occurrence over 

time in the United States. Group one contained lineages of P. infestans that have not been 

prevalent in the United States for the past 10 years (US-1, US-6, US-7, US-12, US-14, US-16, 

US-17, and US-19). Group two contained lineages of P. infestans that have been dominant in 

the past five years (US-8, US-11, US-22, US-23 and US-24) or that have been first described 

during the past five years in the United States (US-20 and US-21). Group three contained the 

NYS-2010/11 P. infestans isolates that are the focus of this study (GDT-01 to GDT-20).  
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Supplementary Figure 3.3 Bayesian Information Criterion (BIC) values for increasing 

values of K. The BIC decreases until K = 8 clusters, after which BIC increases. K = 8 also 

matches the smallest BIC, thus 8 clusters were retained. 
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Supplementary Figure 3.4 MrBayes trees of haplotypes for each locus sequenced. Loci are 

A, PITG_11126, B, PUA, C, β-tubulin, and D, TRP1 in Phytophthora infestans. Haplotypes 

shown for each branch tip, correspond to those in Tables S5, S6, S7 and S8. Bayesian 

posterior probabilities are shown above branches and bootstrap support values obtained by 

maximum likelihood are shown below branches. Values are not shown for branches that had 

less than 80% probability/support by both methods. Pie charts represent the number of 

isolates that contain a particular haplotype within each of the three clusters. Clusters were 

defined based on the occurrence of P. infestans isolates over time in the United States. 

Numbers within parentheses indicate the number of individuals that contain that haplotype.  

 

  

PITG_11126 PUA 

!-tubulin TRP1 

6.0E-4

Hap_4

Hap_2

Hap_1

Hap_3

Hap_5

1

1
1 

79 

1 

95 

PITG_11126 H1 

PITG_11126 H2 

PITG_11126 H3 

PITG_11126 H4 

PITG_11126 H5 

US-22 17 4 
5 

1 

1 

13 

4 
7 

(26) 

(1) 

(1) 

(13) 

(11) 

0.0020

Hap_1

Hap_9

Hap_2

Hap_4

Hap_5

Hap_6

Hap_8

Hap_7

Hap_3

0.6

1

1
1 

1 
47 

45 

PUA H1 

PUA H2 

PUA H6 

PUA H9 

H3 

PUA H4 

PUA H5 

PUA H8 

PUA H7 

US-22 

6 

1 

6 

1 

2 

1 

12 

1 
1 

1 

12 

20 
5 

1 

1 

1 

PUA H3 

(19) 

(3) 

(6) 

(1) 

(13) 

(27) 

(1) 

(1) 

(1) 

6.0E-4

Btub-Hap_2

Btub-Hap_4

Btub-Hap_1

Btub-Hap_3

1
1 

73 

!-tubulin H1 

!-tubulin H2 
 

!-tubulin H3 
 

!-tubulin H4 
 

US-22 

US-22 

8 

6 19 

2 
1 

1 

4 
7 

3 

1 

(33) 

(4) 

(14) 

(1) 

7.0E-4

HAP_1

HAP_2

HAP_5

HAP_6

HAP_8

HAP_3

HAP_4

HAP_7

0.9 

66 

TRP1 H1 

TRP1  H5 

TRP1  H2 

TRP1  H3 

TRP1  H4 

TRP1  H6 

TRP1 H7 

TRP1  H8 

US-22 

US-22 

(1) 

(2) 

1 

20 

(29) 

5 
4 

2 

(8) 

2 
6 

1 

3 

(3) 

1 

(1) 

1 

(1) 

2 

(2) 

1 1 

Popula'on)1)
Popula'on)2)
Popula'on)3)

Not prevalent in the US in the past 10 years 

Dominant over the past five years or first 
described during the past five years 

NYS-2010/11 

A. B. 

C. D. 



 

  - 111 - 

Supplementary Table 3.1 Phytophthora infestans isolates used in this study.  

Multilocus 
Genotype Isolate 

Location  
County/State abbreviation 

or Country/Geographic 
coordinates 

Original 
host Year Collector 

US-1 SA960008 Mpumalanga, South Africa/ Potato 1996 Adele McLeod 

  26ºS 30ºE    

 
US-6 Coffey7629 USA - - Michael D. Coffey 

 
US-7 Coffey7723 USA - - Michael D. Coffey 

 
US-8 US100028 Dufferin/ON Canada/ Potato 2010 Eugenia Banks 

  44º05’N 80º12’W    
 US110063 Erie/PA/ Potato 2011 Andrew Musa 
  42.10ºN 80.10ºW    
 US110102 Pasco/WA/ Potato 2011 Niklaus Grünwald 
  46º14’19”N 119º6’31”W    

 
US-11 US050007 Benton/OR/ Tomato 2005 Melody Putnam 
  44º29’25”N 123º25’57”W    
 US110028 Oneida/NY/ Tomato 2011 Jerry Waskiewicz 
  43.24ºN 75.44ºW    
      
US-12 US940494 Tompkins/NY/ Tomato 1994 William Fry 
  42.45ºN 76.47ºW    
      
US-14 Pi-001-01 MI/ - - Ken Deahl 
  44ºN 85ºW    
      
US-16 Coffey10112 OR/ - 1994 Michael D. Coffey 
  44ºN 120.5ºW    
      
US-17 US970001 Lee/FL/ Tomato 1997 William Fry 
  26.58ºN 81.92ºW    
      
US-19 NC09719 NC/ Tomato 1997 Jean Ristaino 
  35.5ºN 80ºW    
      
US-20 NC046 NC/ Tomato 2004 Jean Ristaino 
  35.5ºN 80ºW    
      
US-21 NC0719 NC/ Tomato 2007 Jean Ristaino 
  35.5ºN 80ºW    
      
US-22 US070001 Suffolk/NY/ Tomato 2007 Margaret McGrath 
  40.94ºN 72.68ºW    
 US090029 Orange/NY/ Tomato 2009 CPDDC 
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  41.40ºN 74.31ºW    
 US090042 Chautuaqua/NY/ Tomato 2009 CPDDC 
  42.30ºN 79.41ºW    
      
US-23var BL2009P4 Blair/PA/  Potato 2009 Ken Deahl 
  40.47ºN 78.35ºW    
      
US-23 Pi431         -       - 2013 Dawn Tidd 
 Pi432         -       - 2013 Dawn Tidd 
 US110017 Suffolk/NY/ Tomato 2011 Margaret McGrath 
  40.94ºN 72.68ºW    
 US110040 Waukesha/WI/ Tomato 2011 Amanda Gevens 
  43.02ºN 88.31ºW    
 US110062 Aroostook/ME/ Potato 2011 Steve Johnson 
  46.65ºN 68.59ºW    
      
US-24 ND822Pi ND/ Tomato 2009 Gary Secor 
  47ºN 100ºW    
 US110004 ND/ Potato 2011 Gary Secor 
  47ºN 100ºW    
 US110159 Cass/ND/ Potato 2011 Gary Secor 
  46.93ºN 97.25ºW    
      
GDT-01 US110057 Ontario/NY/ Tomato 2011 Christine Smart 
  42.85ºN 77.29ºW    
 US110058 Ontario/NY/ Tomato 2011 Christine Smart 
  42.85ºN 77.29ºW    
 US110066 Ontario/NY/ Tomato 2011 Christine Smart 
  42.85ºN 77.29ºW    
 US110073 Wayne/NY/ Potato 2011 Christine Smart 
  43.28ºN 77.05ºW    
 US110084 Ontario/NY/ Tomato 2011 Christine Smart 
  42.85ºN 77.29ºW    
 US110135 Ontario/NY/ Nightshade 2011 Christine Smart 
  42.85ºN 77.29ºW    
      
GDT-02 US110064 Genesee/NY/ Potato 2011 Christine Smart 
  43.00ºN 78.19ºW    
      
GDT-03 US110086 Monroe/NY/ Potato 2011 Christine Smart 
  43.30ºN 77.69ºW    
      
GDT-04 US110060 Wyoming/NY/ Tomato 2011 Don Casiewicz 
  42º50’N 78º5’W    
 US110065 Livingston/NY/ Tomato 2011 Christine Smart 
  42.73ºN 77.77ºW    
 US110074 Genesee/NY/ Tomato 2011 Christine Smart 
  43.00ºN 78.19ºW    
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 US110075 Genesee/NY/ Tomato 2011 Christine Smart 
  43.00ºN 78.19ºW    
 US110078 Tompkins/NY/ Tomato 2011 Keith Perry 
  42.45ºN 76.47ºW    
 US110094 Tompkins/NY/ Tomato 2011 Cliff Kraft 
  42.45ºN 76.47ºW    
      
GDT-05 US110061 Cayuga/NY/ Tomato 2011 Sharon Bachman 
  42.94ºN 76.56ºW    
      
GDT-06 US110093 Tompkins/NY/ Tomato 2011 Lisa Hahn 
  42.45ºN 76.47ºW    
      
GDT-07 US110072 Genesee/NY/ Potato 2011 Christine Smart 
  43.00ºN 78.19ºW    
      
GDT-08 US110071 Tompkins/NY/ Tomato 2011 Monica Roth 
  42.45ºN 76.47ºW    
 US110114 Tompkins/NY/ Potato 2011 William Fry 
  42.45ºN 76.47ºW    
 US110128 Tompkins/NY/ Potato 2011 William Fry 
  42.45ºN 76.47ºW    
 US110141 Yates/NY/ Tomato 2011 Abby Seaman 
  42.64ºN 77.10ºW    
 US110142 Tompkins/NY/ Tomato 2011 William Fry 
  42.45ºN 76.47ºW    
GDT-08.1 US110069 Tompkins/NY/ Tomato 2011 Tom Zitter 
  42.45ºN 76.47ºW    
      
GDT-09 US110082 Genesee/NY/ Tomato 2011 Christine Smart 
  43.00ºN 78.19ºW    
 US110138 Genesee/NY/ Tomato 2011 Christine Smart 
  43.00ºN 78.19ºW    
 US110139 Genesee/NY/ Tomato 2011 Christine Smart 
  43.00ºN 78.19ºW    
      
GDT-10 US110083 Erie/NY/ Tomato 2011 Sharon Bachman 
  42.75N 78.78ºW    
      
GDT-11 US110085 Genesee/NY/ Nightshade 2011 Christine Smart 
  43.00ºN 78.19ºW    
      
GDT-12 US100029 Simcoe/ON Canada/ Potato 2010 Eugenia Banks 
  44º1499ºN 79.8632ºW    
      
GDT-13 US100023 Simcoe/ON Canada/ Tomato 2010 Catarina Saude 
  43º35’N 79º44’W    
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CPDDC: Cornell Plant Disease Diagnostic Clinic

GDT-14 US110054 Mercer/PA/ Tomato 2011 Beth Gugino 
  41.31ºN 80.25ºW    
 US110079 Venango/PA/ Tomato 2011 Beth Gugino 
  41.40ºN 79.76ºW    
 US110106 Indiana/PA/ Tomato 2011 Beth Gugino 
  40.65ºN 79.09ºW    
      
GDT-15 US100032 Oxford/ON Canada/ Potato 2010 Eugenia Banks 
  43º14’N 80º36’W    
      
GDT-16 US100033 Oxford/ON Canada/ Tomato 2010 Eugenia Banks 
  43º14’N 80º36’W    
      
GDT-17 US110092 Erie/OH/ Tomato 2011 Sally Miller 
  41.51ºN 82.61ºW    
      
GDT-18 US100022 Genesee/NY/ Tomato 2010 Christine Smart 
  43.00ºN 78.19ºW    
      
GDT-19 US100019 Erie/NY/ Tomato 2010 Carol MacNeil 
  42.75N 78.78ºW    
      
GDT-20 US100034 Niagara/NY/ Tomato 2010 Christy Hoepting 
  43.32ºN 78.79ºW    
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Supplementary Table 3.2 Mating type, and banding patterns for the allozyme glucose-6-phosphate isomerase and for a restriction fragment 

length polymorphism (RFLP) assay using the RG57 probe for the 20 unique NYS-2010/11 multilocus genotypes. Polymorphic sites for the RFLP 

assay using the RG57 probe are highlighted in grey. Seven of the 24 possible combinations are observed within the 20 NYS-2010/11 genotypes.  

 
    RG57e 

MLGa MTb GPIc MHd 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 24a 25 
US-1 A1 86/100 H22 1 0 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 1 

US-6 A1 100/100 - 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 

US-7 A2 100/111 - 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 1 0 1 

US-8 A2 100/111/122 H20 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 

US-11 A1 100/100/111 H1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 1 0 1 

US-12 A1 100/111 - 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 

US-14 A2 100/122 - 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 

US-16 A1 100/111 - 1 0 0 0 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 1 0 1 

US-17 A1 100/122 H28 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 1 0 1 

US-19 A2 100/100 - 1 0 1 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 1 

US-20 A2 100/100 - 1 0 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 1 0 1 

US-21 A2 100/122 H20 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 1 

US-22 A2 100/122 H20 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 1 

US-23f A1 100/100 H25 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1* 1 1 1* 0 1 1 1 

US-24 A1 100/100 H13 1 0 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 

GDT-01 A1 100/100 H20 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1 0 1 

GDT-02 A2 111/122 H20 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1 0 1 

GDT-03 A2 100/111/122 H20 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1 0 1 

GDT-04 A2 100/111 H20 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 1 
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GDT-05 A1 100/111 H20 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 1 

GDT-06 A2 100/111 H20 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 1 

GDT-07 A2 100/111 H20 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 1 0 1 

GDT-08 A1 100/111 H20 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0 1 

GDT-09 A2 100/122 H20 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 1 0 1 

GDT-10 A1 100/122 H20 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 1 0 1 

GDT-11 A1 111/111 H20 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 1 0 1 

GDT-12 A1 100/111 H20 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0 1 

GDT-13 A2 100/111 H20 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0 1 

GDT-14 A1 111/122 H20 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 1 

GDT-15 A2 111/122 H20 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 1 0 1 

GDT-16 A2 111/122 H20 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 1 0 1 

GDT-17 A2 100/122 H20 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1 0 1 

GDT-18 A2 100/111 H20 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 

GDT-19 A1 100/100 H20 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 

GDT-20 A1 100/111 H20 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 
a Multilocus genotype 
b Mating type 
c Glucose-6-phosphate isomerase 
d Mitochondrial haplotype 
e Restriction Fragment Length Polymorphism (RFLP) bands using the RG57 probe 
f Isolate BL2009 belonging to clonal lineage US-23 lacks band 17 
* Bands 19 and 22 have not been described in previous reports for US-23 isolate. We decided to include them here because these two bands are seen on all US-23 isolates 
analyzed.
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Supplementary Table 3.3 Microsatellite calls for multilocus genotypes (MLGs) of Phytophthora infestans used in this study. The first 

sixteen MLGs in the list are the reference isolates. 

 
* A weak 210 allele is observed for US-23 and a weak 230 allele is observed for some GDT isolates. 

 

