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ABSTRACT

....d_ be positive infegers. Let & denote the sst of systems of
polynomials £ T —s ¢ which have only finitely many zeros, including those "at
infinity”, and that satisfy degreelf;} = d; for all i. Let 0 < e £R For fixed

éi,.q,,ﬁ we show that with respect to a certain model of computation, the worst

ﬁ?
case computational complexity of obtaining €-approximations to at least those zeros £

satisfying 1£1 € R, for arbitrary f € @, is ©{loglog(R/¢€)), that is, we prove both
upper and lower bounds. We introduce an algorithm for proving the upper bound.

The number of operations reguired by this algorithm is

4 2 af1+2e;]" n
O n? " llog DMioglogiR/ell + ™32 n , where 2 = M, _,d;.
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i. Introduction

et P {%{R} denote the set of degree d univariate complex polynomials with all
zeros ¢ satisfving 1£1 € R.  For fixed d = 2, it was shown in Renegar (1987b)
that with respect to a certain model of computation, the worst-case arithmetic
complexity of obtaining €-approximations to either one, or to each, zero of arbitrary
fe ?éiRé is ©floglog(R/€}). More specifically, in terms of d as well, a lower
bound of Ofloglog{R/e)-0(log d) operations was proven, and a new algorithm,
requiring Qiégi_isg dilogiogiR/el) + égicsg d) operations, was introduced for the
problem of obtaining €-approximations to all of the zeros. We refer the reader to
Renegar {1987b} for the general model of "computation tree” used to prove the lower
bound, but we remark that it encompasses algebraic RAMs whose operations are +,
-, %, =, complex conjugation and ineguality comparison. (See Borodin and Munro
{1975) as a reference.) Arithmetic operations are assumed fo be performed with
infinite precision over the complex numbers. The coefficients of the polynomials are
not assumed to be rationals, so that simplifying properties like iower bounds on the
distance between distinct zeros, in terms of the “length” of the coefficients, cannot
be used. For fixed length rational coefficients a uniform loglog{R/€) upper bound
is fairly straightforward to prove, but for arbitrary complex coefficients it is not.

The purpose of this paper is to present appropriate generalizations of the
above resulis to the several variable setiing.

Of course, systems of polynomials are not nearly as simple as univariate
polvnomials. For example, univariate polynomials have finitely many zeros but
polynomial systems f: €% — €® can have infinitely many zeros, so we cannot hope
to approximate all of the zeros unless we restrict attention to "nice” systems. The
nice systems that we restrict attention to in this paper are those systems having
only finitely manv zeros, including the =zeros "at infinity’. Formally, if
F: el — g® is the homogenization of f {.e., if degree {fi} = {ii’ then the terms
of F; are obtained by multiplying the terms of f; by the appropriate powers of z, .,
50 as all to become of degree ég, then f iz said to have finitely many zeros,
including those at infinity, if the zero set of F is the union of finitely many
complex lnes through the origin in c®*1  We refer to these lines as the "zero
lines” of F: in the literature they are often referred to as the "solution rays” of F.
The zerc lines of F that are in ©F X £03 correspond to the zeros of f at infinity.
There is an obvious correspondence between the other zero lines of F and the zeros
of fin €.

Let éi,..”éﬁ be npositive integers. Let & denote the set of svstems



f= {f;‘?""fg‘z'}: €® — ¢ with only finitely many zeros, including those at infinity,
and satisfying degree(f;) = d, for all i. (Of course ¢ depends on the specific
values of éi,m,éﬁ}‘

We consider the following problem. Let R2 £ >0 and assume
f: € = € is a polynomial system satisfying deg?eeéfi} = ég for all 1.  First,
determine if f € ®. If so, determine €-approximations to a subset of the zeros of f
containing at least all zeros ¢ satisfying 1£1 € R.  (An e-approximation of a
zero is a point within Euclidean distance € of the zero.) More specifically,
determine points %i‘i},m,}%{&} € % for which there exist zeros %iﬂ‘g,;‘%im} of £
with ii?‘iﬁ}»—iﬁ}ﬁ € €, where each zero £ of f satisfving 1€1 € R is listed
among the S{i} a number of times exactly equal to its multiplicity, and where no
zere of f is listed among the Eié} a greater number of times than its multiplicity.
(Thus, if each zero £ of f satisfies 1£1 € R, then each zero can be considered as
being approximatsed by several points Xﬁ}, the number of such poinis being egual to
its multiplicity.}

We refer to the above approximation problem as “the (€,R)-approximation
problem for .

1
E2Y

1+2d,3

4
We preseni a test involving Q[ﬁf&g{ } operations, where

£ 0 5
D= a9

for determining if £ € ®. The validity of this test follows straightforwardly from
well-known facts regarding resultants. (Resultants are discussed in Section 2.} For
those f that pass this test, that is, for f € @, we also present an algorithm for
solving the {€ Ri-approximation prebiem for f. The operation count for this

aigorithm is

z+zai}4j

ke

0O a@é{ieg 2HloglogiR/ g} + 3234{

Note that coefficient "sizes” do not enter into this bound in any way.

A significant fact about the bound is how it depends on € and R, that is,
the loglog(R/€} term. The lower bound in Renegar (1987b) showed that in the
univariate setting this is the best possible dependence on R and € that can be

obtained. However, that lower bound implies the same lower bound for the several



variable setiing. For assume one of the é‘i > 2 say dy 2 2. If g € Py (R} lie,
= i

a degree dy univariate polynomial with all zeros £ satisfying 1£1 € R), then
d., d

£ €% — €O defined by fyl0 = glzy), fol0) =z, .. (2 = 2,7 satisfies
f € ®. Any e-approximation to a zero of f easily gives an e€-approximation to a
zero of g. Hence, the {(€,R}-approximation problem for arbitrary f € & is at least
as hard as the e-approximation problem for arbitrary g € P 4 {R), and thus, in the
worst case, equires OfloglogiR/e}) - Oln + log cii} operations. {The "n" occurs to
account for the cost of conversion to the several variable problem.}

Together, our upper and lower bounds give

Main Theorem: Fix dy,...d, and assume 3 = E?=1é§ z 2. Let 0 <€ £ R.
The arithmetic complexity of obiaining ec-approximations to at least those zeros £

of arbitrary f € @ satisfving 11 € R is &(loglog{R/€)).

Another noteworthy fact about the upper bound is that it is not doubly
exponential in n, in contrast to bounds for classical approaches using elimination
theory (e.g., see the sections on elimination theory that appear in Van der Waerden

{1950)~-~these sections to not appear in newer editions of the book).

