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Abstract 

This study is concerned with the characterization and investigation of con-

nected block designs. Every elementary treatment contrast is estimable if and only 

if the design is at least locally connected. Thus connectedness is an important 

and desirable property which every block design should enjoy. In particular, 

globally connected designs should yield better estimators (with respect to some 

optimality criterion, see conclusion) of all the elementary contrasts. 

The definition of locally connected designs is the same as the connected 

designs of Chakrabarti [3] and Bose [1]. Several theorems which characterize 

locally connected designs, in terms of the incidence matrix N or some function of 

it, are given in section 3· A set of necessary and sufficient conditions for a 

design to be globally connected is given in section 4, and a new class of connected 

designs, pseudo-globally connected, is introduced and characterized in section 5. 

Some invariance properties of both locally and globally connected designs are 

presented in section 6. In addition we have considered the proposition of com-

bining connected designs so that the newly composed design has some connected 

nature. 

There is a strong analogy bet1veen some graph theory concepts and experimental 

design theory. Several theorems and concepts from Harary [4] and Busacker and 

Saaty [2] yield graph theoretic analogies to several of the theorems in section 3 

and further properties and notions applicable to experimental (block) design. 
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l. Introduction 

February, 1972 

This study is concerned with the characterization and investigation of con-

nected block designs. Every elementary treatment contrast is estimable if and only 

if the design is at least locally connected. Thus connectedness is an important 

and desirable property which every block design should enjoy. In particular, 

globally connected designs should yield better estimators (with respect to some 

optimality criterion, see conclusion) of all the elementary contrasts. 

Our definition of locally connected designs is the same as the connected 

designs of Chakrabarti [3] and Bose [1]. Several theorems which characterize 

locally connected designs are given in section 3· All of these theorems involve 

the incidence matrix N or some function of it, as opposed to the C matrix used by 

Chakrabarti [3] and the treatment-block chains of Bose [1] who originated the 

concept of connectedness. The association matrix, NN', and the block characteristic 

matrix, N'N, are the functions of N used in the algorithms fer theorems 3.2 and 

3.3, respectively. Two examples a.re given to demonstrate the mechanics of the 

algorithms fer theorems 3.2, 3.3, and 3.4. In addition, numerous corollaries, 

rules, and remarks a.ppear throughout section 3 and, although some may be trivial, 

they can be helpful in many cases to establish local connectedness. 

Paper No. BU-410-M in the Biometrics Unit Mimeograph Series, Department of Plant 
Breeding and Biometry, Cornell Un~versity, Ithaca, New York 14850. 
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In dealing with global connectedness, one's attention is focused on each 

. . ' 

experimental unit of the design rather than a treatment as in the case of local 

connectedness. Thus characterization of globally connected designs is a difficult 

and somewhat tricky task, as demonstrated by theorem 4.1. This theorem gives a 

set of necessary and sufficient conditions, which reust hold simultaneously, for a 

design to be globally connected as defined by Hedayat [5]. Two examples are given, 

one of which gives rise to the introduction of a further type of connected design, 

namely a pseudo-globally connected design, which is in effect a compromise between 

globally and locally connected designs. A set of necessary and sufficient con-

ditions which, as in theorem 4.1, must hold simultaneously are given in theorem 

5.1 of section 5. Further discussion of pseudo-globally connected designs in 

comparison with locally and globally connected designs and an example are also 

presented. 

Some invariance properties of both locally and globally connected designs are e 
presented in section 6. In addition we have considered the proposition of com-

bining connected designs so that the newly composed design has some connected 

nature. 

There is a strong analogy between some graph theory concepts and experimental 

design theory. Several theorems and concepts from Harary [4] and Busacker and 

Saa.ty [2] yield graph theoretic analogies to several of the theorems in section 3 

and further properties and notions applicable to experimental (block) design. 

2. Background 

Let r = (1, 2, ···, v} be a set of v treatments. By a block design with 

parameters v; b; r 1, r 2, ···, rv; k1, k2, ···, ~; and incidence structure N 

~; N) on 0 we shall mean an allocation 
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of elements of 0, o.ne on each of the m = k1 + • • • + ~ experimental units arranged 

in b blocks or groups of experimental units-.designated by B., j = l, 2, • • •, b 
J 

with B. of size k. such that i is assigned into r. experimental units. N = [n~J.] 
J J ~ • 

is the v X b incidence matrix where n .. denotes the number of experimental units 
~J ' 

in the jth block receiving the ith treatment. 

There are numerous special cases of the above block design. If for all i, 

r. = r (constant) then we have BD(v· b· r· k ••• k_ · N) which is called an equi-
~ ' ' ' l' ' -o' 

replicated block design. A proper block design is one that for all j, k j = k 

(constant), i.e., BD(v; b; r 1 , •••, rv; k; N). Thus a block design that has for 

all i, ri = r and for all j, kj = ~ is denoted by BD(v, b, r, k, N). 

A block design is said to be pairwise balanced if 

NN' = T + )..J 

where T is a diagonal matrix, f... is a scalar, and J is a matrix of ones. For a 

proper block design that is pairwise balanced we write BD(v, b, r l' •. •' r , k, t..) v 

and if the design is also equireplicated then we write BD(v, b, r, k, A.) which is 

the classical balanced incomplete block design with parameters v, b, r, k, and A, 

i.e., BIBD(v, b, r, k, f...). 