MLG 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
US&1 136 136 0 154 200 0 166 170 0 173 177 0 189 192 0 213 217 0 242 244 0 266 266 0 266 266 0 273 276 279 288 292 0 341 355 0
US&6 144 144 0 156 206 0 166 170 0 173 173 0 192 192 0 213 217 0 244 256 0 264 266 0 258 266 0 279 279 0 290 306 0 341 355 0
US&7 110 110 0 134 156 0 166 170 0 173 173 0 192 192 0 213 213 0 244 244 0 264 266 0 266 268 0 279 279 0 284 298 0 331 341 0
US&8 108 112 0 156 156 0 166 170 0 173 173 0 192 192 0 213 225 0 244 244 0 260 266 0 266 268 0 279 279 0 284 288 294 341 355 0
US&11 110 110 0 130 156 0 166 170 0 173 173 0 192 192 0 213 213 0 244 244 0 264 266 0 258 266 268 279 279 0 284 294 306 331 341 0
US&12 144 148 0 134 156 0 166 170 0 173 173 0 192 192 0 213 213 0 244 256 0 264 264 0 258 266 0 279 279 0 284 294 0 331 355 0
US&14 108 112 0 156 160 0 166 170 0 173 173 0 192 192 0 213 225 0 244 244 0 260 266 0 266 266 0 279 279 0 288 294 0 341 355 0
US&16 110 110 0 156 156 0 166 170 0 173 173 0 192 192 0 213 213 0 256 256 0 264 266 0 258 266 0 279 279 0 284 306 0 341 341 0
US&17 0 0 0 134 156 0 166 170 0 173 173 0 192 192 0 213 213 0 236 244 0 0 0 0 258 266 0 279 279 0 288 288 0 331 355 0
US&19 110 110 0 134 154 0 166 170 0 173 173 0 192 192 0 213 213 0 244 244 0 260 264 0 266 266 0 279 279 0 288 298 0 355 355 0
US&20 108 108 0 134 156 0 166 170 0 173 173 0 192 192 0 213 213 0 244 244 0 264 266 0 258 266 0 279 279 0 284 288 0 355 355 0
US&21 110 110 0 134 134 0 166 170 0 173 173 0 192 192 0 217 217 0 242 244 0 260 260 0 266 268 0 279 279 0 288 286 0 341 341 0
US&22 0 0 0 134 156 0 166 170 0 173 175 0 192 195 0 213 213 0 242 244 0 260 264 0 266 268 0 279 279 0 294 296 0 341 341 0
US&23var 136 136 0 142 156 206 170 170 0 173 175 0 192 192 0 213 217 0 244 244 0 260 266 0 266 268 270 273 279 0 288 294 296 331 341 0
US&23 136 136 0 142 156 206 170 170 0 173 175 0 192 192 0 213 217 0 244 244 0 260 266 0 266 268 270 273 279 0 288 294 0 331 341 0
US&24 108 112 0 156 156 0 166 170 0 173 173 0 192 195 0 217 225 0 244 244 0 260 266 0 266 268 0 279 279 0 284 288 296 341 355 0
GDT&01 110 110 0 134 134 0 166 166 0 173 173 0 192 192 0 213 213 0 242 244 0 260 260 0 258 268 0 279 279 0 288 296 0 341 355 0
GDT&02 0 0 0 134 156 0 166 166 0 173 175 0 189 195 0 213 225 0 242 242 0 260 260 0 258 266 0 279 279 0 284 294 0 341 355 0
GDT&03 110 110 0 134 156 0 166 170 0 173 173 0 189 192 195 213 213 0 242 244 0 260 264 0 258 266 268 279 279 0 288 294 0 341 355 0
GDT&04 110 110 0 134 156 0 166 170 0 173 173 0 189 192 0 213 213 0 242 244 0 260 264 0 258 266 268 279 279 0 284 294 296 341 355 0
GDT&05 0 0 0 156 156 0 166 170 0 173 173 0 192 195 0 213 213 0 242 244 0 260 264 0 258 266 0 279 279 0 288 296 0 341 355 0
GDT&06 110 110 0 156 156 0 166 170 0 173 175 0 192 192 0 213 213 0 242 244 0 260 264 0 258 266 0 279 279 0 284 284 0 341 355 0
GDT&07 0 0 0 156 156 0 166 166 0 173 175 0 192 195 0 213 225 0 242 244 0 260 260 0 258 266 0 279 279 0 288 294 0 341 355 0
GDT&08 0 0 0 134 156 0 166 170 0 173 175 0 189 192 0 213 225 0 242 244 0 260 264 0 266 258 0 279 279 0 288 294 0 341 355 0
GDT&08.1 0 0 0 134 156 0 166 170 0 173 175 0 189 192 0 213 225 0 242 244 0 260 264 0 266 268 0 279 279 0 288 292 294 341 355 0
GDT&09 110 110 0 156 156 0 166 170 0 173 173 0 189 192 0 213 213 0 244 244 0 260 264 0 266 266 0 279 279 0 288 294 0 341 355 0
GDT&10 110 110 0 156 156 0 166 170 0 173 173 0 192 192 0 213 213 0 242 244 0 260 264 0 266 266 0 279 279 0 288 294 0 341 355 0
GDT&11 110 110 0 156 156 0 166 170 0 173 173 0 192 192 0 213 213 0 242 242 0 260 264 0 258 266 0 279 279 0 288 294 0 355 355 0
GDT&12 110 110 0 156 156 0 166 170 0 173 173 0 189 192 0 213 225 0 242 244 0 260 260 0 258 266 0 279 279 0 284 288 0 355 355 0
GDT&13 0 0 0 134 156 0 166 166 0 173 173 0 192 195 0 213 225 0 242 244 0 260 260 0 258 266 0 279 279 0 284 294 0 341 355 0
GDT&14 110 110 0 156 156 0 166 170 0 173 175 0 189 192 0 213 225 0 242 244 0 260 264 0 258 266 268 279 279 0 288 294 296 341 355 0
GDT&15 110 110 0 156 156 0 166 170 0 173 175 0 189 192 0 213 213 0 244 244 0 260 264 0 258 268 0 279 279 0 284 294 0 341 355 0
GDT&16 0 0 0 156 156 0 166 166 0 173 173 0 189 192 0 213 213 0 242 244 0 260 264 0 266 266 0 279 279 0 288 296 0 341 355 0
GDT&17 110 110 0 134 156 0 166 170 0 173 173 0 189 192 0 213 213 0 242 244 0 260 264 0 266 266 0 279 279 0 288 296 0 341 355 0
GDT&18 0 0 0 156 156 0 166 166 0 173 175 0 192 195 0 213 225 0 242 242 0 260 260 0 266 268 0 279 279 0 288 296 0 341 355 0
GDT&19 0 0 0 156 156 0 166 170 0 173 173 0 192 195 0 213 225 0 242 244 0 260 260 0 266 266 0 279 279 0 288 294 0 341 355 0
GDT&20 0 0 0 156 156 0 166 166 0 173 175 0 192 192 0 213 225 0 242 242 0 260 260 0 258 268 0 279 279 0 284 294 0 341 355 0

PinfSSR6 PinfSSR8 Pi02 Pi63 PinfSSR4 PinfSSR11D13* PiG11 Pi04 PinfSSR2 Pi70 Pi4B
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Supplementary Table 3.4 Polymorphic sites for a gene coding for a conserved hypothetical 

protein (PITG_11126) in 35 isolates of Phytophthora infestans. Isolates highlighted in yellow 

are those for which US-22 could not be a parent. Inferred haplotypes are identified with the 

letter H followed by a number. Total length of the sequence is indicated within parentheses. 

 
  

49 167 460 549 554 725
US+1 Y G R T G Y
US+6 C G G Y R C
US+7 C G G C A C
US+8 C G G Y R C
US+11 C G G C A C
US+12 C G G Y R C
US+14 C G G Y R C
US+16 C G G C A C
US+17 C G G C A C
US+19 C G G Y R C
US+20 C G G C A C
US+21 C G G T G C
US+22 C G G T G C
US+23 ' ' ' ' ' '
US+24 C G G Y R C
GDT+01 C G G T G C
GDT+02 C R G Y R C
GDT+03 C G G T G C
GDT+04 C A G C A C
GDT+05 C A G C A C
GDT+06 C G G T G C
GDT+07 C G G T G C
GDT+08 C R G Y R C
GDT+09 C A G C A C
GDT+10 C R G Y R C
GDT+11 C R G Y R C
GDT+12 C R G Y R C
GDT+13 C R G Y R C
GDT+14 C R G Y R C
GDT+15 C R G Y R C
GDT+16 C G G T G C
GDT+17 C G G T G C
GDT+18 C R G Y R C
GDT+19 C G G T G C
GDT+20 C R G Y R C
R(=(G/A Y(=(C/T

H1 C G G T G C
H2 T G A T G T
H3 T G G T G C
H4 C A G C A C
H5 C G G C A C

PITG_11126 3(7763bp)
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Supplementary Table 3.5 Polymorphic sites for a gene coding for a conserved hypothetical 

protein (PUA) in 35 isolates of Phytophthora infestans. Inferred haplotypes are identified with 

the letter H followed by a number. Total length of the sequence is indicated within 

parentheses. 

 

35 82 187 381 389 532 555 556 586
US+1 W W Y G A G Y W A
US+6 T T C S A G T T R
US+7 T T C G M R T T A
US+8 T T C G C A T T A
US+11 T T C G A G T T A
US+12 T T C C A G T T G
US+14 T T C G C A T T A
US+16 T T C G A G T T A
US+17 T T C G A G T T A
US+19 T T C S A G T T R
US+20 T T C G C A T T A
US+21 W W Y S M R T T A
US+22 T T C G C A T T A
US+23 W W Y S M R Y T A
US+24 T T C G C A T T A
GDT+01 T T C G M R T T A
GDT+02 T T C G M R T T A
GDT+03 T T C G M R T T A
GDT+04 T T C G C A T T A
GDT+05 T T C G M R T T A
GDT+06 T T C G C A T T A
GDT+07 T T C G M R T T A
GDT+08 T T C G M R T T A
GDT+09 T T C G M R T T A
GDT+10 T T C G C A T T A
GDT+11 T T C G C A T T A
GDT+12 T T C G M R T T A
GDT+13 T T C G M R T T A
GDT+14 T T C G C A T T A
GDT+15 T T C G C A T T A
GDT+16 T T C G C A T T A
GDT+17 T T C G C A T T A
GDT+18 T T C G M R T T A
GDT+19 T T C G M R T T A
GDT+20 T T C G M R T T A
M*=*C/A R*=*G/A S*=*C/G W*=*A/T Y*=*C/T

H1 T T C G A G T T A
H2 T T C C A G T T G
H3 T T C G A A T T A
H4 T T C G C A T T A
H5 A A T G A G C T A
H6 T T C G A G T A A
H7 A A C G C A T T A
H8 A A T C A A T T A
H9 T T C G C G C T A

PUA4(6094bp)
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Supplementary Table 3.6 Polymorphic sites for the gene ß-tubulin in 35 isolates of 

Phytophthora infestans. Inferred haplotypes are identified with the letter H followed by a 

number. Total length of the sequence is indicated within parentheses.  

 

  

583 808 829
US)1 C C T
US)6 C Y T
US)7 Y C Y
US)8 Y C Y
US)11 Y Y Y
US)12 C C T
US)14 Y C Y
US)16 C Y T
US)17 C C T
US)19 Y C Y
US)20 C Y T
US)21 C C T
US)22 Y C Y
US)23 Y C Y
US)24 Y C Y
GDT)01 C Y T
GDT)02 C C T
GDT)03 C C T
GDT)04 T C Y
GDT)05 C C T
GDT)06 C C T
GDT)07 C C T
GDT)08 Y C Y
GDT)09 C C T
GDT)10 C C T
GDT)11 Y C Y
GDT)12 C C T
GDT)13 C C T
GDT)14 Y C Y
GDT)15 C C T
GDT)16 Y C Y
GDT)17 Y C Y
GDT)18 Y C Y
GDT)19 C C T
GDT)20 C C T
Y$=$C/T

H1 C C T
H2 C T T
H3 T C C
H4 T C T

ß"tubulin4(8834bp)
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Supplementary Table 3.7 Polymorphic sites for the gene coding for the indole-3-

glycerolphosphate synthase-N-(5'-phosphoribosyl)anthranilate isomerase (TRP1) in 35 

isolates of Phytophthora infestans. Inferred haplotypes are identified with the letter H 

followed by a number. Total length of the sequence is indicated within parentheses. 

 

51 78 132 563 614 714
US+1 R A R R T G
US+6 G A A A W G
US+7 G A G G T G
US+8 G A G G T G
US+11 G R R R T G
US+12 G A R R W G
US+14 G A G G T G
US+16 G A R R T G
US+17 G A R R T G
US+19 G A R R T G
US+20 G A R R T G
US+21 G A G R T G
US+22 G A R G T G
US+23 G A R R T R
US+24 G A R G T G
GDT+01 G A G G T G
GDT+02 G A R G T G
GDT+03 G A G G T G
GDT+04 G A G G T G
GDT+05 G A R G T G
GDT+06 G A G G T G
GDT+07 G A R G T G
GDT+08 G A G G T G
GDT+09 G A G G T G
GDT+10 G A R G T G
GDT+11 G A G G T G
GDT+12 G A G G T G
GDT+13 G A G G T G
GDT+14 G A G G T G
GDT+15 G A R G T G
GDT+16 G A G G T G
GDT+17 G A G G T G
GDT+18 G A G G T G
GDT+19 G A R G T G
GDT+20 G A G G T G
R&=&G/A W&=&A/T

H1 G A G G T A
H2 G A G A T G
H3 G A A A T G
H4 G G A A T G
H5 G A G G T G
H6 A A A A T G
H7 G A A A A G
H8 G A A G T G

TRP14(8244bp)
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Supplementary Table 3.8 Microsatellite allele names and sizes for the twelve-microsatellite loci used in this study. Allele sizes 

can differ slightly from one laboratory to another because of different equipment. In order to compare across locations, the 

community uses common standards to identify alleles. This sometimes results in an allele name being slightly different from the 

detected size. This keeps the allele names consistent with earlier publications [26].  

 

  
Allele$name 108 110 112 136 144 148
Allele$size 106 108 110 135 143 148
Allele$name 130 134 142 154 156 160 200 206
Allele$size 130 134 142 155 157 161 200 206
Allele$name 166 170
Allele$size 171 175
Allele$name 173 175 177
Allele$size 173 175 177
Allele$name 189 192 195
Allele$size 188 191 194
Allele$name 213 217 225
Allele$size 216 220 228
Allele$name 236 242 244 256
Allele$size 238 244 246 258
Allele$name 260 264 266
Allele$size 262 266 268
Allele$name 258 266 268 270
Allele$size 260 268 270 272
Allele$name 273 276 279
Allele$size 272 275 280
Allele$name 284 288 290 292 294 296 298 306
Allele$size 284 288 290 292 294 296 298 306
Allele$name 331 341 355
Allele$size 331 341 356

SSR6

D13

SSR8

Pi02

Pi63

SSR4

SSR11

PiG11

Pi04

SSR2

Pi70

Pi4B
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Supplementary Table 3.9 Microsatellite calls for multilocus genotypes (MLGs) of Phytophthora infestans used in this study. 

Isolates highlighted in grey are those for which US-22 could not be a parent. The alleles shown in red are those not present in US-

22. 

 

 

  

MLG 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
US&22 0 0 0 134 156 0 166 170 0 173 175 0 192 195 0 213 213 0 242 244 0 260 264 0 266 268 0 279 279 0 294 296 0 341 341 0
GDT&01 110 110 0 134 134 0 166 166 0 173 173 0 192 192 0 213 213 0 242 244 0 260 260 0 258 268 0 279 279 0 288 296 0 341 355 0
GDT&02 0 0 0 134 156 0 166 166 0 173 175 0 189 195 0 213 225 0 242 242 0 260 260 0 258 266 0 279 279 0 284 294 0 341 355 0
GDT&03 110 110 0 134 156 0 166 170 0 173 173 0 189 192 195 213 213 0 242 244 0 260 264 0 258 266 268 279 279 0 288 294 0 341 355 0
GDT&04 110 110 0 134 156 0 166 170 0 173 173 0 189 192 0 213 213 0 242 244 0 260 264 0 258 266 268 279 279 0 284 294 296 341 355 0
GDT&05 0 0 0 156 156 0 166 170 0 173 173 0 192 195 0 213 213 0 242 244 0 260 264 0 258 266 0 279 279 0 288 296 0 341 355 0
GDT.06 110 110 0 156 156 0 166 170 0 173 175 0 192 192 0 213 213 0 242 244 0 260 264 0 258 266 0 279 279 0 284 284 0 341 355 0
GDT&07 0 0 0 156 156 0 166 166 0 173 175 0 192 195 0 213 225 0 242 244 0 260 260 0 258 266 0 279 279 0 288 294 0 341 355 0
GDT&08 0 0 0 134 156 0 166 170 0 173 175 0 189 192 0 213 225 0 242 244 0 260 264 0 266 258 0 279 279 0 288 294 0 341 355 0
GDT&08.1 0 0 0 134 156 0 166 170 0 173 175 0 189 192 0 213 225 0 242 244 0 260 264 0 266 268 0 279 279 0 288 292 294 341 355 0
GDT&09 110 110 0 156 156 0 166 170 0 173 173 0 189 192 0 213 213 0 244 244 0 260 264 0 266 266 0 279 279 0 288 294 0 341 355 0
GDT&10 110 110 0 156 156 0 166 170 0 173 173 0 192 192 0 213 213 0 242 244 0 260 264 0 266 266 0 279 279 0 288 294 0 341 355 0
GDT.11 110 110 0 156 156 0 166 170 0 173 173 0 192 192 0 213 213 0 242 242 0 260 264 0 258 266 0 279 279 0 288 294 0 355 355 0
GDT.12 110 110 0 156 156 0 166 170 0 173 173 0 189 192 0 213 225 0 242 244 0 260 260 0 258 266 0 279 279 0 284 288 0 355 355 0
GDT&13 0 0 0 134 156 0 166 166 0 173 173 0 192 195 0 213 225 0 242 244 0 260 260 0 258 266 0 279 279 0 284 294 0 341 355 0
GDT&14 110 110 0 156 156 0 166 170 0 173 175 0 189 192 0 213 225 0 242 244 0 260 264 0 258 266 268 279 279 0 288 294 296 341 355 0
GDT&15 110 110 0 156 156 0 166 170 0 173 175 0 189 192 0 213 213 0 244 244 0 260 264 0 258 268 0 279 279 0 284 294 0 341 355 0
GDT&16 0 0 0 156 156 0 166 166 0 173 173 0 189 192 0 213 213 0 242 244 0 260 264 0 266 266 0 279 279 0 288 296 0 341 355 0
GDT&17 110 110 0 134 156 0 166 170 0 173 173 0 189 192 0 213 213 0 242 244 0 260 264 0 266 266 0 279 279 0 288 296 0 341 355 0
GDT&18 0 0 0 156 156 0 166 166 0 173 175 0 192 195 0 213 225 0 242 242 0 260 260 0 266 268 0 279 279 0 288 296 0 341 355 0
GDT&19 0 0 0 156 156 0 166 170 0 173 173 0 192 195 0 213 225 0 242 244 0 260 260 0 266 266 0 279 279 0 288 294 0 341 355 0
GDT&20 0 0 0 156 156 0 166 166 0 173 175 0 192 192 0 213 225 0 242 242 0 260 260 0 258 268 0 279 279 0 284 294 0 341 355 0

PinfSSR6 PinfSSR8 Pi02 Pi63 PinfSSR4 PinfSSR11D13 PiG11 Pi04 PinfSSR2 Pi70 Pi4B
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Supplementary Table 3.10 Microsatellite calls for multilocus genotypes (MLGs) of Phytophthora infestans used in this study. 

Isolates highlighted in grey are those for which US-11 could not be a parent. The alleles shown in red are those not present in US-

11. 

