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1 Introduction 

Infectious diseases are classified into two groups: microparasitic diseases 
which are transmitted by viruses and bacteria, and macroparasitic diseases 
which are are transmitted by worms. Microparasites can reproduce within 
their host and the diseases can be transmitted via one host to the other. 
On the other hand, macroparasites show very complicated life-cycles, and 
usually involve a secondary host, or carrier, as explained by Anderson [3]. 

One problem associated with the modelling of infectious diseases is that it 
is very difficult to measure or even estimate the total infectious population. A 
second problem is that primitive models assume that viruses propagate freely 
and randomly encounter new hosts. However, the spread of microparasitic 
diseases is actually caused by contact or close interaction between the in­
fected and healthy individuals. In all microparasitic epidimiological models, 
the distinction is made between the disease-carrying individuals (the infec­
tive class), and the disease-free individuals (the susceptible class) (Edelstein­
Keshet)[8]. In a Susceptible-Infective-Susceptible (SIS) model, formerly in­
fective individuals who are cured do not develop permanent immunity, but 
instead return to the susceptible class (Allen)[2]. 

This research investigates a discrete-time SIS model which may be appli­
cable to particular diseases (Allen L.)[l], or may be considered as a discrete 
analog of the more well-known continuous-time Markov models. In our dis­
crete time (SIS) model, the total population is not constant. We call the 
equation for the total population the demographic equation. For this model, 
we separate our work into two cases: a constant and non-constant recruit­
ment (or birth) rate. 

For the case of a constant recruitment rate, we assume there exists a 
limiting equation that enables us to reduce the system of two equations to 
a single equation. We prove that, under the condition that the basic repro­
ductive number (Ro) is less than one, the disease-free equilibrium is globally 
stable. Also, when Ro is greater than one we prove that the endemic equi­
librium is globally stable. 

In the case where we consider non-constant recruitment, there are bifur­
cations for the demographic equation. These bifurcations are governed by 
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varying the birth and death rates. In the range of parameters where there 
exists a positive fixed point for the demographic equation, we can reduce 
to a single equation (as in the constant recruitment). Then we can obtain 
global stability of the disease-free and endemic equilibria for the infective 
equation. Outside the range of parameters where we can reduce to a single 
equation, we perform computational analysis through bifurcation diagrams 
for the demographic, susceptible, and infective equations. 

We use the following model: 

Sn+l - f(Tn) + Sn7r(n, n + 1)h(In) + In1r(n, n + 1)[1- e(n, n + 1)] 

In+l Sn7r(n, n + 1)[1- h(In)] + ln7r(n, n + 1)e(n, n + 1)((n, n + 1), 

with 

where from generation n to n+1, 

1-7r(n,n+1) -

1-e(n,n+1) 

1- ((n,n+ 1) -
h(In) -
J(Tn) 

1 - e-p. is the probability of death due to natural causes, 

1 - e-(1 is the probability of recovering, 

1- e-P is the probability of death due to infection 

e-ain is the probability of not becoming infected, 

birth or immigration rate (2 cases), 

and a, J.L, a > 0. However, we consider cases for p ~ 0 to account for infections 
which may or may not be fatal. In the majority of our analysis we take p = 0. 

1.1 Assumptions 

The following assumptions are primarily biologically motivated: 

1. The time step is one generation. 

2. There is no negative population. 

3. From generation n to n+ 1, infections occur before deaths. 

4. Rates of events occur independent of generation. 
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5. There are no infected births-all births enter into the susceptible class. 

6. In the case of the non-constant recruitment if there are no people, then 
there are no births: j(O) = 0. 

7. If there are too many people, then there are not enough resources to 
sustain further births: 

lim f(Tn) = 0. 
Tn-->00 

8. The probability of not becoming infected when there are no people is 
one: h(O) = 1. 

9. The probability of not becoming infected as the number of infected 
increases is a strictly decreasing function: h'(In) < 0. 

