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Abstract

This study is concerned with the characterization and investigation of con-
nected block designs. BEvery elementary treatment contrast is estimable if and only
if the design is at least locally connected. Thus connectedness is an important
and desirable property which every block design should enjoy. In particular,
globally connected designs should yield better estimators (with respect to some

optimality criterion, see conclusion) of all the elementary contrasts.

The definition of locally connected designs is the same as the connected
designs of Chakrabarti [3] and Bose [1]. Several theorems which characterize
locally connected designs, in terms of the incidence matrix N or some function of
it, are given in section 3. A set of necessary and sufficient conditicns for a
design to be globally cornected is given in section 4, and a new class of connected

designs, pseudo-globally connected, is introduced and characterized in section 5.

Some invariance properties of both locally and globally connected designs are
presented in section 6. In addition we have considered the proposition of com-
bining connected designs so that the newly composed design has some connected
nature.

There is a strong analogy between some graph theory concepts and experimental
design theory. Several theorems and concepts from Harary [4] and Busacker and
Saaty [2] yield graph theoretic analogies to several of the theorems in section 3

and further properties and notions applicable to experimental (block) design.

Paper No. BU-410-M in the Biometrics Unit Mimeograph Series, Department of Plant
Breeding and Biometry, Cornell University, Ithaca, New York 14850.



~ ON THE THEORY OF LOCALLY AND GLOBALLY CONNECTED DESIGNS

BU-410-M 4 by February, 1972

John Eccleston
Cornell University

l. Introduction

This study is concerned with the characterization and investigation of con-
nected block designs., ZEvery elementary treatment contrast is estimable if and only
if the design is at least locally connected. Thus connectedness is an important
and desirable property which every block design should enjoy. In partlcular,
globally connected designs should yield better estimators (with respect to some

optimality criterion, see conclusion) of all the elementary contrasts.

Our definition of locally connected designs 1s the same as the connected
designs of Chakrabarti [3] and Bose [1]. Several theorems which characterize
locally connected designs are given in section 3. All of these theorems involve
the incidence matrix N or some function of it, as opposed to the C matrix used by
Chakrabarti [3] and the treatment-block chains of Bose [1] who originated the
concept of connectedness. The association matrix, NN', and the block characteristic
matrix, N'N, are the functions of N used in the algorithms for theorems 3.2 and
3.3? %éspectively. Two examples are given to demonstrate the mechanics of the
algorithms for theorems 3.2, 3.3, and 3.4. In addition, pumerous corollaries,
rules, and remarks appear throughout section 3 and, although some may be trivial,

they can be helpful in many cases to establish local connectedness.
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In dealiﬁé';ifh;élob;lAi;onnectedness, one's attention is focused on each
'experiﬁléggél unit of the design rather than a treatment as in the case of local ‘
connectedness. Thus characterizafion of globally comnected designs is a difficult
and somewhat tricky task, as demonstrated by theorem 4.1. This theorem gives a
set of necessary and sufficient conditions, which must hold simultaneously, for a
design to be globally connected as defined by Hedayat [5]. Two examples are glven,
one of which gives rise to the introduction of a further type of connected design,
namely a pseudo-globally connected design, which is in effect a compromise between
globally and locally connected designs. A set of necessary and sufficient con-
ditions which, as in theorem 4.1, must hold simultaneously are given in theorem
5.1 of section 5. PFurther discussion of pseudo-globally connected designs in
comparison with locally and globally connected designs and an example are also

presented.

Some invariance properties of both locally and globally connected designs are .
presented in section 6. In addition we have considered the proposition of com-
bining connected designs so that the newly composed design has some connected

nature.

There is a strong analogy between some graph theory concepts and experimental
design theory. Several theorems and concepts from Harary (4] and Busacker and
Saaty [2] yield graph theoretic analogies to several of the theorems in section 3

and further properties and notions applicable to experimental (block) design.

2. Background

et r = {l, 2, *°°, v} be a set of v treatments. By a block design with
parameters v; b; Ty Ty *00s T kl, ke, ces, kb; and incidence structure N

denoted by BD(v; b; r ey T5 kg, e, Ko N) on Q we shall mean an allocation .

15 ’ v
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of elements of 3, one on each of the m = k., + «-» + kb experimental units arranged

1
in b blocks or groups of experimental units-designated by Bj’ J=1, 2, **+, D

with Bj of size kj such that i is assigned into Ty experimental units. N = [nij]

is the v X b incidence matrix where nij denotes the number of experimental units

in the j*® block receiving the i*" treatment.

There are numerous special cases of the above block design. If for all i,
r, =T (constant) then we have BD(v; b; r; Ky, 00 K N) which is called an equi-

replicated block design. A proper block design is one that for all j, kj =k

(constant), i.e., BD(v; b; r,, ***, r ; k; N). Thus a block design that has for

l) V’

all i, r, =T and for all j, kj = k is denoted by BD(v, b, r, k, N).

