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ABSTRACT 
 

In this thesis we discuss the propagation of light with low numerical aperture and high numerical 

aperture objectives, with or without scattering media. The point spread function (PSF) of a 

focused beam is studied for low and high aperture situations without scattering medium. Based 

on the result of other group’s Monte Carlo Simulation in treating focus of light in scattering 

tissue, a simple model has been used to describe and explain the cause of the result. The beams 

formed by objective lenses with different numerical aperture (NA) are discussed so we can study 

the influence of changing NA on the focal spot size. 
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1. Introduction 

   The development of optical imaging is quite popular in biological research and clinical 

diagnosis, especially deep tissue imaging, which is a new but important field in the medical area. 

For most imaging methods, resolution is always a key goal for innovation. However, in deep 

tissue imaging, the existence of absorption and scattering of tissue cause great problems for 

image focus, resulting in low resolution images. More and more scientists have been working on 

imaging methods to improve resolution. A new method, laser scanning multi-photon microscopy 

(MPM), has been invented for solving this problem. Two-photon microscopy is the simplest 

model for MPM. Two-photon microscopy was invented by Winfried Denk in the lab of Watt W. 

Webb at Cornell University in 1990, who combined the idea of two-photon absorption with the 

use of a laser scanner (Winfried Denk, James H. Strckler, Watt W. Webb, 1990). MPM has 

greatly improved the penetration depth of optical imaging. And now it is a great tool for a variety 

of deep imaging applications such as intact or semi-intact tissues. (Guanghao Zhu, James van 

Howe, Michael Durst, Warren Zipfel, and Chris Xu, 2005) However, new concepts and 

techniques need to be developed for imaging deep into scattering biological tissue. 

    Since the experimental methods have been well developed for deep-tissue imaging, the 

theoretical explanation and analytical expressions have not been worked out in this field. The 

propagation of light has been explained in detail (Wolf, Electromagnetic diffraction in optical 

systems: I. An integral representation of the image field, 1959), expressing the electrical vector 

field in low and high numerical aperture (Wolf, Electromagnetic diffraction in optical systems II. 

Structure of the image field in an aplanatic system, 1959). This paper has explained the most 

basic and well-developed theory in light propagation. However, this theory cannot explain deep 

tissue imaging since scattering and absorption have not been considered. No completed theory is 
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developed for the propagation of light with scattering. So currently, the only way to obtain the 

analytical result for deep tissue imaging is through numerical simulation. A lot of scientists have 

developed simulation methods for tissue imaging. For example, Min Xu, an associate professor 

in Fairfield University, has developed a method called Electric-field Monte Carlo (EMC) 

Simulation for polarized light propagation in turbid media (Xu, 2004). EMC is a simulation 

method for tracing the electric field vector of the propagation of light in tissue.  Other scientists 

have combined this method with the specific wavelength range of input light (Fuhong Cai, Jiaxin 

Yu, Sailing He, 2013). Lihong Wang from Texas A&M and Steven L. Jacques from Oregon 

Health & Science University, have developed many Monte Carlo simulation methods together, 

with one example being Monte Carlo For Multi-layered Media (MCML) (Lihong Wang, Steven 

L. Jacques. Liqiong Zheng, 1995). MCML is a simulation method for tracing the properties of 

photons such as the position and direction before and after each step for propagation. 

    The thesis is arranged as follow: Firstly, Electromagnetic diffraction in optical systems for low 

numerical aperture and high numerical aperture is presented. Secondly, scattering theory is 

introduced. Thirdly, light propagation in optical systems with low and high numerical aperture 

objective without scattering medium is investigated. Last, a simple model is shown to explain the 

result of the Monte Carlo Simulation in treating focusing of light in scattering tissue. 

 

2. Electromagnetic diffraction in optical systems for low numerical aperture 

  Different diffraction theories can be used to express the phenomena of diffraction qualitatively 

and quantitatively. For certain aperture, different approximations would be used based on 



3 
 

different field boundaries. This section will explain the vector expression of electromagnetic 

field diffraction.   