 
 

  

MLG 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
US&11 110 110 0 130 156 0 166 170 0 173 173 0 192 192 0 213 213 0 244 244 0 264 266 0 258 266 268 279 279 0 284 294 306 331 341 0
GDT'01 110 110 0 134 134 0 166 166 0 173 173 0 192 192 0 213 213 0 242 244 0 260 260 0 258 268 0 279 279 0 288 296 0 341 355 0
GDT'02 0 0 0 134 156 0 166 166 0 173 175 0 189 195 0 213 225 0 242 242 0 260 260 0 258 266 0 279 279 0 284 294 0 341 355 0
GDT&03 110 110 0 134 156 0 166 170 0 173 173 0 189 192 195 213 213 0 242 244 0 260 264 0 258 266 268 279 279 0 288 294 0 341 355 0
GDT&04 110 110 0 134 156 0 166 170 0 173 173 0 189 192 0 213 213 0 242 244 0 260 264 0 258 266 268 279 279 0 284 294 296 341 355 0
GDT'05 0 0 0 156 156 0 166 170 0 173 173 0 192 195 0 213 213 0 242 244 0 260 264 0 258 266 0 279 279 0 288 296 0 341 355 0
GDT&06 110 110 0 156 156 0 166 170 0 173 175 0 192 192 0 213 213 0 242 244 0 260 264 0 258 266 0 279 279 0 284 284 0 341 355 0
GDT'07 0 0 0 156 156 0 166 166 0 173 175 0 192 195 0 213 225 0 242 244 0 260 260 0 258 266 0 279 279 0 288 294 0 341 355 0
GDT'08 0 0 0 134 156 0 166 170 0 173 175 0 189 192 0 213 225 0 242 244 0 260 264 0 266 258 0 279 279 0 288 294 0 341 355 0
GDT'08.1 0 0 0 134 156 0 166 170 0 173 175 0 189 192 0 213 225 0 242 244 0 260 264 0 266 268 0 279 279 0 288 292 294 341 355 0
GDT&09 110 110 0 156 156 0 166 170 0 173 173 0 189 192 0 213 213 0 244 244 0 260 264 0 266 266 0 279 279 0 288 294 0 341 355 0
GDT&10 110 110 0 156 156 0 166 170 0 173 173 0 192 192 0 213 213 0 242 244 0 260 264 0 266 266 0 279 279 0 288 294 0 341 355 0
GDT'11 110 110 0 156 156 0 166 170 0 173 173 0 192 192 0 213 213 0 242 242 0 260 264 0 258 266 0 279 279 0 288 294 0 355 355 0
GDT'12 110 110 0 156 156 0 166 170 0 173 173 0 189 192 0 213 225 0 242 244 0 260 260 0 258 266 0 279 279 0 284 288 0 355 355 0
GDT'13 0 0 0 134 156 0 166 166 0 173 173 0 192 195 0 213 225 0 242 244 0 260 260 0 258 266 0 279 279 0 284 294 0 341 355 0
GDT&14 110 110 0 156 156 0 166 170 0 173 175 0 189 192 0 213 225 0 242 244 0 260 264 0 258 266 268 279 279 0 288 294 296 341 355 0
GDT&15 110 110 0 156 156 0 166 170 0 173 175 0 189 192 0 213 213 0 244 244 0 260 264 0 258 268 0 279 279 0 284 294 0 341 355 0
GDT'16 0 0 0 156 156 0 166 166 0 173 173 0 189 192 0 213 213 0 242 244 0 260 264 0 266 266 0 279 279 0 288 296 0 341 355 0
GDT'17 110 110 0 134 156 0 166 170 0 173 173 0 189 192 0 213 213 0 242 244 0 260 264 0 266 266 0 279 279 0 288 296 0 341 355 0
GDT'18 0 0 0 156 156 0 166 166 0 173 175 0 192 195 0 213 225 0 242 242 0 260 260 0 266 268 0 279 279 0 288 296 0 341 355 0
GDT'19 0 0 0 156 156 0 166 170 0 173 173 0 192 195 0 213 225 0 242 244 0 260 260 0 266 266 0 279 279 0 288 294 0 341 355 0
GDT'20 0 0 0 156 156 0 166 166 0 173 175 0 192 192 0 213 225 0 242 242 0 260 260 0 258 268 0 279 279 0 284 294 0 341 355 0

PinfSSR6 PinfSSR8 Pi02 Pi63 PinfSSR4 PinfSSR11D13 PiG11 Pi04 PinfSSR2 Pi70 Pi4B
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Supplementary Table 3.11 Possible genotypes for the allozyme glucose-6-phosphate isomerase and microsatellite loci of putative 

parents for the GDT isolates when assuming that lineage US-22 is one of the parental genotypes for these isolates. Clonal lineage 

US-22 could not be excluded as a potential parent for 17 of the 20 NYS-2010/11 isolates based on the banding patterns for the 

allozyme glucose-6-phosphate isomerase and microsatellite data. In red we show the alleles that the alternate parent or parents 

must possess to give rise to the genotypic profiles observed in the NYS-2010/11 isolates when assuming that lineage US-22 is one 

of the parental genotypes for these isolates. 

 

  

D13 PiG11 Pi04 PinfSSR2 Pi70 Pi4B PinfSSR6 PinfSSR8 Pi02 Pi63 PinfSSR4 PinfSSR11

US322 100 122 A2 0 134/156 166/170 173/175 192/195 213 242/244 260/264 266/268 279 294/296 341

GDTs 100 111 122 A1/A2 0/110 134/156 166/170 173/175 189/192/195 213/225 242/244 260/264 258/266/268 279 284/288/294/296 341/355
Other;parent(s) 111 A1 110 134/156 166/170 173/175 189 225 242/244 260/264 258 279 284/288 355

Alleles;present Mating;
type

GPI
Microsatellite;loci
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Supplementary Table 3.12 Possible genotypes of loci PITG_11126, PUA, β-tubulin and TRP1 of putative parents for the GDT 

isolates when assuming that lineage US-22 is one of the parental genotypes for these isolates. In red we show the alleles that the 

alternate parent or parents must possess to give rise to the genotypic profiles observed in the NYS-2010/11 isolates when assuming 

that lineage US-22 is one of the parental genotypes for these isolates. 

 
 

 
 

 

!! PITG_11126)(776$bp)) PUA)(609$bp)) !,tubulin)(883$bp)) TRP1)(824$bp))
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CHAPTER 4* 

Enroute to GWAS: Exploring phenotypic diversity in Phytophthora infestans 

4.1 Abstract 

Phytophthora infestans, the causal agent of late blight of potatoes and tomatoes has been a 

major threat to global food security ever since the Irish famine of the 1800's. The use of 

resistant cultivars has proven to be challenging due to the absence of durable resistance genes. 

Furthermore, despite the usefulness of fungicides, the pathogen has proven capable of 

evolving resistance to certain highly effective fungicides. An understanding of the genetic 

basis of complex traits important to the pathogenicity or epidemiology of this organism would 

be of value in managing late blight because rapid analysis using molecular markers could 

inform the selection of the most effective mitigation tactics. As a first step in determining the 

genetic basis of some of these traits we systematically assessed five traits (mating type, 

pathogenicity on potato and tomato, sensitivity to mefenoxam, the effect of temperature on 

release of zoospores, and the effect of temperature on mycelial growth) of a diverse panel of 

P. infestans: The panel consisted of i) the dominant clones in the US from the 1990s to 2013, 

ii) a recombinant population detected in northeastern US in 2010 and 2011, iii) a natural 

sexual population from Mexico, and iv) an isolate from the Netherlands. For these isolates we 

initiated a genome-wide association study to identify genetic markers associated with mating 

type.  
                                                
* Danies G, Romero-Navarro JA, Gonzalez-Garcia LN, Myers K, Bevels E, Bond M, Wu Y, and Fry WE. 2015. 
Genetic architecture of complex traits of Phytophthora infestans determined through genome-wide association 
mapping. In preparation. 
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4.2 Key words  

Phytophthora infestans, mating type, pathogenicity on potato and tomato, sensitivity to 

mefenoxam, rate of indirect germination, effect of temperature on mycelial growth, genome-

wide association study 

4.3 Introduction  

Late blight caused by the pathogen Phytophthora infestans, has been a major threat to global 

food security ever since the Irish famine of the 1800's. In the US, late blight is potentially 

important on nearly all of the approximately 1.1 million acres of potato production 

(Agricultural Statistics Board, NASS, USDA). The worldwide cost of potato late blight alone 

exceeds $5 billion per year, including $1 billion spent on fungicides (Judelson, USAblight). 

On tomatoes, the disease can be and has been equally devastating. The most recent example 

occurred in 2009 when infected tomato transplants were distributed via national large retail 

stores who obtained transplants from a national supplier. The subsequent pandemic in the 

mid-Atlantic and northeast regions eliminated tomato plants in many organic farms and home 

gardens.  

 Management of late blight mostly involves cultural procedures and fungicides designed to 

reduce the introduction, survival, or infection rate of P. infestans. Resistant cultivars are 

employed rarely in potato production due to the absence of durable resistance (R) genes. The 

use of fungicides has helped control late blight for more than a century, but the pathogen has 

proven capable of evolving resistance to certain highly effective fungicides. For example, the 

fungicide metalaxyl (now mefenoxam) was used with great success in the 1970s and 1980s, 

but resistant strains appeared that caused devastating losses (Fry and Goodwin 1997, 



 

 - 129 - 

Goodwin et al. 1996). Interestingly, due to year-to-year population shifts, chemicals that lose 

effectiveness one year may regain value. For example, the 2009 late blight pandemic in the 

eastern US, was caused by a mefenoxam-sensitive lineage. The fact that mefenoxam was 

effective was not known widely until late in the season, too late to aid growers. This shows 

that knowledge of such traits can provide management opportunities. 

 Phenotypic analysis may take weeks to months, whereas certain molecular analyses of 

genotype can be accomplished in hours or days. Therefore, an understanding of the genetic 

basis of complex traits of value in managing late blight is critical to rapidly predict the 

pathogen’s phenotype. Informed management decisions have tangible economic and 

environmental benefits by leading to lower on-farm expenses, reduced fungicide applications, 

more effective disease suppression and more sustainable production. Despite the scientific 

efforts and research to identify the genetic basis behind these important pathogen traits, not 

much is known today. Most of the research has focused on the pathogen’s secreted host-

translocated RXLR effectors that are able to change the host’s physiology and facilitate 

colonization (Vleeshouwers et al. 2011).  

 Plant pathology and plant disease management are changing from a data-poor to a 

data-rich environment. Next-generation sequencing of plant pathogens is revolutionizing the 

field as newly abundant data enable and facilitate the discovery and use of millions of single 

nucleotide polymorphisms (SNPs) in diverse genomes. Genotyping by sequencing (GBS) is a 

next-generation sequencing protocol that has allowed the discovery and genotyping of SNPs 

in a variety of organisms including P. infestans. The discovery of SNPs associated with a trait 

of interest would allow the development of DNA-based assays for phenotypic traits of 

interest. In order to enable a genome-wide association study to identify SNP markers 
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associated with traits of interest, we needed precise phenotypic data on a large number of 

diverse isolates of P. infestans. We chose to assess mating type, pathogenicity on potato and 

tomato, sensitivity to mefenoxam, the effect of temperature on zoospore release from 

sporangia, and the effect of temperature on mycelial growth of a diverse panel of P. infestans 

isolates. The panel consisted of i) the dominant clones in the US from the 1990s to 2013, ii) a 

recombinant population detected in northeastern US in 2010 and 2011, iii) a natural sexual 

population from Mexico, and iv) an isolate from the Netherlands. For these isolates we 

initiated a genome-wide association study to identify genetic markers associated with mating 

type. 

4.4 Materials and Methods 

4.4.1 Isolates 

The isolates used in this study included six US clonal lineages (US-7, US-8, US-11, US-22, 

US-23, and US-24), 18 isolates that seem to have characteristics of a sexually reproducing 

population collected in and around west-central New York State in 2010 and 2011(from now 

on referred to as the NYS-2010/11population) (Danies et al. 2014), one individual from the 

Netherlands, and 36 isolates collected in Central Mexico where sexual reproduction is 

ubiquitous. For one of the six US clonal lineages (US-23), six individuals that showed 

differences in their microsatellite profiles were included. Isolates were maintained on pea agar 

(Jaime-Garcia et al. 2000) with antibiotics (ampicillin (100 µg ml-1), rifampicin (125  µg ml-1), 

and pentachloronitrobenzene (25  µg ml-1) and on tomato and/or potato leaflets (depending on 

the isolate) at 20ºC. 
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4.4.2 Phenotypic assays 

4.4.2.1 Mating type 

Mating type was determined by pairing an unknown isolate with a known isolate of P. 

infestans, either A1 mating type (US970001 US-17 genotype) or A2 mating type (US040009, 

US-8 genotype), on rye B (Caten and Jinks 1968) or pea (Jaime-Garcia et al. 2000) agar 

media. Negative controls consisted of pairing the unknown isolate with itself. Petri plates 

were kept at 20°C for 10-14 days. The hyphal interface of the two colonies was investigated 

microscopically using 125X magnification. Isolates that formed oospores at the interface with 

the known A1 isolate were designated A2 and those that formed oospores with the known A2 

isolate were designated A1. The known isolates (A1 and A2) were paired as positive controls, 

while negative controls consisted of pairing the known isolates with themselves (same mating 

type). 

 Isolation of single zoospores was done for isolates that produced oospores in the 

presence of both the A1 and the A2 mating type testers as well as in the negative control 

(unknown isolate paired with itself). To do this, sporangia were washed with sterile distilled 

water from sporulating lesions on leaflets. The sporangial suspensions were adjusted to 8,000 

sporangia per ml using a haemocytometer and maintained at 4ºC for 3 to 4 h to induce 

zoospore release. Subsequently, inoculations were carried out in 100 mm petri plates 

containing 20 ml of water agar (0.75%). Three independent petri plates were inoculated with 

20, 40, or 100 µl of zoospore suspension of the same isolate. The zoospore suspension was 

spread using a sterile glass rod. Plates were then kept at 10ºC for 12 h to encourage zoospore 

germination and subsequently maintained at 15ºC for another 24 h. Individual zoospores were 

then picked using a sterile scalpel and placed onto pea agar medium. Colonies formed from 
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single zoospores were again tested for mating type as explained above. 

4.4.2.2 Pathogenicity on potato and tomato 

A sporangial suspension was used for inoculation of potato and tomato leaflets. Sporangia 

were washed from sporulating lesions on tomato or potato leaflets, which had been 

maintained in water-agar moist chambers at 20ºC for 6 to 8 days prior to inoculation. The 

sporangial suspension was adjusted to 10,000 sporangia per ml using a haemocytometer and 

maintained at 4ºC for 2 h.  

 In order to determine differences in pathogenicity on potato and tomato, each isolate 

was inoculated onto both potato ‘Yukon Gold’ and tomato ‘Rutgers’ leaflets. Plants were 

grown in the greenhouse (ca 25°C daytime and 20°C nighttime) and when four to five weeks 

old, recently matured leaflets were harvested. Inoculations were carried out in 150 mm petri 

plates containing 75 ml of water agar (1.5%) in the smaller half – which served as the lid 

(top).  Leaflets were placed (abaxial side up) on the base of the moist chamber. Each moist 

chamber contained five potato or five tomato leaflets, abaxial side up.  All five leaflets were 

inoculated with 20 µL of a sporangial suspension (described above) of the same isolate, 

deposited on one side of the main vein of the leaflet.  After the leaflets were inoculated, the 

petri plate was sealed with parafilm and incubated at 15°C with a 16-h light period. Two days 

after inoculation, inoculum droplets were dried with Kimwipes, subsequently sealed with 

parafilm and incubated at 20ºC. The experiment was conducted at least twice for each isolate.  

 Lesion size and number of sporangia per lesion were measured at six days after 

inoculation. Lesion areas were estimated by taking two perpendicular measurements (length 

and width) starting from the widest diameter, using a ruler. Subsequently, the number of 

sporangia produced on each lesion was determined. Individual lesions were excised and 
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placed into 14-ml disposable polypropylene culture tubes with 3 ml of preservative solution 

(0.04 M copper sulfate, 0.2 M sodium acetate, acetic acid, pH 5.4) (Spielman et al. 1991). The 

tubes were then vortexed for 10 seconds to dislodge and suspend sporangia, and aliquots 

counted with a haemocytometer. Haemocytometer counts were repeated at least twice. The 

total number of sporangia per lesion was then calculated by averaging all the independent 

counts.  

4.4.2.3 Mefenoxam sensitivity 

Mefenoxam sensitivity of isolates was assessed as described previously by Therrien et al. 

(1993), except that mefenoxam was used in place of metalaxyl. Isolates were grown on pea 

agar amended with Ridomil Gold SL (Syngenta, Greensboro, NC) such that the final 

concentrations of the active ingredient (mefenoxam) were 0, 5, or 100 μg ml-1. Mycelial plugs 

(8 mm diameter) were obtained from actively growing cultures, transferred to the test plates 

and incubated for approximately 10 to 12 days, or until growth on the control mefenoxam 

plate (0 μg ml-1) was approximately 75 to 90% of the diameter of the petri plate. Assessment 

of mefenoxam sensitivity was determined on the basis of radial growth of cultures grown on 

plates amended with mefenoxam (5 or 100 µg ml-1) compared to non-amended controls. 

Growth on mefenoxam-amended plates, 5 and 100 µg ml-1, was represented as a proportion of 

the growth on the non-amended control plates. 

