
SCALABLE AND INTERPRETABLE
APPROACHES FOR LEARNING TO FOLLOW

NATURAL LANGUAGE INSTRUCTIONS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Dipendra Kumar Misra

May 2019

c© 2019 Dipendra Kumar Misra

ALL RIGHTS RESERVED

SCALABLE AND INTERPRETABLE APPROACHES FOR LEARNING TO

FOLLOW NATURAL LANGUAGE INSTRUCTIONS

Dipendra Kumar Misra, Ph.D.

Cornell University 2019

Agents that can execute natural language instructions have many applications.

For example, an assistive house robot that can follow instructions will reduce

the time spent on doing household chores. Natural language provides a conve-

nient medium for users to express a wide variety of objectives for these agents.

However, to achieve this goal the agent must understand the meaning of natu-

ral language instruction, reason about its context, and take appropriate actions.

In this thesis, we will introduce new instruction following tasks along with new

approaches. The presented approach focuses on designing scalable and inter-

pretable agents that can follow complex natural language instructions. We also

introduce an integrated learning framework for instruction following that con-

tains an implementation of several tasks and approaches.

BIOGRAPHICAL SKETCH

Dipendra Misra received his bachelors from the Indian Institute of Technol-

ogy, Kanpur (IITK) in 2013 majoring in computer science. He was an OPJEMS

scholar for the year 2011-2012 and 2012-2013. He finished his undergrad thesis

on the topic of designing agents that can solve IQ problems under Amitabha Muk-

erjee (IITK) and Sumit Gulwani (Microsoft Research, Redmond). During his un-

dergraduate studies he also did research on space-bounded complexity classes,

a distributed learning framework for collaborative drawing, and designing effi-

cient CUDA implementations for path planning and object detection for use in

the autonomous vehicle project at Carnegie Mellon University.

He joined the PhD program at Cornell University in August 2013 receiv-

ing the university fellowship. He was a visiting researcher at the Stanford AI

Laboratory at Stanford University from Fall 2014 to Summer of 2015. His PhD

research was supervised by Yoav Artzi. During his PhD he interned with the

natural language processing group at Microsoft Research, Redmond (Summer

2017) and with the reinforcement learning group at Microsoft Research, New

York (Fall 2018). During his PhD, he worked on grounded language under-

standing, semantic parsing, model-based reinforcement learning and designing

theoretical provable reinforcement learning algorithms. He is active in the pro-

gram committees of natural language understanding and machine learning. At

the 2018 conference of Association of Computation Linguistic (ACL 2018), he

co-organized the third edition of the workshop on Representation Learning for

Natural Language Understanding (Rep4NLP 2018).

iii

Dedicated to

Frederic Chopin
Polish Composer and Virtuoso Pianist (1810-1849)

iv

ACKNOWLEDGEMENTS

My research in the past few years has been made possible due to the support

and help from various people who in their own way made my doctoral jour-

ney both productive and memorable. Firstly, I am thankful to my advisor Yoav

Artzi for his guidance over the past few years. Yoav provided me the research

freedom to pursue challenging problems in the field of natural language under-

standing and his advise was critical to my progress.

I am also thankful to my collaborators and friends at Microsoft Research

including John Langford, Akshay Krishnamurthy, Mikael Bruce Henaff, Adith

Swaminathan, Alekh Agarwal, Miro Dudik, Bill Dolan, and Chris Quirk for

valuable research discussion. I was fortunate to have done two internship at

Microsoft Research.

I am indebted to Percy Liang (Stanford), Scott Yih (Allen Institute for Artifi-

cial Intelligence), Ming-Wei Chang (Google Research) and Xiaodong He (JD AI

Research) for their mentorship and research collaboration. Their experience was

of great help and I learned a lot from them about research in natural language

understanding.

I owe a lot to Kavosh Asadi and Michael Littman from Brown University.

I met Kavosh during my internship at Microsoft Research and he became an

important research collaborator. Together we pursued and published several

ideas in model-based reinforcement learning.

I am thankful to my peers at Cornell University including Andrew Bennett,

Ryan Benmalek, Akshay Bhat, Ashudeep Singh, Valts Blukis, Tianze Shi, Arzoo

Katiyar, Alane Suhr, Max Grusky, Ashesh Jain, Ozan Sener, Hema Koppula and

the Cornell NLP research group for useful discussion and providing feedback

on my research work. I am also thankful for the opportunity to mentor amaz-

v

ing students: Kevin Lee, Kejia Tao, Jiaqi Su, Shivam Bharuka, Michela Meister,

Claudia Yan, Marwa Mouallem, Eyvind Niklasson, and Max Shatkhin.

My family has been a constant source of strength and I would not have been

here without their support, encouragement and the values they imparted me.

I am grateful to my partner Nga Than for her care and counsel which made

difficult times seem easier. I am fortunate to have Shubham Toshniwal, Yin

Huang, Siddharth Gaur, Howard Chen, Longqi Yang, Yin Cui, Yuhang Zhao,

and Neta Tamir as my friends. It is quite easy for me to loose track of time in

their company. Finally, I am grateful to the citizenry of New York city, a city

dearest to me, for giving me some of the best time of my life.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Tables . x
List of Figures . xi

1 Introduction to the task of Instruction Following 1
1.1 Introduction . 1
1.2 Problem Definition . 1
1.3 Motivating Applications . 3
1.4 Challenges . 5
1.5 Overview . 7

2 Background 8
2.1 Models . 8

2.1.1 Conditional Random Field 8
2.1.2 Neural Network Models . 10

2.2 Learning Algorithms . 13
2.2.1 Supervised Learning (Behavior Cloning) 14
2.2.2 Imitation Learning . 15
2.2.3 Multi-Armed Bandit and Contextual Bandit 16
2.2.4 Reinforcement Learning . 18

3 Related Work 22
3.1 Rule-based Approach . 22
3.2 Grammar Based Approaches . 22
3.3 Graphical Model Approaches . 24
3.4 Neural Network Approaches . 25
3.5 Related Tasks . 26

4 Learning to Follow High Level Instructions 29
4.1 Introduction . 29
4.2 Problem Statement . 32
4.3 Approach Overview . 33

4.3.1 Representation . 33
4.3.2 Formal Overview . 35

4.4 Anchored Verb Lexicons . 36
4.5 Semantic Parsing Model . 39
4.6 Lexicon Induction from Training Data 41
4.7 Environment-Driven Lexicon Induction at Test Time 42
4.8 Inference and Parameter Estimation 44

vii

4.9 Dataset and Experiments . 46
4.9.1 Dataset . 46
4.9.2 Experiments and Results . 46

4.10 Conclusion . 49

5 A Single Model Approach 51
5.1 Introduction . 51
5.2 Technical Overview . 54
5.3 Model . 56
5.4 Learning . 58
5.5 Reward Shaping . 63
5.6 Experimental Setup . 66
5.7 Results . 69
5.8 Conclusions . 72

6 An Interpretable Model for Instruction Following 74
6.1 Introduction . 74
6.2 Technical Overview . 77
6.3 Model . 78
6.4 Learning . 83
6.5 Tasks and Data . 85

6.5.1 LANI . 85
6.5.2 CHAI . 87

6.6 Experimental Setup . 89
6.7 Results . 91
6.8 Discussion . 95

7 Cornell Instruction Following Framework (CIFF) 97
7.1 Introduction . 97
7.2 Features of CIFF . 98

8 Conclusion 100
8.1 Future Directions . 101

A Appendix for Chapter 4 105
A.1 Parsing Text into Control Flow Graph. 105
A.2 Dataset: Samples and Challenges 106
A.3 Examples of Planning and Simulation 109
A.4 Mapping Object Descriptions . 110
A.5 Manual Rules for Parsing Conditions 111
A.6 Feature Equation . 112
A.7 Assignment Problem . 115

viii

B Appendix for Chapter 5 118
B.1 Reward Shaping Theorems . 118
B.2 Evaluation Systems . 119
B.3 Parameters and Initialization . 121

B.3.1 Architecture Parameters . 121
B.3.2 Initialization . 122
B.3.3 Learning Parameters . 122

B.4 Dataset Comparisons . 123
B.5 Common Questions . 124

C Appendix for Chapter 6 128
C.1 Tasks and Data: Comparisons . 128
C.2 Reward Function . 128
C.3 Baseline Details . 130
C.4 Hyperparameters . 131
C.5 CHAI Error Analysis . 131
C.6 Examples of Generated Goal Prediction 132

ix

LIST OF TABLES

4.1 Some lexical entries for the verb turn 38
4.2 New verbs and concepts induced at test time (Section 4.7).

Posconditions denote the learned logical form representing the
meaning of the underlined verb. 45

4.3 Results on the metrics and baselines described in section 4.9.2.
The numbers are normalized to 100 with larger values being better. 48

5.1 Corpus statistics for the block environment we use and the SAIL
navigation domain. 68

5.2 Mean and median (Med.) development results. 69
5.3 Mean and median (Med.) test results. 69

6.1 Summary statistics of the two corpora. 85
6.2 Qualitative analysis of the LANI and CHAI corpora. We sample

200 single development instructions from each corpora. For each
category, we count how many examples of the 200 contained it
and show an example. 88

6.3 Performance on the development data. 91
6.4 Performance on the held-out test dataset. 92
6.5 Development goal prediction performance. We measure dis-

tance (Dist) and accuracy (Acc). 92
6.6 Mean goal prediction error for LANI instructions with and with-

out the analysis categories we used in Table 6.2. The p-values are
from two-sided t-tests comparing the means in each row. 93

B.1 Comparison of several related natural language instructions cor-
pora. Size denotes the number of instructions in the dataset. AIL
is the Average Instruction Length and ATL is the Average Trajec-
tory Length. 123

C.1 Comparison of LANI and CHAI to several existing natural lan-
guage instructions corpora. Size denotes the number of instruc-
tions in the dataset. AIL is the Average Instruction Length and
ATL is the Average Trajectory Length. 128

C.2 Mean goal prediction error for CHAI instructions with and with-
out the analysis categories we used in Table 6.2. The p-values are
from two-sided t-tests comparing the means in each row. 132

x

LIST OF FIGURES

1.1 An example of the instruction following task. The PR2 robot is
given an instruction by the user to make the Affogato dessert. . . 2

2.1 A conditional random field with 6 random variables: A, B,C,D, E, F.
The CRF models the probability of assigning values to the ran-
dom variable set Y = {B,C, E, F} given X = {A,D}. 9

2.2 A sample neural network with 2 hidden layers. The neural net-
work takes an input x ∈ R128 and outputs a probability distribu-
tion over the two values in {0, 1}. 11

4.1 A lexicon learned on the training data cannot possibly cover all
the verb-concept mappings needed at test time. Our algorithm
learns the meaning of new verbs (e.g., fill) using the environment
context. 30

4.2 Graphical model overview: we first deterministically shallow
parse the text x̄ into a control flow graph consisting of shallow
structures {ci}. Given an initial environment s1, our semantic
parsing model maps these frame nodes to logical forms {zi} rep-
resenting the postconditions. From this, a planner and simulator
generate the action sequences {ai} and resulting environments {si}. 30

4.3 We deterministically parse text into a shallow structure called a
control flow graph. 35

4.4 Logical forms for given clauses ci−1 and ci, environment si, and
previous logical form zi−1 are generated from both a lexicon in-
duced from training data and a test-time search procedure based
on the environment. 44

5.1 Instructions in the Blocks environment. The instructions all de-
scribe the same task. Given the observed RGB image of the start
state (large image), our goal is to execute such instructions. In
this task, the direct-line path to the target position is blocked,
and the agent must plan and move the Toyota block around.
The small image marks the target and an example path, which
includes 34 steps. 52

5.2 Illustration of the policy architecture showing the 10th step in
the execution of the instruction Place the Toyota east of SRI in the
state from Figure 5.1. The network takes as input the instruction
x̄, image of the current state I10, images of previous states I8 and
I9 (with K = 2), and the previous action a9. The text and images
are embedded with LSTM and CNN. The actions are selected
with the task specific multi-layer perceptron. 56

xi

5.3 Visualization of the shaping potentials for two tasks. We show
demonstrations (blue arrows), but omit instructions. To visual-
ize the potentials intensity, we assume only the target block can
be moved, while rewards and potentials are computed for any
block movement. We illustrate the sparse problem reward (left
column) as a potential function and consider only its positive
component, which is focused on the goal. The middle column
adds the distance-based potential. The right adds both poten-
tials. 64

5.4 Mean distance error as a function of the ratio of training exam-
ples that include complete trajectories. The rest of the data in-
cludes the goal state only. 71

6.1 Example instructions from our two tasks: LANI (left) and CHAI
(right). LANI is a landmark navigation task, and CHAI is a cor-
pus of instructions in the CHALET environment. 75

6.2 An illustration for our architecture (Section 6.3) for the instruc-
tion turn left and go to the red oil drum with a LINGUNETdepth
of m = 4. The instruction x̄ is mapped to x̄ with an RNN,
and the initial panorama observation IP to F0 with a CNN. LIN-
GUNETgenerates H1, a visual representation of the goal. First,
a sequence of convolutions maps the image features F0 to fea-
ture maps F1,. . . ,F4. The text representation x̄ is used to gener-
ate the kernels K1,. . . ,K4, which are convolved to generate the
text-conditioned feature maps G1,. . . ,G4. These feature maps are
de-convolved to H1,. . . ,H4. The goal probability distribution Pg

is computed from H1. The goal location is the inferred from the
max of Pg. Given lg and pt, the pose at step t, the goal mask Mt

is computed and passed into an RNN that outputs the action to
execute. 79

6.3 Segmented instructions in the LANI domain. The original ref-
erence path is marked in red (start) and blue (end). The agent,
using a drone icon, is placed at the beginning of the path. The
follower path is coded in colors to align to the segmented in-
struction paragraph. 87

6.4 Scenario and segmented instruction from the CHAI corpus. . . . 88
6.5 Likert rating histogram for expert human follower and our ap-

proach for LANI. 93
6.6 Goal prediction probability maps Pg overlaid on the correspond-

ing observed panoramas IP. The top example shows a result on
LANI, the bottom on CHAI. 95

xii

A.1 Sample of 3D Environments that we consider. Environments
consists of several objects, each object can have several states.
Different environment have different set of objects with different
configuration. There can be more than one objects of the same
category. 107

C.1 Goal prediction probability maps Pg overlaid on the correspond-
ing observed panoramas IP. The top three examples show re-
sults from LANI, the bottom three from CHAI. The white arrow
indicates the forward direction that the agent is facing. The suc-
cess/failure in the LANI examples indicate if the task was com-
pleted accurately or not following the task completion (TC) metric.133

xiii

CHAPTER 1

INTRODUCTION TO THE TASK OF INSTRUCTION FOLLOWING

1.1 Introduction

Natural language is a convenient medium for humans to communicate a broad

range of objectives to Artificial Intelligence (AI) agents. As a result, the problem

of instruction following has been studied from the early days of AI as a scien-

tific discipline [Winograd, 1972]. Figure 1.1 shows an example of the instruction

following problem. In this example, the PR2 robot is given an instruction by the

user to make a dessert: “Take some coffee in a cup. Add ice cream of your choice.

Finally add raspberry syrup to the mixture". In order to successfully complete the

task, the robot must understand the instruction, reason about its environment,

and generate a sequence of actions to execute the task. In this thesis, we will

introduce new instruction following tasks and datasets, and propose new mod-

els, learning algorithms and a software framework for the instruction following

problem.

1.2 Problem Definition

Let S be the set of all possible world states, i.e., all the different worlds in which

the agent could be in. At a given time, the agent is in some world state s ∈ S.

LetX be the set of all possible instructions. A natural language instruction x̄ ∈ X

is as a sequence of tokens x̄ = (x1, · · · , xm) where for every i ∈ {1, 2, · · · ,m}, xi ∈ V

for some vocabulary V. The agent takes action from a set A. A can be discrete

1

User Instruction: “Take some coffee in a cup. Add ice cream of your choice.
Finally add raspberry syrup to the mixture."

Figure 1.1: An example of the instruction following task. The PR2 robot is given
an instruction by the user to make the Affogato dessert.

or continuous control or a mixture of both. We will assume there is a special

action STOP ∈ A which indicates task completion. There is a transition function

T : S × A → ∆(S), such that on taking an action a ∈ A in world state s ∈ S,

the new world state changes to s′ ∼ T (. | s, a). In this thesis, we will assume a

deterministic transition function. For a deterministic transition function taking

an action a in the world state s always leads to the world state T (s, a) ∈ S. We

further assume without loss of generality that T (s, STOP) = s for every s ∈ S.

Given an instruction x̄, the agent takes a sequence of actions to gener-

ate an execution ē = {(s1, a1), (s2, a2), · · · , (sn, an)} where si+1 = T (si, ai) for all

i ∈ {1, 2, · · · , n− 1} and an = STOP. In practice, the agent does not always have ac-

cess to the world state. For example, the world state contains information about

the configuration of all objects in the world, whereas the agent may only have

access to images of the world. We therefore distinguish between a world state s

and an agent context s̃. An agent context s̃ is the information the agent has access

2

to at each step in order to make decisions. We will denote S̃ to be the set of all

possible agent contexts. At a given time step t, the agent selects the next action

at using the current agent context s̃t.

Let E be the set of all possible executions. Then there exists an underlying

utility function U : E × X → R, that given an instruction x̄ and an execution

ē, assigns a score U(x̄, ē). This score is a measure of how well the execution ē

followed the given natural language instruction x̄. The exact form of the utility

function can vary between applications. For example, for applications where

the only concern is to reach a destination, the utility function is only dependent

upon the final state in the execution. The aim of an instruction following agent

is to generate an execution ē given an instruction x̄, that maximizes the value of

U(ē, x̄).

1.3 Motivating Applications

There are many applications of an agent that can follow natural language in-

structions. We will consider four specific applications: an agent assisting hu-

mans with household chores, a drone aiding in delivering supplies, a natural

language interface for autonomous vehicles, and a natural language interface

for computer applications. The first three applications focus on robotic agents,

whereas the last application is an example of a non-robotic agent.

House Assistive Robots Assistive robots that can do house chores such as

laundry, cleaning dishes or retrieving objects are of great value. This would

be particularly useful to those who need assistance with daily routine tasks.

3

While robots have been used for specific household chores such as folding tow-

els [Maitin-Shepard et al., 2010] and unloading items from a dishwasher [Saxena

et al., 2008], in general, people would expect their robot to do a variety of tasks

to justify the price. Natural language allows user to express broad open-ended

objectives to their assistive robots and to enable them to do a variety of tasks.

Delivery Drone The ability of drones to navigate in open land space and ei-

ther pick or deliver packages have made them suitable for various applications.

Unsurprisingly several initiatives have been undertaken by the industry to use

drones for various commercial purposes [dro]. In general, a user commanding

a drone may not have the Global Positioning System (GPS) coordinates of the

destination but they may have a description of the goal. This motivates the use

of natural language for giving commands to the drone. For example, a user

may specify: “give this medical supply to a wounded person who is somewhere north

of the lake". Even when the GPS information is available, it might be difficult to

precisely locate the user due to inherent inaccuracy with GPS. Natural language

could be used to bridge the gap by giving instructions to improve the accuracy.

For example, a user may say, “I am located across the street from where you are".

Autonomous Vehicles (AVs) Autonomous vehicles have been successfully

demonstrated in real world environment [Urmson et al., 2008]. However, cur-

rently most of these vehicles can only accept a destination on the map. In gen-

eral, people may have a more complex requirement or can change their mind in

the middle of a trip. For example, a user may remember that they have to shop

for a certain item or need a coffee. Natural language could be used to commu-

nicate these new objectives to the car. For example, a person may say, “I just

4

remembered to pick my child from the school. Can you stop at St. Xavier on the way?".

Natural language can make this communication seamless and enjoyable for the

user.

Interface for Computer Applications It can often take humans a significant

amount of time to complete a task when using a computer application. Even

when the user knows how to accomplish the task, it can still take significant time

and effort in writing the relevant program. For example, consider a spreadsheet

application where the user wishes to add a new column for every spreadsheet in

a specific folder and populate the new column with the initials of the customers.

It takes non-trivial amount of time to write a script to do this task. However, it

can often be convenient to express this objective using natural language. This

motivates the need for natural language driven interfaces for computer appli-

cations. For example, the user can express the above task using a simple two

sentence description, “add a new column for every spreadsheet in the folder data.

Populate this column with the initials of the value in the customer column." Such in-

terfaces can greatly boost the workplace productivity and allow users to focus

on tasks requiring more creativity.

1.4 Challenges

An agent following natural language instructions has to solve challenges in nat-

ural language understanding, context reasoning (such as reasoning about the

environment) and planning.

5

Language Understanding Challenges Natural language understanding poses

several challenges for an instruction following agent including: understanding

spatial relations (e.g., “pick the book to the left of the coffee mug"), high level in-

structions (e.g., “prepare me a coffee"), resolving co-references (e.g., “take the mug

and put it in the sink") and understanding comparatives (e.g., “pick the smaller of

the two can and dispose it in the trash").

Context Understanding Challenges The context for an instruction following

agent varies based on the task. For example, the context for a robot following

instructions is the physical environment where the robot is situated. The agent

may be able to perceive the context only in the form of high dimensional obser-

vation like an RGB image. In this case, the agent must understand the objects

present in the environment, be able to infer their attributes (such as their color

and size), and be able to ground natural language entities such as brown book

or white mug to these objects. This context reasoning becomes more challenging

when the world is partially observable, i.e., the agent can only perceive a small

part of the environment at a given time.

Planning Challenges The agent has to search in an exponentially large search

space, of size |A|H, in order to generate the right sequence of actions. Even

for a simple application the action space could be of size 4 and the horizon H of

length 20 giving rise to a search space of size 1012. Further, for many applications

it maybe impractical to use efficient dynamic programming method or even

heuristic search methods. For example, while beam search is widely used for

natural language understanding problems [Andor et al., 2016], a robot cannot

practically do beam search in real life.

6

Learning Challenges An agent trained on a set of instructions must not only

generalize to new instructions but also new world states during testing. Further,

it is challenging to scale instruction following datasets since collecting instruc-

tions require users to interact with the agent. This limits the ability to scale to

millions of examples, like in text generation, dialogues and machine transla-

tion. Thus, we need learning algorithms that can train agents to generalize to

new instructions and new world states using few training examples.

1.5 Overview

The rest of this thesis is organized as follows. In Chapter 2 we cover the fun-

damental technical details needed for understanding the results in the thesis.

Chapter 3 covers previous work on the instruction following problem. In Chap-

ter 4 we present our approach for following high-level instructions in a simu-

lated house environment where we assume access to underlying world state.

In Chapter 5 we present a single-model method for instruction following that

directly works with raw sensory data and a sample-efficient learning algorithm.

In Chapter 6 we present an interpretable model for navigation and manipula-

tion in 3D environments. In Chapter 7 we present the Cornell Instruction Fol-

lowing Framework (CIFF) which contains several tasks, models, and learning

algorithms for instruction following. Finally, in Chapter 8 we conclude by list-

ing open questions and directions for future work.

7

CHAPTER 2

BACKGROUND

In this chapter we provide the necessary technical background for under-

standing the results in this thesis. Most existing approaches for the instruction

following task consists of a model class (also known as the hypothesis class) and

a learning algorithm that interacts with the world to find an accurate model in

the class. In general, the model class could use different forms of input and the

learning algorithm could utilize various forms of feedback. Below we review

common model classes and learning algorithms used in the instruction follow-

ing literature.

2.1 Models

Two common models that occur in the instruction following literature are con-

ditional random fields [Misra et al., 2015] and neural network models [Mei et al.,

2016b, Misra et al., 2017]. We briefly review them below.

2.1.1 Conditional Random Field

A Conditional Random Field (CRF) is used to express a probability distribution

P(Y | X) where X,Y are a set of random variables. Since we are modeling a

conditional distribution, we always know the value of random variables in X

and our aim is to infer the value of random variables in Y . The CRF encodes

the independency assumptions between the variables in X ∪ Y in the form of an

undirected graph. The nodes of this graph are the random variables in X ∪ Y .

8

A B

C

D E

F

Figure 2.1: A conditional random field with 6 random variables: A, B,C,D, E, F.
The CRF models the probability of assigning values to the random variable set
Y = {B,C, E, F} given X = {A,D}.

For every random variable v ∈ Y we have P(v|Y − {v}, X) = P(v|∂v, X) where ∂v

is the set of all neighbors of v. For example, Figure 2.1 shows a CRF graph. In

this example, the random variable B is independent of F and E given values of

random variables A,C and D.

Let C be the set of maximal cliques of the CRF. In Figure 2.1 the set {A, B,C}

and {D, E, F} constitute the two set of maximal cliques. Each maximal clique

c ∈ C in the CRF has an associated function called the factor function φc. Let

Zc ⊆ X ∪ Y be the set of random variables that are member of c. The factor func-

tion φc takes in the random variables in Zc as input and outputs a scalar value

φc(Zc). Using the factor notation, we can express P(Y | X) ∝ exp{
∑

c∈C φc(Zc)}.

The constant factor in this proportionality is called the partition function and is

given by exp{
∑

c∈C φc(Zc(Y ′, X))} where Zc(Y ′, X) denotes the random variable in

clique c with values assigned in Y ′, X.

Inference The inference in CRF can be challenging in general however exact

inference is often possible for simple graphs like trees and chain. Loop belief

propagation is a general technique for an arbitrary CRF. We refer interested au-

thors to Section 8.4 in Bishop [2006] for details.

9

Learning The factor functions can be parameterized giving rise to a set of pa-

rameterized probability distribution Pθ(Y | X) where θ is the set of parameters

of all factor functions. Given access to a dataset {(Xi,Yi)}Ni=1, we can estimate the

parameters using maximum likelihood. Formally, we optimize the following

objective:

max
θ

N∑
i=1

ln Pθ(Yi | Xi).

A difficult procedure in this optimization is approximating the partition

function. This is often performed with the aid of some heuristic approximation

like beam search. The beam search procedure returns a set of value assignments

for Y . The partition function is then approximated by summing over these as-

signments.

2.1.2 Neural Network Models

Neural networks represent a category of hypothesis class that allows perform-

ing rich non-linear transformation on the input. A simple example of a neural

network model for doing binary classification is shown in Figure 2.2. Given

an input x ∈ R128, the model performs a sequence of two non-linear transfor-

mation. Each non-linear transformation consists of an affine transformation

followed by applying the element-wise ReLu non-linearity. The element-wise

ReLu non-linearity transforms the input vector v ∈ Rd to ReLu(v) ∈ Rd where

ReLu(v)i = max{0, vi}. The output of a non-linear transformation is called a hid-

den representation and the dimensionality of the output is called its width (or

number of neurons). In our example, the network applies the first non-linear

transformation on x to generate the hidden representation h1 ∈ R
64. It then

10

x 2 R128 h1 2 R64 h2 2 R32 y 2 �({0, 1})

Figure 2.2: A sample neural network with 2 hidden layers. The neural network
takes an input x ∈ R128 and outputs a probability distribution over the two val-
ues in {0, 1}.

applies the second non-linear transformation on h1 to generate the hidden rep-

resentation h2 ∈ R
32. Finally, it applies an affine transformation on h2 to generate

z ∈ R2 followed by a softmax operation on z to generate a probability distribu-

tion over 0 and 1. Softmax maps an input z ∈ Rd to a discrete probability distri-

bution:
(

exp(z1)∑d
j=1 exp(z j)

, · · · , exp(zd)∑d
j=1 exp(z j)

)
. In general, models could use different number

and type of non-linear transformations.

In the architecture we saw above, we apply a sequence of many non-linear

transformations on the input. Such models are called deep neural networks. It

has been empirically observed that deep neural networks are able to provide the

right structural bias for several problems in artificial intelligence. This finding

has been surprising since theoretically a two layer neural network can repre-

sent any continuous function to arbitrary precision provided it has enough neu-

rons. However, two-layer networks haven’t performed well on many important

problems. We refer interested readers to Goldberg [2016] for a more thorough

exposition.

Inference A neural network can be viewed as a directed acyclic graph where

each node of the graph performs a unit of computation on the input from the

11

incoming edges, and outputs the result along the outgoing edges. An efficient

inference procedure then follows from doing a topological sort on this graph

and feeding the input and the result of previous computation to the next node

in the sorted list. The final result is the output of the last node in the sorted list.

Learning Neural networks are generally trained using first order methods

which only require the gradient of the loss with respect to the parameters.

These approaches include stochastic gradient descent, Adagrad learning [Duchi

et al., 2010], RMSPROP [Tieleman and Hinton, 2012], and Adam optimiza-

tion [Kingma and Ba, 2014]. The gradient is computed using an efficient pro-

cedure called backpropagation [Rumelhart et al., 1988]. The backpropagation

procedure requires doing inference on the neural network given an input. The

output of the network is used to compute a scalar loss value. This loss value is

used to compute the gradient with respect to the output of the final computation

unit. The gradients are then propagated to the previous units using the chain

rule from calculus. In our example from Figure 2.2, let y? be the gold output cor-

responding to an input x. This gives us a cross entropy loss of ` = − ln P(y? | x).

We can then use the chain rule to compute the gradient of the loss with respect

to the output of all computation units giving us:

∇z` = ∇P(.|x)` J(P(. | x), z)

∇h2` = ∇z` J(z, h2),

∇h1` = ∇h2` J(h2, h1),

where J(f , g) is the Jacobian matrix of f with respect to g and J(f , g)i j =
∂ fi
∂g j

.

The gradient of the loss with respect to the parameters θ of a computation unit

can be computed using ∇θ` = ∇h` � J(h, θ), where ∇h` is the gradient of the loss

12

with respect to the output of the computation unit h. The Jacobian matrix J(h, θ)

can be locally computed using the knowledge of the computation performed by

the unit.

2.2 Learning Algorithms

Instruction following can be viewed as a sequential decision making problem.

An instruction following example can be described using a Markov Decision

Process (S,A,T,R,H, µ) where S is a set of world state, A is a set of actions, T :

S × A → ∆(S) is a transition function which generates probability distribution

over the next state given the current state and action, R : S ×A → R is a reward

function that takes the current state and action and returns a scalar reward, H

is the maximum number of actions the agent is allowed to take in any single

episode and µ ∈ ∆(S) is a distribution over the starting state. 1 Agent does

not observe the world state but instead receives an agent context s̃ from a high-

dimensional agent context space S̃. We will assume that there exists an encoding

function f : S → ∆(S̃) such that given a state s ∈ S the agent observes a context

s̃ ∼ f (. | s).

A policy π : S̃ → ∆(A) takes an agent context as input and generates prob-

ability distribution over actions. The aim of an learning algorithm is to find

a policy from a set of policies Π that maximizes the expected total reward Jπ

where:

Jπ = Es1∼µ(.),s̃t∼ f (.|st),at∼π(.|s̃t),st+1∼T (.|st ,at)

∑
t≥1

R(st, at) | π, µ

 . (2.1)

A policy π induces a distribution dπ(.) over the agent context. Formally,

1For a given setU, ∆(U) represents the set of all possible probability distribution overU

13

dπ(s̃) = 1
H

∑H
h=1 Ph(s̃ | π, µ) where Ph(s̃ | π, µ) is the probability of observing s̃

after h actions when the start state is sampled from µ and actions are sampled

from π. It is straightforward to verify that dπ is a distribution and its value is

higher for contexts that are more likely to be visited by following π.

2.2.1 Supervised Learning (Behavior Cloning)

Supervised learning algorithm (also known as behaviour cloning) assumes ac-

cess to an oracle policy π? and optimizes the following objective:

max
θ
Es̃∼d?(.),a∼π?(.|s̃) [ln πθ(a | s̃)] (2.2)

where πθ is the policy being trained with parameters θ and d? is the distribu-

tion induced over contexts by π?. In practice, this objective is optimized using a

set of demonstrationD = {(s̃(i)
1 , a

(i)
1 , s̃

(i)
2 , a

(i)
2 , · · · , s̃

(i)
mi , a

(i)
mi)}

N
i=1 which gives us:

max
θ

1
N

N∑
i=1

mi∑
j=1

ln πθ(a
(i)
j | s̃

(i)
j)

The objective could be regularized with L2 penalty of the weight giving us:

max
θ

1
N

N∑
i=1

mi∑
j=1

ln πθ(a
(i)
j | s̃

(i)
j) − λ|θ|2,

or using the entropy of the policy giving us:

max
θ

1
N

N∑
i=1

mi∑
j=1

ln πθ(a
(i)
j | s̃

(i)
j) − λ

∑
a∈A

πθ(a | s̃
(i)
j) ln πθ(a | s̃

(i)
j)

 .
In both cases λ ≥ 0 is a hyperparameter controlling the regularization.

14

Supervised learning however suffers from exposure bias phenomenon which

arises from mismatch between the train time state distribution (as generated

by demonstrations) and the test time state distribution (as generated by agent’s

policy). During training the agent is being trained to optimize equation 2.2.

However, during testing the agent is being evaluated on the following objective:

Es̃∼dπ(.),a∼π?(.|s̃) [ln πθ(a | s̃)] .

In general, dπ(.) and d?(.) can be very different and therefore an agent trained

on contexts sampled from d?(.) needn’t do very well on contexts sampled from

dπ(.). To counter this problem several alternative exists ranging from imitation

learning and contextual bandits to more general reinforcement learning based

solutions. We briefly review them next.

2.2.2 Imitation Learning

When we have access to the oracle policy π? during training then we can use

more efficient imitation learning based algorithms. The aim of the imitation

learning algorithms is to mimic the behaviour of the oracle policy. Unlike su-

pervised learning where we only have access to a set of demonstrations gen-

erated by the oracle policy, the imitation learning algorithms assume that the

oracle policy can be accessed at any point of the training. While imitation learn-

ing algorithms perform better than supervised learning they require a stricter

assumption which is not easy to satisfy in practice. Dataset Aggregation (DAG-

GER) is an example of an imitation learning algorithm that is widely used in

practice [Ross et al., 2011].

DAGGER performs a sequence of T rounds. At the beginning of round t,

15

DAGGER creates a mixture policy πt = βtπ
?+(1−βt)π̂t−1 by combining the agent’s

current policy ˆπt−1 and π? using mixing coefficient βt. The policy π̂0 is chosen as

a randomly initialized policy. The mixture policy πt is used to sample actions

to explore the context space. DAGGER maintains a dataset D of the context s̃

visited by the agent and the oracle action π?(s̃) for this context. The dataset D

is maintained across all rounds (hence the name Dataset Aggregation). At the

end of round t, we compute the new agent policy π̂t by solving the following

optimization:

π̂t = arg max
π∈Π

∑
(s̃,a)∈D

ln π(a | s̃).

The value of mixing coefficients βt is generally chosen as pt−1 for some value

p ∈ (0, 1). This ensures that the agent samples action using the oracle policy at

the beginning of training (similar to supervised learning) but gradually relies

more on the agent’s policy for sampling actions. This helps in minimizing the

exposure bias problem. For more details on imitation learning algorithms we

refer interested readers to Daumé et al. [2009], Ross and Bagnell [2014] and Ross

et al. [2011].

2.2.3 Multi-Armed Bandit and Contextual Bandit

A multi-armed bandit problem consists of a set of K actions (or arms) and K

distributions Di ∈ ∆([0, 1]),∀i ∈ {1, 2, · · · ,K}. The task takes place in rounds

where in each round the agent takes an action and receives a reward. The task

automatically completes after T rounds. If in round t the agent takes the action at

then it receives a reward r ∼ Dat(.). Let µi be the mean reward for the distribution

Di. The agent takes action using a policy π ∈ Π that can depend upon the actions

16

taken in previous rounds and the reward received for taking those actions. The

aim is to design a policy π that minimizes the expected regret RegT (π) after T

rounds:

RegT (π) = max
i∈K

µiT − E

 T∑
t=

rt(π)

 , (2.3)

where rt(π) is the reward received at time t when actions are taken according

to π. The multi-armed bandit problem has been studied thoroughly in the lit-

erature and algorithms exist for designing efficient policies [Auer et al., 2002a].

However, multi-armed bandit setting is quite restrictive for real life problems.

An extension to the multi-armed bandit was therefore proposed by Langford

and Zhang [2008] called the contextual bandit problem. Formally, a contextual

bandit setting can be defined using the tuple (S̃,D,A,R) where S̃ is a set of all

agent contexts, D ∈ ∆(S̃) is a distribution over the agent contexts, A is a set of

actions and R : S̃ × A → R is the reward function. Given a context s̃ ∈ S̃, the

agent takes an action a ∈ A and receives a reward R(s̃, a). The problem is to find

a policy π : S̃ → ∆(A) that maximizes the expected reward Jπcb received by the

agent where:

Jπcb = E s̃∼D(.),a∼π(.|s̃)[R(s̃, a)].

Several algorithms have been proposed for designing efficient poli-

cies [Agarwal et al., 2014]. We will briefly describe a simple algorithm proposed

in Krishnamurthy et al. [2016a]. Let D = {(s̃i, ai, pi, ri)}ni=1 be a training dataset

of size n where s̃i is the agent context for the ith example, ai is the action taken

by the agent with probability pi and ri = R(s̃i, ai). The algorithm then learns a

model fθ : S̃ × A → R where fθ(s̃, a) is an estimator for R(s̃, a). The model is

learned by solving the following regression problem:

17

min
θ

n∑
i=1

pi (fθ(s̃i, ai) − ri)2

For more details on contextual bandit literature we refer interested authors

to Agarwal et al. [2014] and Krishnamurthy et al. [2016a].

2.2.4 Reinforcement Learning

Reinforcement learning is a class of algorithms where the agent learns to take

actions by interacting with the environment in order to maximize the expected

total reward objective. This allows the agent to recover from exposure bias prob-

lem with supervised learning while being more general than the contextual ban-

dit setting and less restrictive than imitation learning setting. In reinforcement

learning, the objective is to learn a policy π to maximize the expected total re-

ward objective Jπ (Equation 2.1).

In order to analyze reinforcement learning algorithms it is convenient to de-

fine two value functions Qπ and Vπ for a policy π. Formally, Vπ : S → Rwhere:

Vπ(s) = Es̃t∼ f (.|st),at∼π(.|s̃t),st+1=T (st ,at)

 H∑
t=1

R(st, at) | s1 = s


and Qπ : S ×A → Rwhere:

Qπ(s, a) = Es̃t∼ f (.|st),at∼π(.|s̃t),st+1=T (st ,at)

 H∑
t=1

R(st, at) | s1 = s, a1 = a


It is easy to verify that Jπ = Es∼µ(.)[Vπ(s)] and Vπ(s) = Es̃∼ f (.|s),a∼π(.|s̃)[Qπ(s, a)].

A fundamental result in reinforcement learning theory states that for every

Markov Decision Process there exists a deterministic optimal policy π? such that

18

for every s ∈ S and π ∈ Π we have Vπ?(s) ≥ Vπ(s). This directly implies Jπ
?
≥ Jπ

for every π ∈ Π. We will define V? = Vπ? and Q? = Qπ? . It can be easily verified

that π?(s̃) = arg maxa∈A Q?(s, a) where s̃ ∼ f (. | s).

Reinforcement learning algorithms are either model-based: they learn a

model of the reward function and transition dynamics and use it to take actions,

or they are model-free: they directly learn the optimal policy without learning

the model. We will focus on model-free algorithms and refer interested authors

to Asadi et al. [2018] for discussion on model-based methods. Broadly there

are two class of model-free reinforcement learning algorithms: value function

based algorithms and policy gradient algorithms.2 The value function based al-

gorithms learn the optimal Q-function Q? and use it to take actions by exploit-

ing the relation π?(s̃) = arg maxa∈A Q?(s, a). In order to learn Q?, value function

based approaches rely on the Bellman optimality condition which states:

Q?(s, a) = R(s, a) + max
a′∈A

Q?(T (s, a), a′).

Let Qθ : S̃ × A → R be a model with parameters θ. The model is trained to

minimize the following squared loss error:

min
θ
Es̃,a,R,s̃′

[(
Qθ(s̃, a) − R −max

a′∈A
Qθ(s̃′, a′)

)2
]
, (2.4)

where R is the reward received for taking action a in the agent context s̃

and s̃′ is the agent context after taking action a. Samples for minimizing the

above objective are generally collected using a policy that balances between ex-

ploration and exploitation such as the ε-greedy policy or the Boltzmann policy.

For example, ε-greed policy will with probability ε take an action randomly uni-

formly fromA and with probability 1− ε will take the action greedily according
2This is a simplification and in general there are algorithms that use ideas from both value

function methods and policy gradient methods.

19

to the current model Qθ. The Boltzmann policy samples action using the distri-

bution pboltzmann(a | s) ∝ exp{Qθ(s,a)
τ
} where τ is a hyperparameter controlling the

exploration and exploitation tradeoff.

It can be shown that Q? is the only solution to the Bellman optimality con-

dition. Therefore, if we can solve the optimization in Equation 2.4 then we are

guaranteed that the learned value function is Q?. This approach is called Q-

learning with function approximation or deep Q-learning when Qθ is a deep

neural network [Mnih et al., 2013].

In contrast to value based methods, policy gradient methods directly param-

eterize the policy and train it to optimize the objective Jπ. Let πθ be a policy with

parameters θ then policy gradient methods use gradient descent optimization

for learning θ giving rise to the following update equations:

θ ← θ − η∇θJ
πθ
RL.

where η is the learning rate. The gradient term ∇θJπθRL is computed using the

policy gradient theorem [Sutton et al., 1999] which gives us:

∇θJπθ = HEs̃∼dπ(.),a∼π(.|s̃)[∇ ln π(a | s̃)Qπ(a, s̃)].

The above gradient is approximated using an experience which is a sequence

of context, action and rewards: {(s̃1, a1,R1), (s̃2, a2,R2), · · · , (s̃H, aH,RH)}where ai ∼

π(. | s̃i) and taking action ai in s̃i gives a reward of Ri and a new context of s̃i+1.

We approximate the gradient using an experience:

∇θJπθ ≈
H∑

t=1

∇ ln π(at | s̃t)Qπ(at, s̃t)].

20

The Qπ(at, s̃t) is either approximated using the sum of rewards
∑

t′≥t Rt′ giving

rise to the REINFORCE algorithm or approximated using another model giving

rise to the actor critic algorithm. For more details on policy gradient methods,

we refer the readers to Sutton and Barto [2018].

21

CHAPTER 3

RELATED WORK

3.1 Rule-based Approach

Rule based approaches for instruction following rely on a set of rules for natural

language understanding and planning and assume access to underline world

state. Early work on instruction follow used rule-based systems. For example,

SHRLDU [Winograd, 1972] is a rule-based system for following instructions to

move blocks in a 3D world. However, rule-based approaches can only handle

examples covered by the rules. Further, scaling these rules to complex tasks is

extremely challenging. This realization gave rise to data-driven approaches for

instruction following which can be roughly classified into: grammar based ap-

proaches, graphical model approaches, and neural network based approaches.

3.2 Grammar Based Approaches

Grammar based approaches use a formal grammar and a lexicon to map instruc-

tions to formal representations. This is also known as the problem of semantic

parsing. For example, consider the following lambda calculus formal represen-

tation: λe.move-to(e). This representation denotes a function that takes an ar-

gument e and applies the predicate move-to to this argument. In order to use

this formal representation for instruction following it has to be executable, i.e.,

the predicate on applying the argument should produce a result. For example,

applying the predicate move-to to an argument e representing an object in the

22

environment could result in the agent moving to that object. The set of predi-

cates constitute an ontology which is either provided as input or learned.

Grammar-based approaches have been widely studied for natural language

understanding tasks including instruction following. For example Chen and

Mooney [2011] and Kim and Mooney [2012] learnt a semantic parser using

context-free grammars, mapping instructions from the SAIL corpus [MacMa-

hon et al., 2006] to navigation plans. The SAIL corpus includes instruction for

navigating in a 3D environment. In the SAIL task the world contains several

objects such as a chair and a lamp, and the agent’s perception of the world is a

symbolic representation of its first-person visual field of view.

Grammar formalisms other than context-free grammars have also been ap-

plied in the literature. For example, Matuszek et al. [2012b] use Combina-

tory Categorial Grammars (CCG) [Steedman and Baldridge, 2003] for map-

ping instructions to typed lambda calculus expressions representing the gen-

erated navigation plan. They train a semantic parser using a set of instructions

with gold-standard lambda calculus annotations. On the other hand Artzi and

Zettlemoyer [2013] and Artzi et al. [2014] instead proposed mapping naviga-

tion instructions in the SAIL corpus to navigation plans using weak supervi-

sion. Rather than assuming access to gold-standard lambda calculus annota-

tions, they use task completion accuracy.

In contrast to the above methods relying on a compositional grammars like

CFG or CCG, MacGlashan et al. [2015] used the IBM models from the statistical

machine translation literature for mapping instructions to reward functions. A

planning algorithm then generates an action sequence maximizing the reward.

Similarly, Andreas and Klein [2015] used alignment models to generate action

23

sequence from instructions for the SAIL task.

In general, while grammar based approaches can handle complex instruc-

tions, they require the use of an executable ontology which requires expensive

engineering effort to design.