10. With too many infectious people, the probability of not becoming in­
fected is zero: 

lim h(In) = 0. 
ln-->00 

2 Constant Recruitment Rate 

We use constant recruitment to model a constant flow of new susceptibles 
through either birth or immigration. Here, 

j(Tn) = A> 0. 

So, our new model becomes: 

and 

Sn+l - A+ Sn e-P.e-aln + Ine-P.[1- e-a], 
In+l - Sne-P.[1- e-aln] + Ine-p.e-a, 
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2.1 Limiting Equation 

Tn is linear and the solution to (3) is, 

Notice that 

(4) 

We set To = T00 • This simply means that the population starts at the 
asymptotic limit of the demographic population. Now, we plug Sn = T00 - In 
into (2) to get: 

(5) 

The function vis a single-humped function. Figures 1-3 show some graphs 
of this function for various parameters. It is apparent from graphs of v (and 
could be easily shown using calculus) that v(In) = 0 has one positive root, 
Ir. As v(In) = 0 is a transcendental equation, a formula for Ir could not 
be found explicitly. In consideration of assumption 2, we now define our 
infectious population equation: 

, if In :s; Ir 

, if In > Ir. 
(6) 

We wish to consider only the dynamics for In :s; Ir. The proofs to follow 
assume that our function does not become degenerate such that a great 
proportion of initial conditions get mapped out of the region [O,Ir]· This 
happens if the maximum of u, denoted by M, is greater then In i.e. 

(7) 

Excercise 11.4.6 in Strogatz [11] will lead the reader to the realization 
that if inequality (7) is true, then the set of I 0 for which trajectories do not 
get mapped to zero after some finite amount of iterations is topologically 
equivalent to a Cantor set. The proof that there exists a globally attracting 
endemic point rests on the assumption that inequality (7) is not true. More 
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about this will be said when it becomes relavent. 

So we have reduced the system (1-2) of two equations to a single equation. 
We use the dynamics of this discrete-time single equation to draw conclu­
sions about the dynamics of the two-equation system. This is not an unusual 
comparison in analysis of systems which have a limiting demographic state. 
This reduction to a single equation can also be justified by our simulations 
in which the system and the single equation exhibit the same qualitative dy­
namics. Theoretical results for continuous-time systems have been obtained 
by Theime & Castille-Chavez [4]. 

2.2 Ro 
We can see that I* = 0 is a fixed point of (6). We determine R0 for the 
disease-free equilibrium by using Ju' (0) J < 1. This yields our basic reproduc­
tive number, 

(8) 

Biologically, this R0 represents the average number of effective contacts 
multiplied by the number of available susceptibles. This is found by observing 
that l-e (~'+") is the infection rate per infective per generation multiplied by 
the average number of generations an individual is infectious before dying or 
recovering. So, this yields the average number of effective contacts. T 00e-fl­

is the population size when there is no infection, discounted by deaths. So, 
this Ro is interpreted as the number of people an infected person infects. We 
will see that if Ro > 1, the disease can invade, and if Ro < 1, the disease will 
die out. 

2.3 Dynamics of Single Equation, Case Ro < 1 

We will now show that for certain stability conditions, I* = 0 is a global 
attractor. 

6 



. ·.· .. 

Lemma 2.1. For a continuous function f, if the solution of the difference 
equation f(xn) = Xn+l is convergent, then the limit of Xn is a fixed point of 
f(x). (See Appendix for proof.) 

Theorem 2.1. If Ro < 1, then I*= 0 is a global attractor ofu(In)· 

Proof. By definition, I* is globally stable if 

lim In= I* 
n-+oo 

for all I 0 E [0, oo). Clearly, I* = 0 is a fixed point of {6). We have to show 
that I* is unique and that all initial conditions tend towards I*. We will first 
show that In+l < In for all n E N. First, define: 

f: [0, oo) -dR, 

f(x) = 1- e-ax- ax, 

where a> 0 and f is continuous. 

f(O) -- 0 

f'(x) -- ae-aa:- a= a(e-aa:- 1) 

Since -ax < 0 by definition, 
=> e-aa: < 1 

e-aa:- 1 < 0 

=> f'(x) < 0 

Therefore, f(x) is decreasing. So, for all a E (0, oo), 

f(a) < f(O) 