A block design is said to be pairwise balanced if
NN' =T + AJ

where T is a diagonal matrix, A is a scalar, and J is a matrix of ones. For a

proper block design that is pairwise balanced we write BD(V, b, r k, X)

Ot‘, I

l)

and if the design is also equirepiicated then we write BD(v, b, r, k, )\) which is

V’

the classical balanced incomplete block design with parameters v, b, r, k, and A,

i.e., BIBD(v, b, r, k, A).

A block that contalns only one treatment, though possibly more than one
experimental unit, is called a singleton, i.e., Bj =i, i, «++, 1] or [i]. 1In
experimental design theory NN' is called the association matrix and N'N the block

characteristic matrix.

In the following sections of this paper the statistical model underlying the
discussion is one with fixed block effects. If the goal of an experiment is to
estimate elementary treatment contrast, 1 - Jj, unbiasedly then connectedness is

most important since every elementary treatmgnt contrast is estimable if and only
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if the design 1s connected. The analysis of interest is the intrablock.

Model:, -~

E(y-i‘]) =pt BJ + tl i 1, 2, o0, v

J=1,2, ¢+, b.

Bj = effect of Bj (fixed), ti = effect of i, p = general or mean effect.

From the normal equations we have

ct = Q (2.1)

‘where

g is the vector of estimated treatment effects,

C = diag(rl, Ty **0, T ) - N{diag[kl , 2 , kb ]}N' (2.2)
and

- -1 }

Q=T - N{diag[kl ’ 2 ’ s kb ] B (2'3) ‘
for

T = column vector of treatment totals, and

B = column vector of block totals.

Equation (2.1) is known as the equation for estimating the treatment effect and
the matrix defined by (2.2) is the well-known C-matrix. One can easily verify

that the linear function thl + 4 t + oeee + 4 t is estimable if and only if

zl + 12 + e + £v = 0, in which case the linear function @’P is called a contrast.

Elementary ccntrasts are those of the form ti - tj. The best linear unbiased
estimator of t; - t, 1is Qi - @d where %i, i=1, 2, *s», v, is given by the
solution of equation (2.1). Thus, obviously, the C-matrix plays a decisive role

in the estimation of contrasts and hence the connectedness of a design.

Chakrabarti [3] defines a design to be comnected if its C-matrix has rank

v - 1. However, Bose [1] the originator of the concept of connectedness, defined



connectedness in the following way:
. - "A treatment and block are said to be associated :Lf the treatment is
cortained in the block. Two treatments, two blocks, or a treatment
and a block may be sald to be conmnected if it is possible to pass
from one to the other by means of a chaln consisting alternately of
blocks and treatments such that any two members of a chain argfaséoci—
ated. A design (or a portion of a design) is sald to be a connected
design (or a connected portion of a design) if every block or treat-
ment of the design (or a portion of the design) is connected to every
other."
Unbiased estimators of an elementary treatment contrast can be obktained directly
from the chalns connecting the treatments of the contrast. For example consider
the chain 1B_2, where 1B

3 3
. B32 denotes the observed response of 2 in block 3 and i1s given a negative sign,

denotes the observed response of 1 in block 3, yl3, and

-y23. Thus 1332 means yl3 - y23 which is an unbigsed estimator of 1 - 2.

Example 2.1. Consider the design BD(3,3,2,2,1) r = {1,2,3}

B B B

1 2 3
1 2
3
i 7
1 % -3
The C matrix of this design is | -% 1 -3 , Which has rank = 2, l.e., v - 1,
L EY
-3 - 1

Let yij be the observed response of treatment i in block j; then we have the

following chalns and theilr unblased estimators.



Contrast Chains Estimators

1-2 (1) 182 (11) 18,382 (1) yyy - ¥yp (32) ¥yp = ¥3p + 33 = ¥y
.'al —.3 . (i) IB23 (i}) 1312333 (i) y12 = Y32 (ii) yll - yal + y23 = Y33

2 - 3 (i) 2B33 (ll) 2B11B23 (i> y23 - Y33 (ii) y21 = yll + yl2 - y32
Thus the design is connected under both definitions.

Example 2,2. Consider the following block design

B B B

1 2 3
1| 1 1L
2 5
3 5
[ 16 2 2 )
T "3 "3 © °©
2 16 2
"3 3 -3 9 0©
_ 2 2 16
¢=l-3 3 3 ° ©
8 16
0] 0 0] § ?T
16 1k
0 0 0 ?7 ?T J

which has rank = 3, i.e., # v - 1. One cannot construct a chain to pass from
L or 5 to 1, 2, or 3. Thus under both Chakrabarti's and Bose's definitions the
design is not connected. The equivalence, in general, of Bose's and rank C

definitions has been proved in [3].

The obvious drawback of both the above definitions of connectedness is that

they are difficult and time consuming to use. The goal of this paper is to develop .
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simplér’theorems and ‘procedures than the above for determining whether or not a
design is cemnected. In addition we have extended the concept of connectedness
to further classify a connected design as either locally or globally connected.
The terms locally and globally connected are defined in the following paragraph.
Firstly let us consider local connectedness. Two treatments, i and j, i # J,
of a design are said to be locally connected if one can construct a chailn, as

defined by Bose [l], between a replicate of 1 and a replicate of j.

