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Abstract

When planning the design and operation of a manufacturing system in which nu-
merically controlled (NC) machine tools are used to produce a variety of parts, a number
of important factors must be taken into consideration. This paper addresses certain of
these design and operational planning problems and develops a supporting optimization
framework . A methodology is proposed for machining batches of parts on groups of
machines in @ way that accounts for machine loads and tool assignments. The models
we develop consider the effects of variability and correlation of the demands among the
parts. This is done so that the manufacturing system could accommodate wide fluc-
tuations in demand without the machines suffering from significant over- and under-
capacity utilization during the system’s dynamic operation. The proposed approach is
an integrative one, which recognizes the decisions that have to be made, the sequence
in which they must be made, the computational complezity of the problem, and various
operational constraints.
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1 Introduction

When planning the design and operation of a manufacturing system in which numerically
controlled (NC) machine tools are used to produce a variety of parts, a number of important
factors must be taken into consideration. The purpose of this paper is to address certain of
these design and operational planning problems and to develop a supporting optimization
framework.

We describe below the manufacturing environment that we encountered in several plants
of a major manufacturing company that fabricates industrial parts used in hydraulic control
systems found in aircraft, automobiles, farm, construction and mining equipment. Recently,
this company has reorganized its manufacturing facilities into focused factories, each of
which has several manufacturing cells. The parts were assigned to these cells based on group
technology concepts. The environment we observed in this and similar systems is organized
based on product rather than processs considerations. This work focuses on operational
issues in the management of this type of system.

More specifically, we consider a portion of a manufacturing cell in which the bottleneck
operations are performed on a set of parallel identical flexible manufacturing machines. Since
we assume there is a single bottleneck operation in the cell, we can focus on this single stage
of production. While parts may require other operations, such as plating or anodyzing,
which take place in other portions of the cell, we assume the system is designed such that
NC machines are the bottleneck resource and determine the parts’ grouping and production
scheduling.

Flexible manufacturing machines (FMMs) are versatile NC machines which are able to
manufacture a wide variety of parts. Each machine performs a number of operations as

long as the necessary tools are loaded in its limited capacity tool magazine. Typical NC
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machining centers have permanently attached tool magazines, with capacities often ranging
from 30 to 120 cutting tools and are equipped with automatic tool changers. In fact, the
efficient use of such sophisticated and capital intensive equipment is crucial to the success
of a metal parts fabrication company in an environment where competitors have similar

equipment at their disposal.

The grouping of parts into families comes in accordance with the basic principles conveyed
by group technology. Group technology (GT) is a manufacturing philosophy that achieves
economies throughout the manufacturing cycle by grouping similar parts into families. It is
applied mainly to small- and medium-sized batch production systems. Through classification
and coding systems, parts that have similar design and/or manufacturing characteristics are
grouped into families. The formation of part families based on design similarity results in
the reduction of component variety. On the other hand, when families are formed based on
the parts’ manufacturing similarities, there is an impact upon the production process itself.
In some cases, families identified by design similarity will also have similar manufacturing
requirements; for example, parts in a family may require the same material and have the
same specifications in terms of surface finish. Cellular manufacturing (CM) is a specific
application of GT, which involves processing collections of similar parts, called part families,

on dedicated clusters of machines, called cells.

Focused factories make use of principles conveyed by GT and CM. The manufacturing
arena for the industrial environments under study is typically characterized by rapid pro-
liferation of products with short life cycles. Consequently, a facility has to produce at the
same time low volume specialty parts, high volume parts with relatively stable demand pat-
terns, along with parts that exhibit rapidly increasing or decreasing demand rates. For such

production environments, Skinner (1974) discusses the notion of focused factory in which
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segments of the manufacturing system are dedicated to the fabrication of parts with similar
production volumes and manufacturing characteristics.

Since we assume parts have been clustered together into groups because they are quite
similar in terms of geometry, raw materials and required fixturing, it is the tooling require-
ments along with machining times that will drive the sequencing and scheduling decisions
for this production environment. The parts have to be grouped into families so that parts
belonging to the same family share a common major setup. A switch in production from
one family to another requires a major setup.

The purpose of this paper is to develop a hollistic approach for planning production in
an environment characterized by cellular manufacturing and production of parts in families
in a flexible machining cell, which consists of M identical machines. The primary issues that

have to be resolved are :

e How should we group parts into families ?
e How should we allocate parts for production to different machines ?

e How should we schedule the production of the parts?

A major goal in the real systems we have studied has been to produce each part in
a family one or more times in what is called a manufacturing cycle. The scheduling of
parts in this manufacturing cycle is an important paradigm in cyclic scheduling which is
fully discussed in Hall (1988) and Wittrock (1985). The length of a cycle is determined by
the number of parts in a family, the production requirements for the parts, and the setup
times. Since setup times consume a relatively small portion of a cycle’s length, due to the
construction of the families and the nature of the NC machining centers, the allocation of

parts to machines is based largely on processing times and, of course, on the geometric,
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material, and fixturing similarities among the parts. An objective in the real application is
to keep the manufacturing cycle as short as possible so that inventories can be kept low for
both cycle and safety stocks. Hence a reasonable objective for our optimization problem is
to make part assignments to machines such that the overall cycle length for all parts is as

small as possible, that is, we would want to minimize the makespan.