By {9), f(a) < 0 

=> f(x) < 0, for all x > 0 
=> 1- e-aln- ain < 0 

1- e-aln < a In 
1 1 

ain 
< 1- e-aln 

1- e-(p+u) 1- e-(p+u) 
=> 

ain 
< 1- e-aln 
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Now, 

Ro 

From (10), ==} 

1 A 
Therefore, e-JL(-1 - 1) 

n 1- e-JL 
1 A -e-lL( - In)(1- e-ain) 
In 1- e-JL 

L e-JL(Too- In)(1- e-O!ln) + e-(JL+a) 

e-IL(Too- In)(1- e-O!In) + Ine-(JL+a) 

::::} In+l 

-

< 

< 

< 

< 

< 

< 

< 

< 
< 

Therefore, we have a strictly decreasing series. 

Furthermore, since In+l < In, 

::::} u(In) < In 

aT e-P. 
00 < 1 

1- e-(JL+a) 

1 

1 1 - e-(JL+a) 
-( ) - e-JL 
In a 
1- e-(JL+a) 

( ain ) 
1- e-(JL+a) 

1- e-O!ln 
1- e-(JL+a) 

1- e-O!ln 

1- e-(JL+a) 

1 

In 

In 

::::} u(In) /= In (for all In/= 0.) 

Therefore, I* = 0 is the only fixed point, and we have uniqueness. 

So, u(In) is continuous, decreasing, and bounded below by zero. Thus, u(In) 
must converge, and by the above lemma, 

lim In= I*. 
n-+oo 

Therefore, I* = 0 is global attractor. 0 
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When Ro > 1 we need not worry that we will end up with only a dust-like 
Cantor set which goes to the endemic at tractor. We can see from figures 
1-3 that inequality (7) is not satisfied for these choices of parameter values. 
Furthermore, simulations confirm that no choice of parameters ( Ro < 1 or 
Ro 2: 1) give us inequality (7). 

2.4 Dynamics of Single Equation, Case Ro > 1 

In the case Ro > 1, the disease-free equilibrium is unstable. We will show 
that there is a stable, unique endemic fixed point that attracts all interior 
points for values of R0 > 1. This I* satisfies u(I*) = I* such that I* > 0, 
and lillln-+= In = I* for all Io > 0 and Ro > 1. 

First, we will show the existence and uniqueness of I* > 0 for R0 > 1. 

Theorem 2.2. There exists a fixed point I* > 0 of u(In) for Ro > 1. 

Proof. 

Let 

Ro _ aT00e-P. > 1 
1- e-p.+a 

=? aT00 e-p. > 1- e-(JL+u) 

g(x) u(x)- x 

-

Obviously, g(O) 

g'(x) 

g'(O) -
=? g'(O) > 

Tooe-p.- e-P.(Too- x)e-ax 

-(e-p.- e-(p.+u) + 1)x 

0 for a fixed point of u(x) 

0 , but find I* > 0 
-(e-P.- e-(p.+u) + 1) + e-P.(aToo + 1)e-ax 
-axe-P.e-ax · 

-(1- e-(p.+u)) + aT00e-P. 

0 by (11) 

So, g(x) strictly increases from x = 0. 
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By 12, we have 

lim g(x) - e-P.Too- lim -(e-p.- e-(p.+u) + 1)x 
:Z:-+00 :Z:-+00 

Note that e-P. + 1 > e-(p.+u) 

So, lim g(x) - -oo 
:Z:-+00 

(14) 

By the intermediate value theorem, g(x) has at least one positive zero since 
g(x) is continuous. Therefore, there exists I* > 0 such that u(J*) =I*. D 

Theorem 2.3. I* > 0 is a unique positive fixed point of u(In) for Ro > 1. 

Proof. Let g(x) = u(x)- x as before. We have proved that there is at least 
one positive fixed point of u( x). I* > 0 is unique if there is only one x* > 0 
such that g'(x*) = 0, since g(O) = O,g'(O) > 0, and limx-+oog(x) = -oo. 