A block that contains only one treatment, though possibly more than one 

experimental unit, is called a singleton, i.e., B.= [i, i, ···, i] or [i]. In 
J 

experimental design theory NN' is called the association matrix and N'N the block 

characteristic matrix. 

In the following sections of this paper the statistical model underlying the 

discussion is one with fixed block effects. If the goal of an experiment is to 

estimate elementary treatment contrast, 1 - j, unbiasedly then connectedness is 

most important since every elementary treatment contrast is estimable if and only 
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if. _the design i~ .. c,9pn~.cted. The analysis of interest is the intrablock. 

Model:. 

ll + 13. + t. 
J ~ 

i = 1, 2, • •• v 

j = 1, 2, .•• ' b. 

13j = effect of Bj (fixed), ti = effect of i, ~ = general or mean effect. 

From the normal equations we have 

" Ct = Q (2.1) 

where 

" t is the vector of estimated treatment effects, 

(2.2) 

and 

(2.3) 

for 

T = column vector of treatment totals, and 

B = column vector of block totals. 

Equation (2.1) is known as the equation for estimating the treatment effect and 

the matrix defined by (2.2) is the well-known C-matrix. One can easily verify 

that the linear fUnction t 1t 1 + t 2t 2 + ••• + tvtv is estimable if and only if 

t + t + ••• + t = 0, in which case the linear function t't is called a contrast. 1 2 v 

Elementary contrasts are those of the form ti - tj. The best linear unbiased 

" "' " estimator oft. - t. is t. - t. where t~, i = 1, 2, •••, v, is given by the 
~ J ~ J ... 

solution of equation (2.1). Thus, obviously, the C-matrix plays a decisive role 

in the estimation of contrasts and hence the connectedness of a design. 

Chakrabarti [3] defines a design to be connected if its C-matrix has rank 

v - 1. However, Bose [1] the originator of the concept of connectedness, defined 
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connectedness in :t"l!e following way: 

"A treatment and block are said to be associated if the treatment is 

contained in the block. Two treatments, two blocks, or a treatment 

and a block may be said to be connected if it is possible to pass 

from one to the other by means of a chain consisting alternately of 

blocks and treatments such that any two members Clf a chain ar~~ associ-

ated. A design (or a portion of a design) is said to be a. connected 

design (or a connected portion cf a design) if every block or treat-

ment of the design (or a portion of the design) is connected to every 

other." 

Unbiased estimators of an elementary treatment contrast can be obtained directly 

from the chains connecting the treatments of the contrast. For example consider 

the chain 1B32, where 1B3 denotes the observed response of l in block 3, y13, and 

B32 denotes the observed response of 2 in block 3 and is given a negative sign, 

-y23 • Thus lBl means y13 - y23 which is an unbiased estimator of 1 - 2. 

Example 2.1. Consider the design BD(3,3,2,2,1) r = [1,2,3) 

1 ~ ~ --z -z 
Thee n:.a.trix of this design is ~ l 1,_ which has rank 2, i.e., -z -2 

' 
= 

1.. -2 -t l 

Let y ij be the ob,served response of treatment i in block j; then we have the 

following chains and their unbiased estimators. 

v - l. 
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Contrast Chains Estimators 

1 -. 2 (i) 1Bl2 (;!.i) 1B23!3l (i) yll - yl2 (ii) yl2 - y32 + y33 - y23 . ! 

1 - . .3 (i) 1B23 (i_i) 1Bl2B33 (i) yl2 - y32 (ii) yll - y21 + y23 - y33 

2 - 3 (i) 2B33 (ii) 2B11B23 (i) y23 - y33 (ii) y21 - yll + yl2 - y32 

Thus the design is connected under both definitions. 

Example 2.2. Consider the following block design 

·•:,.. ,. 
Bl B2 B3 

1 1 

2 2 5 

3 3 5 

16 2 2 
9 9 - 9 ·0 0 

2 16 2 
- 9 9 - 9 0 0 

c 2 2 16 
= - 9 - 9 9 0 0 

0 0 0 
8 16 
9 9 

0 0 
16 14 
9 9 0 

which has rank = 31 i.e., f v - 1. One cannot construct a chain to pass from 

4 or 5 to 1, 2, or 3. Thus under both Chakrabarti's and Bose's definitions the 

design is not connected. The equivalence, in general, of Bose's and rank C 

definitions has been proved in [3]. 

The obvious drawback of both the above definitions of connectedness is that 

they are difficult and time consuming to use. ~e goal of this paper is to develop 



- 7 -

simpler theorems a.Iid 'proc-edures than the above for determining whether or not a 

design is c~nnected. In addition we have extended the concept of connectedness 

to further classify a connected design as either locally or globally connected. 

The terms locally and globally connected are defined in the following paragraph. 

Firstly let us consider local connectedness. Two treatments, i and j, i f j, 

of a design are said to be locally connected if one can construct a chain, as 

defined by Bose [ 1], between a replicate of i and a replicate of j. 

Definition 2.1. A design is said to be locally connected if every pair of treat

ments is locally connected. [N.B. Our definition of locally connected designs is 

the same as the connected designs of Bose.] 