The makespan for a machine is its total workload, which consists of the total processing
time that has been allocated to the machine plus the setup time. The setup time in our
environment is a function of the production sequence of the parts assigned to the machine
and their respective tooling requirements. The system makespan is the maximum of the
machine makespans. This system makespan objective incorporates two concepts: workload
balance and setup minimization. As we will see, these two quantities may be in conflict with
each other; hence, our goal is to identify the best trade-off between them. Let us define

precisely what is meant by these two concepts.

Workload balance : Parts are assigned so that the resulting workload is evenly distributed
among the machines. By doing so, the total time to complete the processing of all the parts

is minimized, that is, the makespan is minimized.

Setup minimization : Each part requires a subset of tools which must be placed in the
machine’s tool carousel before the part can be processed. Each machine has a tool magazine
with limited capacity C, and, in general, the number of tools needed to produce all the parts
exceeds this capacity. Therefore, it is sometimes necessary to change tools when a machine
switches from one type of part to another. The manufacturing environment that we examined
consists of machining centers that are equipped with automatic tool interchanging devices.
These devices can switch a set of tools simultaneously between the tool magazine and the

tool storage area. In this case, an effective performance criterion of setup minimization



would be the minimum number of switching instants, where a switching instant is an instant
at which at least one tool must be switched (Tang and Denardo, (1988, II)). These switching

instants are equivalent to the occurrence of setups.

As we have described the makespan minimization problem, it is a static problem faced in
managing this environment. However, reality is even more complex due to the uncertainty in
demands of various parts. Typically in the systems we have examined, the parts exhibit both
erratic and uncertain demand patterns. For these parts a number of periods with zero or
very low demand are often followed by few periods of significant demand. The time varying
and uncertain nature of the demand patterns of all the parts that are to be fabricated on
the same machine significantly affect the distribution of the machine’s workload . How the
manufacturing system accommodates wide fluctuations in the demands without causing large
over- and under-capacity loading of machines in its dynamic operation is of vital importance
in scheduling this system. Therefore, in the design of our scheduling framework, we explicitly
incorporate the objective of smoothing the workload in the system’s dynamic operation. We
do this by assigning parts to machines so that the effects of erratic and unknown demand

patterns are minimized.

Let us give a brief outline of our approach. Having observed the demand patterns,
we first partition the parts into two categories: high volume and low volume. The first
account for 80% or even more of the total production volume. Obviously variability in
demand of any of these parts has a much more significant impact on the variability of
a machine’s workload compared with the impact of demand variability resulting from low
volume parts. We therefore propose to first assign the high volume parts to machines in a way
that minimizes the variability of the workload over time for each machine. Subsequently, we

assign the remaining low volume parts considering setup minimization and workload balance,
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along with economies of scale related to the tools that have to be maintained in the tool
storage area.

Finally, following the assignment of parts to machines, the setup minimization objective
leads to the clustering of parts into groups or families based on common tooling requirements.
Tooling commonalities are exploited so that the total number of switching instants, and
therefore the total setup time, is minimized.

The problems of workload smoothing, workload balancing, and setup minimization are
complex problems even when considered individually. They have been tackled to varying
degrees in the literature, which is briefly reviewed in Section 2. However, the totality of our
problem involving a complex interaction of these issues has no precedent in the literature.

The remainder of the paper is organized as follows. In Section 3 we introduce and
motivate a hierarchical approach to address the above mentioned problems. In Section 4 we
formulate the assignment problem for the high volume parts, and in Section 5 we present
a solution procedure for this problem. Section 6 presents the assignment problem for the
low volume parts, and Section 7 describes its corresponding solution procedure. Section 8
describes the scheduling of the parts that have been assigned to the same machine. Section

9 provides concluding remarks.

2 Research Literature.

As mentioned, our approach is related to the makespan scheduling idea found in the litera-
ture. Minimizing makespan even for parallel identical machines with no setup times has been
shown to be NP complete (Ullman, 1976). For this problem the MULTIFIT heuristic devel-
oped by Coffman et al. (1978), based on the “ first fit decreasing ” bin - packing heuristic,

gives a schedule with makespan at most 22% greater than that of the optimal schedule.
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The LPT ( Longest Processing Time first) heuristic (Graham 1969) first assigns the M
longest jobs to separate machines. The remaining jobs are assigned in order of decreasing
processing times to the machine that would complete the job first, given the previously
assigned workload. It is shown that the algorithm produces solutions with a makespan

which is in the worst case 19/12 of the optimum makespan.