(1)Mathematical expressions of diffraction theory 

   Huygens-Fresnel principle is a common principle of diffraction, which tells that a wave front at 

a later time is given by the superposition of spherical wavelets originating from a wave front at 

an earlier time (Gu, 2000). According to the Huygens-Fresnel principle, the diffraction patterns 

of light propagation can be derived as an integration of the contribution from wavelets of a 

certain aperture. Consider a small area dS within an aperture, centered at a point P1. With dS set 

to be infinitesimal, the total amplitude of waves at P2 in observation plane can be written as Eq. 

1: 

2 1

exp( )
(P ) (P )

ikr
U C U dS

r



                                              (1) 

Where U(P1), U(P2) are the strengths of the illumination at point P1 and point P2, respectively. 

(2)Kirchhoff Diffraction Theory 

   Firstly, we consider the scalar condition for this theory. With the field of a monochromatic 

beam of light expressed with the strength of illumination and time, we could derive Helmholtz 

equation from Maxwell’s equations: 

2 2( ) (P) 0k U                                                            (2) 

Where  

 

2 2 2
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  
   
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                                                       (3) 
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k
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 


                                                             (4) 

Solving this equation, we could get a rigorous solution 

   exp exp1
(P)

4
s

ikr ikr U
U U dS

n r r n

    
   

    
                            (5) 

 

   To get an expression for U(P), several assumptions are needed for evaluation. Krichhoff 

boundary conditions provide these two assumptions (Gu, 2000): the first one is to show that the 

field within the aperture is the same as if the screen were absent; the second one is to tell that in 

other area of the screen, we have  

0

0

U

U

n








                                                                (6-7) 

where n is the unit vector of the aperture plane with the same direction of light propagation. By 

applying these two boundary conditions and using two Green’s functions, we could derive the 

solution to the Helmholtz equations: 

   
 

 1 1

exp
ˆ ˆcos ,

ikri
U P U P n r dS

r



                                      (8) 

 
   1

2

exp1

2

U P ikr
U P dS

n r


 
 

                                       (9) 

So the equation can be expressed as 

     1 2

1

2
KU P U P U P   

                                           (10) 
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(3) Paraxial Approximation 

   The light wave propagates close to the axis of the optical components in most diffraction 

problems, so we need to consider this paraxial approximation in low aperture systems since a lot 

of other effects will be considered in the high aperture systems. 

   By applying this approximation, what we need to consider is that the low aperture means the 

incident angle θ is really small that could result in 

sin

tan

cos 1

 

 









                                                          (11-13) 

   These three assumptions will be used for calculation in low aperture. And in this situation, the 

input wave can be treated as the plane wave. 

 

3. Electromagnetic diffraction in optical systems for high numerical aperture 

(1) Effects of a high numerical-aperture (NA) objective 

   Since the aperture is no longer low in the system, paraxial approximation is not suitable for this 

system. Three other effects such as apodization, depolarization and aberration will be considered 

for the high aperture objective (Gu, 2000). 

   Apodization shows the difference between the light field distributions over the lens aperture, 

that is to say, the difference between the distribution of the original input and the distribution of 

the light passing through the lens or aperture. In low aperture cases, the light distribution over the 
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lens aperture is almost the same because of the small NA. However, when NA is large, usually 

larger than 0.7, this difference will become significant. Usually it is to show the difference 

between a plane wave and a spherical wave. 

   Depolarization explains that the linearly polarized beam of light will be depolarized in the 

focus of the lens in a high-aperture system (Gu, 2000). This means the electric field of non-

incident direction will be no longer zero. 

   Aberration shows the changes of the light field in phase over the lens aperture. The high 

aperture results in complicated aberration function. 