4.4.2.4 Rate of indirect germination at 4ºC 

Sporangia were observed at 30 and 120 minutes after incubation at 4°C. Inoculation was 

performed as described above for the pathogenicity on potato and tomato assay except that 

sporangial suspension was adjusted to 4,000 sporangia per ml and was immediately used to 
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conduct the rate of indirect germination experiments. Independent measurements of total 

germination were carried out for each respective time point. That is, a unique slide with three 

circular water agar droplets that had each been inoculated with 20 µl of the same sporangial 

suspension was assessed for each time point. This was due to the difficulty of maintaining 

slides at 4°C while assessing germination microscopically. Percentage of total germination 

that was indirect was calculated for each of the time points considered. The experiment was 

conducted at least twice for each isolate.  

 Effects of time and lineage on zoospore release (indirect germination) were analyzed 

using JMP Pro 11 (SAS Institute). A mixed effects model was conducted, where time, 

lineage, and their interaction were fixed effects, and trial and replicate nested within trial were 

considered random effects. Lineages that exhibited differences in mean indirect germination, 

within a time period (30 or 120 min), were identified using contrasts and Bonferroni corrected 

P-values. 

4.4.2.5 Effect of temperature on mycelial growth 

To determine the effect of temperature on mycelia growth, 1 cm diameter plugs of each 

lineage were placed in a 100 x 15 mm petri plate containing 10 ml of vacuum filtered pea 

broth. Each replicate consisted of four plates, each incubated at one of four different 

temperatures (10, 15, 20, and 25ºC) for eight days. Mycelia were subsequently dried using 

vacuum filtration, frozen at -80ºC, lyophilized, and placed in a drying chamber until it was 

weighed using a Sartorius A120S analytical balance. Two to six independent replicates were 

conducted for each isolate.  

 Effects of temperature and lineage on mycelial growth were analyzed using JMP Pro 

11 (SAS Institute). A mixed effects model analysis was conducted, where temperature, 
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lineage, and their interaction were fixed effects, and replicate nested within lineage was 

considered a random effect. Because growth at 10ºC for all isolates was significantly less than 

growth at 15, 20, or 25ºC, we eliminated this temperature from our analyses to detect lineages 

that exhibited significant growth differences as a function of temperature at 15, 20, and 25ºC. 

Lineages that exhibited significant growth differences as a function of temperature at 15, 20, 

and 25ºC were identified using contrasts and Bonferroni corrected P-values. These lineages 

were further investigated using an LSMeans Differences Student’s t test. 

4.4.3 Genotyping and SNP discovery 

Genomic DNA was isolated with a DNeasy® Plant Mini Kit (QIAGEN, Germany). 

Genotyping-by-Sequencing was performed as described by Elshire et al. (2011) at the 

Institute of Genomic Diversity (Cornell University). Briefly, genome complexity was reduced 

by digesting total genomic DNA from individual samples with the typeII restriction 

endonuclease ApeKI, which recognizes a degenerate 5 bp sequence (GCWGC, where W is A 

or T), and creates a 5’ overhang (3 bp). Digested products were then ligated to adaptor pairs 

with enzyme-compatible overhangs; one adapter contained the barcode sequence and a 

binding site Illumina sequencing primer. Samples were then pooled, purified, and amplified 

with primers compatible to the adapter sequences. GBS library fragment-size distributions 

were checked on a BioAnalyzer (Agilent Technologies, Inc., USA). The PCR products were 

quantified and diluted for sequencing on the Illumina HiSeq 2500 (Illumina Inc., USA).  

 Samples sequenced in triplicates or duplicates (for five US-23 isolates, two Mexican 

isolates, and one isolate from Netherlands) served as technical replicates. Each of two 96-well 

plates, were multiplexed on a single Illumina flow cell lane. This comprised a total of 192 
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samples (including two blanks as controls). The GBS discovery pipeline for species with a 

reference genome, available in TASSEL (version 3.0.166 Date: April 17, 2014) (Bradbury et 

al. 2007), was used. Sequence reads were mapped against the P. infestans T30-4 draft genome 

sequence downloaded from the Broad Institute. After merging triplicates or duplicates we 

ended up with 66 P. infestans isolates and 570,192 SNPs. We subsequently filtered for 

proportion of missing data < 0.2 and for a minor allele frequency > 0.1. The resulting number 

of SNPs after filtering was 98,013. Filtered SNPs were used for analysis of population 

structure and marker trait associations. To estimate population structure in our panel, a 

Principal Coordinate Analysis (PCoA) was performed.  

4.4.4 Genome-wide association analysis for mating type 

Four statistical models comprising both general linear models (GLM) and mixed linear 

models (MLM) were used to calculate P-values for associating each marker with the trait of 

interest. We accounted for population structure to avoid spurious associations by TASSEL. 

The first five principal coordinates that together explained approximately 32% of the 

cumulative variance of all markers were included in the model as the Q-matrix. Kinship was 

calculated as described in Endelman and Jannink (2012) using the non-shrunk version. A 

kinship matrix (K-matrix) was computed in TASSEL using 5,007 randomly selected SNP 

markers. This matrix provides the estimated membership coefficients for each isolate in each 

of the subgroups. The K-matrix was used for population correction in the association models. 

 Results were compared to determine the best model for our analysis. The following 

models were tested: i) Naive model: GLM without any correction for population structure; ii) 

P-model: GLM with the Q-matrix as correction for population structure; iii) K-model: MLM 
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with K-matrix as correction for population structure, and iv) PK-model: MLM with Q-matrix 

and K-matrix as correction for population structure. The critical P-values for assessing the 

significance of SNPs associated with mating type were calculated with Bonferroni correction.  

4.5 Results 

4.5.1 Phenotypic assays 

4.5.1.1 Mating type 

Results for mating of each of the 66 isolates used are shown in Supplementary Table 1. In 

total there were 30 lineages of A1 mating type and 24 lineages of A2 mating type. For six of 

the 36 Mexican isolates assayed, oospores were observed in the negative controls (isolates 

paired against themselves) (Supplementary Table 4.1). Single-zoospore (uninucleate) isolates 

derived from ‘self-fertile’ strains paired against A1 and A2 mating type testers were also able 

to ‘self-fertilize’. Pea agar plates (where isolates were routinely maintained) of these six 

Mexican isolates were further assessed for oospore production. On these plates isolates were 

not paired against themselves or against other isolates. Yet, production of oospores was again 

observed.  

4.5.1.2 Pathogenicity on potato and tomato 

Pathogenicity on potato and tomato was assessed for a subset of isolates within our panel 

(three isolates representing dominant clones in the US from the 1990s to 2013, ten isolates 

from a recombinant population detected in northeastern US in 2010 and 2011, seven isolates 

from a natural sexual population from Mexico, and one isolate form the Netherlands). 

Differences in pathogenicity on potato and tomato were observed among the 21 different P. 
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infestans genotypes studied. Clonal lineage US-24, 7 isolates from Mexico, and one isolate 

from the Netherlands, showed a strong preference for potatoes (Figure 4.1). In contrast, clonal 

lineage US-7, and all isolates from the NYS-2010/11 population seemed to grow equally well 

on both potatoes and tomatoes (Figure 4.1). Lesion size ranged from 14.74 cm2 (MX-02, on 

potato) to 0.49 cm2  (MX-04, on tomato). For all isolates studied lesion size was greater on 

potatoes than on tomatoes. For the seven Mexican isolates studied, lesion area on tomatoes 

was restricted to the place where the inoculum drop was deposited. Sporulation ranged from 

53,389 sporangia per ml (MX-02, on potato) to 0 sporangia per ml (MX-01, MX-03, and MX-

13, on tomato).  

 

Host
Potato
Tomato

Lineage

US-07
US-23

US-24

GDT-0
3

GDT-0
4

GDT-0
5

GDT-0
6

GDT-1
1

GDT-1
2

GDT-1
3

GDT-1
6

GDT-1
7

GDT-1
9

MX-01
MX-02

MX-03
MX-04

MX-13
MX-15

MX-17 NL

Sp
or

ul
at

io
n 

(s
po

ra
ng

ia
 p

er
 m

l)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Host
Potato
Tomato

Lineage

US-07
US-23

US-24

GDT-0
3

GDT-0
4

GDT-0
5

GDT-0
6

GDT-1
1

GDT-1
2

GDT-1
3

GDT-1
6

GDT-1
7

GDT-1
9

MX-01
MX-02

MX-03
MX-04

MX-13
MX-15

MX-17 NL

Le
si

on
 a

re
a

0

2

4

6

8

10

12

14

16

18A
.

B
.



 

 - 139 - 

Figure 4.1 Pathogenicity on potato and tomato for isolates of Phytophthora infestans from the 

US, Mexico and the Netherlands. A. Lesion areas (cm2) produced on potato and tomato. B. 

Sporangia produced per infection site on potato and tomato. There was one isolate per 

genotype. Error bars represent on standard error from the mean. Lesion areas and sporulation 

were measured 6 days post inoculation. 

4.5.1.3 Mefenoxam sensitivity 

Sensitivity to mefenoxam was assessed for 65 of the 66 isolates (isolate MX-36 was not 

included due to its slow growth rate). In general, the US standards used showed the response 

expected (Figure 4.2A and Supplementary Table 4.1). Isolates belonging to clonal lineages 

US-7 and US-11 were highly resistant; the isolate belonging to clonal lineage US-8 displayed 

an intermediate resistance, and isolates belonging to clonal lineages US-22, US-23, and US-

24 where generally sensitive to mefenoxam. The NYS-2010/11 isolates were mostly sensitive 

to mefenoxam (Figure 4.2B and Supplementary Table 4.1). In contrast, isolates from Mexico 

showed a wide variety of response to mefenoxam (Figure 4.2C and Supplementary Table 4.1). 

Eight isolates were resistant to mefenoxam, nine displayed an intermediate phenotype, and 18 

were sensitive. For two isolates, MX-23 and MX-27, mycelial growth seemed to be enhanced 

by the presence of mefenoxam.  
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Figure 4.2 Response of Phytophthora infestans isolates to mefenoxam. A. Isolates belonging 

to six US clonal lineages that have been prevalent at one time or that are prevalent today in 

the US; B. Eighteen isolates that seem to have characteristics of a sexually reproducing 

population collected in and around west-central New York State in 2010 and 2011; and C. 

Thirty-five isolates collected in Central Mexico where sexual reproduction is ubiquitous. 

Relative growth (as percentage of control) at 5 μg ml
-1 (top) and 100 μg ml

-1 (bottom) relative 

to control (0 μg ml
–1

). Isolates are described as resistant when growth is more than 40% 

relative to the control (0 μg ml
–1

) on mefenoxam-amended plates (5 and 100 μg ml
-1
), 

intermediate when growth is more than 40% relative to the control (0 μg ml
–1

) on 5 μg ml
-1 

mefenoxam-amended plates but less than 40% relative to the control (0 μg ml
–1

) on 100 μg 

ml
–1 mefenoxam-amended plates, and sensitive when growth is less than 40% relative to the 

control on both 5 and 100 μg ml
–1 

mefenoxam amended plates. Error bars represent 1 standard 

error from the mean. 

 

4.5.1.4 Rate of indirect germination at 4ºC 

The rate of indirect germination was assessed for a subset of isolates within our panel (13 

isolates belonging to the NYS-2010/11 population and 13 isolates from Mexico). Varied 

responses were observed among the isolates studied. Sporangia of MX-3 and MX-4 released 

zoospores more rapidly than did sporangia of the other isolates. For example, within 30 min at 

4ºC, approximately 75% of the MX-3 and 52% of the MX-4 sporangia had liberated 

zoospores, whereas the average percentage of sporangia that had released zoospores for all 

isolates studied was approximately 20%. Within 30 min of incubation at 4ºC, zoospore release 
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was fastest for isolates MX-3, MX-4, MX-19, and MX 26. Zoospore release among these 

isolates did not differ significantly (P > 0.05). For 14 isolates zoospore release was 

significantly slower (within the first 30 min of incubation at 4ºC) than that observed for 

isolates MX-3, MX-4, MX-19, and MX-26. These isolates were GDT-5, GDT-6, GDT-7, 

GDT-12, GDT-15, GDT-16, MX-1, MX-2, MX-8, MX-16, MX-17, and MX-23.   

 

Figure 4.3 Proportion of sporangia that had germinated at 30 and 120 min at 4ºC. A. Thirteen 

isolates that seem to have characteristics of a sexually reproducing population collected in and 

around west-central New York State in 2010 and 2011; and B. Thirty-six isolates collected in 

Central Mexico where sexual reproduction is ubiquitous. Error bars represent one standard 

error from the mean. 
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4.5.1.5 Effect of temperature on mycelia growth 

The effect of temperature on mycelia growth was assessed for 56 of the 66 isolates. 

Differences in mycelial growth in response to temperature were found (P < 0.0001). Mycelial 

growth at 10˚C was consistently less than growth at 15, 20 or 25ºC for all isolates studied 

(Figure 4.2). We thus excluded this temperature from our analyses and proceeded to 

investigate differences in mycelial growth at 15, 20, and 25ºC. Differences in response to 

temperature within an isolate were analyzed. P values were adjusted for multiple testing using 

a Bonferroni correction. Six out of the 56 isolates evaluated  (Supplementary Table 4.2) 

showed significant differences between 15, 20 and 25ºC (P < 0.0009). Isolates MX-3 and 

MX-15 grew significantly less at 25ºC than at either 15 or 20ºC; Isolate MX-13 grew 

significantly better at 15ºC than at either 20 or 25ºC; Isolate MX-35 grew significantly less at 

15ºC than at either 20 or 25ºC; and isolates MX-21 and MX-34 grew significantly better at 

20ºC than at either 15 or 25ºC. With a less conservative P-value (α = 0.05) 12 additional 

isolates (US-8, US-22, US-23, GDT-05, GDT-16, MX-1, MX-2, MX-5, MX-9, MX-18, MX-

28, and MX-23) also showed differences in mycelial growth between temperatures (15, 20, 

and/or 25ºC) (data not shown). Average dry weights six days after incubation for all isolates 

assessed are shown in Supplementary Table 4.2 and Supplementary Figure 4.1. 

4.5.2 Genotyping and SNP discovery 

The total number of tags before merging was 2,285,465. Out of the total number of tags 

1,163,220 (50.9%) were aligned to unique positions, 913,010 (39.9%) were aligned to 

multiple positions, and 209,235 (9.2%) could not be aligned to the reference genome. 

Triplicates or duplicates were merged resulting in 66 P. infestans isolates and 570,192 SNPs. 
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After filtering we ended up with 98,013 high quality SNP markers. Twenty-nine thousand 

five hundred SNP markers were located in regions containing genes. These were distributed 

within 7,783 genes. Thus, 43% of the annotated genes contained SNP markers. The number of 

SNPs within gene regions and the number of SNPs located in intergenic regions are found in 

Figure 4.4. 

 

Figure 4.4 Number of SNP markers located within gene regions in red and SNP markers 

located in intergenic regions in blue. The first 500 scaffolds out of 4,921 are shown in this 

figure.  

4.5.3 Population structure  

A principal coordinate analysis was performed to provide spatial representation of the relative 

genetic distances among isolates of P. infestans included in this study (Figure 4.5). The first 

two principal coordinates explained 14.9 and 5.8 percent of the total variation, respectively. 

The first principal coordinate separated isolates belonging to the NYS-2010/11 population and 

clonal lineage US-22 from all other isolates. The Mexican isolates formed a single cluster that 

included clonal lineages US-7, US-8, US-11, and US-24. The second principal coordinate 

further separated isolates into three groups: 1) individuals belonging to clonal lineage US-23, 
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2) the isolate from the Netherlands, and 3) all other isolates.  

 

Figure 4.5 A two-dimensional plot of the Principal Coordinate Analysis (PCoA) of 

Phytophthora infestans isolates from Mexico, the Netherlands, and the US. The first and the 

second principal coordinates account for 14.9 and 5.8 of total variation, respectively.  

4.5.4 Genome-wide association analysis for mating type 

We tested four different models to detect associations between SNP markers and mating type.  

The quantile-quantile (QQ) plot of the observed P-values revealed a good overall fit with the 

mixed linear model (MLM), given that most of the P-values observed followed a uniform 

distribution, and only a few markers were in linkage disequilibrium with the causal 

polymorphism (Figure 4.6). The Q-matrix does not seem to affect the association results in 

either the GLM or the MLM. 
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Figure 4.6 QQ-plot for the genome-wide association study of the mating type trait in 

Phytophthora infestans. 

 The eleven SNP markers with lowest P-value associated with mating type in P. 

infestans were located in scaffolds 1, 6, 8, 10, 23, 69 and 109 (Figure 4.7). The closest genes 

within a 1000 kb flanking region upstream and downstream of each significant SNP are 

shown in Table 4.1.  



 

 - 147 - 

 

A. 

B. 

C. 

D. 



 

 - 148 - 

Figure 4.7 Manhattan plot of the genome-wide association study for the mating type trait in 

Phytophthora infestans. The y-axis represents the –log10 P-value from the association 

analysis of mating type. A. Naive model: GLM without any correction for population 

structure; B. P-model: GLM with PCs as correction for population structure; C. K-model: 

MLM with K-matrix as correction for population structure, and D. PK-model: MLM with PCs 

and K-matrix as correction for population structure. The critical P-values for assessing the 

significance of SNPs associated with mating type were calculated based on the Bonferroni 

correction indicated with the red horizontal reference line.  

 

Table 4.1 Eleven lowest P-value association hits for mating type in P. infestans. Genes that 

are found within 1000 kb flanking region upstream and downstream of each significant SNP 

are shown.  