There is also a considerable amount of literature related to scheduling identical machines
with setups. Geoffrion and Graves (1976) studied the problem in the context of sequence
dependent changeover costs, and production costs. Their model arises in chemical processes
environments. Parker et al. (1977) with an objective of minimizing total changeover cost, use
a Vehicle Routing Heuristic since their model is a Generalized Assignment Problem. Tang
(to appear) and Wittrock (1990) give heuristics for minimizing the makespan on parallel
unrelated machines that require minor setups between part types of the same family and
major setups between part types of different families. However, these models do not address
the problems of composing the families and assigning parts to machines even though both of
the problems are interrelated. For example, Tang (to appear) and Wittrock (1990) assume

the composition of the families is already prespecified.

The problem of minimizing the time dedicated to setups on a single machine using dif-
ferent criteria has been addressed by Tang and Denardo (1988, I and II). In the first case,
the performance criterion is the minimization of the total number of tool switches. Realizing
the complexity of the problem the authors provide lower bounds along with heuristics for
sequencing and grouping the parts through the machine. Unfortunately, these bounds can
be quite poor. Furthermore, bounds produced using various lagrangean relaxations are not
always tight, either (Bard (1988)). In the second case, the criterion that they use is mini-

mization of the total number of instants at which tools are switched. A branch and bound



procedure is presented.

To the best of our knowledge, the effect of the stochastic, dynamic nature of the de- ‘
mand process for different parts has not been taken into consideration when establishing the
allocation of workload to machines.

Surveys on GT and CM are given by Burbridge (1979) and Hyer and Wemmerlov (1984).
There is an extensive set of papers addressing the parts grouping problems. Surveys are
provided by King and Nakornchai (1982), Kusiak (1985), and Wemmerlov and Hyer (1986).
Most of the classification schemes produce a binary matrix that provides information about
the machines required for the processing of each part. The entry (¢, ;) of the matrix is 1 if
machine 7 is necessary for the production of part j, and 0 otherwise. This matrix is used for
the formation of part groups and equivalently of machine cells.

The methods that are used can be classified into:

1. Schemes based on the similarity index (Carrie (1973), De Witte (1980), Rajagopalan

and Batra (1982)).

2. Heuristics that involve rearrangement of columns and rows of the machine/ part matrix

( McCormick et al. (1972), King (1980), King and Nakornchai (1982)).

3. Mathematical Programming Techniques (Barnes (1982), Kumar et al. (1986)).

Monden (1983) and Schonberger (1982) discuss the use of CM in Japan as a crucial step
to achieve just-in-time manufacturing. Flexible manufacturing systems is a specific instance
of CM. Jaikumar and Wassenhove (1989) classify FMSs into three categories based on the
interdependence of machine operations for a given part and the space available for the storage

of work in process.



3 An Integrative - Hierarchical Approach

We will now amplify some key ideas that were briefly discussed in the introduction. As
we already mentioned, a typical pattern of monthly demand can be expressed by using the
Product - Quantity Pareto graph, as shown in Figure 1. The graph shows that approximately
20% of the parts account for roughly 80% of the total production volume (that is, the P/Q
ratio is 20 : 80). In our experience we have found P/Q ratios of 10:90 or 5:90 not to be
unusual. This suggests that a small fraction of parts, the high volume parts (HVP), constitute
a large fraction of the work content. Assume that a high volume part which accounts for
10% of the total production volume and a low volume part (LVP) which accounts for 1%
both have the same high coefficient of variation. Suppose they have been assigned to the
same machine. It is obvious that the variability of the high volume part would have a much
more significant effect on the machine’s workload than the variability of the low volume part.
Therefore, fluctuations of the demands of the high volume parts assigned to a machine have
a major impact on the variability of the workload assigned to the corresponding machine.
This leads us to suggest a decomposition of our parts assignment problem into the sub-
problem of assigning the high volume parts and the one of assigning the low volume parts.
The high volume parts have a larger impact on the work content, and therefore, the objective
of balancing and smoothing the machine workloads in their dynamic operation is largely de-
termined by their assignment. The low volume parts are larger in number and lower in work
content. Therefore, their assignment affects the setup minimization objective to a larger
extent. In addition, this assignment can be used to improve the balancing of workloads
among machines. Thus, we propose a hierarchy of decisions in which we first assign the high

volume parts to machines and subsequently make the assignment of the low volume ones.