The algorithm for obtaining approximations to the zeros of f € & is
actually an algorithm for obtaining approximations to all of the zero lines of the
homogenization F: el — g of f, along with a few operations to transform the
approximations for ¥ to those for f. By "e-approximations to all of the zero lines
of F” we mean non-gzero vectors X{}i} € Qﬁﬂ, i = 1,..,2 for which there exisis a
one-to-one correspondence with non-zerc veciors ?,{i} € igﬂs i=1,..%9 (say,
Xﬁ} corresponds to £ {i}} where the zero lines of F are vprecisely the lines

{nE {i}; " € €3, i=1,..,9, each occuring according to its multiplicity, and

H (1) 5(13!! <
i = = s £,
ux‘*lu omwgttn

it i} denoting the Euclidean norm on @ﬁﬁ. {The fact that F has % zero lines,

where

counting multiplicities, is immediate from Theorem 2.3.)

)

Assuming € € R, in the appendix we show that if Xﬁ, i= 1,..9, are



€fﬂ§{§ﬂ§2-apz}mxima€ians to all of the zero lines of F, then the set of vectors

.
2

(1) REN
S L

X{ i "”’X( i)

n+l n4l

(1.1)

ie a solution for the (€ Rj-approximation problem for f.

Let élﬁ.,,aiﬁ be positive integers. Let X denote the set of systems of
homogeneous polynomials B ™1 — P that have only finitely many zero lines and
that satisfy degree(F)) = d; for ail i,

Henceforth, we focus on the following problem. Given a svstem of
homogeneous polynomials I ch*l — €®, where &egree{?i} = é}: for all i, is
nf@z operations for determining if

For F € %, we present an algorithm for obiaining

F & %7 If so, determine &£-approximations ?;%Eéef he zero lines of F.
We present a test involving Gi

1

F € % where 9 = O_,d

i i
e-approximations to all of the zero lines of F. The operation count for this

aigorithm is

4 oo afttEdy :
{1.2} 0109 log 2Mloglogil/ell + n°% n .
From these bounds and (1.1} follow the earlier stated upper bounds for determining if
f € ® and for solving the (e R}-approximation problem for arbitrary f € @.
Using the lower bound of Renegar {1987b), one can prove thai as regards €,

the term loglog{l/€) occuring in (1.2) is the best possible.

Our algorithm is similar in spirit with the algorithm of Lazard (1981); both
algorithms work by factoring the "u-resultant”. Lazard only sketches a complexity
analysis, avoiding degenerate situations and implicitly assuming that the zeros of a
single variable polynomial can be calculated exactly. It is not very difficult to
determine "reasonable” complexity bounds for his algorithm if one is only concerned
with rational coefficients and is satisfied with a bound on the number of arithmetic
operations that grows with the coefficient "lengths”. However, his algorithm and
analysis are far from providing a uniform bound on arithmetic operations that is
independent of the coefficients.

It should be mentioned that Lazard does not restrict attention to the field of



complex numbers.

Chistov and Grigor'ev (1983), (1984), extended Lazard's analysis to the
problem of approximating a point in each componeni of the zero set of an arbitrary
system of polynomials f: €% — €™ with rational coefficients. Their bound on the
required number of arithmetic operations has the maximal coefficient length as a
factor. Similarly, this length appears as a factor in the arithmetic operation bound
for the recent algorithm of Canny (1987). Canny's algorithm approximates zeros of
systems f: €% — € also via the u-resultant.

Of related interest is Grigor'ev and Vorobjov (1988), where the problem of
constructing approximate solutions to systems of real polynomial inegualities with
rational coefficients is considered. Their arithmetic operation bound has the
maximal coefficient length as a factor.

It is certainly not the case that our upper bound can be obtained by
rounding coefficients to rationals (where the bounding is a function of R and €}
and then applving the above mentioned results, Because those results have
arithmetic operation bounds (not just bit operation bounds) with the maximal
coefficient bit lensgth as a fundamental factor, to prove our loglog{R/<) result in
this manner would require showing that every polynomial system can be perturbed to
one with rational coefficients of length bounded by log{R/€), where each zero &,
HEH £ R, of the original system is approximated within distance € by a zero of
the perturbed syvstem. For example, assuming R = 1 and ¢ = {1;’233*, in the
univariate case of degree d one would at least need each point in the unit disk in €
to be within distance {RXZ}L of a root of one of the {O{L}}ziéﬂ} polvnomiais
Z?zgaézi with a;, complex rationals of bit length O(L). Of course this is not
possible for L large compared to d.

In Renegar {1987a), a probabilistic analysis of an algorithm for approximating
all of the zeros of systems of polynomials is given. The bounds are polynomial in n,
% and L, where L is the number of non-zero coefficients in the considered
syste;ng

$d

of { o 1} can be obtained. {Note that

Hence, by focusing on "sparse” ?ritzemsf a probabilistic bound independent
. o
[s grows like 2" when, for example,

all polynomials except one are linear.) )

Our algorithm relies on the univariate algorithm of Renegar (1987b). The
reliance on that particular algorithm is not crucial. What is needed is an algorithm
for approximating all zeros of arbitrary f € P §{R§ with worst-case operation count

growing only like loglog{R/&} with respect to € and H.
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2. A Few Facts About Resultanis

Let 3@2 d denote the set of all homogeneous polynomial svstems
1*7° 7" n

G: €8 = ¢ satisfving degree {%i) = éé. The resultant R for svstems in

o 23

dyseenad, is a homogeneous polynomial in the coefficients of these systems.
It has the @ragerzy that R{G) = 0 if and only if G has a non-trivial zero, l.e.,
Gix) = 0 for some x # 0. In this section we state a few facts regarding the
resultant that are crucial for our algorithm.

Jet §d=1 ~1n + Zéi and consider %2, the wvector space censisting of all
i

homogeneous polvnomizls g ¢? — ¢ of degree d, along with the zero map. A basis

for this space is easily seen to be given by the set of terms

i i
B= Cz, E‘zz ez Eij = d, each ié a non-negaiive integer’.
3

i
T

It is easily shown by the definition of d that each of the terms in B satisfies

i; 2 d; for at least one j. Partition B into the disjoint union U!:;;l& where B,
. ii in

contains all terms Zy .2y satisfying ii < él’ 3 1 < cig 1 i = éj.