Now, by (13), lim g'(x) - -(e-p.- e-(p.+u) + 1), 
:Z:-+00 

by (14) lim g'(x) < 0. 
x-+oo 

So, since g'(x) is continuous, by the intermediate value theorem there exists 
at least one x* such that g'(x*) = 0. 

Look for extrema of g' ( x): 

g"(x**) - ) ** •• 2 .. -ae-P.(1 + aT00 e-ax - ax**e-p.e-ax +a x**e-p.e-ax = 0 

=>ax** - 2+aT00 

x** -
2 

Too+-
a 

And, g"(x) > 0 if x > x** 

g"(x) < 0 if x < x** 

Thus, there is one local extrema of g'(x), namely g'(x**). 

Now, g'(x**) - e-P.(1 + aT00 )e-ax**- (aT00 + 2)e-P.e-ax•• - (e-p.- e-(p.+u) + 1) 
- e-P.e-ax•• ( -1) - ( e-p. - e-(p.+u) + 1) 

< 0 by (14) 

So, the minimum occurs at g'(x**), and g'(x) increases asymptotically to a 
negative number in the interval ( x**, oo), since limx-+oo g' ( x) < 0. And, g' ( x) 
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strictly decreases in the interval (0, x**). Therefore, there is only one zero of 
g'(x) in the interval (0, x**). 

This implies that the function g(x) has only one relative extrema. Therefore, 
there is only one x* > 0 such that g(x*) = 0. This is the one and only I* > 0 
such that u(I*) = I*. 0 

We know for Ro > 1, I* = 0 is unstable. If there are no m-cycles ( m 2: 1), 
then we can conclude that I* > 0 is globally stable within a certain range of 
Ro. 
Theorem 2.4. I* > 0 is globally stable for 1 < Ro < R*. 

Proof. (By contradiction) 

There exists an R* such that for Ro < R*, 

Too > I for all I 
==} Tooae-JLe-ai > I ae-JLe-ai 

aT00e-JLe-a1 - ai e-JLe-ai > 0 > e-JL- e-JLe-a- e-JL-al- 1 

:::} aT00 e-JLe-a1 - aie-JLe-ai > -e-JLe-a- e-JLe-ai -1 + e-JL 

1 - e-JL +aT 00 e-JLe-a1 + e-JLe-ai - ai e-JLe-ai + e-JLe-a > 0 

:::} 1 + u'(I) > 0 

Where, 

u(I) = (Too- I)(1- e-o:I)e-JL +I e-JLe-a 
u'(I) = -e-JL + aT00e-JLe-a1 + e-JLe-ai- aie-f..l.e-ai + e-f..l.e-a 

Suppose two-cycle such that u(I1) = I 2 and u(I2 ) = I 1• 

We have 1 + u'(I) > 0 

1[2 

:::} ( 1 + u' (I) ) di > 0 
h lh 

:::} 0 < (1 + u'(I))di = Iz + u(Iz)- I1- u(h) = 0 
h 

So there cannot exist a two-cycle. Then by Cull [5] and Allen [1] no two­
cycles implies no m-cycles. This is by assumption that the set is invariant. 
Thus, we have global stability. 0 
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3 Non-Constant Recruitment Model 

This case models the effect of replacing constant recruitment with a Ricker 
equation. Here, 

f3Tne-ITn + Sne-0:1ne-J.L + e-J.L[1- e-a]In 

Sne-J.L[1- e-o:In] + Ine-f-le-a 

Sn+l + In+l = f3Tne-ITn + Tne-J.L 

where {3 = maximal birth rate/person/generation 

3.1 Demographic Equation 

(15) 

(16) 
(17) 
(18) 

Equation (18) is called the demographic equation. We analyze the dynamics 
of (18) in order to determine sufficient and necessary conditons for stability 
of the fixed points. Let !l(T) = {3Te--rT + Te-f-l then equilibria of the 
demographic equation are given by the solutions of the following equation, 

!l(T) = T 

so the fixed points are as follows, 

T1 =0 00 (19) 

T 2 = .!.zn( {3 ) 
oo I 1- e-J.L 

(20) 

Let Rd = ~- Now notice that if Rd < 1 then there is no positive fixed 
point. In this case the only fixed point is1T00 = 0. Therefore, this equilibrium 
point is locally stable by the following statement: 

Rd < 1 
=? {3 < 1- e-J.L 

=? 0 < {3 + e-J.L < 1 

=} If~ (o) I < 1 

On the other hand, in the case where Rd > 1, there exists two fixed 
points. 