Definition 2,1. A design is said to be locally connected if every pair of treat-

ments is locally connected. [N.B, Our definition of locally connected designs is
the same as the connected designs of Bose.]

If we allow a treatment to be locally connected to itself the above definition
still holds and the relationship (R), i locally connected to j, defines an equiva-
lence relation on {2 since

(i) (i1)eR, for all ieQ, i.e., every treatment is locally connected to
itself,

(41) (ij) eR then (ji)eR, for all i and je@, i.e., if i is locally con-

nected to j then j is locally connected to i, and

(iii) (ij) eR and (Jk)eR then (ik)eR, for all i,j,k, i.e., if i is locally
connected to j and J 1s locally connected to k, then i is locally

connected to k.

Lemma 2.1. A design is locally connected if by the above equivalence relation, R,

there is only one equivalence class.

Hedayat [5] defined two treatments i and j, i # j, in D to be globally con-
nected if for any replication of i and any replication of j one can construct a
chain, as defined by Bose (1], to pass from i to j. The replications of i and 3
to be connected can each appear only once in the chain between them, namely at the

beginning and end, respectively.
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Definition 2.2. A design is sald to be globally connected if every pair of treat-

,,,,,

ments is globally connected.

e

The relationship 1 globally connected to jJ defines an equivalence relation,

R*, on Q. The proof is analogous to the locally connected case.

Lemma 2.2, A desigﬁ'ig'éldbally connected if, by the above equivalence relationm,

R¥, there is only one equivalence class.

3. Results for Locally Connected Designs

Theorems and algorithms for determining the local connectedness of a design
are presented in this section. The incidence matrix, N, association matrix, NN',
and block characteristic matrix, N'N, are utilized in the following theorems and
algorithms. Sdﬁe corollaries, remarks, and rules for special cases are also given,

along with a few examples. From this point on we shall denote the general block

design with no restrictions on any of its parameters by D = [Bl, By, *tty Bb].

Theorem 3.1. Design, D, is

n

locally connected if and only if its incidence matrix,

N, cannot be partitioned as follows:

N = . , L<aswv, N, are matrices

Ni are connected subsets g£ the set 9{ treatments.

Proof: If N cannot be partitioned as above then there is only one equivalence

class of the relationship of connectedness, and vice versa.
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Corollary 3.1l. NN' and N'N can be partitioned similsr to N if and only if N can

be partitioned as in theorem L.1.

Remark 3.1l. The treatménts of a disconnected design can be grouped into connected
subsets as reflected by N, NN', and N'N, which is analcgous to the breaking up of

a Markov chaln into closed states or sets of states.
Remark 3.2. N can be replaced by C and theorem 4.1 still holds.

It 1s obvious that theorem 4.l is of only limited practical value. However,
numerous conditions that are either sufficient or necessary can be found; though
some may be trivial, they can be used in many cases to establish local connected-
ness.

The following are some rules to help in establishing whether or not a design
is locally connected:

1. D is locally connected if N has a row or column with no zero elements, i.e.,
if a treatment appears in every block or a block contains every treatment,
then D 1s locally connected.

2. D is locally connected if N has at least one non-zero element in row i, i = 2,
3, **+, v, below the non-zero elements of the 1%t row.

3. D is locally connected if N has mb;é than v - d non-zero elements in row i,
i=2, 3, ***, v, and there are only d non-zero elements in the 1** row.

L, D is NOT locally connected if NN' o? N'N has a row with only one non-zero
element.

N can be replaced by NN' and N'N in the above rules. In [1] there is a similar

set of rules concerning the C matrix.

In an effort to find simpler necessary and sufficient conditions for local
connectedness, NN' and N'N were investigated. The following theorems and algo-

rithms are the results of that investigation.
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, Theorem»3.2. D is locally connected if and only if there exists a set

D¥ = [Bei, B;, XN Bng:eDV s=1,2, **+, b ix_ag_':']gq < p such that

B;ﬂBg;é¢Vp=2, 3, ~-~,b].

Proof: (1) D* exists: D¥ is just a reordering of the elements of D and

b b

U Bg = U BS 2 Q. D¥ implies that every treatment must appear in a block that
=1 s=1 ’

s
contains at least two treatments. Thus each B: must intersect with a Bﬁ, r# s,
that contains at least two treatments and the union of all blocks containing two

treatments contains 2. Hence we can construct a chain that passes through all the

blocks containing two or more treatments and thus pass through every treatment.

(i1) DY does not exist: If D¥ does not exist then there is s B; for
which no B‘; exists such that B"; N B‘é’ # ¢, a <p, and the B:"s can be grouped into
disjoint sets of B:. Thus the treatments contained in these disjoint sets of B:

form subsets of connected treatments and D 1s not locally connected.