SNP_id Contig Position P-value Genotype Nearest Gene 
(distance (kb))a Gene Name 

S1_6344790 
 

1 16344790 
 

6.74E-07 T/C PITG_01099 (520) Elongator complex 
protein 3 

     PITG_01100 (468) Aquaporin, putative 
S6_1726999 
 

6 1726999 6.32E-05 A/G PITG_04646 (0) ATP-binding 
Cassette (ABC) 
Superfamily 

S6_1745996 6 1745996 5.14E-05 T/C Gypsy-26_PIT-I-int (0)  
S6_1746014 6 1746014 5.14E-05 A/C Gypsy-26_PIT-I-int (0)  
S8_1236554 8 1236554 8.16E-06 T/G GypsyPi-1c_I-int (0)  
S10_1127802 10 1127802 4.80E-05 A/C PITG_06892 (25) Conserved 

hypothetical protein 
S23_2342979 
 

23 2342979 
 

3.16E-05 
 

T/A 
 

PITG_11524 (358) 
 

Serine protease 
family S10, putative 

     PITG_11525 (140) 
 

Serine protease 
family S10, putative 

S23_2351550 
 

23 2351550 3.52E-06 G/A PITG_11528 (488) Aldose 1-epimerase, 
putative 

S23_2353398 23 2353398 4.25E-05 A/G NA NA 
S69_338163 
 

69 338163 4.12E-06 T/C PITG_18524 (374) Hypothetical 
protein  
 

S109_232610 109 232610 3.55E-05 C/T NA NA 
a Distance from SNP marker. Distance equal to 0 means that the SNP of interest is included within the gene.  
NA: Information not available. 
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4.6 Discussion  

Several important phenotypic characteristics of a diverse panel of P. infestans isolates were 

determined. These isolates were initially defined on the basis of mating type and 

microsatellite markers but subsequently refined by the addition of approximately 98,000 SNP 

markers obtained through genotyping-by-sequencing. The phenotypic traits studied were 

mating type, pathogenicity on potato and tomato, sensitivity to mefenoxam, the rate of 

indirect germination at 4ºC, and the effect of temperature on mycelial growth. Among this 

diverse panel of isolates we identified individuals of the A1 and the A2 mating type. 

Interestingly, six of the 36 Mexican isolates assayed seemed to be ‘self-fertile’. There are two 

possible explanations for this: 1) the strain being assessed consisted of a mixture of two or 

more diverse genotypes of P. infestans, or 2) the isolate was able to ‘self-fertilize’ as has been 

previously reported (Goodwin and Drenth 1997, Savage et al. 1968, Smart et al. 1998). To 

test the first hypothesis, single-zoospore (uninucleate) isolates derived from ‘self-fertile’ 

strains were paired against A1 and A2 mating type testers. The derived single-zoospore 

isolates were also able to ‘self-fertilize’, thus a mixture of two or more genotypes cannot 

explain this phenomenon. To test for the second hypothesis, pea agar plates (where isolates 

were routinely maintained) were further assessed for oospore production. Production of 

oospores was again observed and thus the second hypothesis that these isolates are ‘self-

fertile’ cannot be rejected. 

 Pathogenicity on potato and tomato differed among the isolates evaluated. All isolates 

tested were able to produce symptoms and sporulate on potato leaflets but only a subset of the 

isolates was capable of sporulating on tomato leaflets. In general, genotypes US-8 and US-24, 

as well as the isolates from Mexico and the isolate from the Netherlands showed a strong 
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preference for potato and were not at all aggressive on tomatoes. Genotypes US-7 and US-11 

as well as the rare and diverse genotypes detected in the Northeast in 2010 and 2011 were 

pathogenic on both potato and tomato.  

 A broad range of responses to sensitivity to mefenoxam was observed among the 

panel of isolates studied. The most remarkable differences were observed within the Mexican 

isolates, where sensitivity ranged from extremely sensitive (no growth in the presence of 

mefenoxam) to highly resistant (where mycelial growth was enhanced by the presence of 

mefenoxam). Isolates from the NYS-2010/11 population were in general sensitive to 

mefenoxam.  

 The rate at which sporangia released zoospores differed between isolates. As had been 

previously reported by Danies et al. (2013), striking differences were observed in the 

percentage of sporangia capable of releasing zoospores within 30 minutes of incubation at 

4ºC. For the panel of isolates included in this study, sporangia that had released zoospores 

within 30 minutes of incubation at 4ºC, ranged from approximately 2% to 80%.  

 Differences in mycelial growth were observed at different temperatures. For all 

isolates studied, growth at 10ºC seemed to be greatly stunted. The vast majority of isolates 

(50) were not significantly different from each other in terms of mycelial growth at 15, 20 or 

25ºC. However, six isolates were significantly different from the others.  

 Up until today, the population structure of P. infestans in the US has been simple, 

composed mostly of a few clonal lineages (Fry et al. 2013). Therefore, in the US, it has been 

possible to phenotype individual clonal lineages (Danies et al. 2013), and provide information 

to farmers that would allow them to make informed management decisions. Yet, sexual 

reproduction events have been reported (Danies et al. 2014, Gavino et al. 2000), and it is just 
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a matter of time until sexual reproduction becomes ubiquitous. If this is to happen, the 

diversity of the pathogen would increase and consequently it would be challenging to obtain 

phenotypic data on time to be able to advise famers. Our ultimate goal is to develop a DNA-

based assay that would allow the identification of phenotypic traits of interest. As a first step 

to accomplish this goal, it is important to understand the genetic basis behind such phenotypic 

traits.  

 In this study we initiated a genome-wide association study for the mating type trait in 

P. infestans. Eleven SNP markers gave association hits for mating type with a P < 1e-5. 

Further analyses are needed to confirm these associations. As far as we know none of these 

genes has been associated with the mating type trait in P. infestans. Association analyses for 

the other phenotypic traits investigated will be challenging. This is mainly due to the 

complexity of the genome, the low number of individuals and the difficulty in obtaining 

precise phenotypic data. Many of the phenotypic traits included in this study may be 

polygenic with small effect size. Therefore, increasing the sample size will improve the power 

to recover meaningful associations.  
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4.9 Supplemental Material 

Supplementary Table 4.1 Mating type and mefenoxam sensitivity of isolates used in this 

study. 

Population Lineage Isolate Mating type Mefenoxam 
sensitivity 

US standard US-7 Coffey7723 A2 R 
 US-8 US100048 A2 I 
 US-11 US110160 A1 R 
 US-22 US110002 A2 S 
 US-23 US110059 A1 S 
 US-23 2010_8106A A1 S 
 US-23 BL2009P4 A1 S 
 US-23 US120096 A1 S 
 US-23 US120143 A1 S 
 US-23 US100016 A1 S 
 US-24 US110157 A1 S 
NYS-2010/11 GDT-01 US110084 A1 S 
 GDT-02 US110064 A2 S 
 GDT-03 US110086 A2 S 
 GDT-04 US110074 A2 S 
 GDT-05 US110061 A1 S 
 GDT-06 US110093 A2 S 
 GDT-07 US110072 A2 S 
 GDT-08 US110071 A1 S 
 GDT-09 US110082 A2 I 
 GDT-11 US110085 A1 S 
 GDT-12 US100029 A1 S 
 GDT-13 US100023 A2 S 
 GDT-14 US110054 A1 S 
 GDT-15 US100032 A2 S 
 GDT-16 US100033 A2 S 
 GDT-17 US110092 A2 S 
 GDT-19 US100019 A1 S 
 GDT-20 US100034 A1 S 
Mexico MX-1 MX107 A1 S 
 MX-2 MX73 A1 R 
 MX-3 MX62 Selfing I 
 MX-4 MX84 A2 S 
 MX-5 Tlax_713 A1 I 
 MX-6 Tlax_739 A2 S 
 MX-7 1949 A2 S 
 MX-8 1633 A1 S 
 MX-9 1632 A1 I 
 MX-10 5707 A2 I 
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 MX-11 CH32 A1 R 
 MX-12 1639 A1 S 
 MX-13 1645 A2 S 
 MX-14 1647 Selfing S 
 MX-15 1653 Selfing S 
 MX-16 1628 Selfing R 
 MX-17 1631 Selfing S 
 MX-18 F_02_17 A2 R 
 MX-19 1970 A2 S 
 MX-20 1655 A1 S 
 MX-21 1657 A1 I 
 MX-22 1662 A1 S 
 MX-23 MX010006 A1 R 
 MX-24 PUC_38 A1 I 
 MX-25 MICH_7012 A1 S 
 MX-26 MICH_7038 Selfing R 
 MX-27 3407 A2 R 
 MX-28 MKH7045 A2 S 
 MX-29 MX010046 A2 I 
 MX-30 MX980046 A1 R 
 MX-31 MX010007 A1 I 
 MX-32 MX980137 A2 S 
 MX-33 MX980221 NA S 
 MX-34 MX980352 A1 S 
 MX-35 MX4683 A1 R 
 MX-36 MXXX0051 A1 NA 
Netherlands NL NL A1 S 

R: Resistant – growth on 5 and 100 µg per ml-1 of mefenoxam was greater than 40% relative to the control (0 µg 
per ml-1). 
I: Intermediate – growth on 5 µg per ml-1 was greater than 40% relative to the control (0 µg per ml-1) but less 
than 40% relative to the control (0 µg per ml-1) at 100µg per ml-1. 
S: Sensitive - growth on 5 and 100 µg per ml-1 of mefenoxam was less than 40% relative to the control (0 µg per 
ml-1). 
NA: Nota available 
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Supplementary Table 4.2 Average dry weight 6 days after incubation at 10, 15, 20 and 25ºC, 

respectively. 

Population Lineage Temperature (ºC) Average dry weight (g) 
Us standard US-7 10 0.00914 
 US-7 15 0.04147 
 US-7 20 0.04228 
 US-7 25 0.03535 
 US-8 10 0.00833 
 US-8 15 0.05105 
 US-8 20 0.05576 
 US-8 25 0.03289 
 US-11 10 0.00586 
 US-11 15 0.03289 
 US-11 20 0.04215 
 US-11 25 0.04268 
 US-22 10 0.00169 
 US-22 15 0.03261 
 US-22 20 0.06047 
 US-22 25 0.04970 
 US-23 10 0.00326 
 US-23 15 0.03551 
 US-23 20 0.04549 
 US-23 25 0.02778 
 US-24 10 0.01138 
 US-24 15 0.04301 
 US-24 20 0.05126 
 US-24 25 0.03322 
NYS-2010/11 GDT-01 10 0.00001 
 GDT-01 15 0.00400 
 GDT-01 20 0.00920 
 GDT-01 25 0.00828 
 GDT-02 10 0.00229 
 GDT-02 15 0.03172 
 GDT-02 20 0.04970 
 GDT-02 25 0.03228 
 GDT-03 10 0.00840 
 GDT-03 15 0.02749 
 GDT-03 20 0.03162 
 GDT-03 25 0.02899 
 GDT-04 10 0.00923 
 GDT-04 15 0.04551 
 GDT-04 20 0.05215 
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 GDT-04 25 0.04349 
 GDT-05 10 0.00904 
 GDT-05 15 0.04429 
 GDT-05 20 0.06720 
 GDT-05 25 0.04101 
 GDT-06 10 0.00312 
 GDT-06 15 0.03455 
 GDT-06 20 0.05526 
 GDT-06 25 0.05175 
 GDT-07 10 0.00203 
 GDT-07 15 0.01369 
 GDT-07 20 0.02594 
 GDT-07 25 0.01508 
 GDT-08 10 0.00354 
 GDT-08 15 0.02446 
 GDT-08 20 0.03036 
 GDT-08 25 0.03242 
 GDT-09 10 0.00422 
 GDT-09 15 0.04500 
 GDT-09 20 0.04901 
 GDT-09 25 0.03795 
 GDT-11 10 0.00529 
 GDT-11 15 0.02690 
 GDT-11 20 0.02463 
 GDT-11 25 0.02437 
 GDT-12 10 0.00260 
 GDT-12 15 0.02811 
 GDT-12 20 0.04344 
 GDT-12 25 0.03959 
 GDT-13 10 0.00081 
 GDT-13 15 0.01505 
 GDT-13 20 0.02157 
 GDT-13 25 0.01961 
 GDT-14 10 0.00649 
 GDT-14 15 0.01918 
 GDT-14 20 0.02908 
 GDT-14 25 0.02233 
 GDT-15 10 0.00475 
 GDT-15 15 0.03208 
 GDT-15 20 0.04625 
 GDT-15 25 0.03230 
 GDT-16 10 0.00139 
 GDT-16 15 0.02154 
 GDT-16 20 0.04730 
 GDT-16 25 0.02854 
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 GDT-17 10 0.00787 
 GDT-17 15 0.04135 
 GDT-17 20 0.03963 
 GDT-17 25 0.02883 
 GDT-19 10 0.00972 
 GDT-19 15 0.03908 
 GDT-19 20 0.04958 
 GDT-19 25 0.04036 
 GDT-20 10 0.00230 
 GDT-20 15 0.02421 
 GDT-20 20 0.03330 
 GDT-20 25 0.03607 
Mexico MX-01 10 0.01209 
 MX-01 15 0.05973 
 MX-01 20 0.05346 
 MX-01 25 0.02914 
 MX-02 10 0.00907 
 MX-02 15 0.05568 
 MX-02 20 0.05190 
 MX-02 25 0.03087 
 MX-03 10 0.02004 
 MX-03 15 0.06870 
 MX-03 20 0.05270 
 MX-03 25 0.02961 
 MX-04 10 0.00009 
 MX-04 15 0.00770 
 MX-04 20 0.01180 
 MX-04 25 0.00579 
 MX-05 10 0.00053 
 MX-05 15 0.00596 
 MX-05 20 0.02095 
 MX-05 25 0.02578 
 MX-06 10 0.00007 
 MX-06 15 0.00472 
 MX-06 20 0.00897 
 MX-06 25 0.00877 
 MX-07 10 0.00001 
 MX-07 15 0.01981 
 MX-07 20 0.03331 
 MX-07 25 0.03275 
 MX-08 10 0.00222 
 MX-08 15 0.02369 
 MX-08 20 0.02709 
 MX-08 25 0.02740 
 MX-09 10 0.00049 
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 MX-09 15 0.01393 
 MX-09 20 0.03767 
 MX-09 25 0.01501 
 MX-11 10 0.00048 
 MX-11 15 0.01450 
 MX-11 20 0.02533 
 MX-11 25 0.01662 
 MX-12 10 0.00177 
 MX-12 15 0.02557 
 MX-12 20 0.04108 
 MX-12 25 0.02863 
 MX-13 10 0.00419 
 MX-13 15 0.03299 
 MX-13 20 0.01026 
 MX-13 25 0.00557 
 MX-14 10 0.01013 
 MX-14 15 0.05635 
 MX-14 20 0.04350 
 MX-14 25 0.05277 
 MX-15 10 0.00055 
 MX-15 15 0.01991 
 MX-15 20 0.01316 
 MX-15 25 0.00075 
 MX-16 10 0.00119 
 MX-16 15 0.01489 
 MX-16 20 0.02787 
 MX-16 25 0.01917 
 MX-17 10 0.00737 
 MX-17 15 0.05579 
 MX-17 20 0.05315 
 MX-17 25 0.04686 
 MX-18 10 0.00110 
 MX-18 15 0.01116 
 MX-18 20 0.03120 
 MX-18 25 0.02177 
 MX-19 10 0.00280 
 MX-19 15 0.03804 
 MX-19 20 0.04393 
 MX-19 25 0.03652 
 MX-20 10 0.00394 
 MX-20 15 0.02936 
 MX-20 20 0.04852 
 MX-20 25 0.03164 
 MX-21 10 0.00033 
 MX-21 15 0.01684 
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 MX-21 20 0.03930 
 MX-21 25 0.01420 
 MX-23 10 0.00242 
 MX-23 15 0.02394 
 MX-23 20 0.03056 
 MX-23 25 0.01426 
 MX-24 10 0.00589 
 MX-24 15 0.03633 
 MX-24 20 0.05402 
 MX-24 25 0.06471 
 MX-25 10 0.00010 
 MX-25 15 0.00743 
 MX-25 20 0.01251 
 MX-25 25 0.01324 
 MX-26 10 0.00204 
 MX-26 15 0.02338 
 MX-26 20 0.03873 
 MX-26 25 0.02334 
 MX-27 10 0.00021 
 MX-27 15 0.00796 
 MX-27 20 0.01950 
 MX-27 25 0.01582 
 MX-28 10 0.00610 
 MX-28 15 0.03579 
 MX-28 20 0.04663 
 MX-28 25 0.02437 
 MX-29 10 0.00068 
 MX-29 15 0.00694 
 MX-29 20 0.01010 
 MX-29 25 0.00629 
 MX-30 10 0.00275 
 MX-30 15 0.02909 
 MX-30 20 0.04070 
 MX-30 25 0.02656 
 MX-31 10 0.00371 
 MX-31 15 0.03664 
 MX-31 20 0.05328 
 MX-31 25 0.02266 
 MX-33 10 0.00009 
 MX-33 15 0.01164 
 MX-33 20 0.02404 
 MX-33 25 0.01032 
 MX-34 10 0.00340 
 MX-34 15 0.02402 
 MX-34 20 0.05960 
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 MX-34 25 0.01437 
 MX-35 10 0.00391 
 MX-35 15 0.02367 
 MX-35 20 0.05763 
 MX-35 25 0.04615 
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Supplementary Figure 4.1 Average dry weights for all isolates studied. Average dry weight corresponds to the average dry weight at 

10, 15, 20, and 25ºC for each isolate, respectively. 
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CHAPTER 5* 

Acquired resistance to mefenoxam in sensitive isolates of Phytophthora infestans 

5.1 Abstract 

The systemic fungicide mefenoxam has been important in the control of late blight disease 

caused by Phytophthora infestans. This phenylamide fungicide has a negative effect on the 

synthesis of ribosomal RNA, however, the genetic basis for inherited field resistance is still 

not completely clear. We recently observed that a sensitive isolate became tolerant after a 

single passage on mefenoxam-containing medium. Further analyses revealed that all sensitive 

isolates tested (in three diverse genotypes) acquired this resistance equally quickly. In 

contrast, isolates that were “resistant” to mefenoxam in the initial assessment (stably resistant) 

did not increase in resistance upon further exposure. However, there appeared to be a cost 

associated with acquired resistance in the initially sensitive isolates, in that isolates with 

acquired resistance grew more slowly on mefenoxam-free medium than did the same isolates 

that had never been exposed to mefenoxam. The acquired resistance of the sensitive isolates 

declined slightly with subsequent culturing on medium free of mefenoxam. To investigate the 

mechanism of acquired resistance, we employed strand-specific RNA sequencing. Many 

differentially expressed genes were genotype specific, but there was a set of genes 

differentially expressed in all genotypes. Among these were several genes (a phospholipase 

“Pi-PLD-like-3”, two ATP binding cassette superfamily (ABC) transporters, and a mannitol 

                                                
* Childers R, Danies G, Myers KL, Fei Z, Small IM, Fry W. 2014. Acquired resistance to mefenoxam in 
sensitive isolates of Phytophthora infestans. Phytopathology 105: 342-349. 
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dehydrogenase) which were up regulated and whose function might contribute to a resistance 

phenotype. 