3.3 Graphical Model Approaches

Graphical model approaches use conditional random fields to model the re-

lationship between the instruction, the environment, and the action sequence.

Tellex and Roy [2009] introduced Generalized Grounding Graphs (G3) to infer

actions for a forklift robot. The G3 approach parses the instruction into atomic

clauses called spatial description clauses (SDC). Each SDC contains a figure, rela-

tion, and a variable set of landmarks that are extracted from the instruction. The

G3 models the relation between the SDCs and the grounding using a conditional

random field. A grounding can be an action sequence, an object or a location

in the world. They assume access to a semantic map to define the groundings,

which contains symbolic information about the environment. Doing inference

in G3 requires searching over all possible robot motions which can be challeng-

ing. Howard et al. [2014] proposed an improvement to the G3 approach called

the Distributed Correspondence Graph (DCG) approach. This approach infers

constraints and preferences for robot motion plans using a conditional random

field as opposed to directly inferring the plan. A trajectory planner is then used

to infer the action sequence from these constraints. The runtime of the DCG ap-

proach was further improved by the Hierarchical Distributed Correspondence

Graph (HDCG) approach [Chung et al., 2015] which restricts the search space

24

for the DCG.

While graphical model approaches have been applied to robot instruction

following [Tellex and Roy, 2009, Misra et al., 2014], and learning semantic maps

from natural language descriptions [Walter et al., 2014, Duvallet et al., 2016],

they require various assumptions such as access to semantic maps, access to a

syntactic parser, and domain-specific feature engineering. For more complex

problems, it can be challenging to satisfy these assumptions.

Branavan et al. [2009, 2010] use log-linear models to map instructions to ac-

tions. This model denotes a policy for mapping agent context to an action. The

parameters of this policy are trained using a policy gradient-based reinforce-

ment learning algorithm. Similarly, Vogel and Jurafsky [2010] use log-linear

models to represent the value functions associated with mapping instructions

to actions. They use SARSA, a reinforcement learning algorithm based on dy-

namic programming, to learn the optimal value functions. These approaches

require significant effort in feature engineering and have only been evaluated

on simple domains.

3.4 Neural Network Approaches

Neural network methods map instructions to vector representations, which are

used for generating actions. In contrast to grammar-based approaches and rule-

based methods, neural network methods generally require less engineering ef-

fort. For example, no ontology or feature engineering is required.

25

Mei et al. [2016a] use a neural network to map instructions and environment

representations to action sequences for the SAIL task. However, they use a bag-

of-words based symbolic representation of the environment which is hard to

scale to more complex domains. In contrast, visual observations of the envi-

ronment are both easily realizable in practice and provide richer information

about the world. Nguyen et al. [2018], Xiong et al. [2018], Anderson et al. [2018]

and Fried et al. [2018] focus on mapping instructions and visual observations

to navigation actions. Our approach in Chapter 5 and 6 uses neural networks

for mapping instructions and visual observations to actions for navigation and

manipulation.

Instruction following tasks have also been studied with synthetic language.

Synthetic instructions are not written by humans but generated using a gram-

mar or rule-based approach. Chaplot et al. [2018], Hermann et al. [2017] and

Oh et al. [2017] introduced different neural network methods for mapping syn-

thetic instructions and visual observations to discrete actions. Similarly Blukis

et al. [2018a] provide a method for mapping synthetic instructions and visual

observations to continuous control for a simulated AirSim drone [Shah et al.,

2018]. However, these approaches greatly simplify the language understand-

ing challenges and provide only an upper bound on performance with natural

language instructions.

3.5 Related Tasks

Several tasks related to instruction following have also been studied in the lit-

erature. For example Matuszek et al. [2012a] learnt a joint model for mapping

26

instructions describing a set of objects in an image to the selected objects. This

is also known as the problem of object retrieval. Their approach uses the CCG

formalism for mapping instructions to lambda calculus expressions. The predi-

cates in their lambda calculus expressions represent classifiers for attributes like

color and size. The semantic parser and the parameters of the classifiers are

jointly trained using the expectation maximization algorithm [Dempster et al.,

1977]. Their approach relies on a seed training set with full supervision for

initializing the model. On the other hand Krishnamurthy and Kollar [2013] pro-

posed a more expressive formalism for object retrieval that does not require any

seed training set. In addition Guadarrama et al. [2014] focused on the problem

of open-vocabulary descriptions for object retrieval. Their approach uses exist-

ing datasets and resources for handling a broad range of descriptions, including

ImageNet [Deng et al., 2009], IQ Engine [IQE], Google Image Search [Goo], and

FreeBase [Bollacker et al., 2008]. Kazemzadeh et al. [2014] proposed a crowd-

sourcing approach for collecting datasets containing natural language descrip-

tions of objects in images. They introduce a two-player game for collecting and

verifying referring expressions. In contrast to using RGB images, Kong et al.

[2014] proposed a graphical model solution for object retrieval in RGB-D im-

ages. Kitaev and Klein [2017] proposed a neural network-based approach for

locating regions in 3D space given natural language instructions. However, they

evaluate their model on simulated environments.

The opposite problem, that is generating descriptions for a given action se-

quence, has also been studied in the literature. This problem finds its use in

generating an utterance asking for clarification or help. Tellex et al. [2014] pro-

posed a graphical model approach for generating text asking for help. Given

a desired action, their approach generates a response that is likely to make the

27

G3 instruction following model take that action. Daniele et al. [2017] learn to

generate instructions for guiding humans in unknown environments to follow

a path, given the path specification. Mao et al. [2016] proposed a method that

can generate natural language descriptions of specific objects or regions in an

image, and also map descriptions to objects in the image.

Instruction following tasks often require performing complex planning. De-

signing agents that can do complex planning has been widely studied in the

literature. Recently, deep reinforcement learning-based approaches have been

proposed for playing games [Mnih et al., 2013, Guo et al., 2014, Mnih et al., 2016,

Hessel et al., 2017], solving memory puzzels [Oh et al., 2016], and target-driven

navigation [Zhu et al., 2017]. In Chapter 5 we present a learning algorithm in-

spired by work in deep reinforcement learning.

Finally, recent work has also considered the related task of embodied question

answering. In this task, the agent is asked a question such as “is there milk in the

fridge?" and the agent has to take a sequence of actions to gather information

to answer the question. Das et al. [2018] and Gordon et al. [2018] focus on an-

swering questions in simulated 3D house environments. These approaches use

a hierarchical model which can perform both navigation and question answer-

ing. However, they only evaluate on synthetic instructions.

28

CHAPTER 4

LEARNING TO FOLLOW HIGH LEVEL INSTRUCTIONS

4.1 Introduction

Instructions that contain high level concepts can be challenging for an instruc-

tion following agent. For example, instructions containing verbs such as mi-

crowave denoting high-level concepts, which correspond to more than 10 low-

level symbolic actions such as grasp. In this setting, it is common to find new

verbs requiring new concepts at test time. For example, in Figure 4.1, suppose

that we have never seen the verb fill. Can we impute the correct interpreta-

tion, and moreover seize the opportunity to learn what fill means in a way that

generalizes to future instructions?

Previous work in semantic parsing handles lexical coverage in one of two

ways. Kwiatkowski et al. [2010] induces a highly constrained CCG lexicon ca-

pable of mapping words to complex logical forms, but it would have to skip

new words (which in Figure 4.1 would lead to microwaving an empty cup).

Others [Berant and Liang, 2014] take a freer approach by performing a search

over logical forms, which can handle new words, but the logical forms there are

much simpler than the ones we consider.

In this paper, we present an hybrid approach that uses a lexicon to repre-

sent complex concepts but also strongly leverages the environment to guide the

search space. The environment can provide helpful cues in several ways:

• Only a few environments are likely for a given scenario—e.g., the text is

29

Text: “get the cup, fill it with water and then microwave the cup”

grasping cup3 ∧

near(robot1,cup3)

in cup3,microwave ∧

state(microwave1,is-on)

state cup3,water ∧

on(cup3,sink)

Unseen verb “ fill ” is grounded
at test time using environment.

Figure 4.1: A lexicon learned on the training data cannot possibly cover all the
verb-concept mappings needed at test time. Our algorithm learns the meaning
of new verbs (e.g., fill) using the environment context.

planner simulator

Shallow Parsing (Section 4.3.2)

planner

⋯⋯

⋯

Action Sequence:

Logical Form

Frame Node

planner

Semantic Parsing Model
(Section 4.5)

planner simulator

Environment:

𝑥𝑏𝑜𝑥1
𝑠𝑛𝑎𝑐𝑘𝑡𝑎𝑏𝑙𝑒2

On

Power-off

Text: “Turn on xbox. Take Far Cry Game CD and put in xbox.
Throw out beer, coke and sketchy stuff in bowl….”

 throw,
 [beer, coke, sketchy stuff, bowl] 
 {in: sketchy stuff bowl}

� � �

a1 a2 ak�1 ak

z1 z2 zk�1 zk

c1 c2 ck

r
!
⌫

z = (`, ⇠)

` : put) [�~⌫.state(v1, has-cd)
^ near(v1, v2), ⇠

0]

⇠ : {v1 ! xbox1; v2 ! robot1}
⇠0 : old mapping

s1 s2 sk

x̄

Figure 4.2: Graphical model overview: we first deterministically shallow parse
the text x̄ into a control flow graph consisting of shallow structures {ci}. Given
an initial environment s1, our semantic parsing model maps these frame nodes
to logical forms {zi} representing the postconditions. From this, a planner and
simulator generate the action sequences {ai} and resulting environments {si}.

30

unlikely to ask the robot to microwave an empty cup or put books on the

floor.

• The logical form of one segment of text constrains that of the next

segment—e.g., the text is unlikely to ask the robot to pick a cup and then

put it back immediately in the same spot.

We show that this environment context provides a signal for inducing new

lexical entries that map previously unseen verbs to novel concepts. In the ex-

ample in Figure 4.1, the algorithm learns that microwaving an empty cup is

unlikely and this suggests that the verb fill must map to actions that end up

making the cup not empty.

Another contribution of this paper is using postconditions as logical forms

rather than actions, as in previous work [Artzi and Zettlemoyer, 2013, Misra

et al., 2014]. Postconditions not only reduce the search space of logical forms,

but are also a more natural representation of verbs. We define a conditional

random field (CRF) model over postconditions, and use a planner to convert

postconditions into action sequences and a simulator to generate new environ-

ments.

At test time, we use the lexicon induced from the training data, but also

perform an environment-guided search over logical forms to induce new lexi-

cal entries on-the-fly. If the predicted action sequence uses a new lexical entry

generated by the search, it is added to the lexicon, where it can be reused in

subsequent test examples.

We evaluate our algorithm on a new corpus containing text commands for

a household robot. The two key findings of our experiments are: First, the en-

31

vironment and task context contain enough information to allow us to learn

lexical entries for new verbs such as distribute and mix with complex seman-

tics. Second, using both lexical entries generated by a test-time search and those

from the lexicon induced by the training data outperforms the two individual

approaches. This suggests that environment context can help alleviate the prob-

lem of having a limited lexicon for grounded language acquisition.

4.2 Problem Statement

At training time, we are given a set of examples D = {(x̄(m), s(m), a(m), β(m))}Mm=1,

where x̄(m) is a text containing natural language instructions, s(m) is an initial en-

vironment, a(m) is a human-annotated sequence of actions, and β(m) specifies a

monotonic alignment between segments of x̄(m) and segments of a(m). For exam-

ple, given words x̄(m) = x1x2 and a(m) = a1a2a3, β(m) might specify that x1 aligns to

a1a2 and x2 aligns to a3.

At test time, given a sequence of text-environment pairs as input

{(x̄(n), s(n))}Nn=1, we wish to generate a sequence of actions a(n) for each input pair.

Note that our system is allowed to use information about one test example to

improve performance on subsequent ones. We evaluate a system on its ability

to recover a human-annotated sequence of actions.

32

4.3 Approach Overview

Figure 4.2 shows our approach for mapping text x̄ to actions a1:k given the initial

environment s1.

4.3.1 Representation

We use the following representation for the different variables in Figure 4.2.

Environment. An environment si is represented by a graph whose nodes are

objects and edges represent spatial relations between these objects. We con-

sider five basic spatial relations: near, grasping, on, in and below. Each ob-

ject has an instance ID (e.g., book9), a category name (e.g., chair, xbox), a set

of properties such as graspable, pourable used for planning and a set of boolean

states such as has-water, at-channel3, whose values can be changed by robot

actions. The robot is also an object in the environment. For example, the objects

xbox1, snacktable2, are two objects in s1 in Figure 4.2 with relation on between

them.

Postconditions. A postcondition is a conjunction of atoms or their nega-

tions. Each atom consists of either a spatial relation between two objects (e.g.,

on(book9, shelf3)) or a state and a value (e.g., state(cup4, has-water)). Given

an environment s, the postcondition evaluates to true or false.

Actions. Each action in an action sequence ai consists of an action name with

a list of arguments (e.g., grasp(xbox1)). The action name is one of 15 values

(grasp, moveto, wait, etc.), and each argument is either an object in the environ-

33

ment (e.g., xbox1), a spatial relation (e.g., in for keep(ramen2, in, kettle1), or a

postcondition (e.g., for wait(state(kettle1, boiling))).

Logical Forms. The logical form zi is a pair (`, ξ) containing a lexical entry `

and a mapping ξ. The lexical entry ` contains a parameterized postcondition

such as λ~v.grasping(v1, v2) ∧¬near(v3, v2), and ξ maps the variables ~v to objects

in the environment. Applying the parameterized postcondition on ξ yields a

postcondition; note that a postcondition can be represented by different logical

forms. A lexical entry contains other information which are used for defining

features, which is detailed in Section 4.4.

Control Flow Graphs. Following previous work [Tellex et al., 2011, Misra et al.,

2014], we convert the text x̄ to a shallow representation. The particular repre-

sentation we choose is a control flow graph, which encodes the sequential relation

between atomic segments in the text. Figure 4.3 shows the control flow graph

for an example text. In a control flow graph, each node is either a frame node or a

conditional node. A frame node represents a single clause (e.g., “change the chan-

nel to a movie”) and has at most one successor node. Specifically, a frame node

consists of a verb ν (e.g., arrange, collect), a set of object descriptions {ωi} which

are the arguments of the verb (e.g., the guinness book, movie channel), and spatial

relations r between the arguments (e.g., between, near). The object description

ω is either an anaphoric reference (such as “it”) or a tuple containing the main

noun, associated modifiers, and relative clauses.

A conditional node contains a logical postcondition with at most one exis-

tentially quantified variable (in contrast to a frame node, which contains nat-

ural language). For example, in Figure 4.3 the conditional node contains the

expression corresponding to the text “if any of the pots has food" There are two

34

Text: “If any of the pots have food in them, then dump them out in the
garbage can and then put them on the sink else keep it on the table.”

∃e category e,cup ∧state(e,food)

𝜈: dump
𝝎: [them, the garbage can]
𝑟: { in: them → garbage can }

𝜈: put
𝝎: [them, the sink]
𝑟: {𝑜n: them → the sink }

𝜈: keep
𝝎: [it, the table]
𝑟: {𝑜n: it → the table }

Conditional node (𝑒𝑥𝑝𝑟)

Frame Node 𝜈,𝝎, 𝑟
𝜈: verb
𝝎: set of object description 𝜔
𝜔: (main noun or pronoun, modifiers)
𝑟: relationship between descriptions

Figure 4.3: We deterministically parse text into a shallow structure called a con-
trol flow graph.

types of conditional nodes: branching and temporal. A branching conditional

node represents an “if ” statement and has two successor nodes corresponding

to whether the condition evaluates to true or false in the current environment.

A temporal conditional node represents an “until” statement and waits until the

condition is false in the environment.

4.3.2 Formal Overview

Shallow Parsing. We deterministically convert the text x̄ into its control flow

graph G using a set of manual rules applied on its constituency parse tree from

the Stanford parser [Klein and Manning, 2003]. Conditionals in our dataset are

simple and can be converted into postconditions directly using a few rules, un-

like the action verbs (e.g., “fill”), which is the focus of this paper. The details of

our shallow parsing procedure is described in the appendix.

Given an environment s1, G is reduced to a single sequence of frame nodes

c1, . . . , ck, by evaluating all the branch conditionals on s1.

35

Semantic Parsing Model. For each frame node ci and given the current envi-

ronment si, the semantic parsing model (Section 4.5) places a distribution over

logical forms zi. This logical form zi represents a postcondition on the environ-

ment after executing the instructions in ci.

Planner and Simulator. Since our semantic representations involve postcondi-

tions but our model is based on the environment, we need to connect the two.

We use planner and a simulator that together specify a deterministic mapping

from the current environment si and a logical form zi to a new environment si+1.

Specifically, the planner takes the current environment si and a logical form zi

and computes the action sequence ai = planner(si, zi) for achieving the post con-

dition represented by zi.1 The simulator takes the current environment si and an

action sequence ai and returns a new environment si+1 = simulator(si, ai).

4.4 Anchored Verb Lexicons

Like many semantic parsers, we use a lexicon to map words to logical forms.

Since the environment plays an central role in our approach, we propose an

anchored verb lexicon, in which we store additional information about the envi-

ronment in which lexical entries were previously used. We focus only on verbs

since they have the most complex semantics; object references such as “cup” can

be mapped easily, as described in Section 4.5.

More formally, an anchored verb lexicon Λ contains lexical entries ` of the

1We use the symbolic planner of Rintanen [2012] which can perform complex planning. For
example, to pick up a bottle that is blocked by a stack of books, the planner will first remove the
books before grasping the bottle. In contrast, Artzi and Zettlemoyer [2013] use a simple search
over implicit actions.

36

following form: [ν ⇒ (λ~v.S , ξ)] where, ν is a verb, S is a postcondition with free

variables ~v, and ξ is a mapping of these variables to objects. An example lexical

entry is: [pour⇒ (λv1v2v3.S , ξ)], where:

S = grasping(v1, v2) ∧ near(v1, v3) ∧ ¬state(v2, milk) ∧ state(v3, milk)

ξ = {v1 → robot1, v2 → cup1, v3 → bowl3} (anchoring)

As Table 4.1 shows, a single verb will in general have multiple entries due

to a combination of polysemy and the fact that language is higher-level than

postconditions.

Advantages of Postconditions. In contrast to previous work [Artzi and Zettle-

moyer, 2013, Misra et al., 2014], we use postconditions instead of action se-

quence for two main reasons. First, postconditions generalize better. To il-

lustrate this, consider the action sequence for the simple task of filling a cup

with water. At the time of learning the lexicon, the action sequence might cor-

respond to using a tap for filling the cup while at test time, the environment

may not have a tap but instead have a pot with water. Thus, if the lexicon

maps to action sequence, then it will not be applicable at test time whereas the

postcondition state(z1, water) is valid in both cases. We thus shift the load of

inferring environment-specific actions onto planners and use postconditions for

representation, which better captures the semantics of verbs.

Second, because postconditions are higher-level, the number of atoms

needed to represent a verb is much less than the corresponding number of ac-

tions. For example, the text “microwave a cup", maps to action sequence with

10–15 actions, the postcondition only has two atoms: in(cup2, microwave1) ∧

state(microwave, is-on). This makes searching for new logical forms more

37

Table 4.1: Some lexical entries for the verb turn

Sentence Context Lexical entry [turn⇒ (λ~v.S , ξ)]
“turn on the TV" state(v1, is-on) ∧ near(v2, v1)

ξ : v1 → tv1, v2 → robot1
“turn on the right state(v1, fire3) ∧ near(v2, v1)
back burner" ξ : v1 → stove1, v2 → robot1

“turn off the water" ¬state(v1, tap-on)
ξ : v1 → sink1

“turn the television state(v1, channel6) ∧ near(v1, v2)
input to xbox" ξ : v1 → tv1, v2 → xbox1

tractable.

Advantages of Anchoring. Similar to the VEIL templates of Misra et al. [2014],

the free variables ~v are associated with a mapping ξ to concrete objects. This is

useful for resolving ellipsis. Suppose the following lexical entry was created at

training time based on the text “throw the drinks in the trash bag”:

[`: throw⇒ λxyz.S (x, y, z)], where

S = in(x, y) ∧ ¬grasping(z, x) ∧ ¬state(z, closed)

ξ = {x→ coke1, y→ garbageBin1, z→ robot1}

Now consider a new text at test time “throw away the chips”, which does not

explicitly mention where to throw the chips. Our semantic parsing algorithm

(Section 4.5) will use the previous mapping y→ garbabeBin1 to choose an object

most similar to a garbage bin.

38

4.5 Semantic Parsing Model

Given a sequence of frame nodes c1:k and an initial environment s1, our semantic

parsing model defines a joint distribution over logical forms z1:k. Specifically, we

define a conditional random field (CRF) over z1:k, as shown in Figure 4.2:

pθ(z1:k | c1:k, s1) ∝ exp

 k∑
i=1

φ(ci, zi−1, zi, si) · θ

 ,
where φ(ci, zi−1, zi, ei) is the feature vector and θ is the weight vector. Note

that the environments s1:k are a deterministic function of the logical forms z1:k

through the recurrence si+1 = simulator(si, planner(si, zi)), which couples the dif-

ferent time steps.

Features. The feature vector φ(ci, zi−1, zi, si) contains 16 features which capture

the dependencies between text, logical forms, and environment. Recall that

zi = ([ν ⇒ (λ~v.S , ξ)], ξi), where ξ is the environment in which the lexical entry

was created and ξi is the current environment. Let fi = (λ~v.S)(ξi) be the current

postcondition. Here we briefly describe the important features (see the supple-

mental material for the full list):

• Language and logical form: The logical form zi should generally reference

objects mentioned in the text. Assume we have computed a correlation

ρ(ω, o) between each object description ω and object o, whose construc-

tion is described later. We then define two features: precision correlation,

which encourages zi to only use objects referred to in ci; and recall correla-

tion, which encourages zi to use all the objects referred to in ci.

• Logical form: The postcondition fi should be based on previously seen en-

vironments. For example, microwaving an empty cup and grasping a

39

couch are unlikely postconditions. We define features corresponding to

the average probability (based on the training data) of all conjunctions of

at most two atoms in the postcondition (e.g., grasping(robot, cup)}). We

do the same with their abstract versions ({grasping(v1, v2)}). In addition,

we build the same set of four probability tables conditioned on verbs in

the training data. For example, the abstract postcondition state(v1, water)

has a higher probability conditioned on the verb “fill”. This gives us a total

of 8 features of this type.

• Logical form and environment: Recall that anchoring helps us in dealing with

ellipsis and noise. We add a feature based on the average correlation be-

tween the objects of the new mapping ξi with the corresponding objects in

the anchored mapping ξ.

The other features are based on the relationship between object descriptions,

similarity between ξ and ξi and transition probabilities between logical forms

zi−1 and zi. These probabilities are also learned from training data.

Mapping Object Descriptions. Our features rely on a mapping from object

descriptions ω (e.g., “the red shiny cup”) to objects o (e.g., cup8), which has been

addressed in many recent works [Matuszek et al., 2012a, Guadarrama et al.,

2014, Fasola and Mataric, 2014].

One key idea is: instead of computing rigid lexical entries such as cup →

cup1, we use a continuous correlation score ρ(ω, o) ∈ [0, 1] that measures how

well ω describes o. This flexibility allows the algorithm to use objects not ex-

plicitly mentioned in text. Given “get me a tank of water”, we might choose an

approximate vessel (e.g., cup2).

40

Given an object description ω, an object o, and a set of previously seen ob-

jects (used for anaphoric resolution), we define the correlation ρ(ω, o) using the

following approach:

• If ω is a pronoun, ρ(ω, o) is the ratio of the position of the last reference of o

to the length of the action sequence computed so far, thus preferring recent

objects.

• Otherwise, we compute the correlation using various sources: the ob-

ject’s category; the object’s state for handling metonymy (e.g., the descrip-

tion “coffee” correlates well with the object mug1 if mug1 contains coffee—

state(mug1, has-coffee) is true), WordNet [Fellbaum, 1998] for dealing

synonymy and hyponymy; and word alignments between the objects and

text from Giza++ [Och and Ney, 2003] to learn domain-specific references

(e.g., “Guinness book” refers to book1, not book2). More details can be found

in the supplemental material.

4.6 Lexicon Induction from Training Data

In order to map text to logical forms, we first induce an initial anchored lexicon

Λ from the training data {(x̄(m), s(m), a(m), β(m))}Mm=1. At test time, we add new lexical

entries (Section 4.7) to Λ.

Recall that shallow parsing x̄(m) yields a list of frame nodes c1:k. For each

frame node ci and its aligned action sequence ai, we take the conjunction of all

the atoms (and their negations) which are false in the current one si but true in

the next environment si+1. We parametrize this conjunction by replacing each

41

object with a variable, yielding a postcondition S parametrized by free vari-

ables ~v and the mapping ξ from ~v to objects in si. We then add the lexical entry

[verb(ci)⇒ (λ~v.S , ξ)] to Λ.

Instantiating Lexical Entries. At test time, for a given clause ci and environment

si, we generate set of logical forms zi = (`i, ξi). To do this, we consider the lexical

entries in Λ with the same verb as ci. For each such lexical entry `i, we can map

its free variables ~v to objects in si in an exponential number of ways. Therefore,

for each `i we only consider the logical form (`i, ξi) where the mapping ξi obtains

the highest score under the current model: ξi = arg maxξ′ φ(ci, zi−1, (`i, ξ
′), si)·θ. For

the feature vector φ that we consider, this approximately translates to solving

an integer quadratic program with variables [yi j] ∈ {0, 1}, where yi j = 1 only if vi

maps to object j.

4.7 Environment-Driven Lexicon Induction at Test Time

Unfortunately, we cannot expect the initial lexicon Λ induced from the training

set to have full coverage of the required postconditions. Even after using 90% of

the data for training, we encountered 17% new postconditions on the remain-

ing 10%. We therefore propose generating new lexical entries at test time and

adding them to Λ.

Formally, for a given environment si and frame node ci, we want to gen-

erate likely logical forms. Although the space of all possible logical forms is

very large, the environment constrains the possible interpretations. We first

compute the set of atoms that are false in si and that only contain objects o

that are “referred” to by either ci or ci−1, where “refers” means that there ex-

42

ists some argument ω in ci for which o ∈ arg maxo′ ρ(ω, o′). For example, if ci

corresponds to the text “distribute pillows among the couches”, we consider the

atom on(pillow1, armchair1) but not on(pillow1, snacktable2) since the object

armchair1 has the highest correlation to the description “couches”.

Next, for each atom, we convert it into a logical form z = (`, ξ) by replac-

ing each object with a variable. While this generalization gives us a mapping

ξ, we create a lexical entry `i = [ν ⇒ (λ~v.S , ∅)] without it, where S is the pa-

rameterized atom. Note that the anchored mapping is empty, representing

the fact that this lexical entry was unseen during training time. For example,

the atom state(tv1, mute) would be converted to the logical form (`, ξ), where

` = [verb(ci) ⇒ (λv.state(v, mute), ∅] and ξ = {v → tv1}. We do not generalize

state names (e.g., mute) because they generally are part of the meaning of the

verb.

The score φ(ci, zi−1, zi, si) · θ is computed for the logical form zi produced by

each postcondition. We then take the conjunction of every pair of postconditions

corresponding to the 200 highest-scoring logical forms. This gives us new set

of postconditions on which we repeat the generalization-scoring-conjunction

cycle. We keep doing this while the scores of the new logical forms is increasing

or while there are logical forms remaining.

If a logical form z = ([ν ⇒ (λ~v.S , ∅)], ξ) is used by the predicted action se-

quence, we add the lexical entry [ν ⇒ (λ~v.S , ξ)] to the lexicon Λ. This is differ-

ent to other lexicon induction procedures such as GENLEX [Zettlemoyer and

Collins, 2007] which are done at training time only and require more super-

vision. Moreover, GENLEX does not use the environment context in creating

new lexical entries and thus is not appropriate at test time, since it would vastly

43

Train Time Anchored Lexicon (Sec 4.6) Test Time Search for Logical Forms (Sec 4.7)

` = [verb) (�~v.S, ⇠)]

verb = ⌫(ci)such that

zi = (`, ⇠i)

⇠i

Set of Logical Forms for ci�1, ci, si, zi�1

is the new assignment

zi = (`, ⇠i)

` = [verb) (�~v.S, ;)]where

is a test time lexical entry

Figure 4.4: Logical forms for given clauses ci−1 and ci, environment si, and pre-
vious logical form zi−1 are generated from both a lexicon induced from training
data and a test-time search procedure based on the environment.

overgenerate lexical entries compared to our approach. For us, the environment

thus provides implicit supervision for lexicon induction.

4.8 Inference and Parameter Estimation

Inference. Given a text x̄ (which is converted to c1:k via Section 4.3.2) and an

initial environment s1, we wish to predict an action sequence a based on pθ(a1:k |

c1:k, s1), which marginalizes over all logical forms z1:k (see Figure 4.2).

To enumerate possible logical forms, semantic parsers typically lean heavily

on a lexicon [Artzi and Zettlemoyer, 2013], leading to high precision but lower

recall, or search more aggressively [Berant et al., 2013], leading to higher recall

but lower precision. We adopt the following hybrid approach: Given si, ci−1, ci

and zi−1, we use both the lexical entries in Λ as explained in Section 4.6 and the

search procedure in Section 4.7 to generate the set of possible logical forms for

zi (see Figure 4.4). We use beam search, keeping only the highest-scoring logical

form with satisfiable postconditions for each i ∈ {1, . . . , k} and resulting action

sequence a1:i.

44

Table 4.2: New verbs and concepts induced at test time (Section 4.7). Poscon-
ditions denote the learned logical form representing the meaning of the under-
lined verb.

Instruction “mix it with ice cream and syrup"
Learned Postcondition state(cup2, ice-cream1) ∧ state(cup2, vanilla)
Log. forms explored 15
Instruction “distribute among the couches"
Learned Postcondition ∧j∈{1,3}on(pillowj, loveseat1) ∧ on(pillowi+1, armchairi+1)
Log. forms explored 386
Instruction “boil it on the stove"
Learned Postcondition state(stove, stovefire1) ∧ state(kettle, water)
Log. forms explored 109
Instruction “change the channel to a movie"
Learned Postcondition state(tv1, channel4) ∧ on(book1, loveseat1)
Log. forms explored 98

Parameter Estimation. We split 10% of our training data into a separate tun-

ing set (the 90% was used to infer the lexicon). On each example in this set,

we extracted the full sequence of logical forms z1:k from the action sequence a1:k

based on Section 4.6. For efficiency, we used an objective similar to pseudo-

likelihood to estimate the parameters θ. Specifically, we maximize the average

log-likelihood over each adjacent pair of logical forms under p̃θ:

p̃θ(zi | zi−1, ci, si) ∝ exp(φ(ci, zi−1, zi, si)>θ).

The weights were initialized to 0. We performed 300 iterations over the val-

idation set with a learning rate of 0.005
N .

45

4.9 Dataset and Experiments

4.9.1 Dataset

We collected a dataset of 500 examples from 62 people using a crowdsourcing

system similar to Misra et al. [2014]. We consider two different 3D scenarios:

a kitchen and a living room, each containing an average of 40 objects. Both of

these scenarios have 10 environments consisting of different sets of objects in

different configurations. We define 10 high-level objectives, 5 per scenario, such

as clean the room, make coffee, prepare room for movie night, etc.

One group of users wrote natural language commands to achieve the high-

level objectives. Another group controlled a virtual robot to accomplish the

commands given by the first group. The dataset contains considerable variety,

consisting of 148 different verbs, an average of 48.7 words per text, and an av-

erage of 21.5 actions per action sequence. Users make spelling and grammar

errors in addition to occasionally taking random actions not relevant to the text.

The supplementary material contains more details.

We filtered out 31 examples containing fewer than two action sequences. Of

the remaining examples, 378 were used for training and 91 were used for test.

Our algorithm is tested on four new environments (two from each scenario).

4.9.2 Experiments and Results

Evaluation Metrics. We consider two metrics, IED and END, which measure

accuracy based on the action sequence and environment, respectively. Specifi-

46

cally, the IED metric [Misra et al., 2014] is the edit distance between predicted

and true action sequence. The END metric is the Jaccard index of sets A and B,

where A is the set of atoms (e.g., on(cup1,table1)) whose truth value changed

due to simulating the predicted action sequence, and B is that of the true action

sequence.

Baselines. We compare our algorithm with the following baselines:

1. Chance: Randomly selects a logical form for every frame node from the set of

logical forms generated by generalizing all possible postconditions that do not

hold in the current environment. These postconditions could contain up to 93

atoms.

2. Manually Defined Templates: Defines a set of postcondition templates for verbs

similar to Guadarrama et al. [2013].

3. UBL-Best Parse [Kwiatkowski et al., 2010]: UBL algorithm trained on text

aligned with postconditions and a noun-phrase seed lexicon. The planner uses

the highest scoring postcondition given by UBL to infer the action sequence.

4. VEIL [Misra et al., 2014]: Uses action sequences as logical forms and does not

generate lexical entries at test time.

We also consider two variations of our model: (i) using only lexical entries in-

duced using the training data, and (ii) using only the logical forms induced at

test-time by the search procedure.

The results are presented in Table 4.3. We observe that our full model out-

performs the baseline and the two pure search- and lexicon-based variations of

our model. We further observe that adding the search procedure (Section 4.7)

improved the accuracy by 1.5% on IED and 2% on END. The logical forms gen-

erated by the search were able to successfully map 48% of the new verbs.

47

Table 4.3: Results on the metrics and baselines described in section 4.9.2. The
numbers are normalized to 100 with larger values being better.

Algorithm IED END
Chance 0.3 0.5
Manually Defined Templates 2.5 1.8
UBL- Best Parse [Kwiatkowski et al., 2010] 5.3 6.9
VEIL [Misra et al., 2014] 14.8 20.7
Model with only train-time lexicon induction 20.8 26.8
Model with only test-time lexicon induction 21.9 25.9
Full Model 22.3 28.8

Table 4.2 shows new verbs and concepts that the algorithm was able to in-

duce at test time. The algorithm was able to correctly learn the lexical entries

for the verbs “distribute” and “mix”, while the ones for verbs “change” and “boil”

were only partly correct. The postconditions in Table 4.2 are not structurally

isomorphic to previously-seen logical forms; hence they could not have been

handled by using synonyms or factored lexicons [Kwiatkowski et al., 2011]. The

poor performance of UBL was because the best logical form often produced an

unsatisfiable postcondition. This can be remedied by joint modeling with the

environment. The VEIL baseline used actions for representation and does not

generalize as well as the postconditions in our logical forms.

It is also instructive to examine the alternate postconditions that the search

procedure considers. For the first example in Table 4.2, the following postcon-

dition was considered by not selected:

grasping(robot, icecream2) ∧ grasping(robot, syrup1).

While this postcondition uses all the objects described in the text, the

environment-based features suggest it makes little sense for the task to end with

the robot eternally grasping objects. For the second example, alternate postcon-

ditions considered included:

48

1. on(pillow1, pillow2) ∧ on(pillow3, pillow4)

2. ∧4j=1on(pillowj, loveseat1)

3. ∧3
j=1
near(robot1, armchairj)

The algorithm did not choose options 1 or 3 since the environment-based

features recognizes these as unlikely configurations. Option 2 was ruled out

since the recall correlation feature realizes that not all the couches are mentioned

in the postcondition.

To test how much features on the environment help, we removed all such

features from our full model. We found that the accuracy fell to 16.0% on the IED

metric and 16.6% on the END metric, showing that the environment is crucial.

In this work, we relied on a simple deterministic shallow parsing step. We

found that shallow parsing was able to correctly process the text in only 46% of

the test examples, suggesting that improving this initial component or at least

modeling the uncertainty there would be beneficial.

4.10 Conclusion

We have presented an algorithm for mapping text to actions that induces lexical

entries at test time using the environment. Our algorithm couples the lexicon

extracted from training data with a test-time search that uses the environment

to reduce the space of logical forms. Our results suggest that using the environ-

ment to provide lexical coverage of high-level concepts is a promising avenue

for further research.

49

Reproducibility. Code, data, and experiments for this paper are avail-

able on the CodaLab platform at https://www.codalab.org/worksheets/

0x7f9151ec074f4f589e4d4786db7bb6de/.

50

CHAPTER 5

A SINGLE MODEL APPROACH

5.1 Introduction

An agent executing natural language instructions requires robust understand-

ing of language and its environment. Existing approaches addressing this prob-

lem assume structured environment representations [Chen and Mooney, 2011,

Mei et al., 2016a], or combine separately trained models [Matuszek et al., 2010,

Tellex et al., 2011], including for language understanding and visual reasoning.

We propose to directly map text and raw image input to actions with a single

learned model. This approach offers multiple benefits, such as not requiring in-

termediate representations, planning procedures, or training multiple models.

Figure 5.1 illustrates the problem in the Blocks environment [Bisk et al.,

2016b]. The agent observes the environment as an RGB image using a camera

sensor. Given the RGB input, the agent must recognize the blocks and their lay-

out. To understand the instruction, the agent must identify the block to move

(Toyota block) and the destination (just right of the SRI block). This requires

solving semantic and grounding problems. For example, consider the topmost

instruction in the figure. The agent needs to identify the phrase referring to

the block to move, Toyota block, and ground it. It must resolve and ground the

phrase SRI block as a reference position, which is then modified by the spatial

meaning recovered from the same row as or first open space to the right of, to iden-

tify the goal position. Finally, the agent needs to generate actions, for example

moving the Toyota block around obstructing blocks.

51

North

South

EastWest

Put the Toyota block in the same row as the SRI block, in the first open space to the right of the SRI
block
Move Toyota to the immediate right of SRI, evenly aligned and slightly separated
Move the Toyota block around the pile and place it just to the right of the SRI block
Place Toyota block just to the right of The SRI Block
Toyota, right side of SRI

Figure 5.1: Instructions in the Blocks environment. The instructions all describe
the same task. Given the observed RGB image of the start state (large image),
our goal is to execute such instructions. In this task, the direct-line path to the
target position is blocked, and the agent must plan and move the Toyota block
around. The small image marks the target and an example path, which includes
34 steps.

To address these challenges with a single model, we design a neural network

agent. The agent executes instructions by generating a sequence of actions. At

each step, the agent takes as input the instruction text, observes the world as an

RGB image, and selects the next action. Action execution changes the state of

the world. Given an observation of the new world state, the agent selects the

next action. This process continues until the agent indicates execution comple-

52

tion. When selecting actions, the agent jointly reasons about its observations

and the instruction text. This enables decisions based on close interaction be-

tween observations and linguistic input.

We train the agent with different levels of supervision, including complete

demonstrations of the desired behavior and annotations of the goal state only.

While the learning problem can be easily cast as a supervised learning prob-

lem, learning only from the states observed in the training data results in poor

generalization and failure to recover from test errors. We use reinforcement

learning [Sutton and Barto, 2018] to observe a broader set of states through ex-

ploration. Following recent work in robotics [Levine et al., 2016, Rusu et al.,

2016], we assume the training environment, in contrast to the test environment,

is instrumented and provides access to the state. This enables a simple problem

reward function that uses the state and provides positive reward on task com-

pletion only. This type of reward offers two important advantages: (a) it is a

simple way to express the ideal agent behavior we wish to achieve, and (b) it

creates a platform to add training data information.

We use reward shaping [Ng et al., 1999] to exploit the training data and add

to the reward additional information. The modularity of shaping allows vary-

ing the amount of supervision, for example by using complete demonstrations

for only a fraction of the training examples. Shaping also naturally associates

actions with immediate reward. This enables learning in a contextual bandit

setting [Auer et al., 2002b, Langford and Zhang, 2008], where optimizing the

immediate reward is sufficient and has better sample complexity than uncon-

strained reinforcement learning [Agarwal et al., 2014].

We evaluate with the block world environment and data of Bisk et al.

53

[2016b], where each instruction moves one block (Figure 5.1). While the orig-

inal task focused on source and target prediction only, we build an interactive

simulator and formulate the task of predicting the complete sequence of ac-

tions. At each step, the agent must select between 81 actions with 15.4 steps

required to complete a task on average, significantly more than existing envi-

ronments [Chen and Mooney, 2011]. Our experiments demonstrate that our re-

inforcement learning approach effectively reduces execution error by 24% over

standard supervised learning and 34-39% over common reinforcement learning

techniques. Our simulator, code, models, and execution videos are available at:

https://github.com/clic-lab/blocks.

5.2 Technical Overview

Task Let X be the set of all instructions, S the set of all world states, and A the

set of all actions. An instruction x̄ ∈ X is a sequence 〈x1, . . . , xn〉, where each xi

is a token. The agent executes instructions by generating a sequence of actions,

and indicates execution completion with the special action STOP. Action execu-

tion modifies the world state following a transition function T : S × A → S.

The execution ē of an instruction x̄ starting from s1 is an m-length sequence

〈(s1, a1), . . . , (sm, am)〉, where s j ∈ S, a j ∈ A, T (s j, a j) = s j+1 and am = STOP. In

Blocks (Figure 5.1), a state specifies the positions of all blocks. For each action,

the agent moves a single block on the plane in one of four directions (north,

south, east, or west). There are 20 blocks, and 81 possible actions at each step,

including STOP. For example, to correctly execute the instructions in the figure,

the agent’s likely first action is TOYOTA-WEST, which moves the Toyota block one

step west. Blocks can not move over or through other blocks.

54

Model The agent observes the world state via a visual sensor (i.e., a camera).

Given a world state s, the agent observes an RGB image I generated by the func-

tion IMG(s). We distinguish between the world state s and the agent context1 s̃,

which includes the instruction, the observed image IMG(s), images of previous

states, and the previous action. To map instructions to actions, the agent rea-

sons about the agent context s̃ to generate a sequence of actions. At each step,

the agent generates a single action. We model the agent with a neural network

policy. At each step j, the network takes as input the current agent context s̃ j,

and predicts the next action to execute a j. We formally define the agent context

and model in Section 5.3.

Learning We assume access to training data with N examples {(x̄(i), s(i)
1 , ē

(i))}Ni=1,

where x̄(i) is an instruction, s(i)
1 is a start state, and ē(i) is an execution demonstra-

tion of x̄(i) starting at s(i)
1 . We use policy gradient (Section 5.4) with reward shap-

ing derived from the training data to increase learning speed and exploration

effectiveness (Section 5.5). Following work in robotics [Levine et al., 2016], we

assume an instrumented environment with access to the world state to compute

the reward during training only. We define our approach in general terms with

demonstrations, but also experiment with training using goal states.

Evaluation We evaluate task completion error on a test set {(x̄(i), s(i)
1 , s

(i)
g)}Mi=1,

where x̄(i) is an instruction, s(i)
1 is a start state, and s(i)

g is the goal state. We mea-

sure execution error as the distance between the final execution state and s(i)
g .

1We use the term context similar to how it is used in the contextual bandit literature to refer
to the information available for decision making. While agent contexts capture information
about the world state, they do not include physical information, except as captured by observed
images.

55

Place the Toyota east of SRIx̄ :

h1

SOUTH

Visual State v10

LSTM

hdhb

TOYOTA

SoftMax Layers

Task Specific

TOYOTA-SOUTH Action a10

TOYOTA-SOUTH

CNN

l1 l2 l3 l4 l5 l6

Instruction Representation x̄

I10

I8 I9

Previous Action a9

Agent Context s̃10

Figure 5.2: Illustration of the policy architecture showing the 10th step in the ex-
ecution of the instruction Place the Toyota east of SRI in the state from Figure 5.1.
The network takes as input the instruction x̄, image of the current state I10, im-
ages of previous states I8 and I9 (with K = 2), and the previous action a9. The
text and images are embedded with LSTM and CNN. The actions are selected
with the task specific multi-layer perceptron.

5.3 Model

We model the agent policy π with a neural network. The agent observes the

instruction and an RGB image of the world. Given a world state s, the image I

is generated using the function IMG(s). The instruction execution is generated

one step at a time. At each step j, the agent observes an image I j of the current

world state s j and the instruction x̄, predicts the action a j, and executes it to

transition to the next state s j+1. This process continues until STOP is predicted

and the agent stops, indicating instruction completion. The agent also has access

to K images of previous states and the previous action to distinguish between

different stages of the execution [Mnih et al., 2015]. Figure 5.2 illustrates our

architecture.

Formally,2 at step j, the agent considers an agent context s̃ j, which is a tu-

ple (x̄, I j, I j−1, . . . , I j−K , a j−1), where x̄ is the natural language instruction, I j is an

image of the current world state, the images I j−1, . . . , I j−K represent K previous

states, and a j−1 is the previous action. The agent context includes information

2We use bold-face capital letters for matrices and bold-face lowercase letters for vectors.
Computed input and state representations use bold versions of the symbols. For example, x̄
is the computed representation of an instruction x̄.

56

about the current state and the execution. Considering the previous action a j−1

allows the agent to avoid repeating failed actions, for example when trying to

move in the direction of an obstacle. In Figure 5.2, the agent is given the instruc-

tion Place the Toyota east of SRI, is at the 10-th execution step, and considers K = 2

previous images.