Let us consider the set Ti’ which has as elements the blocks that contain

treatment i, and denote T = [Tl, Ty ***y Tv]'

Theorem 3.3. D is locally connected if and only if there exists a set

e ———p—

T*=['I"{, TS, ) leT’i*eTVi=1, 2, *++, vand 4a j <1 such that
T§0T§#¢Vi=2, 3, e, v].

Proof: This proof is analogous to that of theorem 3.2.

If treatment i and j are connected by a chain we write this as (1j). Define

the operator « (dot) by (ij) - (Jk) = (ix); i.e., if i and j are connected and
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j and k are connected then, obviously, i and k are connected by a chain. Also,
if i and J are connected by a chain then j and i are connected by a chain; i.e.,
(i3) = (ji). It should be noted that if a design is locally connected then there

are v(v - 1) chains, excluding the chains of (ii).

Theorem 3.4. D is locally comnected if and only if there is a set, YU, with v - 1

elements each of the form (ij)e D, such that under the dot operator, as defined

above, the v(v - 1) necessary and sufficient chains can be generated.

Before proving the theorem, note that iftl(exists every treatment agppears in
at least one element of 2. Under the dot operator each element gives rise tov -~ 1
other chains plus its reverse; i.e., (ij) = (ji). Thus total number of chains is
v(v - 1) since there are (v - 1)(v - 2) chains by dot operator plus 2(v - 1) from

the elements of % and their reverses.
Proof: (i) Sufficiency obvious.

(ii) If D is locally connected then every treatment 1is connected to every

other treatment and % can be easily constructed.

The non-zero elements of NN represent chains of the form iBrj, which is the
ij element. Thus (NN')? is in essence the result of the dot operation between the
chains represented by non-zeros* in NN' and in general (NN')a, 2<sasv-1l,1is
equivalent to the dot operation between the non-zero elements of (NN‘)a_l and those
of NN'. The longest possible chain between any two treatments is one which con-
tains all the treatments; such a chain could be constructed by the dot operation
between v - 1 chains of the form iBrj with distinct Br's. Thus the non-zero ele-
ments of (NN')V-I represent those pairs of treatments that are locally connected.

We now have the following theorem.
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.Theoren.n 3.2, A rieceéséfy and sufficient condition for a design to ‘p_g locally

)V-l

* connected is that (NN’ have no zero entries.

For example, consider the following block design:

By B, B,
1 2 3
2 3 L
1 0 0 (110 0
110 1210
—_ | ;
N=19 111" NN 012 11"
0 0 1L 0O 0 1 1
, - - -
2 3 1 0 5 9 s 1
3 6 Lk 1 2 19 15 5
2 _ - A
0O 1 3 2 1595J

Thus the above design is locally connected.

v-1

Corollary 3.2. In the above theorem (NN') can be replaced by '(N'N)b":L and the

cendition remains necessary and sufficient.

Corollary 3.3. If any power of NN' or N'N have a row or columm with no zero

elements, then the design is locally connected.

The following algorithms for ea,cﬁ of the preceding theorems, except theorem

3.5, will help clarify the theorems and demonstrate their applicability.

Algorithm for theorem 3.2.

Consider N'N, if (r,s) element of N'N matrix is not zero then ® B.NB, # o, '
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r#s, or B; N B: # @, m# n for some m,n. Thus inspect the 1°% row of N'N then

all B, and B_ such that B
1 Tr 1

such that B, N B, # ©, g0 to the r*" row of N'N then all B, such that B_ N B )

N B, # @, become the first elements of D¥. For all r

become the next part of D¥. Continue until:
1. all blocks belong to D* © D is locally connected,
2. all treatments are contained in the blocks of a partially formed D¥, then
the remaining blocks can be added in any order ® D is locally connected,
3. aB, is found such that B, N B, = ¢ for all s < r and BseID*, and also

any Bu such that Bu n Br # ¢ with Bu n BS = ¢ ® D 1s not locally cornected.

Algorithm for theorem 3.3.

This 1s analogous to the above algorithm with NN' in place of N'N, Ti in place

of B, and T* in place of D¥.

Method for using theorem 3,k4.

The easiest chains to comstruct are those between treatments in the same block,
i.e., ist = (ij). BEvery treatment must exist in at least one chain of this form.
A constraint to apply to elements of U is that if (ij)e U and (Jjk)e U then (ik)e U,
i.e., don't include in Y a chain that is inferred by the dot operator between two

elements of Us

Example 3010 Q = [l) 2) 3) h‘) 5) 6) 7) BJ

B,

\N
3

Design D:

B, By
1 1
3 3
b 5

o W
© =3
w w o oy
N 3 @
oWV F oW




1
l...l
=

1

10100000

) 01 000010
1010 0 2 01

1 00100 01
¥=100110001

0 0010 2 01
01002010

0 00 01010

Example of algorithm for theorem 3.3.

(2 0211000

02 0000 2 1

2 07 11500

1 013 2 2 00

W'=11 0123200

0 05 22 6 00

02 0000 6 3
010000 36

From row 1 we have treatments 1, 3, 4, 5 connected; row 3 ylelds treatment 6; row 4

yields 6; and row 5 yields 6. Now row 6 adds no new treatments. Thus the design

is not locally connmected. (1, 3, 4, 5, 6) form a group of connected treatments

and (2, 7, 8) also are a group of connected treatments.