To each system G € ¥, 4 4 We can assoczate a linsar map from
e e e s
n

2 to itself, defined for the basis terms in B by

zii zi“ gres ;1 zijw{ij zi?‘ = Gz Z_}
1 1 j cendiyy j 1,..‘, '
. . . . . . . ifi in
Let ajizg,.*.,zn) denote the coefficient in Gj of the term z; ..z, . In terms of the

basis B, the matrix corresponding to the above linear map is simply the following:

the entry in the intersection of the column and row corresponding fo

i i k
1 ks i k¢l . . . .
z; ..z, € Bj and Zy 2y s respectively, is a;{kz—-z},. *,k 1-§-é kﬂ a) if

iiékiw.,i}sﬁkj&d?9..,i§$;izﬁ, and eguals zerp otherwise. Let Q{{;} denote the
determinant of this matrix. Then DIG) is a2 homogeneous polvnomial in the
coefficienis of G € %g .4 In fact, it is homogeneous in the coefficients

of Gi and has degree, in those coefficients, equal to the number of terms in %?;i‘ Its

9 . fd+n-1 2dy
total degrse eguals the number of terms in B, that is, { n-1 } = Ta-11



4 N % s s 5 s k41 N
Assume that the linear map associated with G € ¥ o 4 is
preeeady

i,....,0n. some polvnomial in ?:éz is mapped to the

i

non-singular, so that for each i

, a4 . .
term z, . Hence, for sach i,

a s .

z; = }E}zzjizy...QZH}Géigi,...,zﬁ}
for some polyvnomials RN O {dependent on i). If easily follows that Gix} # 0 if
x 2 0. Thus D{G) = 0 is a necessary condition for there to exist a non-trivial
zero for G. However, it is not a sufficient condition, but we do have the following

remarkable theorem.

Theorem 2.1 (Macaulay, 1902, Theorem 6): Let M(G) denote the determinant of the
submatrix {of the matrix corresponding to the linear map induced by G) consisting of
entries for which both the row and column correspond to terms in B of the form
z;i,..zin with at least two i; and iy satisfying éj z dj? i 2 ék' Then MIG), a
polynomial in the coefficients of G € Eg Ce.d is a factor of the polynomial
DIG).  Moreover, letting R{G} be the pei\énemiai ?aiésfying DIG) = MIGIR(G), then
R(G) = 0 is a necessary and sufficient condition for G to have a non-trivial

Zero. 0

Remark: Macaulay's Theorem 6 actually does not state the last conclusion of
Theorem 2.1. This was well-known to him, and is stated in the introduction to his
paper, A proof of the last conclusion is given in Van der Waerden (1950},
Section 82. {(Beware that in some editions of Van der Waerden's book this section

on elimination theory has been sliminated!)

The polynomial R{G) is the "resultant”. Both it and M(G) are homogeneous in
the coefficients of each {;i‘ The degree of R{G) in the coefficients of Gi is

ﬁéﬁid‘é. Also, MIG) is independent of the coefficients of Gﬁ,

Now we turn attention to svstems of homogensous  polynomials



F @Rﬁ — T satisfving degree i‘?i} = d.. Let Ez%i d denote the set
: i gaeeeady

of these svystems. Here we are concernaed with the guestion, “Does

+1 & 3 k1 F 4%
Fe %3 4 have onlv finitely manv zers lines?
s e e

i;et LETRR N denote variables. For specified values of these wvariables,

consider the svstem z = {Flz)u-z), where u+z = }:uiz%. This is a system in

?«"’2+i d ;e Let R{F.u) denocte the resultant of this system. For D and M
jrec e 5

as in Theorem 2.1, define DMF,u} and MIF,u) analogously. These are polvnomisls in
the coefficients of ¥ € }énﬂﬁ

wo e sd

Ri{F,u} is sometimes refered to as "the u-resultant of F".

and the wvariables u. in the literature,

We remark, for future reference, that the determz%nt MiF, 1;§ ig_independent

+5d
of the variables u. Also, DIF,u} is the determinant of a n * n 1} matrix,
and M{F,u) is the determinant of a smaller matrix.
Proposition 2.2: Fix F & ?ég“ﬁ 4 - Then R{Fu} = 0 for all u if and only if
1777722

¥ has infinitely many zero lines.

Proof: This is well-known, but I was unable to find a refersnce for it. Here is a
short proof.
Assume that F has finitely many sclution lines. For each of these lines,

ig},,.,,aim} are the chosen

choose a non-zers vector on that line. Assume «
vectors. There exists x € ™1 such that X‘{I{i; % 0 for all . Then the system
z = {F{z),x=z) has no non-trivial zero and hence R{F.x) = 0.

Now assume that F has infinitely many solution lines. Choose non-zero

i} {23 .

veciors o on each line in an infinite, but countable, subset of the zero

lines. Fix x & élﬁﬂ satisfving x &€ Viy: a‘,{é‘}-y = (3., There exists a complex
i

line L containing % that has infinitely many intersection points with

Uiy ﬂ;%};*y = (3. However, for each of these intersection points vy, the map
i
z = {Flz),v+z} has s nonirivial solution so that RiF,y} = 0. Hence, the univariate

polvnomial obtained by restricting R{F,u} to u € L has infinitelv many zeros, and

thus must be the =zers polvnomial, Conseguently, R{F.x = 0. Finally, if

1¢



¥z £ Wy aiiéuy = 03 then it is easy to prove that R{Fx} = L. o
i

The following theorem is the cornerstone for our algorithm.

Theorem 2.3: Assume that F € %gﬁ' q has only finitely many zero lines.
; 8 = & & 3

i

For u € ﬁ:nﬂ, let R{u) = R{F,u). Then Ry} has factorization

Riu) = E{;§= iisw‘}’?ﬁ?

where %ig)*ﬂa = zi‘g’g)ui? P = gi}zzéi and each éiﬁ} is a non~-trivial zero of F.
i

£2)

Moreover, for sach zerc lins of ¥, the number of the that are contained in

that zero line equals the multiplicity of that zero line.
Proof: A proof can be found in Section 83 of Van der Waerden (1950). ({(Again, be

careful fo choose an edition of Van der Waerden's book containing the section on

elimination theory.} ]

11



3. Computing Riu}
Using the notation of the previous section, assume that

i N B o e, i . B
B e E;ﬁ" d has only finitely many solution lines and let Riu) = R{F.uj,
s e e

where R(F,u) is the u-resultant of F. OQOur algorithm depends on being able to
compute R{u} and some of its derivatives along certain complex lines. In this
section we discuss procedures for doing ithis,

et 4,8 € @Q‘Lz, where o = 0. We first discuss a procedure for obtaining
an expansion of the single variable polynomial A +— R{ka+8).