If we allow a treatment to be locally connected to itself the above definition 

still holds and the relationship (R), i locally connected to j, defines an equiva-

lence relation on n since 

(i) (ii) € R, for all i d1, i.e., every treatment is locally connected to 

itself, 

(ii) (ij) € R then (ji) e R, for all i and j € O, i.e., if i is locally con

nected to j then j is locally connected to i, and 

(iii) (ij)eR and (jk)eR then (ik)€R, for all i,j,k, i.e., if i is locally 

connected to j and j is locally connected to k, then i is locally 

connected to k. 

Lemma 2.1. ~ design is locally connected if by the above equivalence relation, R, 

there is only ~ equivalence class. 

Hedayat ( 5] defined two treatments i and j, i f j, in D to be globally con-

nected if for any replication of i and any replication of j one can construct a 

chain, as defined by Bose [1], to pass from i to j. The replications of i and j 

to be connected can each appear only once in the chain between them, namely at the 

beginning and end, respectively. 
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Definition 2.2. A design is said to be globally connected if every pair of treat-

ments is globally connected. 

The relationship i globally connected to j defines an equivalence relation, 

R*, on n. The proof is analogous to the locally connected case. 

Lemma 2.2. A design ·:ts globally connected if, by the above equivalence relation, 

R*, there is only~ equivalence class. 

3· Results for Locally Connected Designs 

Theorems and algorithms for determining the local connectedness of a design 

are presented in this section. The incidence matrix, N, association matrix, NN', 

and block characteristic matrix, N'N, are utilized in the following theorems and 

algorithms. Some corollaries, remarks, and rules for special cases are also given, 

along with a few examples. From this point on we shall denote the general block ~ 

design with no restrictions on any of its parameters by D = [B1, B2, ···, ~]. 

Theorem 3.1. Design, D, is locally connected if and only if its incidence matrix, 

N, cannot be pa.rti tioned as follows: 

N = 
0 

0 

N 
a 

, 1 < a ~ v, N. are matrices 
~ 

Ni ~ connected subsets of the set of treatments. 

Proof: If N cannot be partitioned as above then there is only one equivalence 

class of the relationship of connectedness, and vice versa. 
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Corollary 3.1. NN' and N'N can be partitioned similar toN if and only if N ~ 

be partitioned ~ in theorem 4.1. 

Remark 3.1. The treatments of a disconnected design can be grouped into connected 

subsets as reflected by N, NN.', and N'N, which is analogous to the breaking up of 

a Markov chain into closed states or sets of states. 

Remark 3.2. N can be replaced by C and theorem 4.1 still holds. 

It is obvious that theorem 4.1 is of only limited practical value. However, 

numerous conditions that are either sufficient or necessary can be found; though 

some may be trivial, they can be used in many cases to establish local connected-

ness. 

The following are some rules to help in establishing whether or not a design 

is locally connected: 

1. D is locally connected if N has a row or column with no zero elements, i.e., 

if a treatment appears in every block or a block contains every treatment, 

then D is locally connecte~. 

2. D is locally connected if N has at least one non-zero element in row i, i = 2, 

3, •••, v, below the non-zero elements of the 11 t row. 

~·· 3· D is locally connected if N has more than v - d non-zero elements in row i, 

i = 2, 3, •••, v, and th~re are only d non-zero ele~ents in the 1st row. 

4. D is NOT locally connected if NN' or N'N has a row with only one non-zero 

element. 

N can be replaced by NN' and N'N in the above rules. In [1] there is a similar 

set of rules concerning the C matrix. 

In an effort to find simpler necessary and sufficient conditions for local 

connectedness, NN' and N'N were invest~gated. The following theorems and algo-

rithms are the results of that investigation. 
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Theorem 3.2. D is locally connected if and only if there exists ~ set 

Proof: 

b 
U B* = 

s=l s 

B* n B* f ¢ V p = 2, 3, •••, b]. p q 

(i) D* exists: D* is just a reordering of the elements of D and 

b 
U B :J O. ss=l 

D* implies that. every treatment must appear in a block that 

contains at least two treatments. Thus each B-l:- must intersect with a. B*, r f s, s r 

that contains at least t\-10 treatments and the union of all blocks containing two 

treatments contains 0. Hence we can construct a. chain that passes through all the 

blocks containing two or more treatments and thus pass through every treatment. 

(ii) D* does not exist: If D~~ does not exist then there is a B* for 
p 

which no B* exists such that B* n B* f ¢, q < p, and the B*'s can be grouped into 
q p q s 

disjoint sets of B*. Thus the treatments contained in these disjoint sets of B* s s 

form subsets of connected treatments and D is not locally connected. 

Let us consider the set T1, which has as elements the blocks that contain 

treatment i, and denote 1 = [T1, T2, ·••, Tv]. 

Theorem 3·3· D is locally connected if and only if~ exists ~ set 

Proof: This proof is analogous to that of theorem 3.2. 

If treatment i and j are connected by a chain we write this as (ij). Define 

the operator • (dot) by (ij) • (jk) = (ik); i.e., if i and j are connected and 
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j and k are connected then, obviously, i and k are connected by a chain. Also, 

if i and j are connected by a chain then j and i are connected by a chain; i.e., 

(ij) = (ji). It should be noted that if a design is locally connected then there 

are v(v- l) chains, excluding the chains of (ii). 