We generate continuous vector representations for all inputs, and jointly rea-

son about both text and image modalities to select the next action. We use a

recurrent neural network (RNN) [Elman, 1990] with a long short-term memory

(LSTM) [Hochreiter and Schmidhuber, 1997] recurrence to map the instruction

x̄ = 〈x1, . . . , xn〉 to a vector representation x̄. Each token xi is mapped to a fixed

dimensional vector with the learned embedding function ψ(xi). The instruc-

tion representation x̄ is computed by applying the LSTM recurrence to gener-

ate a sequence of hidden states li = LSTM(ψ(xi), li−1), and computing the mean

x̄ = 1
n

∑n
i=1 li [Narasimhan et al., 2015]. The current image I j and previous images

I j−1,. . . ,I j−K are concatenated along the channel dimension and embedded with a

convolutional neural network (CNN) to generate the visual state v [Mnih et al.,

2013]. The last action a j−1 is embedded with the function ψa(a j−1). The vectors v j,

x̄, and ψa(a j−1) are concatenated to create the agent context vector representation

s̃ j = [v j, x̄, ψa(a j−1)].

To compute the action to execute, we use a feed-forward perceptron that de-

composes according to the domain actions. This computation selects the next

action conditioned on the instruction text and observations from both the cur-

rent world state and recent history. In the block world domain, where actions

decompose to selecting the block to move and the direction, the network com-

putes block and direction probabilities. Formally, we decompose an action a to

57

direction aD and block aB. We compute the feedforward network:

h1 = max(W(1)s̃ j + b(1), 0)

hD = W(D)h1 + b(D)

hB = W(B)h1 + b(B) ,

and the action probability is a product of the component probabilities:

P(aD
j = d | x̄, s j, a j−1) ∝ exp(hD

d)

P(aB
j = b | x̄, s j, a j−1) ∝ exp(hB

b) .

At the beginning of execution, the first action a0 is set to the special value

NONE, and previous images are zero matrices. The embedding function ψ is a

learned matrix. The function ψa concatenates the embeddings of aD
j−1 and aB

j−1,

which are obtained from learned matrices, to compute the embedding of a j−1.

The model parameters θ include W(1), b(1), W(D), b(D), W(B), b(B), the parameters of

the LSTM recurrence, the parameters of the convolutional network CNN, and

the embedding matrices. In our experiments (Section 5.6), all parameters are

learned without external resources.

5.4 Learning

We use policy gradient for reinforcement learning [Williams, 1992] to estimate

the parameters θ of the agent policy. We assume access to a training set of N ex-

amples {(x̄(i), s(i)
1 , ē

(i))}Ni=1, where x̄(i) is an instruction, s(i)
1 is a start state, and ē(i) is an

execution demonstration starting from s(i)
1 of instruction x̄(i). The main learning

challenge is learning how to execute instructions given raw visual input from

58

relatively limited data. We learn in a contextual bandit setting, which provides

theoretical advantages over general reinforcement learning. In Section 5.7, we

verify this empirically.

Reward Function The instruction execution problem defines a simple prob-

lem reward to measure task completion. The agent receives a positive reward

when the task is completed, a negative reward for incorrect completion (i.e.,

STOP in the wrong state) and actions that fail to execute (e.g., when the direc-

tion is blocked), and a small penalty otherwise, which induces a preference for

shorter trajectories. To compute the reward, we assume access to the world

state. This learning setup is inspired by work in robotics, where it is achieved

by instrumenting the training environment [Schulman et al., 2015a, Rusu et al.,

2016, Levine et al., 2016]. The agent, on the other hand, only uses the agent

context (Section 5.3). When deployed, the system relies on visual observations

and natural language instructions only. The reward function R(i) : S ×A → R is

defined for each training example (x̄(i), s(i)
1 , ē

(i)), i = 1 . . .N:

R(i)(s, a) =



1.0 if s = sm(i) and a = STOP

−1.0 s 6= sm(i) and a = STOP

−1.0 a fails to execute

−δ else

,

where m(i) is the length of ē(i).

The reward function does not provide intermediate positive feedback to the

agent for actions that bring it closer to its goal. When the agent explores ran-

domly early during learning, it is unlikely to encounter the goal state due to

59

the large number of steps required to execute tasks. As a result, the agent does

not observe positive reward and fails to learn. In Section 5.5, we describe how

reward shaping, a method to augment the reward with additional information,

is used to take advantage of the training data and address this challenge.

Policy Gradient Objective We adapt the policy gradient objective defined by

Sutton et al. [1999] to multiple starting states and reward functions:

J =
1
N

N∑
i=1

V (i)
π (s(i)

1) ,

where V (i)
π (s(i)

1) is the value given by R(i) starting from s(i)
1 under the policy π. The

summation expresses the goal of learning a behavior parameterized by natural

language instructions.

Contextual Bandit Setting In contrast to most policy gradient approaches, we

apply the objective to a contextual bandit setting where immediate reward is op-

timized rather than total expected reward. The primary theoretical advantage

of contextual bandits is much tighter sample complexity bounds when compar-

ing upper bounds for contextual bandits [Langford and Zhang, 2008] even with

an adversarial sequence of contexts [Auer et al., 2002b] to lower bounds [Krish-

namurthy et al., 2016b] or upper bounds [Kearns et al., 1999] for total reward

maximization. This property is particularly suitable for the few-sample regime

common in natural language problems. While reinforcement learning with neu-

ral network policies is known to require large amounts of training data [Mnih

et al., 2015], the limited number of training sentences constrains the diversity

and volume of agent contexts we can observe during training. Empirically, this

60

translates to poor results when optimizing the total reward (REINFORCE base-

line in Section 5.7). To derive the approximate gradient, we use the likelihood

ratio method:

∇θJ =
1
N

N∑
i=1

E[∇θ log π(s̃, a)R(i)(s, a)] ,

where reward is computed from the world state but policy is learned on the

agent context. We approximate the gradient using sampling.

This training regime, where immediate reward optimization is sufficient to

optimize policy parameters θ, is enabled by the shaped reward we introduce

in Section 5.5. While the objective is designed to work best with the shaped

reward, the algorithm remains the same for any choice of reward definition in-

cluding the original problem reward or several possibilities formed by reward

shaping.

Entropy Penalty We observe that early in training, the agent is overwhelmed

with negative reward and rarely completes the task. This results in the policy π

rapidly converging towards a suboptimal deterministic policy with an entropy

of 0. To delay premature convergence we add an entropy term to the objec-

tive [Williams and Peng, 1991, Mnih et al., 2016]. The entropy term encourages

a uniform distribution policy, and in practice stimulates exploration early dur-

ing training. The regularized gradient is:

∇θJ =
1
N

N∑
i=1

E[∇θ log π(s̃, a)R(i)(s, a) + λ∇θH(π(s̃, ·))] ,

61

Algorithm 1 Policy gradient learning

Input: Training set {(x̄(i), s(i)
1 , ē

(i))}Ni=1, learning rate µ, epochs T , horizon J, and entropy regular-
ization term λ.

Definitions: IMG(s) is a camera sensor that reports an RGB image of state s. π is a probabilistic
neural network policy parameterized by θ, as described in Section 5.3. EXECUTE(s, a) exe-
cutes the action a at the state s, and returns the new state. R(i) is the reward function for
example i. ADAM(∆) applies a per-feature learning rate to the gradient ∆ [Kingma and Ba,
2014].

Output: Policy parameters θ.
1: » Iterate over the training data.
2: for t = 1 to T , i = 1 to N do
3: I1−K , . . . , I0 = ~0
4: a0 = NONE, s1 = s(i)

1
5: j = 1
6: » Rollout up to episode limit.
7: while j ≤ J and a j 6= STOP do
8: » Observe world and construct agent context.
9: I j = IMG(s j)

10: s̃ j = (x̄(i), I j, I j−1, . . . , I j−K , ad
j−1)

11: » Sample an action from the policy.
12: a j ∼ π(s̃ j, a)
13: s j+1 = EXECUTE(s j, a j)
14: » Compute the approximate gradient.
15: ∆ j ← ∇θ log π(s̃ j, a j)R(i)(s j, a j)

+λ∇θH(π(s̃ j, ·))
16: j+ = 1
17: θ ← θ + µADAM(1

j
∑ j

j′=1 ∆ j′)

18: return θ

where H(π(s̃, ·)) is the entropy of π given the agent context s̃, λ is a hyperpa-

rameter that controls the strength of the regularization. While the entropy term

delays premature convergence, it does not eliminate it. Similar issues are ob-

served for vanilla policy gradient [Mnih et al., 2016].

Algorithm Algorithm 1 shows our learning algorithm. We iterate over the

data T times. In each epoch, for each training example (x̄(i), s(i)
1 , ē

(i)), i = 1 . . .N,

we perform a rollout using our policy to generate an execution (lines 7 - 16). The

length of the rollout is bound by J, but may be shorter if the agent selected the

STOP action. At each step j, the agent updates the agent context s̃ j (lines 9 - 10),

62

samples an action from the policy π (line 12), and executes it to generate the

new world state s j+1 (line 13). The gradient is approximated using the sampled

action with the computed reward R(i)(s j, a j) (line 15). Following each rollout, we

update the parameters θ with the mean of the gradients using ADAM [Kingma

and Ba, 2014].

5.5 Reward Shaping

Reward shaping is a method for transforming a reward function by adding a

shaping term to the problem reward. The goal is to generate more informative

updates by adding information to the reward. We use this method to leverage

the training demonstrations, a common form of supervision for training systems

that map language to actions. Reward shaping allows us to fully use this type

of supervision in a reinforcement learning framework, and effectively combine

learning from demonstrations and exploration.

Adding an arbitrary shaping term can change the optimality of policies and

modify the original problem, for example by making bad policies according to

the problem reward optimal according to the shaped function.3 Ng et al. [1999]

and Wiewiora et al. [2003] outline potential-based terms that realize sufficient

conditions for safe shaping.4 Adding a shaping term is safe if the order of poli-

cies according to the shaped reward is identical to the order according to the

original problem reward. While safe shaping only applies to optimizing the to-

tal reward, we show empirically the effectiveness of the safe shaping terms we

3For example, adding a shaping term F = −R will result in a shaped reward that is always 0,
and any policy will be trivially optimal with respect to it.

4For convenience, we briefly overview the theorems of Ng et al. [1999] and Wiewiora et al.
[2003] in Appendix B.1.

63

Low

High

Figure 5.3: Visualization of the shaping potentials for two tasks. We show
demonstrations (blue arrows), but omit instructions. To visualize the poten-
tials intensity, we assume only the target block can be moved, while rewards
and potentials are computed for any block movement. We illustrate the sparse
problem reward (left column) as a potential function and consider only its pos-
itive component, which is focused on the goal. The middle column adds the
distance-based potential. The right adds both potentials.

design in a contextual bandit setting.

We introduce two shaping terms. The final shaped reward is a sum of them

and the problem reward. Similar to the problem reward, we define example-

specific shaping terms. We modify the reward function signature as required.

Distance-based Shaping (F1) The first shaping term measures if the agent

moved closer to the goal state. We design it to be a safe potential-based term [Ng

et al., 1999]:

F(i)
1 (s j, a j, s j+1) = φ(i)

1 (s j+1) − φ(i)
1 (s j) .

The potential φ(i)
1 (s) is proportional to the negative distance from the goal state

s(i)
g . Formally, φ(i)

1 (s) = −η‖s − s(i)
g ‖, where η is a constant scaling factor, and ‖.‖ is a

64

distance metric. In the block world, the distance between two states is the sum

of the Euclidean distances between the positions of each block in the two states,

and η is the inverse of block width. The middle column in Figure 5.3 visualizes

the potential φ(i)
1 .

Trajectory-based Shaping (F2) Distance-based shaping may lead the agent to

sub-optimal states, for example when an obstacle blocks the direct path to the

goal state, and the agent must temporarily increase its distance from the goal

to bypass it. We incorporate complete trajectories by using a simplification of

the shaping term introduced by Brys et al. [2015]. Unlike F1, it requires access

to the previous state and action. It is based on the look-back advice shaping

term of Wiewiora et al. [2003], who introduced safe potential-based shaping

that considers the previous state and action. The second term is:

F(i)
2 (s j−1, a j−1, s j, a j) = φ(i)

2 (s j, a j) − φ
(i)
2 (s j−1, a j−1) .

Given ē(i) = 〈(s1, a1), . . . , (sm, am)〉, to compute the potential φ(i)
2 (s, a), we identify

the closest state s j in ē(i) to s. If η‖s j − s‖< 1 and a j = a, φ(i)
2 (s, a) = 1.0, else

φ(i)
2 (s, a) = −δ f , where δ f is a penalty parameter. We use the same distance

computation and parameter η as in F1. When the agent is in a state close to

a demonstration state, this term encourages taking the action taken in the re-

lated demonstration state. The right column in Figure 5.3 visualizes the effect

of the potential φ(i)
2 .

65

5.6 Experimental Setup

Environment We use the environment of Bisk et al. [2016b]. The original task

required predicting the source and target positions for a single block given an

instruction. In contrast, we address the task of moving blocks on the plane to

execute instructions given visual input. This requires generating the complete

sequence of actions needed to complete the instruction. The environment con-

tains up to 20 blocks marked with logos or digits. Each block can be moved

in four directions. Including the STOP action, in each step, the agent selects be-

tween 81 actions. The set of actions is constant and is not limited to the blocks

present. The transition function is deterministic. The size of each block step is

0.04 of the board size. The agent observes the board from above. We adopt a

relatively challenging setup with a large action space. While a simpler setup, for

example decomposing the problem to source and target prediction and using a

planner, is likely to perform better, we aim to minimize task-specific assump-

tions and engineering of separate modules. However, to better understand the

problem, we also report results for the decomposed task with a planner.

Data Bisk et al. [2016b] collected a corpus of instructions paired with start and

goal states. Figure 5.1 shows example instructions. The original data includes

instructions for moving one block or multiple blocks. Single-block instructions

are relatively similar to navigation instructions and referring expressions. While

they present much of the complexity of natural language understanding and

grounding, they rarely display the planning complexity of multi-block instruc-

tions, which are beyond the scope of this paper. Furthermore, the original data

does not include demonstrations. While generating demonstrations for moving

66

a single block is straightforward, disambiguating action ordering when multi-

ple blocks are moved is challenging. Therefore, we focus on instructions where

a single block changes its position between the start and goal states, and restrict

demonstration generation to move the changed block. The remaining data, and

the complexity it introduces, provide an important direction for future work.

To create demonstrations, we compute the shortest paths. While this process

may introduce noise for instructions that specify specific trajectories (e.g., move

SRI two steps north and . . .) rather than only describing the goal state, analysis of

the data shows this issue is limited. Out of 100 sampled instructions, 92 describe

the goal state rather than the trajectory. A secondary source of noise is due to

discretization of the state space. As a result, the agent often can not reach the ex-

act target position. The demonstrations error illustrates this problem (Table 5.3).

To provide task completion reward during learning, we relax the state compar-

ison, and consider states to be equal if the sum of block distances is under the

size of one block.

The corpus includes 11,871/1,719/3,177 instructions for training, develop-

ment and testing. Table 5.1 shows corpus statistic compared to the commonly

used SAIL navigation corpus [MacMahon et al., 2006, Chen and Mooney, 2011].

While the SAIL agent only observes its immediate surroundings, overall the

blocks domain provides more complex instructions. Furthermore, the SAIL en-

vironment includes only 400 states, which is insufficient for generalization with

vision input. We compare to other data sets in Appendix B.4.

Evaluation We evaluate task completion error as the sum of Euclidean dis-

tances for each block between its position at the end of the execution and in

67

SAIL Blocks
Number of instructions 3,237 16,767
Mean instruction length 7.96 15.27

Vocabulary 563 1,426
Mean trajectory length 3.12 15.4

Table 5.1: Corpus statistics for the block environment we use and the SAIL nav-
igation domain.

the gold goal state. We divide distances by block size to normalize for the im-

age size. In contrast, Bisk et al. [2016b] evaluate the selection of the source and

target positions independently.

Systems We report performance of ablations, the upper bound of follow-

ing the demonstrations (Demonstrations), and five baselines: (a) STOP: the

agent immediately stops, (b) RANDOM: the agent takes random actions,

(c) SUPERVISED: supervised learning with maximum-likelihood estimate using

demonstration state-action pairs, (d) DQN: deep Q-learning with both shaping

terms [Mnih et al., 2015], and (e) REINFORCE: policy gradient with cumula-

tive episodic reward with both shaping terms [Sutton et al., 1999]. Full system

details are given in Appendix B.2.

Parameters and Initialization Full details are in Appendix B.3. We consider

K = 4 previous images, and horizon length J = 40. We initialize our model with

the SUPERVISED model.

68

Algorithm Distance Error Min. Distance
Mean Med. Mean Med.

Demonstrations 0.35 0.30 0.35 0.30
Baselines
STOP 5.95 5.71 5.95 5.71
RANDOM 15.3 15.70 5.92 5.70
SUPERVISED 4.65 4.45 3.72 3.26
REINFORCE 5.57 5.29 4.50 4.25
DQN 6.04 5.78 5.63 5.49
Our Approach 3.60 3.09 2.72 2.21

w/o Sup. Init 3.78 3.13 2.79 2.21
w/o Prev. Action 3.95 3.44 3.20 2.56
w/o F1 4.33 3.74 3.29 2.64
w/o F2 3.74 3.11 3.13 2.49
w/ Distance Reward 8.36 7.82 5.91 5.70

Ensembles
SUPERVISED 4.64 4.27 3.69 3.22
REINFORCE 5.28 5.23 4.75 4.67
DQN 5.85 5.59 5.60 5.46
Our Approach 3.59 3.03 2.63 2.15

Table 5.2: Mean and median (Med.) development results.

Algorithm Distance Error Min. Distance
Mean Med. Mean Med.

Demonstrations 0.37 0.31 0.37 0.31
STOP 6.23 6.12 6.23 6.12
RANDOM 15.11 15.35 6.21 6.09
Ensembles
SUPERVISED 4.95 4.53 3.82 3.33
REINFORCE 5.69 5.57 5.11 4.99
DQN 6.15 5.97 5.86 5.77
Our Approach 3.78 3.14 2.83 2.07

Table 5.3: Mean and median (Med.) test results.

5.7 Results

Table 5.2 shows development results. We run each experiment three times and

report the best result. The RANDOM and STOP baselines illustrate the task com-

plexity of the task. Our approach, including both shaping terms in a contex-

tual bandit setting, significantly outperforms the other methods. SUPERVISED

learning demonstrates lower performance. A likely explanation is test-time ex-

69

ecution errors leading to unfamiliar states with poor later performance [Kakade

and Langford, 2002], a form of the covariate shift problem. The low performance

of REINFORCE and DQN illustrates the challenge of general reinforcement

learning with limited data due to relatively high sample complexity [Kearns

et al., 1999, Krishnamurthy et al., 2016b]. We also report results using ensem-

bles of the three models.

We ablate different parts of our approach. Ablations of supervised initial-

ization (our approach w/o sup. init) or the previous action (our approach w/o

prev. action) result in increase in error. While the contribution of initialization

is modest, it provides faster learning. On average, after two epochs, we observe

an error of 3.94 with initialization and 6.01 without. We hypothesize that the F2

shaping term, which uses full demonstrations, helps to narrow the gap at the

end of learning. Without supervised initialization and F2, the error increases to

5.45 (the 0% point in Figure 5.4). We observe the contribution of each shaping

term and their combination. To study the benefit of potential-based shaping,

we experiment with a negative distance-to-goal reward. This reward replaces

the problem reward and encourages getting closer to the goal (our approach

w/distance reward). With this reward, learning fails to converge, leading to a

relatively high error.

Figure 5.4 shows our approach with varying amount of supervision. We re-

move demonstrations from both supervised initialization and the F2 shaping

term. For example, when only 25% are available, only 25% of the data is avail-

able for initialization and the F2 term is only present for this part of the data.

While some demonstrations are necessary for effective learning, we get most of

the benefit with only 12.5%.

70

0 10 20 30 40 50 60 70 80 90 100
3.5

4

4.5

5

5.5

% Demonstrations

M
ea

n
Er

ro
r

Figure 5.4: Mean distance error as a function of the ratio of training examples
that include complete trajectories. The rest of the data includes the goal state
only.

Table 5.3 provides test results, using the ensembles to decrease the risk of

overfitting the development. We observe similar trends to development re-

sult with our approach outperforming all baselines. The remaining gap to the

demonstrations upper bound illustrates the need for future work.

To understand performance better, we measure minimal distance (min. dis-

tance in Tables 5.2 and 5.3), the closest the agent got to the goal. We observe a

strong trend: the agent often gets close to the goal and fails to stop. This be-

havior is also reflected in the number of steps the agent takes. While the mean

number of steps in development demonstrations is 15.2, the agent generates on

average 28.7 steps, and 55.2% of the time it takes the maximum number of al-

lowed steps (40). Testing on the training data shows an average 21.75 steps and

exhausts the number of steps 29.3% of the time. The mean number of steps in

training demonstrations is 15.5. This illustrates the challenge of learning how

to be behave at an absorbing state, which is observed relatively rarely during

training. This behavior also shows in our video.5

5https://github.com/clic-lab/blocks

71

We also evaluate a supervised learning variant that assumes a perfect plan-

ner.6 This setup is similar to Bisk et al. [2016b], except using raw image input.

It allows us to roughly understand how well the agent generates actions. We

observe a mean error of 2.78 on the development set, an improvement of al-

most two points over supervised learning with our approach. This illustrates

the complexity of the complete problem.

We conduct a shallow linguistic analysis to understand the agent behavior

with regard to differences in the language input. As expected, the agent is sen-

sitive to unknown words. For instructions without unknown words, the mean

development error is 3.49. It increases to 3.97 for instructions with a single un-

known word, and to 4.19 for two.7 We also study the agent behavior when

observing new phrases composed of known words by looking at instructions

with new n-grams and no unknown words. We observe no significant corre-

lation between performance and new bi-grams and tri-grams. We also see no

meaningful correlation between instruction length and performance. Although

counterintuitive given the linguistic complexities of longer instructions, it aligns

with results in machine translation [Luong et al., 2015].

5.8 Conclusions

We study the problem of learning to execute instructions in a situated envi-

ronment given only raw visual observations. Supervised approaches do not

explore adequately to handle test time errors, and reinforcement learning ap-

6As there is no sequence of decisions, our reinforcement approach is not appropriate for the
planner experiment. The architecture details are described in Appendix B.2.

7This trend continues, although the number of instructions is too low (< 20) to be reliable.

72

proaches require a large number of samples for good convergence. Our solution

provides an effective combination of both approaches: reward shaping to create

relatively stable optimization in a contextual bandit setting, which takes advan-

tage of a signal similar to supervised learning, with a reinforcement basis that

admits substantial exploration and easy avenues for smart initialization. This

combination is designed for a few-samples regime, as we address. When the

number of samples is unbounded, the drawbacks observed in this scenario for

optimizing longer term reward do not hold.

73

CHAPTER 6

AN INTERPRETABLE MODEL FOR INSTRUCTION FOLLOWING

6.1 Introduction

Executing instructions in interactive environments requires mapping natural

language and observations to actions. Recent approaches propose learning to

directly map from inputs to actions, for example given language and either

structured observations [Mei et al., 2016a, Suhr and Artzi, 2018] or raw visual

observations [Misra et al., 2017, Xiong et al., 2018]. Rather than using a com-

bination of models, these approaches learn a single model to solve language,

perception, and planning challenges. This reduces the amount of engineering

required and eliminates the need for hand-crafted meaning representations. At

each step, the agent maps its current inputs to the next action using a single

learned function that is executed repeatedly until task completion.

Although executing the same computation at each step simplifies modeling,

it exemplifies certain inefficiencies; while the agent needs to decide what action

to take at each step, identifying its goal is only required once every several steps

or even once per execution. The left instruction in Figure 6.1 illustrates this. The

agent can compute its goal once given the initial observation, and given this

goal can then generate the actions required. In this paper, we study a new model

that explicitly distinguishes between goal selection and action generation, and

introduce two instruction following benchmark tasks to evaluate it.

Our model decomposes into goal prediction and action generation. Given

a natural language instruction and system observations, the model predicts the

74

After reaching the hydrant head towards the
blue fence and pass towards the right side of
the well.

Put the cereal, the sponge, and the dishwash-
ing soap into the cupboard above the sink.

Figure 6.1: Example instructions from our two tasks: LANI (left) and CHAI
(right). LANI is a landmark navigation task, and CHAI is a corpus of instruc-
tions in the CHALET environment.

goal to complete. Given the goal, the model generates a sequence of actions.

The key challenge we address is designing the goal representation. We

avoid manually designing a meaning representation, and predict the goal in

the agent’s observation space. Given the image of the environment the agent

observes, we generate a probability distribution over the image to highlight the

goal location. We treat this prediction as image generation, and develop LIN-

GUNET, a language conditioned variant of the UNETimage-to-image architec-

ture [Ronneberger et al., 2015]. Given the visual goal prediction, we generate

actions using a recurrent neural network (RNN).

Our model decomposition offers two key advantages. First, we can use dif-

ferent learning methods as appropriate for the goal prediction and action gener-

ation problems. We find supervised learning more effective for goal prediction,

where only a limited amount of natural language data is available. For action

75

generation, where exploration is critical, we use policy gradient in a contex-

tual bandit setting [Misra et al., 2017]. Second, the goal distribution is easily

interpretable by overlaying it on the agent observations. This can be used to

increase the safety of physical systems by letting the user verify the goal before

any action is executed. Despite the decomposition, our approach retains the

advantages of the single-model approach. It does not require designing inter-

mediate representations, and training does not rely on external resources, such

as pre-trained parsers or object detectors, instead using demonstrations only.

We introduce two new benchmark tasks with different levels of complexity

of goal prediction and action generation. LANI is a 3D navigation environment

and corpus, where an agent navigates between landmarks. The corpus includes

6,000 sequences of natural language instructions, each containing on average 4.7

instructions. CHAI is a corpus of 1,596 instruction sequences, each including 7.7

instructions on average, for CHALET, a 3D house environment [Yan et al., 2018].

Instructions combine navigation and simple manipulation, including moving

objects and opening containers. Both tasks require solving language challenges,

including spatial and temporal reasoning, as well as complex perception and

planning problems. While LANI provides a task where most instructions in-

clude a single goal, the CHAI instructions often require multiple intermediate

goals. For example, the household instruction in Figure 6.1 can be decomposed

to eight goals: opening the cupboard, picking each item and moving it to the

cupboard, and closing the cupboard. Achieving each goal requires multiple ac-

tions of different types, including moving and acting on objects. This allows

us to experiment with a simple variation of our model to generate intermediate

goals.

76

We compare our approach to multiple recent methods. Experiments on the

LANI navigation task indicate that decomposing goal prediction and action gen-

eration significantly improves instruction execution performance. While we ob-

serve similar trends on the CHAI instructions, results are overall weaker, illus-

trating the complexity of the task. We also observe that inherent ambiguities in

instruction following make exact goal identification difficult, as demonstrated

by imperfect human performance. However, the gap to human-level perfor-

mance still remains large across both tasks. Our code and data are available at

https://github.com/clic-lab/ciff.

6.2 Technical Overview

Task Let X be the set of all instructions, S the set of all world states, and A the

set of all actions. An instruction x̄ ∈ X is a sequence 〈x1, . . . , xn〉, where each xi

is a token. The agent executes instructions by generating a sequence of actions,

and indicates execution completion with the special action STOP.

The sets of actions A and states S are domain specific. In the navigation

domain LANI, the actions include moving the agent and changing its orienta-

tion. The state information includes the position and orientation of the agent

and the different landmarks. The agent actions in the CHALET house environ-

ment include moving and changing the agent orientation, as well as an object

interaction action. The state encodes the position and orientation of the agent

and all objects in the house. For interactive objects, the state also includes their

status, for example if a drawer is open or closed. In both domains, the actions

are discrete. The domains are described in Section 6.5.

77

Model The agent does not observe the world state directly, but instead ob-

serves its pose and an RGB image of the environment from its point of view. We

define these observations as the agent context s̃. An agent model is a function

from an agent context s̃ to an action a ∈ A. We model goal prediction as predict-

ing a probability distribution over the agent visual observations, representing

the likelihood of locations or objects in the environment being target positions

or objects to be acted on. Our model is described in Section 6.3.

Learning We assume access to training data with N examples {(x̄(i), s(i)
1 , s

(i)
g)}Ni=1,

where x̄(i) is an instruction, s(i)
1 is a start state, and s(i)

g is the goal state. We decom-

pose learning; training goal prediction using supervised learning, and action

generation using oracle goals with policy gradient in a contextual bandit set-

ting. We assume an instrumented environment with access to the world state,

which is used to compute rewards during training only. Learning is described

in Section 6.4.

Evaluation We evaluate task performance on a test set {(x̄(i), s(i)
1 , s

(i)
g)}Mi=1, where

x̄(i) is an instruction, s(i)
1 is a start state, and s(i)

g is the goal state. We evaluate task

completion accuracy and the distance of the agent’s final state to s(i)
g .

6.3 Model

We model the agent policy as a neural network. The agent observes the world

state st at time t as an RGB image It. The agent context s̃t, the information avail-

able to the agent to select the next action at, is a tuple (x̄, IP, 〈(I1, p1), . . . , (It, pt)〉),

78

Goal Distribution Pg
<latexit sha1_base64="H9hvm1brwPvdeS5uvJg4NXp6gwY=">AAACOnicbVDPaxNBGJ2tWutaNdGjHgaD0FPYFUGPgRbsMULTBLJLmJ39kgyZH8vMt2pY9tK/pld77j/Sa2+l1/4BnU1y0MQHA4/3vm/ezMsKKRxG0U2w9+Tps/3nBy/Cl4evXr9ptd+eO1NaDgNupLGjjDmQQsMABUoYFRaYyiQMs8Vx4w9/gnXC6DNcFpAqNtNiKjhDL01aHxKE31h9N0zSEx9nRVY2Dq37k9mk1Ym60Qp0l8Qb0iEb9CftYD/JDS8VaOSSOTeOowLTilkUXEIdJqWDgvEFm8HYU80UuLRafaOmn7yS06mx/mikK/XvjYop55Yq85OK4dxte434Xy93zYVb6Tj9llZCFyWC5uvwaSkpGtr0RHNhgaNcesK4Ff79lM+ZZRx9m2GYWNDwixulmM6rhNfjOK2qxCraies69M3F2z3tkvPP3Tjqxj++dHrRpsMD8p58JEckJl9Jj5ySPhkQTi7IJflDroLr4Da4C+7Xo3vBZucd+QfBwyMkUayW</latexit><latexit sha1_base64="H9hvm1brwPvdeS5uvJg4NXp6gwY=">AAACOnicbVDPaxNBGJ2tWutaNdGjHgaD0FPYFUGPgRbsMULTBLJLmJ39kgyZH8vMt2pY9tK/pld77j/Sa2+l1/4BnU1y0MQHA4/3vm/ezMsKKRxG0U2w9+Tps/3nBy/Cl4evXr9ptd+eO1NaDgNupLGjjDmQQsMABUoYFRaYyiQMs8Vx4w9/gnXC6DNcFpAqNtNiKjhDL01aHxKE31h9N0zSEx9nRVY2Dq37k9mk1Ym60Qp0l8Qb0iEb9CftYD/JDS8VaOSSOTeOowLTilkUXEIdJqWDgvEFm8HYU80UuLRafaOmn7yS06mx/mikK/XvjYop55Yq85OK4dxte434Xy93zYVb6Tj9llZCFyWC5uvwaSkpGtr0RHNhgaNcesK4Ff79lM+ZZRx9m2GYWNDwixulmM6rhNfjOK2qxCraies69M3F2z3tkvPP3Tjqxj++dHrRpsMD8p58JEckJl9Jj5ySPhkQTi7IJflDroLr4Da4C+7Xo3vBZucd+QfBwyMkUayW</latexit><latexit sha1_base64="H9hvm1brwPvdeS5uvJg4NXp6gwY=">AAACOnicbVDPaxNBGJ2tWutaNdGjHgaD0FPYFUGPgRbsMULTBLJLmJ39kgyZH8vMt2pY9tK/pld77j/Sa2+l1/4BnU1y0MQHA4/3vm/ezMsKKRxG0U2w9+Tps/3nBy/Cl4evXr9ptd+eO1NaDgNupLGjjDmQQsMABUoYFRaYyiQMs8Vx4w9/gnXC6DNcFpAqNtNiKjhDL01aHxKE31h9N0zSEx9nRVY2Dq37k9mk1Ym60Qp0l8Qb0iEb9CftYD/JDS8VaOSSOTeOowLTilkUXEIdJqWDgvEFm8HYU80UuLRafaOmn7yS06mx/mikK/XvjYop55Yq85OK4dxte434Xy93zYVb6Tj9llZCFyWC5uvwaSkpGtr0RHNhgaNcesK4Ff79lM+ZZRx9m2GYWNDwixulmM6rhNfjOK2qxCraies69M3F2z3tkvPP3Tjqxj++dHrRpsMD8p58JEckJl9Jj5ySPhkQTi7IJflDroLr4Da4C+7Xo3vBZucd+QfBwyMkUayW</latexit><latexit sha1_base64="H9hvm1brwPvdeS5uvJg4NXp6gwY=">AAACOnicbVDPaxNBGJ2tWutaNdGjHgaD0FPYFUGPgRbsMULTBLJLmJ39kgyZH8vMt2pY9tK/pld77j/Sa2+l1/4BnU1y0MQHA4/3vm/ezMsKKRxG0U2w9+Tps/3nBy/Cl4evXr9ptd+eO1NaDgNupLGjjDmQQsMABUoYFRaYyiQMs8Vx4w9/gnXC6DNcFpAqNtNiKjhDL01aHxKE31h9N0zSEx9nRVY2Dq37k9mk1Ym60Qp0l8Qb0iEb9CftYD/JDS8VaOSSOTeOowLTilkUXEIdJqWDgvEFm8HYU80UuLRafaOmn7yS06mx/mikK/XvjYop55Yq85OK4dxte434Xy93zYVb6Tj9llZCFyWC5uvwaSkpGtr0RHNhgaNcesK4Ff79lM+ZZRx9m2GYWNDwixulmM6rhNfjOK2qxCraies69M3F2z3tkvPP3Tjqxj++dHrRpsMD8p58JEckJl9Jj5ySPhkQTi7IJflDroLr4Da4C+7Xo3vBZucd+QfBwyMkUayW</latexit>

Panorama Image Ip
<latexit sha1_base64="35GceGCyb6GcrBDknTtJ55cXDkI=">AAACQHicbVA9b9RAEF0nEBLzdYEyzSonJKqTjZBCGSkN6Q6JSyKdrdN4PSar7Ie1O4acVu75NbRQ8y/4B+kQLRXryxVwYaSVnt6bmTf7qlZJT1n2I9navnd/58HuXvrw0eMnT0f7z8687ZzAmbDKuosKPCppcEaSFF60DkFXCs+rq5NBP/+Izktr3tOyxVLDByMbKYAitRgdFoTXFKZgrAMN/DTqyPtCA11WTTjtF+1iNM4m2ar4XZCvwZita7rYT3aK2opOoyGhwPt5nrVUBnAkhcI+LTqPLYiraDWP0IBGX4bVZ3r+IjI1b6yLzxBfsX9PBNDeL3UVO4cj/aY2kP/Vaj8s3HCn5k0ZpGk7QiNuzZtOcbJ8SIvX0qEgtYwAhJPxfi4uwYGgmGmaFg4NfhJWazB1KEQ/z8sQCqf5OO/7NCaXb+Z0F5y9muTZJH/3enycrTPcZQfskL1kOTtix+wtm7IZE+wz+8K+sm/J9+Qm+Zn8um3dStYzz9k/lfz+A1O5ryk=</latexit><latexit sha1_base64="35GceGCyb6GcrBDknTtJ55cXDkI=">AAACQHicbVA9b9RAEF0nEBLzdYEyzSonJKqTjZBCGSkN6Q6JSyKdrdN4PSar7Ie1O4acVu75NbRQ8y/4B+kQLRXryxVwYaSVnt6bmTf7qlZJT1n2I9navnd/58HuXvrw0eMnT0f7z8687ZzAmbDKuosKPCppcEaSFF60DkFXCs+rq5NBP/+Izktr3tOyxVLDByMbKYAitRgdFoTXFKZgrAMN/DTqyPtCA11WTTjtF+1iNM4m2ar4XZCvwZita7rYT3aK2opOoyGhwPt5nrVUBnAkhcI+LTqPLYiraDWP0IBGX4bVZ3r+IjI1b6yLzxBfsX9PBNDeL3UVO4cj/aY2kP/Vaj8s3HCn5k0ZpGk7QiNuzZtOcbJ8SIvX0qEgtYwAhJPxfi4uwYGgmGmaFg4NfhJWazB1KEQ/z8sQCqf5OO/7NCaXb+Z0F5y9muTZJH/3enycrTPcZQfskL1kOTtix+wtm7IZE+wz+8K+sm/J9+Qm+Zn8um3dStYzz9k/lfz+A1O5ryk=</latexit><latexit sha1_base64="35GceGCyb6GcrBDknTtJ55cXDkI=">AAACQHicbVA9b9RAEF0nEBLzdYEyzSonJKqTjZBCGSkN6Q6JSyKdrdN4PSar7Ie1O4acVu75NbRQ8y/4B+kQLRXryxVwYaSVnt6bmTf7qlZJT1n2I9navnd/58HuXvrw0eMnT0f7z8687ZzAmbDKuosKPCppcEaSFF60DkFXCs+rq5NBP/+Izktr3tOyxVLDByMbKYAitRgdFoTXFKZgrAMN/DTqyPtCA11WTTjtF+1iNM4m2ar4XZCvwZita7rYT3aK2opOoyGhwPt5nrVUBnAkhcI+LTqPLYiraDWP0IBGX4bVZ3r+IjI1b6yLzxBfsX9PBNDeL3UVO4cj/aY2kP/Vaj8s3HCn5k0ZpGk7QiNuzZtOcbJ8SIvX0qEgtYwAhJPxfi4uwYGgmGmaFg4NfhJWazB1KEQ/z8sQCqf5OO/7NCaXb+Z0F5y9muTZJH/3enycrTPcZQfskL1kOTtix+wtm7IZE+wz+8K+sm/J9+Qm+Zn8um3dStYzz9k/lfz+A1O5ryk=</latexit><latexit sha1_base64="35GceGCyb6GcrBDknTtJ55cXDkI=">AAACQHicbVA9b9RAEF0nEBLzdYEyzSonJKqTjZBCGSkN6Q6JSyKdrdN4PSar7Ie1O4acVu75NbRQ8y/4B+kQLRXryxVwYaSVnt6bmTf7qlZJT1n2I9navnd/58HuXvrw0eMnT0f7z8687ZzAmbDKuosKPCppcEaSFF60DkFXCs+rq5NBP/+Izktr3tOyxVLDByMbKYAitRgdFoTXFKZgrAMN/DTqyPtCA11WTTjtF+1iNM4m2ar4XZCvwZita7rYT3aK2opOoyGhwPt5nrVUBnAkhcI+LTqPLYiraDWP0IBGX4bVZ3r+IjI1b6yLzxBfsX9PBNDeL3UVO4cj/aY2kP/Vaj8s3HCn5k0ZpGk7QiNuzZtOcbJ8SIvX0qEgtYwAhJPxfi4uwYGgmGmaFg4NfhJWazB1KEQ/z8sQCqf5OO/7NCaXb+Z0F5y9muTZJH/3enycrTPcZQfskL1kOTtix+wtm7IZE+wz+8K+sm/J9+Qm+Zn8um3dStYzz9k/lfz+A1O5ryk=</latexit>

Turn left and go to the red oil drum
Instruction x̄

<latexit sha1_base64="ZFqoLXYV7sidPXV0CZJWQzVe7i4=">AAACOHicbVDBahsxENWmSZps2sZpb+lFxAR6CGY3BJqjoZf2lkKcGLyL0WrHsbCkXaTZxkYs9Gt6bc/9k95yC732C6J19tDYeTDweG9Go3lZKYXFKPoTbLzY3Np+ubMb7r16/Wa/c/D2yhaV4TDghSzMMGMWpNAwQIEShqUBpjIJ19nsU+NffwNjRaEvcVFCqtiNFhPBGXpp3DlMEObovmiLpuKNRuskY8bN63GnG/WiJeg6iVvSJS0uxgfBdpIXvFKgkUtm7SiOSkwdMyi4hDpMKgsl4zN2AyNPNVNgU7c8oqbHXsnppDC+NNKl+v+EY8rahcp8p2I4tateIz7r5bZ5cGU7Ts5TJ3RZIWj+uHxSSYoFbVKiuTDAUS48YdwI/3/Kp8wwjj7LMEwMaLjlhVJM5y7h9ShOnUuMot24rkOfXLya0zq5Ou3FUS/+etbtn7QZ7pD35Ih8IDH5SPrkM7kgA8LJd/KD/CS/gt/BXXAf/H1s3QjamXfkCYJ/D6QrrGg=</latexit><latexit sha1_base64="ZFqoLXYV7sidPXV0CZJWQzVe7i4=">AAACOHicbVDBahsxENWmSZps2sZpb+lFxAR6CGY3BJqjoZf2lkKcGLyL0WrHsbCkXaTZxkYs9Gt6bc/9k95yC732C6J19tDYeTDweG9Go3lZKYXFKPoTbLzY3Np+ubMb7r16/Wa/c/D2yhaV4TDghSzMMGMWpNAwQIEShqUBpjIJ19nsU+NffwNjRaEvcVFCqtiNFhPBGXpp3DlMEObovmiLpuKNRuskY8bN63GnG/WiJeg6iVvSJS0uxgfBdpIXvFKgkUtm7SiOSkwdMyi4hDpMKgsl4zN2AyNPNVNgU7c8oqbHXsnppDC+NNKl+v+EY8rahcp8p2I4tateIz7r5bZ5cGU7Ts5TJ3RZIWj+uHxSSYoFbVKiuTDAUS48YdwI/3/Kp8wwjj7LMEwMaLjlhVJM5y7h9ShOnUuMot24rkOfXLya0zq5Ou3FUS/+etbtn7QZ7pD35Ih8IDH5SPrkM7kgA8LJd/KD/CS/gt/BXXAf/H1s3QjamXfkCYJ/D6QrrGg=</latexit><latexit sha1_base64="ZFqoLXYV7sidPXV0CZJWQzVe7i4=">AAACOHicbVDBahsxENWmSZps2sZpb+lFxAR6CGY3BJqjoZf2lkKcGLyL0WrHsbCkXaTZxkYs9Gt6bc/9k95yC732C6J19tDYeTDweG9Go3lZKYXFKPoTbLzY3Np+ubMb7r16/Wa/c/D2yhaV4TDghSzMMGMWpNAwQIEShqUBpjIJ19nsU+NffwNjRaEvcVFCqtiNFhPBGXpp3DlMEObovmiLpuKNRuskY8bN63GnG/WiJeg6iVvSJS0uxgfBdpIXvFKgkUtm7SiOSkwdMyi4hDpMKgsl4zN2AyNPNVNgU7c8oqbHXsnppDC+NNKl+v+EY8rahcp8p2I4tateIz7r5bZ5cGU7Ts5TJ3RZIWj+uHxSSYoFbVKiuTDAUS48YdwI/3/Kp8wwjj7LMEwMaLjlhVJM5y7h9ShOnUuMot24rkOfXLya0zq5Ou3FUS/+etbtn7QZ7pD35Ih8IDH5SPrkM7kgA8LJd/KD/CS/gt/BXXAf/H1s3QjamXfkCYJ/D6QrrGg=</latexit><latexit sha1_base64="ZFqoLXYV7sidPXV0CZJWQzVe7i4=">AAACOHicbVDBahsxENWmSZps2sZpb+lFxAR6CGY3BJqjoZf2lkKcGLyL0WrHsbCkXaTZxkYs9Gt6bc/9k95yC732C6J19tDYeTDweG9Go3lZKYXFKPoTbLzY3Np+ubMb7r16/Wa/c/D2yhaV4TDghSzMMGMWpNAwQIEShqUBpjIJ19nsU+NffwNjRaEvcVFCqtiNFhPBGXpp3DlMEObovmiLpuKNRuskY8bN63GnG/WiJeg6iVvSJS0uxgfBdpIXvFKgkUtm7SiOSkwdMyi4hDpMKgsl4zN2AyNPNVNgU7c8oqbHXsnppDC+NNKl+v+EY8rahcp8p2I4tateIz7r5bZ5cGU7Ts5TJ3RZIWj+uHxSSYoFbVKiuTDAUS48YdwI/3/Kp8wwjj7LMEwMaLjlhVJM5y7h9ShOnUuMot24rkOfXLya0zq5Ou3FUS/+etbtn7QZ7pD35Ih8IDH5SPrkM7kgA8LJd/KD/CS/gt/BXXAf/H1s3QjamXfkCYJ/D6QrrGg=</latexit>