Refering again to the notation of the previous seciion, begin by computing
the determinant M(F,uj--this determinant is independent of the var:_iabie% u, depending
only on the fixed coefficients of F. It can be computed with O i gdzn}“’} operations,
where d = n - 1 + 35;:

I MFu = é, then by Theorem 2.1, Rfu) = D{F,u}/M{F,u). Noting  that
Diva+s) =2 D{F Lo+ 8] is defined  as the determinant of a  certain

1+Zdi 1-1-2&3._ ) ) ) )
? a ] ¥ ; a } matrix, and is of degree 9 in the variable A, compute the
{;sefficieﬁts e% the polynomial D{io+4) by evaluating this determipant at 2 + 1

distinet values of A, and then interpolating., Thus, assuming M{Fu} # 0, we can

1+§ﬁi}3
obiain the coefficients of a non-zero multiple of R{Ag+8) with 013 n
1+§di
operations {using 9 < n |3

d .
Now assume M{Fu} = . For t € R, Ilet F’Eiz} = tz;“ + {1-—%}?52} for

-

i=1,..,n. Then E&i{?t,aé is a polynomial in t alone, and is of degres not exceeding

n

{1+2d, 0 1
i *1. It iz non-constant since M{F u} = 0 and M{F',u) = 1. Determine the

5 [1+34d,
coefficients of M(F",u} by evalnating the corresponding determinant for { a }‘] + 1
distinct values of t, and then interpolating. oy
3d,
Determine the least integer 0 € k € { a 1} such that
s

d t
MI{F" u} z 0.
étk gtz




Then, using Theorem 2.1 and the product rule for differentiation,

& T |4 &
d D(F"  uj z}{{jgfﬁ;ﬁd Mi?kzu}
0 dt

atk 1=

=0

as polynomials in u. Hence, Rihg+#} eguals

=0

divided by the already compuied non-zeros consiant

dkﬁg?tguz
dt w R ;_ﬁs
Finallv, we examine the computation of
a*p(rtF ka+s>i
dg k =0

Since E{Ft,}.a-ﬂé—é) is a polvnomial in the ;Jgggbies % and t, of degree not exceeding

% in A and of degree not excesding a 1 in t, DIF*,an0+8) can be expanded

as follows:

noJeog 3.
DIF Aa+8) = % { > a*-}f}ti.
i=g ti=0 M
. . 2 i . ) )
We wish to determine 2 akjk"’ for k as defined eariier.
j=0
§+§éi
Choose 2 + 1 distinct values A P £ € and a + 1 distinct values tm‘
tm
For fixed A 2 asvaluate the determinant DI{F 7.x 2 a+8)  for all pairs

Z{n g,tm}}ﬁ,. Interpolate in t to determine the expansion of the single variable

B .
poivnomial }3(?21& gﬁ%,S}g thereby obtaining the valne 2 ak§x § Do this for each
3=0

Vs
A 2 Then interpolate in » to obitain the expansion ‘Z akj}“

3
J

Thus, we have a method for computing the coefficients of R{hc+8). The

total operation couni is dominated by the operation count required fo compute the



i*Zdi’ 3
fa+1d i{ " ;ﬂ.% determinants DH{F

o2

Besides an expansion for Riho+8), we will also nsed expansions for the

i
ma 2 a+ 4}, Hence, the toital operation count is

multi~variable polvnomials R{lg+s,e.+p,e+8), where p, and g, are variables over
A Shat A R 1 2
T and where &; and e; are the im and ém unit vectors. Defining P oas before,

and writing

S{Ft,}xﬁ+§1€i+92€é‘?ﬁ}

§i+zdi}
] n @ ﬁ % m m m Ma
’ 9 1
) z { z { 2 g % a » “}Q«B}x ]t )
?ﬂizi mzzﬁ mgz{} %mégg_} m}mzmgmé 2 i

we wish to obtain the triple summation which is a multiple of tk, where k is the

k £
smallest integer such that S—2LE_.u)

” = {}. Dividing that triple summation by
dib

£=0

k t
the constant W
dt =0 .
triple sam;ﬁgﬁisn we can use the generalization of the procedure we used for
d*n(r" ra+s)|

gives Riha+p le?;}gef@}. However, to obtain the

computing " ' . First, interpoiate in t to obtain
dg % =0
b)) % /] m 4 m 7 ﬁ}g
z ! z g Z a S } PR Y
mzzﬁ ~§§}3:{3 b =0 m}mgmgk 2 i

for fized values of the parameters £1:P and h. Then interpolate in A to obtain

2 { b m‘] T3 1,..,9
a B £y m, = 1.,

for fized values of the paramelers o4 and By For each my, interpeolate in pq to

obtain

2 m,

% amimgmgkf"z my.mg = 1,...2
4

for fized wvalues of the parameter P9 Finally, for each pair (zﬁg,mg}, interpolate in

14



{;+§a 4
py to obtain 2ll of the cosfficients a Altogether,

_ ' mimzmgk
operations suffice.



4, The Algorithm

In this section we present the algorithm which, given F € %géi cea,d
determines if F has only finitely many solution lines and, if so, e%aitaiz?s
¢-approximations to all of them.

The idea underlying the algorithm is rather simple, although the technicalities
that must be dealt with are not. Here is the idea. Assume that F has only finitely
many solution lines and, for simplicity, assume that each of these are of multiplicity

one. Bv Theorem 2.1,

(4.1) R = 19, (¥,

£(0)

where the are vectors on the solution lines. Let

(4.2) 79 = x e e ¢y = 03,

Assume a8 & 5;&4'3, a’ # 0, and  sssume  that  the  complex  line
{aa'+8'; A € € intersects each of the hyperplanes E{{ﬁ;? but does not
intersect H(’? ) H™ g 2 m Compute the zeros A’ of the degree 2 single
variable polynomial R{\a'+#')--for the moment we assume that these can be
calculated exactly, There is a one-to-one correspondence between the X’ and the
£ defined by the relation R'a'+g € u'4), For A’ corresponding to 2, the
vector

LR (u)

u=h at B z";‘iun_H

[ el Riu)

Du i iﬁz}\fﬁ'?'ﬁ}

is a non-zero scalar multiple of S{é ) and hence is on the zero line
{}.,E{‘g %; X € C3. This is the main idea behind the algorithm.

Of course the algorithm must be able to work without relying on the above
simplifying assumptions, |

We present the steps of the algorithm and state propositions regarding the
steps simultaneously in hopes that this will better motivate what the steps are
designed %o accomplish. Proofs are relegated to section 5. Some of the
propositions rely on O{ ) notation for upper bounds and O } notation for lower

bounds. The constants are independent of {z,éi,...,d and hence independent of F.

n
Specific constants can be obtained with more lengthy proofs.

i6



"y +1 . o
For non-zero XY € €%, define

wife{ wi’i i
dis{¥, Y} = min - ; P Wi Wg & E~002 5.
%iwi}iii i%wz‘iﬂ

Using the homogeneity of F, it is easily shown that Xﬁ}f 1= 1,..,2 are
c-approximations fo the zero lines of F if and only if désixﬁéf ﬁ§§ £ g for
all i, where the é’ﬁ} are as in 4.1

For x € €, define

2

wix) = {1,%,x%,...,x%).