Theorem 3.4. D is locally connected if and only if there is ~ set, '1), with v - 1 

elements each of ~ form (ij) € D, such that·~ the dot operator, ~ defined 

~~ the v(v - 1) necessary and sufficient chains ~be generated. 

Before proving the theorem, note that if 'I) exists every treatment appears in 

at least one element of U. Under the dot operator each element gives rise to v - 1 

other chains plus its reverse; i.e., (ij) = (ji). Thus total number of chains is 

v(v - 1) since there are (v - l)(v - 2) chains by dot operator plus 2(v - 1) from 

the elements of U and their reverses. 

Proof: (i) Sufficiency obvious. 

(ii) If D is locally connected then every treatment is connected to every 

other treatment and U can be easily constructed. 

The non-zero elements of NN 1 represent chains of the form iB j, which is the 
r 

ij element. Thus (NN')2 is in essence the result of the dot operation between the 

chains represented by non-zeros' in NN 1 and in general (NN 1 )a, 2 s a s: v - 1, is 

( )a-1 equivalent to the dot operation between the non-zero elements of NN 1 and those 

of NN'. The longest possible chain between any two treatments is one which con-

ta.ins all the treatments; such a chain could be constructed by the dot operation 

between v - 1 chains of the form iB j with distinct B 's. Thus the non-zero ele-
r r 

( )v-1 ments of NN 1 represent those pairs of treatments that are locally connected. 

We now have the following theorem. 
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~- . ·~ : .• ,..,, • f .- •• 

Theorem 3.5. ~necessary and ~icient condition for ~ design to be locally 
· ·· · ·, · ~ · · -v 1 ·. 
connected ~ that (NN 1 ) - have no ~ entries. 

For example, consider the following block design: 

N= 

2 

(NN')2 = 
3 
1 
0 

1 0 0 

1 1 0 

0 1 1 

0 0 1· 

3 1 0 

6 4 1 

4 6 3 
1 3 2 

1 

Thus the above design is locally connected. 

NN' = 

(NN' )a 

1 1 0 0 

1 2 1 0 

0 1 2 1 

0 0 1 1 

5 9 
9 19 

= 
5 15 
1 5 

1 

5 1 

15 5 
19 9 
9 5 

Corollary 3.2. . v 1 b 1 
~ the above theorem (NN'} - ~ be replaced by (N 'N) - and the 

ccndition remains necessary ~ sufficient. 

Corollary 3·3· If ~ power ~ NN' or N'N have ~ ~ ~ column ~ ~ ~ 

elements, then the design is locally connected. 

•.· 
The following algorithms for each of the preceding theorems, except theorem 

3.5, will help clarify the theorems and demonstrate their applicability. 

Algorithm for theorem 3.2. 

Consider N'N, if (r,s) element of N'N matrix is not zero then ~ B n B F ¢, ~ r s W 
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s, or B* n B* /= ¢, m f n for some m,n. m n 
Thus inspect the 1st row of N'N then 

all B1 and Br such that B1 n Br I= ¢, become the first elements of D*. For all r 

such that B1 n Br I= ¢, go to the rth row of N'N then all Bs such that Br nBs I= ¢ 

become the next part of D*. Continue until: 

1. all blocks belong to D* ~ D is locally connected, 

2. all treatments are contained in the blocks of a partially formed n*, then 

the remaining blocks can be added in any order ~ D is locally connected, 

3· a B is found such that B n B = ¢ for all s < r and B e D*, and also r r s s 

any B such that B n B I= ¢ with B n B = ¢ ~ D is not locally connected. u u r u s 

Algorithm for theorem 3.3. 

This is analogous to the above algorithm with NN' in place of N'N, T1 in place 

of B , and 1* in place of D*. 
r 

Method for using theorem 3.4. 

The easiest chains to construct are those between treatments in the same block, 

i.e., iB j = (ij). Every treatment must exist in at least one chain of this form. s 

A constraint to apply to elements of 'U is that if (ij) e '/)and (jk) e 'I) then (ik) e '/), 

i.e., dori 't include in U. a chain that is inferred by the dot operator between two 

elements of U.. 

Example 3 • 1. 0 = [1, 2, 3, 4, 5, 6, 7' 8] 

Bl B2 B3 B4 B5 B6 B7 Bs 
1 ] ] 4 7 6 8 3 

Design D: 3 5 7 6 7 4 

4 6 8 3 2 5 

3 6 
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1 0 1 0 0 0 0 0 

0 1 0 0 0 0 1 0 

1 0 1~ 0 0 2 0 1 

1 0 0 1 0 0 0 1 
N = 0 0 1 1 0 0 0 1 

0 0 0 1 0 2 0 1 

0 1 0 0 2 0 1 0 

0 0 0 0 1 0 1 0 

Example of algorithm for theorem 3. 3. 

2 0 2 1 1 0 0 0 

0 2 0 0 0 0 2 1 

2 0 7 1 1 5 0 0 

1 0 1 3 2 2 0 0 
NN' = 

1 0 1 2 3 2 0 0 

0 0 5 2 2 6 0 0 

0 2 0 0 0 0 6 3 
0 1 0 0 0 0 3 6 

From row 1 we have treatments 1, 3, 4, 5 connected; row 3 yields·treatment 6; row 4 

yields 6; and row 5 yields 6. Now row 6 adds no new treatments. Thus the design 

is not locally connected. (1, 3, 4, 5, 6) form a group of connected treatments 

and (2, 7, 8) also are a group of connected treatments. 