Example of algorithm for theorem 3.2.

—30210202_
02 002020
2 03 1020 2
101302 0 3
NN=16 2005030
2 02 2 08 0L
02 003030
2 02 3 0L 0k
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Row 1 yields By, B., B, By, Bg as the first part of D*¥, But rows 3, 4, 6, and 8

1’ 73

add no new blocks, thus the design is not locally connected. B2, B5’ and B7 inter-

sect pairwise and form a set disjoint from Bl’ B3, Bh’ B6’ and BS'

Example of method for theorem 3.k,

From B, we get (1,3) and (1,4); do not include (3,4) since (1,3)+ (1,4) = (3,4).

From B, we get (2,7), B3 5

and B8 give nothing that cannot be inferred by the dot operator. Thus we have

gives (1,5), B, gives (5,6), B. gives (7,8), and Bg)

B7,

(1,3), (1,%), (2,7), (3,5), (5,6), (7,8), only six elements, and seven are required.
Also many chains are impossible to conmstruct; e.g., (5,7), (5,8), etc. Thus the

design is not locally connected.

Example 3.2. Q=[1, 2,3, 4, 5, 6, 7, 8]

By B, B, B, B, By B By B,
—2
1 4 7 2 7 2 1 2
Design D: |2 5 8 4 6 7 5 3
3 6 8 5 6 7
| L 8 L
100001010
1 00100101
100000011
010100000
N=l6o 10010100
0100110100
0010111010
001100100
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Example gilalgorithm for theorem 3.2.

~

~ P

N PP H D

N'N =

M Y H R O FH O O W
©C O O M HKH O W O
O M H H I = M O O
H O N O O W K P K
O FH M H WO H M O
O M O N H O H O K
H W O N KH O F O N
M H H O O H O O N

= O +# O

Row 1 yilelds Bl’ Bh’ B6, BT’ B8, B, as the first part of D*, row 4 yields B, and B

9 2 3’
and row 6 yields B5. Thus
o= . 3 = = * =
D [Bl, B, B, 37, Bg, 39, B, 33, 35] = B] = B}, Bf = B, 33 B,

and so on, and D is locally connected.
Example of algorithm for theorem 3.3.

31 2 0 0 0 2 O

1 4 2 1 1 1 0 2

2 2 3 0 0 0 1 O

01 0 2 1 1 01

'=
NN 01013320

0 1 01 3 3 1 1

2 01 0 2 1 4 1

0 2 01 0 1 1 3

L .

Row 1 yields Tl’ TQ, T3, TT and row 2 ylelds Th’ T5' T6, T8' Thus

T* = [Tl, T,» T3, T, T TS, Te» T8] =T =T, T = T, T§ T3, Ty T7,

and so on, and D is locally connected.
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B [N

Example of method for theorem 3.k,

_ B, vields (1,2) and (1,3)

B, yields (ugs) and (4,6)

33 yields (7,8)

B, yields (2,4) and (2,8).

Thus U = [(1:2) (1)3) (,4‘;5) (L")6) (7,8) (211‘) (2;8)]) T elements. Every
treatment appears in at least one of the elements and a chain can be constructed
that passes through every treatment. Also no element of Y can be formed by the

dot operation between any two elements of U. Thus D is locally connected.

4. Results for Globally Connected Designs

‘An advantage of globally connected designs is that when estimating the
elementary contrast between the effects of 1 and j, evéry replic'élte' ﬁé&ticipates R
ylelding Ty X rj estimates of 1 - j or J - 1. The following theorem characterizes
globally connected designs.

Theorem 4.1. A design, D, is globally connected if and only if the following

conditions hold simultaneously.

(1) D is locally connected.

(2) Every block of D contains at least two treatments that appear in more

than one block; i.e., for all BS €D there exists an 1 and je Bs such

that 1eB_ and jeB, u# s and r#os.

(3) If there exists a B_eD such that B_ = {1,3} or {1,3,kx +--} vhere all

experimental units of BS , except i and j, appear in Bs only, then i and

J must each belong to two other blocks of D. That is, _1_{ i and j are

the only treatments contained in BS that appear in other Br's , T #s,

then 1 and j must be such that 1eB and B, and jeB and B , r £ s,

ufgs, mfFs, and nfos.
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(4) Any treatment, i say, that appears "in two or more blocks (but not all

blocks) must do so in blocks that contain

(1) a treatment that appears in two blocks containing i, and two

not containing i. That 1is, ie:Br and Bs and there exists a

jeB,, B, B , and B where 1/é13m and 1¢Bn,

(i1) two treatments each appearing in a block containing i, and a

block not containing 1. That is, i and Je Br’ 1 and keBS,

then jeB and keB with 1¢Bm and 1¢Bn.

Some of these conditions may seem redundant; however, with a few simple examples

we will show that this is not the case.