We use A to denocte a complex variable.
Step 1: Compute Ria) for all o € {uld); i = 0,1,...,nD3.

From the results in Section 3, Step 1 can be accomplished with

2 1+2éi 4
O nd operations.

o

Proposition 4.1: All numbers computed in Step 1 are zero if and only if F has
infinitely manv zero lines.

Proof: Since for anv distinct integers éi""’gni-é the {p+1} ¥ {n+l} matriz with :?f’h
rowW }A{ji} is invertible, there are at most n% integer wvalues | such that

uli) € yew s¥eu =03, o

Hereafter, we assume that F has only finitely many zerp lines.
The purpose of the next two steps is to determine a vector o' for which

£}

the "angle of incidence” of o' with any of the complex hyperplanes H can be
bounded away from zero. This property of «' will be relied on in the analysis in
two ways. First, it will provide a bound on the absolute value of the zeros of any

univariate polynomial A == R{ha' + #). We will need this bound when we call on

17



the univariste algorithm of Renegar (1987bl Second, the property of o will
guarantee that for any 8, if dis{f {g}gé‘f {m}} is small, then so is i’x{‘é ) - }j‘m}g
where }%{g}ﬁ, + g € fﬁi‘g}s }jm;ﬁ‘ + A £ H{m}‘ This will be important for proving

1

the correciness of the procedure for determining the number of lines in a
"cilustered” set of zerc lnes.

More specifically, for o' as to be determined by Steps 2 and 3, we have the
following.
Proposition 4.2: For any 8 € ﬁ:ﬁﬂf all zeros A’ of Rika + 8} satisfy

IA1 = O8N [n2120D),
Moreover, if }\q{i}ﬁ’ + A € H{‘gj, }x{m}ﬁ’ + 8 £ H{m}, then
i) _ )y o o s a1 P Pdis(s 4), £y,

Proof: Proposition 5.4. x|

If we are only concerned with polynomial systems with rational coefficients,
an analogue of Proposition 4.2 with bounds depending on the bit lengths of the
coefficients is easily proven. Bounds, such as ours, which hold for all polynomial

systems reguire more detalled arguments,

Step Z: For each i = 0,1,...0% and each i = 1,..n+1, compute the cosfficients

?
alid) of Riare) = 2 s N’ where @ = u(.

From the resulis in Section 3, Step 2 can be accomplished with
1434,
O;nzﬁ { n }‘} ] operations.

Note that a@{i,,’i? = Riulil.

Step 3: Let J € £€0,1,...0n%3 denote the subsget J = {§ Riull)) = 03. By



Proposition 4.1, J 2 #&. Determine I € J satisfving

ak{iggwiz [ay (1,30 |2
MA R | e = omin MBI [ e
i B{p(i’)) i€g i TR{u(3))
k<P k<D

Let o' = uiih

The reduction to the univariate cass occurs in the next step. However,
rather than a reduction to a single univariate polynomial, we are forced to consider
n?{2-11/2+1 univariate polynomials, approximating the zeros for each of these.
Here is why we are forced to do this. Recall the "idea” behind the algorithm as
discussed at the beginning of this section. Assume £ is such that the complex
line {id + &; W € L3 intersecis E{‘Q ) and ﬁim} at nearly the same point, vet

dis{& (2 }gé’ {m}i ie large. Then even if Y{‘Q} is a close approximation to the point
22 for which A + & € H®), it is not likely that dis(X'?) %)) s small

where

¥ = [Borw| )R] ]
O, y=y e g Du_ u=v' g+ g
i n+i
To guarantee g00d approximations, we need Lana' + A% A E LT to

intersect ut4 and E{m} at pearly the same point only i dis{f (2 },5 {m}; is small.
{Hurthermore, in that case, we need to define X(‘g} by appropriate higher order
derivatives.) As will be proven, at least one of the 8's considered in 8Step 4 has
this property. The large amount of computation reguired in Steps 4, 5 and 6 is fo
determine which one. (What these steps are designed to accomplish can be achieved
easily if we restrict ourselves to rational coefficients and are only concerned with
bounding the number of required arithmetic operations in the algorithm by a
polynomial in the bit length of the coefficients.)

Step 4 involves a new parameter, € > 0,

Step 4: For each k = 0,1,...n9(9-1)/2 apply the algorithm in Renegar (1887b) (or
any other algorithm with an OfloglogiR/€}} bound} to obtain €'-approximations

?E{k;é,..,,‘}’g{k} for all of the zeros }\E{ké,...,kﬁik} {counting muitiplicities) of



5.2:

R a'+ 8}, where 8 = ulkl

4 Z2eb .
We will show later that any value € = Qienﬁ ﬂ;” {ﬁﬁ}mn 2 *33?33

suffices for our purposes.

The algorithm in Renegar (1987b) requires an apriori bound on the
E}x,i{k}ia However, since Hudk}il < §ﬁ§*}s§2§, such & bound can be obtained from
Proposition 4.2. Using this and the G{dziiag di{loglog(R/€}} + {igieg d} bound for
the algorithm in Renegar (1987b), we find that step 4 can be accomplished with
O{ﬁ%éiiog iloglogll/e')} + a@’%ag B} operations.

In the next step we partition the approximations %’iik},...jiéik} into
clusters, for each k. Roughly, a cluster of the approximations is a subset of the
approximations that is contained in a disk and for which none of the other
approximations is confained in a much larger concentric disk. The radius €" of the
smailer disk and the magnitude 8 of the guotient of the radius of the larger disk to
that of the smaller disk will be crucial in our analysis.

In Step 6 we will single out a k for which Step 5 has produced the largest
number of clusters, As we will prove, this k has the property that
Lha’ + ulkh; A € €3 intersecis g4 and ﬁ(m} at nearly the same point only if
dis{%'{ﬁ)?%{m}} is small.

Step 5 requires the cluster parameter 5 mentioned above. As will be

proven, all 8 = 0{In%1 },{}ngg, e} will suffice for our purposes.
Step 5: Initially, let €" = €', where € is as in Step 4.

5.1 Determine if there exists 1,1k such that

(€ < %0 - vl |2 < (5e?

If 8o, let 8¢” = €7 and repeat 5.1.

For each k partition the approximations into disjoint subsets Pghjiké? h = 1,...,hik},
where Yi{ké and %‘j{i{} are in the same subset if and only i g‘z’i{k} - Yj{k}§ £ €7,
{To establish the existence of this vartition, we mneed the property that
;Yiik} - *{jik}i £ £" and 3*{}5{%{} - ‘x'm{kii £ €" together imply t’z’i{k} - *{m{k}g £ g",
But this is trivial, assuming 5 2 2, since 5.1 has been passed through.