 

(2)Debye Approximation: From Scalar to Vectorial  

   Debye theory is important in producing a diffraction integral for calculating the diffraction 

pattern of an objective in high NA system. The spherical surface in Fig.1 can be expressed as 

                                             
 

1 1

exp ikf
U P P P

f
                                                    (14.1) 

                                              
 

 2 1

exp
(P ) (P ) cos ,

ik r fi
U P n r dS

fr


                               (14.2) 

Debye approximations contain three parts if P2 is not far away from the origin: (Using Figure 1 

to describe) (Gu, 2000) 
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Figure 1.Focusing of a spherical wave 

   The first approximation  shows that the distance difference of 𝒓 − 𝒇can be expressed as cross 

operating of s and R. It means the original spherical wavelets can be replaced by a plane wave at 

the aperture. The second approximation shows that the element area dS can be expressed by the 

solid angle corresponding to the area dS multiplied by the square of the focal length. The third 

approximation is that expresses that the direction r is parallel to the optical axis, which means P1 

and P2 is almost at the same horizontal line, which results to the sine condition: the height along 

y axis h = fsinθ . To apply these approximations with the original expression of spherical surface 

U(P) and the result form equation(Uk), we could get the Debye integral 

     2 1 exp
i

U P P P iks R d




                                            (15) 

This is the scalar Debye integral.  
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   In turning to the vectorial situation, we need to use the vectorial wave equation to calculate the 

electromagnetic field. Firstly we only consider the electric field. By turning the scalar form to 

vectorial form from equation U(P2) above,  we can get 

     2 0 1 exp
i

E P E P is R d




                                           (16) 

   To change the coordinate system, for P1 we use a spherical coordinate system, and for P2 we 

use a polar coordinate system. By applying some definite integrals, we could derive from 

Equation (16) above to 

      2 2 0 2 2 1
ˆˆ ˆ, , cos 2 sin 2 2 cos

i
E r z I I i I j i I k


   


     

              (17) 

Where 0I , 1I  and 2I  are (Gu, 2000) 

     

   

     

1/2

0 0 2 2
0

1/2 2

1 1 2 2
0

1/2

2 2 2 2
0

cos sin 1 cos sin exp cos

cos sin sin exp cos

cos sin 1 cos sin exp cos

I J kr ikz d

I J kr ikz d

I J kr ikz d







     

    

     

  

 

  







             (18-20) 

 

4. Scattering Theory  

   A lot of scattering theories have been developed for describing the scattering of the light by 

particles. Although these theories have different types of focus, in general they can be divided 

into two types: single scattering theories, and multiple scattering theories. (Hollis, 2002) 

   For single scattering, the particles are supposed to be separated largely, or the number of 

particles are assumed to be small. In other words, compared to the incident wave, the total 
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scattered wave is small. In that case, the relationship between the incident intensity 𝐼and the 

after-scattered intensity 𝐼 can be expressed as 

 
0

a s l
I I e

 
                                                          (21) 

Where 𝜇𝑎 is the absorption coefficient, and 𝜇𝑠 is the scattering coefficient. 𝑙 is the transmitted 

length through the medium. 

   For multiple scattering, it is no longer focused on one single particle. Instead, it can be treated 

as the combination of the single scattering, with only the different scattering directions needing 

to be considered. If the scattering is isotropic, assuming the photons are travelling in a direction 𝑠̂ 

into a new direction 𝑠̂′, by integrating over all the angles, the total scattering coefficient is 

(Hollis, 2002)  

 
4

ˆ ˆ ˆ, ' 's sd s s ds


                                                     (22) 

   In our study, anisotropic situation is considered for scattering. Here anisotropy factor is 

introduced to describe our situation 

   
4

ˆcos 'g p ds


                                                    (23) 

   Where p(θ) is the scattering phase function, which is the normalized version of the differential 

scattering coefficient. If the scattering is isotropic, g is equal to zero since p is always the same 

all over different angles. By considering the anisotropic factor, the transport scattering 

coefficient will be 

 ' 1s sg                                                          (24) 
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5. Simulation 

(1) Without Scattering 

   From the expression of electric field of vectoral theory, the intensity is the modulus squared of 

electric field and can be expressed as (Gu, 2000) 

      2 2 22 *

2 2 0 1 2 0 2, , 4 cos 2cos 2 ReI r z C I I I I I                      (25) 

Where C is the normalization parameter. 