12 



2 

Lemma 3.1. For 1 < Rd < e1-e-~', T~ is locally stable. 

Proof. 

2 

1 < Rd < e1-e-~< 
=? -2 < -(1- e-P.)ln(Rd) < 0 

=? 11- (1- e-ll)ln(Rd)i 
1 

=? if{(-ln(Rd))i < 1 

' 

(21) 

0 

The biological interpretation of Rd explains the importnce of the pa­
rameters f3 and p, in the stability of the population. f3 is the maximal birth 
rate/person/ generation- this occurs when T 00 is small and there is no compe­
tition for resources. 1_!-p is the average number of generations an individual 
is alive before dying, that is, the average number of generations in which an 
individual can reproduce. So, Rd is the average number of births per person 
that enter the system during the individual's lifetime. We show that Rd > 1 
implies stability of a non-zero population. Larger Rd values cause chaotic 
behavior in the demographic equation. 

3.2 Limiting Equation In+l: Case Rd < 1 

As we have already seen previously, Rd < 1 implies the existence of only one 
fixed point. The limiting equation is not used in this case because that would 
imply the extinction of the population. 

2 

3.3 Limiting Equation In+l: Case 1 < Rd < e1-e-P. 

Assuming (21), we can reduce (16) and (17) into a single equation by utilizing 
the limiting equation. Then we have the following equation: 

In+l = (Too- In)e-~-'(1- e-o:In) + Ine-p.e-CT 

where Too= lzn(Rd)· 
I 
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Again by studying the stability conditions for the disease free equilibrium, 
we get the basic reproductive number: 

(23) 

Therefore, by the theorem of section 2.3, the disease free equilibrium of 
(22) is a global attractor if R0 < 1. In addition, if R0 > 1 then the endemic 
equilibrium of (22) is a global attractor. 

2 
3.4 Rd > e1-e-IL 

Tn undergoes a period-doubling route to chaos. In this case, a T 00 substi­
tution would not be justified, as Tn bifurcates into multiple Too values. We 
investigate the dynamics of the system using computer simulations. 

The Appendix includes bifurcation plots of the system with different pa­
rameters. The point at which the 2-cycle occurs is when Rd becomes greater 

2 
than e 1-e-IL . 

In Figure 4, we have a = 0.5, /3 = 15, r = 1, a = 0.1, S0 = 5, I0 = 10. 
We can see that for a range of values for J-t, Tn and Sn exhibit chaotic be­
havior, while In does not. This also occurs for a range of values for (3 in 
Figure 5, but it is interesting that In bifurcates for different values of (3 
than Tn and Sn, yet their bifurcations eventually seem to coincide. Here, 
a= 5, r = 1, J-t = 2.5, a= 3, So= 5, Io = 10. We should note that there were 
several hundred iterations performed for each figure, and it appears that this 
is sufficient to determine the convergence of the fixed points. 

These results are significant in that they show that the disease can exhibit 
dynamics independent from the demography. So, for many parameter values, 
the study of the demographic dynamics would not indicate the dynamics of 
the disease in the population. However, with limited resources, it is not 
possible for us to fully explore any bounds on the parameters in which we 
can determine the behavior of the system. These simulations serve merely 
as interesting examples of the dynamics we have found thus far. 
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3.5 A Strange Attractor for the System? 

In iterating the system for a few initial conditions and fixed parameters we 
see what may be a strange attractor. In the plots to follow, Sn is on the verti­
cal axis and In is on the horizontal axis. In the computations the parameters 
were fixed as follows: a = 1.5, ,B = 170,1 = 2, a= 0.1, 8 0 = 10, Io = 10. 