In order to achieve a relatively smooth workload for a machine, we have to take into
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consideration correlations among the demand histories of the high volume parts assigned to
the same machine. Consider the case that two high volume parts with significant positive
correlation have been assigned to the same machine. If we look at the total demand in
machining time as an aggregate commodity, the new “ aggregate ” part would most probably
exhibit higher variability than the individual parts, if their demands are indepedent, since
periods of high (or respectively low) demand for both parts would coincide. A machine
could experience several consecutive periods of very low demand, followed by periods of high
demand that could go far beyond the available capacity. This phenomenon can promote
erratic machine workload assignments. On the other hand, if the two high volume parts have
a significant negative correlation, their demands in machining time would be synchronized
in such a way that periods of high demand for the first part would be periods of low demand
for the other part and vice versa. This allocation would provide a machine with a much
less variable workload. The objective function for the assignment of the high volume parts
reflects the desire to create a workload assignment which is relatively insensitive to demand

variability. A model that reflects these ideas is presented in the next section.

Once the high volume parts are assigned, we then assign the remaining low volume parts
to the machines, taking into consideration the allocations that already have been made.
That is, the assignment of the low volume parts must take into account the total workload
and the tooling requirements of the high volume parts assigned to each machine. Given
the remaining available capacity, the goal is to allocate the remaining parts to machines so
that the newly added parts require as few additional tools as possible. This helps to achieve
two of our objectives. First, the total number of tools carried is reduced and corresponding
economic objectives are met. Second, the scheduling of parts on machines subsequent to

part assignment leads to a more manageable grouping problem. Since tool commonality is

11



considered in part assignment, schedules with fewer switching instants are easier to find.

At the final step of the hierarchy all parts have been assigned among the different ma-
chines. For each machine we have to schedule the production of the assigned parts so that
the total time dedicated to setups, which is a function of the number of switching instants,
is minimized.

As we mentioned earlier, our goal in managing the manufacturing environment under
study is to be able to respond quickly to customer demands, to keep inventory levels low,
and therefore to reduce the length of the manufacturing cycle. This cycle is on the order of
days, while the part allocations and the overall planning framework will be performed over
a longer period, which we call planning horizon (PH). PH is on the order of weeks and often
of months. For this horizon we have reliable estimates for part demands. In our hierarchical
scheme the objective will be to complete the maximum number of cycles during the length

of the planning horizon.

4 Assignment Problem for the High Volume Parts

Recognizing our earlier comments about the effects of positive and negative correlation
among the high volume parts, our goal in assigning these parts is to smooth the workload for
each machine throughout the planning horizon. As we mentioned earlier, correlations among
demand histories for the low volume parts do not affect the distribution for the workload of
a machine as much.

For each high volume part, we assume the following data are available : the average
demand in machining time over the planning horizon, the set of tooling requirements, and a
variance - covariance matrix of demands. The diagonal entry (-);; of the variance - covariance

matrix gives the variance of demand for each part ¢ and the (+);; entry, where ¢ # 7, measures
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the correlation for the demands between parts ¢ and j.
Let W;; be a reward when parts i and j are both assigned to the same machine. W;;(.)
is a function of the correlation for the demands of parts i and j weighted by the average

processing times for parts i and j. A candidate reward function would be:

Wi = (Corr(i,j) — 1)* % (pi + p;)/ Puv,

where p; = average total processing time for part i ( average demand over the planning
horizon (PH) times the unit processing time ), and Pyv is the total processing time for all
the HVPs.

The function W, ; assigns the highest reward when the correlation is -1, and no reward
for correlation +1. Alternate specifications of W;; may also include information about the
commonality of tooling requirements. In general, the weights W;; would depend on the
nature of the particular problem and the relative importance of exploiting tool commonality
when assigning parts to machines versus the significance of smoothing the workload on each
machine. If all the high volume parts have similar tooling requirements, then correlation is

really the key factor in assigning parts to machines. Let

1, if part ¢ is assigned to machine m,

Y;fm:

0, otherwise .

With the above-mentioned notation, we formulate the following part assignment prob-

lem, which we denote by HVPA :

(HVPA) :
M N-1 N
max Z Z Z Wi YinYim (1)

m=1 1=1 j=i+1
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Subject to:

M
Y Yin=1, i=1,...,N, (2)
m==1
N
ZpiY}mgCAPm, m=1...M, (3)
=1
Yim € {0,1}, i=1,...,N, m=1,..., M. (4)

We assume all parts are to be produced to meet demand for the planning horizon PH of
time units (e.g., a week). This is the planning horizon for which the average processing times,
pi, of the parts are estimated. C AP,, denotes the estimated total available time on machine
m. Each machine may experience non-negligible down-time due to both planned events (e.g.
routine maintenance) and unexpected ones such as failures. Since the assignment of parts
to machines is unknown at this point, we initially have no knowledge about the formation
of part families for each machine. Clearly the setup time depends on the families that have
been assigned to each machine. Since we do not know the composition of the families, we
can only initially estimate the amount of setup time that will be required to implement a
schedule. Once estimated, we subtract this amount of time from the total available time
to obtain an estimate of the remaining run time capacity. Consequently, we assume that

CAP,, < PH, but CAP,, is a significant portion of the length of the planning horizon.