5.2 Key words 

Phytophthora infestans, potato late blight. phenylamide, mefenoxam, acquired resistance, 

strand-specific RNA sequencing  

5.3 Introduction  

Phytophthora infestans is the causal agent of late blight of potatoes and tomatoes and 

a member of the Oomycota. The late blight disease is one of the most devastating of plant 

diseases and growers are very concerned about it. Effective management of the disease 

includes sanitation, host resistance (if available), and appropriate use of fungicides. The high 

efficacy, systemicity and oomycete specificity of phenylamide fungicides like mefenoxam 

resulted in their widespread usage soon after their commercial release during the late 1970s 

(Cohen and Coffey 1986). The phenylamides inhibit rRNA biosynthesis (polymerase complex 

I) in the target pathogens.  

Unfortunately, resistance to mefenoxam appeared during the early 1980s (Davidse et 

al. 1983, Dowley and O'Sullivan 1981). Such resistance is inherited by progeny, and 

apparently controlled by one or a few dominant genes (Judelson and Roberts 1999, Lee et al. 

1999). Recently a mutation in a subunit of RNA polymerase 1 was demonstrated to be 

responsible for resistance in a majority of insensitive isolates (Randall et al. 2014). 

Emergence of resistance was followed by a decrease in the usage of mefenoxam to control 

late blight (Dowley and O'Sullivan 1985). Interestingly, following the decline in use of 
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mefenoxam, sensitive populations of P. infestans have again been detected (Grünwald and 

Flier 2005). In very simple clonal populations consisting of a few clonal lineages that have 

been characterized phenotypically, it is possible to predict mefenoxam sensitivity based on 

genotypic analysis (Danies et al. 2013). Because genotypic analyses are typically much 

quicker than phenotypic analyses, genotypic data can be used to inform growers of the likely 

fungicide sensitivity of the lineages in their region (Danies et al. 2013, Fry et al. 2013).  

The sensitivity or resistance of P. infestans to mefenoxam is commonly assessed in 

vitro by measuring the radial growth of the pathogen in response to diverse concentrations of 

the fungicide in amended media (Goodwin et al. 1996, Matuszak et al. 1994). Previously, 

sensitivity has been defined as at least a 60% reduction in radial growth of colonies grown in 

agar amended with 5 µg ml-1 mefenoxam as compared to colonies grown in mefenoxam-free 

medium (Danies et al. 2013, Goodwin et al. 1996, Matuszak et al. 1994). The recent 

predominance in the U.S. of clonal lineages (US-22, US-23 and US-24) that are sensitive to 

mefenoxam in such assays means that mefenoxam can once again be used to suppress late 

blight in the U.S. (Fry et al. 2013).  

During the course of our in vitro assays to determine mefenoxam sensitivity of diverse 

isolates, we observed that one isolate appeared to become resistant after a single passage 

through mefenoxam-containing medium. Previous reports indicated that “in vitro” resistance 

appeared after repeated exposures to sub-lethal doses of mefenoxam (Bruin and Edgington 

1981) (Staub et al. 1979), but the speed of adaptation, the generality and potential 

mechanisms have not been reported. For the purposes of this study, we have defined 

resistance as the ability of the isolate to grow at a rate greater than 40% of the control at both 

5 and 100 µg ml-1 mefenoxam. Given the speed of this acquisition, a genetic basis for this 
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change in resistance seemed improbable, and therefore it seemed more likely that some 

physiological process had mediated this change. We hypothesized that “acquired resistance” 

to mefenoxam is a general characteristic of P. infestans, that it develops very rapidly upon 

exposure and that gene expression studies might reveal candidates to explain this 

phenomenon. Thus, the goals of our study were to confirm the acquired resistance to 

mefenoxam and to characterize that resistance in diverse genotypes of P. infestans. Upon 

confirmation of the phenomenon, we employed whole-transcriptome sequencing to 

investigate gene expression differences between initially sensitive isolates and their 

derivatives with acquired mefenoxam resistance. 

5.4 Materials and Methods 

5.4.1 Clonal lineages used  

The isolates used in this study belonged to four clonal lineages. Different sets of genetic 

markers (described in Fry et al. 2013) were used to determine the isolate’s genotype. The 

genetic marker used were: 12 microsatellite loci, a restriction fragment length polymorphism 

assay using a moderately repetitive DNA probe RG57, and an allozyme test using the 

glucose-6-phosphate isomerase. Furthermore, the mating type of each isolate was determined. 

With the exception of some minor variations within the microsatellite profiles, these 

individuals were identical within their assigned clonal lineage for all markers analyzed. 

Mutations are expected within clonal lineages, especially in rapidly evolving markers such as 

simple sequence repeats.  

 There was one isolate of US-8, two isolates of US-22, two isolates of US-23, and three 

isolates of clonal lineage US-24. In previous assays, isolates of the US-8 clonal lineage had 



 

    - 168 - 

been identified as resistant (Danies et al. 2013, Goodwin et al. 1996). In contrast, isolates 

belonging to clonal lineages US-22, US-23 and US-24 had been identified as sensitive 

(Danies et al. 2013, Hu et al. 2012). For the purposes of this study, we define a sensitive strain 

as one that grows at less than 40% of the control at both 5 and 100 µg ml-1 mefenoxam. Given 

that isolates of clonal lineage US-8 had previously been found to be consistently and stably 

resistant to mefenoxam in vitro, this US-8 isolate was used as a positive control for 

mefenoxam resistance. All isolates were cultured on pea agar (Danies et al. 2013) and 

maintained at 20-22°C. Isolates belonging to clonal lineages US-22 and US-23 are pathogenic 

to both potato and tomato (Danies et al. 2013), whereas isolates belonging to clonal lineages 

US-8 and US-24 are pathogens primarily of potato.  

5.4.2 Mefenoxam sensitivity assay 

Mefenoxam sensitivity was assayed as radial growth on mefenoxam-amended medium, 

conducted as described previously by Therrien et al. (1993) with the exception that 

mefenoxam was substituted for metalaxyl. Isolates were grown on pea agar amended with 

Ridomil Gold SL (Syngenta, Greensboro, NC), which contains 49% mefenoxam as the active 

ingredient; the final concentrations of the active ingredient were 0, 5, or 100 µg ml-1. 

Although the use of a dose range to calculate EC50 values could potentially give more 

insights in the dose response relationship, the technique of using discriminatory dosages (0, 5, 

or 100 µg ml-1 of mefenoxam) has been widely used for over 20 years and adequately serves 

the current purpose. Due to inherent variation in the rate of growth among isolates, a standard 

colony diameter on the control plates (0 µg ml-1), rather than a standard incubation time was 

used to determine the period of incubation for each isolate. Therefore, for each sensitivity 
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assay, colony diameter on each treatment was measured when the growth of the isolate on the 

control plates (0 µg ml-1) reached 60 to 70 mm. Subculturing from all isolates was carried out 

when growth on medium containing mefenoxam was at least 20 mm in diameter. All 

subculturing for each isolate was done on the same day. Growth on mefenoxam-amended 

plates at 5 and 100 µg ml-1 was presented as a percentage of the growth on the mefenoxam-

free control plates.  

5.4.3 Initial sensitivity and acquisition of resistance assays 

For each isolate, initial sensitivity and occurrence of “acquired resistance” were assessed by 

determining the sensitivity of an isolate before and after it had been exposed to mefenoxam. 

To test for initial sensitivity, a subculture from each isolate (with no previous exposure to 

mefenoxam) was transferred to media containing 0, 5, and 100 µg ml-1 mefenoxam (Figure 

5.1A). To test for acquired resistance, a subculture from each isolate with prior exposure to 

mefenoxam (5 or 100 µg ml-1) was assessed for mefenoxam resistance by transferring mycelia 

to medium containing 0, 5 and 100 µg ml-1 mefenoxam and then comparing growth on 

mefenoxam-containing medium with that on mefenoxam-free medium (Figure 5.1A). To 

ensure that acquired resistance was not a result of spontaneous mutations, we conducted the 

experiment at least three times. In addition, subcultures that had never been exposed to 

mefenoxam were evaluated on media containing 0, 5, and 100 µg ml-1 mefenoxam at each 

transfer stage during the experiment. 

 Effects of previous mefenoxam exposure (0, 5, and 100 µg ml-1), subsequent 

mefenoxam exposure (5 and 100 µg ml-1), lineage, and their full factorial interactions, on 

colony growth were analyzed using JMP 10.0.0 (SAS Institute, Cary, NC, USA). Standard 
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least square analysis was used, replications were considered random terms, while mefenoxam 

exposures; lineage and interactions were considered as fixed effects. To determine if means of 

percent colony growth on mefenoxam-amended plates for each lineage differed between 

previous exposure concentrations, a Tukey’s HSD test with α = 0.05 was performed.  
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Figure 5.1 Experimental design and culturing sequence. A, Acquired resistance was 

determined by comparing the resistance to mefenoxam of isolates before and immediately 

after an exposure to mefenoxam. Initial sensitivity to mefenoxam was assessed by transferring 

isolates that had never been exposed to mefenoxam to 0, 5, and 100 µg ml-1 mefenoxam. 

Isolates that had been exposed to either 5 or 100 µg ml-1 mefenoxam were subsequently 

transferred again to 0, 5 and 100 µg ml-1 mefenoxam (*acquired resistance assay). B, 

Maintenance of acquired resistance was assessed by transferring isolates that had been 

exposed two times through mefenoxam-amended media through a series of one, two or three 

transfers on mefenoxam-free media. Maintenance of acquired resistance for each isolate was 

then assessed on mefenoxam-amended media. The same procedure was followed for isolates 

initially exposed to 100 µg ml-1 mefenoxam. C, To test for loss of fitness due to acquired 

resistance, isolates that had been exposed two times to mefenoxam-amended media were 

transferred one, two, three, or four times on mefenoxam-free media. Growth on mefenoxam-

free media of initially sensitive isolates was used as control. This figure illustrates the 

protocol for isolates exposed to 5 µg ml-1 mefenoxam, but the same procedure was followed 

for isolates initially exposed to 100 µg ml-1 mefenoxam. 

 

5.4.4 Maintenance of acquired resistance assays 

After an isolate had acquired resistance the maintenance of that resistance was evaluated after 

repeated subculturing in the absence of mefenoxam (Figure 5.1B). Each isolate was assayed 

for mefenoxam sensitivity (described above) after one, two and three subcultures on 

mefenoxam-free medium.  

 After identifying the group of lineages that had demonstrated acquired resistance (US-



 

    - 172 - 

22, US-23, and US-24), effects of previous mefenoxam exposure (0, 5, or 100 µg ml-1), 

number of transfers through mefenoxam-free medium (1, 2, or 3), subsequent mefenoxam 

exposure (5 or 100 µg ml-1), and their full factorial interactions on colony growth were 

analyzed using JMP 10.0.0. Standard least square analysis was used, where isolates and 

replications were considered random terms, while previous mefenoxam exposure, number of 

mefenoxam-free transfers, subsequent mefenoxam exposure, and interactions were considered 

as fixed effects. To determine if relative growth on mefenoxam-amended plates changed after 

transfers through mefenoxam-free medium, a Tukey’s HSD test with α = 0.05 was performed.   

5.4.5 Slower growth due to acquired resistance 

After an isolate had acquired resistance, the growth rate of the isolate was evaluated by 

measuring colony growth in the absence of mefenoxam after one, two, three and four 

consecutive subcultures on mefenoxam-free media (Figure 5.1C). Effects of previous 

mefenoxam exposure (0, 5, or 100 µg ml-1), number of mefenoxam-free transfers (1, 2, 3, or 

4) and their interaction on colony growth were analyzed using JMP 10.0.0. Standard least-

square analysis was used, where isolates and replications were considered random terms, 

while previous mefenoxam exposure, number of transfers through mefenoxam-free medium, 

and their interaction were considered as fixed effects. To determine if means of percent 

colony growth on mefenoxam-free media differed for each previous exposure concentration, a 

Tukey’s HSD test with α = 0.05 was performed.  

5.4.6 Whole transcriptome-sequencing 

Strand-specific RNA sequencing, following the method of Zhong et al. (2011) was used to 

examine gene expression differences between non-exposed isolates, and subcultures of the 
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same isolates after acquisition of resistance to mefenoxam. Isolates analyzed were one 

individual of US-8 as a stably resistant control, one individual of US-23, and two individuals 

of US-24. There were two treatments used for each isolate; in the first treatment, the isolate 

was cultured on pea agar without mefenoxam, and in the second treatment, the isolate was 

cultured on pea agar containing 100 µg ml-1 mefenoxam. These treatments were continued for 

three successive subcultures. Subsequently, those individuals that had been grown on 

mefenoxam-free medium were transferred to pea broth free of mefenoxam, and those 

individuals grown on pea medium with mefenoxam were transferred to pea broth with 

mefenoxam (100 µg ml-1).  For individuals growing in the presence of mefenoxam, the 

mycelia were harvested after 6 to 12 days. For individuals growing in the absence of 

mefenoxam, the mycelia were harvested after 4 to 8 days.   

 The experiment was conducted three times for three biological replications. 

Each biological replicate was started on a different date. Within each biological replicate there 

were two technical replicates. Total RNA was extracted using the RNeasy Plus Mini kit 

(QIAGEN). Twenty-four libraries (one per sample) were prepared following the method 

described in Zhong et al. (2011), and 20 ng of each library were multiplexed and run on an 

Ilumina HiSeq 2000 via 100-bp single-end read sequencing in a single lane at the Cornell 

University Sequencing Core Facility. 

5.4.7 Bioinformatic and statistical analysis for the RNA-sequencing (RNA-seq) 

RNA-seq reads were first aligned to ribosomal RNA and tRNA sequences using Bowtie 

(Langmead et al. 2009) allowing for two mismatches to remove any possible contaminations 

of these sequences. The resulting filtered reads were aligned to the draft genome of P. 
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infestans strain T30-4, available from the Broad Institute (Phytophthora infestans Sequencing 

Project, Broad Institute of Harvard and MIT, http://www.broadinstitute.org) using TopHat 

(Trapnell et al. 2009) allowing one segment mismatch. Following alignments, raw counts for 

each gene were normalized to Reads Per Kilobase of exon model per million mapped reads 

(RPKM). The raw counts were then processed with the EdgeR package (Robinson et al. 2010) 

to examine genes that were differentially expressed (DE).  

 We next searched for differences in gene expression that were common among 

isolates. To ensure consistency among replicates in the analysis of differential expression, 

tagwise dispersion estimates were used in all cases (Robinson et al. 2010). The default 

prior.df value (which moderates the weight placed on tagwise versus common dispersion 

estimates) of 10 was used for all analyses. EdgeR automatically controls for false positives by 

controlling the False Discovery Rate (FDR) following the method of Benjamini and Hochberg 

(1995). 

 Differential gene expression between an isolate with versus without acquired 

resistance was detected, and only genes with a FDR lower than 0.05 were retained. Then, 

differentially expressed genes that were common to the three originally sensitive isolates (one 

US-23 and two US-24 isolates) were identified (Table 5.1). We then explored the possibility 

that the same genes are differentially expressed also in the stably resistant US-8 (Table 5.1). 

Summary statistics were produced with JMP 10.0.0. 
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Table 5.1 Genes that were significantly differentially expressed in response to mefenoxam in four isolates of Phytophthora 

infestans (one US-8 isolate, one US-23 isolate and two US-24 isolates (US-24A and US-24B)). The data for the individual with 

acquired resistance were compared to the data for that individual without acquired resistance. The three biological replicates were 

used to calculate tag-wise gene dispersion estimates, favoring genes that behaved consistently across replicates. These estimates 

were used in a negative binomial model to estimate differential expression from the raw counts for each isolate. Annotations for 

genes that were shown to be differentially expressed in all individuals with acquired resistance in response to mefenoxam are 

shown below. 