   When applying the paraxial approximation, that is to say, the maximum angle of convergence 

of rays in image space, α, is small, we have J1(x)0 and J2(x)0 compared with J0(x). So we 

can get 

 

 
2

2 2 0

1

2

, ,

0

0

I r z I

I

I

 





                                                        (26) 

That is to say, the intensity is the modulus squared of the variable 𝐼0. So applying paraxial 

approximation in 𝐼0, we get 

 

 
 

2

1/2 2

0 0 20

1
2

0
0

sinsin 1 2, cos sin cos exp
2 sin 2 sin

2

1            2 ( )exp
2

            ,

v
I v u J iu d

J vx iux xdx

h v u




 
  



 
         

    
 

 





            (27) 

In which 



11 
 

2

2

2

2

2

sin

4 sin
2

sin / 2

sin / 2

v kr

u kz

x















                                                     (28-30) 

   The point spread function PSF is the normalized intensity I = |𝐼0|2 = |ℎ(𝑣, 𝑢)|2. We have the 

figure of PSF as Figure 2 (The MATLAB code is in Appendix 1) 

 

Figure 2. Point Spread Function in low aperture situation 

   For multi-photon excitation (MPE), under paraxial approximation, a special parameter, 𝑎𝑛, can 

be defined to determine and distinguish each type of MPE. Let’s define the PSF as S(r). The 

integration of S(r) over the entire volume becomes 

 n

n
V

S r dr a C


                                                        (31) 
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 
2

0
2 ,

n

na vdv du h v u
 


                                                   (32) 

   Here C is a numerical parameter determined by refractive index of media, wavelength of the 

incident wave and the numerical aperture. This 𝑎𝑛 is almost a constant under paraxial 

approximation over a limited space. n is the number of photon for nPE, for instance, 2-photon 

excitation is the situation with n = 2. When n = 2, the uncertainty is smaller than 4%, and there is 

a newly calculated value is 𝑎𝑛 = 64 when n = 2 (Chris Xu, Watt W. Webb, 1997). A MATLAB 

code is written to do this calculation (the code is shown in Appendix 1). The result is 𝑎𝑛 = 66.9, 

compared with 𝑎𝑛 = 64, the relative error is 4.5%, a little bit bigger than 4%. That difference 

may result from the algorithm being used by different people and the uncertainty of the integral 

boundaries chosen.  

   When dealing with the high-aperture situation, the paraxial approximation is no longer 

suitable. That means, the variables 𝐼1 and 𝐼2 no longer approach zero. Therefore we need to 

consider the Equation (25) when we want to know the PSF in high-aperture situation. In response 

to this, we developed the MATLAB code (Appendix 2) to get the intensity point spread function 

normalized at its origin in the two orthogonal directions x axis and y axis, we could get the result 

that 



13 
 

 

Figure 3.Normalized intensity distribution in a focal region with high aperture objective without scattering. 100 

Points are chosen to do the integral. Input wavelength is 1700 nm, and the incident depth is 1mm. The value of NA is 

0.87, for the maximum angle of convergence is 60 degree. All scales are in optical unit. 

 

(2) With Scattering 

      In this project, the absorption coefficient will be considered as zero since it is sufficiently 

small compared to the scattering coefficient. We have already gotten the result of the in-focus 

intensity point spread function, so what we need to do is to add the scattering effect into this 

result to obtain what the situation will be with scattering. 

   When the light goes into the tissue, the direction of photons will change because of the 

scattering. A small amount of unscattered photons still exist. That’s why the light can still focus 

through the tissue even though considering the tissue scattering. When the light propagates 
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through the tissue, the light will be absorbed and scattered, which will cause the intensity of light 

decrease in the focal plane.  At the same time, the focal spot will no longer be that small. Instead, 

the focal spot will be bigger than before because the incident beam has been scattered through 

the tissue. 

   Because the light propagates randomly in the anisotropic tissue, we cannot get the result 

directly by treating light as wave to determine how the focusing of light will be in the tissue. 

However, the light can be treated as the large amount of photons incident into the tissue, so we 

could use Monte Carlo Method to simulate this statistic result. There are many groups using 

Monte Carlo Method to simulate the propagation of light in the tissue.  