Example of algorithm for theorem 3.2. 

3 0 2 1 0 2 0 2 

0 2 0 0 2 0 2 0 

2 0 3 1 0 2 0 2 

1 0 1 3 0 2 0 3 
N'N = 

0 2 0 0 5 0 3 0 

2 0 2 2 0 8 0 4 

0 2 0 0 3 0 3 0 

2 0 2 3 0 4 0 4 
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Row 1 yields B1, B3, B4, B6, B8 as the first part of D*. But rows 3, 4, 6, and 8 
. . 

add no new blocks, thus the design is not locally connected. B2, B5, and B7 inter-

sect pairwise and form a set disjoint from B1, B3, B4, B6, and B8• 

Example .£!_ method for theorem 3. 4. 

From B1 we get (1,3) and (1,4); do not include (3,4) since (1,3) • (1,4) = (3,4). 

From B2 we get (2,7), B3 gives (1,5), B4 gives (5,6), B5 gives (7,8), and B6, B7, 

and B8 give nothing that cannot be inferred by the dot operator. Thus we have 

(1,3), (1,4), (2,7), (1,5), (5,6), (7,8), only six elements, and seven are required. 

Also many chains are impossible to construct; e.g., (5,7), (5,8), etc. Thus the 

design is not locally connected. 

Example 3.2. 0 = [1, 2, 3, 4, 5, 6, 7, 8] 

I"" 

1 0 0 0 0 1 0 1 0 

1 0 0 1 0 0 1 0 1 

1 0 0 0 0 0 0 1 1 

0 1 0 1 0 0 0 0 0 
N = 

0 1 0 0 1 0 1 0 0 

0 1 0 0 1 0 1 0 0 

0 0 l 0 l 1 0 1 0 

0 0 1 1 0 0 1 0 0 
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Example of algorithm for theorem 3.2. 

3 0 0 1 0 1 1 2 2 

0 3 0 1 2 0 2 0 0 

0 0 2 1 1 1 1 1 0 

1 1 1 3 0 0 2 0 1 

N'N = 0 2 1 0 3 1 2 1 0 

1 0 1 0 1 2 0 2 0 

1 2 1 2 2 0 4 0 1 

2 0 1 0 1 2 0 3 1 

2 0 0 1 0 0 1 1 2 

Row 1 yields B1 , B4 , B6, B7 , B8' B9 as the first part of D*, row 4 yields B2 and B3, 

and row 6 yields B5• Thus 

D* = [Bl' B4, B6, B7' B8' B9, B2 , B3' B5] ~ B-l~ = 
1 Bl' B*· = 

2 B4, B* = 
3 B6, 

and so on, and D is locally connected. 

Example of algorithm for theorem 3·3· 

3 1 2 0 0 0 2 0 

1 4 2 1 1 1 0 2 

2 2 3 0 0 0 1 0 

0 1 0 2 1 1 0 1 
NN' = 

0 1 0 1 3 3 2 0 

0 1 0 1 3 3 1 1 

2 0 1 0 2 1 4 1 

0 2 0 1 0 1 1 3 

Thus 

a.nd so on, and D is locally connected. 
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Example of method for theorem 3.4. 

EJ_ yields (1,2) and (1,3) 

E2 yields (4,5) and (4,6) 

E3 yields (7 ,8) 

E4 yields (2,4) and (2,8). 

Thus U== [(1,2) (1,3) (4,5) (4,6) (7,8) (2,4) (2,8)], 7 elements. Every 

treatment appears in at least one of the elements and a chain can be constructed 

that passes through every treatment. Also no element of U can be formed by the 

dot operation between any two elements of U. Thus D is locally connected. 

4. Results for Globally Connected Designs 

An advantage of globally connected designs is that when estimating the 

elementary contrast between the effects of i and j, every replicate participates, 

yielding ri X rj estimates of i - j or j - i. The following theorem characterizes 

globally connected designs. 

Theorem 4.1. ~ design, D, is globally connected if and only if ~ following 

conditions hold simultaneously. 

(1) D is locally connected. 

(2) Every block of D contains at ~~ two treatments that appear in ~ 

than ~ block; i.e., for all Es ED there exists ~ i and j e Es such 

that i E E and j E E 1 u /= s and r /= s • 
-- r- u 

(3) If there exists a Es€D such that Es == [i,j} 9! [i,j,k ••• }where all 

experimental units of Es' except i and j, appear in Es only, then i and 

j must each belong to two other blocks of D. That is, if i and j ~ 

the only treatments contained in E that appear in other E 's, r f s, 
---- - s-- ----- r 

then i and j must be such that i € Er and Eu' and j E Em and En' r /= s, 

u f s, m f s, and n /= s • 
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(4) Any treatment, i ~~ that appears ·in~~·~ blocks (~not all 

blocks) ~ ~ ~ in blocks that contain 

or·· 

(i) ~ treatment that appears in two blocks containing i, and ~ 

not containing i. That is, i € B and B and there exists a r- s------
j € B , B , B , and B where i f. B and i #. B , r s m-n-- m- n 

(ii) ~ treatments ~ appearing in ~ block containin& i, and ~ 

block not containing i. That is 1 i and j € B , 1 and k € B , 
--- - r - s 

then j € B and k € B with 1 #. B and i f. B • 
- m- n-- m-- n 

Some of these conditions may seem redundant; however, with a few simple examples 

we will show that this is not the case. 