Instruction Representation x̄
<latexit sha1_base64="x2PFw/gXwUPLFaAH8VakCxOPUp4=">AAACUHicbVBNT9wwEJ0slNL0g6U99mKxqtRDtUoQEhyRuMCNVl1A2kQrx5mAhe1E9oSysvI/+mt6pWdu/Se9tc6yldqlT7L89OZ5ZvyKRklHSfIjGqytP9l4uvksfv7i5aut4fbrM1e3VuBE1Kq2FwV3qKTBCUlSeNFY5LpQeF5cH/X18xu0TtbmM80bzDW/NLKSglOQZsPdjPCW/IlxZFvRa+wThg4ODS0srMs0p6ui8lnBrb/tutlwlIyTBdhjki7JCJY4nW1HG1lZi1aHnkJx56Zp0lDuuSUpFHZx1jpsuLjmlzgN1HCNLveLz3XsXVBKVtU2HENsof79wnPt3FwXwdkv6lZrvfjfWun6hivTqTrIvTRNS2jEw/CqVYxq1qfHSmlRkJoHwoWVYX8mrrjlgkLGcZxZNPhF1FpzU/pMdNM09z6zmo3SrotDculqTo/J2e44Tcbpx73R4YdlhpvwFnbgPaSwD4dwDKcwAQFf4RvcwffoPvoZ/RpED9Y/N7yBfzCIfwM1CrUT</latexit><latexit sha1_base64="x2PFw/gXwUPLFaAH8VakCxOPUp4=">AAACUHicbVBNT9wwEJ0slNL0g6U99mKxqtRDtUoQEhyRuMCNVl1A2kQrx5mAhe1E9oSysvI/+mt6pWdu/Se9tc6yldqlT7L89OZ5ZvyKRklHSfIjGqytP9l4uvksfv7i5aut4fbrM1e3VuBE1Kq2FwV3qKTBCUlSeNFY5LpQeF5cH/X18xu0TtbmM80bzDW/NLKSglOQZsPdjPCW/IlxZFvRa+wThg4ODS0srMs0p6ui8lnBrb/tutlwlIyTBdhjki7JCJY4nW1HG1lZi1aHnkJx56Zp0lDuuSUpFHZx1jpsuLjmlzgN1HCNLveLz3XsXVBKVtU2HENsof79wnPt3FwXwdkv6lZrvfjfWun6hivTqTrIvTRNS2jEw/CqVYxq1qfHSmlRkJoHwoWVYX8mrrjlgkLGcZxZNPhF1FpzU/pMdNM09z6zmo3SrotDculqTo/J2e44Tcbpx73R4YdlhpvwFnbgPaSwD4dwDKcwAQFf4RvcwffoPvoZ/RpED9Y/N7yBfzCIfwM1CrUT</latexit><latexit sha1_base64="x2PFw/gXwUPLFaAH8VakCxOPUp4=">AAACUHicbVBNT9wwEJ0slNL0g6U99mKxqtRDtUoQEhyRuMCNVl1A2kQrx5mAhe1E9oSysvI/+mt6pWdu/Se9tc6yldqlT7L89OZ5ZvyKRklHSfIjGqytP9l4uvksfv7i5aut4fbrM1e3VuBE1Kq2FwV3qKTBCUlSeNFY5LpQeF5cH/X18xu0TtbmM80bzDW/NLKSglOQZsPdjPCW/IlxZFvRa+wThg4ODS0srMs0p6ui8lnBrb/tutlwlIyTBdhjki7JCJY4nW1HG1lZi1aHnkJx56Zp0lDuuSUpFHZx1jpsuLjmlzgN1HCNLveLz3XsXVBKVtU2HENsof79wnPt3FwXwdkv6lZrvfjfWun6hivTqTrIvTRNS2jEw/CqVYxq1qfHSmlRkJoHwoWVYX8mrrjlgkLGcZxZNPhF1FpzU/pMdNM09z6zmo3SrotDculqTo/J2e44Tcbpx73R4YdlhpvwFnbgPaSwD4dwDKcwAQFf4RvcwffoPvoZ/RpED9Y/N7yBfzCIfwM1CrUT</latexit><latexit sha1_base64="x2PFw/gXwUPLFaAH8VakCxOPUp4=">AAACUHicbVBNT9wwEJ0slNL0g6U99mKxqtRDtUoQEhyRuMCNVl1A2kQrx5mAhe1E9oSysvI/+mt6pWdu/Se9tc6yldqlT7L89OZ5ZvyKRklHSfIjGqytP9l4uvksfv7i5aut4fbrM1e3VuBE1Kq2FwV3qKTBCUlSeNFY5LpQeF5cH/X18xu0TtbmM80bzDW/NLKSglOQZsPdjPCW/IlxZFvRa+wThg4ODS0srMs0p6ui8lnBrb/tutlwlIyTBdhjki7JCJY4nW1HG1lZi1aHnkJx56Zp0lDuuSUpFHZx1jpsuLjmlzgN1HCNLveLz3XsXVBKVtU2HENsof79wnPt3FwXwdkv6lZrvfjfWun6hivTqTrIvTRNS2jEw/CqVYxq1qfHSmlRkJoHwoWVYX8mrrjlgkLGcZxZNPhF1FpzU/pMdNM09z6zmo3SrotDculqTo/J2e44Tcbpx73R4YdlhpvwFnbgPaSwD4dwDKcwAQFf4RvcwffoPvoZ/RpED9Y/N7yBfzCIfwM1CrUT</latexit>

Softmax
<latexit sha1_base64="63jpuE/m3WPWMl01L8PiX0SQV5w=">AAACKnicbVC7SsRAFJ34Nr61tBlcBKslEUHLBRtLRVeFTZTJ5EYH5xFmbtQl5D9stfZr7MTWD3F23UJXD1w4nHNfnKyUwmEUvQcTk1PTM7Nz8+HC4tLyyura+rkzleXQ5UYae5kxB1Jo6KJACZelBaYyCRfZ3eHAv7gH64TRZ9gvIVXsRotCcIZeukoQHrE+NQUq9thcr7aidjQE/UviEWmREY6v14KZJDe8UqCRS+ZcL45KTGtmUXAJTZhUDkrG79gN9DzVTIFL6+HbDd32Sk4LY31ppEP150TNlHN9lflOxfDWjXsD8V8vd4OFY9exOEhrocsKQfPv40UlKRo6yIXmwgJH2feEcSv8/5TfMss4+vTCMLGg4YEbpZjO64Q3vTit68Qq2oqbJvTJxeM5/SXnu+04ascne61ONMpwjmySLbJDYrJPOuSIHJMu4cSSJ/JMXoLX4C14Dz6+WyeC0cwG+YXg8wudkabi</latexit><latexit sha1_base64="63jpuE/m3WPWMl01L8PiX0SQV5w=">AAACKnicbVC7SsRAFJ34Nr61tBlcBKslEUHLBRtLRVeFTZTJ5EYH5xFmbtQl5D9stfZr7MTWD3F23UJXD1w4nHNfnKyUwmEUvQcTk1PTM7Nz8+HC4tLyyura+rkzleXQ5UYae5kxB1Jo6KJACZelBaYyCRfZ3eHAv7gH64TRZ9gvIVXsRotCcIZeukoQHrE+NQUq9thcr7aidjQE/UviEWmREY6v14KZJDe8UqCRS+ZcL45KTGtmUXAJTZhUDkrG79gN9DzVTIFL6+HbDd32Sk4LY31ppEP150TNlHN9lflOxfDWjXsD8V8vd4OFY9exOEhrocsKQfPv40UlKRo6yIXmwgJH2feEcSv8/5TfMss4+vTCMLGg4YEbpZjO64Q3vTit68Qq2oqbJvTJxeM5/SXnu+04ascne61ONMpwjmySLbJDYrJPOuSIHJMu4cSSJ/JMXoLX4C14Dz6+WyeC0cwG+YXg8wudkabi</latexit><latexit sha1_base64="63jpuE/m3WPWMl01L8PiX0SQV5w=">AAACKnicbVC7SsRAFJ34Nr61tBlcBKslEUHLBRtLRVeFTZTJ5EYH5xFmbtQl5D9stfZr7MTWD3F23UJXD1w4nHNfnKyUwmEUvQcTk1PTM7Nz8+HC4tLyyura+rkzleXQ5UYae5kxB1Jo6KJACZelBaYyCRfZ3eHAv7gH64TRZ9gvIVXsRotCcIZeukoQHrE+NQUq9thcr7aidjQE/UviEWmREY6v14KZJDe8UqCRS+ZcL45KTGtmUXAJTZhUDkrG79gN9DzVTIFL6+HbDd32Sk4LY31ppEP150TNlHN9lflOxfDWjXsD8V8vd4OFY9exOEhrocsKQfPv40UlKRo6yIXmwgJH2feEcSv8/5TfMss4+vTCMLGg4YEbpZjO64Q3vTit68Qq2oqbJvTJxeM5/SXnu+04ascne61ONMpwjmySLbJDYrJPOuSIHJMu4cSSJ/JMXoLX4C14Dz6+WyeC0cwG+YXg8wudkabi</latexit><latexit sha1_base64="63jpuE/m3WPWMl01L8PiX0SQV5w=">AAACKnicbVC7SsRAFJ34Nr61tBlcBKslEUHLBRtLRVeFTZTJ5EYH5xFmbtQl5D9stfZr7MTWD3F23UJXD1w4nHNfnKyUwmEUvQcTk1PTM7Nz8+HC4tLyyura+rkzleXQ5UYae5kxB1Jo6KJACZelBaYyCRfZ3eHAv7gH64TRZ9gvIVXsRotCcIZeukoQHrE+NQUq9thcr7aidjQE/UviEWmREY6v14KZJDe8UqCRS+ZcL45KTGtmUXAJTZhUDkrG79gN9DzVTIFL6+HbDd32Sk4LY31ppEP150TNlHN9lflOxfDWjXsD8V8vd4OFY9exOEhrocsKQfPv40UlKRo6yIXmwgJH2feEcSv8/5TfMss4+vTCMLGg4YEbpZjO64Q3vTit68Qq2oqbJvTJxeM5/SXnu+04ascne61ONMpwjmySLbJDYrJPOuSIHJMu4cSSJ/JMXoLX4C14Dz6+WyeC0cwG+YXg8wudkabi</latexit>

LingUNet
<latexit sha1_base64="HGkYrDnU4w9hNJlrLxvHuN2zSds=">AAACLXicbVDLSsNAFJ34rPHRqks3g0VwVRIRdCm4cSFSwarQhDKZ3NbBmUmYuVFLyJe41bVf40IQt/6G09qFVg9cOJxzX5wkl8JiELx5M7Nz8wuLtSV/eWV1rd5Y37i0WWE4dHgmM3OdMAtSaOigQAnXuQGmEglXye3xyL+6A2NFpi9wmEOs2ECLvuAMndRr1COEByxPhR50zgCrXqMZtIIx6F8STkiTTNDurXsLUZrxQoFGLpm13TDIMS6ZQcElVH5UWMgZv2UD6DqqmQIbl+PPK7rjlJT2M+NKIx2rPydKpqwdqsR1KoY3dtobif96qR0tnLqO/cO4FDovEDT/Pt4vJMWMjqKhqTDAUQ4dYdwI9z/lN8wwji5A348MaLjnmVJMp2XEq24Yl2VkFG2GVeW75MLpnP6Sy71WGLTC8/3mUTDJsEa2yDbZJSE5IEfkhLRJh3BSkEfyRJ69F+/Ve/c+vltnvMnMJvkF7/MLg7enQQ==</latexit><latexit sha1_base64="HGkYrDnU4w9hNJlrLxvHuN2zSds=">AAACLXicbVDLSsNAFJ34rPHRqks3g0VwVRIRdCm4cSFSwarQhDKZ3NbBmUmYuVFLyJe41bVf40IQt/6G09qFVg9cOJxzX5wkl8JiELx5M7Nz8wuLtSV/eWV1rd5Y37i0WWE4dHgmM3OdMAtSaOigQAnXuQGmEglXye3xyL+6A2NFpi9wmEOs2ECLvuAMndRr1COEByxPhR50zgCrXqMZtIIx6F8STkiTTNDurXsLUZrxQoFGLpm13TDIMS6ZQcElVH5UWMgZv2UD6DqqmQIbl+PPK7rjlJT2M+NKIx2rPydKpqwdqsR1KoY3dtobif96qR0tnLqO/cO4FDovEDT/Pt4vJMWMjqKhqTDAUQ4dYdwI9z/lN8wwji5A348MaLjnmVJMp2XEq24Yl2VkFG2GVeW75MLpnP6Sy71WGLTC8/3mUTDJsEa2yDbZJSE5IEfkhLRJh3BSkEfyRJ69F+/Ve/c+vltnvMnMJvkF7/MLg7enQQ==</latexit><latexit sha1_base64="HGkYrDnU4w9hNJlrLxvHuN2zSds=">AAACLXicbVDLSsNAFJ34rPHRqks3g0VwVRIRdCm4cSFSwarQhDKZ3NbBmUmYuVFLyJe41bVf40IQt/6G09qFVg9cOJxzX5wkl8JiELx5M7Nz8wuLtSV/eWV1rd5Y37i0WWE4dHgmM3OdMAtSaOigQAnXuQGmEglXye3xyL+6A2NFpi9wmEOs2ECLvuAMndRr1COEByxPhR50zgCrXqMZtIIx6F8STkiTTNDurXsLUZrxQoFGLpm13TDIMS6ZQcElVH5UWMgZv2UD6DqqmQIbl+PPK7rjlJT2M+NKIx2rPydKpqwdqsR1KoY3dtobif96qR0tnLqO/cO4FDovEDT/Pt4vJMWMjqKhqTDAUQ4dYdwI9z/lN8wwji5A348MaLjnmVJMp2XEq24Yl2VkFG2GVeW75MLpnP6Sy71WGLTC8/3mUTDJsEa2yDbZJSE5IEfkhLRJh3BSkEfyRJ69F+/Ve/c+vltnvMnMJvkF7/MLg7enQQ==</latexit><latexit sha1_base64="HGkYrDnU4w9hNJlrLxvHuN2zSds=">AAACLXicbVDLSsNAFJ34rPHRqks3g0VwVRIRdCm4cSFSwarQhDKZ3NbBmUmYuVFLyJe41bVf40IQt/6G09qFVg9cOJxzX5wkl8JiELx5M7Nz8wuLtSV/eWV1rd5Y37i0WWE4dHgmM3OdMAtSaOigQAnXuQGmEglXye3xyL+6A2NFpi9wmEOs2ECLvuAMndRr1COEByxPhR50zgCrXqMZtIIx6F8STkiTTNDurXsLUZrxQoFGLpm13TDIMS6ZQcElVH5UWMgZv2UD6DqqmQIbl+PPK7rjlJT2M+NKIx2rPydKpqwdqsR1KoY3dtobif96qR0tnLqO/cO4FDovEDT/Pt4vJMWMjqKhqTDAUQ4dYdwI9z/lN8wwji5A348MaLjnmVJMp2XEq24Yl2VkFG2GVeW75MLpnP6Sy71WGLTC8/3mUTDJsEa2yDbZJSE5IEfkhLRJh3BSkEfyRJ69F+/Ve/c+vltnvMnMJvkF7/MLg7enQQ==</latexit>

Text Kernels
<latexit sha1_base64="JOMQM9u8HvIR7ngUftQ/wccsmYA=">AAACMXicbVDLSgMxFM34rOOr6tJNsAiuyowIuhTcCG4UWit0hpLJ3NZgkhmSO2oZ5lvc6tqvcSdu/QnTx0JbDyQczrkvTpJLYTEIPryFxaXlldXamr++sbm1Xd/ZvbVZYTi0eSYzc5cwC1JoaKNACXe5AaYSCZ3k4WLkdx7BWJHpFg5ziBUbaNEXnKGTevW9COEZy5b76BUYDdJWvXojaAZj0HkSTkmDTHHd2/FWojTjhQKNXDJru2GQY1wyg4JLqPyosJAz/sAG0HVUMwU2LsfXV/TQKSntZ8Y9jXSs/u4ombJ2qBJXqRje21lvJP7rpXY0cGY79s/iUui8QNB8srxfSIoZHcVDU2GAoxw6wrgR7n7K75lhHF2Ivh8Z0PDEM6WYTsuIV90wLsvIKNoIq8p3yYWzOc2T2+NmGDTDm5PGeTDNsEb2yQE5IiE5JefkklyTNuFkSF7IK3nz3r0P79P7mpQueNOePfIH3vcP6Xuo/A==</latexit><latexit sha1_base64="JOMQM9u8HvIR7ngUftQ/wccsmYA=">AAACMXicbVDLSgMxFM34rOOr6tJNsAiuyowIuhTcCG4UWit0hpLJ3NZgkhmSO2oZ5lvc6tqvcSdu/QnTx0JbDyQczrkvTpJLYTEIPryFxaXlldXamr++sbm1Xd/ZvbVZYTi0eSYzc5cwC1JoaKNACXe5AaYSCZ3k4WLkdx7BWJHpFg5ziBUbaNEXnKGTevW9COEZy5b76BUYDdJWvXojaAZj0HkSTkmDTHHd2/FWojTjhQKNXDJru2GQY1wyg4JLqPyosJAz/sAG0HVUMwU2LsfXV/TQKSntZ8Y9jXSs/u4ombJ2qBJXqRje21lvJP7rpXY0cGY79s/iUui8QNB8srxfSIoZHcVDU2GAoxw6wrgR7n7K75lhHF2Ivh8Z0PDEM6WYTsuIV90wLsvIKNoIq8p3yYWzOc2T2+NmGDTDm5PGeTDNsEb2yQE5IiE5JefkklyTNuFkSF7IK3nz3r0P79P7mpQueNOePfIH3vcP6Xuo/A==</latexit><latexit sha1_base64="JOMQM9u8HvIR7ngUftQ/wccsmYA=">AAACMXicbVDLSgMxFM34rOOr6tJNsAiuyowIuhTcCG4UWit0hpLJ3NZgkhmSO2oZ5lvc6tqvcSdu/QnTx0JbDyQczrkvTpJLYTEIPryFxaXlldXamr++sbm1Xd/ZvbVZYTi0eSYzc5cwC1JoaKNACXe5AaYSCZ3k4WLkdx7BWJHpFg5ziBUbaNEXnKGTevW9COEZy5b76BUYDdJWvXojaAZj0HkSTkmDTHHd2/FWojTjhQKNXDJru2GQY1wyg4JLqPyosJAz/sAG0HVUMwU2LsfXV/TQKSntZ8Y9jXSs/u4ombJ2qBJXqRje21lvJP7rpXY0cGY79s/iUui8QNB8srxfSIoZHcVDU2GAoxw6wrgR7n7K75lhHF2Ivh8Z0PDEM6WYTsuIV90wLsvIKNoIq8p3yYWzOc2T2+NmGDTDm5PGeTDNsEb2yQE5IiE5JefkklyTNuFkSF7IK3nz3r0P79P7mpQueNOePfIH3vcP6Xuo/A==</latexit><latexit sha1_base64="JOMQM9u8HvIR7ngUftQ/wccsmYA=">AAACMXicbVDLSgMxFM34rOOr6tJNsAiuyowIuhTcCG4UWit0hpLJ3NZgkhmSO2oZ5lvc6tqvcSdu/QnTx0JbDyQczrkvTpJLYTEIPryFxaXlldXamr++sbm1Xd/ZvbVZYTi0eSYzc5cwC1JoaKNACXe5AaYSCZ3k4WLkdx7BWJHpFg5ziBUbaNEXnKGTevW9COEZy5b76BUYDdJWvXojaAZj0HkSTkmDTHHd2/FWojTjhQKNXDJru2GQY1wyg4JLqPyosJAz/sAG0HVUMwU2LsfXV/TQKSntZ8Y9jXSs/u4ombJ2qBJXqRje21lvJP7rpXY0cGY79s/iUui8QNB8srxfSIoZHcVDU2GAoxw6wrgR7n7K75lhHF2Ivh8Z0PDEM6WYTsuIV90wLsvIKNoIq8p3yYWzOc2T2+NmGDTDm5PGeTDNsEb2yQE5IiE5JefkklyTNuFkSF7IK3nz3r0P79P7mpQueNOePfIH3vcP6Xuo/A==</latexit>

Poses
<latexit sha1_base64="91gHTs/Kbcm7q63ZDTF3kr+ULN8=">AAACKHicbVDLSsNAFJ34rPFZXboZLIKrkoigS8GNywpWhSaUyeS2Ds4jzNyoJeQ33Orar3Enbv0Sp7ULrR64cDjnvjhZIYXDKPoI5uYXFpeWGyvh6tr6xuZWc/vKmdJy6HIjjb3JmAMpNHRRoISbwgJTmYTr7O5s7F/fg3XC6EscFZAqNtRiIDhDLyUJwiNWHePA1f2tVtSOJqB/STwlLTJFp98MlpLc8FKBRi6Zc704KjCtmEXBJdRhUjooGL9jQ+h5qpkCl1aTp2u675WcDoz1pZFO1J8TFVPOjVTmOxXDWzfrjcV/vdyNF85cx8FJWgldlAiafx8flJKioeNUaC4scJQjTxi3wv9P+S2zjKPPLgwTCxoeuFGK6bxKeN2L06pKrKKtuK5Dn1w8m9NfcnXYjqN2fHHUOo2mGTbILtkjByQmx+SUnJMO6RJOCvJEnslL8Bq8Be/Bx3frXDCd2SG/EHx+AdR3pfY=</latexit><latexit sha1_base64="91gHTs/Kbcm7q63ZDTF3kr+ULN8=">AAACKHicbVDLSsNAFJ34rPFZXboZLIKrkoigS8GNywpWhSaUyeS2Ds4jzNyoJeQ33Orar3Enbv0Sp7ULrR64cDjnvjhZIYXDKPoI5uYXFpeWGyvh6tr6xuZWc/vKmdJy6HIjjb3JmAMpNHRRoISbwgJTmYTr7O5s7F/fg3XC6EscFZAqNtRiIDhDLyUJwiNWHePA1f2tVtSOJqB/STwlLTJFp98MlpLc8FKBRi6Zc704KjCtmEXBJdRhUjooGL9jQ+h5qpkCl1aTp2u675WcDoz1pZFO1J8TFVPOjVTmOxXDWzfrjcV/vdyNF85cx8FJWgldlAiafx8flJKioeNUaC4scJQjTxi3wv9P+S2zjKPPLgwTCxoeuFGK6bxKeN2L06pKrKKtuK5Dn1w8m9NfcnXYjqN2fHHUOo2mGTbILtkjByQmx+SUnJMO6RJOCvJEnslL8Bq8Be/Bx3frXDCd2SG/EHx+AdR3pfY=</latexit><latexit sha1_base64="91gHTs/Kbcm7q63ZDTF3kr+ULN8=">AAACKHicbVDLSsNAFJ34rPFZXboZLIKrkoigS8GNywpWhSaUyeS2Ds4jzNyoJeQ33Orar3Enbv0Sp7ULrR64cDjnvjhZIYXDKPoI5uYXFpeWGyvh6tr6xuZWc/vKmdJy6HIjjb3JmAMpNHRRoISbwgJTmYTr7O5s7F/fg3XC6EscFZAqNtRiIDhDLyUJwiNWHePA1f2tVtSOJqB/STwlLTJFp98MlpLc8FKBRi6Zc704KjCtmEXBJdRhUjooGL9jQ+h5qpkCl1aTp2u675WcDoz1pZFO1J8TFVPOjVTmOxXDWzfrjcV/vdyNF85cx8FJWgldlAiafx8flJKioeNUaC4scJQjTxi3wv9P+S2zjKPPLgwTCxoeuFGK6bxKeN2L06pKrKKtuK5Dn1w8m9NfcnXYjqN2fHHUOo2mGTbILtkjByQmx+SUnJMO6RJOCvJEnslL8Bq8Be/Bx3frXDCd2SG/EHx+AdR3pfY=</latexit><latexit sha1_base64="91gHTs/Kbcm7q63ZDTF3kr+ULN8=">AAACKHicbVDLSsNAFJ34rPFZXboZLIKrkoigS8GNywpWhSaUyeS2Ds4jzNyoJeQ33Orar3Enbv0Sp7ULrR64cDjnvjhZIYXDKPoI5uYXFpeWGyvh6tr6xuZWc/vKmdJy6HIjjb3JmAMpNHRRoISbwgJTmYTr7O5s7F/fg3XC6EscFZAqNtRiIDhDLyUJwiNWHePA1f2tVtSOJqB/STwlLTJFp98MlpLc8FKBRi6Zc704KjCtmEXBJdRhUjooGL9jQ+h5qpkCl1aTp2u675WcDoz1pZFO1J8TFVPOjVTmOxXDWzfrjcV/vdyNF85cx8FJWgldlAiafx8flJKioeNUaC4scJQjTxi3wv9P+S2zjKPPLgwTCxoeuFGK6bxKeN2L06pKrKKtuK5Dn1w8m9NfcnXYjqN2fHHUOo2mGTbILtkjByQmx+SUnJMO6RJOCvJEnslL8Bq8Be/Bx3frXDCd2SG/EHx+AdR3pfY=</latexit>

Goal Masks
<latexit sha1_base64="IPvFhlL9foBObtEKiW6QIPfFEs8=">AAACL3icbVDLShxBFK3W+EhHkxldZlNkCGQ1dEvALAUXcSMYyKgw3Qy3q+9oMfVoqm7HDE1/Sra69mvEjWSbv7BmnIWOOXDhcM59cYpKSU9Jch+trL5ZW9/YfBu/29p+/6HT3Tn1tnYCB8Iq684L8KikwQFJUnheOQRdKDwrJocz/+wXOi+t+UnTCnMNF0aOpQAK0qjTzQh/U/PdguLH4Ce+HXV6ST+Zg78m6YL02AIno260npVW1BoNCQXeD9OkorwBR1IobOOs9liBmMAFDgM1oNHnzfz3ln8OSsnH1oUyxOfq84kGtPdTXYRODXTpl72Z+F+v9LOFS9dp/C1vpKlqQiOejo9rxcnyWTi8lA4FqWkgIJwM/3NxCQ4EhQjjOHNo8EpYrcGUTSbaYZo3TeY076VtG4fk0uWcXpPTvX6a9NMfX3sHySLDTfaRfWJfWMr22QE7YidswAS7Yn/YNbuJbqO76CH6+9S6Ei1mdtkLRP8eAeYip/E=</latexit><latexit sha1_base64="IPvFhlL9foBObtEKiW6QIPfFEs8=">AAACL3icbVDLShxBFK3W+EhHkxldZlNkCGQ1dEvALAUXcSMYyKgw3Qy3q+9oMfVoqm7HDE1/Sra69mvEjWSbv7BmnIWOOXDhcM59cYpKSU9Jch+trL5ZW9/YfBu/29p+/6HT3Tn1tnYCB8Iq684L8KikwQFJUnheOQRdKDwrJocz/+wXOi+t+UnTCnMNF0aOpQAK0qjTzQh/U/PdguLH4Ce+HXV6ST+Zg78m6YL02AIno260npVW1BoNCQXeD9OkorwBR1IobOOs9liBmMAFDgM1oNHnzfz3ln8OSsnH1oUyxOfq84kGtPdTXYRODXTpl72Z+F+v9LOFS9dp/C1vpKlqQiOejo9rxcnyWTi8lA4FqWkgIJwM/3NxCQ4EhQjjOHNo8EpYrcGUTSbaYZo3TeY076VtG4fk0uWcXpPTvX6a9NMfX3sHySLDTfaRfWJfWMr22QE7YidswAS7Yn/YNbuJbqO76CH6+9S6Ei1mdtkLRP8eAeYip/E=</latexit><latexit sha1_base64="IPvFhlL9foBObtEKiW6QIPfFEs8=">AAACL3icbVDLShxBFK3W+EhHkxldZlNkCGQ1dEvALAUXcSMYyKgw3Qy3q+9oMfVoqm7HDE1/Sra69mvEjWSbv7BmnIWOOXDhcM59cYpKSU9Jch+trL5ZW9/YfBu/29p+/6HT3Tn1tnYCB8Iq684L8KikwQFJUnheOQRdKDwrJocz/+wXOi+t+UnTCnMNF0aOpQAK0qjTzQh/U/PdguLH4Ce+HXV6ST+Zg78m6YL02AIno260npVW1BoNCQXeD9OkorwBR1IobOOs9liBmMAFDgM1oNHnzfz3ln8OSsnH1oUyxOfq84kGtPdTXYRODXTpl72Z+F+v9LOFS9dp/C1vpKlqQiOejo9rxcnyWTi8lA4FqWkgIJwM/3NxCQ4EhQjjOHNo8EpYrcGUTSbaYZo3TeY076VtG4fk0uWcXpPTvX6a9NMfX3sHySLDTfaRfWJfWMr22QE7YidswAS7Yn/YNbuJbqO76CH6+9S6Ei1mdtkLRP8eAeYip/E=</latexit><latexit sha1_base64="IPvFhlL9foBObtEKiW6QIPfFEs8=">AAACL3icbVDLShxBFK3W+EhHkxldZlNkCGQ1dEvALAUXcSMYyKgw3Qy3q+9oMfVoqm7HDE1/Sra69mvEjWSbv7BmnIWOOXDhcM59cYpKSU9Jch+trL5ZW9/YfBu/29p+/6HT3Tn1tnYCB8Iq684L8KikwQFJUnheOQRdKDwrJocz/+wXOi+t+UnTCnMNF0aOpQAK0qjTzQh/U/PdguLH4Ce+HXV6ST+Zg78m6YL02AIno260npVW1BoNCQXeD9OkorwBR1IobOOs9liBmMAFDgM1oNHnzfz3ln8OSsnH1oUyxOfq84kGtPdTXYRODXTpl72Z+F+v9LOFS9dp/C1vpKlqQiOejo9rxcnyWTi8lA4FqWkgIJwM/3NxCQ4EhQjjOHNo8EpYrcGUTSbaYZo3TeY076VtG4fk0uWcXpPTvX6a9NMfX3sHySLDTfaRfWJfWMr22QE7YidswAS7Yn/YNbuJbqO76CH6+9S6Ei1mdtkLRP8eAeYip/E=</latexit>

TURNLEFT TURNLEFT FORWARD Actions
<latexit sha1_base64="56XYm6fy000AlRxJNii0/3IPSDc=">AAACKnicbVC7TsMwFHV4FAhvGFksKiSmKkFIMBaxMIJEaaUmIMe5BQvbiewboIryH6ww8zVsiJUPwWk7QOFIlo7PuS+dJJfCYhB8eDOzc/ONhcUlf3lldW19Y3PrymaF4dDhmcxML2EWpNDQQYESerkBphIJ3eT+tPa7D2CsyPQlDnOIFbvVYiA4QyddRwhPWJ7w+mOrm41m0ApGoH9JOCFNMsH5zabXiNKMFwo0csms7YdBjnHJDAouofKjwkLO+D27hb6jmimwcTk6u6J7TknpIDPuaaQj9WdHyZS1Q5W4SsXwzk57tfivl9p64NR2HBzHpdB5gaD5ePmgkBQzWudCU2GAoxw6wrgR7n7K75hhHF16vh8Z0PDIM6WYTsuIV/0wLsvIKNoMq8p3yYXTOf0lVwetMGiFF4fNdjDJcJHskF2yT0JyRNrkjJyTDuHEkGfyQl69N+/d+/A+x6Uz3qRnm/yC9/UNf7em0Q==</latexit><latexit sha1_base64="56XYm6fy000AlRxJNii0/3IPSDc=">AAACKnicbVC7TsMwFHV4FAhvGFksKiSmKkFIMBaxMIJEaaUmIMe5BQvbiewboIryH6ww8zVsiJUPwWk7QOFIlo7PuS+dJJfCYhB8eDOzc/ONhcUlf3lldW19Y3PrymaF4dDhmcxML2EWpNDQQYESerkBphIJ3eT+tPa7D2CsyPQlDnOIFbvVYiA4QyddRwhPWJ7w+mOrm41m0ApGoH9JOCFNMsH5zabXiNKMFwo0csms7YdBjnHJDAouofKjwkLO+D27hb6jmimwcTk6u6J7TknpIDPuaaQj9WdHyZS1Q5W4SsXwzk57tfivl9p64NR2HBzHpdB5gaD5ePmgkBQzWudCU2GAoxw6wrgR7n7K75hhHF16vh8Z0PDIM6WYTsuIV/0wLsvIKNoMq8p3yYXTOf0lVwetMGiFF4fNdjDJcJHskF2yT0JyRNrkjJyTDuHEkGfyQl69N+/d+/A+x6Uz3qRnm/yC9/UNf7em0Q==</latexit><latexit sha1_base64="56XYm6fy000AlRxJNii0/3IPSDc=">AAACKnicbVC7TsMwFHV4FAhvGFksKiSmKkFIMBaxMIJEaaUmIMe5BQvbiewboIryH6ww8zVsiJUPwWk7QOFIlo7PuS+dJJfCYhB8eDOzc/ONhcUlf3lldW19Y3PrymaF4dDhmcxML2EWpNDQQYESerkBphIJ3eT+tPa7D2CsyPQlDnOIFbvVYiA4QyddRwhPWJ7w+mOrm41m0ApGoH9JOCFNMsH5zabXiNKMFwo0csms7YdBjnHJDAouofKjwkLO+D27hb6jmimwcTk6u6J7TknpIDPuaaQj9WdHyZS1Q5W4SsXwzk57tfivl9p64NR2HBzHpdB5gaD5ePmgkBQzWudCU2GAoxw6wrgR7n7K75hhHF16vh8Z0PDIM6WYTsuIV/0wLsvIKNoMq8p3yYXTOf0lVwetMGiFF4fNdjDJcJHskF2yT0JyRNrkjJyTDuHEkGfyQl69N+/d+/A+x6Uz3qRnm/yC9/UNf7em0Q==</latexit><latexit sha1_base64="56XYm6fy000AlRxJNii0/3IPSDc=">AAACKnicbVC7TsMwFHV4FAhvGFksKiSmKkFIMBaxMIJEaaUmIMe5BQvbiewboIryH6ww8zVsiJUPwWk7QOFIlo7PuS+dJJfCYhB8eDOzc/ONhcUlf3lldW19Y3PrymaF4dDhmcxML2EWpNDQQYESerkBphIJ3eT+tPa7D2CsyPQlDnOIFbvVYiA4QyddRwhPWJ7w+mOrm41m0ApGoH9JOCFNMsH5zabXiNKMFwo0csms7YdBjnHJDAouofKjwkLO+D27hb6jmimwcTk6u6J7TknpIDPuaaQj9WdHyZS1Q5W4SsXwzk57tfivl9p64NR2HBzHpdB5gaD5ePmgkBQzWudCU2GAoxw6wrgR7n7K75hhHF16vh8Z0PDIM6WYTsuIV/0wLsvIKNoMq8p3yYXTOf0lVwetMGiFF4fNdjDJcJHskF2yT0JyRNrkjJyTDuHEkGfyQl69N+/d+/A+x6Uz3qRnm/yC9/UNf7em0Q==</latexit>

F0
<latexit sha1_base64="KiBQV71N2bL50Jj1uTacUWvCEJQ=">AAACKHicbVBNS8NAFNxUrRq/qh69LAbBU0lE0GNBEI8KVgtNKJvNi126uwm7G6WE/A2vevbXeBOv/hI3NQdtHVgYZt7bN0ycc6aN7386raXllfbq2rq7sbm1vdPZ3bvTWaEo9GnGMzWIiQbOJPQNMxwGuQIiYg738eSi9u8fQWmWyVszzSES5EGylFFirBSGgphxnJaX1cgfdTy/68+AF0nQEA81uB7tOu0wyWghQBrKidbDwM9NVBJlGOVQuWGhISd0Qh5gaKkkAnRUzkJX+MgqCU4zZZ80eKb+3iiJ0HoqYjtZh9TzXi3+6yW6/nDuuknPo5LJvDAg6c/xtODYZLhuBSdMATV8agmhitn8mI6JItTY7lw3VCDhiWZCEJmUIa2GQVSWoRLYC6rKtc0F8z0tkruTbuB3g5tTr+c3Ha6hA3SIjlGAzlAPXaFr1EcU5egZvaBX5815dz6cz5/RltPs7KM/cL6+AejfpW4=</latexit><latexit sha1_base64="KiBQV71N2bL50Jj1uTacUWvCEJQ=">AAACKHicbVBNS8NAFNxUrRq/qh69LAbBU0lE0GNBEI8KVgtNKJvNi126uwm7G6WE/A2vevbXeBOv/hI3NQdtHVgYZt7bN0ycc6aN7386raXllfbq2rq7sbm1vdPZ3bvTWaEo9GnGMzWIiQbOJPQNMxwGuQIiYg738eSi9u8fQWmWyVszzSES5EGylFFirBSGgphxnJaX1cgfdTy/68+AF0nQEA81uB7tOu0wyWghQBrKidbDwM9NVBJlGOVQuWGhISd0Qh5gaKkkAnRUzkJX+MgqCU4zZZ80eKb+3iiJ0HoqYjtZh9TzXi3+6yW6/nDuuknPo5LJvDAg6c/xtODYZLhuBSdMATV8agmhitn8mI6JItTY7lw3VCDhiWZCEJmUIa2GQVSWoRLYC6rKtc0F8z0tkruTbuB3g5tTr+c3Ha6hA3SIjlGAzlAPXaFr1EcU5egZvaBX5815dz6cz5/RltPs7KM/cL6+AejfpW4=</latexit><latexit sha1_base64="KiBQV71N2bL50Jj1uTacUWvCEJQ=">AAACKHicbVBNS8NAFNxUrRq/qh69LAbBU0lE0GNBEI8KVgtNKJvNi126uwm7G6WE/A2vevbXeBOv/hI3NQdtHVgYZt7bN0ycc6aN7386raXllfbq2rq7sbm1vdPZ3bvTWaEo9GnGMzWIiQbOJPQNMxwGuQIiYg738eSi9u8fQWmWyVszzSES5EGylFFirBSGgphxnJaX1cgfdTy/68+AF0nQEA81uB7tOu0wyWghQBrKidbDwM9NVBJlGOVQuWGhISd0Qh5gaKkkAnRUzkJX+MgqCU4zZZ80eKb+3iiJ0HoqYjtZh9TzXi3+6yW6/nDuuknPo5LJvDAg6c/xtODYZLhuBSdMATV8agmhitn8mI6JItTY7lw3VCDhiWZCEJmUIa2GQVSWoRLYC6rKtc0F8z0tkruTbuB3g5tTr+c3Ha6hA3SIjlGAzlAPXaFr1EcU5egZvaBX5815dz6cz5/RltPs7KM/cL6+AejfpW4=</latexit><latexit sha1_base64="KiBQV71N2bL50Jj1uTacUWvCEJQ=">AAACKHicbVBNS8NAFNxUrRq/qh69LAbBU0lE0GNBEI8KVgtNKJvNi126uwm7G6WE/A2vevbXeBOv/hI3NQdtHVgYZt7bN0ycc6aN7386raXllfbq2rq7sbm1vdPZ3bvTWaEo9GnGMzWIiQbOJPQNMxwGuQIiYg738eSi9u8fQWmWyVszzSES5EGylFFirBSGgphxnJaX1cgfdTy/68+AF0nQEA81uB7tOu0wyWghQBrKidbDwM9NVBJlGOVQuWGhISd0Qh5gaKkkAnRUzkJX+MgqCU4zZZ80eKb+3iiJ0HoqYjtZh9TzXi3+6yW6/nDuuknPo5LJvDAg6c/xtODYZLhuBSdMATV8agmhitn8mI6JItTY7lw3VCDhiWZCEJmUIa2GQVSWoRLYC6rKtc0F8z0tkruTbuB3g5tTr+c3Ha6hA3SIjlGAzlAPXaFr1EcU5egZvaBX5815dz6cz5/RltPs7KM/cL6+AejfpW4=</latexit>

F1
<latexit sha1_base64="2Vd1vjq33ijDmGTKLVf1EeNdRoE=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehQE8ahgq9BdSjb71oYm2SXJKmXZv+FVz/4ab9Krv8Rs24NWBwLDzHt5w8S54MYGwcRrLC2vNFdba/76xubW9s7uXs9khWbQZZnI9ENMDQiuoGu5FfCQa6AyFnAfjy5r//4JtOGZurPjHCJJHxVPOaPWSWEoqR3GaXlVDchgpx10ginwX0LmpI3muBnses0wyVghQVkmqDF9EuQ2Kqm2nAmo/LAwkFM2oo/Qd1RRCSYqp6ErfOSUBKeZdk9ZPFV/bpRUGjOWsZusQ5pFrxb/9RJTf7hw3abnUclVXlhQbHY8LQS2Ga5bwQnXwKwYO0KZ5i4/ZkOqKbOuO98PNSh4ZpmUVCVlyKo+icoy1BK3SVX5rjmy2NNf0jvpkKBDbk/bF8G8wxY6QIfoGBF0hi7QNbpBXcRQjl7QK3rz3r0P79ObzEYb3nxnH/2C9/UN6pilbw==</latexit><latexit sha1_base64="2Vd1vjq33ijDmGTKLVf1EeNdRoE=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehQE8ahgq9BdSjb71oYm2SXJKmXZv+FVz/4ab9Krv8Rs24NWBwLDzHt5w8S54MYGwcRrLC2vNFdba/76xubW9s7uXs9khWbQZZnI9ENMDQiuoGu5FfCQa6AyFnAfjy5r//4JtOGZurPjHCJJHxVPOaPWSWEoqR3GaXlVDchgpx10ginwX0LmpI3muBnses0wyVghQVkmqDF9EuQ2Kqm2nAmo/LAwkFM2oo/Qd1RRCSYqp6ErfOSUBKeZdk9ZPFV/bpRUGjOWsZusQ5pFrxb/9RJTf7hw3abnUclVXlhQbHY8LQS2Ga5bwQnXwKwYO0KZ5i4/ZkOqKbOuO98PNSh4ZpmUVCVlyKo+icoy1BK3SVX5rjmy2NNf0jvpkKBDbk/bF8G8wxY6QIfoGBF0hi7QNbpBXcRQjl7QK3rz3r0P79ObzEYb3nxnH/2C9/UN6pilbw==</latexit><latexit sha1_base64="2Vd1vjq33ijDmGTKLVf1EeNdRoE=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehQE8ahgq9BdSjb71oYm2SXJKmXZv+FVz/4ab9Krv8Rs24NWBwLDzHt5w8S54MYGwcRrLC2vNFdba/76xubW9s7uXs9khWbQZZnI9ENMDQiuoGu5FfCQa6AyFnAfjy5r//4JtOGZurPjHCJJHxVPOaPWSWEoqR3GaXlVDchgpx10ginwX0LmpI3muBnses0wyVghQVkmqDF9EuQ2Kqm2nAmo/LAwkFM2oo/Qd1RRCSYqp6ErfOSUBKeZdk9ZPFV/bpRUGjOWsZusQ5pFrxb/9RJTf7hw3abnUclVXlhQbHY8LQS2Ga5bwQnXwKwYO0KZ5i4/ZkOqKbOuO98PNSh4ZpmUVCVlyKo+icoy1BK3SVX5rjmy2NNf0jvpkKBDbk/bF8G8wxY6QIfoGBF0hi7QNbpBXcRQjl7QK3rz3r0P79ObzEYb3nxnH/2C9/UN6pilbw==</latexit><latexit sha1_base64="2Vd1vjq33ijDmGTKLVf1EeNdRoE=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehQE8ahgq9BdSjb71oYm2SXJKmXZv+FVz/4ab9Krv8Rs24NWBwLDzHt5w8S54MYGwcRrLC2vNFdba/76xubW9s7uXs9khWbQZZnI9ENMDQiuoGu5FfCQa6AyFnAfjy5r//4JtOGZurPjHCJJHxVPOaPWSWEoqR3GaXlVDchgpx10ginwX0LmpI3muBnses0wyVghQVkmqDF9EuQ2Kqm2nAmo/LAwkFM2oo/Qd1RRCSYqp6ErfOSUBKeZdk9ZPFV/bpRUGjOWsZusQ5pFrxb/9RJTf7hw3abnUclVXlhQbHY8LQS2Ga5bwQnXwKwYO0KZ5i4/ZkOqKbOuO98PNSh4ZpmUVCVlyKo+icoy1BK3SVX5rjmy2NNf0jvpkKBDbk/bF8G8wxY6QIfoGBF0hi7QNbpBXcRQjl7QK3rz3r0P79ObzEYb3nxnH/2C9/UN6pilbw==</latexit>