The objective is the maximization of the total reward. Let’s examine the problem con-
straints. Constraints (2) require each part to be assigned to exactly one machine. Constraints
(3) are machine capacity constraints. This formulation is a quadratic assignment problem.
We propose below a lagrangean optimization for solving that problem, which exploits the
problem’s structure. The approach is theoretically sound, intuitively appealing and compu-

tationally tractable.
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5 A Solution Procedure for HVPA

To solve problem HVPA we construct a related problem in which the assignment constraints
(2) and the machine capacity constraints (3) are relaxed. Let lagrangean multipliers A; and
fim be the corresponding lagrangean multipliers, respectively. Then the relaxed problem can

be written as :

N-1 N N M N M
L()‘v /,L) = max Z Z Wz]y;mifjm - Z Z (ﬂ'mpi + )\z)Km + Z )‘i + Z ﬁmCAPm
i=1 g=i+1 3=1 m==1 1=1 m=1

s.t.

Yim € {0,1},i=1,...,N, m=1,..., M,

where p,, > 0, Vm while )\, is unrestricted.

As is well known, the optimal value of the lagrangean dual min,,>o,x L(A, i) is an upper
bound on the optimum objective value for the original problem. L(A, i) can be solved using a
method first given by Rhys (1970) and explained by Balinski (1970). The Y;;, that constitute
the solution can be efficiently computed by using a maximum flow algorithm on a bipartite
graph. In the next section we give an adaptation of Rhys’ method in solving L(A, ¢) and the

HVPA problem.

5.1 Solving the Lagrangean Dual

Let Cim = ftmpi + Xi (1 = 1,...N; m = 1,...,M). Observe that by definition Wi; >0
and that if ¢; < 0, it is optimal to set Y;, = 1, since ¢;;» appears with a negative sign in
the objective function of L(A, u). The remaining problem can be solved in polynomial time

using a maximum network flow algorithm on the directed, bipartite network G , associated

with the problem L(\, i) as described below.
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The vertex set consists of the source s, the sink ¢, and two additional sets of vertices
&= {YinYim, ,7=1,...,N,m=1,...,M} and

U= {Yim, i=1,...,N,m=1,....M}.

The arc set consists of arcs (8, YimYim), (YimYjm, Yjm), and (Yim,t). The capacities on
the arcs of the network are as follows. The arcs emanating from the source, (s, Y;m Y ) have
capacity W;;, arcs incident to the sink (Yin,t) have capacity cim, and arcs (Y Yim, Yim)
have an infinite capacity. Recall that a cut is a partition of the set of nodes into two sets,
say M and M, with the source s € M and the sink ¢t € M, and that the value of a cut is the
sum of the capacities on arcs (i,j) with i € M and j € M. In Figure 2, we show the network

G, with the arc capacities.

The problem can be solved in network terms by observing some key properties of the
network Gy ,. By the way that we constructed the network there is one-to-one correspon-
dence between cuts containing no arc of type (@, ¥) and feasible solutions to the problem.
Moreover, no arc of type (®,¥) can belong to the minimum cut, since such an arc has in-
finite capacity. Finally, the minimum cut corresponds to the optimal solution. Therefore,
an algorithm for finding an optimal solution Y™* is to use a labelling procedure (see, e.g.
Ford (1962)) to maximize the flow in the network Gy, which at the same time identifies a

minimum cut.

The dual lagrangean problem miny,>ox L(A, 1) is solved by using the subgradient algo-
rithm (Held et al., (1978)). It is a standard procedure in lagrangean optimization that has
been quite successful in solving many hard combinatorial problems. Fisher (1981) provides
a broad and insightful review of the technique along with a number of its successful appli-
cations. We describe the algorithm for the problem, which uses the subgradient algorithm,

in the following subsection.
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5.2

Lagrangean Based Algorithm

Let us note some of the features that the lagrangean dual should exhibit:

1.

As the lagrangean multipliers A; and pu,, are updated from iteration to iteration, the
relaxed problem’s objective function value provides an upper bound on the objective of
the original problem. However, the optimal solution for the relaxed problem does not
necessarily satisfy the two relaxed constraints (2) and (3). When A, p are near their
optimum values, as a result of applying the subgradient optimization algorithm, the
Y;m variable values that solve the coresponding problem L(A, u) will provide a feasible
or close to feasible solution to HVPA. We begin finding the solution by employing a
greedy heuristic to generate an initial feasible solution that also provides us with a

lower bound.