Case 1: Let D1 and D2 be globally connected designs of the treatment sets n1 and 

0 2, respectively, and 01 n 02 = ~. Thus theorem 4.1 holds for each design. Con- ~ 

sider the design D1 U D2 of the set of treatments n1 U 02; conditions (2), (3), 

and ( 4) of theorem 4.1 will still hold. However, the design D1 U D2 is not locally 

connected, i.e., condition (1) no longer holds and the design is not globally 

connected. 

Case 2: Let (1), (3), and (4) of theorem 4.1 hold, but not (2). 

Bl B2 B3 B4 B5 B6 

D: 0 m m 1 m m 2 

3 
4 

D is not globally connected since the replicate of treatment 1 in B1 is not 

connected to any other treatment. 
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Case 3: Let (1), (2) 1 and (4) of theorem 4.1 hold, but not (3) for trea.tment 2. 

Bl B2 B3 B4 B5 

m 1 rn 3 3 
D: 4 4 4 

2 5 5 

D is not globally connected since the replicate of treatment 1 in B1 is not 

connected to the replicate of treatment 2 in B2• 

Case 4: Let (1), (2), and (3) of theorem 4.1 hold, but not (4). 

Bl B2 B3 B4 

1 1 3 4 

D: 2 2 4 5 

3 3 5 6 

6 

D is not globally connected since, for example, the replicate of treatment 3 in B3 

is not connected to treatment 1 or 2. 

Proof of theorem 4.1. 

Necessity 

(i) Condition (1) is obvious. 

(ii) If condition (2) is violated then D has a singleton. The treatment 

belonging to the singleton cannot be connected by a chain to any other 

treatment and so it follows that D is not globally connected. 

(iii) If condition (3) is violated by treatment i of block Br' then 1 occurs 

in only one other block, B • A chain between any treatment in B . s r 

and i in B cannot be constructed. Thus D is not globally connected. 
s 



- 20 -

(iv) If condition (4) does not hold for treatment i say, then there is a 

treatme~~ j which occurs in at least two blocks containing i, and 

exactly one not containing i, B • It follows that one cannot construct .r 

chains between all the replications of j and i, namely the replicate 

of j € B and any replicate of i. Thus D is not globally connected. 
r 

SUfficiency 

Consider any replicate of any treatment, say replicate x of treatment i, 

and denote as ix. Then given that the conditions hold, can ix be connected 

by a chain to any replicate of any other treatment, say ky? Now by condition 

( 2), if i x € B then there exists a j € B such that we have i ~ j. Since the 
s s s 

design is locally connected we can construct a chain between j and k. If j 

is connected to kY, then we are finished. z However, if j is connected to k , 

z f y, then since the blocks containing kz and ky satisfy the conditions 

(2), (3), and (4), a chain between kz and ky can be constructed. This com-

pletes the proof. 

Corollary 4.1. If two treatments appear in every block, then the design is globally 

connected. (The design must have at lea.st three blocks.) 

Corollary 4.2. If N has ~ ~ elements, then D is globally connected. (If N 

has~~ elements, then NN' and N'N have~~ elements.) 

Example 4 .1. Example 2 of section 3. 

D: 
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(1) From section 4 we know that ~ is locally connected. 

(2) Condition (2) is satisfied; i.e., all blocks have at least two treatments 

that appear in rr:.ore than one block. 

Bl: for example 1 E B6 and 2 € B4 

B2: 
II II 4 € B4 

II 5 € B5 

B3: 
II II 

7 € B5 
II 8 € B4 

B4: 
II II 4 € B2 

II 2 € B 
1 

B5: 
II II 5 e B7 

II 6 e B7 

B6: 
II II 1 € Bl 

II 
7 e B8 

B7: 
II II 2 € Bl 

II 5 € B5 

B8: 
II II 1 € Bl 

II 

3 € Bl 

B9: 
II II 2 € Bl 

II 3 e Bl 

(3) The only blocks concerned with condition (3) are B3, B6, and B9• 

(i) 7 and 8 € B3' 7 e B5' B6' and B8, 8 e B4 and B7 

(ii) 1 and 7 € B6, 7 € B3' B5' and B8, 1 e B1 and B8 

(iii) 2 and 3 € B9' 2 e Bl' B4, and B7, 3 e B1 and B8 

Thus condition (3) is satisfied. 

(4) All treatments appear in two or more blocks, thus they all must satisfy 

condition 4. 

(i) 1 e B1, B6, and B8; note that 3 e B1 and B9, 2 e B1 and B4, but 

1 ~ B4 or B9• 

(ii) 2 € B1, B4, B7, and B9; note that 5 e B5 and B7, 6 e B5 and B7, 

but 2 ~ B5• 

(iii) 3 € B1, B8' and B9; note that 2 € B1 and B9, and also 2 € B4 and 

B7, but 3 ~ B4 or B7• 
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(iv) 4 € B2 and B4; 5 and 6 € B2 and B,(' but 4 ~ B7• 

(v) 5 € B4, B5, and B7; 2 € B4 and B1, 8 € B7 and B3, but 5 ~ B1 

(vi) 

(vii) 

and B3• 

6 € B2' 

7 € B3' 

or B9• 

B5' 

B5' 

and B7; 2 € B7 and B4, 4 € B2 and B4, but 6 ~ B4. 