F2
<latexit sha1_base64="urS1ZYYaAQtBZF50Q4d4YBHBNTI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeiwI4lHB1kITymbzoou7m7C7UUrI3/CqZ3+NN+nVX+KmzUFbBxaGmff2DRPnnGnj+xNnaXlldW29teFubm3v7Lb39vs6KxSFHs14pgYx0cCZhJ5hhsMgV0BEzOE+frqs/ftnUJpl8s6Mc4gEeZAsZZQYK4WhIOYxTsuranQ6ant+x58CL5KgIR5qcDPac9bCJKOFAGkoJ1oPAz83UUmUYZRD5YaFhpzQJ/IAQ0slEaCjchq6wsdWSXCaKfukwVP190ZJhNZjEdvJOqSe92rxXy/R9Ydz1016EZVM5oUBSWfH04Jjk+G6FZwwBdTwsSWEKmbzY/pIFKHGdue6oQIJLzQTgsikDGk1DKKyDJXAXlBVrm0umO9pkfRPO4HfCW7PvK7fdNhCh+gInaAAnaMuukY3qIcoytErekPvzofz6Xw5k9noktPsHKA/cL5/AOxRpXA=</latexit><latexit sha1_base64="urS1ZYYaAQtBZF50Q4d4YBHBNTI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeiwI4lHB1kITymbzoou7m7C7UUrI3/CqZ3+NN+nVX+KmzUFbBxaGmff2DRPnnGnj+xNnaXlldW29teFubm3v7Lb39vs6KxSFHs14pgYx0cCZhJ5hhsMgV0BEzOE+frqs/ftnUJpl8s6Mc4gEeZAsZZQYK4WhIOYxTsuranQ6ant+x58CL5KgIR5qcDPac9bCJKOFAGkoJ1oPAz83UUmUYZRD5YaFhpzQJ/IAQ0slEaCjchq6wsdWSXCaKfukwVP190ZJhNZjEdvJOqSe92rxXy/R9Ydz1016EZVM5oUBSWfH04Jjk+G6FZwwBdTwsSWEKmbzY/pIFKHGdue6oQIJLzQTgsikDGk1DKKyDJXAXlBVrm0umO9pkfRPO4HfCW7PvK7fdNhCh+gInaAAnaMuukY3qIcoytErekPvzofz6Xw5k9noktPsHKA/cL5/AOxRpXA=</latexit><latexit sha1_base64="urS1ZYYaAQtBZF50Q4d4YBHBNTI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeiwI4lHB1kITymbzoou7m7C7UUrI3/CqZ3+NN+nVX+KmzUFbBxaGmff2DRPnnGnj+xNnaXlldW29teFubm3v7Lb39vs6KxSFHs14pgYx0cCZhJ5hhsMgV0BEzOE+frqs/ftnUJpl8s6Mc4gEeZAsZZQYK4WhIOYxTsuranQ6ant+x58CL5KgIR5qcDPac9bCJKOFAGkoJ1oPAz83UUmUYZRD5YaFhpzQJ/IAQ0slEaCjchq6wsdWSXCaKfukwVP190ZJhNZjEdvJOqSe92rxXy/R9Ydz1016EZVM5oUBSWfH04Jjk+G6FZwwBdTwsSWEKmbzY/pIFKHGdue6oQIJLzQTgsikDGk1DKKyDJXAXlBVrm0umO9pkfRPO4HfCW7PvK7fdNhCh+gInaAAnaMuukY3qIcoytErekPvzofz6Xw5k9noktPsHKA/cL5/AOxRpXA=</latexit><latexit sha1_base64="urS1ZYYaAQtBZF50Q4d4YBHBNTI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeiwI4lHB1kITymbzoou7m7C7UUrI3/CqZ3+NN+nVX+KmzUFbBxaGmff2DRPnnGnj+xNnaXlldW29teFubm3v7Lb39vs6KxSFHs14pgYx0cCZhJ5hhsMgV0BEzOE+frqs/ftnUJpl8s6Mc4gEeZAsZZQYK4WhIOYxTsuranQ6ant+x58CL5KgIR5qcDPac9bCJKOFAGkoJ1oPAz83UUmUYZRD5YaFhpzQJ/IAQ0slEaCjchq6wsdWSXCaKfukwVP190ZJhNZjEdvJOqSe92rxXy/R9Ydz1016EZVM5oUBSWfH04Jjk+G6FZwwBdTwsSWEKmbzY/pIFKHGdue6oQIJLzQTgsikDGk1DKKyDJXAXlBVrm0umO9pkfRPO4HfCW7PvK7fdNhCh+gInaAAnaMuukY3qIcoytErekPvzofz6Xw5k9noktPsHKA/cL5/AOxRpXA=</latexit>

F3
<latexit sha1_base64="i/9DfG52M59ilH2h2X+kn1ngme4=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRYEcVnBPqAJZTK50cGZSZiZKCXkN9zq2q9xJ936JU7aLrT1wMDhnHvnHk6UcaaN502cldW19Y3N2pa7vbO7t19vHPR0misKXZryVA0iooEzCV3DDIdBpoCIiEM/erqu/P4zKM1SeW/GGYSCPEiWMEqMlYJAEPMYJcVNOTof1Ztey5sCLxN/Tppojs6o4WwEcUpzAdJQTrQe+l5mwoIowyiH0g1yDRmhT+QBhpZKIkCHxTR0iU+sEuMkVfZJg6fq742CCK3HIrKTVUi96FXiv16sqw8XrpvkKiyYzHIDks6OJznHJsVVKzhmCqjhY0sIVczmx/SRKEKN7c51AwUSXmgqBJFxEdBy6IdFESiBm35ZurY5f7GnZdI7a/ley7+7aLa9eYc1dISO0Sny0SVqo1vUQV1EUYZe0Rt6dz6cT+fLmcxGV5z5ziH6A+f7B+4KpXE=</latexit><latexit sha1_base64="i/9DfG52M59ilH2h2X+kn1ngme4=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRYEcVnBPqAJZTK50cGZSZiZKCXkN9zq2q9xJ936JU7aLrT1wMDhnHvnHk6UcaaN502cldW19Y3N2pa7vbO7t19vHPR0misKXZryVA0iooEzCV3DDIdBpoCIiEM/erqu/P4zKM1SeW/GGYSCPEiWMEqMlYJAEPMYJcVNOTof1Ztey5sCLxN/Tppojs6o4WwEcUpzAdJQTrQe+l5mwoIowyiH0g1yDRmhT+QBhpZKIkCHxTR0iU+sEuMkVfZJg6fq742CCK3HIrKTVUi96FXiv16sqw8XrpvkKiyYzHIDks6OJznHJsVVKzhmCqjhY0sIVczmx/SRKEKN7c51AwUSXmgqBJFxEdBy6IdFESiBm35ZurY5f7GnZdI7a/ley7+7aLa9eYc1dISO0Sny0SVqo1vUQV1EUYZe0Rt6dz6cT+fLmcxGV5z5ziH6A+f7B+4KpXE=</latexit><latexit sha1_base64="i/9DfG52M59ilH2h2X+kn1ngme4=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRYEcVnBPqAJZTK50cGZSZiZKCXkN9zq2q9xJ936JU7aLrT1wMDhnHvnHk6UcaaN502cldW19Y3N2pa7vbO7t19vHPR0misKXZryVA0iooEzCV3DDIdBpoCIiEM/erqu/P4zKM1SeW/GGYSCPEiWMEqMlYJAEPMYJcVNOTof1Ztey5sCLxN/Tppojs6o4WwEcUpzAdJQTrQe+l5mwoIowyiH0g1yDRmhT+QBhpZKIkCHxTR0iU+sEuMkVfZJg6fq742CCK3HIrKTVUi96FXiv16sqw8XrpvkKiyYzHIDks6OJznHJsVVKzhmCqjhY0sIVczmx/SRKEKN7c51AwUSXmgqBJFxEdBy6IdFESiBm35ZurY5f7GnZdI7a/ley7+7aLa9eYc1dISO0Sny0SVqo1vUQV1EUYZe0Rt6dz6cT+fLmcxGV5z5ziH6A+f7B+4KpXE=</latexit><latexit sha1_base64="i/9DfG52M59ilH2h2X+kn1ngme4=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRYEcVnBPqAJZTK50cGZSZiZKCXkN9zq2q9xJ936JU7aLrT1wMDhnHvnHk6UcaaN502cldW19Y3N2pa7vbO7t19vHPR0misKXZryVA0iooEzCV3DDIdBpoCIiEM/erqu/P4zKM1SeW/GGYSCPEiWMEqMlYJAEPMYJcVNOTof1Ztey5sCLxN/Tppojs6o4WwEcUpzAdJQTrQe+l5mwoIowyiH0g1yDRmhT+QBhpZKIkCHxTR0iU+sEuMkVfZJg6fq742CCK3HIrKTVUi96FXiv16sqw8XrpvkKiyYzHIDks6OJznHJsVVKzhmCqjhY0sIVczmx/SRKEKN7c51AwUSXmgqBJFxEdBy6IdFESiBm35ZurY5f7GnZdI7a/ley7+7aLa9eYc1dISO0Sny0SVqo1vUQV1EUYZe0Rt6dz6cT+fLmcxGV5z5ziH6A+f7B+4KpXE=</latexit>

F4
<latexit sha1_base64="/+SQXrPogU/Oiy+P63M33w8KirI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeiwI4lHB1kITymbzoou7m7C7UUrI3/CqZ3+NN+nVX+KmzUFbBxaGmff2DRPnnGnj+xNnaXlldW29teFubm3v7Lb39vs6KxSFHs14pgYx0cCZhJ5hhsMgV0BEzOE+frqs/ftnUJpl8s6Mc4gEeZAsZZQYK4WhIOYxTsuranQ2ant+x58CL5KgIR5qcDPac9bCJKOFAGkoJ1oPAz83UUmUYZRD5YaFhpzQJ/IAQ0slEaCjchq6wsdWSXCaKfukwVP190ZJhNZjEdvJOqSe92rxXy/R9Ydz1016EZVM5oUBSWfH04Jjk+G6FZwwBdTwsSWEKmbzY/pIFKHGdue6oQIJLzQTgsikDGk1DKKyDJXAXlBVrm0umO9pkfRPO4HfCW7PvK7fdNhCh+gInaAAnaMuukY3qIcoytErekPvzofz6Xw5k9noktPsHKA/cL5/AO/DpXI=</latexit><latexit sha1_base64="/+SQXrPogU/Oiy+P63M33w8KirI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeiwI4lHB1kITymbzoou7m7C7UUrI3/CqZ3+NN+nVX+KmzUFbBxaGmff2DRPnnGnj+xNnaXlldW29teFubm3v7Lb39vs6KxSFHs14pgYx0cCZhJ5hhsMgV0BEzOE+frqs/ftnUJpl8s6Mc4gEeZAsZZQYK4WhIOYxTsuranQ2ant+x58CL5KgIR5qcDPac9bCJKOFAGkoJ1oPAz83UUmUYZRD5YaFhpzQJ/IAQ0slEaCjchq6wsdWSXCaKfukwVP190ZJhNZjEdvJOqSe92rxXy/R9Ydz1016EZVM5oUBSWfH04Jjk+G6FZwwBdTwsSWEKmbzY/pIFKHGdue6oQIJLzQTgsikDGk1DKKyDJXAXlBVrm0umO9pkfRPO4HfCW7PvK7fdNhCh+gInaAAnaMuukY3qIcoytErekPvzofz6Xw5k9noktPsHKA/cL5/AO/DpXI=</latexit><latexit sha1_base64="/+SQXrPogU/Oiy+P63M33w8KirI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeiwI4lHB1kITymbzoou7m7C7UUrI3/CqZ3+NN+nVX+KmzUFbBxaGmff2DRPnnGnj+xNnaXlldW29teFubm3v7Lb39vs6KxSFHs14pgYx0cCZhJ5hhsMgV0BEzOE+frqs/ftnUJpl8s6Mc4gEeZAsZZQYK4WhIOYxTsuranQ2ant+x58CL5KgIR5qcDPac9bCJKOFAGkoJ1oPAz83UUmUYZRD5YaFhpzQJ/IAQ0slEaCjchq6wsdWSXCaKfukwVP190ZJhNZjEdvJOqSe92rxXy/R9Ydz1016EZVM5oUBSWfH04Jjk+G6FZwwBdTwsSWEKmbzY/pIFKHGdue6oQIJLzQTgsikDGk1DKKyDJXAXlBVrm0umO9pkfRPO4HfCW7PvK7fdNhCh+gInaAAnaMuukY3qIcoytErekPvzofz6Xw5k9noktPsHKA/cL5/AO/DpXI=</latexit><latexit sha1_base64="/+SQXrPogU/Oiy+P63M33w8KirI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeiwI4lHB1kITymbzoou7m7C7UUrI3/CqZ3+NN+nVX+KmzUFbBxaGmff2DRPnnGnj+xNnaXlldW29teFubm3v7Lb39vs6KxSFHs14pgYx0cCZhJ5hhsMgV0BEzOE+frqs/ftnUJpl8s6Mc4gEeZAsZZQYK4WhIOYxTsuranQ2ant+x58CL5KgIR5qcDPac9bCJKOFAGkoJ1oPAz83UUmUYZRD5YaFhpzQJ/IAQ0slEaCjchq6wsdWSXCaKfukwVP190ZJhNZjEdvJOqSe92rxXy/R9Ydz1016EZVM5oUBSWfH04Jjk+G6FZwwBdTwsSWEKmbzY/pIFKHGdue6oQIJLzQTgsikDGk1DKKyDJXAXlBVrm0umO9pkfRPO4HfCW7PvK7fdNhCh+gInaAAnaMuukY3qIcoytErekPvzofz6Xw5k9noktPsHKA/cL5/AO/DpXI=</latexit>

G4
<latexit sha1_base64="vY1NxRx3vOUwSBjhiBoSge7W0MY=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix40KOCrYUmlM3mRRd3N2F3o5SQv+FVz/4ab9Krv8RNm4O2DiwMM+/tGybOOdPG9yfO0vLK6tp6a8Pd3Nre2W3v7fd1VigKPZrxTA1iooEzCT3DDIdBroCImMN9/HRZ+/fPoDTL5J0Z5xAJ8iBZyigxVgpDQcxjnJZX1ehs1Pb8jj8FXiRBQzzU4Ga056yFSUYLAdJQTrQeBn5uopIowyiHyg0LDTmhT+QBhpZKIkBH5TR0hY+tkuA0U/ZJg6fq742SCK3HIraTdUg979Xiv16i6w/nrpv0IiqZzAsDks6OpwXHJsN1KzhhCqjhY0sIVczmx/SRKEKN7c51QwUSXmgmBJFJGdJqGERlGSqBvaCqXNtcMN/TIumfdgK/E9yeeV2/6bCFDtEROkEBOkdddI1uUA9RlKNX9IbenQ/n0/lyJrPRJafZOUB/4Hz/APF/pXM=</latexit><latexit sha1_base64="vY1NxRx3vOUwSBjhiBoSge7W0MY=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix40KOCrYUmlM3mRRd3N2F3o5SQv+FVz/4ab9Krv8RNm4O2DiwMM+/tGybOOdPG9yfO0vLK6tp6a8Pd3Nre2W3v7fd1VigKPZrxTA1iooEzCT3DDIdBroCImMN9/HRZ+/fPoDTL5J0Z5xAJ8iBZyigxVgpDQcxjnJZX1ehs1Pb8jj8FXiRBQzzU4Ga056yFSUYLAdJQTrQeBn5uopIowyiHyg0LDTmhT+QBhpZKIkBH5TR0hY+tkuA0U/ZJg6fq742SCK3HIraTdUg979Xiv16i6w/nrpv0IiqZzAsDks6OpwXHJsN1KzhhCqjhY0sIVczmx/SRKEKN7c51QwUSXmgmBJFJGdJqGERlGSqBvaCqXNtcMN/TIumfdgK/E9yeeV2/6bCFDtEROkEBOkdddI1uUA9RlKNX9IbenQ/n0/lyJrPRJafZOUB/4Hz/APF/pXM=</latexit><latexit sha1_base64="vY1NxRx3vOUwSBjhiBoSge7W0MY=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix40KOCrYUmlM3mRRd3N2F3o5SQv+FVz/4ab9Krv8RNm4O2DiwMM+/tGybOOdPG9yfO0vLK6tp6a8Pd3Nre2W3v7fd1VigKPZrxTA1iooEzCT3DDIdBroCImMN9/HRZ+/fPoDTL5J0Z5xAJ8iBZyigxVgpDQcxjnJZX1ehs1Pb8jj8FXiRBQzzU4Ga056yFSUYLAdJQTrQeBn5uopIowyiHyg0LDTmhT+QBhpZKIkBH5TR0hY+tkuA0U/ZJg6fq742SCK3HIraTdUg979Xiv16i6w/nrpv0IiqZzAsDks6OpwXHJsN1KzhhCqjhY0sIVczmx/SRKEKN7c51QwUSXmgmBJFJGdJqGERlGSqBvaCqXNtcMN/TIumfdgK/E9yeeV2/6bCFDtEROkEBOkdddI1uUA9RlKNX9IbenQ/n0/lyJrPRJafZOUB/4Hz/APF/pXM=</latexit><latexit sha1_base64="vY1NxRx3vOUwSBjhiBoSge7W0MY=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix40KOCrYUmlM3mRRd3N2F3o5SQv+FVz/4ab9Krv8RNm4O2DiwMM+/tGybOOdPG9yfO0vLK6tp6a8Pd3Nre2W3v7fd1VigKPZrxTA1iooEzCT3DDIdBroCImMN9/HRZ+/fPoDTL5J0Z5xAJ8iBZyigxVgpDQcxjnJZX1ehs1Pb8jj8FXiRBQzzU4Ga056yFSUYLAdJQTrQeBn5uopIowyiHyg0LDTmhT+QBhpZKIkBH5TR0hY+tkuA0U/ZJg6fq742SCK3HIraTdUg979Xiv16i6w/nrpv0IiqZzAsDks6OpwXHJsN1KzhhCqjhY0sIVczmx/SRKEKN7c51QwUSXmgmBJFJGdJqGERlGSqBvaCqXNtcMN/TIumfdgK/E9yeeV2/6bCFDtEROkEBOkdddI1uUA9RlKNX9IbenQ/n0/lyJrPRJafZOUB/4Hz/APF/pXM=</latexit>

G3
<latexit sha1_base64="HcFm8a7z1eSW+AHwbMRin3rNUro=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRZc6LKCfUATymRyo4MzkzAzUUrIb7jVtV/jTrr1S5y0XWjrgYHDOffOPZwo40wbz5s4K6tr6xubtS13e2d3b7/eOOjpNFcUujTlqRpERANnErqGGQ6DTAEREYd+9HRd+f1nUJql8t6MMwgFeZAsYZQYKwWBIOYxSoqbcnQ+qje9ljcFXib+nDTRHJ1Rw9kI4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gDDC2VRIAOi2noEp9YJcZJquyTBk/V3xsFEVqPRWQnq5B60avEf71YVx8uXDfJVVgwmeUGJJ0dT3KOTYqrVnDMFFDDx5YQqpjNj+kjUYQa253rBgokvNBUCCLjIqDl0A+LIlACN/2ydG1z/mJPy6R31vK9ln930Wx78w5r6Agdo1Pko0vURreog7qIogy9ojf07nw4n86XM5mNrjjznUP0B873D+/GpXI=</latexit><latexit sha1_base64="HcFm8a7z1eSW+AHwbMRin3rNUro=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRZc6LKCfUATymRyo4MzkzAzUUrIb7jVtV/jTrr1S5y0XWjrgYHDOffOPZwo40wbz5s4K6tr6xubtS13e2d3b7/eOOjpNFcUujTlqRpERANnErqGGQ6DTAEREYd+9HRd+f1nUJql8t6MMwgFeZAsYZQYKwWBIOYxSoqbcnQ+qje9ljcFXib+nDTRHJ1Rw9kI4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gDDC2VRIAOi2noEp9YJcZJquyTBk/V3xsFEVqPRWQnq5B60avEf71YVx8uXDfJVVgwmeUGJJ0dT3KOTYqrVnDMFFDDx5YQqpjNj+kjUYQa253rBgokvNBUCCLjIqDl0A+LIlACN/2ydG1z/mJPy6R31vK9ln930Wx78w5r6Agdo1Pko0vURreog7qIogy9ojf07nw4n86XM5mNrjjznUP0B873D+/GpXI=</latexit><latexit sha1_base64="HcFm8a7z1eSW+AHwbMRin3rNUro=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRZc6LKCfUATymRyo4MzkzAzUUrIb7jVtV/jTrr1S5y0XWjrgYHDOffOPZwo40wbz5s4K6tr6xubtS13e2d3b7/eOOjpNFcUujTlqRpERANnErqGGQ6DTAEREYd+9HRd+f1nUJql8t6MMwgFeZAsYZQYKwWBIOYxSoqbcnQ+qje9ljcFXib+nDTRHJ1Rw9kI4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gDDC2VRIAOi2noEp9YJcZJquyTBk/V3xsFEVqPRWQnq5B60avEf71YVx8uXDfJVVgwmeUGJJ0dT3KOTYqrVnDMFFDDx5YQqpjNj+kjUYQa253rBgokvNBUCCLjIqDl0A+LIlACN/2ydG1z/mJPy6R31vK9ln930Wx78w5r6Agdo1Pko0vURreog7qIogy9ojf07nw4n86XM5mNrjjznUP0B873D+/GpXI=</latexit><latexit sha1_base64="HcFm8a7z1eSW+AHwbMRin3rNUro=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRZc6LKCfUATymRyo4MzkzAzUUrIb7jVtV/jTrr1S5y0XWjrgYHDOffOPZwo40wbz5s4K6tr6xubtS13e2d3b7/eOOjpNFcUujTlqRpERANnErqGGQ6DTAEREYd+9HRd+f1nUJql8t6MMwgFeZAsYZQYKwWBIOYxSoqbcnQ+qje9ljcFXib+nDTRHJ1Rw9kI4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gDDC2VRIAOi2noEp9YJcZJquyTBk/V3xsFEVqPRWQnq5B60avEf71YVx8uXDfJVVgwmeUGJJ0dT3KOTYqrVnDMFFDDx5YQqpjNj+kjUYQa253rBgokvNBUCCLjIqDl0A+LIlACN/2ydG1z/mJPy6R31vK9ln930Wx78w5r6Agdo1Pko0vURreog7qIogy9ojf07nw4n86XM5mNrjjznUP0B873D+/GpXI=</latexit>

G2
<latexit sha1_base64="/PPwQnSyqTEWTLt+UWBIZkpvYyI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix40KOCrYUmlM3mRRd3N2F3o5SQv+FVz/4ab9Krv8RNm4O2DiwMM+/tGybOOdPG9yfO0vLK6tp6a8Pd3Nre2W3v7fd1VigKPZrxTA1iooEzCT3DDIdBroCImMN9/HRZ+/fPoDTL5J0Z5xAJ8iBZyigxVgpDQcxjnJZX1eh01Pb8jj8FXiRBQzzU4Ga056yFSUYLAdJQTrQeBn5uopIowyiHyg0LDTmhT+QBhpZKIkBH5TR0hY+tkuA0U/ZJg6fq742SCK3HIraTdUg979Xiv16i6w/nrpv0IiqZzAsDks6OpwXHJsN1KzhhCqjhY0sIVczmx/SRKEKN7c51QwUSXmgmBJFJGdJqGERlGSqBvaCqXNtcMN/TIumfdgK/E9yeeV2/6bCFDtEROkEBOkdddI1uUA9RlKNX9IbenQ/n0/lyJrPRJafZOUB/4Hz/AO4NpXE=</latexit><latexit sha1_base64="/PPwQnSyqTEWTLt+UWBIZkpvYyI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix40KOCrYUmlM3mRRd3N2F3o5SQv+FVz/4ab9Krv8RNm4O2DiwMM+/tGybOOdPG9yfO0vLK6tp6a8Pd3Nre2W3v7fd1VigKPZrxTA1iooEzCT3DDIdBroCImMN9/HRZ+/fPoDTL5J0Z5xAJ8iBZyigxVgpDQcxjnJZX1eh01Pb8jj8FXiRBQzzU4Ga056yFSUYLAdJQTrQeBn5uopIowyiHyg0LDTmhT+QBhpZKIkBH5TR0hY+tkuA0U/ZJg6fq742SCK3HIraTdUg979Xiv16i6w/nrpv0IiqZzAsDks6OpwXHJsN1KzhhCqjhY0sIVczmx/SRKEKN7c51QwUSXmgmBJFJGdJqGERlGSqBvaCqXNtcMN/TIumfdgK/E9yeeV2/6bCFDtEROkEBOkdddI1uUA9RlKNX9IbenQ/n0/lyJrPRJafZOUB/4Hz/AO4NpXE=</latexit><latexit sha1_base64="/PPwQnSyqTEWTLt+UWBIZkpvYyI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix40KOCrYUmlM3mRRd3N2F3o5SQv+FVz/4ab9Krv8RNm4O2DiwMM+/tGybOOdPG9yfO0vLK6tp6a8Pd3Nre2W3v7fd1VigKPZrxTA1iooEzCT3DDIdBroCImMN9/HRZ+/fPoDTL5J0Z5xAJ8iBZyigxVgpDQcxjnJZX1eh01Pb8jj8FXiRBQzzU4Ga056yFSUYLAdJQTrQeBn5uopIowyiHyg0LDTmhT+QBhpZKIkBH5TR0hY+tkuA0U/ZJg6fq742SCK3HIraTdUg979Xiv16i6w/nrpv0IiqZzAsDks6OpwXHJsN1KzhhCqjhY0sIVczmx/SRKEKN7c51QwUSXmgmBJFJGdJqGERlGSqBvaCqXNtcMN/TIumfdgK/E9yeeV2/6bCFDtEROkEBOkdddI1uUA9RlKNX9IbenQ/n0/lyJrPRJafZOUB/4Hz/AO4NpXE=</latexit><latexit sha1_base64="/PPwQnSyqTEWTLt+UWBIZkpvYyI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix40KOCrYUmlM3mRRd3N2F3o5SQv+FVz/4ab9Krv8RNm4O2DiwMM+/tGybOOdPG9yfO0vLK6tp6a8Pd3Nre2W3v7fd1VigKPZrxTA1iooEzCT3DDIdBroCImMN9/HRZ+/fPoDTL5J0Z5xAJ8iBZyigxVgpDQcxjnJZX1eh01Pb8jj8FXiRBQzzU4Ga056yFSUYLAdJQTrQeBn5uopIowyiHyg0LDTmhT+QBhpZKIkBH5TR0hY+tkuA0U/ZJg6fq742SCK3HIraTdUg979Xiv16i6w/nrpv0IiqZzAsDks6OpwXHJsN1KzhhCqjhY0sIVczmx/SRKEKN7c51QwUSXmgmBJFJGdJqGERlGSqBvaCqXNtcMN/TIumfdgK/E9yeeV2/6bCFDtEROkEBOkdddI1uUA9RlKNX9IbenQ/n0/lyJrPRJafZOUB/4Hz/AO4NpXE=</latexit>

G1
<latexit sha1_base64="ai7/g5L8UPDbtaX/LT59oJdWTv4=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehQ86FHBVqG7lGz2rQ1NskuSVcqyf8Ornv013qRXf4nZtgetDgSGmffyholzwY0NgonXWFpeaa621vz1jc2t7Z3dvZ7JCs2gyzKR6YeYGhBcQddyK+Ah10BlLOA+Hl3W/v0TaMMzdWfHOUSSPiqeckatk8JQUjuM0/KqGpDBTjvoBFPgv4TMSRvNcTPY9ZphkrFCgrJMUGP6JMhtVFJtORNQ+WFhIKdsRB+h76iiEkxUTkNX+MgpCU4z7Z6yeKr+3CipNGYsYzdZhzSLXi3+6yWm/nDhuk3Po5KrvLCg2Ox4WghsM1y3ghOugVkxdoQyzV1+zIZUU2Zdd74falDwzDIpqUrKkFV9EpVlqCVuk6ryXXNksae/pHfSIUGH3J62L4J5hy10gA7RMSLoDF2ga3SDuoihHL2gV/TmvXsf3qc3mY02vPnOPvoF7+sb7FSlcA==</latexit><latexit sha1_base64="ai7/g5L8UPDbtaX/LT59oJdWTv4=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehQ86FHBVqG7lGz2rQ1NskuSVcqyf8Ornv013qRXf4nZtgetDgSGmffyholzwY0NgonXWFpeaa621vz1jc2t7Z3dvZ7JCs2gyzKR6YeYGhBcQddyK+Ah10BlLOA+Hl3W/v0TaMMzdWfHOUSSPiqeckatk8JQUjuM0/KqGpDBTjvoBFPgv4TMSRvNcTPY9ZphkrFCgrJMUGP6JMhtVFJtORNQ+WFhIKdsRB+h76iiEkxUTkNX+MgpCU4z7Z6yeKr+3CipNGYsYzdZhzSLXi3+6yWm/nDhuk3Po5KrvLCg2Ox4WghsM1y3ghOugVkxdoQyzV1+zIZUU2Zdd74falDwzDIpqUrKkFV9EpVlqCVuk6ryXXNksae/pHfSIUGH3J62L4J5hy10gA7RMSLoDF2ga3SDuoihHL2gV/TmvXsf3qc3mY02vPnOPvoF7+sb7FSlcA==</latexit><latexit sha1_base64="ai7/g5L8UPDbtaX/LT59oJdWTv4=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehQ86FHBVqG7lGz2rQ1NskuSVcqyf8Ornv013qRXf4nZtgetDgSGmffyholzwY0NgonXWFpeaa621vz1jc2t7Z3dvZ7JCs2gyzKR6YeYGhBcQddyK+Ah10BlLOA+Hl3W/v0TaMMzdWfHOUSSPiqeckatk8JQUjuM0/KqGpDBTjvoBFPgv4TMSRvNcTPY9ZphkrFCgrJMUGP6JMhtVFJtORNQ+WFhIKdsRB+h76iiEkxUTkNX+MgpCU4z7Z6yeKr+3CipNGYsYzdZhzSLXi3+6yWm/nDhuk3Po5KrvLCg2Ox4WghsM1y3ghOugVkxdoQyzV1+zIZUU2Zdd74falDwzDIpqUrKkFV9EpVlqCVuk6ryXXNksae/pHfSIUGH3J62L4J5hy10gA7RMSLoDF2ga3SDuoihHL2gV/TmvXsf3qc3mY02vPnOPvoF7+sb7FSlcA==</latexit><latexit sha1_base64="ai7/g5L8UPDbtaX/LT59oJdWTv4=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehQ86FHBVqG7lGz2rQ1NskuSVcqyf8Ornv013qRXf4nZtgetDgSGmffyholzwY0NgonXWFpeaa621vz1jc2t7Z3dvZ7JCs2gyzKR6YeYGhBcQddyK+Ah10BlLOA+Hl3W/v0TaMMzdWfHOUSSPiqeckatk8JQUjuM0/KqGpDBTjvoBFPgv4TMSRvNcTPY9ZphkrFCgrJMUGP6JMhtVFJtORNQ+WFhIKdsRB+h76iiEkxUTkNX+MgpCU4z7Z6yeKr+3CipNGYsYzdZhzSLXi3+6yWm/nDhuk3Po5KrvLCg2Ox4WghsM1y3ghOugVkxdoQyzV1+zIZUU2Zdd74falDwzDIpqUrKkFV9EpVlqCVuk6ryXXNksae/pHfSIUGH3J62L4J5hy10gA7RMSLoDF2ga3SDuoihHL2gV/TmvXsf3qc3mY02vPnOPvoF7+sb7FSlcA==</latexit>

H1
<latexit sha1_base64="bK6Sysyo0zWnL8dtSfOhyhhedfI=">AAACKHicbVBNSwMxFMz67frV6tFLsAieykYEPRa89FjBtkJ3KdnsWw0m2SXJKmXZv+FVz/4ab+LVX2K27UFbBwLDzHt5w8S54MYGwZe3srq2vrG5te3v7O7tHzSahwOTFZpBn2Ui03cxNSC4gr7lVsBdroHKWMAwfryu/eETaMMzdWsnOUSS3iueckatk8JQUvsQp2W3GpNxoxW0gynwMiFz0kJz9MZNbyNMMlZIUJYJasyIBLmNSqotZwIqPywM5JQ90nsYOaqoBBOV09AVPnVKgtNMu6csnqq/N0oqjZnI2E3WIc2iV4v/eompP1y4btOrqOQqLywoNjueFgLbDNet4IRrYFZMHKFMc5cfsweqKbOuO98PNSh4ZpmUVCVlyKoRicoy1BK3SFX5rjmy2NMyGZy3SdAmNxetTjDvcAsdoxN0hgi6RB3URT3URwzl6AW9ojfv3fvwPr2v2eiKN985Qn/gff8A7hClcQ==</latexit><latexit sha1_base64="bK6Sysyo0zWnL8dtSfOhyhhedfI=">AAACKHicbVBNSwMxFMz67frV6tFLsAieykYEPRa89FjBtkJ3KdnsWw0m2SXJKmXZv+FVz/4ab+LVX2K27UFbBwLDzHt5w8S54MYGwZe3srq2vrG5te3v7O7tHzSahwOTFZpBn2Ui03cxNSC4gr7lVsBdroHKWMAwfryu/eETaMMzdWsnOUSS3iueckatk8JQUvsQp2W3GpNxoxW0gynwMiFz0kJz9MZNbyNMMlZIUJYJasyIBLmNSqotZwIqPywM5JQ90nsYOaqoBBOV09AVPnVKgtNMu6csnqq/N0oqjZnI2E3WIc2iV4v/eompP1y4btOrqOQqLywoNjueFgLbDNet4IRrYFZMHKFMc5cfsweqKbOuO98PNSh4ZpmUVCVlyKoRicoy1BK3SFX5rjmy2NMyGZy3SdAmNxetTjDvcAsdoxN0hgi6RB3URT3URwzl6AW9ojfv3fvwPr2v2eiKN985Qn/gff8A7hClcQ==</latexit><latexit sha1_base64="bK6Sysyo0zWnL8dtSfOhyhhedfI=">AAACKHicbVBNSwMxFMz67frV6tFLsAieykYEPRa89FjBtkJ3KdnsWw0m2SXJKmXZv+FVz/4ab+LVX2K27UFbBwLDzHt5w8S54MYGwZe3srq2vrG5te3v7O7tHzSahwOTFZpBn2Ui03cxNSC4gr7lVsBdroHKWMAwfryu/eETaMMzdWsnOUSS3iueckatk8JQUvsQp2W3GpNxoxW0gynwMiFz0kJz9MZNbyNMMlZIUJYJasyIBLmNSqotZwIqPywM5JQ90nsYOaqoBBOV09AVPnVKgtNMu6csnqq/N0oqjZnI2E3WIc2iV4v/eompP1y4btOrqOQqLywoNjueFgLbDNet4IRrYFZMHKFMc5cfsweqKbOuO98PNSh4ZpmUVCVlyKoRicoy1BK3SFX5rjmy2NMyGZy3SdAmNxetTjDvcAsdoxN0hgi6RB3URT3URwzl6AW9ojfv3fvwPr2v2eiKN985Qn/gff8A7hClcQ==</latexit><latexit sha1_base64="bK6Sysyo0zWnL8dtSfOhyhhedfI=">AAACKHicbVBNSwMxFMz67frV6tFLsAieykYEPRa89FjBtkJ3KdnsWw0m2SXJKmXZv+FVz/4ab+LVX2K27UFbBwLDzHt5w8S54MYGwZe3srq2vrG5te3v7O7tHzSahwOTFZpBn2Ui03cxNSC4gr7lVsBdroHKWMAwfryu/eETaMMzdWsnOUSS3iueckatk8JQUvsQp2W3GpNxoxW0gynwMiFz0kJz9MZNbyNMMlZIUJYJasyIBLmNSqotZwIqPywM5JQ90nsYOaqoBBOV09AVPnVKgtNMu6csnqq/N0oqjZnI2E3WIc2iV4v/eompP1y4btOrqOQqLywoNjueFgLbDNet4IRrYFZMHKFMc5cfsweqKbOuO98PNSh4ZpmUVCVlyKoRicoy1BK3SFX5rjmy2NMyGZy3SdAmNxetTjDvcAsdoxN0hgi6RB3URT3URwzl6AW9ojfv3fvwPr2v2eiKN985Qn/gff8A7hClcQ==</latexit>

H2
<latexit sha1_base64="ztWhainNo3WlrYsfCPeut4aputI=">AAACKHicbVBNS8NAFNz4WeNXq0cvi0XwVBIR9Fjw0mMF2wpNKJvNS7u4uwm7G6WE/A2vevbXeJNe/SVu2h60dWBhmHlv3zBRxpk2njdzNja3tnd2a3vu/sHh0XG9cdLXaa4o9GjKU/UYEQ2cSegZZjg8ZgqIiDgMoqe7yh88g9IslQ9mmkEoyFiyhFFirBQEgphJlBSdcnQ1qje9ljcHXif+kjTREt1Rw9kJ4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gYhpZKIkCHxTx0iS+sEuMkVfZJg+fq742CCK2nIrKTVUi96lXiv16sqw9XrpvkNiyYzHIDki6OJznHJsVVKzhmCqjhU0sIVczmx3RCFKHGdue6gQIJLzQVgsi4CGg59MOiCJTATb8sXducv9rTOulftXyv5d9fN9vessMaOkPn6BL56Aa1UQd1UQ9RlKFX9IbenQ/n0/lyZovRDWe5c4r+wPn+Ae/JpXI=</latexit><latexit sha1_base64="ztWhainNo3WlrYsfCPeut4aputI=">AAACKHicbVBNS8NAFNz4WeNXq0cvi0XwVBIR9Fjw0mMF2wpNKJvNS7u4uwm7G6WE/A2vevbXeJNe/SVu2h60dWBhmHlv3zBRxpk2njdzNja3tnd2a3vu/sHh0XG9cdLXaa4o9GjKU/UYEQ2cSegZZjg8ZgqIiDgMoqe7yh88g9IslQ9mmkEoyFiyhFFirBQEgphJlBSdcnQ1qje9ljcHXif+kjTREt1Rw9kJ4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gYhpZKIkCHxTx0iS+sEuMkVfZJg+fq742CCK2nIrKTVUi96lXiv16sqw9XrpvkNiyYzHIDki6OJznHJsVVKzhmCqjhU0sIVczmx3RCFKHGdue6gQIJLzQVgsi4CGg59MOiCJTATb8sXducv9rTOulftXyv5d9fN9vessMaOkPn6BL56Aa1UQd1UQ9RlKFX9IbenQ/n0/lyZovRDWe5c4r+wPn+Ae/JpXI=</latexit><latexit sha1_base64="ztWhainNo3WlrYsfCPeut4aputI=">AAACKHicbVBNS8NAFNz4WeNXq0cvi0XwVBIR9Fjw0mMF2wpNKJvNS7u4uwm7G6WE/A2vevbXeJNe/SVu2h60dWBhmHlv3zBRxpk2njdzNja3tnd2a3vu/sHh0XG9cdLXaa4o9GjKU/UYEQ2cSegZZjg8ZgqIiDgMoqe7yh88g9IslQ9mmkEoyFiyhFFirBQEgphJlBSdcnQ1qje9ljcHXif+kjTREt1Rw9kJ4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gYhpZKIkCHxTx0iS+sEuMkVfZJg+fq742CCK2nIrKTVUi96lXiv16sqw9XrpvkNiyYzHIDki6OJznHJsVVKzhmCqjhU0sIVczmx3RCFKHGdue6gQIJLzQVgsi4CGg59MOiCJTATb8sXducv9rTOulftXyv5d9fN9vessMaOkPn6BL56Aa1UQd1UQ9RlKFX9IbenQ/n0/lyZovRDWe5c4r+wPn+Ae/JpXI=</latexit><latexit sha1_base64="ztWhainNo3WlrYsfCPeut4aputI=">AAACKHicbVBNS8NAFNz4WeNXq0cvi0XwVBIR9Fjw0mMF2wpNKJvNS7u4uwm7G6WE/A2vevbXeJNe/SVu2h60dWBhmHlv3zBRxpk2njdzNja3tnd2a3vu/sHh0XG9cdLXaa4o9GjKU/UYEQ2cSegZZjg8ZgqIiDgMoqe7yh88g9IslQ9mmkEoyFiyhFFirBQEgphJlBSdcnQ1qje9ljcHXif+kjTREt1Rw9kJ4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gYhpZKIkCHxTx0iS+sEuMkVfZJg+fq742CCK2nIrKTVUi96lXiv16sqw9XrpvkNiyYzHIDki6OJznHJsVVKzhmCqjhU0sIVczmx3RCFKHGdue6gQIJLzQVgsi4CGg59MOiCJTATb8sXducv9rTOulftXyv5d9fN9vessMaOkPn6BL56Aa1UQd1UQ9RlKFX9IbenQ/n0/lyZovRDWe5c4r+wPn+Ae/JpXI=</latexit>

H3
<latexit sha1_base64="VDMXHQH4pdq79xyAFWt+aJCg73w=">AAACKHicbVBNS8NAFNzUrxq/qh69LBbBU0lU0GPBi8cK1gpNKJvNS7t0dxN2N0oJ+Rte9eyv8Sa9+kvctD1o68DCMPPevmGijDNtPG/q1NbWNza36tvuzu7e/kHj8OhRp7mi0KUpT9VTRDRwJqFrmOHwlCkgIuLQi8a3ld97BqVZKh/MJINQkKFkCaPEWCkIBDGjKCnuysHloNH0Wt4MeJX4C9JEC3QGh85mEKc0FyAN5UTrvu9lJiyIMoxyKN0g15AROiZD6FsqiQAdFrPQJT6zSoyTVNknDZ6pvzcKIrSeiMhOViH1sleJ/3qxrj5cum6Sm7BgMssNSDo/nuQcmxRXreCYKaCGTywhVDGbH9MRUYQa253rBgokvNBUCCLjIqBl3w+LIlACN/2ydG1z/nJPq+TxouV7Lf/+qtn2Fh3W0Qk6RefIR9eoje5QB3URRRl6RW/o3flwPp0vZzofrTmLnWP0B873D/GCpXM=</latexit><latexit sha1_base64="VDMXHQH4pdq79xyAFWt+aJCg73w=">AAACKHicbVBNS8NAFNzUrxq/qh69LBbBU0lU0GPBi8cK1gpNKJvNS7t0dxN2N0oJ+Rte9eyv8Sa9+kvctD1o68DCMPPevmGijDNtPG/q1NbWNza36tvuzu7e/kHj8OhRp7mi0KUpT9VTRDRwJqFrmOHwlCkgIuLQi8a3ld97BqVZKh/MJINQkKFkCaPEWCkIBDGjKCnuysHloNH0Wt4MeJX4C9JEC3QGh85mEKc0FyAN5UTrvu9lJiyIMoxyKN0g15AROiZD6FsqiQAdFrPQJT6zSoyTVNknDZ6pvzcKIrSeiMhOViH1sleJ/3qxrj5cum6Sm7BgMssNSDo/nuQcmxRXreCYKaCGTywhVDGbH9MRUYQa253rBgokvNBUCCLjIqBl3w+LIlACN/2ydG1z/nJPq+TxouV7Lf/+qtn2Fh3W0Qk6RefIR9eoje5QB3URRRl6RW/o3flwPp0vZzofrTmLnWP0B873D/GCpXM=</latexit><latexit sha1_base64="VDMXHQH4pdq79xyAFWt+aJCg73w=">AAACKHicbVBNS8NAFNzUrxq/qh69LBbBU0lU0GPBi8cK1gpNKJvNS7t0dxN2N0oJ+Rte9eyv8Sa9+kvctD1o68DCMPPevmGijDNtPG/q1NbWNza36tvuzu7e/kHj8OhRp7mi0KUpT9VTRDRwJqFrmOHwlCkgIuLQi8a3ld97BqVZKh/MJINQkKFkCaPEWCkIBDGjKCnuysHloNH0Wt4MeJX4C9JEC3QGh85mEKc0FyAN5UTrvu9lJiyIMoxyKN0g15AROiZD6FsqiQAdFrPQJT6zSoyTVNknDZ6pvzcKIrSeiMhOViH1sleJ/3qxrj5cum6Sm7BgMssNSDo/nuQcmxRXreCYKaCGTywhVDGbH9MRUYQa253rBgokvNBUCCLjIqBl3w+LIlACN/2ydG1z/nJPq+TxouV7Lf/+qtn2Fh3W0Qk6RefIR9eoje5QB3URRRl6RW/o3flwPp0vZzofrTmLnWP0B873D/GCpXM=</latexit><latexit sha1_base64="VDMXHQH4pdq79xyAFWt+aJCg73w=">AAACKHicbVBNS8NAFNzUrxq/qh69LBbBU0lU0GPBi8cK1gpNKJvNS7t0dxN2N0oJ+Rte9eyv8Sa9+kvctD1o68DCMPPevmGijDNtPG/q1NbWNza36tvuzu7e/kHj8OhRp7mi0KUpT9VTRDRwJqFrmOHwlCkgIuLQi8a3ld97BqVZKh/MJINQkKFkCaPEWCkIBDGjKCnuysHloNH0Wt4MeJX4C9JEC3QGh85mEKc0FyAN5UTrvu9lJiyIMoxyKN0g15AROiZD6FsqiQAdFrPQJT6zSoyTVNknDZ6pvzcKIrSeiMhOViH1sleJ/3qxrj5cum6Sm7BgMssNSDo/nuQcmxRXreCYKaCGTywhVDGbH9MRUYQa253rBgokvNBUCCLjIqBl3w+LIlACN/2ydG1z/nJPq+TxouV7Lf/+qtn2Fh3W0Qk6RefIR9eoje5QB3URRRl6RW/o3flwPp0vZzofrTmLnWP0B873D/GCpXM=</latexit>