In the design of our heuristic we note that the relaxed capacity constraint (3) involves
a rough cut estimate of machine’s capacity and the low volume parts are yet to be
assigned. As noted earlier, the violations of (3) in the lagrangean solution are small.
Therefore, we do not necessarily find a solution which exactly matches the available
capacity. Rather our procedure concentrates on finding a solution that removes the

violations of assignment constraint (2).
Greedy Procedure:

Let \*, u* be the best (A, 1) computed by the subgradient and Y}, the optimizers of

L{(A*, ).

e Step 1. Identify the sets Jy and Jy of parts that violate assignment constraints,

e, Jy ={i: XYM _ Vi, > 1}and J, = {i : ¥, Vi, = 0}. Denote by Y2, the

m=1

Yim’s that satisfy ( Y%, =1 and ¥M_ Y7 =1).

m=1 *1

17



e Step 2. Stop if J;UJ, = 0; otherwise, pick the first 1 € JyUJ,. Fori € Jq
do: for all m such that Y, = 1 calculate the corresponding profit : Profit, =
Reward,, — Cost,, = (Ej:yjomzl Wi;) — ¢im. Pick 7 with the largest profit and
maintain Yis = 1. For the specific part 7, set the remaining Yin,’s equal to zero,
then set J; = Jy \ i, GOTO (2).

For i € J, do: for all m calculate the corresponding profit Profit,, as before. If

1 is the machine with the largest profit set Yis = 1, then set J, = Jo \ ¢, GOTO

(2).

2. After any iteration, we have the greatest lower bound (RFB) and the least upper bound
(RUB) over all iterations carried out thus far. This allows us to compute a percentage

error

(RVB — RMB)/Ryp x 100%
In our tests we have chosen to terminate the heuristic the first time one of the following
occurs:
e The percentage error is less than 5%
e The percentage error has not decreased for a prespecified number of iterations.

e The total number of iterations exceeds a prespecified number.

6 Assignment Problem for the Low Volume Parts

By assigning the high volume parts to machines, we also establish a set of tools assigned
to each machine. We will call these tools the seed tools for every machine. Our goal is to

allocate the low volume parts based on the composition of the seed tools and on the effective
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remaining capacity of each machine. Our objective will be to assign all remaining parts to
machines by adding as few new tools as possible to each machine, and without exceeding
the machine capacity constraints.

To formulate the problem we will use the following notation:

U 1, if tool t is added to machine m,
tm —
0, otherwise,
7 1, if part 7 is added to machine m,
0, otherwise.

\

For every machine, we will call S,, the set of tools that have been assigned to it, up
to that stage. Initially this consists of the tools assigned from the solution to the HVPA
problem. For every part we denote by T; the set of its tooling requirements. Then the overall

problem can be formulated as the following integer problem, which we denote by LVPA :

(LVPA) :

mmz Z U (5)

™ ¢S
Subject to:
Ui > Zim, t & S, Vt € Ty, Vi, (6)
S Zim=1, Vi, (7)
> PiZim < CAP,, Vm, (8)
Ut,,:, Zim € {0,1} Vt, VYm. (9)

Constraints (7) force every low volume part to be assigned to exactly one machine, while

constraints (8) are machine capacity constraints. Recall from the previous sections that
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certain high volume parts along with the tools that they require have been assigned to each
machine. Constraints (6) require all tools to be on a machine if the part is assigned to the
machine. The objective function counts the number of new tools that have to be added to
the machine because of the low volume parts that are assigned to it. The objective is to
minimize the total number of the new tools assigned to machines, thereby minimizing setup
time.

In the next section we develop a solution scheme for this problem that appears in the

second stage of our hierarchical decision-making process.

7 A Solution Procedure for LVPA

7.1 Introduction

When assigning the low volume parts to machines we have two objectives. Firstly, we strive
to add as few new tools to machines as possible while exploiting tool commonality of the
parts and secondly, to minimize the makespan.

Let us first look at the makespan objective. For this problem we are given a set of N jobs
with integral processing times p; to be scheduled on M identical machines. As we mentioned
before, the minimum makespan problem is NP-complete; therefore, it is extremely unlikely
that an efficient algorithm exists to find a schedule that achieves the optimal makespan .
We will denote the optimal value of the makespan, for a given instance of processing times
and number of machines, by OPTys. Because of the complexity of the problem, it is
natural to consider algorithms that are guaranteed to produce solutions close to the optimum.
Polynomial-time algorithms that produce solutions that are at most (1 + €) of the optimal

value are called e approzimation algorithms. Minimizing makespan is one of the problems
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that have been studied the most in the theory of approximation algorithms for NP-hard
problems.

The first class of algorithms that have been proposed for the minimum makespan problem
is the class of list processing algorithms. According to this class of algorithms, the jobs are
ordered in a list, and the next job on the list is assigned to the next machine that will become
idle. Graham (1966), showed that any such algorithm gives a schedule that has makespan at
most (2 —1/m)OPTys. Graham again (1969), showed that if the jobs are ordered with the
Longest Processing Time rule ( LPT ), then the produced schedule has makespan at most
(4/3 —1/(3m))OPTys.

A closely related problem is the bin-packing problem. In this type of problem there are
N pieces of size p;, with p; € [0,1]. The objective is to pack the pieces into bins, under the
constraint that the sum of the pieces packed to a specific bin would not exceed 1, so that
the number of bins used is minimized.