Genea Annotationb                    Log2FCc                                FDRd Log2CPMe 
  US-8 US-23 US-24A US-24B      US-8   US-23 US-24A US-24B Average 
PITG_00923 Phospholipase D, Pi-PLD-like-3 

 
6.92 4.91 4.57 9.78  4.41E-08 2.66E-05 5.77E-04 1.14E-13    3.52 

PITG_09160 Secreted RxLR effector peptide, 
putative 
 

5.63 3.34 7.97 5.2  1.03E-04 1.83E-02 3.74E-04 1.28E-04    2.72 

PITG_12458 Secreted RxLR effector peptide, 
putative 
 

2.27 2.17 3.6 4.67  4.24E-03 7.48E-03 8.78E-07 1.53E-10    0.76 

PITG_16256 Conserved hypothetical protein 
 

3.02 2.19 2.88 5.04  1.39E-03 4.42E-02 3.83E-03 2.59E-09    1.44 

PITG_09063 Conserved hypothetical protein 
 

 NS 3.23 2.85 3.23       NS 3.85E-03 1.79E-02 3.85E-03    1.82 

PITG_07501 Crinkler (CRN) family protein 
 

2.89 1.3 3.87 3.61  2.56E-09 1.12E-02 1.33E-17 3.96E-11    2.41 

PITG_00147 Conserved hypothetical protein 
 

 NS 1.85 2.83 3.61       NS 1.16E-03 2.80E-07 1.41E-12    3.46 

PITG_07468 Crinkler (CRN) family protein 
 

2.81 1.13 3.8 3.36  2.76E-08 4.22E-02 3.49E-16 8.51E-10    2.23 

PITG_07467 Crinkler (CRN) family protein 2.84 1.13 3.51 3.37  2.76E-08 4.60E-02 6.53E-14 1.15E-09    2.27 
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PITG_16991 Cell 12A endoglucanase 

 
 NS 1.65 1.95 4.04       NS 2.58E-02 1.03E-02 1.25E-10    3.11 

PITG_05795 Conserved hypothetical 
protein* 
 

2.56 2.19 2.14 2.68  7.23E-07 1.10E-04 5.71E-04 3.17E-07    2.80 

PITG_22087 ATP-binding Cassette (ABC) 
Superfamily 
 

1.53 1.94 2.16 2.61  4.46E-02 3.84E-03 1.78E-03 1.45E-05    4.99 

PITG_16235 Secreted RxLR effector peptide, 
putative 
 

3.12 2.65 1.88 1.83  4.55E-05 3.48E-04 1.55E-02 9.94E-03    2.84 

PITG_16409 Secreted RxLR effector peptide, 
putative 
 

3.59 2.51 1.65 2.11  2.73E-08 2.65E-04 1.77E-02 3.80E-04    3.27 

PITG_08846 Mannitol dehydrogenase, 
putative 
 

3.58 2.19 2.27 1.78  1.09E-07 2.39E-03 2.68E-03 1.42E-02    6.01 

PITG_12664 Conserved hypothetical protein 
 

1.62 1.79 1.76 2.52  1.14E-02 2.56E-03 1.22E-02 5.18E-06    1.92 

PITG_11969 ATP-binding Cassette (ABC) 
Superfamily 
 

1.34 2.19 1.78 1.76  1.59E-03 1.25E-08 1.34E-05 3.55E-06    6.78 

PITG_02772 Conserved hypothetical protein 
 

1.71 2.21 1.31 2.2  6.81E-05 5.27E-07 1.11E-02 2.19E-08    2.90 

PITG_15627 Conserved hypothetical 
protein* 
 

1.52 1.87 1.67 1.75  4.56E-02 6.02E-03 2.00E-02 8.01E-03    2.87 

PITG_09065 Conserved hypothetical protein 
 

 NS 1.61 1.6 1.79       NS 2.00E-02 3.03E-02 5.01E-03    4.34 

PITG_02748 Conserved hypothetical 
protein* 
 

 NS 1.28 1.85 1.49       NS 3.98E-02 2.55E-03 9.43E-03    2.66 

PITG_10995 Conserved hypothetical 
protein* 
 

 NS 1.56 1.34 1.15       NS 3.71E-03 2.38E-02 3.90E-02    5.24 

PITG_09097 Conserved hypothetical protein 
 

 NS 1.32 1.27 1.43       NS 7.39E-03 1.78E-02 1.56E-03    2.89 
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PITG_15998 Phospholipase A-2-activating 
protein, putative 
 

 NS -0.92 -0.82 -0.89       NS 1.22E-02 3.92E-02 9.60E-03    5.32 

PITG_16013 Conserved hypothetical 
protein* 
 

 NS -1.01 -1.39 -1.09       NS 3.85E-02 3.16E-03 1.69E-02    3.28 

PITG_16794 Di-N-acetylchitobiase, putative 
 

-1.23 -1.24 -0.97 -1.34  7.92E-04 5.59E-04 1.43E-02 5.66E-05    3.61 

PITG_10079 Conserved hypothetical 
protein* 
 

 NS -1.54 -1.64 -1.02       NS 3.63E-04 5.21E-04 2.78E-02    2.90 

PITG_16795 Conserved hypothetical protein 
 

-2.17 -1.55 -1.51 -1.94  6.75E-04 2.32E-02 4.05E-02 1.73E-03    4.78 

PITG_04948 Conserved hypothetical protein 
 

-2.09 -2.41 -1.61 -1.81  6.80E-04 1.85E-03 4.11E-02 6.13E-03    1.66 

PITG_07573 Conserved hypothetical 
protein* 
 

 NS -2.06 -2.69 -2.61       NS 6.95E-03 1.01E-04 2.83E-05    3.59 

PITG_09316 Secreted RxLR effector peptide, 
putative 
 

 NS -2.07 -2.44 -2.86       NS 2.19E-02 2.35E-03 4.20E-05    1.96 

PITG_08344 Conserved               hypothetical                     
protein 

-4.09 -5.7 -6.28 -4.07  1.91E-03 2.03E-02 7.25E-03 9.52E-03    -0.04 

aAccession number given to the transcript by the Broad institute (Phytophthora infestans Sequencing Project, Broad Institute of Harvard and MIT, 
http://www.broadinstitute.org).   
bPutative annotated functions of the specified genes. 
cLog2 of the fold change in response to mefenoxam exposure. 
dFalse Discovery Rate. 
eAverage Log2 Counts-Per-Million. EdgeR provides only a global average of Log2 Counts-Per-Million for each gene. 
*Conserved hypothetical proteins for which the closest annotated match has been listed in Table 5.2. 
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5.4.8 qRT-PCR to validate the RNA-seq results 

To confirm the RNA-seq results, we performed a qRT-PCR for five genes that had a 

significant differential expression in response to mefenoxam in P. infestans. Total RNA was 

reverse transcribed using the High-Capacity cDNA Reverse Transcription Kit with RNase 

Inhibitor (Applied Bio-systems, Carlsbad, CA). Total transcript levels were determined by 

qRT-PCR using the SYBR® Green PCR Master Mix (Applied Bio-systems, Carlsbad, CA), 

following the manufacturer’s protocol. 

 All genes were assayed in triplicate in 96-well plates and two biological replicates of 

each treatment were performed. Controls lacking reverse transcriptase and lacking template 

were included. Results were analyzed with the ABI PRISIM®7700 Sequence Detection 

System (Applied Biosystems, Foster City, CA, USA) program and relative expression was 

calculated using REST 2009 Software (Pfaffl et al. 2002). The genes and primers were as 

follows: (i) PITG_11969 (ATP-binding cassette superfamily) (FW, 

GACGCCCAAGAGTAAAGATG; RV, CCGTTAATGCCCTTGAGTAG); (ii) PITG_00147 

(Conserved Hypotyhetical Protein) (FW, CAGGAGCTTCAGCAACAG; RV, 

GCGAAGATGCGGAAGAC); (iii) PITG_00923 (Phospholipase D) (FW, 

TACCGTTCCCTACCTCATC; RV, GCCATCCCACTGACATTT); (iv) PITG_05795 

(Conserved Hypothetical Protein) (FW, GTTGGAGAAGATGAAAGTCAATATG; RV, 

GTGGGTTGCGGTTCTTT); (v) PITG_22087 (ATP-binding cassette superfamily) (FW, 

CCTTCTCCAGCGTTTCTTC; RV, CAGAAGAGCATTCCCATACC); (vi) PITG_14461 

(Actin-like protein) (FW, CGGTCTATATGGGCCAGAAAT; RV, 

GGGTCCACCTTCAGCATTT). PITG_14461(Actin-like protein) was used as a 

constitutively expressed endogenous control. RNA from isolates that had not been exposed to 
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mefenoxam was used as the calibrator. 

5.5 Results 

5.5.1 Acquired resistance 

In agreement with previous studies, isolates belonging to lineage US-8 demonstrated 

preexisting resistance to mefenoxam (Figure 5.2). Substantial growth was observed for 

lineage US-8 growing on medium containing 5 and 100 µg ml-1 mefenoxam. For example, at 

a concentration of 5 µg ml-1 US-8 did not differ significantly in growth from its mefenoxam-

free control (P ≈ 1.00). Percent growth relative to the mefenoxam-free control for lineage US-

8 was 94 and 65% at 5 and 100 µg ml-1, respectively.  

 All isolates from clonal lineages US-22, US-23 and US-24 were largely sensitive to 

mefenoxam. At concentrations of 5 and 100 µg ml-1 these three lineages showed significantly 

reduced growth relative to mefenoxam-free controls as well as to US-8 (P ≤ 0.05). Isolates 

from these three clonal lineages that had no previous exposure to mefenoxam had radial 

growth of 16-29% of the diameter of control plates when grown on 100 µg ml-1 mefenoxam 

(Figure 5.2). 

 Prior exposure to mefenoxam had a significant effect on subsequent colony growth in 

the presence of mefenoxam. A significant three-way interaction between prior exposure 

concentration of mefenoxam, lineage, and subsequent exposure concentration of mefenoxam 

was observed (P ≤ 0.0001). All isolates of lineages US-22, US-23 and US-24 became resistant 

following exposure to mefenoxam at either 5 or 100 µg ml-1 (P ≤ 0.05) (Figure 5.2). For 

example, without prior exposure to mefenoxam, the isolate of US-22 grew at 50% of the 

control on 5 µg ml-1 mefenoxam, and 29% of the control on 100 µg ml-1 mefenoxam. With 
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prior exposure to 5 µg ml-1 mefenoxam, this isolate grew at 85% of the control on 5 and 58% 

of the control on 100 µg ml-1 mefenoxam (Figure 5.2). Without prior exposure to mefenoxam 

the mean growth on 5 µg ml-1 mefenoxam for the two isolates of US-23 was 21% of the 

control on 5 µg ml-1 mefenoxam, and 16% of the control on 100 µg ml-1 mefenoxam. With 

prior exposure to 5 µg ml-1 mefenoxam, their mean growth was 79% of the control on 5 µg 

ml-1 mefenoxam and 52% of the control on 100 µg ml-1 mefenoxam. Without prior exposure 

to mefenoxam the mean growth on 5 µg ml-1 mefenoxam for the three isolates of US-24 was 

42% of the control on 5 µg ml-1 mefenoxam and 23% of the control on 100 µg ml-1 

mefenoxam. With prior exposure to 5 µg ml-1 mefenoxam their mean growth was 79% of the 

control on 5 µg ml-1 mefenoxam and 77% of the control on 100 µg ml-1 mefenoxam. For 

isolates belonging to sensitive lineages, increased resistance was also observed with prior 

exposure to 100 µg ml-1 mefenoxam (Figure 5.2). Levels of resistance did not increase 

following a second exposure to mefenoxam (data not presented). 
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Figure 5.2 Response of four Phytophthora infestans lineages to mefenoxam at 0 (open bars), 

5 (diagonal lines) and 100 (solid bars) µg ml-1. A previous exposure of 0 µg ml-1 mefenoxam 

means that the isolate had not before been exposed to mefenoxam. A previous exposure of 5 

µg ml-1 mefenoxam means that the isolate came from a medium containing 5 µg ml-1 

mefenoxam and a previous exposure of 100 µg ml-1 mefenoxam means that the isolate came 

from a medium containing 100 µg ml-1 mefenoxam. US-8 (A) is stably resistant and US-22 

(B), US-23(C) and US-24 (D) are regarded as sensitive. There was one isolate of US-8, one 

isolate of US-22, two isolates of US-23, and three isolates of US-24. Each error bar is 

constructed using one standard error from the mean. 

5.5.2 Maintenance of acquired resistance 

The number of transfers through mefenoxam-free media had a significant effect on the 

maintenance of acquired resistance. Isolates that had been transferred a single time to 

mefenoxam-free medium tended to grow more slowly in the presence of mefenoxam 

compared to isolates that had been maintained on mefenoxam-amended medium (P = 0.11 for 

an isolate on 5 µg ml-1 mefenoxam and P = 0.07 for an isolate on 100 µg ml-1 mefenoxam). 

However, after two successive transfers on mefenoxam-free medium, the previously resistant 

isolates began to lose their acquired resistance and grew significantly more slowly on 

mefenoxam-containing medium (5 or 100 µg ml-1) than those consistently maintained on 

mefenoxam (P ≤ 0.05).  

5.5.3 Slower growth due to acquired resistance 

Radial growth of isolates with acquired resistance was less on mefenoxam-free medium than 

was radial growth of their originally sensitive parental individuals (P ≤ 0.0001). Mean relative 
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growth rates for isolates that had been exposed previously to 5 or 100 µg ml-1 mefenoxam 

were 91 and 88 percent, respectively. No significant two-way interaction between previous 

mefenoxam exposure (0, 5, and 100 µg ml-1) and the number of transfers through mefenoxam-

free media (0 µg ml-1) was observed (P = 0.41).  After a single transfer to mefenoxam-free 

medium isolates with prior exposure to mefenoxam (both 5 and 100 µg ml-1) showed 

significantly reduced growth in comparison to isolates that had never been exposed to 

mefenoxam (0 µg ml-1) (P ≤ 0.0001). This reduced growth was maintained over three 

subsequent transfers on mefenoxam-free media. Reduced growth rate due to acquired 

resistance did not differ significantly between previous exposure to 5 or to 100 µg ml-1 

mefenoxam (P = 0.27). 

5.5.4 Whole transcriptome-sequencing 

We obtained 177 million reads from sequencing the 24 distinct samples (four isolates, two 

treatments, three replications). After removal of reads aligning to ribosomal RNA, the number 

of reads per sample ranged from 5.5 to 9.5 million, of which 74 to 81% were aligned to the 

T30-4 draft genome to yield between 4.6 and 7.8 million raw counts per sample. Each library 

contained 14,273 to 15,492 expressed genes. When analyzed individually, isolates were found 

to have 535 to 1,152 genes differentially expressed with a False Discovery Rate (FDR) of less 

than 0.05 in response to mefenoxam.  

 Analysis of the raw counts using the EdgeR package revealed that differential 

expression clustered largely by clonal lineage when analyzed via Multi-Dimensional Scaling 

(Figure not shown). There was limited separation by treatment within these clusters, 

particularly within clonal lineage US-24. 
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 Because of the phenotypic consistency of “acquired resistance” across all sensitive 

genotypes, we searched for genes that were differentially expressed in all sensitive genotypes 

in response to exposure to mefenoxam. This search revealed 32 candidate genes that were 

significantly differentially expressed in all three sensitive isolates with a FDR of less than 

0.05 (Table 5.1). Of these 32 genes, nine were significantly downregulated and 23 were 

significantly upregulated. These genes included a phospholipase “Pi-PLD-like-3”, two ATP 

binding cassette superfamily (ABC) transporters, one mannitol dehydrogenase, three CRN 

and five secreted RXLR effectors, and 17 conserved hypothetical proteins (Table 5.1), among 

others.  

 The genes that were differentially expressed in response to mefenoxam were also 

investigated in the stably resistant US-8 isolate. Among these 32 genes were 21 differentially 

expressed in common with the three sensitive isolates (Table 5.1).  

 There were 17 conserved hypothetical proteins represented among the 32 genes that 

were commonly differentially regulated upon exposure to mefenoxam. The similarities of 

some of these proteins to those of known or hypothesized function are indicated in Table 5.2. 

These similarities are based on amino acid sequence similarity to other proteins determined by 

protein-protein BLAST analysis. Among these conserved hypothetical proteins, one was 

similar to a TonB membrane receptor from P. sojae, one was similar to both Avr1b-1 from P. 

sojae and a glycosylphosphatidyl inositol (GPI) anchored protein from P. infestans (Table 

5.2). 
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Table 5.2 Possible functions of differentially expressed genes annotated as “conserved hypothetical proteins”. Possible functions 

were determined by using the protein-protein BLAST algorithm on NCBI. Sequence coverage, maximum identity and E-value are 

included as proxies for the level of similarity at the amino acid sequence level, between the annotated gene and the conserved 

hypothetical Phytophthora infestans gene. 