It is easilv seen that 5.1 will be passed through after at most Q{ﬁiﬁ’g}
iterations and hence the final value of €" satisfies €" < s%97¢'. Since each
iteration of 5.1 involves {}{334} operations, as does 5.2, the operation count for
Step 5 is G{nzi%g}‘

Step 6: Determine k' satisfying hik'}) = max hik}, i.e.,, a k with the largest number
k

of clusters. Let £ = ulk'l For each h fix a %’Eh} € ?ih}ik’}. Let
] = ¢ Ihlgy 4 {If hik’'} = 1, we define xfhl = 0 to simplify the analysis

later.}

To ease the exposition, we now alter our notation slightly. There is a

sne~to-one correspondence between the points ki&:’}, k' as in step 8, and the
H{Q ) only  if
{2}

complex  hyperplanes ﬁw }, whers }x.,i{}i'} corresponds 1o
kiik’;c{’«»sf € Eiﬁ }. Reindexing the hvperplanes if necessary, we may write X

£ }, and *:{“é} for the approximation ’%’i{k’} of that

for the }\i{i{"} corresponding to H
}"i{k’}‘ Also, we replace Pgﬁik’i by Pgﬁl

The goals of zll precesding sieps are summarized in the following proposition.

Proposition 4.3: For any 3 = i {ai@}ieﬂg} and for €” as given ai the end of
Btep 5.1,

(4.3) +12) ¢ pIhY o e84 [hYy = ofempap1™ 1ue @),
(4.4) v2h g pIbd o @) I0]y = osemne! i/ 21209,
(4.5) v ) g pIhl o gig(el®) ey = o(e” 219072,
Proof: Proposition 5.6. 0

Combining Proposition 4.3 with the following two propositions will motivate

the final step of the algorithm. The first of these two propositions covers a



"trivial” case.

Proposition 4.4: Assume that for all 2,m € €1,...,23 we have that
dis(et®) gmYy ¢ ew  Por all € = 0(1//7), the following is then true. Let i’ be
an index satisfving

9 , ;
[Erg| | max|Eagn| |
§u£, u=0 i @L’ai Tu=0

- +1 . . )
and let X € €% ne the vector

Then distX,z 4} = Ome”) for all 2.

Proof: Proposition 5.8, b

Proposition 4.5: Let 8 € €1,...,%3 contain N elements, where 0 < N < 2. Assume
that for all 2.m € 8, we have éis{%‘{‘é}iﬁém}} £ " Let x € Eﬁé‘}, x # 0.
Assume that if 2 € 8, then §£{£}~xi £ ;ngiéfiz)ii lixil, and assume that if
4 € 8, then §5§£}"X§ 2 ﬂgiéfi‘ééii lixit  where p, > 4. Then for al

e = Ol1//n) and for all o./p, = Ol€”/D!n), the following is true. Let i’ be
1F2

i?

iy

an index satisfving

N

gm - max |2NRCU)

] ;
Su ;¢ USX i 31}1\; U=z

and let X &€ @nﬂ be the vector

N

pest

K, m il i = 1,..0¢1,
H

g I's 4
3”1 @ui u=x

Then dis(X,£%)) = O@2e”) for all £ € S.

Proef: Proposition 5.9. n!

22



Now we combine the last three propositions to motivate and prove the
correciness of the final step of the algorithm.
Assume thai 0 < C £ 1 is eufficiently semall so that for all 3 and

< e g1,
(4.6) e = &£
nZ

satisfies the conditions required for Propositions 4.4 and 4.5.
For h = 1,... hik"), ist

sTh1 = ¢g; ¥10) ¢ pIhl5,

i.e,, the "indices” of the approximations in ‘?gﬁ, We now show that for all

(4.7) 5 = o([n211009¢),
and for aill

. not 3n+3
4.8} e = 0le/s (2] }

the conditions reguired for Proposition 4.4 (if hi{k') = 1) or the conditions required
for Proposition 4.5 {f hik") > 1) are satisfied by 8§ = Sih:‘;, X = x0T for e as
defined by (4.6).

First note that combining the bound €" £ Sn%és’ {as discussed after

Step 5} with {4.5) gives
‘ 4
(4.9) em e s o i) eimhy ¢ (3727 [np330%2e),

Assume h(k'} = 1. Then assuming 5 is of the form {(4.7) {to meel the
requirement of Proposition 4.3), by choosing €' of the form (4.8) we have from (4.9}
that éis{&’{'g},i{m}} € €” for all £2,m, where € is as in (4.6). Hence the
conditions required for Proposition 4.4 are then satisfied.

Now assume hik'} > 1 and fix h € €1,...hik"}13. Define

23



L]
E]
w
b
fae]
oy
o,
E
s
®
"
-
=4
B
o,
o
-
e
A4
»
oy
=3
Lromed
E
m
e
gy
=
L
[}

2y
{4,103} . . 7 i
p, = mingi g8 xRl e (0 BRIy g ¢ sIRs
By (4.3} and {4.4},
Jo P
._.}; = O{ in‘%} Zﬁ:@‘%‘ﬁ‘?}//s}?
A2

and hence, assuming (4.7}, we find that ;9}/’ £y is sufficiently small as reguired by
Propoesition 4.5 for s:m as in {4.6). Also, assuming 3 fixed and of the form (4.7),

by choosing € of the form {4.8) we havs from {4.9) that
em € sthl o gige!®) glmly ¢

for € as in (4.6} Finally, we note that x{hj z 0 since otherwise would
contradict (4.4) for 2 € Sgh}e We have thus established the conditions reguired for

Proposition 4.5 in the case that hik') > 1 and for Proposition 4.4 in the case that
Wik’ = 1.

Step 7: If hik’) = 1, then determine the index i’ satisfving

2 2
S"M@@R(U) g = max ”'MMER{E'}
&3% yocu=l i éu? u=0

and let X{EE € §£Q+i be the vector

17 - 22R(w)
+ m?:iaui

u=0

If hik') > 1, then perform the following for each h € £1,..hik'12. Let N = E\%l

where Nh is the number of indices in S{hz. Determine the index i’ satisfving

2 2
N N
;@ R{u) g = max O R{u) %
§U§ . uEx [hl i 3:}? U=y [h}

24



a¥r(uw)

51.119 Bu, u=x

24
e gy
P
]

it

h? = E,,u,?_‘i"}.e

Letiing Xﬁ}, i= 1,..,92 be the vectors }‘iihz, h o= 1,...,hik"), where x thl
occurs Ny times, we find from the conclusions of Proposition 4.4 and 4.5 that if C
in {4.8) is sufficiently small, then Xﬁ?} i=1,..% give <-approximations to the
zero lines of F, accounting for their multiplicities.