Coffman et al. (1978) exploited the relationship between these two problems deriving
their MULTIFIT algorithm for the minimum makespan problem. The MULTIFIT algorithm
is an extension of the FIRST FIT DECREASING bin-packing problem. It is proved that it
provides a schedule with makespan at most 1.220PTy;s. MULTIFIT-based algorithms have
the best known bounds, among algorithms that are polynomial in the length of the input.

We will use a MULTIFIT-based algorithm with additional considerations to assign the

low volume parts to machines.

7.2 MULTIFIT Algorithm

Our MULTIFIT algorithm uses a binary search on the makespan. Initially, upper and lower

bounds on the makespan are computed. Then, at each iteration, the mean of the two bounds
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is used as a candidate makespan, MS. Then an allocation algorithm (ALLOCATE) tries to
compute a feasible allocation for M S; that is, an allocation for which all jobs are completed
before M S. If a feasible allocation is achieved, then the upper bound (M Syg)is set to MS.
Otherwise, the lower bound (M Sy,p)is set to MS + 1. The search is terminated when the
two bounds coincide.

The initial lower bound will be set to zero. We will use as an upper bound the maximum
time capacity for each machine. This could be the length of the planning horizon (PH) (for
example, this could be a week or a month ). This is the length of the time for which the
processing times p; have been estimated. The makespan must satisfy MS < PH. Our goal
is to assign the set of the low volume parts to the M machines. There is a bound & on the

desired number of iterations. Then the MULTIFIT algorithm proceeds as follows:

1. Set MSLB R 0;
MSUB — pH,

I« 1;

2. If I > k, halt.
Otherwise, set MS « [MSyp(I — 1)+ MSyp(I —1)]/2.

3. If ALLOCATE assigns all parts then, set MSyp(I) « MS;
MSpp(I) « MSpp(I —1);
IT—T+1;

and go to 2.

4. If ALLOCATE cannot assign all the parts, set
MSpp(I) — MS ;

MSUB(I) — ]‘JSUB(I — 1);
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I—T+1;

and go to 2.

7.3 Algorithm ALLOCATE

We now construct the procedure ALLOCATE, which at every iteration of the MULTIFIT
algorithm tries to allocate parts (among the low volume ones) to machines for a given can-
didate makespan M S. The objective is to assign as many parts as possible to each machine,
adding as few new tools and satisfying the capacity determined by the current makespan
estimate, M S.

Recall that high volume parts have already been assigned to machines. The workload
corresponding to this assignment differs from machine to machine, and therefore for the
current M S and the remaining capacity C AP, is different for each machine. ALLOCATE
considers the machines sequentially, in decreasing order of assigned workload, and allocates
parts given the capacity C AP, for every machine m.

We are going to use the following notation:

'4

. 1, if part ¢ is chosen to be assigned,
0, otherwise,
R 1, if tool ¢ is chosen to be assigned to the machine,
t =
0, otherwise.
¢ 0, if tool ¢t belongs to the set of the seed tools,
t —

1, otherwise.

T; is the set of tooling requirements for part .
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At every step of the MULTIFIT algorithm, ALLOCATE is called. ALLOCATE goes
through all the machines sequentially, and allocates parts given the remaining capacities
C AP,,’s that result from the current M S. After every assignment of a part to a machine, a

list that includes all unassigned parts is updated, along with the remaining capacity for the

machine.

For a specific machine the problem can be formulated as the following integer program :

maz y X; 10
2 (10)

subject to :
X< R ifteT, (11)
Et:&Rt <M, (12)
> piXi < CAP, (13)
X; € {o, 11}, , R, € {0,1}. (14)

Constraints (11) ensure that if part ¢ is picked then all tools that it requires have to be
picked, too. Constraint (13) is the machine capacity constraint. Constraint (12) imposes a
constraint on the total number of new tools that are assigned to the machine, where M is
just a parameter, measuring perhaps, the remaining tool magazine capacity. A tool will be
characterized as new, if it is not one of the tools (seed tools) that have been allocated to
the machine already as a result of the assignment of the high volume parts, done in the first
stage of our optimization procedure. Through the parameter ¢ only the allocation of new
tools is considered.

The above optimization problem has a special structure, which we will try to exploit. We

relax constraints (12) and (13) using nonnegative lagrangean multipliers o and 3 respectively.
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Then the lagrangean relaxed problem is :

L{e, B) = mazx Z(l — Bpi) X — athRt + BCAP,, +aM

s.t.

X; <R, ifteT.

Notice that L, s has the same form as the optimal selection problem, already used in
the allocation of the high volume parts to machines. Observe that the lagrangean function
consists again of a positive and a negative part, as the objective function of the optimal
selection problem does. Therefore, we can maximize this function in polynomial time using a
maximum network flow algorithm. Let’s describe now the network ©(m)q,g that is associated
with the problem L, g for machine m.