Case 1: Iet D, and D2 be globally connected designs of the treatment sets Ql and

1
02, respectively, and Ql N 02 = ¢, Thus theorem 4.1 holds for each design. Con- ‘

sider the design D; U D, of the set of treatments Ql U 02; conditions (2), (3),
and (4) of theorem 4.1 will still hold. However, the design D, UD, is not locally

connected, i.e., condition (1) no longer holds and the design is not globally

connected.

Case 2: ILet (1), (3), and (4) of theorem 4.1 hold, but not (2).

Bl B2 B3 Bl{» BS B6
D: 1 1 3 3
2 L L

3

4

D is not globally connected since the replicate of treatment 1 in Bl is not

connected to any other treatment. .
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Case 3: Let (1), (2), and (4) of theorem 4.l hold, but not (3) for trestment 2.

B, B B, B, B

1 1 1 3 3

D: o i 3 n 4
2 5

D is not globally connected since the replicate of treatment 1 in Bl is not

connected to the replicate of treatment 2 in Bz.
Case 4: Let (1), (2), and (3) of theorem 4.1 hold, but not (4).

B B B B

1 2 3 L
1 1 3 L4
D 2 2 L 5
3 3 > 6
6

D is not globally connected since, for example, the replicate of treatment 3 in B

3

is not connected to treatment 1 or 2.

Proof of theorem L.1,

Necessity
(i) Condition (1) is obvious.

(ii) If condition (2) is violated then D has a singleton. The treatment
belonging to the singleton cannot be connected by a chain to any other
treatment and so it follows that D is not globally connected.

(iii) If condition (3) is violated by treatment i of block B_, then i occurs
in only one ¢ther block, Bs. A chain between any treatment in Br

and 1 in Bs cannot be constructed. Thus D 1s not globally connected.
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(iv) If condition (4) does not hold for treatment i say, then there is a

treatment j which occurs in at least two blocks containing i, and
exactly one not containing 1, Br' It follows that one cannot construct
chains between all the replications of J and i, namely the replicate

of je Br and any replicate of 1. Thus D is not globally connected.

Sufficiency

Consider any replicate of any treatment, say replicate x of treatment i,
and denote as i°. Then given that the conditions hold, can i* be connected
by a chain to any replicate of any other treatment, say xY? Now by condition
(2), if 1% eBS then there exists a jeIBS such that we have istj. Since the
design is locally connected we can construct a chain between j and k. If j
is connected to ky, then we are finished. However, if j 1s connected to kz,
z # y, then since the blocks containing k% and k¥ satisfy the conditions

(2), (3), and (4), a chain between k” and k’ can be constructed. This com~ .

pletes the proof.

Corollary k4.1. If two treatments appear in every block, then the design is globally

connected. (The design must have at least three blocks. )

Corollary k4.2. If N has no zero elements, then D is globally connected. (Z{ N

has no zero elements, then NN' and N'N have no zero elements.)

Example 4.1. Example 2 of section 3.

Bl 32 B3 Bh 35 B6 B7 BB B9

1 L 7 2 5 1 2 1 2
D 2 5 8 4 6 7 5
3 6 8 7 6
8
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(1) From section 4 we know that D is locally connected.

(2) Condition (2) is satisfied; i.e., all blocks Have at least two treatments
that appear in more than one block.

B,: for example 1 € B6 and 2 € Bh

1
BQ: " " 4 e B), " 5 ¢ B5
. " 1 n
B3. T € B5 8 ¢ Bh
Bh 4 e B2 2 evBi
B_: " " B " 6 e€B
5 > € By 7
1" n" 11
B6 le Bl T € BB
B7: " " 2 € Bl " 5 ¢ B5
B8 1 " 1e Bl " 3 e Bl
. " " n
B9. 2 € Bl 3 € Bl

(3) The only blocks concerned with condition (3) are B3, B¢, and B9.

(i) 7 and 8 € B 7 € By, Bg, and By, 8 € B, and B

3’ T
(ii) 1 and 7 € Be, Te B3, By, and By, 1 e B, and By
(i1i) 2 and 3 € 39, 2 eB;, By, and 37, 3 € B and Bg

Thus condition (3) is satisfied.

(4) All treatments appear in two or more blocks, thus they all must satisfy
condition k.

(i) 1 e By, Bg, and Bg; note that 3 € B) and By, 2 ¢ B, and B, but

9’ 1

14 B), or Bq.
(i1) 2 ¢ By, By, B7, and Bg; note that 5 e By and B, 6 ¢ B and B7,

but 2 ¢ B .

(1i1) 3 € B 8’ and B9, note that 2 € B and B,, and also 2 ¢ Bh and

9)

B7, but 3 ¢ B, or 37.
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- (iv) L ¢ B

, end Bu‘ 5 and 6 ¢ By and B, but b £ 3.
(v) 5 € By, B, andBT;QeBh a.ndBl,BeB,T a,ndBB, butSéBl .
and B_.
73
(vi) 6 ¢ By, Bg, and B3 2 e B, and B, 4 e B, and B, but 6 ;éBh.
(vii) T e B3, B, B¢, and Bg; 8 ¢ By and B, 3 € Bg and Bgs but 7 ¢ B,
or B..
9

(viii) 8 e B B, and B_; 2 € 37, B,, B, and By, but 8 éBl or B

3’ 9’ 9
All four conditions of theorem 4,1 are satisfied and thus the design is

globally connected. Most of the calculations in the above example can be done

mentally; it has been presented in an attempt to clarify any misunderstandings or

confusion the reader may have had.