Broad gene 
identifier Annotation NCBI reference or 

conserved domain Organism Annotation or Domain Query 
Cover Identity 

PITG_05795 Conserved 
hypothetical protein 
 

EGZ12418.1 P. sojae TonB receptor activity   89%    65% 

PITG_07573 Conserved 
hypothetical protein 
 

XP_002904561.1 P. infestans Predicted GPI-anchored 
protein 

  59%    98% 

PITG_02748 Conserved 
hypothetical protein 
 

RING[cd00162], 
PX[smart00312] 

    N/A RING Zn finger, PhoX 
homologous domains 

  N/A    N/A 

PITG_10079 Conserved 
hypothetical protein 
 

RpsE[COG0098]     N/A RpsERibosomal protein S5 
domain 

  N/A    N/A 

PITG_10995 Conserved 
hypothetical protein 

FYVE[cd00065], 
DEP[cd04371], 
PTZ00303 

    N/A FYVE Zn-binding, DEP, 
PTZ00303 Phosphatidyl 
inositol kinase (provisional) 
domains 
 

  N/A     N/A 

PITG_15627 Conserved 
hypothetical protein 
 

PRK12704     N/A PRK12704 Phosphodiesterase 
(provisional) domain 
 

  N/A     N/A 

PITG_16013 Conserved 
hypothetical protein 

ATS1[COG5184]     N/A ATS1 Alpha-tubulin 
suppressor and related 
RCC1 domain 
containing multi-domain 

           N/A       N/A 
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5.5.5 Validation of RNA-seq results using qRT-PCR 

To validate the RNA-seq results, we analyzed the expression profile of five genes that were 

differentially expressed between isolates non-exposed and exposed to mefenoxam using qRT-

PCR  (Supplementary Figure 5.1). All of five genes showed the same significant differential 

expression profiles with both techniques.  

5.6 Discussion 

All individuals from all of the “sensitive” clonal lineages investigated became tolerant of 

mefenoxam upon exposure to mefenoxam after a single passage through mefenoxam-

containing medium. Previous descriptions of such acquired resistance were detected after at 

least 4 to 12 passages through mefenoxam-containing medium (Bruin and Edgington 1981), 

(Staub et al. 1979). We found that repeated exposure had little impact on increasing this 

resistance. We suspect that the ability to acquire resistance may be a general characteristic of 

mefenoxam-sensitive isolates of P. infestans. Acquired resistance declined after two or three 

subcultures on medium free of mefenoxam, but we did not investigate if the original level of 

mefenoxam sensitivity could be reached with additional transfers. In previous studies, diverse 

isolates of Phytophthora capsici and P. infestans responded diversely after many subcultures 

on mefenoxam-free medium, with some isolates losing resistance and others retaining it 

(Staub et al. 1979).  

 We have demonstrated that sensitive lineages acquire resistance to mefenoxam if 

exposed to a non-lethal dose of mefenoxam. We suspect that acquisition of resistance is likely 

to be somewhat specific, but we have not systematically investigated other chemical or 

physical stresses to see if they also stimulate resistance to mefenoxam.  
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 We also found that many sensitive isolates that had acquired resistance to mefenoxam 

seemed to be slightly retarded in growth in comparison to the parental isolates that had never 

been exposed to mefenoxam. Thus, it appeared that there is likely a cost associated with 

acquired resistance, which possibly could affect fitness. Again, this observation is consistent 

with previous reports (3).   

 Isolates of US-8 had similar patterns of growth in response to mefenoxam, even after 

previous exposure. This does not preclude the possibility that acquired resistance is conserved 

in P. infestans, as it may be that the ability to acquire resistance in US-8 isolates is retained, 

but masked or made unnecessary by the mechanism governing stable resistance to 

mefenoxam. The latter possibility is supported by the fact that US-8 also differentially 

expresses many of the genes that are differentially expressed in common among the sensitive 

isolates. The genetic basis for inherited field resistance to mefenoxam is still unclear. It is 

known that mefenoxam has a negative effect on the synthesis of RNA and specifically on 

ribosomal RNA (rRNA). Therefore, it likely involves the RNA polymerase I (RNApol1) as it 

transcribes rRNA. Randall et al. (Randall et al. 2014) identified and sequenced genes 

encoding RNApol1 subunits. They found that a small number of SNPs in the gene encoding 

the large subunit of RNApol1 was specific to insensitive isolates. Yet, Howard Judelson’s 

group has sequenced this same region for a number of P. infestans isolates from the United 

States and found that these SNPs did not account for all cases of resistance (personal 

communication). Judelson’s group (personal communication) has observed the SNP identified 

by Randall et al. (23) to be associated with resistant genotypes in isolates of US-8, yet this 

same SNP was sometimes found in the sensitive isolates. Therefore, it is likely that another 

gene or group of genes contribute(s) to stable mefenoxam resistance in some genotypes of P. 
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infestans.   

 Given the speed and consistency of acquired resistance, an epigenetic mechanism 

seemed likely. There exist a wide range of mechanisms that have been observed to confer 

fungicide or drug resistance in other systems, including efflux transport or direct 

detoxification of the active compounds (Judelson and Senthil 2006). Thus, we compared the 

transcriptome of isolates without acquired resistance to the transcriptome of isolates with 

acquired resistance using RNA-seq.  

 The tight clustering by clonal lineage observed in the multi-dimensional scaling 

analysis showed that most genes differentially expressed between non-exposed (sensitive) and 

exposed (with acquired resistance) were unique to each isolate.  Therefore, most differences 

were due to isolate rather than due to exposure to mefenoxam. However, common to all 

sensitive isolates that had acquired resistance were 32 genes that were differentially expressed 

in each of these lineages (Table 5.1). 

 We further investigated some of the genes that were most highly differentially 

expressed upon acquisition of resistance. They include genes with putative functions that 

could potentially mediate acquired resistance to mefenoxam. Notable among these are two 

ATP-binding cassette superfamily proteins (ABC), which are part of a large family of 

transporters characterized by a highly conserved nucleotide-binding domain (Judelson and 

Senthil 2006). Most catalyze the ATP-dependent efflux of a broad spectrum of compounds 

from the cell (Judelson and Senthil 2006). These have been observed to mediate drug and 

multi-drug resistance in various organisms, including phytopathogenic fungi (Nakaune et al. 

2002). 

 Another of the potential candidate genes is phospholipase D (PLD). These enzymes 
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cleave phosphatidyl inositol into inositol and phosphatidic acid. A previous study with P. 

infestans has identified 18 such genes, many more than in other Eukaryotes (Meijer et al. 

2011). The same study also found that a few of those PLDs had extracellular activity, and 

posited that they might play a role in modifying host tissues during pathogenesis. 

Phosphatidic acid has been implicated as a signal in diverse contexts including secretion, 

vesicle trafficking, and modulation of receptor signaling (Wang et al. 2006), which might aid 

removal of mefenoxam from the cell or interfere with the activity of mefenoxam. 

Additionally, PLDs have been directly implicated in agonist-dependent cellular secretion. 

Thus, this PLD might function as one of the steps in a signaling pathway leading to the 

acquired resistance response perhaps via secretion of the molecule. 

 The conserved hypothetical protein showing similarity to a TonB-dependent receptor 

may play a role in mediating acquired resistance. This conserved hypothetical protein is 

similar in amino acid sequence to a TonB-dependent receptor protein found in P. sojae (Tyler 

et al. 2006). TonB proteins are highly conserved, and are anchored in the plasma membrane, 

projecting into the periplasmic space, where they often interact with receptors that are termed 

TonB-dependent receptors (Zhao et al. 1998). These receptors are often gated channels, and 

are primarily known for their role in mediating iron uptake through the use of siderophores. 

However, TonB and the receptors it interacts with have been implicated in efflux-mediated 

“intrinsic and acquired antibiotic resistance” in Pseudomonas aeruginosa (Zhao et al. 1998). 

This mechanism has been shown to influence but not entirely determine resistance (Zhao et al. 

1998). It is possible that these two conserved hypothetical proteins might work in concert with 

ABC transporters to mediate efflux of mefenoxam.  

 The remaining candidate genes do not have previously documented roles in toxicant 
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resistance, but may be part of a stress response on the part of the pathogen – the stress being 

mefenoxam. Previous analyses of mannitol dehydrogenase in vitro show that it could be 

responsible for production of mannitol in the rust fungus, Uromyces fabae (Voegele et al. 

2005). Polyols like mannitol have been shown to function as an osmoprotectant in various 

fungi (Clark et al. 2003, Shen et al. 1997a, b). Thus, one hypothesis is that mannitol 

dehydrogenase is produced by P. infestans as a response to toxicants – either in general or as 

a specific osmoprotectant response.  

 RXLR effectors, on the other hand, are known primarily for their role in promoting 

virulence on host plants. The RXLR translocation motif is required for translocation across 

the host cell membrane, where RXLR effectors are presumed to participate in suppressing 

Pathogen-Associated-Molecular-Pattern (PAMP) Triggered Immunity (PTI) (Birch et al. 

2009, Whisson et al. 2007). The production of such specialized molecules in an in vitro test 

was unexpected, and a satisfying explanation for their induction awaits further investigation.  

 The identification of differentially regulated genes that are significantly expressed in 

common among the three originally sensitive isolates follows the assumption that these 

genotypes share a common mechanism for acquiring resistance. This assumption seems likely 

due to the similarity of the acquired resistance phenotypes among sensitive isolates. Also 

consistent with this hypothesis is the finding that the stably resistant US-8 isolate also 

differentially expressed many of the same genes that the sensitive isolates differentially 

express in common. However, because there was substantial diversity among isolates in the 

genes that were differentially expressed, we cannot rule out the possibility that different 

genotypes of P. infestans have different mechanisms responsible for their acquired resistance. 

Further work will be necessary to identify the precise mechanism(s) underlying acquired 
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resistance. As a next step, a gene-specific silencing method should be used to test the role of 

the candidate genes identified in this study.  

 The risk of this acquired resistance causing problems in field situations seems low. 

Previous studies (Bruin and Edgington 1981, Staub et al. 1979) found that isolates that had 

acquired resistance “in vitro” did not have high levels of resistance “in vivo”. In our studies, 

isolates with acquired resistance had slower growth in culture, and so might not compete well 

in the field. These results are consistent with those of Bruin and Edgington (3). However, it is 

also possible that acquired resistance might operate in concert with the stable resistance as 

described by Randall et al (2014) to achieve an even greater level of resistance. It is also 

important for investigators to be aware that “sensitive” strains of P. infestans can rapidly 

acquire a resistance phenotype upon a single passage through mefenoxam-containing 

medium. 
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5.9 Supplemental Material 

 

Supplementary Figure 5.2 qRT-PCR results for comparative analysis between non-exposed 

and mefenoxam-exposed isolates. Graph indicates relative expression for each gene. All genes 

were assayed in triplicate and two biological replicates of each treatment were performed. 

Each error bar is constructed using one standard error from the mean.
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CHAPTER 6 

Discussion 

 

The overall objective of this study was to understand the population genetics of Phytophthora 

infestans in the United States. I have characterized phenotypes of the most recent and most 

prevalent strains of this pathogen in the US (US-8, US-22, US-23, and US-24), and growers 

throughout the Northeast have already used this information to make informed management 

decisions. For example, US-23 has been the dominant lineage in the US since 2011. Based on 

the data I have generated, growers have learned that if US-23 is in their fields, they must 

protect both potato and tomato crops. Furthermore, growers are now aware that they may use 

the fungicide mefenoxam to control late blight epidemics caused by this genotype. I have also 

investigated a novel set of rare and diverse genotypes of P. infestans detected in the Northeast 

in 2010 and 2011. The genetic characteristics of this population were consistent with a 

recombinant population. Greater diversity was detected in that region during each of 2010 and 

2011 than had been observed in the entire United States in the previous ten years. The 

likelihood that many different migrations from diverse sources, or that many mutations caused 

the high degree of genotypic diversity found, seem low. Through parentage exclusion 

analyses using microsatellite markers and four nuclear gene sequences I found that clonal 

lineage US-22 could be a parent of some, but not all, of the new genotypes detected in 2010 

and 2011. My best inference is that these isolates represent progeny that originated from at 

least two recombination events. The geographic location(s) of those recombination events 



 

 - 197 - 

remains unknown. The eventual impact of this recombination event cannot be predicted at this 

moment. The fact that individuals from this event were detected only in 2010 and 2011 and 

not in 2012 or 2013 suggests that these isolates were not as aggressive or as fit as subsequent 

dominant clonal lineages. However, the fact that there is now evidence for a second 

recombinant population of P. infestans detected in the US indicates that sexual recombination 

is certainly possible, and there is no reason to believe that such populations will not occur in 

the future. Diligence in monitoring populations might enable the location of a recombination 

to be identified so that proper mitigation techniques could be applied. 

 The phylogenetic relationships of isolates of P. infestans in the US were further 

studied by using approximately 98,000 SNP markers obtained through genotyping-by-

sequencing. Isolates of P. infestans from Mexico and one from the Netherlands were also 

included in this analysis. A maximum-likelihood (ML) phylogenetic tree was generated using 

RAxML (Stamatakis 2014) with 1,000 bootstrap replications. The Generalized time-reversible 

(categorical) (GTRCAT) nucleotide substitution model was used (Tavaré 1986).  

 In general, the dominant clones in the US from the 1990s to 2013 seem to be 

phylogenetically distinct (Figure 6.1). The topology of the tree supports previously reported 

hypotheses regarding the source as well as the parental-progeny relationships of certain US 

clonal lineages. For example, lineages US-7 and US-8 clusters within the Mexican isolates, 

supporting the hypothesis that these clonal lineages were introduced into the US from Mexico 

(Goodwin 1997). Clonal lineage US-7 (Coffey7723), has been proposed to be one of the 

parental genotypes for US-11 (Gavino et al. 2000). These lineages formed a monophyletic 

group with a bootstrap support value of 100. Furthermore, isolates within the NYS-2010/11 

population formed a single cluster that includes clonal lineage US-22 (with a bootstrap value 
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of 100), which supports my hypothesis that this is one of the parental genotypes of some of 

the individuals of the NYS-2010/11 population (Danies et al. 2014). Clonal lineage US-8 is 

closely related to clonal lineage US-24, which has been previously shown using microsatellite 

markers (Fry et al. 2013). Isolates within clonal lineage US-23, are different from other clones 

that have been dominant in the US from the 1990s to 2013. Since 2011, US-23 has been the 

most prevalent clonal lineage in the US.  The fact that it is very different to any of the other 

lineages probably suggests that an isolate or isolates from this lineage were introduced into 

the US from elsewhere. Individuals of the US-23 clonal lineage have been detected in Europe 

(Cooke D.E.L. personal communication). The similarity between US-23 and European 

isolates is further supported by the monophyletic group that includes these isolates and the 

isolate from the Netherlands.  
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Figure 6.1 Maximum-likelihood phylogenetic tree of Phytophthora infestans generated by 

using RAxML with 1,000 bootstrap replications.  

 

 For the same panel of diverse P. infestans isolates used to construct the Maximum-

likelihood phylogenetic tree, I systematically assessed five traits: mating type, pathogenicity 

on potato and tomato, sensitivity to mefenoxam, the effect of temperature on release of 

zoospores, and the effect of temperature on mycelial growth. Isolates of the A1 mating type, 

of the A2 mating type, and others that were self-fertile were identified. Genotypes US-8 and 

US-24, as well as the isolates from Mexico and the isolate from the Netherlands showed a 

strong preference for potato and were not at all aggressive on tomatoes. Genotypes US-7 and 

US-11 as well as the rare and diverse genotypes detected in the Northeast in 2010 and 2011 

were pathogenic on both potato and tomato. A broad range of responses to sensitivity to 

mefenoxam was observed among the panel of isolates studied. The most remarkable 

differences were observed within the Mexican isolates, where sensitivity ranged from 

extremely sensitive (no growth in the presence of mefenoxam) to highly resistant (where 

mycelial growth was enhanced by the presence of mefenoxam). The rate at which sporangia 

released zoospores differed between isolates. Within 30 minutes of incubation at 4ºC, 

sporangia that had released zoospores ranged from approximately 2% to 80%. Differences in 

mycelial growth were observed at different temperatures. For all isolates studied, growth at 

10ºC seemed to be greatly stunted. The vast majority of isolates (50 out of 56) did not show 

statistical differences in mycelial growth at 15, 20 or 25ºC. However, six isolates did show 

differences in growth in response to temperature.  

 Obtaining precise phenotypic data is challenging due to the high variance observed in 
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the assays conducted. Yet, the findings from this study show that real statistical differences 

within the phenotypic traits studied exist within our panel of P. infestans isolates. 

Undoubtedly, the phenotypic diversity present in P. infestans is a key factor contributing to 

the pathogen’s success throughout time. Future efforts will be devoted to finalizing the 

phenotyping assays of the diverse panel of P. infestans isolates included in this study. The 

phenotypic data for diverse isolates of P. infestans along with the SNP markers generated 

through genotyping-by-sequencing hopefully will enable a genome-wide association study to 

find SNP markers associated with traits of interest. This will hopefully form the basis for 

future research that would lead us to the development of a specific DNA-based method to 

identify phenotypic traits of interest. An understanding of the genetic basis of complex traits 

important to the pathogenicity or epidemiology of P. infestans would be of value in managing 

late blight because rapid analysis using molecular markers could inform the selection of the 

most effective mitigation tactics. 

 Finally, I investigated the characteristics of mefenoxam-acquired resistance. I found 

that the phenomenon of acquired resistance was universal and was not unique to certain 

strains of P. infestans. Three originally sensitive genotypes (US-22, US-23, and US-24) were 

all able to acquire resistance to mefenoxam after a single exposure to sub-lethal 

concentrations of the fungicide. Thirty-two genes were found to be significantly differentially 

expressed in response to mefenoxam in all originally sensitive genotypes studied. However, 

because there was substantial diversity among isolates in the genes that were differentially 

expressed, we cannot rule out the possibility that different genotypes of P. infestans have 

different mechanisms responsible for their acquired resistance. Further work will be necessary 

to identify the precise mechanism(s) underlying acquired resistance. As a next step, a gene-
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specific silencing method should be used to test the role of the candidate genes identified in 

this study. 
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