We assume the computations in Step 7 are carried out as follows. (If
hik'} = 1, redefine o’ = 8 = xH1T = 0.) First compuite the coefficients for the

three wvariable polvnomials R{X&%@}ef}ézefﬁg}! i,i = 1,...,n+t1, using the method of

§+zdi

4
a } } operations. From these compute the

Section 3. This reguires {}{3223[

1+Zdi

EE

4
} } operations.

Relying on (4.7), {4.8) and the operation counts already given for each of the

required derivatives. In all, 8tep 7 regquires {)[ngﬁ3[

steps, the total operation count for the algorithm is

i+2di]4}

2

G{ni@éﬁsg ZHloglogli/ e} + aggg + ngf?}?’{

Ed



5. Proofs

In this section we prove the propositions relied on in the previcus ssction.
In the course of doing this we will need to prove several lemmas.

In our calculations we sometimes implicitly use the assumption 2 2 2. For
example, under this assumption we may write 82 + n + 1 £ 2n%. The following
lemma will also occasionally be used implicitly in the analysis.

We retain the notation 5{’{3} and ﬁ(”‘é} as in {4.1) and {4.2).

Lemma 5.1: Assume Riu} # 0 {.e.., is not identically the zero polynomial). Let

a e gt Then o £ iéﬁiﬁ ) implies R{Ao+2) is of degree less than 2 for all
£z

8 € ﬂ?nﬂ; and o & ijﬁiﬁ ) imples R{Ouo+8) is of degree exactly 2 for all
Z
g € ¢l
Proof: Follows immediately from the identity
ROva+s) = me¥pass. o
2z

Recall that ulxl = éi,x,xgy..,xﬁ}.

Lemma 5.2: Let # be any set of complex hyperplanes M in €1 Let N denote
EXE2Y

the number of hyvperplanes in #. For at least one I" € {0,1,..nN3, wu{iv

satisfies
Hu(")-xi 2 1/(1+nN)P" for all x € M € m.

Proof: For each j € €0,1,...,0N2, let v{j} be a vector of smallest length such that
wli) + vi} lHes in 2 hvperplane in %. HNote that for some distinct ji"“’jn-i-l’ each

of the ,{i{%} + vii.} must He in the same hyperplane. Thus, letting A, resp. B, be thse

i
th

matrix with 1" row u{ji}, resp. v{,}'i}, we have that A + B is singular. Hence,

min HAwH £ max
Hwii=1 Hlwii=

IBwll € /n+l max iév{ji}gg,

1
~ i
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Letting I € {ig,,,,,éﬁ %1} denote an index satisfving

have

5.1}

i -xl

Hyli™l = max Hv{i }2% we thus
3

i

forallx € M € #n.

HAawll,

= mzn

fn+l jiwii=

Note that for anv w 2 0, Aw has coordinates egunal to the values taken on

by the non-zero polynomial of degree at most n, 2z

distinct integers i.

n

P 2 W,
1G3+1

Since this polvnomial can have at most n zeros, Aw # 0 and

z}” at the n+l

hence A is invertible.

Finally we note that for each i, A

polynomial p satisfying p(j} = 1,

”le; gives the coefficients of the degree n

gz{jk} =0 # k 2 i, that is, the coefficients of

pizi = T {z-iV/ 0T (L-i L Writing plz) = Ta.z and noting T i~} = 1, we
‘ ki 3 i ik&i%‘ gi
thus have
Ht] N
nat Stag < 3 [T]ow = @emw®,
j=0%7
Hence
min (Awi = i__l 2 - 3 2 - n
fwil= maxiis “wl fo+l max HA e | S+l {(1+nN)
flwii=1 i
Together with (5.1) this gives the lemma. ]
Lemma 5.3: Assume Ri{w) 2 0. For at least one " &€ £0.1,..833,

7

g =

with all zercs A7 satisfying 10"t € (1+n%)

Proof: Let

integer

a” & UE{Q } and hence, by Lemma 5.1,

z
Morsover,

¢{i"y has the properiy that for all i,

such that

R{Zxa”-i*eé} is a degree ¥ polynomial
n+l

denote an

Then

= ¢ 2 =1,..97 and let i€ €0,

¥

i,..023

o’ = uii"t satisfles the conclusion of Lemma 5.2,

R{xa"+e,} is of degree 2 for all i

for all i and 2,
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. §{§}§ . .
§§§{§}g L = mind ilx-a"ll x € H{g}} z :i;‘i}-s—;@}ﬁi
. HH

Hence, if }\”ﬁ”é‘eé € Eiﬁ}, s0 that Sig}*{}\”ﬁ”%e;} = {}, then

ggiﬁ},g'g

AT R —— S, P YL o
2€(E>sﬁf§§

Proposition 5.4: Assume R{u) £ 0. Let o' be as chosen in Step 3 of the algorithm.
Then for all 2,

{5‘2} 5 iii}}a G’g P Q{ii%i‘g}iij {QQB}E!}@}.

Moreover, for any = Eﬁﬁ, letting },{’6 }?}&{m} €T satisfy
}\i‘é}ﬁ’-&ﬁ € H{"g}? }‘_{m}a?ﬁ € E—'E{'mi, we have

(5.3) a2l = ogren o 1209),
(5.4) ) = og e [n215Pdis(s 1), £ M)y,

d .
Proof: VFor any polvnomial 2 akxi“, ag # 0, with zeros 13,,,,,lé we of course
k=0 7

. i, where the summation iz over all tuples

have ia,./azl = 12k, A
k' %d e ik

zZ} < 312 < .. < zlk. Hence if §X§§ £ R for all i, then §ak!ad§ € {igﬁk. in

particular, letting i" be as in Lemma 5.3, then for I as in Step 3 of the algorithm

a, {(1,3°%) a, (i,3")1
{5.5) max .,.Em_,i.__g € max ko € {j.i.ﬁ%}{ﬂ‘}'}}??‘
1,k'agn(i,3) i,k lag(i,3")

q* 1, one has the property

el
For each zero »  of a polvnomial X akkk, a
k=0
that 13’1 € 1 + maxiia%faéiz 02 k < d3 {cf. Marden {1988}, Theorem 27.2). In

particular, using (B.8), we find that for each i, every zerc X' of R{?\a’—Pei}

satisfies

(5.6) Il = O([n21™ D)
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Fix 2 and assume that §$§£}% Z §§§§'£’§§§1’j§}-§-i {this is ceriainly true for
some i}, Assume kig}ﬁ’%e; e 4 Then
S e®laa = pefeen > ne®hi//RFT. Thus, using (5.6),

ve@oay = ame®ny R nz1m?)

from which (5.2} is immediate.