   A research group in Zhejiang University uses Monte Carlo Method to determine the intensity 

distribution of a focused laser beam in a tissue (Fuhong Cai, Jiaxin Yu, Sailing He, 2013). A new 

method, EMC(Electric field Monte Carlo) method has been used  in this simulation. EMC 

simulation is based on tracing the Stocks Vector  

  , , ,
T

I I Q U V                                                                             (33) 

Where 

 

2 2

2 2

* *

* *

l r

l r

l r l r

l r l r

I E E

Q E E

U E E E E

V i E E E E

 

 

 

  

                                                                    (34) 

El and Er are orthogonal compex electri field componets (Xu, 2004). In their simulation, the 

tissue they use is an aqueous phantom containing 1-um-diameter scattering beads at a 
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concentration of 0.1044 spheres/micron3. The main absorption is water and the scattering 

coefficient is calculated based on Mie scattering theory. For the simulation, they use lasers with 

different numerical aperture (NA) and get the simulation results for the focal spots. Based on the 

simulation, it can be concluded that with the increasing of the NA, the focal spot gets smaller. 

However, as the NA gets larger, the intensity at the focal spot is smaller. In this way, in order to 

get a better image, we need to figure out a proper NA to make the focal spot small enough, and 

also bright enough, the result is shown as Fig.4. 

 

Figure 4 The intensity curves of Focal spots with different NA values (Fuhong Cai, Jiaxin Yu, Sailing He, 2013) 

  

   There are a few theories to describe the scattering such as Mie scattering. Here a simple model 

could be used to describe how scattering could impact the focusing of light in the tissue. Ballistic 

photons are the photons that travel through a scattering medium in a straight line. When the light 

propagates through a turbid medium, most of the photons will be randomly scattered or 

absorbed. So scattering causes photons to depart from their ballistic path. When photons go deep 
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in the tissue at the focal plane, the probability of scattered photons reaching the focal plane is 

almost zero. So only ballistic photons can reach the geometrical focus (Ke Wang, Nicholas G. 

Horton and Chris Xu, 2013). The number of incident photons is assumed the constant in this 

case, and the surface distribution of photons is uniform. If the NA is larger, the photon density is 

smaller. With a larger NA, the number of ballistic photons that could reach the center of the focal 

spot is smaller, so the intensity of the focal spot obtained from the higher NA is smaller. And 

then, at the focal plane, only ballistic photons will be considered, and the remaining power that 

they carry falls exponentially with the optical depth µsz0 (A. Leray, C. Odin, E. Huguet, F. 

Amblard, Y. Le Grand, 2007). The power of ballistic photons with a large incident angle will fall 

faster because of the longer optical path. So the size of the focal spots obtained from a higher NA 

objective is smaller. 

 

6. Conclusion 
 

   In this project, the simulation of a focused beam propagating without scattering media has been 

showed. We have obtained the point spread functions without scattering media for both low 

aperture and high aperture systems. Then, according to the theory of the scattering, we use a 

simple model to express the impact of scattering on the focus beneath the tissue. We got the 

result of Sailing He’s group, which is, with the increasing of the NA, the focal spot size gets 

smaller, however, the intensity of the focal spot also decreases. In this way, in order to get a 

better image, we need to figure out a proper NA to make the focal spot small enough, and also 

bright enough. More simulations are needed for choosing the NA value.  
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Appendix 
 

1. The code for light propagation without scattering under paraxial approximation (PSF) 

clear 

clc 

v = linspace(0,10,101); 

dv = 0.1; 

  

  

PSF = zeros(101); 

  

for i = 1 : 101 

    psff = 0; 

    for l = 1 : 100 

        temp = 0.01*l*besselj(0,v(i)*0.01*l)*dv; 

        psff = psff + temp; 

    end 

    PSF(i) = (abs(2*psff))^2; 

end 

  

M = max(PSF); 

  

plot(v,PSF/M) 

ylabel('I'); 

xlabel('v'); 

 