H4
<latexit sha1_base64="ceOBShG5hPFw2ptZ4Hq0Nb63eQI=">AAACKHicbVBNS8NAFNz4WeNXq0cvi0XwVBIR9Fjw0mMF2wpNKJvNS7u4uwm7G6WE/A2vevbXeJNe/SVu2h60dWBhmHlv3zBRxpk2njdzNja3tnd2a3vu/sHh0XG9cdLXaa4o9GjKU/UYEQ2cSegZZjg8ZgqIiDgMoqe7yh88g9IslQ9mmkEoyFiyhFFirBQEgphJlBSdcnQ9qje9ljcHXif+kjTREt1Rw9kJ4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gYhpZKIkCHxTx0iS+sEuMkVfZJg+fq742CCK2nIrKTVUi96lXiv16sqw9XrpvkNiyYzHIDki6OJznHJsVVKzhmCqjhU0sIVczmx3RCFKHGdue6gQIJLzQVgsi4CGg59MOiCJTATb8sXducv9rTOulftXyv5d9fN9vessMaOkPn6BL56Aa1UQd1UQ9RlKFX9IbenQ/n0/lyZovRDWe5c4r+wPn+AfM7pXQ=</latexit><latexit sha1_base64="ceOBShG5hPFw2ptZ4Hq0Nb63eQI=">AAACKHicbVBNS8NAFNz4WeNXq0cvi0XwVBIR9Fjw0mMF2wpNKJvNS7u4uwm7G6WE/A2vevbXeJNe/SVu2h60dWBhmHlv3zBRxpk2njdzNja3tnd2a3vu/sHh0XG9cdLXaa4o9GjKU/UYEQ2cSegZZjg8ZgqIiDgMoqe7yh88g9IslQ9mmkEoyFiyhFFirBQEgphJlBSdcnQ9qje9ljcHXif+kjTREt1Rw9kJ4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gYhpZKIkCHxTx0iS+sEuMkVfZJg+fq742CCK2nIrKTVUi96lXiv16sqw9XrpvkNiyYzHIDki6OJznHJsVVKzhmCqjhU0sIVczmx3RCFKHGdue6gQIJLzQVgsi4CGg59MOiCJTATb8sXducv9rTOulftXyv5d9fN9vessMaOkPn6BL56Aa1UQd1UQ9RlKFX9IbenQ/n0/lyZovRDWe5c4r+wPn+AfM7pXQ=</latexit><latexit sha1_base64="ceOBShG5hPFw2ptZ4Hq0Nb63eQI=">AAACKHicbVBNS8NAFNz4WeNXq0cvi0XwVBIR9Fjw0mMF2wpNKJvNS7u4uwm7G6WE/A2vevbXeJNe/SVu2h60dWBhmHlv3zBRxpk2njdzNja3tnd2a3vu/sHh0XG9cdLXaa4o9GjKU/UYEQ2cSegZZjg8ZgqIiDgMoqe7yh88g9IslQ9mmkEoyFiyhFFirBQEgphJlBSdcnQ9qje9ljcHXif+kjTREt1Rw9kJ4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gYhpZKIkCHxTx0iS+sEuMkVfZJg+fq742CCK2nIrKTVUi96lXiv16sqw9XrpvkNiyYzHIDki6OJznHJsVVKzhmCqjhU0sIVczmx3RCFKHGdue6gQIJLzQVgsi4CGg59MOiCJTATb8sXducv9rTOulftXyv5d9fN9vessMaOkPn6BL56Aa1UQd1UQ9RlKFX9IbenQ/n0/lyZovRDWe5c4r+wPn+AfM7pXQ=</latexit><latexit sha1_base64="ceOBShG5hPFw2ptZ4Hq0Nb63eQI=">AAACKHicbVBNS8NAFNz4WeNXq0cvi0XwVBIR9Fjw0mMF2wpNKJvNS7u4uwm7G6WE/A2vevbXeJNe/SVu2h60dWBhmHlv3zBRxpk2njdzNja3tnd2a3vu/sHh0XG9cdLXaa4o9GjKU/UYEQ2cSegZZjg8ZgqIiDgMoqe7yh88g9IslQ9mmkEoyFiyhFFirBQEgphJlBSdcnQ9qje9ljcHXif+kjTREt1Rw9kJ4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gYhpZKIkCHxTx0iS+sEuMkVfZJg+fq742CCK2nIrKTVUi96lXiv16sqw9XrpvkNiyYzHIDki6OJznHJsVVKzhmCqjhU0sIVczmx3RCFKHGdue6gQIJLzQVgsi4CGg59MOiCJTATb8sXducv9rTOulftXyv5d9fN9vessMaOkPn6BL56Aa1UQd1UQ9RlKFX9IbenQ/n0/lyZovRDWe5c4r+wPn+AfM7pXQ=</latexit>

K4
<latexit sha1_base64="zSEKgDlnGQ6gUlQHW9aLR7TCWig=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix4Ebwo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY3ORm3P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/hvpXc=</latexit><latexit sha1_base64="zSEKgDlnGQ6gUlQHW9aLR7TCWig=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix4Ebwo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY3ORm3P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/hvpXc=</latexit><latexit sha1_base64="zSEKgDlnGQ6gUlQHW9aLR7TCWig=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix4Ebwo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY3ORm3P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/hvpXc=</latexit><latexit sha1_base64="zSEKgDlnGQ6gUlQHW9aLR7TCWig=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix4Ebwo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY3ORm3P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/hvpXc=</latexit>

K3
<latexit sha1_base64="Ik9I+TZwqci8GSVJME+dT92LqjM=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRbcCG4q2Ac0oUwmNzo4MwkzE6WE/IZbXfs17qRbv8RJ24W2Hhg4nHPv3MOJMs608byJs7K6tr6xWdtyt3d29/brjYOeTnNFoUtTnqpBRDRwJqFrmOEwyBQQEXHoR0/Xld9/BqVZKu/NOINQkAfJEkaJsVIQCGIeo6S4LUfno3rTa3lT4GXiz0kTzdEZNZyNIE5pLkAayonWQ9/LTFgQZRjlULpBriEj9Ik8wNBSSQTosJiGLvGJVWKcpMo+afBU/b1REKH1WER2sgqpF71K/NeLdfXhwnWTXIUFk1luQNLZ8STn2KS4agXHTAE1fGwJoYrZ/Jg+EkWosd25bqBAwgtNhSAyLgJaDv2wKAIlcNMvS9c25y/2tEx6Zy3fa/l3F822N++who7QMTpFPrpEbXSDOqiLKMrQK3pD786H8+l8OZPZ6Ioz3zlEf+B8/wD2tqV2</latexit><latexit sha1_base64="Ik9I+TZwqci8GSVJME+dT92LqjM=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRbcCG4q2Ac0oUwmNzo4MwkzE6WE/IZbXfs17qRbv8RJ24W2Hhg4nHPv3MOJMs608byJs7K6tr6xWdtyt3d29/brjYOeTnNFoUtTnqpBRDRwJqFrmOEwyBQQEXHoR0/Xld9/BqVZKu/NOINQkAfJEkaJsVIQCGIeo6S4LUfno3rTa3lT4GXiz0kTzdEZNZyNIE5pLkAayonWQ9/LTFgQZRjlULpBriEj9Ik8wNBSSQTosJiGLvGJVWKcpMo+afBU/b1REKH1WER2sgqpF71K/NeLdfXhwnWTXIUFk1luQNLZ8STn2KS4agXHTAE1fGwJoYrZ/Jg+EkWosd25bqBAwgtNhSAyLgJaDv2wKAIlcNMvS9c25y/2tEx6Zy3fa/l3F822N++who7QMTpFPrpEbXSDOqiLKMrQK3pD786H8+l8OZPZ6Ioz3zlEf+B8/wD2tqV2</latexit><latexit sha1_base64="Ik9I+TZwqci8GSVJME+dT92LqjM=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRbcCG4q2Ac0oUwmNzo4MwkzE6WE/IZbXfs17qRbv8RJ24W2Hhg4nHPv3MOJMs608byJs7K6tr6xWdtyt3d29/brjYOeTnNFoUtTnqpBRDRwJqFrmOEwyBQQEXHoR0/Xld9/BqVZKu/NOINQkAfJEkaJsVIQCGIeo6S4LUfno3rTa3lT4GXiz0kTzdEZNZyNIE5pLkAayonWQ9/LTFgQZRjlULpBriEj9Ik8wNBSSQTosJiGLvGJVWKcpMo+afBU/b1REKH1WER2sgqpF71K/NeLdfXhwnWTXIUFk1luQNLZ8STn2KS4agXHTAE1fGwJoYrZ/Jg+EkWosd25bqBAwgtNhSAyLgJaDv2wKAIlcNMvS9c25y/2tEx6Zy3fa/l3F822N++who7QMTpFPrpEbXSDOqiLKMrQK3pD786H8+l8OZPZ6Ioz3zlEf+B8/wD2tqV2</latexit><latexit sha1_base64="Ik9I+TZwqci8GSVJME+dT92LqjM=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRbcCG4q2Ac0oUwmNzo4MwkzE6WE/IZbXfs17qRbv8RJ24W2Hhg4nHPv3MOJMs608byJs7K6tr6xWdtyt3d29/brjYOeTnNFoUtTnqpBRDRwJqFrmOEwyBQQEXHoR0/Xld9/BqVZKu/NOINQkAfJEkaJsVIQCGIeo6S4LUfno3rTa3lT4GXiz0kTzdEZNZyNIE5pLkAayonWQ9/LTFgQZRjlULpBriEj9Ik8wNBSSQTosJiGLvGJVWKcpMo+afBU/b1REKH1WER2sgqpF71K/NeLdfXhwnWTXIUFk1luQNLZ8STn2KS4agXHTAE1fGwJoYrZ/Jg+EkWosd25bqBAwgtNhSAyLgJaDv2wKAIlcNMvS9c25y/2tEx6Zy3fa/l3F822N++who7QMTpFPrpEbXSDOqiLKMrQK3pD786H8+l8OZPZ6Ioz3zlEf+B8/wD2tqV2</latexit>

K2
<latexit sha1_base64="IoGqvGMFq6uTpb2a+qre4xR7QuI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix4Ebwo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY1OR23P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/T9pXU=</latexit><latexit sha1_base64="IoGqvGMFq6uTpb2a+qre4xR7QuI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix4Ebwo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY1OR23P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/T9pXU=</latexit><latexit sha1_base64="IoGqvGMFq6uTpb2a+qre4xR7QuI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix4Ebwo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY1OR23P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/T9pXU=</latexit><latexit sha1_base64="IoGqvGMFq6uTpb2a+qre4xR7QuI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix4Ebwo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY1OR23P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/T9pXU=</latexit>

K1
<latexit sha1_base64="izW860BEC95Sp1T9QcCShIjKPWk=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehS8CF4UbBW6S8lm39rQJLskWaUs+ze86tlf40169ZeYbXvQ6kBgmHkvb5g4F9zYIJh4jaXlleZqa81f39jc2t7Z3euZrNAMuiwTmX6IqQHBFXQttwIecg1UxgLu49Fl7d8/gTY8U3d2nEMk6aPiKWfUOikMJbXDOC2vqwEZ7LSDTjAF/kvInLTRHDeDXa8ZJhkrJCjLBDWmT4LcRiXVljMBlR8WBnLKRvQR+o4qKsFE5TR0hY+ckuA00+4pi6fqz42SSmPGMnaTdUiz6NXiv15i6g8Xrtv0PCq5ygsLis2Op4XANsN1KzjhGpgVY0co09zlx2xINWXWdef7oQYFzyyTkqqkDFnVJ1FZhlriNqkq3zVHFnv6S3onHRJ0yO1p+yKYd9hCB+gQHSOCztAFukI3qIsYytELekVv3rv34X16k9low5vv7KNf8L6+AfNEpXQ=</latexit><latexit sha1_base64="izW860BEC95Sp1T9QcCShIjKPWk=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehS8CF4UbBW6S8lm39rQJLskWaUs+ze86tlf40169ZeYbXvQ6kBgmHkvb5g4F9zYIJh4jaXlleZqa81f39jc2t7Z3euZrNAMuiwTmX6IqQHBFXQttwIecg1UxgLu49Fl7d8/gTY8U3d2nEMk6aPiKWfUOikMJbXDOC2vqwEZ7LSDTjAF/kvInLTRHDeDXa8ZJhkrJCjLBDWmT4LcRiXVljMBlR8WBnLKRvQR+o4qKsFE5TR0hY+ckuA00+4pi6fqz42SSmPGMnaTdUiz6NXiv15i6g8Xrtv0PCq5ygsLis2Op4XANsN1KzjhGpgVY0co09zlx2xINWXWdef7oQYFzyyTkqqkDFnVJ1FZhlriNqkq3zVHFnv6S3onHRJ0yO1p+yKYd9hCB+gQHSOCztAFukI3qIsYytELekVv3rv34X16k9low5vv7KNf8L6+AfNEpXQ=</latexit><latexit sha1_base64="izW860BEC95Sp1T9QcCShIjKPWk=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehS8CF4UbBW6S8lm39rQJLskWaUs+ze86tlf40169ZeYbXvQ6kBgmHkvb5g4F9zYIJh4jaXlleZqa81f39jc2t7Z3euZrNAMuiwTmX6IqQHBFXQttwIecg1UxgLu49Fl7d8/gTY8U3d2nEMk6aPiKWfUOikMJbXDOC2vqwEZ7LSDTjAF/kvInLTRHDeDXa8ZJhkrJCjLBDWmT4LcRiXVljMBlR8WBnLKRvQR+o4qKsFE5TR0hY+ckuA00+4pi6fqz42SSmPGMnaTdUiz6NXiv15i6g8Xrtv0PCq5ygsLis2Op4XANsN1KzjhGpgVY0co09zlx2xINWXWdef7oQYFzyyTkqqkDFnVJ1FZhlriNqkq3zVHFnv6S3onHRJ0yO1p+yKYd9hCB+gQHSOCztAFukI3qIsYytELekVv3rv34X16k9low5vv7KNf8L6+AfNEpXQ=</latexit><latexit sha1_base64="izW860BEC95Sp1T9QcCShIjKPWk=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehS8CF4UbBW6S8lm39rQJLskWaUs+ze86tlf40169ZeYbXvQ6kBgmHkvb5g4F9zYIJh4jaXlleZqa81f39jc2t7Z3euZrNAMuiwTmX6IqQHBFXQttwIecg1UxgLu49Fl7d8/gTY8U3d2nEMk6aPiKWfUOikMJbXDOC2vqwEZ7LSDTjAF/kvInLTRHDeDXa8ZJhkrJCjLBDWmT4LcRiXVljMBlR8WBnLKRvQR+o4qKsFE5TR0hY+ckuA00+4pi6fqz42SSmPGMnaTdUiz6NXiv15i6g8Xrtv0PCq5ygsLis2Op4XANsN1KzjhGpgVY0co09zlx2xINWXWdef7oQYFzyyTkqqkDFnVJ1FZhlriNqkq3zVHFnv6S3onHRJ0yO1p+yKYd9hCB+gQHSOCztAFukI3qIsYytELekVv3rv34X16k9low5vv7KNf8L6+AfNEpXQ=</latexit>

p1
<latexit sha1_base64="/Ri2Q9mAiOtekUF3fSKR6vwSxrM=">AAACH3icbVDLSsNAFJ1UrTW+delmMAiuSkYEXRbcuKxoa6EJZTK5qYMzkzAzUUrIJ7jVtV/jTtz6N05rF1o9cOFwzn1xkkJwY8Pw02ssLa80V1tr/vrG5tb2zu5e3+SlZtBjucj1IKEGBFfQs9wKGBQaqEwE3Cb3F1P/9gG04bm6sZMCYknHimecUeuk62JERjtB2A5nwH8JmZMAzdEd7XrNKM1ZKUFZJqgxQxIWNq6otpwJqP2oNFBQdk/HMHRUUQkmrma/1vjIKSnOcu1KWTxTf05UVBozkYnrlNTemUVvKv7rpWa6cOG6zc7jiquitKDY9/GsFNjmeBoGTrkGZsXEEco0d/9jdkc1ZdZF5vuRBgWPLJeSqrSKWD0kcVVFWuKA1LXvkiOLOf0l/ZM2Cdvk6jTohPMMW+gAHaJjRNAZ6qBL1EU9xNAYPaFn9OK9em/eu/fx3drw5jP76Be8zy9K7aF5</latexit><latexit sha1_base64="/Ri2Q9mAiOtekUF3fSKR6vwSxrM=">AAACH3icbVDLSsNAFJ1UrTW+delmMAiuSkYEXRbcuKxoa6EJZTK5qYMzkzAzUUrIJ7jVtV/jTtz6N05rF1o9cOFwzn1xkkJwY8Pw02ssLa80V1tr/vrG5tb2zu5e3+SlZtBjucj1IKEGBFfQs9wKGBQaqEwE3Cb3F1P/9gG04bm6sZMCYknHimecUeuk62JERjtB2A5nwH8JmZMAzdEd7XrNKM1ZKUFZJqgxQxIWNq6otpwJqP2oNFBQdk/HMHRUUQkmrma/1vjIKSnOcu1KWTxTf05UVBozkYnrlNTemUVvKv7rpWa6cOG6zc7jiquitKDY9/GsFNjmeBoGTrkGZsXEEco0d/9jdkc1ZdZF5vuRBgWPLJeSqrSKWD0kcVVFWuKA1LXvkiOLOf0l/ZM2Cdvk6jTohPMMW+gAHaJjRNAZ6qBL1EU9xNAYPaFn9OK9em/eu/fx3drw5jP76Be8zy9K7aF5</latexit><latexit sha1_base64="/Ri2Q9mAiOtekUF3fSKR6vwSxrM=">AAACH3icbVDLSsNAFJ1UrTW+delmMAiuSkYEXRbcuKxoa6EJZTK5qYMzkzAzUUrIJ7jVtV/jTtz6N05rF1o9cOFwzn1xkkJwY8Pw02ssLa80V1tr/vrG5tb2zu5e3+SlZtBjucj1IKEGBFfQs9wKGBQaqEwE3Cb3F1P/9gG04bm6sZMCYknHimecUeuk62JERjtB2A5nwH8JmZMAzdEd7XrNKM1ZKUFZJqgxQxIWNq6otpwJqP2oNFBQdk/HMHRUUQkmrma/1vjIKSnOcu1KWTxTf05UVBozkYnrlNTemUVvKv7rpWa6cOG6zc7jiquitKDY9/GsFNjmeBoGTrkGZsXEEco0d/9jdkc1ZdZF5vuRBgWPLJeSqrSKWD0kcVVFWuKA1LXvkiOLOf0l/ZM2Cdvk6jTohPMMW+gAHaJjRNAZ6qBL1EU9xNAYPaFn9OK9em/eu/fx3drw5jP76Be8zy9K7aF5</latexit><latexit sha1_base64="/Ri2Q9mAiOtekUF3fSKR6vwSxrM=">AAACH3icbVDLSsNAFJ1UrTW+delmMAiuSkYEXRbcuKxoa6EJZTK5qYMzkzAzUUrIJ7jVtV/jTtz6N05rF1o9cOFwzn1xkkJwY8Pw02ssLa80V1tr/vrG5tb2zu5e3+SlZtBjucj1IKEGBFfQs9wKGBQaqEwE3Cb3F1P/9gG04bm6sZMCYknHimecUeuk62JERjtB2A5nwH8JmZMAzdEd7XrNKM1ZKUFZJqgxQxIWNq6otpwJqP2oNFBQdk/HMHRUUQkmrma/1vjIKSnOcu1KWTxTf05UVBozkYnrlNTemUVvKv7rpWa6cOG6zc7jiquitKDY9/GsFNjmeBoGTrkGZsXEEco0d/9jdkc1ZdZF5vuRBgWPLJeSqrSKWD0kcVVFWuKA1LXvkiOLOf0l/ZM2Cdvk6jTohPMMW+gAHaJjRNAZ6qBL1EU9xNAYPaFn9OK9em/eu/fx3drw5jP76Be8zy9K7aF5</latexit>

p2
<latexit sha1_base64="rLCTQv3h8/oVZNPooMPvjd04whs=">AAACH3icbVDLSsNAFJ34qDW+Wl26GSyCq5IUQZcFNy4r2gc0oUwmt+3QmUmYmSgl5BPc6tqvcSdu+zdOHwttPXDhcM59caKUM208b+Zsbe/slvbK++7B4dHxSaV62tFJpii0acIT1YuIBs4ktA0zHHqpAiIiDt1ocjf3u8+gNEvkk5mmEAoykmzIKDFWekwHjUGl5tW9BfAm8VekhlZoDapOKYgTmgmQhnKidd/3UhPmRBlGORRukGlICZ2QEfQtlUSADvPFrwW+tEqMh4myJQ1eqL8nciK0norIdgpixnrdm4v/erGeL1y7boa3Yc5kmhmQdHl8mHFsEjwPA8dMATV8agmhitn/MR0TRaixkbluoEDCC02EIDLOA1r0/TDPAyVwzS8K1ybnr+e0STqNuu/V/YfrWtNbZVhG5+gCXSEf3aAmukct1EYUjdArekPvzofz6Xw538vWLWc1c4b+wJn9AEymoXo=</latexit><latexit sha1_base64="rLCTQv3h8/oVZNPooMPvjd04whs=">AAACH3icbVDLSsNAFJ34qDW+Wl26GSyCq5IUQZcFNy4r2gc0oUwmt+3QmUmYmSgl5BPc6tqvcSdu+zdOHwttPXDhcM59caKUM208b+Zsbe/slvbK++7B4dHxSaV62tFJpii0acIT1YuIBs4ktA0zHHqpAiIiDt1ocjf3u8+gNEvkk5mmEAoykmzIKDFWekwHjUGl5tW9BfAm8VekhlZoDapOKYgTmgmQhnKidd/3UhPmRBlGORRukGlICZ2QEfQtlUSADvPFrwW+tEqMh4myJQ1eqL8nciK0norIdgpixnrdm4v/erGeL1y7boa3Yc5kmhmQdHl8mHFsEjwPA8dMATV8agmhitn/MR0TRaixkbluoEDCC02EIDLOA1r0/TDPAyVwzS8K1ybnr+e0STqNuu/V/YfrWtNbZVhG5+gCXSEf3aAmukct1EYUjdArekPvzofz6Xw538vWLWc1c4b+wJn9AEymoXo=</latexit><latexit sha1_base64="rLCTQv3h8/oVZNPooMPvjd04whs=">AAACH3icbVDLSsNAFJ34qDW+Wl26GSyCq5IUQZcFNy4r2gc0oUwmt+3QmUmYmSgl5BPc6tqvcSdu+zdOHwttPXDhcM59caKUM208b+Zsbe/slvbK++7B4dHxSaV62tFJpii0acIT1YuIBs4ktA0zHHqpAiIiDt1ocjf3u8+gNEvkk5mmEAoykmzIKDFWekwHjUGl5tW9BfAm8VekhlZoDapOKYgTmgmQhnKidd/3UhPmRBlGORRukGlICZ2QEfQtlUSADvPFrwW+tEqMh4myJQ1eqL8nciK0norIdgpixnrdm4v/erGeL1y7boa3Yc5kmhmQdHl8mHFsEjwPA8dMATV8agmhitn/MR0TRaixkbluoEDCC02EIDLOA1r0/TDPAyVwzS8K1ybnr+e0STqNuu/V/YfrWtNbZVhG5+gCXSEf3aAmukct1EYUjdArekPvzofz6Xw538vWLWc1c4b+wJn9AEymoXo=</latexit><latexit sha1_base64="rLCTQv3h8/oVZNPooMPvjd04whs=">AAACH3icbVDLSsNAFJ34qDW+Wl26GSyCq5IUQZcFNy4r2gc0oUwmt+3QmUmYmSgl5BPc6tqvcSdu+zdOHwttPXDhcM59caKUM208b+Zsbe/slvbK++7B4dHxSaV62tFJpii0acIT1YuIBs4ktA0zHHqpAiIiDt1ocjf3u8+gNEvkk5mmEAoykmzIKDFWekwHjUGl5tW9BfAm8VekhlZoDapOKYgTmgmQhnKidd/3UhPmRBlGORRukGlICZ2QEfQtlUSADvPFrwW+tEqMh4myJQ1eqL8nciK0norIdgpixnrdm4v/erGeL1y7boa3Yc5kmhmQdHl8mHFsEjwPA8dMATV8agmhitn/MR0TRaixkbluoEDCC02EIDLOA1r0/TDPAyVwzS8K1ybnr+e0STqNuu/V/YfrWtNbZVhG5+gCXSEf3aAmukct1EYUjdArekPvzofz6Xw538vWLWc1c4b+wJn9AEymoXo=</latexit>

p3
<latexit sha1_base64="5mtqhj0wz+4O9RA3aoUiz+NxscM=">AAACH3icbVDLSsNAFJ3UV42vVpduBovgqiQq6LLgxmVF+4AmlMnkth06MwkzE6WEfIJbXfs17sRt/8bpY6GtBy4czrkvTpRypo3nTZ3SxubW9k55193bPzg8qlSP2zrJFIUWTXiiuhHRwJmElmGGQzdVQETEoRON72Z+5xmUZol8MpMUQkGGkg0YJcZKj2n/ql+peXVvDrxO/CWpoSWa/aqzHcQJzQRIQznRuud7qQlzogyjHAo3yDSkhI7JEHqWSiJAh/n81wKfWyXGg0TZkgbP1d8TORFaT0RkOwUxI73qzcR/vVjPFq5cN4PbMGcyzQxIujg+yDg2CZ6FgWOmgBo+sYRQxez/mI6IItTYyFw3UCDhhSZCEBnnAS16fpjngRK45heFa5PzV3NaJ+3Luu/V/YfrWsNbZlhGp+gMXSAf3aAGukdN1EIUDdErekPvzofz6Xw534vWkrOcOUF/4Ex/AE5foXs=</latexit><latexit sha1_base64="5mtqhj0wz+4O9RA3aoUiz+NxscM=">AAACH3icbVDLSsNAFJ3UV42vVpduBovgqiQq6LLgxmVF+4AmlMnkth06MwkzE6WEfIJbXfs17sRt/8bpY6GtBy4czrkvTpRypo3nTZ3SxubW9k55193bPzg8qlSP2zrJFIUWTXiiuhHRwJmElmGGQzdVQETEoRON72Z+5xmUZol8MpMUQkGGkg0YJcZKj2n/ql+peXVvDrxO/CWpoSWa/aqzHcQJzQRIQznRuud7qQlzogyjHAo3yDSkhI7JEHqWSiJAh/n81wKfWyXGg0TZkgbP1d8TORFaT0RkOwUxI73qzcR/vVjPFq5cN4PbMGcyzQxIujg+yDg2CZ6FgWOmgBo+sYRQxez/mI6IItTYyFw3UCDhhSZCEBnnAS16fpjngRK45heFa5PzV3NaJ+3Luu/V/YfrWsNbZlhGp+gMXSAf3aAGukdN1EIUDdErekPvzofz6Xw534vWkrOcOUF/4Ex/AE5foXs=</latexit><latexit sha1_base64="5mtqhj0wz+4O9RA3aoUiz+NxscM=">AAACH3icbVDLSsNAFJ3UV42vVpduBovgqiQq6LLgxmVF+4AmlMnkth06MwkzE6WEfIJbXfs17sRt/8bpY6GtBy4czrkvTpRypo3nTZ3SxubW9k55193bPzg8qlSP2zrJFIUWTXiiuhHRwJmElmGGQzdVQETEoRON72Z+5xmUZol8MpMUQkGGkg0YJcZKj2n/ql+peXVvDrxO/CWpoSWa/aqzHcQJzQRIQznRuud7qQlzogyjHAo3yDSkhI7JEHqWSiJAh/n81wKfWyXGg0TZkgbP1d8TORFaT0RkOwUxI73qzcR/vVjPFq5cN4PbMGcyzQxIujg+yDg2CZ6FgWOmgBo+sYRQxez/mI6IItTYyFw3UCDhhSZCEBnnAS16fpjngRK45heFa5PzV3NaJ+3Luu/V/YfrWsNbZlhGp+gMXSAf3aAGukdN1EIUDdErekPvzofz6Xw534vWkrOcOUF/4Ex/AE5foXs=</latexit><latexit sha1_base64="5mtqhj0wz+4O9RA3aoUiz+NxscM=">AAACH3icbVDLSsNAFJ3UV42vVpduBovgqiQq6LLgxmVF+4AmlMnkth06MwkzE6WEfIJbXfs17sRt/8bpY6GtBy4czrkvTpRypo3nTZ3SxubW9k55193bPzg8qlSP2zrJFIUWTXiiuhHRwJmElmGGQzdVQETEoRON72Z+5xmUZol8MpMUQkGGkg0YJcZKj2n/ql+peXVvDrxO/CWpoSWa/aqzHcQJzQRIQznRuud7qQlzogyjHAo3yDSkhI7JEHqWSiJAh/n81wKfWyXGg0TZkgbP1d8TORFaT0RkOwUxI73qzcR/vVjPFq5cN4PbMGcyzQxIujg+yDg2CZ6FgWOmgBo+sYRQxez/mI6IItTYyFw3UCDhhSZCEBnnAS16fpjngRK45heFa5PzV3NaJ+3Luu/V/YfrWsNbZlhGp+gMXSAf3aAGukdN1EIUDdErekPvzofz6Xw534vWkrOcOUF/4Ex/AE5foXs=</latexit>

M1
<latexit sha1_base64="vSM5uBNGZajWuI9w4g4UBR+f2f8=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehS8eBEUbBW6S8lm39rQJLskWaUs+ze86tlf40169ZeYbXvQ6kBgmHkvb5g4F9zYIJh4jaXlleZqa81f39jc2t7Z3euZrNAMuiwTmX6IqQHBFXQttwIecg1UxgLu49Fl7d8/gTY8U3d2nEMk6aPiKWfUOikMJbXDOC2vqwEZ7LSDTjAF/kvInLTRHDeDXa8ZJhkrJCjLBDWmT4LcRiXVljMBlR8WBnLKRvQR+o4qKsFE5TR0hY+ckuA00+4pi6fqz42SSmPGMnaTdUiz6NXiv15i6g8Xrtv0PCq5ygsLis2Op4XANsN1KzjhGpgVY0co09zlx2xINWXWdef7oQYFzyyTkqqkDFnVJ1FZhlriNqkq3zVHFnv6S3onHRJ0yO1p+yKYd9hCB+gQHSOCztAFukI3qIsYytELekVv3rv34X16k9low5vv7KNf8L6+Afa8pXY=</latexit><latexit sha1_base64="vSM5uBNGZajWuI9w4g4UBR+f2f8=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehS8eBEUbBW6S8lm39rQJLskWaUs+ze86tlf40169ZeYbXvQ6kBgmHkvb5g4F9zYIJh4jaXlleZqa81f39jc2t7Z3euZrNAMuiwTmX6IqQHBFXQttwIecg1UxgLu49Fl7d8/gTY8U3d2nEMk6aPiKWfUOikMJbXDOC2vqwEZ7LSDTjAF/kvInLTRHDeDXa8ZJhkrJCjLBDWmT4LcRiXVljMBlR8WBnLKRvQR+o4qKsFE5TR0hY+ckuA00+4pi6fqz42SSmPGMnaTdUiz6NXiv15i6g8Xrtv0PCq5ygsLis2Op4XANsN1KzjhGpgVY0co09zlx2xINWXWdef7oQYFzyyTkqqkDFnVJ1FZhlriNqkq3zVHFnv6S3onHRJ0yO1p+yKYd9hCB+gQHSOCztAFukI3qIsYytELekVv3rv34X16k9low5vv7KNf8L6+Afa8pXY=</latexit><latexit sha1_base64="vSM5uBNGZajWuI9w4g4UBR+f2f8=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehS8eBEUbBW6S8lm39rQJLskWaUs+ze86tlf40169ZeYbXvQ6kBgmHkvb5g4F9zYIJh4jaXlleZqa81f39jc2t7Z3euZrNAMuiwTmX6IqQHBFXQttwIecg1UxgLu49Fl7d8/gTY8U3d2nEMk6aPiKWfUOikMJbXDOC2vqwEZ7LSDTjAF/kvInLTRHDeDXa8ZJhkrJCjLBDWmT4LcRiXVljMBlR8WBnLKRvQR+o4qKsFE5TR0hY+ckuA00+4pi6fqz42SSmPGMnaTdUiz6NXiv15i6g8Xrtv0PCq5ygsLis2Op4XANsN1KzjhGpgVY0co09zlx2xINWXWdef7oQYFzyyTkqqkDFnVJ1FZhlriNqkq3zVHFnv6S3onHRJ0yO1p+yKYd9hCB+gQHSOCztAFukI3qIsYytELekVv3rv34X16k9low5vv7KNf8L6+Afa8pXY=</latexit><latexit sha1_base64="vSM5uBNGZajWuI9w4g4UBR+f2f8=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehS8eBEUbBW6S8lm39rQJLskWaUs+ze86tlf40169ZeYbXvQ6kBgmHkvb5g4F9zYIJh4jaXlleZqa81f39jc2t7Z3euZrNAMuiwTmX6IqQHBFXQttwIecg1UxgLu49Fl7d8/gTY8U3d2nEMk6aPiKWfUOikMJbXDOC2vqwEZ7LSDTjAF/kvInLTRHDeDXa8ZJhkrJCjLBDWmT4LcRiXVljMBlR8WBnLKRvQR+o4qKsFE5TR0hY+ckuA00+4pi6fqz42SSmPGMnaTdUiz6NXiv15i6g8Xrtv0PCq5ygsLis2Op4XANsN1KzjhGpgVY0co09zlx2xINWXWdef7oQYFzyyTkqqkDFnVJ1FZhlriNqkq3zVHFnv6S3onHRJ0yO1p+yKYd9hCB+gQHSOCztAFukI3qIsYytELekVv3rv34X16k9low5vv7KNf8L6+Afa8pXY=</latexit>

M2
<latexit sha1_base64="oXXSKys0njZ2AeYI1+fwSCpO7gk=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix48SIo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY1OR23P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/h1pXc=</latexit><latexit sha1_base64="oXXSKys0njZ2AeYI1+fwSCpO7gk=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix48SIo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY1OR23P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/h1pXc=</latexit><latexit sha1_base64="oXXSKys0njZ2AeYI1+fwSCpO7gk=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix48SIo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY1OR23P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/h1pXc=</latexit><latexit sha1_base64="oXXSKys0njZ2AeYI1+fwSCpO7gk=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix48SIo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY1OR23P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/h1pXc=</latexit>

M3
<latexit sha1_base64="gPrWsl2OXcWLX7pYl8qAdA1DkQI=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRbcuBEq2Ac0oUwmNzo4MwkzE6WE/IZbXfs17qRbv8RJ24W2Hhg4nHPv3MOJMs608byJs7K6tr6xWdtyt3d29/brjYOeTnNFoUtTnqpBRDRwJqFrmOEwyBQQEXHoR0/Xld9/BqVZKu/NOINQkAfJEkaJsVIQCGIeo6S4LUfno3rTa3lT4GXiz0kTzdEZNZyNIE5pLkAayonWQ9/LTFgQZRjlULpBriEj9Ik8wNBSSQTosJiGLvGJVWKcpMo+afBU/b1REKH1WER2sgqpF71K/NeLdfXhwnWTXIUFk1luQNLZ8STn2KS4agXHTAE1fGwJoYrZ/Jg+EkWosd25bqBAwgtNhSAyLgJaDv2wKAIlcNMvS9c25y/2tEx6Zy3fa/l3F822N++who7QMTpFPrpEbXSDOqiLKMrQK3pD786H8+l8OZPZ6Ioz3zlEf+B8/wD6LqV4</latexit><latexit sha1_base64="gPrWsl2OXcWLX7pYl8qAdA1DkQI=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRbcuBEq2Ac0oUwmNzo4MwkzE6WE/IZbXfs17qRbv8RJ24W2Hhg4nHPv3MOJMs608byJs7K6tr6xWdtyt3d29/brjYOeTnNFoUtTnqpBRDRwJqFrmOEwyBQQEXHoR0/Xld9/BqVZKu/NOINQkAfJEkaJsVIQCGIeo6S4LUfno3rTa3lT4GXiz0kTzdEZNZyNIE5pLkAayonWQ9/LTFgQZRjlULpBriEj9Ik8wNBSSQTosJiGLvGJVWKcpMo+afBU/b1REKH1WER2sgqpF71K/NeLdfXhwnWTXIUFk1luQNLZ8STn2KS4agXHTAE1fGwJoYrZ/Jg+EkWosd25bqBAwgtNhSAyLgJaDv2wKAIlcNMvS9c25y/2tEx6Zy3fa/l3F822N++who7QMTpFPrpEbXSDOqiLKMrQK3pD786H8+l8OZPZ6Ioz3zlEf+B8/wD6LqV4</latexit><latexit sha1_base64="gPrWsl2OXcWLX7pYl8qAdA1DkQI=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRbcuBEq2Ac0oUwmNzo4MwkzE6WE/IZbXfs17qRbv8RJ24W2Hhg4nHPv3MOJMs608byJs7K6tr6xWdtyt3d29/brjYOeTnNFoUtTnqpBRDRwJqFrmOEwyBQQEXHoR0/Xld9/BqVZKu/NOINQkAfJEkaJsVIQCGIeo6S4LUfno3rTa3lT4GXiz0kTzdEZNZyNIE5pLkAayonWQ9/LTFgQZRjlULpBriEj9Ik8wNBSSQTosJiGLvGJVWKcpMo+afBU/b1REKH1WER2sgqpF71K/NeLdfXhwnWTXIUFk1luQNLZ8STn2KS4agXHTAE1fGwJoYrZ/Jg+EkWosd25bqBAwgtNhSAyLgJaDv2wKAIlcNMvS9c25y/2tEx6Zy3fa/l3F822N++who7QMTpFPrpEbXSDOqiLKMrQK3pD786H8+l8OZPZ6Ioz3zlEf+B8/wD6LqV4</latexit><latexit sha1_base64="gPrWsl2OXcWLX7pYl8qAdA1DkQI=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRbcuBEq2Ac0oUwmNzo4MwkzE6WE/IZbXfs17qRbv8RJ24W2Hhg4nHPv3MOJMs608byJs7K6tr6xWdtyt3d29/brjYOeTnNFoUtTnqpBRDRwJqFrmOEwyBQQEXHoR0/Xld9/BqVZKu/NOINQkAfJEkaJsVIQCGIeo6S4LUfno3rTa3lT4GXiz0kTzdEZNZyNIE5pLkAayonWQ9/LTFgQZRjlULpBriEj9Ik8wNBSSQTosJiGLvGJVWKcpMo+afBU/b1REKH1WER2sgqpF71K/NeLdfXhwnWTXIUFk1luQNLZ8STn2KS4agXHTAE1fGwJoYrZ/Jg+EkWosd25bqBAwgtNhSAyLgJaDv2wKAIlcNMvS9c25y/2tEx6Zy3fa/l3F822N++who7QMTpFPrpEbXSDOqiLKMrQK3pD786H8+l8OZPZ6Ioz3zlEf+B8/wD6LqV4</latexit>

Goal Location lg
<latexit sha1_base64="PeQwFmNNr/ZoXgL1BC/OkD8FwW8=">AAACNnicbVA9axtBEN1TEkW+OIkUN4Y0i0XAlbgLgaQUpIgLFzJYkkF3iL29kbx4P47duSTiOP8at3adv5LGnXHrn+DVR5HIfjDweG9mZ+dlhRQOo+hv0Hjx8lXzdWsnfLP79t37dufDyJnSchhyI409y5gDKTQMUaCEs8ICU5mEcXbxfemPf4J1wuhTXBSQKjbXYiY4Qy9N2/sJwm+sfhgm6bFZq7SW0/m03Y160Qr0KYk3pEs2GEw7QTPJDS8VaOSSOTeJowLTilkUXEIdJqWDgvELNoeJp5opcGm1OqGmn7yS05mxvjTSlfrvRMWUcwuV+U7F8Nxte0vxWS93ywe3tuPsW1oJXZQImq+Xz0pJ0dBlRjQXFjjKhSeMW+H/T/k5s4yjTzIMEwsafnGjFNN5lfB6EqdVlVhFu3Fdhz65eDunp2T0uRdHvfjkS7cfbTJskY/kgBySmHwlfXJEBmRIOLkkV+Sa3AR/gtvgLrhftzaCzcwe+Q/BwyOFVarD</latexit><latexit sha1_base64="PeQwFmNNr/ZoXgL1BC/OkD8FwW8=">AAACNnicbVA9axtBEN1TEkW+OIkUN4Y0i0XAlbgLgaQUpIgLFzJYkkF3iL29kbx4P47duSTiOP8at3adv5LGnXHrn+DVR5HIfjDweG9mZ+dlhRQOo+hv0Hjx8lXzdWsnfLP79t37dufDyJnSchhyI409y5gDKTQMUaCEs8ICU5mEcXbxfemPf4J1wuhTXBSQKjbXYiY4Qy9N2/sJwm+sfhgm6bFZq7SW0/m03Y160Qr0KYk3pEs2GEw7QTPJDS8VaOSSOTeJowLTilkUXEIdJqWDgvELNoeJp5opcGm1OqGmn7yS05mxvjTSlfrvRMWUcwuV+U7F8Nxte0vxWS93ywe3tuPsW1oJXZQImq+Xz0pJ0dBlRjQXFjjKhSeMW+H/T/k5s4yjTzIMEwsafnGjFNN5lfB6EqdVlVhFu3Fdhz65eDunp2T0uRdHvfjkS7cfbTJskY/kgBySmHwlfXJEBmRIOLkkV+Sa3AR/gtvgLrhftzaCzcwe+Q/BwyOFVarD</latexit><latexit sha1_base64="PeQwFmNNr/ZoXgL1BC/OkD8FwW8=">AAACNnicbVA9axtBEN1TEkW+OIkUN4Y0i0XAlbgLgaQUpIgLFzJYkkF3iL29kbx4P47duSTiOP8at3adv5LGnXHrn+DVR5HIfjDweG9mZ+dlhRQOo+hv0Hjx8lXzdWsnfLP79t37dufDyJnSchhyI409y5gDKTQMUaCEs8ICU5mEcXbxfemPf4J1wuhTXBSQKjbXYiY4Qy9N2/sJwm+sfhgm6bFZq7SW0/m03Y160Qr0KYk3pEs2GEw7QTPJDS8VaOSSOTeJowLTilkUXEIdJqWDgvELNoeJp5opcGm1OqGmn7yS05mxvjTSlfrvRMWUcwuV+U7F8Nxte0vxWS93ywe3tuPsW1oJXZQImq+Xz0pJ0dBlRjQXFjjKhSeMW+H/T/k5s4yjTzIMEwsafnGjFNN5lfB6EqdVlVhFu3Fdhz65eDunp2T0uRdHvfjkS7cfbTJskY/kgBySmHwlfXJEBmRIOLkkV+Sa3AR/gtvgLrhftzaCzcwe+Q/BwyOFVarD</latexit><latexit sha1_base64="PeQwFmNNr/ZoXgL1BC/OkD8FwW8=">AAACNnicbVA9axtBEN1TEkW+OIkUN4Y0i0XAlbgLgaQUpIgLFzJYkkF3iL29kbx4P47duSTiOP8at3adv5LGnXHrn+DVR5HIfjDweG9mZ+dlhRQOo+hv0Hjx8lXzdWsnfLP79t37dufDyJnSchhyI409y5gDKTQMUaCEs8ICU5mEcXbxfemPf4J1wuhTXBSQKjbXYiY4Qy9N2/sJwm+sfhgm6bFZq7SW0/m03Y160Qr0KYk3pEs2GEw7QTPJDS8VaOSSOTeJowLTilkUXEIdJqWDgvELNoeJp5opcGm1OqGmn7yS05mxvjTSlfrvRMWUcwuV+U7F8Nxte0vxWS93ywe3tuPsW1oJXZQImq+Xz0pJ0dBlRjQXFjjKhSeMW+H/T/k5s4yjTzIMEwsafnGjFNN5lfB6EqdVlVhFu3Fdhz65eDunp2T0uRdHvfjkS7cfbTJskY/kgBySmHwlfXJEBmRIOLkkV+Sa3AR/gtvgLrhftzaCzcwe+Q/BwyOFVarD</latexit>

Figure 6.2: An illustration for our architecture (Section 6.3) for the instruction
turn left and go to the red oil drum with a LINGUNETdepth of m = 4. The instruc-
tion x̄ is mapped to x̄ with an RNN, and the initial panorama observation IP

to F0 with a CNN. LINGUNETgenerates H1, a visual representation of the goal.
First, a sequence of convolutions maps the image features F0 to feature maps
F1,. . . ,F4. The text representation x̄ is used to generate the kernels K1,. . . ,K4,
which are convolved to generate the text-conditioned feature maps G1,. . . ,G4.
These feature maps are de-convolved to H1,. . . ,H4. The goal probability distri-
bution Pg is computed from H1. The goal location is the inferred from the max of
Pg. Given lg and pt, the pose at step t, the goal mask Mt is computed and passed
into an RNN that outputs the action to execute.

where x̄ is the natural language instructions, IP is a panoramic view of the en-

vironment from the starting position at time t = 1, and 〈(I1, p1), . . . , (It, pt)〉 is

the sequence of observations It and poses pt up to time t. The panorama IP is

generated through deterministic exploration by rotating 360◦ to observe the en-

vironment at the beginning of the execution.1

The model includes two main components: goal prediction and action gen-

eration. The agent uses the panorama IP to predict the goal location lg. At each

time step t, a projection of the goal location into the agent’s current view Mt is

given as input to an RNN to generate actions. The probability of an action at at

time t decomposes to:

1The panorama is a concatenation of deterministic observations along the width dimension.
For simplicity, we do not include these deterministic steps in the execution.