Example 4.2.

D: ol 3l 32

Condition (3) of theorem 4.1 does not hold and the design is not globally connected.
However, for any two treatments of the design, say 1 and 2, every replicate of 1

is connected by a chain to at least one replicate of 2, That is,

1'B.2t  ; 1°B,3B_22 = each chain yields an estimator of 1 - 2
’ 2

> 3
also 11B12B332; 12B231 = 1 " v " " 1" l - 3
and ol BllB231; 223332 = M n " 1 " "o 3.

Any two treatments connected in this fashion are said to be pseudo-globally
connected. A more concise definition and some discussion of pseudo-globally

connectedness is given in the next section. .
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5. Pseudo-Globally Conhected Designs

Pseudo-globally connected designs assures one that in estimating elementary
contrasts each replicate of the treatments involved is utilized. When estimating
elementary treatment contrasts, globally connected designs maximize the use of all
replicates of the treatments whereas pseudo-globally connected designs guarantee
that no replicates are "wasted". That is, every replicate of each treatment in the

contrast is 1nvolved at least once in the estimation.

From example 4.2 in section 4 we have the following definition:

Definition 5.1. Two treatments 1 and j, 1 # J, in D are said to be pseudo-globally

connected if every replicate of 1 is connected by a chain to at least one replicate
of j, and vice-versa. D is sald to be pseudo-globally connected 1f every pair of

treatments 1s pseudo-globally connected.

The relationship i pseudo-globally connected to j defines an equivalence
relation on D, and D is pseudo-globally connected if there is only one equivalence
class for all treatments. This class of connected designs covers the ground between
local and global connectedness. Pseudo-globally connected designs use each
replicate of treatments 1 and j, i # j, at least once in the estimation of the

contrast i - j, for all i and jefl.

Theorem 5.1. Conditions (1), (2), and (4) of theorem k4.l are necessary and

sufficient for a design to be pseudo-globally connected.

Proof: This proof is analogous to that of theorem L.1.

Example 5.1.

Bl B B3 B, B5

1 1 2 L
D: 5 5

3

)i
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D satisfies theorem 5.1 and the required chains can be constructed. Thus D is

pseudo-globally connected. .

6. Some Further Properties of Connected Designs

A, Invariance Properties: If a design D is locally (globally) connected then any

of the following can occur and D will remain locally (globally) connected.

(a) For D locally connected:

(i) any treatment belonging to Q can be added to any block of D.
(11) any new treatment(s) can be added in any block of D.

(b) For D globally comnected:

(i) any block belonging to D can be repeated any number of times.
(i1) if a treatment appears in a block it can be replicated any number
of times wilthin that block.
(i11) 4if a block does not contain treatment j say, then j can be added ‘

to that block.

Recall that if a design is globally connected then it 1is pseudo-globally
comnected, which also implies that the design is locally connected. Thus the
facts in (b) above apply to pseudo-globally and also locally connected designs.
Similarly, in the remsinder of this section the results for globally connected
designs are inferred to pseudo-globally connected designs which are not

specifically mentioned.

B. The Composition of Connected Designs: Iet us consider the proposition of

composing designs that are locally or globally connected.

(a) Compositions that yield locally connected designs:

(1) 1r D, and D,

Ql and 02, respectively, and Ql n Q2 = ¢, then the design ‘

are locally connected designs on the sets of treatments



(i1)

The block B forms the link between the two designs D
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Dz = Dl U D2 U B is locally connected, where B is a block contain-
ing at least two treatments, i and j say, such that i te and jeQe.

1 and D2.

Since i 1s connected to all treatments in Ql and jJ to all in Qg
then the chailn iBj locally connects every pair of treatments of
Let Dl and D2 be locally connected designs on Ql and 92, respec-

tively, and if Q, N Q, # ¢, i.e., Q. and Q_ have at least one

1 2

element in common, then Dl U D2 is a locally connected design.

(b) Compositions that yield globally connected designs:

(1)

(11)

Consider D, and D2 to be globally connected designs of treatment

1
sets Ql and 02, respectively, Ql N 02 = ¢. As before,
6g = Dl U D2 U B where B, as above, is locally connected. However,

if B contains four treatments (i, j, k, and £), such that i and
jte and k and JleQz, also i and J each appear in at least two

blocks of D; and similarly k and 4 in D,, then Bg is globally

2)

connected. Moreover, if B contains three treatments of Ql and

three of 02 then Bg is globally connected., It is easily shown that

58’ with the above B's, satisfies theorem b.1l.