B6, and B8; 8 € B3 and B4, 3 € B8 and B9, but 7 ~ B4 

(viii) 8 € B3' B4, and B7; 2 € B7 , B4, B1, and B9, but 8 ~ B1 or B9• 

All four conditions of theorem 4.1 are satisfied and thus the design is 

globally connected. Most of the calculations in the above example can be done 

mentally; it has been presented in a.n attempt to clarify any misunderstandings or 

confusion the reader may have had. 

Example 4. 2. 

Condition (3) of theorem 4.1 does not hold and the design is not globally connected. 

However, for any two treatments of the design, say 1 and 2, every replicate of 1 

is connected by a chain to at least one replicate of 2. That is, 

11 B 21 
1 ' 

12 B23B322 => each chain yields an estimator of 1- 2 

also 11 B 2B 32 • 12 B 31 => I! " II II II II 1 - 3 1 3 , 2 

and 2lB lB 31. 22 B 32 => I! " If II II If 
2 - 3· 1 2 ' 3 

Any two treatments connected in this fashion are said to be pseudo-globally 

connected. A more concise definition and some discussion of pseudo-globally 

connectedness is given in the next section. 
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5. Pseudo-Globally Connected Designs 

Pseudo-globally connected designs assures one that in estimating elementary 

contrasts each replicate of the treatments involved is utilized. When estimating 

elementary treatment contrasts, globally connected designs maximize the use of all 

replicates of the treatments whereas pseudo-globally connected designs guarantee 

that no replicates are "wasted". That is, every replicate of each treatment in the 

contrast is involved at least once in the estimation. 

From example 4. 2 in section 4 we have the following definition: 

Definition 5 .l. Two treatments i and j, i f j, in D are said to be pseudo-globally 

connected if every replicate of i is connected by a chain to at least one replicate 

of j, and vice-versa. D is said to be pseudo-globally connected if every pair of 

treatments is pseudo-globally connected. 

The relationship i pseudo-globally connected to j defines an equivalence 

relation on D, and D is pseudo-globally connected if there is only one equivalence 

class for all treatments. This class of connected designs covers the ground between 

local and global connectedness. Pseudo-globally connected designs use each 

replicate of treatments i and j, i f j, at least once in the estimation of the 

contrast i - j' for all i and j e: n. 

Theorem 5.1. Conditions (1), (2), and (4) of theorem 4.1 ~ necessary~ 

sufficient for a design to be pseudo-globally connected. 

Proof: This proof is analogous to that of theorem 4.1. 

Example 5 .l. 

D: 



- 24 -

D satisfies theorem 5.1 and the required chains can be constructed. Thus D is 

pseudo-globally connected. 

6. Some Further Properties of Connected Designs 

A. Invariance Properties: If a design D is locally (globally) connected then any 

of the following can occur and D will remain locally (globally) connected. 

(a) For Q locally connected: 

(i) any treatment belonging to 0 can be added to any block of D. 

(ii) any new treatment(s) can be added in any block of D. 

(b) For Q globally connected: 

(i) any block belonging to D can be repeated any number of times. 

(ii) if a treatment appears in a block it can be replicated any number 

of times within that block. 

(iii) if a block does not contain treatment j say, then j can be added 

to that block. 

Recall that if a design is globally connected then it is pseudo-globally 

connected, which also implies that the design is locally connected. Thus the 

facts in (b) above apply to pseudo-globally and also locally connected designs. 

Similarly, in the remainder of this section the results for globally connected 

designs are inferred to pseudo-globally connected designs which are not 

specifically mentioned. 

B. The Composition of Connected Designs: Let us consider the proposition of 

composing designs that are locally or globally connected. 

(a) Compositions that yield locally connected designs: 

(i) If D1 and D2 are locally connected designs on the sets of treatments 

01 and 02' respectively, and 01 n 02 = 0, then the design e 
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Dl = n1 U D2 U B is locally connected, where B is a block contain

ing at least two treatments, i and j say, such that i € n1 and j € o2• 

The block B forms the link between the two designs n1 and n2• 

Since i is connected to all treatments in 01 and j to all in o2 

then the chain iBj locally connects every pair of treatments of 

01 u 02. 

( ii) L-et n1 and D2 be locally connected designs on 01 and 02, respec-

tively, and if 01 n 02 f ¢, i.e., 01 and 02 have at least one 

element in common, then n1 U D2 is a locally connected design. 

(b) Compositions that yield globally connected designs: 

(i) Consider n1 and n2 to be globally connected designs of treatment 

sets 01 and 02, respectively, 01 n 02 = ¢. As before, 

Dg = D1 U D2 U B where B, as above, is locally connected. However, 

if B contains four treatments (i, j, k, and t), such that i and 

j € 01 and k and t € 0 2, also i an9- j each appear in at least two 

blocks of n1 and similarly k and t in D2, then Dg is globally 

connected. Moreover, if B contains three treatments of 01 and 

three of 02 then Dg is globally connected. It is easily shown that 

D , with the above B's, satisfies theorem ~.1. 
g 

(ii) For n1 U D2 to be globally connected, it is sufficient for n1 and 

n2 each to be globally connected and one of the following: 

(1) 01 n 02 = (i] and i appears in two blocks of D1 and two of D2• 

(2) 01 n 02 = [~] and i appears in a.t least one block of D1 and 

two of D2, while j appears in at least one block of n2 and 

two of D1• 
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Since the proofs of the above are simple and straightforward, we will not 

bother to present them here. Also it is interesting to note that two designs, . ' ~, ~ 

D1 and D2,_can each be ~ot locally connected but their union D1 U D2 may be locally 

connected. This is obv;_ous since given a locally connected design, D, one can 

usually partition D into locally disconnected subsets. 