The vertex set consists of the source s, the sink r, and two additional sets of vertices
® = {7 : 4 is an unassigned low volume part } and ¥ = {t: a,; = 1, ¢ € @}, that is, the set
of tools that are required by the unassigned low volume parts. The arc set consists of arcs
(s,i), (i,t), and (t,r). The capacities on the arcs of the network are as follows. Arcs emanating
from the source, (s,%), have capacity b; = (1 — 3p;), arcs incident to the sink, (,7), have
capacity «, and arcs going from set ® to ¥, (i,t), for t € Tj, have infinite capacity. In Figure
3, we formulate the network. On every arc we assign its capacity. We again use subgradient
optimization to solve the lagrangean problem L, g.

Recall that at each iteration of the MULTIFIT algorithm we assign parts to each machine
and then proceed to the next machine sequentially. For every machine m, given the lagrange
mulitipliers o and 3, we solve a maximum flow algorithm on the network ©(m)a,s. This
algorithm will also identify the minimum cut. As mentioned in Section 5, the minimum cut

identifies the parts along with their tools that are to be chosen to be assigned to the machine;
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this selection is the optimal one, that is, it maximizes L, g.

The parts assigned to machine m are deleted from the set ® of the low volume parts that
are still to be assigned. At the same time the set ¥ is updated,too. These updated sets are
then used for the formation of ©(m+1)a,s at the next step of the algorithm ( the assignment
of parts to the next machine ).

To reduce the computational effort involved in assigning the LVPs we propose the follow-
ing procedure. As it can been seen in Figure 1, the majority of the LVPs (approximately 50%
of the total number of parts) have a marginal effect on the cumulative demand. Therefore we
partition the set of LVPs into two subsets. The first consists of the LVPs with the relatively
highest contribution to the total cumulative demand ( approximately 30% of the parts), and
the second with the LVPs that contribute the least to the total demand. For the first sub-
set of parts we use the MULTIFIT algorithm along with the ALLOCATE procedure, as is
described above. For the remaining ones a simpler procedure, rather than ALLOCATE, can
be used at each iteration of the MULTIFIT algorithm. This procedure would be a FIRST
FIT DECREASING heuristic with the extra requirement that the tooling constraint (12)
should be satisfied every time a part is allocated to a machine. If this is not the case, then
the heuristic attempts to allocate the part to the next machine on the list, that is the one

with the immediately higher assigned workload.

8 Clustering of Parts into Families

At the first stage of the hierarchy we assigned the high volume parts to machines based on
the correlation among the parts and on similarities on tooling. With the high volume parts
and their corresponding tools assigned, we subsequently allocated the low volume parts to

machines with the dual objectives of minimizing makespan along with the total number of
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new tools added to each machine. Finally all parts have been assigned for fabrication to
the different machines. We now have to schedule the production of the parts through each
machine so that we reduce the time dedicated to setups by exploiting tool commonalities.
For a given assignment of parts to machines we will use the following natural way for
grouping the parts into families. Parts would be assigned to the same family if they can be
processed with the same tools in the magazine of the machine. Therefore, there is a one-to-
one correspondence between these part families and specific tool configurations of machine
magazines. These families are groups of parts that were formed based on the parts’ tooling
requirements. For a given allocation of parts to a single machine, Tang and Denardo (1988,
IT) address the issue of grouping parts into families with the objective of minimizing the
total number of instants at which tools are switched. They show that the particular schedul-
ing problem generalizes the classical bin packing problem. A branch-and-bound procedure
that terminates with an optimal solution is developed, and quite satisfactory computational

results are presented.

9 Conclusions

In this paper we studied a problem faced by manufacturers of industrial products, which are
subject to varying demands over time. In this environment parts are grouped according to
the principles of group technology and cellular manufacturing. Based on these concepts, we
have developed an approach for machining families of parts on a set of machines considering
the effects of machine loads and tool assignments. In these environments, both workload
smoothing and setup time reduction are crucial for increasing the effective capacity of the
system and therefore minimizing the cycle’s length. The issues we consider are at the op-

erational level for a multi-machine manufacturing cell. More specifically, we showed how to
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assign parts to machines and group parts to families based on their tooling requirements.
The procedure we developed is a hierarchical scheme that first assigns the high volume parts
to machines, and then the low volume ones.

One of the major contributions of this paper is the inclusion of variability and correlation
for the demands among the parts in the models that determine the assignment of parts to
machines. In addition, in our models we formulate a quadratic assignment problem, which
has many applications relevant to the grouping of parts in other settings. An important
contribution of this paper is to show the equivalence of the assignment problem to a maximum
network flow problem. This equivalence shows that a simple and efficient solution method

can be used to obtain a good allocation.
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Captions of the Figures:

e Figure 1: A 20:80 Product/Quantity Pareto Graph
e Figure 2: Network for the HVPA problem

e Figure 3: Network for the LVPA problem
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