 

function a = h(v,u,x) 

a = x.*besselj(0,v.*x).*exp((-1/2).*1i.*u.*(x)^2); 

 

The calculation of 𝑎𝑛 when n = 2   

clear all; 

clc; 

  

v = linspace(0,2,100); 

u = linspace(-2,2,100); 

x = 

linspace(0,1,180                                                                                                                                                                             

                                                                                                                                                                             

 ); 
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dv = (max(v)-min(v))/(length(v)-1); 

du = (max(u)-min(u))/(length(u)-1); 

dx = 1/(length(x)-1); 

p = 2; 

temp = zeros(length(u),length(v),length(x)); 

for n = 1:length(v) 

    n 

    for m = 1:length(u) 

        for k = 1: length(x) 

            temp(m,n,k) =h(v(n),u(m),x(k)); 

        end 

        %hh(m,n) = sum(temp,3); 

        %HH(m,n) = (abs(hh(m,n))).^(2*p); 

         

    end 

end 

  

hh = sum(temp,3)*dx; 

HH = sum(abs(2*hh).^(2*p))*du; 

  

AN = sum(2*pi*HH.*v(n))*dv 

 

 

 

2. The code for light propagation without scattering in high-aperture system 

clear,clc 

tic 

n = 100; % numbers of theta 

m = 100; % numbers of r 

p = 100; % numbers of z 

  

% unit: um 

lamda = 1.7  ; 

a = 60*pi/180; % maximum angle of convergence; apeture angle 

k = 2*pi/lamda; 

phi = pi/2; % along x axis 

  

g = 0.9; % anisotropic factor 

miu = 16.67*10^(-3); %scattering coefficient /um 

  

I_zero = zeros(m,p); % # of r rows, # of z column 

I_one = zeros(m,p); 

I_two = zeros(m,p); 

I = zeros(m,p); % total psf 
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theta = linspace(0,a,n); 

r = linspace(0,0.1,m); 

z = linspace(0,1000,p); 

  

  

for q = 1 : m 

    for j = 1 : p 

        I_z = 0; 

        for k = 1 : n 

            temp_z = 

sqrt(cos(theta(k))).*sin(theta(k)).*(1+cos(theta(k))).*besselj(0,k.*r(q).*sin(theta(k))).*exp(-

1i*k*z(j).*cos(theta(k))); 

            I_z = I_z + temp_z; 

        end 

        I_zero(q,j) = I_z; 

    end 

end 

%I_zero 

  

  

for q = 1 : m 

    for j = 1 : p 

        I_o = 0; 

        for k = 1 : n 

            temp_o = 

sqrt(cos(theta(k))).*((sin(theta(k))).^2).*besselj(1,k.*r(q).*sin(theta(k))).*exp(-

1i*k*z(j).*cos(theta(k))); 

            I_o = I_o + temp_o; 

        end 

        I_one(q,j) = I_o; 

    end 

end 

%I_one 

  

for q = 1 : m 

    for j = 1 : p 

        I_t = 0; 

        for k = 1 : n 

            temp_t = sqrt(cos(theta(k))).*sin(theta(k)).*(1-

cos(theta(k))).*besselj(2,k.*r(q).*sin(theta(k))).*exp(-1i*k*z(j).*cos(theta(k))); 

            I_t = I_t + temp_t; 

        end 

        I_two(q,j) = I_t; 

    end 

end 
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%I_two 

  

for q = 1 : m 

    for j = 1 : p 

        I(q,j) = (abs(I_one(q,j))).^2 + 4*(abs(I_one(q,j))^2)*((cos(phi))^2) + (abs(I_two(q,j)))^2 

+ 2*cos(2*phi)*(real(I_one(q,j)*conj(I_two(q,j)))); 

    end 

end 

%I 

  

NORM_max = max(I(:,1)) 

I_norm = I(:,1)/NORM_max; 

  

R = k.*r.*sin(a); 

  

%when u = 0, which means z = 0, we could get the psf is first column, which 

%is (:,1) 

figure(1) 

plot(R,I_norm) 

  

toc 
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