7. Graph Theoretical Analogy 

A graph G is a mathematical system consisting of two sets V and E. V is a 

finite nonempty set of p vertices and E is a prescribed set of q unordered pairs 

of distinct vertices of v. Each pair e = {u,v) of vertices in E is an edge of G 

and e is said to join u and v. We write e = uv and say that u and v are adjacent 

vertices, vertex u and edge e are incident with each other, as are v and e. Two 

distinct edges incident with a common vertex are said to be adjacent edges. 

A walk of a graph is an alternating sequence of vertices and edges beginning 

and ending with vertices in which each line is incident with the two vertices 

immediately preceding and following it. A trail is a walk with all edges distinct 

and a path is one with all vertices distinct. Harary [4] defines a graph to be 

connected if every pair of vertices are joined by a path. 

We define the treatments of a design to be the vertices of a graph G, and 

two vertices are incident if the two treatments belong to the same block. A walk 

of a graph is equivalent to a treatment-block chain as defined by Bose [1]. Thus, 

if every pair of vertices is connected by a walk then the design will be locally 

connected, and vice versa. Also we can define a design to be locally connected 

if and only if the graph G is connected. 
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AnalogU.e to theorem 3.1. The design D is locally connected if and only if the 

graph G, as defined above, has only one connected component. 

Define the graph G(D) to have a.s vertices the blocks of the design D and two 

vertices as incident if the two blocks have at least one treatment in common. 

Analogue to theorem 3.2. D is locally connected if and only if every pair of 

vertices of G(D) is connected by a walk. 

If the T., as defined in section 3, are the vertices of graph G(1) and T. and 
~ ~ 

Tj, i F j, are incident if there is a Bs € Ti and a Br € Tj such that Br n Bs F ¢, 

then we have the following: 

Analogue to theorem 3.3. D is locally connected if and only if every pair of 

vertices of G(!) is connected by a walk. 

As before, we can develop some simple rules, in graph theory terms, for 

determining the local connectedness of.D. 

(i) D is not locally connected if any of the above graphs has an isolation 

vertex. 

(ii) If any vertex, v, of the above graphs has degree (number of edges 

incident with v) p 1, where p is the number of vertices, then D is 

locally connected. 

The removal or loss of treatments from a design obviously can affect the local 

connectedness of that design. Knowledge of treatments, which by their removal or 

loss cause the design to be not locally connected, would usually be of interest to 

the experimenter. A similar situation arises in graph theory. Busacker and Saaty 

[2) define a vertex v to be a point of articulation of a connected graph if the 

graph obtained by deleting v and all edges incident with v is disconnected. A 

graph is said to be separable if' it has at least one articulation point. 
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Lemma 7.1.~ A necessaey· and'su.f:.f.icient condition for a vertex v to be a P<>int of - -- - --- --- -
articulation is that v..,lie ~ all the paths connecting ~ pair of vertices. 

Proof: See Busacker and Saaty C2]. 

A matrix of interest in graph theory is the vertex or adjacency matrix V. 

The element in the (i,j) position of Vis the number of edges incident with both 

vertex i and vertex j. From Busacker and Saaty [2] we have the following theorem: 

Theorem 7 .1. The matrix yU gives the number of walks of length n between any two 

vertices, where the length of ~ walk is the number of edges between the beginning 

and terminating vertices. 

The analogous experimental design theory for the above terminology and theory 

is obvious. A treatment or block is said to be a point of articulation if the 

design obtained by deleting that treatment or block is not locally connected. 

Lemma 7.2. ~necessary and sufficient condition for~ treatment~ block to be~ 

point of articulation is that it lie ~ all chains connecting ~ pair of treat-

ments. 

If we define the length of a chain to be the number of blocks that appear in 

the chain, then a treatment matrix can be defined similar to the vertex matrix of 

a graph. A treatment matrix /~has as its (i,j) element the number of blocks that 

contain both treatments i and j. 

Theorem 7 .2. The matrix if gives the number of chains of length n between any two 

treatments of ~ design. 

Globally and pseudo-globally connected designs were not considered in graph 

theory terms and it is doubtful if an analogy to theorems 4.1 and 5.1 would be of 

any use. However, graph theory is a powerful tool and in future research may yield 

some further facts and theorems on connectedness of designs in general. 
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8. Conclusion 

The next step in the study of connected designs is to show, by some 

110ptimality" criterion, that globally connected designs are better than locally 

connected designs. The criterion selected as the basis of comparison will, of 

course, be the determining factor. Howe·;er, for any "reasonable" criterion it is 

difficult to conceive of a situation where a locally connected design would be 

better than all possible globally connected designs for a given set of parameters. 

The optimality criterion should be some sort of variance function. 
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