79

P(at | s̃t) =
∑

lg

(
P(lg | x̄, IP)P(at | lg, (I1, p1), . . . , (It, pt))

)
,

where the first term puts the complete distribution mass on a single location

(i.e., a delta function). Figure 6.2 illustrates the model.

Goal Prediction To predict the goal location, we generate a probability distri-

bution Pg over a feature map F0 generated using convolutions from the initial

panorama observation IP. Each element in the probability distribution Pg cor-

responds to an area in IP. Given the instruction x̄ and panorama IP, we first

generate their representations. From the panorama IP, we generate a feature

map F0 = [CNN0(IP); Fp],

where CNN0 is a two-layer convolutional neural network (CNN) [LeCun

et al., 1998] with rectified linear units (ReLu) [Nair and Hinton, 2010] and Fp

are positional embeddings.2 The concatenation is along the channel dimension.

The instruction x̄ = 〈x1, · · · xn〉 is mapped to a sequence of hidden states li =

LSTMx(ψx(xi), li−1), i = 1, . . . , n using a learned embedding function ψx and a long

short-term memory (LSTM) [Hochreiter and Schmidhuber, 1997] RNN LSTMx.

The instruction representation is x̄ = ln.

We generate the probability distribution Pg over pixels in F0 using LIN-

GUNET. The architecture of LINGUNETis inspired by the UNETimage gener-

ation method [Ronneberger et al., 2015], except that the reconstruction phase

is conditioned on the natural language instruction. LINGUNETfirst applies m

convolutional layers to generate a sequence of feature maps F j = CNN j(F j−1),
2We generate Fp by creating a channel for each deterministic observation used to create the

panorama, and setting all the pixels corresponding to that observation location in the panorama
to 1 and all others to 0. The number of observations depends on the agent’s camera angle.

80

j = 1 . . .m, where each CNN j is a convolutional layer with leaky ReLU non-

linearities [Maas et al., 2013] and instance normalization [Ulyanov et al., 2016].

The instruction representation x̄ is split evenly into m vectors {x̄ j}
m
j=1, each is used

to create a 1 × 1 kernel K j = AFFINE j(x̄ j), where each AFFINE j is an affine trans-

formation followed by normalizing and reshaping. For each F j, we apply a 2D

1 × 1 convolution using the text kernel K j to generate a text-conditioned fea-

ture map G j = CONVOLVE(K j,F j), where CONVOLVE convolves the kernel over

the feature map. We then perform m deconvolutions to generate a sequence of

feature maps Hm,. . . ,H1:

Hm = DECONVm(DROPOUT(Gm))

H j = DECONV j([H j+1; G j]) .

DROPOUT is dropout regularization [Srivastava et al., 2014] and each DECONV j

is a deconvolution operation followed a leaky ReLU non-linearity and instance

norm.3 Finally, we generate Pg by applying a softmax to H1 and an additional

learned scalar bias term bg to represent events where the goal is out of sight. For

example, when the agent already stands in the goal position and therefore the

panorama does not show it.

We use Pg to predict the goal position in the environment. We first select the

goal pixel in F0 as the pixel corresponding to the highest probability element in

Pg. We then identify the corresponding 3D location lg in the environment using

backward camera projection, which is computed given the camera parameters

and p1, the agent pose at the beginning of the execution.

3DECONV1 does deconvolution only.

81

Action Generation Given the predicted goal lg, we generate actions using an

RNN. At each time step t, given pt, we generate the goal mask Mt, which has

the same shape as the observed image It. The goal mask Mt has a value of 1 for

each element that corresponds to the goal location lg in It. We do not distinguish

between visible or occluded locations. All other elements are set to 0. We also

maintain an out-of-sight flag ot that is set to 1 if (a) lg is not within the agent’s

view; or (b) the max scoring element in Pg corresponds to bg, the term for events

when the goal is not visible in IP. Otherwise, ot is set to 0. We compute an action

generation hidden state yt with an RNN:

yt = LSTMA (AFFINEA([FLAT(Mt); ot]), yt−1) ,

where FLAT flattens Mt into a vector, AFFINEA is a learned affine transforma-

tion with ReLU, and LSTMA is an LSTM RNN. The previous hidden state yt−1

was computed when generating the previous action, and the RNN is extended

gradually during execution. Finally, we compute a probability distribution over

actions:

P(at | lg, (I1, p1), . . . , (It, pt)) = SOFTMAX(AFFINEp([yt;ψT (t)])) ,

where ψT is a learned embedding lookup table for the current time [Chaplot

et al., 2018] and AFFINEp is a learned affine transformation.

Model Parameters The model parameters θ include the parameters of the con-

volutions CNN0 and the components of LINGUNET: CNN j, AFFINE j, and

DECONV j for j = 1, . . . ,m. In addition we learn two affine transformations

AFFINEA and AFFINEp, two RNNs LSTMx and LSTMA, two embedding func-

82

tions ψx and ψT , and the goal distribution bias term bg. In our experiments (Sec-

tion 6.6), all parameters are learned without external resources.

6.4 Learning

Our modeling decomposition enables us to choose different learning algorithms

for the two parts. While reinforcement learning is commonly deployed for tasks

that benefit from exploration [Peters and Schaal, 2008, Mnih et al., 2013], these

methods require many samples due to their high sample complexity. However,

when learning with natural language, only a relatively small number of samples

is realistically available. This problem was addressed in prior work by learning

in a contextual bandit setting [Misra et al., 2017] or mixing reinforcement and

supervised learning [Xiong et al., 2018]. Our decomposition uniquely offers to

tease apart the language understanding problem and address it with supervised

learning, which generally has lower sample complexity. For action generation

though, where exploration can be autonomous, we use policy gradient in a con-

textual bandit setting [Misra et al., 2017].

We assume access to training data with N examples {(x̄(i), s(i)
1 , s

(i)
g)}Ni=1, where

x̄(i) is an instruction, s(i)
1 is a start state, and s(i)

g is the goal state. We train the

goal prediction component by minimizing the cross-entropy of the predicted

distribution with the gold-standard goal distribution. The gold-standard goal

distribution is a deterministic distribution with probability one at the pixel cor-

responding to the goal location if the goal is in the field of view, or probability

one at the extra out-of-sight position otherwise. The gold location is the agent’s

location in s(i)
g . We update the model parameters using Adam [Kingma and Ba,

83

2014].

We train action generation by maximizing the expected immediate reward

the agent observes while exploring the environment. The objective for a single

example i and time stamp t is:

J =
∑
a∈A

π(a | s̃t)R(i)(st, a) + λH(π(. | s̃t)) ,

where R(i) : S × A → R is an example-specific reward function, H(·) is an en-

tropy regularization term, and λ is the regularization coefficient. The reward

function R(i) details are described in details in Appendix C.2. Roughly speaking,

the reward function includes two additive components: a problem reward and

a shaping term [Ng et al., 1999]. The problem reward provides a positive reward

for successful task completion, and a negative reward for incorrect completion

or collision. The shaping term is positive when the agent gets closer to the goal

position, and negative if it is moving away. The gradient of the objective is:

∇J =
∑
a∈A

π(a | s̃t)∇ log π(a | s̃t)R(st, a) + λ∇H(π(. | s̃t) .

We approximate the gradient by sampling an action using the policy [Williams,

1992], and use the gold goal location computed from s(i)
g . We perform several

parallel rollouts to compute gradients and update the parameters using Hog-

wild! [Recht et al., 2011] and Adam learning rates.

84

Dataset Statistic LANI CHAI

Number paragraphs 6,000 1,596
Mean instructions per paragraph 4.7 7.70
Mean actions per instruction 24.6 54.5
Mean tokens per instruction 12.1 8.4
Vocabulary size 2,292 1,018

Table 6.1: Summary statistics of the two corpora.

6.5 Tasks and Data

6.5.1 LANI

The goal of LANI is to evaluate how well an agent can follow navigation instruc-

tions. The agent task is to follow a sequence of instructions that specify a path

in an environment with multiple landmarks. Figure 6.1 (left) shows an example

instruction.

The environment is a fenced, square, grass field. Each instance of the envi-

ronment contains between 6–13 randomly placed landmarks, sampled from 63

unique landmarks. The agent can take four types of discrete actions: FORWARD,

TURNRIGHT, TURNLEFT, and STOP. The field is of size 50×50, the distance of the

FORWARD action is 1.5, and the turn angle is 15◦. The environment simulator is

implemented in Unity3D. At each time step, the agent performs an action, ob-

serves a first person view of the environment as an RGB image, and receives a

scalar reward. The simulator provides a socket API to control the agent and the

environment.

Agent performance is evaluated using two metrics: task completion accu-

racy, and stop distance error. A task is completed correctly if the agent stops

within an aerial distance of 5 from the goal.

85

We collect a corpus of navigation instructions using crowdsourcing. We ran-

domly generate environments, and generate one reference path for each en-

vironment. To elicit linguistically interesting instructions, reference paths are

generated to pass near landmarks. We use Amazon Mechanical Turk, and split

the annotation process to two tasks. First, given an environment and a refer-

ence path, a worker writes an instruction paragraph for following the path. The

second task requires another worker to control the agent to perform the instruc-

tions and simultaneously mark at each point what part of the instruction was ex-

ecuted. The recording of the second worker creates the final data of segmented

instructions and demonstrations. The generated reference path is displayed in

both tasks. The second worker could also mark the paragraph as invalid. Both

tasks are done from an overhead view of the environment, but workers are in-

structed to provide instructions for a robot that observes the environment from a

first person view. Figure 6.3 shows a reference path and the written instruction.

This data can be used for evaluating both executing sequences of instructions

and single instructions in isolation.

Table 6.1 shows the corpus statistics.4 Each paragraph corresponds to a sin-

gle unique instance of the environment. The paragraphs are split into train, test,

and development, with a 70% / 15% / 15% split. Finally, we sample 200 single

development instructions for qualitative analysis of the language challenge the

corpus presents (Table 6.2).

4Appendix C.1 provides statistics for related datasets.

86

Go around the pillar on the right hand side
and head towards the boat, circling around it clockwise.
When you are facing the tree, walk towards it, and the pass on the right hand side,
and the left hand side of the cone. Circle around the cone,
and then walk past the hydrant on your right,
and the the tree stump.
Circle around the stump and then stop right behind it.

Circle around the statue counter clockwise on the right hand side,
then head towards the barrel.
Go past the barrel on the right hand side and head towards the bench,
passing the bench on the right side, stopping right before you get to the
white fence.

[Go around the pillar on the right hand side] [and head towards the boat, circling around it
clockwise.] [When you are facing the tree, walk towards it, and the pass on the right hand side,]
[and the left hand side of the cone. Circle around the cone,] [and then walk past the hydrant on
your right,] [and the the tree stump.] [Circle around the stump and then stop right behind it.]

Figure 6.3: Segmented instructions in the LANI domain. The original reference
path is marked in red (start) and blue (end). The agent, using a drone icon, is
placed at the beginning of the path. The follower path is coded in colors to align
to the segmented instruction paragraph.

6.5.2 CHAI

The CHAI corpus combines both navigation and simple manipulation in a com-

plex, simulated household environment. We use the CHALET simulator [Yan

et al., 2018], a 3D house simulator that provides multiple houses, each with

multiple rooms. The environment supports moving between rooms, picking

and placing objects, and opening and closing cabinets and similar containers.

Objects can be moved between rooms and in and out of containers. The agent

observes the world in first-person view, and can take five actions: FORWARD,

TURNLEFT, TURNRIGHT, STOP, and INTERACT. The INTERACT action acts on ob-

jects. It takes as argument a 2D position in the agent’s view. Agent performance

is evaluated with two metrics: (a) stop distance, which measures the distance of

the agent’s final state to the final annotated position; and (b) manipulation ac-

87

Count
Category LANI CHAI Example
Spatial relations
between locations 123 52 LANI: go to the right side of the rock

CHAI: pick up the cup next to the bathtub and place . . .
Conjunctions of two
or more locations 36 5 LANI: . . . between the mushroom and the yellow cone

CHAI: . . . on the table next to the juice and milk.
Temporal
coordination of
sub-goals

65 68 LANI: at the mushroom turn right and move forward
towards the statue

CHAI: go back to the kitchen and put the glass in the
sink.

Constraints on the
shape of trajectory 94 0 LANI: go past the house by the right side of the apple

Co-reference 32 18 LANI: turn around it and move in front of fern plant
CHAI: turn left, towards the kitchen door and move

through it.
Comparatives 2 0 LANI: . . . the small stone closest to the blue and white

fences stop

Table 6.2: Qualitative analysis of the LANI and CHAI corpora. We sample 200
single development instructions from each corpora. For each category, we count
how many examples of the 200 contained it and show an example.

Scenario
You have several hours before guests begin to arrive for a dinner party. You are preparing a
wide variety of meat dishes, and need to put them in the sink. In addition, you want to remove
things in the kitchen, and bathroom which you don’t want your guests seeing, like the soaps in the
bathroom, and the dish cleaning items. You can put these in the cupboards. Finally, put the dirty
dishes around the house in the dishwasher and close it.
Written Instructions
[In the kitchen, open the cupboard above the sink.] [Put the cereal, the sponge, and the dishwashing
soap into the cupboard above the sink.] [Close the cupboard.] [Pick up the meats and put them
into the sink.] [Open the dishwasher, grab the dirty dishes on the counter, and put the dishes into
the dishwasher.]

Figure 6.4: Scenario and segmented instruction from the CHAI corpus.

curacy, which compares the set of manipulation actions to a reference set. When

measuring distance, to consider the house plan, we compute the minimal aerial

distance for each room that must be visited. Yan et al. [2018] provides the full

details of the simulator and evaluation. We use five different houses, each with

up to six rooms. Each room contains on average 30 objects. A typical room is of

size 6×6. We set the distance of FORWARD to 0.1, the turn angle to 90◦, and divide

the agent’s view to a 32×32 grid for the INTERACT action.

88

We collected a corpus of navigation and manipulation instructions using

Amazon Mechanical Turk. We created 36 common household scenarios to pro-

vide a familiar context to the task.5 We use two crowdsourcing tasks. First,

we provide workers with a scenario and ask them to write instructions. The

workers are encouraged to explore the environment and interact with it. We

then segment the instructions to sentences automatically. In the second task,

workers are presented with the segmented sentences in order and asked to ex-

ecute them. After finishing a sentence, the workers request the next sentence.

The workers do not see the original scenario. Figure 6.4 shows a scenario and

the written segmented paragraph. Similar to LANI, CHAI data can be used for

studying complete paragraphs and single instructions.

Table 6.1 shows the corpus statistics.6 The paragraphs are split into train,

test, and development, with a 70% / 15% / 15% split. Table 6.2 shows qualita-

tive analysis of a sample of 200 instructions.

6.6 Experimental Setup

Method Adaptations for CHAI We apply two modifications to our model to

support intermediate goal for the CHAI instructions. First, we train an addi-

tional RNN to predict the sequence of intermediate goals given the instruction

only. There are two types of goals: NAVIGATION, for action sequences requir-

ing movement only and ending with the STOP action; and INTERACTION, for se-

5We observed that asking workers to simply write instructions without providing a scenario
leads to combinations of repetitive instructions unlikely to occur in reality.

6The number of actions per instruction is given in the more fine-grained action space used
during collection. To make the required number of actions smaller, we use the more coarse
action space specified.

89

quence of movement actions that end with an INTERACT action. For example, for

the instruction pick up the red book and go to the kitchen, the sequence of goals will

be 〈INTERACTION, NAVIGATION, NAVIGATION〉. This indicates the agent must first

move to the object to pick it up via interaction, move to the kitchen door, and

finally move within the kitchen. The process of executing an instruction starts

with predicting the sequence of goal types. We call our model (Section 6.3) sep-

arately for each goal type. The execution concludes when the final goal is com-

pleted. For learning, we create a separate example for each intermediate goal

and train the additional RNN separately. The second modification is replacing

the backward camera projection for inferring the goal location with ray casting

to identify INTERACTION goals, which are often objects that are not located on

the ground.

Baselines We compare our approach against the following baselines: (a) STOP:

Agent stops immediately; (b) RANDOMWALK: Agent samples actions uni-

formly until it exhausts the horizon or stops; (c) MOSTFREQUENT: Agent takes

the most frequent action in the data, FORWARD for both datasets, until it exhausts

the horizon; (d) MISRA17: the approach of Misra et al. [2017]; and (e) CHAP-

LOT18: the approach of Chaplot et al. [2018]. We also evaluate goal prediction

and compare to the method of Janner et al. [2018] and a CENTER baseline, which

always predict the center pixel. Appendix C.3 provides baseline details.

Evaluation Metrics We evaluate using the metrics described in Section 6.5:

stop distance (SD) and task completion (TC) for LANI, and stop distance (SD)

and manipulation accuracy (MA) for CHAI. To evaluate the goal prediction, we

report the real distance of the predicted goal from the annotated goal and the

90

LANI CHAI
Method SD TC SD MA
STOP 15.37 8.20 2.99 37.53
RANDOMWALK 14.80 9.66 2.99 28.96
MOSTFREQUENT 19.31 2.94 3.80 37.53
MISRA17 10.54 22.9 2.99 32.25
CHAPLOT18 9.05 31.0 2.99 37.53
Our Approach (OA) 8.65 35.72 2.75 37.53
OA w/o RNN 9.21 31.30 3.75 37.43
OA w/o Language 10.65 23.02 3.22 37.53
OA w/joint 11.54 21.76 2.99 36.90
OA w/oracle goals 2.13 94.60 2.19 41.07

Table 6.3: Performance on the development data.

percentage of correct predictions. We consider a goal correct if it is within a

distance of 5.0 for LANI and 1.0 for CHAI. We also report human evaluation for

LANI by asking raters if the generated path follows the instruction on a Likert-

type scale of 1–5. Raters were shown the generated path, the reference path, and

the instruction.

Parameters We use a horizon of 40 for both domains. During training, we

allow additional 5 steps to encourage learning even after errors. When using

intermediate goals in CHAI, the horizon is used for each intermediate goal sep-

arately. All other parameters and detailed in Appendix C.4.

6.7 Results

Tables 6.3 and 6.4 show development and test results. Both sets of experiments

demonstrate similar trends. The low performance of STOP, RANDOMWALK,

and MOSTFREQUENT demonstrates the challenges of both tasks, and shows the

tasks are robust to simple biases. On LANI, our approach outperforms CHAP-

91

LANI CHAI
Method SD TC SD MA
STOP 15.18 8.29 3.59 39.77
RANDOMWALK 14.63 9.76 3.59 33.29
MOSTFREQUENT 19.14 3.15 4.36 39.77
MISRA17 10.23 23.2 3.59 36.84
CHAPLOT18 8.78 31.9 3.59 39.76
Our Approach 8.43 36.9 3.34 39.97

Table 6.4: Performance on the held-out test dataset.

LANI CHAI
Method Dist Acc Dist Acc
CENTER 12.0 19.51 3.41 19.0
Janner et al. [2018] 9.61 30.26 2.81 28.3
Our Approach 8.67 35.83 2.12 40.3

Table 6.5: Development goal prediction performance. We measure distance
(Dist) and accuracy (Acc).

LOT18, improving task completion (TC) accuracy by 5%, and both methods

outperform MISRA17. On CHAI, CHAPLOT18 and MISRA17 both fail to learn,

while our approach shows an improvement on stop distance (SD). However, all

models perform poorly on CHAI, especially on manipulation (MA).

To isolate navigation performance on CHAI, we limit our train and test data

to instructions that include navigation actions only. The STOP baseline on these

instructions gives a stop distance (SD) of 3.91, higher than the average for the

entire data as these instructions require more movement. Our approach gives a

stop distance (SD) of 3.24, a 17% reduction of error, significantly better than the

8% reduction of error over the entire corpus.

We also measure human performance on a sample of 100 development ex-

amples for both tasks. On LANI, we observe a stop distance error (SD) of 5.2

and successful task completion (TC) 63% of the time. On CHAI, the human dis-

92

Category Present Absent p-value
Spatial relations 8.75 10.09 .262
Location conjunction 10.19 9.05 .327
Temporal coordination 11.38 8.24 .015
Trajectory constraints 9.56 8.99 .607
Co-reference 12.88 8.59 .016
Comparatives 10.22 9.25 .906

Table 6.6: Mean goal prediction error for LANI instructions with and without
the analysis categories we used in Table 6.2. The p-values are from two-sided
t-tests comparing the means in each row.

1 2 3 4 5
0

20
40
60

Pe
rc

en
ta

ge Human
Our Approach

Figure 6.5: Likert rating histogram for expert human follower and our approach
for LANI.

tance error (SD) is 1.34 and the manipulation accuracy is 100%. The imperfect

performance demonstrates the inherent ambiguity of the tasks. The gap to hu-

man performance is still large though, demonstrating that both tasks are largely

open problems.

The imperfect human performance raises questions about automated evalu-

ation. In general, we observe that often measuring execution quality with rigid

goals is insufficient. We conduct a human evaluation with 50 development ex-

amples from LANI rating human performance and our approach. Figure 6.5

shows a histogram of the ratings. The mean rating for human followers is 4.38,

while our approach’s is 3.78; we observe a similar trend to before with this met-

ric. Using judgements on our approach, we correlate the human metric with the

SD measure. We observe a Pearson correlation -0.65 (p=5e-7), indicating that

our automated metric correlates well with human judgment.7 This initial study

7We did not observe this kind of clear anti-correlation comparing the two results for human

93

suggests that our automated evaluation is appropriate for this task.

Our ablations (Table 6.3) demonstrate the importance of each of the compo-

nents of the model. We ablate the action generation RNN (w/o RNN), com-

pletely remove the language input (w/o Language), and train the model jointly

(w/joint Learning).8 On CHAI especially, ablations results in models that dis-

play ineffective behavior. Of the ablations, we observe the largest benefit from

decomposing the learning and using supervised learning for the language prob-

lem.

We also evaluate our approach with access to oracle goals (Table 6.3). We ob-

serve this improves navigation performance significantly on both tasks. How-

ever, the model completely fails to learn a reasonable manipulation behavior for

CHAI. This illustrates the planning complexity of this domain. A large part of

the improvement in measured navigation behavior is likely due to eliminating

much of the ambiguity the automated metric often fails to capture.

Finally, on goal prediction (Table 6.5), our approach outperforms the method

of Janner et al. [2018]. Figure 6.6 and Appendix Figure C.1 show example goal

predictions. In Table 6.6, we break down LANI goal prediction results for the

analysis categories we used in Table 6.2 using the same sample of the data. Ap-

pendix C.5 includes a similar table for CHAI. We observe that our approach

finds instructions with temporal coordination or co-reference challenging. Co-

reference is an expected limitation; with single instructions, the model can not

resolve references to previous instructions.
performance (Pearson correlation of 0.09 and p=0.52). The limited variance in human perfor-
mance makes correlation harder to test.

8Appendix C.3 provides the details of joint learning.

94

curve around big rock keeping it to your left .

walk over to the cabinets and open the cabinet doors up

Figure 6.6: Goal prediction probability maps Pg overlaid on the corresponding
observed panoramas IP. The top example shows a result on LANI, the bottom
on CHAI.

6.8 Discussion

We propose a model for instruction following with explicit separation of goal

prediction and action generation. Our representation of goal prediction is easily

interpretable, while not requiring the design of logical ontologies and symbolic

representations. A potential limitation of our approach is cascading errors. Ac-

tion generation relies completely on the predicted goal and is not exposed to the

language otherwise. This also suggests a second related limitation: the model is

unlikely to successfully reason about instructions that include constraints on the

execution itself. While the model may reach the final goal correctly, it is unlikely

to account for the intermediate trajectory constraints. As we show (Table 6.2),

such instructions are common in our data. These two limitations may be ad-

dressed by allowing action generation access to the instruction. Achieving this

while retaining an interpretable goal representation that clearly determines the

execution is an important direction for future work. Another important open

95

question concerns automated evaluation, which remains especially challeng-

ing when instructions do not only specify goals, but also constraints on how

to achieve them. Our resources provide the platform and data to conduct this

research.

96

CHAPTER 7

CORNELL INSTRUCTION FOLLOWING FRAMEWORK (CIFF)

7.1 Introduction

We introduced several tasks in this thesis including manipulating blocks on

a map, navigating in 3D environments and performing manipulation in a 3D

house. Many other environments have been proposed recently for instruction

following [Hermann et al., 2017, Chaplot et al., 2018, Anderson et al., 2018,

Blukis et al., 2018b, Das et al., 2018, Chen et al., 2019].

In order to trust the performance of an agent, it is important to evaluate it

on a multitude of tasks. This reduces the probability of overfitting to a specific

task by exploiting task-specific biases. However, experimenting with multiple

tasks is often a time consuming effort requiring downloading the datasets sep-

arately, parsing them to a common format and tuning the model and learning

algorithms to handle the nuances of the specific task. To reduce this engineering

effort we introduce an integrated learning framework for instruction following

called the Cornell Instruction Following Framework (CIFF). CIFF provides an ab-

stract interface for datasets, environments, learning algorithms and models to

communicate with each other. Existing implementation of models and learning

algorithms can be used for a new task as long as the new task implements the

CIFF interface.

97

7.2 Features of CIFF

CIFF provides an abstract interface and comes with four different instruction

following tasks. CIFF also contains implementation of various models and

learning algorithm. We now describe the different features of the CIFF.

• CIFF Interface: The central concept in CIFF is an interface that allows

models, learning algorithm, simulators and dataset to interact with each

other in a task agnostic way. There is an interface for representing a dat-

apoint, a server for interacting with the simulator, a validation class for

verifying the setting, and a data loader for reading the dataset. Also, there

are a few interfaces for models and learning algorithms.

• Models: CIFF contains implementation of various models and baselines

including the ones introduced in Chapter 5 and Chapter 6. A model takes

an agent context as input and generates either a probability distribution

over the action space or value function estimates. CIFF also provides im-

plementation of several modules which act as building blocks for larger

models and allow code reusability. For example, LSTMs [Hochreiter and

Schmidhuber, 1997] and ResNets [He et al., 2016] are implemented as

modules and are used by several different models.

• Distributed Learning Framework: CIFF provides a distributed learning

framework for efficient learning. The agent can interact with multiple sim-

ulators in parallel allowing it to collect data efficiently and reduce training

and testing time. CIFF allows user to specify the number of processes that

needs to be launched. It then launches that many copies of the simulator

and connects the agent to each one of the simulators using socket connec-

tion. If the agent contains a model then a copy of the model is transferred

98

to each one of these processes while the original master process retains

the master copy that is used for evaluation. The agent interacts with each

process separately and computes gradients with respect to the local model

parameters. These gradients are then copied to the master process which

applies Hogwild! [Recht et al., 2011] updates to the master copy. Hogwild!

updates do not put a lock on the model parameters and reduces training

time.

Implementation CIFF source code is implemented using Python3 program-

ming language. The neural network models are implemented using PyTorch

library [pyt] which provides support for dynamic networks, GPUs and multi-

processing.

Using CIFF CIFF implementation is made available under GNU General Pub-

lic License v3.0 license at this link: https://www.github.com/clic-lab/

ciff.

99

CHAPTER 8

CONCLUSION

In this thesis, we introduced new methods for the instruction following task.

In Chapter 4 we used a graphical model to map high-level instructions to ac-

tions in a 3D house environment. While this approach can outperform baselines

and even ground unseen verbs to their meaning, it required expensive feature

engineering and access to the symbolic representation of the environment. To

overcome this limitation, in Chapter 5 we introduced a single model method for

mapping instruction and raw RGB images to actions for manipulating blocks on

a map. Our approach does not require any expensive feature engineering or ac-

cess to symbolic representation of the environment. We used a neural network

to model the agent’s policy and introduced a policy gradient algorithm with

contextual bandit approximation to train the agent. Our approach is able to

outperform supervised learning and common reinforcement learning baselines.

However, the model we proposed in Chapter 5 is hard to reason about. This

lack of interpretability also raises concerns about the safety of these systems. In

Chapter 6 we introduced a neural network model that can provide evidence of

understanding even prior to taking actions. Our model separates the problem

of predicting the goal given the natural language instruction and visual obser-

vations, and generating actions to achieve the goal. The goal prediction can

be used for interpreting the model and could be used to enhance the safety of

these systems by preventing the agent to generate actions if the predicted goal

is unsafe.

Many different environments and corpuses have been recently introduced

for the instruction following problem [Hermann et al., 2017, Chaplot et al.,

100

2018, Das et al., 2018, Gordon et al., 2018, Chen et al., 2019]. In order to avoid

overfitting to biases of a specific task, it is important to evaluate on multiple

tasks. In Chapter 7 we introduced the Cornell Instruction Following Frame-

work (CIFF) – an integrated learning framework for instruction following. CIFF

comes with implementation of several existing models, learning algorithms,

and tasks. Further, it provides an abstract interface that enables the exist-

ing models and learning algorithms to be applied to any new tasks that im-

plements this interface. We make CIFF publicly available for experiments at

https://github.com/clic-lab/ciff.

8.1 Future Directions

The instruction following task presented in this thesis can be extended along

several directions. We briefly describe four future work directions below.

Task Based Dialogue In the instruction following task we considered, the

agent has to follow natural language instructions but cannot ask for clarifica-

tion. However, in real life humans often ask for clarification when the instruc-

tion is unclear or when it is misaligned with the environment. For example,

consider the instruction “get me some milk from the fridge". The robot may realize

on opening the fridge that there is no milk left in the kitchen. In that case, the

robot can communicate this to the user and ask for further instructions.

This setting raises challenging problems of realizing when to ask a ques-

tion, what question to ask, how to utilize the user feedback, and how to

learn from long sequence of interactions. Task based dialogue have been thor-

oughly studied in other settings, for example, booking flight tickets [Peng

101

et al., 2017], restaurant reservations [Su et al., 2016], and boostrapping seman-

tic parsers [Artzi and Zettlemoyer, 2011]. However, dialogue agents in visually

grounded settings haven’t been thoroughly studied.

Evaluating Instruction Following Agents Evaluating instruction following

agents can be challenging. In Chapter 4 we evaluate the agent using the Lev-

enshtein edit-distance between the agent’s trajectory and the gold trajectory. In

Chapter 5 and Chapter 6 we use stop-distance metric that computes the distance

between the final state of the world after agent’s execution and the gold final

state. In general, both of these evaluation metrics can be wrong. Consider the

following two instructions for navigation: “go towards the barrel" and “go towards

the barrel while passing by the tree". Consider the gold trajectories for the two in-

structions: for the first instruction the agent goes directly towards the barrel

while never passing by the tree. For the second instruction, the agent passes by

the tree and stops near the barrel. For the first instruction, both trajectories are

correct while for the second instruction only the second trajectory is correct. For

the first instruction, the edit-distance metric will penalize the second-trajectory

even though it is correct. For the second instruction, the stop-distance metric

will incentivize the first trajectory even though it is wrong. While one can use

human evaluation, it can be impractical to scale. Designing an automated evalu-

ation metric that correlate well with human judgment is an interesting direction

for future work.

Designing Algorithms for Strategic Exploration Instruction following tasks

can require complex planning with long sequence of actions and a large ac-

tion space. Performing train time and test time exploration in this setting can

102

be, therefore, challenging. The recent work on instruction following, including

the algorithms in Chapter 5 and Chapter 6, utilizes on-policy exploration. On-

policy exploration uses the same policy for performing exploration and optimiz-

ing the reward. On-policy methods can easily fail to solve problems requiring

strategic exploration [Kakade and Langford, 2002]. In the reinforcement learning

literature, the problem of designing algorithms for strategic exploration is both

central and widely studied. Several algorithms exist for tabular Markov Deci-

sion Processes (MDPs) that can perform strategic exploration with theoretical

guarantees including the E3 algorithm [Kearns and Singh, 2002], Delayed Q-

Learning [Strehl et al., 2006], Rmax [Brafman and Tennenholtz, 2002] and MBIE-

EB [Strehl and Littman, 2008]. However, approaches for non-tabular setting

lack theoretical guarantees or make specific assumptions about the problem [Du

et al., 2019]. Designing theoretical provable algorithms for strategic exploration

in complex real world tasks remains an open challenge.

Mapping Natural Language Feedback to Reward In this thesis we consider a

version of the instruction following task where we have access to a validation

function for evaluating the agent. However, in general such a validation func-

tion may not be available. For example, a voice assistant application such as

Cortana, Siri, Alexa or Google Voice Assistant, do not receive a scalar reward

at the end of their interaction from users. However, getting natural language

feedback is practical. The user feedback can contain a 0-1 evaluation as in the

instruction, “you failed to do the task", or richer signal such as in the instruction,

“you picked the wrong object. You were supposed to bring me the cup next to it.". In

order to train the agents, we need to convert this feedback to a validation func-

tion. This validation function could output a scalar score or a set of features.

103

This could also potentially alleviate privacy concerns by removing the need to

store raw human feedback in the cloud and instead storing just the anonymized

validation function.

104

APPENDIX A

APPENDIX FOR CHAPTER 4

A.1 Parsing Text into Control Flow Graph.

We first decompose the text x̄ into its control flow graph G using a simple set of

rules:

• The parse tree of x̄ is generated using the Stanford parser [Klein and Man-

ning, 2003] and a frame node is created for each non-auxiliary verb node

in the tree.

• Conditional nodes are discovered by looking for the keywords until,

if, after, when. The associated subtree is then parsed deterministically

using a set of a rules. For example, a rule parses “for x minutes" to

for(digit :x,unit :minutes). We found that all conditionals can be in-

terpreted against the initial environment s1, since our world is fully-

observable, deterministic, and the user giving the command has full view

of the world.

• To find objects, we look for anaphoric terminal nodes or nominals whose

parent is not a nominal or which have a PP sibling. These are processed

into object descriptions ω.

• Object descriptionsω are attached to the frame node, whose verb is nearest

in the parse tree to the main noun of ω.

• Nodes corresponding to {IN,TO,CC,“,"} are added as the relation between

the corresponding argument objects.

105

• If there is a conjunction between two objects in a frame node and if these

objects have the same relation to other objects, then we split the frame

node into two sequential frame nodes around these objects. For example,

a frame node corresponding to the text segment “take the cup and bowl from

table” is split into two frame nodes corresponding to “take the cup from

table” and “take bowl from table”.

• A temporal edge is added between successive frame nodes in the same

branch of a condition. A temporal edge is added between a conditional

node and head of the true and false branches of the condition. The end of

all branches in a sentence are joined to the starting node of the successive

sentence.

A.2 Dataset: Samples and Challenges

As described in the main paper, we collected a dataset D = (x̄(n), s(n), a(n), β(n))500
n=1.

Environment Complexity. Our environments are 3D scenarios consisting of

complex objects such as fridge, microwave and television with many states.

These objects can be in different spatial relations with respect to other objects.

For example, “bag of chips" can be found behind the television. Figure A.1 shows

some sample environments from our dataset. For example, an object of cate-

gory television consists of 6 channels, volume level and power status. An object

can have different values of states in different environment and different envi-

ronment consists of different set of objects and their placement. For example,

television might be powered on in one environment and closed in another, mi-

106

Figure A.1: Sample of 3D Environments that we consider. Environments con-
sists of several objects, each object can have several states. Different environ-
ment have different set of objects with different configuration. There can be
more than one objects of the same category.

crowave might have an object inside it or not in different environment, etc.

Moreover, there are often more than one object of the same category. For

example, our environment typically have two books, five couches, four pillows

etc. Objects of the same category can have different appearance. For exam-

ple, a book can have the cover of a math book or a Guinness book of world

record; resulting in complex object descriptions such as in “throw the sticky stuff

in the bowl". They can also have the same appearance making people use spa-

tial relations or other means while describing them such as in “get me the cup

next to the microwave". This dataset is significantly more challenging compared

to the 2D navigation dataset or GUI actions in windows dataset considered ear-

lier.

Task Complexity. In this paper, we consider tasks with high level objective such

as clean the room, prepare the room for movie night etc. compared to navigation or

simple manipulations tasks involving picking and placing objects. This results

in extremely free-form text such as shown below:

107

• “Turn on xbox. Take Far Cry Game CD and put in xbox by pressig eject to open

drive. Throw out beer, coke, and sketchy stuff in bowl. Take pillows from shelf and

distribute among couches ."

• “Boil some water and make some coffee. Find a white bowl. Take ice cream out of

the freezer. Put coffee into the white bowl, then put two scoops of ice cream over

that . Finally, take the syrup on the counter and drizzle it over the ice cream."

• “If anything is disposable and used, put it in the trash bag. If it is not disposable

and on the floor, put it on the table nearest any items associated with it. If it is not

disposable and on the floor, put it on the table nearest any items associated with

it. If it is not disposable and on the floor, put it on the table nearest any items

associated with it. If a not disposable item contains only disposable objects, dump

them into the trash bag, and treat the object like it was on the floor. Remove the

trash bag from the scenario."

• “Make some coffee. Make some eggs on the stove and then put them on a plate

and serve the eggs and coffee to me "

• “Take Book of Records and place on table with brown book. The TV is already

turned off .Throw out open beer and coke. Chips are good."

• “Dump the coffee in the mug in the sink, put all perishable items in the refrigera-

tor, put all the dishes, utensils, and pots in the sink."

• “Turn TV on with remote and find movie (Lincoln) on with remote and find movie

(Lincoln) . Take bag of chips and place on table. Take pillow from shelf and place

on a sofa. Throw away beer and soda, and place Book of Records on shelf with

brown book."

• “Mix syrup and water to make a drink. You can get water by rotating the tab near

sink. Use kettle to boil water and mix heated water with instantRamen."

108

we refer the readers to the full dataset for more examples.

Noise in the dataset. Our dataset was collected from non-expert users including

the action sequences. Therefore, our dataset had considerable noise as is also

visible from the examples above. The noise included spelling and grammar

errors in the text, text that is asking the robot to do things which it cannot do

such as moving the chairs, noise in the action sequences and noise in aligning

parts of action sequences and the text segments.

We use a set of rules to remove noise from the dataset, such as removing

cyclic patterns in the action sequence. This often happened when users tried to

give a demonstration to the robot such as keeping a mug inside the microwave,

but made an error and hence repeated the actions. We want to emphasize here

that, the average length of 21.5 actions for the action sequences in the dataset

was derived after removing this noise.

Out of the 500 points that we collected, we further removed 31 points con-

sisting of action sequences of length less than 2.

A.3 Examples of Planning and Simulation

We use a planner and a simulator which allows us to use post-conditions in

defining our logical forms. In order to perform planning and simulation— we

encode the domain knowledge in STRIPS planning format. This defines precon-

ditions and effect of action on the environment. An example is given below:

(:action release :parameters (o)

:precondition (grasping robot o)

109

:effect (not (grasping robot o)))

This STRIPS program defines the action release which takes an object o as the

argument. The precondition of this action is that the robot must be grasping the

object o and the effect is that robot releases the object o.

A.4 Mapping Object Descriptions

Given an object description ω and a set of physical objects {o j}
m
j=1; we want to

find the correlation ρ(ω, o j) ∈ [0, 1] of how well does the description ω describes

the object o j. When the description is not a pronoun, we take the following

approach. We initialize ∀ j ρ(ω, o j) = 0 and then try the following rules in the

given order, stopping after the first match:

• category matching: if there exists a set of objects {o′j} containing part of the

description in its name then we define ∀ jρ(ω, o′j) = 1.

• containment (metonymy): for every object o j; if the main noun in ω matches

the state-name of a state of o j which has value True then we define

ρ(ω, o j) = 1.

• wordnet similarity: for every object o j we find ρ(ω, o j) using a modified

Lesk algorithm based on WordNet. If a similarity score greater than 0.85

is found then we return.

• domain specific references: We use giza-pp algorithm to learn translation

probabilities between text and corresponding action sequences, using the

training data. This gives us a probability table T [words,object-name] of

110

words in text and object name in the sequence. We then initialize ρ(ω, o j)

by averaging the value of T [w, o j.name] for every word w in ω.

A.5 Manual Rules for Parsing Conditions

As explained in the paper, we parse conditional expressions into their meaning

representations using a set of rules. This was possible and motivated both by the

fact that the conditional expressions in our dataset are easy and because mean-

ing representations of conditional expressions are not observed in the dataset

(which only contains actions corresponding to frame nodes). We parse condi-

tional expressions using the following deterministic rules.

string which is a noun or a pronoun→ object

string representing a state-name→ statename

string representing a spatial relation→ relation

“minute"|“min"|“hour"|“sec"|“seconds"→ time-unit

object statename→ state(object, statename)

string1 relation string2→ relation(string1, string2)

digit time-unit→ time(digit, time-unit)

for/when/after/until state(object, statename)→

for/when/after/until(state(object, statename))

for/after/until time(digit,unit)→ for/after/until(time(digit,unit))

if state(string1, string2)→ if(state(string1, string2))

Each word in the text can further be ignored, i.e., mapped to ε. These rules

are simple enough to be parsed in a bottom up fashion starting with words. For

111

example, “for 3 minutes" is parsed as:

minutes→ time-unit:min

3 time-unit:min→ time(digit:3,time-unit:min)

for time(3,time-unit:min)→ for(time(digit:3,time-unit:min))

For “if" condition, which has a true and false branch; we evaluate the con-

dition using the starting environment. In case of a parsing failure, we always

return true.

A.6 Feature Equation

We use the following features φ(ci, zi−1, zi, si) briefly described in the paper. The

logical form is given by zi = ([ν ⇒ (λ~v.S , ξ)], ξi). Here ξi, ξ are mappings of the

variable ~v of the parametrized post-condition S . Let ~v have m variables and ξ(v j)

represents the object in si, to which the variable v j is mapped using ξ. Further

the post-condition fi is given by fi = (λ~v.S)(ξi):

• Language and Logical Form: There are two features of this type:

fle =
1
m

m∑
j=1

max
ω

ρ(ω, ξi(v j))

frecall =
1

|ω ∈ ci|

∑
ω∈ci

max
j
ρ(ω, ξi(v j))

where ρ is the object description correlation score(see paper). For the fLE

feature, we also consider the previous clause ci−1 in the computation of

maxω ρ(ω, ξi(v j)).

112

• Logical Form: We prefer the post-conditions which have high environ-

ment priors and are therefore likely to occur again. Let post-condition

fi = ∧l fil = fi1 ∧ fi2 · · · fip consists of p atomic-predicates (or their nega-

tions) given by fil. Also let, pm(∧l fil) be the parametrized version of the

post-condition ∧l fil created by replacing each unique object by a unique

variable. Example, the post-condition on(cup2, bowl3) ∧ state(cup2,water) is

parametrized to on(v1, v2) ∧ state(v1,water).

We capture this property by 4t features where t denotes the maximum

number of predicates that we consider simultaneously for creating the

probability tables. In our experiments reported in the paper we took t = 2.

These features are given below. The notation 〈Vi〉i∈C stands for average of

quantity Vi given by 1
|C|

∑
i Vi

for t = 1

f (1)
e_prior =

〈
P(1)

e_prior(fil)
〉

1≤l≤p

f (1)
a_prior =

〈
P(1)

a_prior(pm(fil))
〉

1≤l≤p

f (1)
ev_prior =

〈
P(1)

ev_prior(fil | ν)
〉

1≤l≤p

f (1)
av_prior =

〈
P(1)

av_prior(pm(fil) | ν)
〉

1≤l≤p

for t = 2

f (2)
e_prior =

〈
P(2)

e_prior(fil1 ∧ fil2)
〉

1≤l1<l2≤p

f (2)
a_prior =

〈
P(2)

a_prior(pm(fil1 ∧ fil2))
〉

1≤l1<l2≤p

f (2)
ev_prior =

〈
P(2)

ev_prior(fil1 ∧ fil2 | ν)
〉

1≤l1<l2≤p

f (2)
av_prior =

〈
P(2)

av_prior(pm(fil1 ∧ fil2) | ν)
〉

1≤l1<l2≤p

The prior tables P(t)
r (|.) are created using the training data.