Figure 6 shows the last 35,000 iterates of 70,000 iterates. We believe 
that the iterates shown represent the shape of the attractor. This is because 
we know that for a these fixed parameters, T 00 is bounded above by about 
29.4149. So, Boo and I00 must also be bounded above. The graphs show that 
no iterates go beyond In ~ 30. Figures 7 & 8 show iterates 34,000-35,000 and 
69,000-70,000, respectively. We can see from these figures that after roughly 
35,000 iterates, the maximum S~s have increased. Because of the bounds 
on Tn and In, Sn must be bounded above by around 0.5. We can see that 
all iterates must be trapped within the crude shape that forms in figure 6. 
After a huge number of iterates (the transients only comprise about five of 
the 70,000 iterates), the attractor will show its true form. More numerical 
simulations will give us more insight as to whether it is indeed a strange 
attractor. 

4 p > 0: Death Due to Infection 

This model takes into consideration that the infection can generate vital 
statistics. We take p > 0 

Sn+l - /3Tne--yT.,. + Sne-ai.,.e-p. + e-~-'[1 - e-u]In 

In+l - Sne-~-'[1- e-ai.,.] + Ine-p.e-ue-P 

Tn+l - Sn+l + In+l = f3Tne--yT.,. + Tne-P. + Ine-(p.+u) ( e-P - 1) 

Computer simulations were used to analyze this system (without a T 00 

substitution). Figure (9) shows a bifurcation plot with varying p. Here, 
a = 1.5, ,B = 170,1 = 2, p. = 2, a = 0.1, So = 10, Io = 10. We can see results 
similar to that of varying p.. We would need to run further simlations, but we 
can conclude that changes in death rates (due to natural causes, or infection) 
drastically affect the dynamics of the system and the infected population 
again exhibits dynamics independent from the demography. 
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5 Conclusion 

Our analysis has shown that we can make definitive conclusions about the 
stability of certain disease levels in our SIS model. We have proven that if 
the infection rate per infective (Ro) can be estimated to be less than one, the 
infection does not persist. If the infection rate per infective is greater than 
one, the infection persists in the population. 

When we consider a non-constant recruitment (or birth) rate, the stability 
of the demographics is entirely dependent on the average number of children 
an individual has during a lifetime, Rd. The previous results of stability for 
the infective population apply, as for constant recruitment, when Rd is in a 
range such that there is one limiting demographic value. 

Through computer simulation, we discovered that the model with Ricker 
recruitment exhibits chaotic dynamics for values of Rd in certain ranges. We 
have shown strong evidence for the existence of a strange at tractor. Our 
simulations may show mathematically interesting results for period-doubling 
limiting demographic values; however, this would of course require further 
analysis before any significant conclusions could be made about the biologi­
cal implications. 

The main goal of this project was to develop a general SIS difference 
equation model that could be applied to different diseases and to analyze the 
stability of different infectious states in the model. We would hope that the 
model has been kept general enough so that it may be used with biologically 
significant parameter values for various diseases, and that our results could 
provide a preliminary analysis of the epidemic. 
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7 Appendix 

Theorem 7.1. Assume that f(x) is a continuous function of x. If the solu­
tion of the difference equation Xn+l = f(xn) is convergent, then the limit of 
Xn is a fixed point of f(x). Hence x is a fixed point of f(x). 

Proof. Given 

by taking the limit in both sides from n --+ oo 

lim Xn+l = lim f(xn) 
n-+oo n-+oo 

Let X= liiDn-+oo Xn+b then X= liiDn-+oo f(xn) = f(liiDn-+oo Xn) = f(x) 
Hence, xis a fixed point of f(x). 0 
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Figure 1: v for various parameters with the line y = x 
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Figure 2: v for various parameters with the line y = x 
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Figure 7: Iterates 34,900-35,000, maximum Bn ~ 0.09 
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Figure 8: Iterates 69,000-70,000, maximum Bn ~ 0.125 
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