For Dl U D2 to be globally connected, it is sufficient for Dl and

D2 each to be globally connected and cne of the following:

(1) Ql n 02 = [1i] and i appears in two blocks of D, and two of D,.
(2) Ql N 02 = [3] and i appears in at least one block of D, and
two of D2’ while J appears in at least one block of D2 and
two of Dl'
i
Q = Tl .
(3) 8, Nna, =13
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Since the proofs of the above are simple and straightforward, we will not
bother. to present them here. Also it is interesting to note that two designs, .
Dl and D2

connected. This is obvious since given a locally connected design, D, one can

» can each be not locally connected but their union Dl U D2 may be locally

usually partition D into locally disconnected subsets.

T. Graph Theoretical Analogy

A graph G is a mathematical system consisting of two sets V and E. V is a
finite nonempty set of p vertices and E 1s a prescribed set of g unordered pairs
of distinct vertices of V. Each pair e = {u,v} of vertices in E is an edge of G
and e is sald to join u and v. We write e = uv and say that u and v are adjacent
vertices, vertex u and edge e are incident with each other, as are v and e. Two

distinct edges incident with a common vertex are sald to be adjacent edges.

A walk of a graph is an alternating sequence of vertices and edges beginning
and ending with vertices in which each line is incident with the two vertices
immediately preceding and following it. A trail is a walk with all edges distinct
and a path is one with all vertices distinct. Harary [4] defines a graph to be

connected if every pair of vertices are joined by a path.

We define the treatments of a design to be the vertices of a graph G, and
two vertices are incident if the two treatments belong to the same block. A walk
of a graph is equivalent to a treatment-block chain as defined by Bose [1]. Thus,
if every pair of vertices is connected by a walk then the design will be locally
connected, and vice versa. Also we can define a design to be locally connected

if and only if the graph G is connected.
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Analogue to theorem 3.1. The design D is locally connected if and only if the

graph G, as defined above, has only one connected component.,

Define the graph G(D) to have as vertices the blocks of the design D and two

vertices as incident if the two blocks have at least one treatment in common.

Analogue to theorem 3.2. D is locally connected if and only if every pair of

vertices of G(D) is connected by a walk.
If the Ti’ as defined in section 3, are the vertices of graph G(T) and Ti and

Tj, i # j, are incident if there is a B eT,

and a B_e T, such that B_ N B_# ¢,
T J r S

then we have the following:

Analogue to theorem 3.3. D is locally connected if and only if every pair of

vertices of G(T) is comnected by a walk.

As before, we can develop some simple rules, in graph theory terms, for
determining the local connectedness of D.
(i) D is not locally connected if anyréf the above graphs has an isolation
vertex.
(i1) If any vertex, v, of the above graphs has degree (number of edges
incidént with v) P - 1, where p is the number of vertices, then D is

locally connected.

The removal or loss of treatments from a design obviocusly can affect the local
connectedness of that design. Knowledge of treatments, which by their removal or
loss cause the design to be not locally connected, would.usually be of interest to
the experimenter. A similar situation arises in graph theory. Busacker and Saaty

[2] define a vertex v to be a point of articulation of a connected graph if the

graph obtained by deleting v and all edges incident with v is disconnected. A

graph is sald to be separable if it has at least one articulation point.
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T e - —— —

articulation is that v~lie on all the paths connecting some pair of vertices.

. Proof: See Busacker and Saaty [2].

A matrix of interest in graph theory is the vertex or adjacency matrix V.
The element in the (i,j) position of V is the number of edges incident with both

vertex i and vertex j. From Busacker and Saaty [2] we have the following theorem:

Theorem T.1l. The matrix Vn gives the number of walks of length n between any two

vertices, where the length of a walk 1s the number of edges between the beginning

and terminating vertices.

The analogous experimental design theory for the above terminology and theory
is obvious. A treatment or block is said to be a point of articulation if the

design obtained by deleting that treatment or block is not locally connected.

Lemma 7.2, A necessary and sufficient condition for a treatment or block to be a

point of articulation is that it lie on all chains connecting some pair of trest-

ments.

If we define the length of a chain to be the number of blocks that gppear in
the chain, then a treatment matrix can be defined similar to the vertex matrix of
a graph. A treatment matrix A has as its (i,j) element the number of blocks that

contain both treatments i and j.

Theorem T.2. The matrix Ve gives the number of chains of length n between any two

treatments of a design.

Globally and pseudo-globally connected designs were not considered in graph

theory terms and it is doubtful if an analogy to theorems 4.1 and 5.1 would be of

any use. However, graph theory is a powerful tool and in future research may yield .

some further facts and theorems on connectedness of designs in general.



- 29 -

8. Conclusion

The next step in the study of connected designs is to show, by some
"optimality" criterion, that globally connected designs are better than locally
connected designs. The criterion selected as the basis of comparison will, of

" criterion it is

course, be the determining factor. However, for any "reasonable
difficult to concelve of a situation where a locally connected design would be
better than all possible globally connected designs for a given set of parameters.

The optimality criterion should be some sort of variance function.
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