113

• Logical Form and Environment: As explained in the paper, we introduce the

anchored mapping ξ to help in dealing with ellipsis. Therefore, we add a

feature that maximizes the similarity between the anchored mapping ξ(v j)

of a variable v j and the new mapping ξi(v j). This is given by:

fee =
1
m

m∑
j=1

∆(ξ(v j), ξi(v j)))

where ∆ is a similarity score between objects ξ(v j) and ξi(v j). We compute

this by taking ∆(o1, o2) = 0.5 1{o1.category = o2.category} + 0.5 fraction of

common states value pairs.

• Relationship Features: Given all (ω1, ω2, r) pairs where ω1, ω2 ∈ ci and r is a

spatial relationship between them. The relationship feature is given by:

frel =
〈
yi,ω1,ω2

〉
(ω1,ω2,r)

where yi,ω1,ω2 = 1 if post-condition fi contains a predicate rel(o1, o2) where

o1, o2 are the objects referred by description ω1, ω2 respectively.

• Similarity Feature: This is given by the Jaccard index of all the words in ci

and the words in the anchored lexical entry.

• Transition Probabilities: Given a logical form zi−1, we can set priors on the

logical form zi. E.g., its unlikely that a logical form with post-condition

fi−1 = on(cup1, counter2) will be succeeded by logical form with post-

condition fi = on(cup1, counter1). Further, the logical forms that can occur

in the end state (ci is the last frame node) are also restricted. We therefore,

114

define 3 transition probability features to capture this:

ftr_prior =
〈
Ptr_prior(fi,l1 , fi−1,l2)

〉
l1,l2

fatr_prior =
〈
Patr_prior(pm(fi,l1), pm(fi−1,l2))

〉
l1,l2

fend =
〈
Pend(pm(fi,l))

〉
l

A.7 Assignment Problem

During inference, we want to generate logical forms z = (`, ξ) for a given lexical

entry ` = [ν ⇒ (λ~v.S , ξ′)]. However the number of such logical forms are expo-

nential in the number of variables in ~v. Therefore, for practical reasons we only

consider the optimum assignment given by arg maxξ φ(z = (`, ξ), · · ·) ·θ. Note that

we use slightly different notation from the paper, for reasons of brevity.

We convert this assignment problem into an optimization problem and then

solve it approximately. To do so, we define 0-1 variables yi j; 1 ≤ i ≤ m; 1 ≤ j ≤ n.

Where m is the number of variables in ~v and n is the number of objects in the

given environment s. Further yi j = 1 iff variable vi maps to the object o j. Using

this notation, the features described in Section A.6 can be expressed as follows.

1. Language and Logical Form

fle = 1
m

∑m
i=1

∑n
j=1(maxω ρ(ω, o j))yi j

frecall = 1
|ω∈c|

∑
ω∈c max j(

∑m
i=1 ρ(ω, o j)yi j)

2. Logical Form

The environment prior terms can be easily expressed in a form which is polyno-

115

mial in yi j. For example, the feature f (2)
e-prior for the parametrized post-condition

(state v1 water) ∧ (on v1 v2) can be expressed as:

m∑
r,s=1

P
(2)
e-prior((state or water) ∧ (on or os))y1ry1s

3. Logical Form and Environment

Similarly, the fee term can be expressed as:

fee =
1
m

m∑
i=1

n∑
j=1

∆(ξ′(vi), o j))yi j

4. Relationship Feature

For every (ω1, ω2, r) ∈ c pair; we find the objects o j1 , o j2 referred to by these de-

scriptions. Let the post-condition f contain atoms f1, f2, · · · fl of the type r(v1, v2)

then for each such predicate, we consider the term y1 j1y2 j2 .

5. Transition Probabilities

Transition probabilities are expressed similar to environment priors.

Dropping the higher order terms (generally small) and the recall term(to sim-

plify the optimization); we get a quadratic program of the form:

max aT x + xT Bx

Px ≤ q

The linear constraints Px ≤ q consists of yi j ∈ {0, 1},
∑

j yi j = 1 and se-

mantic constraints based on preconditions as given in the planner. E.g., for

the post-condition on(v1, v2), the planner preconditions tells that v1 mus satisfy

IsGraspable(v1); we therefore add these semantic constraints as inferred from

the planner.

116

In this form, the assignment problem is nonconvex and does not necessarily

admit a unique solution. While this can be solved by standard solvers such as

AlgLib library; this optimization is quite slow and hence for practical reasons

we drop the B term and solve the remaining linear program using a fast interior

point solver after relaxation. The experiments in the paper are reported based

on these approximations.

117

APPENDIX B

APPENDIX FOR CHAPTER 5

B.1 Reward Shaping Theorems

In Section 5.5, we introduce two reward shaping terms. We follow the safe-

shaping theorems of Ng et al. [1999] and Wiewiora et al. [2003]. The theorems

outline potential-based terms that realize sufficient conditions for safe shaping.

Applying safe terms guarantees the order of policies according to the original

problem reward does not change. While the theory only applies when optimiz-

ing the total reward, we show empirically the effectiveness of the safe shaping

terms in a contextual bandit setting. For convenience, we provide the defini-

tions of potential-based shaping terms and the theorems introduced by Ng et al.

[1999] and Wiewiora et al. [2003] using our notation. We refer the reader to the

original papers for the full details and proofs.

The distance-based shaping term F1 is defined based on the theorem of Ng

et al. [1999]:

Definition. A shaping term F : S × A × S → R is potential-based if there exists a function

φ : S → R such that, at time j, F(s j, a j, s j+1) = γφ(s j+1) − φ(s j), ∀s j, s j+1 ∈ S and a j ∈ A,

where γ ∈ [0, 1] is a future reward discounting factor. The function φ is the potential function of the

shaping term F.

Theorem. Given a reward function R(s j, a j), if the shaping term is potential-based, the shaped

reward RF(s j, a j, s j+1) = R(s j, a j) + F(s j, a j, s j+1) does not modify the total order of policies.

In the definition of F1, we set the discounting term γ to 1.0 and omit it.

The trajectory-based shaping term F2 follows the shaping term introduced

118

by Brys et al. [2015]. To define it, we use the look-back advice shaping term of

Wiewiora et al. [2003], who extended the potential-based term of Ng et al. [1999]

for terms that consider the previous state and action:

Definition. A shaping term F : S × A × S × A → R is potential-based if there exists a function

φ : S×A → R such that, at time j, F(s j−1, a j−1, s j, a j) = γφ(s j, a j)−φ(s j−1, a j−1), ∀s j, s j−1 ∈ S and

a j, a j−1 ∈ A, where γ ∈ [0, 1] is a future reward discounting factor. The function φ is the potential

function of the shaping term F.

Theorem. Given a reward function R(s j, a j), if the shaping term is potential-based, the shaped re-

ward RF(s j−1, a j−1, s j, a j) = R(s j, a j)+ F(s j−1, a j−1, s j, a j) does not modify the total order of policies.

In the definition of F2 as well, we set the discounting term γ to 1.0 and omit it.

B.2 Evaluation Systems

We implement multiple systems for evaluation.

STOP The agent performs the STOP action immediately at the beginning of

execution.

RANDOM The agent samples actions uniformly until STOP is sampled or J

actions were sampled, where J is the execution horizon.

SUPERVISED Given the training data with N instruction-state-execution

triplets, we generate training data of instruction-state-action triplets and opti-

mize the log-likelihood of the data. Formally, we optimize the objective:

119

J =
1
N

N∑
i=1

m(i)∑
j=1

log π(s̃(i)
j , a

(i)
j) ,

where m(i) is the length of the execution ē(i), s̃(i)
j is the agent context at step j in

sample i, and a(i)
j is the demonstration action of step j in demonstration exe-

cution ē(i). Agent contexts are generated with the annotated previous actions

(i.e., to generate previous images and the previous action). We use minibatch

gradient descent with ADAM updates [Kingma and Ba, 2014].

DQN We use deep Q-learning [Mnih et al., 2015] to train a Q-network. We

use the architecture described in Section 5.3, except replacing the task specific

part with a single 81-dimension layer. In contrast to our probabilistic model,

we do not decompose block and direction selection. We use the shaped reward

function, including both F1 and F2. We use a replay memory of size 2,000 and

an ε-greedy behavior policy to generate rollouts. We attenuate the value of ε

from 1 to 0.1 in 100,000 steps and use prioritized sweeping for sampling. We

also use a target network that is synchronized after every epoch.

REINFORCE We use the REINFORCE algorithm [Sutton et al., 1999] to train

our agent. REINFORCE performs policy gradient learning with total reward

accumulated over the roll-out as opposed to using immediate rewards as in our

main approach. REINFORCE samples the total reward using monte-carlo sam-

pling by performing a roll-out. We use the shaped reward function, including

both F1 and F2 terms. Similar to our approach, we initialize with a SUPERVISED

model and regularize the objective with the entropy of the policy. We do not use

a reward baseline.

120

SUPERVISED with Oracle Planner We use a variant of our model assuming a

perfect planner. The model predicts the block to move and its target position

as a pair of coordinates. We modify the architecture in Section 5.3 to predict

the block to move and its target position as a pair of coordinates. This model

assumes that the sequence of actions is inferred from the predicted target posi-

tion using an oracle planner. We train using supervised learning by maximizing

the likelihood of the block being moved and minimizing the squared distance

between the predicted target position and the annotated target position.

B.3 Parameters and Initialization

B.3.1 Architecture Parameters

We use an RGB image of 120x120 pixels, and a convolutional neural network

(CNN) with 4 layers. The first two layers apply 32 8 × 8 filters with a stride of

4, the third applies 32 4 × 4 filters with a stride of 2. The last layer performs

an affine transformation to create a 200-dimension vector. We linearly scale all

images to have zero mean and unit norm. We use a single layer RNN with

150-dimensional word embeddings and 250 LSTM units. The dimension of the

action embedding ψa is 56, including 32 for embedding the block and 24 for

embedding the directions. W(1) is a 506 × 120 matrix and b(1) is a 120-dimension

vector. W(D) is 120 × 20 for 20 blocks, and W(B) is 120 × 5 for the four directions

(north, south, east, west) and the STOP action. We consider K = 4 previous

images, and use horizon length J = 40.

121

B.3.2 Initialization

Embedding matrices are initialized with a zero-mean unit-variance Gaussian

distribution. All biases are initialized to 0. We use a zero-mean truncated nor-

mal distribution to initialize the CNN filters (0.005 variance) and CNN weights

matrices (0.004 variance). All other weight matrices are initialized with a nor-

mal distribution (mean=0.0, standard deviation=0.01). The matrices used in the

word embedding function ψ are initialized with a zero-mean normal distribu-

tion with standard deviation of 1.0. Action embedding matrices, which are used

for ψa, are initialized with a zero-mean normal distribution with 0.001 standard

deviation. We initialize policy gradient learning, including our approach, with

parameters estimated using supervised learning for two epochs, except the di-

rection parameters W(D) and b(D), which we learn from scratch. We found this

initialization method to provide a good balance between strong initialization

and not biasing the learning too much, which can result in limited exploration.

B.3.3 Learning Parameters

We use the distance error on a small validation set as stopping criteria. Af-

ter each epoch, we save the model, and select the final model based on devel-

opment set performance. While this method overfits the development set, we

found it more reliable then using the small validation set alone. Our relatively

modest performance degradation on the held-out set illustrates that our models

generalize well. We set the reward and shaping penalties δ = δ f = 0.02. The

entropy regularization coefficient is λ = 0.1. The learning rate is µ = 0.001 for

supervised learning and µ = 0.00025 for policy gradient. We clip the gradient

122

Name Size Vocabulary AIL # Actions ATL Partially
Size Observed

Blocks 16,767 1,426 15.27 81 15.4 No
SAIL 3,237 563 7.96 3 3.12 Yes
Matuszek 217 39 6.65 3 N/A No
Misra 469 775 48.7 > 100 21.5 No

Table B.1: Comparison of several related natural language instructions corpora.
Size denotes the number of instructions in the dataset. AIL is the Average In-
struction Length and ATL is the Average Trajectory Length.

at a norm of 5.0. All learning algorithms use a mini-batch of size 32 during

training.

B.4 Dataset Comparisons

We briefly review instruction following datasets in Table B.1, including:

Blocks [Bisk et al., 2016b], SAIL [MacMahon et al., 2006, Chen and Mooney,

2011], Matuszek [Matuszek et al., 2012b], and Misra [Misra et al., 2015]. Overall,

Blocks provides the largest training set and a relatively complex environment

with well over 2.4318 possible states.1 The most similar dataset is SAIL, which

provides only partial observability of the environment (i.e., the agent observes

what is around it only). However, SAIL is less complex on other dimensions re-

lated to the instructions, trajectories, and action space. In addition, while Blocks

has a large number of possible states, SAIL includes only 400 states. The small

number of states makes it difficult to learn vision models that generalize well.

Misra [Misra et al., 2015] provides a parameterized action space (e.g., grasp(cup)),

which leads to a large number of potential actions. However, the corpus is rela-

tively small.

1We compute this loose lower bound on the number of states in the block world as 20! =

2.4318 (the number of block permutations). This is a very loose lower bound.

123

B.5 Common Questions

This is a list of potential questions following various decisions that we made.

While we ablated and discussed all the crucial decisions in the paper, we de-

cided to include this appendix to provide as much information as possible.

Is it possible to manually engineer a competitive reward function without

shaping? Shaping is a principled approach to add information to a problem

reward with relatively intuitive potential functions. Our experiments demon-

strate its effectiveness. Investing engineering effort in designing a reward func-

tion specifically designed to the task is a potential alternative approach.

Are you using beam search? Why not? While using beam search can proba-

bly increase our performance, we chose to avoid it. We are motivated by robotic

scenarios, where implementing beam search is a challenging task and often not

possible. We distinguish between beam search and back-tracking. Beam search

is also incompatible with common assumptions of reinforcement learning, al-

though it is often used during test with reinforcement learning systems.

Why are you using the mean of the LSTM hidden states instead of just the

final state? We empirically tested both options. Using the mean worked better.

This was also observed by Narasimhan et al. [2015]. Understanding in which

scenarios one technique is better than the other is an important question for

future work.

Can you provide more details about initialization? Please see Appendix B.3.

124

Does the agent in the block world learn to move obstacles and other blocks?

While the agent can move any block at any step, in practice, it rarely happens.

The agent prefers to move blocks around obstacles rather than moving other

blocks and moving them back into place afterwards. This behavior is learned

from the data and shows even when we use only very limited amount of demon-

strations. We hypothesize that in other tasks the agent is likely to learn that

moving obstacles is advantageous, for example when demonstrations include

moving obstacles.

Does the agent explicitly mark where it is in the instruction? We estimate

that over 90% of the instructions describe the target position. Therefore, it is of-

ten not clear how much of the instruction was completed during the execution.

The agent does not have an explicit mechanism to mark portions of the instruc-

tion that are complete. We briefly experimented with attention, but found that

empirically it does not help in our domain. Designing an architecture to allows

such considerations is an important direction for future work.

Does the agent know which blocks are present? Not all blocks are included

in each task. The agent must infer which blocks are present from the image

and instruction. The set of possible actions, which includes moving all possible

blocks, does not change between tasks. If the agent chooses to move a block that

is not present, the world state does not change.

Did you experiment with executing sequences of instruction? The Bisk et al.

[2016b] includes such instructions, right? The majority of existing corpora,

including SAIL [Chen and Mooney, 2011, Artzi and Zettlemoyer, 2013, Mei

125

et al., 2016a], provide segmented sequences of instructions. Existing approaches

take advantage of this segmentation during training. For example, Chen and

Mooney [2011], Artzi and Zettlemoyer [2013], and Mei et al. [2016a] all train

on segmented data and test on sequences of instructions by doing inference on

one sentence at a time. We are also able to do this. Similar to these approaches,

we will likely suffer from cascading errors. The multi-instruction paragraphs

in the Bisk et al. [2016b] data are an open problem and present new challenges

beyond just instruction length. For example, they often merge multiple block

placements in one instruction (e.g, put the SRI, HP, and Dell blocks in a row).

Since the original corpus does not provide trajectories and our automatic gener-

ation procedure is not able to resolve which block to move first, we do not have

demonstrations for this data. The instructions also present a significantly more

complex task. This is an important direction for future work, which illustrates

the complexity and potential of the domain.

Potential-based shaping was proven to be safe when maximizing the total

expected reward. Does this apply for the contextual bandit setting, where you

maximize the immediate reward? The safe shaping theorems (Appendix B.1)

do not hold in our contextual bandit setting. We show empirically that shaping

works in practice. However, how and if it changes the order of policies is an

open question.

How long does it take to train? How many frames the agent observes? The

agent observes about 2.5 million frames. It takes 16 hours using 50% capacity

of an Nvidia Pascal Titan X GPU to train using our approach. DQN takes more

than twice the time for the same number of epochs. Supervised learning takes

126

about 9 hours to converge. We also trained DQN for around four days, but did

not observe improvement.

Did you consider initializing DQN with supervised learning? Initializing

DQN with the probabilistic supervised model is challenging. Since DQN is not

probabilistic it is not clear what this initialization means. Smart initialization of

DQN is an important problem for future work.

127

APPENDIX C

APPENDIX FOR CHAPTER 6

C.1 Tasks and Data: Comparisons

Table C.1 provides summary statistics comparing LANI and CHAI to existing

related resources.

C.2 Reward Function

LANI Following Misra et al. [2017], we use a shaped reward function that re-

wards the agent for moving towards the goal location. The reward function for

example i is:

R(i)(s, a, s′) = R(i)
p + φ(i)(s) − φ(i)(s′)

where s′ is the origin state, a is the action, s is the target state, R(i)
p is the problem

reward, and φ(i)(s)−φ(i) is a shaping term. We use a potential-based shaping [Ng

et al., 1999] that encourages the agent to both move and turn towards the goal.

Dataset Size Vocabulary AIL Action Space ATL Partially
Size Size Observed

Bisk et al. [2016a] 16,767 1,426 15.27 81 15.4 No
MacMahon et al. [2006] 3,237 563 7.96 3 3.12 Yes
Matuszek et al. [2012b] 217 39 6.65 3 N/A No
Misra et al. [2015] 469 775 48.7 >100 21.5 No
LANI 28,204 2,292 12.07 4 24.6 Yes
CHAI 13,729 1018 10.14 1028 54.5 Yes

Table C.1: Comparison of LANI and CHAI to several existing natural language
instructions corpora. Size denotes the number of instructions in the dataset. AIL
is the Average Instruction Length and ATL is the Average Trajectory Length.

128

The potential function is:

φ(i)(s) = δTURNDIST(s, s(i)
g) + (1 − δ)MOVEDIST(s, s(i)

g) ,

where MOVEDIST is the euclidean distance to the goal normalized by the

agent’s forward movement distance, and TURNDIST is the angle the agent needs

to turn to face the goal normalized by the agent’s turn angle. We use δ as a gat-

ing term, which is 0 when the agent is near the goal and increases monotonically

towards 1 the further the agent is from the goal. This decreases the sensitivity

of the potential function to the TURNDIST term close to the goal. The problem

reward R(i)
p provides a negative reward of up to -1 on collision with any object

or boundary (based on the angle and magnitude of collision), a negative reward

of -0.005 on every action to discourage long trajectories, a negative reward of -1

on an unsuccessful stop, when the distance to the goal location is greater than

5, and a positive reward of +1 on a successful stop.

CHAI We use a similar potential based reward function as LANI. Instead of

rewarding the agent to move towards the final goal the model is rewarded for

moving towards the next intermediate goal. We heuristically generate interme-

diate goals from the human demonstration by generating goals for objects to be

interacted with, doors that the agent should enter, and the final position of the

agent. The potential function is:

φ(i)(s) = TURNDIST(s, s(i)
g, j) + MOVEDIST(s, s(i)

g, j) + INTDIST(s, s(i)
g, j) ,

where s(i)
g, j is the next intermediate goal, TURNDIST rewards the agent for turn-

ing towards the goal, MOVEDIST rewards the agent for moving closer to the

goal, and INTDIST rewards the agent for accomplishing the interaction in the

129

intermediate goal. The goal is updated on being accomplished. Besides the po-

tential term, we use a problem reward R(i)
p that gives a reward of 1 for stopping

near a goal, -1 for colliding with obstacles, and -0.002 as a verbosity penalty for

each step.

C.3 Baseline Details

MISRA17 We use the model of Misra et al. [2017]. The model uses a convo-

lution neural network for encoding the visual observations, a recurrent neural

network with LSTM units to encode the instruction, and a feed-forward net-

work to generate actions using these encodings. The model is trained using

policy gradient in a contextual bandit setting. We use the code provided by the

authors.

CHAPLOT18 We use the gated attention architecture of Chaplot et al. [2018].

The model is trained using policy gradient with generalized advantage estima-

tion [Schulman et al., 2015b]. We use the code provided by the authors.

Our Approach with Joint Training We train the full model with policy gra-

dient. We maximize the expected reward objective with entropy regulariza-

tion. Given a sampled goal location lg ∼ p(. | x̄, IP) and a sampled action

a ∼ p(. | lg, (I1, p1), . . . , (It, pt)), the update is:

∇J ≈
{
∇ log P(lg | x̄, IP) + ∇ log P(at | lg, (I1, p1), . . . , (It, pt))

}
R(st, a) + λ∇H(π(. | s̃t) .

We perform joint training with randomly initialized goal prediction and action

130

generation models.

C.4 Hyperparameters

For LANI experiments, we use 5% of the training data for tuning the hyperpa-

rameters and train on the remaining. For CHAI, we use the development set for

tuning the hyperparameters. We train our models for 20 epochs and find the

optimal stopping epoch using the tuning set. We use 32 dimensional embed-

dings for words and time. LSTMx and LSTMA are single layer LSTMs with 256

hidden units. The first layer of CNN0 contains 128 8×8 kernels with a stride of

4 and padding 3, and the second layer contains 64 3×3 kernels with a stride of

1 and padding 1. The convolution layers in LINGUNETuse 32 5×5 kernels with

stride 2. All deconvolutions except the final one, also use 32 5×5 kernels with

stride 2. The dropout probability in LINGUNETis 0.5. The size of attention mask

is 32×32 + 1. For both LANI and CHAI, we use a camera angle of 60◦ and create

panoramas using 6 separate RGB images. Each image is of size 128×128. We use

a learning rate of 0.00025 and entropy coefficient λ of 0.05.

C.5 CHAI Error Analysis

Table C.2 provides the same kind of error analysis results here for the CHAI

dataset as we produced for LANI, comparing performance of the model on sam-

ples of sentences with and without the analysis phenomena that occurred in

CHAI.

131

Category Present Absent p-value
Spatial relations 2.56 1.77 .023
Location conjunction 3.85 1.93 .226
Temporal coordination 1.70 2.14 .164
Co-reference 1.98 1.98 .993

Table C.2: Mean goal prediction error for CHAI instructions with and without
the analysis categories we used in Table 6.2. The p-values are from two-sided
t-tests comparing the means in each row.

C.6 Examples of Generated Goal Prediction

Figure C.1 shows example goal predictions from the development sets. We

found the predicted probability distributions to be reasonable even in many

cases where the agent failed to successfully complete the task. We observed that

often the evaluation metric is too strict for LANI instructions, especially in cases

of instruction ambiguity.

132

Success
go round the flowers

Success
fly between the palm tree and pond

Failure
head toward the wishing well and keep it on your right .

move back to the kitchen .

then drop the tropicana onto the coffee table .

walk the cup to the table and set the cup on the table .

Figure C.1: Goal prediction probability maps Pg overlaid on the corresponding
observed panoramas IP. The top three examples show results from LANI, the
bottom three from CHAI. The white arrow indicates the forward direction that
the agent is facing. The success/failure in the LANI examples indicate if the task
was completed accurately or not following the task completion (TC) metric.

133

BIBLIOGRAPHY

Google image search. http://www.images.google.com/.

Iq engines: Image recognition apis for photo albums and mobile commerce.

https://www.iqengines.com/.

List of drone companies. https://uavcoach.com/drone-companies/.

Pytorch. https://pytorch.org/.

Alekh Agarwal, Daniel J. Hsu, Satyen Kale, John Langford, Lihong Li, and

Robert E. Schapire. Taming the monster: A fast and simple algorithm for

contextual bandits. In Proceedings of the International Conference on Machine

Learning, 2014.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sün-

derhauf, Ian Reid, Stephen Gould, and Anton van den Hengel. Vision-and-

language navigation: Interpreting visually-grounded navigation instructions

in real environments. In Computer Vision and Pattern Recognition (CVPR), 2018.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta,

Kuzman Ganchev, Slav Petrov, and Michael Collins. Globally normalized

transition-based neural networks. In Proceedings of the annual meeting on Asso-

ciation for Computational Linguistics, 2016.

Jacob Andreas and Dan Klein. Alignment-based compositional semantics for

instruction following. In Proceedings of the 2015 Conference on Empirical Methods

in Natural Language Processing, 2015.

Yoav Artzi and Luke Zettlemoyer. Weakly supervised learning of semantic

parsers for mapping instructions to actions. Transactions of the Association for

Computational Linguistics (TACL), 1:49–62, 2013.

134

Yoav Artzi and Luke S. Zettlemoyer. Bootstrapping semantic parsers from con-

versations. In Proceedings of the Conference on Empirical Methods in Natural Lan-

guage Processing, 2011.

Yoav Artzi, Dipanjan Das, and Slav Petrov. Learning compact lexicons for CCG

semantic parsing. In Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing, 2014.

Kavosh Asadi, Dipendra Misra, and Michael Littman. Lipschitz continuity in

model-based reinforcement learning. In Proceedings of the 35th International

Conference on Machine Learning, pages 264–273, 2018.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the

multiarmed bandit problem. Machine learning, 47(2-3):235–256, 2002a.

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The non-

stochastic multiarmed bandit problem. SIAM J. Comput., 32(1):48–77, 2002b.

Jonathan Berant and Percy Liang. Semantic parsing via paraphrasing. In Asso-

ciation for Computational Linguistics (ACL), 2014.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic pars-

ing on Freebase from question-answer pairs. In Empirical Methods in Natural

Language Processing (EMNLP), 2013.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

Yonatan Bisk, Daniel Marcu, and William Wong. Towards a dataset for human

computer communication via grounded language acquisition. In Proceedings

of the AAAI Workshop on Symbiotic Cognitive Systems, 2016a.

135

Yonatan Bisk, Deniz Yuret, and Daniel Marcu. Natural language communication

with robots. In Proceedings of the Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, 2016b.

Valts Blukis, Nataly Brukhim, Andrew Bennett, Ross A. Knepper, and Yoav

Artzi. Following high-level navigation instructions on a simulated quad-

copter with imitation learning. In Proceedings of the Robotics: Science and Sys-

tems Conference, 2018a.

Valts Blukis, Dipendra Misra, Ross A. Knepper, and Yoav Artzi. Mapping navi-

gation instructions to continuous control actions with position visitation pre-

diction. In Proceedings of the Conference on Robot Learning, 2018b.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.

Freebase: a collaboratively created graph database for structuring human

knowledge. In Proceedings of the 2008 ACM SIGMOD international conference

on Management of data, pages 1247–1250. AcM, 2008.

Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time

algorithm for near-optimal reinforcement learning. Journal of Machine Learning

Research, 3(Oct):213–231, 2002.

SRK Branavan, Harr Chen, Luke S Zettlemoyer, and Regina Barzilay. Reinforce-

ment learning for mapping instructions to actions. In Association for Computa-

tional Linguistics and International Joint Conference on Natural Language Process-

ing (ACL-IJCNLP), pages 82–90, 2009.

SRK Branavan, Luke S Zettlemoyer, and Regina Barzilay. Reading between the

lines: Learning to map high-level instructions to commands. In Association for

Computational Linguistics (ACL), pages 1268–1277, 2010.

136

Tim Brys, Anna Harutyunyan, Halit Bener Suay, Sonia Chernova, Matthew E.

Taylor, and Ann Nowé. Reinforcement learning from demonstration through

shaping. In Proceedings of the International Joint Conference on Artificial Intelli-

gence, 2015.

Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pa-

sumarthi, Dheeraj Rajagopal, and Ruslan Salakhutdinov. Gated-attention ar-

chitectures for task-oriented language grounding. 2018.

David L Chen and Raymond J Mooney. Learning to interpret natural language

navigation instructions from observations. In Association for the Advancement

of Artificial Intelligence (AAAI), pages 859–865, 2011.

Howard Chen, Alane Suhr, Dipendra Misra, and Yoav Artzi. Touchdown: Nat-

ural language navigation and spatial reasoning in visual street environments.

In Conference on Computer Vision and Pattern Recognition, 2019.

Istvan Chung, Oron Propp, Matthew R Walter, and Thomas M Howard. On the

performance of hierarchical distributed correspondence graphs for efficient

symbol grounding of robot instructions. In 2015 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), pages 5247–5252. IEEE, 2015.

Andrea F Daniele, Mohit Bansal, and Matthew R Walter. Navigational instruc-

tion generation as inverse reinforcement learning with neural machine trans-

lation. In 2017 12th ACM/IEEE International Conference on Human-Robot Inter-

action (HRI, pages 109–118. IEEE, 2017.

Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and

Dhruv Batra. Embodied question answering. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, 2018.

137

Hal Daumé, John Langford, and Daniel Marcu. Search-based structured predic-

tion. Machine learning, 75(3):297–325, 2009.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood

from incomplete data via the EM algorithm. Journal of the Royal Statistical

Society: Series B, 39(1):1–38, 1977.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee, 2009.

Simon S Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav

Dudík, and John Langford. Provably efficient rl with rich observations via

latent state decoding. arXiv preprint arXiv:1901.09018, 2019.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for

online learning and stochastic optimization. In Conference on Learning Theory

(COLT), 2010.

Felix Duvallet, Matthew R Walter, Thomas Howard, Sachithra Hemachandra,

Jean Oh, Seth Teller, Nicholas Roy, and Anthony Stentz. Inferring maps and

behaviors from natural language instructions. In Experimental Robotics, pages

373–388. Springer, 2016.

Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14:179–211, 1990.

Juan Fasola and Maja J Mataric. Interpreting instruction sequences in spatial

language discourse with pragmatics towards natural human-robot interac-

tion. In International Conference on Robotics and Automation (ICRA), pages 6667–

6672, 2014.

Christiane Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, 1998.

138

Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas,

Louis-Philippe Morency, Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein,

and Trevor Darrell. Speaker-follower models for vision-and-language navi-

gation. CoRR, abs/1806.02724, 2018.

Yoav Goldberg. A primer on neural network models for natural language pro-

cessing. Journal of Artificial Intelligence Research, 57:345–420, 2016.

Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Redmon,

Dieter Fox, and Ali Farhadi. Iqa: Visual question answering in interactive

environments. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2018.

Sergio Guadarrama, Lorenzo Riano, Dave Golland, Daniel Go, Yangqing Jia,

Dan Klein, Pieter Abbeel, and Trevor Darrell. Grounding spatial relations for

human-robot interaction. In International Conference on Intelligent Robots and

Systems (IROS), 2013.

Sergio Guadarrama, Erik Rodner, Kate Saenko, Ning Zhang, Ryan Farrell, Jeff

Donahue, and Trevor Darrell. Open-vocabulary object retrieval. In Robotics:

science and systems, volume 2, page 6. Citeseer, 2014.

Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard L Lewis, and Xiaoshi

Wang. Deep learning for real-time atari game play using offline monte-carlo

tree search planning. In Advances in neural information processing systems, pages

3338–3346, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

139

Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner,

Hubert Soyer, David Szepesvari, Wojciech Czarnecki, Max Jaderberg, De-

nis Teplyashin, Marcus Wainwright, Chris Apps, Demis Hassabis, and Phil

Blunsom. Grounded language learning in a simulated 3D world. CoRR,

abs/1706.06551, 2017.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostro-

vski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Sil-

ver. Rainbow: Combining improvements in deep reinforcement learning.

arXiv preprint arXiv:1710.02298, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9, 1997.

Thomas M Howard, Stefanie Tellex, and Nicholas Roy. A natural language plan-

ner interface for mobile manipulators. In 2014 IEEE International Conference on

Robotics and Automation (ICRA), pages 6652–6659. IEEE, 2014.

Michael Janner, Karthik Narasimhan, and Regina Barzilay. Representation

learning for grounded spatial reasoning. Transactions of the Association for Com-

putational Linguistics, 6, 2018.

Sham Kakade and John Langford. Approximately optimal approximate rein-

forcement learning. In Machine Learning, Proceedings of the Nineteenth Interna-

tional Conference , University of New South Wales, Sydney, Australia, July 8-12,

2002, 2002.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara L. Berg. Refer-

itgame: Referring to objects in photographs of natural scenes. In Proceedings

of the Conference on Empirical Methods in Natural Language Processing, 2014.

140

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in

polynomial time. Machine learning, 49(2-3):209–232, 2002.

Michael Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling al-

gorithm for near-optimal planning in large markov decision processes. In

Proeceediings of the International Joint Conference on Artificial Intelligence, 1999.

Joohyun Kim and Raymond Mooney. Unsupervised PCFG induction for

grounded language learning with highly ambiguous supervision. In Proceed-

ings of the Joint Conference on Empirical Methods in Natural Language Processing

and Computational Natural Language Learning, 2012.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

In Proceedings of the International Conference on Learning Representations, 2014.

Nikita Kitaev and Dan Klein. Where is misty? interpreting spatial descriptors

by modeling regions in space. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing, 2017.

Dan Klein and Christopher D Manning. Accurate unlexicalized parsing. In

Association for Computational Linguistics (ACL), pages 423–430, 2003.

Chen Kong, Dahua Lin, Mohit Bansal, Raquel Urtasun, and Sanja Fidler. What

are you talking about? text-to-image coreference. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2014.

Akshay Krishnamurthy, Alekh Agarwal, and Miro Dudik. Contextual semiban-

dits via supervised learning oracles. In Advances In Neural Information Process-

ing Systems, pages 2388–2396, 2016a.

141

Akshay Krishnamurthy, Alekh Agarwal, and John Langford. PAC reinforce-

ment learning with rich observations. In Advances in Neural Information Pro-

cessing Systems, 2016b.

Jayant Krishnamurthy and Thomas Kollar. Jointly learning to parse and per-

ceive: Connecting natural language to the physical world. Transactions of the

Association for Computational Linguistics, 1, 2013.

Tom Kwiatkowski, Luke S. Zettlemoyer, Sharon Goldwater, and Mark Steed-

man. Inducing probabilistic CCG grammars from logical form with higher-

order unification. In Empirical Methods in Natural Language Processing

(EMNLP), 2010.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman.

Lexical generalization in CCG grammar induction for semantic parsing. In

Empirical Methods in Natural Language Processing (EMNLP), 2011.

John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed

bandits with side information. In Advances in neural information processing

systems, pages 817–824, 2008.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):

2278–2324, 1998.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end

training of deep visuomotor policies. Journal of Machine Learning Research, 17,

2016.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches

142

to attention-based neural machine translation. In Proceedings of the Conference

on Empirical Methods in Natural Language Processing, 2015.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities

improve neural network acoustic models. In International Conference on Ma-

chine Learning (ICML), 2013.

James MacGlashan, Monica Babes-Vroman, Marie desJardins, Michael L.

Littman, Smaranda Muresan, S Bertel Squire, Stefanie Tellex, Dilip Aru-

mugam, and Lei Yang. Grounding english commands to reward functions.

In Robotics: Science and Systems, 2015.

Matt MacMahon, Brian Stankiewicz, and Benjamin Kuipers. Walk the talk: Con-

necting language, knowledge, and action in route instructions. In National

Conference on Artificial Intelligence, 2006.

Jeremy Maitin-Shepard, Marco Cusumano-Towner, Jinna Lei, and Pieter

Abbeel. Cloth grasp point detection based on multiple-view geometric cues

with application to robotic towel folding. In 2010 IEEE International Conference

on Robotics and Automation, pages 2308–2315. IEEE, 2010.

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan Yuille,

and Kevin Murphy. Generation and Comprehension of Unambiguous Object

Descriptions. In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, 2016. doi: 10.1109/CVPR.2016.9.

Cynthia Matuszek, Dieter Fox, and Karl Koscher. Following directions using

statistical machine translation. In Proceedings of the international conference on

Human-robot interaction, 2010.

143

Cynthia Matuszek, Nicholas FitzGerald, Luke Zettlemoyer, Liefeng Bo, and Di-

eter Fox. A joint model of language and perception for grounded attribute

learning. In International Conference on Machine Learning (ICML), 2012a.

Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, and Dieter Fox. Learning to

parse natural language commands to a robot control system. In International

Symposium on Experimental Robotics (ISER), 2012b.

Hongyuan Mei, Mohit Bansal, and Matthew Walter. What to talk about and

how? selective generation using lstms with coarse-to-fine alignment. In Pro-

ceedings of the Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, 2016a.

Hongyuan Mei, Mohit Bansal, and Matthew R Walter. Listen, attend, and walk:

Neural mapping of navigational instructions to action sequences. In Associa-

tion for the Advancement of Artificial Intelligence (AAAI), 2016b.

Dipendra Misra, John Langford, and Yoav Artzi. Mapping instructions and

visual observations to actions with reinforcement learning. In Proceedings of

the Conference on Empirical Methods in Natural Language Processing, 2017.

Dipendra Kumar Misra, Jaeyong Sung, Kevin Lee, and Ashutosh Saxena. Tell

Me Dave: Context-sensitive grounding of natural language to mobile manip-

ulation instructions. In Robotics: Science and Systems (RSS), 2014.

Dipendra Kumar Misra, Kejia Tao, Percy Liang, and Ashutosh Saxena.

Environment-driven lexicon induction for high-level instructions. In Asso-

ciation for Computational Linguistics (ACL), 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with

144

deep reinforcement learning. In Advances in Neural Information Processing Sys-

tems, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-

ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidje-

land, and Georg Ostrovski. Human-level control through deep reinforcement

learning. Nature, 518(7540), 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-

othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-

chronous methods for deep reinforcement learning. In International conference

on machine learning, pages 1928–1937, 2016.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted

boltzmann machines. In International Conference on Machine Learning (ICML),

pages 807–814, 2010.

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. Language under-

standing for text-based games using deep reinforcement learning. In Proceed-

ings of the Conference on Empirical Methods in Natural Language Processing, 2015.

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under

reward transformations: Theory and application to reward shaping. In Pro-

ceedings of the International Conference on Machine Learning, 1999.

Khanh Nguyen, Debadeepta Dey, Chris Brockett, and Bill Dolan. Vision-based

navigation with language-based assistance via imitation learning with indi-

rect intervention. arXiv preprint arXiv:1812.04155, 2018.

Franz Josef Och and Hermann Ney. A systematic comparison of various statis-

tical alignment models. Computational Linguistics, 29:19–51, 2003.

145

Junhyuk Oh, Valliappa Chockalingam, Satinder P. Singh, and Honglak Lee.

Control of memory, active perception, and action in minecraft. In Proceedings

of the International Conference on Machine Learning, 2016.

Junhyuk Oh, Satinder P. Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot

task generalization with multi-task deep reinforcement learning. In Proceed-

ings of the international conference on machine learning, 2017.

Baolin Peng, Xiujun Li, Lihong Li, Jianfeng Gao, Asli Celikyilmaz, Sungjin Lee,

and Kam-Fai Wong. Composite task-completion dialogue policy learning

via hierarchical deep reinforcement learning. arXiv preprint arXiv:1704.03084,

2017.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy

gradients. Neural networks, 21, 2008.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A

lock-free approach to parallelizing stochastic gradient descent. In Advances in

Neural Information Processing Systems (NeurIPS), pages 693–701, 2011.

Jussi Rintanen. Planning as satisfiability: Heuristics. Artificial Intelligence, 193,

2012.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional

networks for biomedical image segmentation. In International Conference on

Medical image computing and computer-assisted intervention, 2015.

Stephane Ross and J Andrew Bagnell. Reinforcement and imitation learning via

interactive no-regret learning. arXiv preprint arXiv:1406.5979, 2014.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation

146

learning and structured prediction to no-regret online learning. In Artificial

Intelligence and Statistics (AISTATS), 2011.

David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning rep-

resentations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

Andrei A. Rusu, Matej Vecerik, Thomas Rothörl, Nicolas Heess, Razvan Pas-

canu, and Raia Hadsell. Sim-to-real robot learning from pixels with progres-

sive nets. CoRR, 2016.

Ashutosh Saxena, Justin Driemeyer, and Andrew Y Ng. Robotic grasping of

novel objects using vision. The International Journal of Robotics Research, 27(2):

157–173, 2008.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter

Abbeel. Trust region policy optimization. 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter

Abbeel. High-dimensional continuous control using generalized advantage

estimation. CoRR, abs/1506.02438, 2015b.

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-

fidelity visual and physical simulation for autonomous vehicles. In Field and

service robotics, pages 621–635. Springer, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-

lan Salakhutdinov. Dropout: A simple way to prevent neural networks from

overfitting. Journal of Machine Learning Research (JMLR), 15(1):1929–1958, 2014.

Mark Steedman and Jason Baldridge. Combinatory categorial grammar. Non-

Transformational Syntax, pages 181–224, 2003.

147

Alexander L Strehl and Michael L Littman. An analysis of model-based inter-

val estimation for markov decision processes. Journal of Computer and System

Sciences, 74(8):1309–1331, 2008.

Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L

Littman. Pac model-free reinforcement learning. In Proceedings of the 23rd

international conference on Machine learning, pages 881–888. ACM, 2006.

Pei-Hao Su, Milica Gasic, Nikola Mrkšić, Lina M. Rojas Barahona, Stefan Ultes,

David Vandyke, Tsung-Hsien Wen, and Steve Young. On-line active reward

learning for policy optimisation in spoken dialogue systems. In Proceedings of

the Annual Meeting of the Association for Computational Linguistics, 2016.

Alane Suhr and Yoav Artzi. Situated mapping of sequential instructions to ac-

tions with single-step reward observation. In Proceedings of the Annual Meeting

of the Association for Computational Linguistics, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 2018.

Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour.

Policy gradient methods for reinforcement learning with function approxima-

tion. In Advances in Neural Information Processing Systems, 1999.

Stefanie Tellex and Deb Roy. Grounding spatial prepositions for video search. In

International Conference on Multimodal Interfaces (ICMI), pages 253–260, 2009.

Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R Walter,

Ashis Gopal Banerjee, Seth Teller, and Nicholas Roy. Understanding natu-

ral language commands for robotic navigation and mobile manipulation. In

Association for the Advancement of Artificial Intelligence (AAAI), 2011.

148

Stefanie Tellex, Ross Knepper, Adrian Li, Daniela Rus, and Nicholas Roy. Ask-

ing for help using inverse semantics. In Proceedings of the Robotics: Science and

Systems Conference, 2014.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradi-

ent by a running average of its recent magnitude. COURSERA: Neural net-

works for machine learning, 4(2):26–31, 2012.

Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance normal-

ization: The missing ingredient for fast stylization. CoRR, abs/1607.08022,

2016.

Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner,

MN Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer, et al.

Autonomous driving in urban environments: Boss and the urban challenge.

Journal of Field Robotics, 25(8):425–466, 2008.

Adam Vogel and Daniel Jurafsky. Learning to follow navigational directions. In

Association for Computational Linguistics (ACL), pages 806–814, 2010.

Matthew R Walter, Sachithra Hemachandra, Bianca Homberg, Stefanie Tellex,

and Seth Teller. A framework for learning semantic maps from grounded

natural language descriptions. The International Journal of Robotics Research, 33

(9):1167–1190, 2014.

Eric Wiewiora, Garrison W. Cottrell, and Charles Elkan. Principled methods

for advising reinforcement learning agents. In Proceedings of the International

Conference on Machine Learning, 2003.

Ronald J. Williams. Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine Learning, 8, 1992.

149

Ronald J Williams and Jing Peng. Function optimization using connectionist

reinforcement learning algorithms. Connection Science, 3(3):241–268, 1991.

Terry Winograd. Understanding natural language. Cognitive Psychology, 3(1):

1–191, 1972.

Wenhan Xiong, Xiaoxiao Guo, Mo Yu, Shiyu Chang, Bowen Zhou, and

William Yang Wang. Scheduled policy optimization for natural language

communication with intelligent agents. In Proceedings of the International Joint

Conferences on Artificial Intelligence, 2018.

Claudia Yan, Dipendra Kumar Misra, Andrew Bennett, Aaron Walsman,

Yonatan Bisk, and Yoav Artzi. Chalet: Cornell house agent learning envi-

ronment. CoRR, abs/1801.07357, 2018.

Luke S. Zettlemoyer and Michael Collins. Online learning of relaxed CCG gram-

mars for parsing to logical form. In Empirical Methods in Natural Language Pro-

cessing and Computational Natural Language Learning (EMNLP/CoNLL), 2007.

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-

Fei, and Ali Farhadi. Target-driven visual navigation in indoor scenes using

deep reinforcement learning. In 2017 IEEE international conference on robotics

and automation (ICRA), pages 3357–3364. IEEE, 2017.

150