Since Rila’%*e?;} is of degree exactly & {for any i} by choice of o', Lemma
5.1 implies R{ha'+8) is of degree exactly 2 for any £ € ™, Fix & and
assume M) q'+ s € i) Then

A @iy = eWhl gy < ngBy nan.
Substituting (5.2) into this ineguality gives {(5.3L

Finally, let %ié} = wééi‘é}g ?{m} = wziim} {wlgwg € £y be such that
pelely = petmdy o g ang ngl@letmly = giseld) g M) Then

G . ?{ﬁ}ﬂ{l(‘g){}:"*,@}
(g{m}‘*ig{ﬁ}*g{m):é}s ( Ek{m)gi+£§+£xig)’k{m)§a?}

i

[z 2y ™ are 3+ LB ™y 128 i g,
However, using {5.3} and Ha'yl < {n@}z}ﬂ; we have
rEP-2®h 1t ™ e g11 = 0(mn213 21 a1 - dis£18) )y,
and by (5.2},
P Iy N I TR S T8

Now {5.4) follows. ]

The next lemma will be used in proving Proposition 4.5.

Lemma 5.5: Assume Rf{u}) £ 0. Let o' be as in Step 3 of the algorithm. For some
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k" € £0,1,....n2(9-1}/23, 8" = ulk") has the property that for all 2 and m, if
R{‘g}ﬂ'éﬁ’i g ﬁiﬁ}, '}t{m§av+£sg % E(ﬁ}}@ ghen

diste#)e ™) = o([np33*2 A1) _ \miy),
Proof: For all pairs £ < m, 2.m € {1,...,23 such that Eé'é} # E(m{ ist
MM = cxavy; x € €,y € HO n rM

Let # = iév%{‘g’m}}. Let k" € €0,1,...09(2-1)/22 denote an integer such that
k™ satisfies the conclusion of Lemma 5.2 with this choice of . Let
£ = (k). |

i g4 = H{m}, then the bound on i}x{’é g—lim}i provided by the lemma is
trivial. So assume HZ) 2 aim), By a change of coordinates x > Qx, where Q
is a complex unitary matrix {to preserve distances), and by replacement of £ (4)
{resp. gim{eﬂs”} with {2"}‘5{"25 {resn. Q“t{g{m},{};&’?%ﬁ"i we may assume without
ioss of generality that ggg} = G,,..giif_z = 4, %ém) = G,m,%ézg = § and

29 n a™ = cx e e x; = x, = 00
Let x = Z\,‘i‘g}s’ + A& I{{g}, Then by the definition of M{é’,m} and the
choice of 4" (satisfving the conclusion of Lemma 5.2}, we must have the distance
from % to H{ﬁ 8 ﬁ(mé bounded below by 1/{1 + nif}z}ﬂﬁ, that is,

(5.7) (Jx,]2 + gnggﬁfz > 1/(1 + n22)0*L,

Let ) = we¥, 2 = e® b such that nehy = pzbimly = 1
and éisi%’(ﬁ},f_im}} = §§i€’{£§ - ?émiii. Since %gz} = x = {,
i{’{m} = Iz + !}\{m} - }\{g}}sfj = and the last n -~ 1 coordinates of both ‘?’.t‘”i'g}

and g{!ﬁ) arg zsro, we have

[ SN S
= h
Mt
| —

o
‘:Xil - i}(ﬁ} _ }k{m}éig{m} = '} { }
®x

E
= 4

2

k)

Solving for x via Cramer's rule and then using (5.7} gives
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(m}sﬁw) 1

i ?s\{?% 1z > .
apt T bl d dpim 2. n+1 "

S{m) %{m)}

Noting that {wi-% =2 © w € £33 is the orthogonal complement of

L% §m>,§§m}}; w € T3 when considered as subspaces of i?é, we have

24 5%&”2 = 1. {In stating v 2 0 we are using the

where v 2 0, w € L and v
fact that §§$£§} - %’{m}ié = éis{%‘{‘g},ﬁim}}j Substituting for g{gz} in the

denominator of (5.8} gives

(5.9) A RS ! .
Pt (1 + np2)"*!

{Observe that

dis2(510) gtmly = yel®) | mp2 o L o2+ w2 < 21wid
where the insguality follows from VZ + fwl 2 = i and v 2z 0. Substituting for
fwi in {59 and  using i?{mg . a't € Ha'lh € o+ 1n2)®  gives  the

proposition. i

We can now give the proof of Proposition 4.3, which relies on the notation
introduced just prior to that proposition. For the reader's convenience, we restate

the proposition as

Proposition 5.6: For all 8 = O{[n2] Eﬁx@} and for €" as given at the end of
Step 5,

(5.10) 2 ¢ plhl o @), [h], = oemrap1 lnetéy),
(6.11) 0 ¢ pIA o )k IhTy = osene i/ [n21%02),



Proof: We hegin by recalling that for each k = 0,1,..20% - 1}/2, Step 5

partitions the approximations ‘sfﬁk} into "clusters” P{h}{k}, h = 1,....hik} where
(5.13) v,{k), ¥ lk) € Pl o 17 - Y1 < €,
(5.14) v € P, vio € PIRYGg 5 1vi0 - vyt > e

To prove {5,10), note that  since x@}} = Y{m3ﬁ°+3‘ for some

1 i
?{m} & Pgﬁ where Y‘m} approximates E&{‘é ) within distance €', we have

e@ kT ¢y el Bhay oy B GO Bhary + e 0 as gy
< te+e) e i + 0 (using (5.13)).

Since € € £" by the consiruction of Step 5 and Ha'll < inﬁ?}}ﬁﬂ, {510} follows.
Now we prove {511} Again assums xih} e Y{m}s'-&-g*, but now assumse
‘r{’g} & P{h}. Then i“({mi-?{ﬁ}i > 5€” by {5.14} Using this and {5.2} along

with §‘Y{£‘§~:\,€£}§ % £ and Ha'll < {n@}ﬁﬂ, we have

iiiﬁ}_xghgi = §E{£)E}({h}§ + §§{§>‘{}x<£>{l? + B'Yi = géiﬁ}-{‘g’{m}—*}\<£)§g*%
R S NP S S 7 D I ¢ S U ¢ S IR I

= oGe" s /212"y - oCeng Bl ™.

Assuming 3 = £} {n@}gagﬁ} and using €" 2 €', {5.11} follows.

Now we turn to proving {5.12). Let £" be as in Lemma 5.5. Let Piﬁ {i"y,
i= 1,..,h{k") be the seis determined for #" at the end of Step 5. Assuming
M) € € satisfies A ENa+s € BY), tet vk denote  the
€'-approximation {o }x{‘é}{k”) obtained in Step 4. We will show that if
Dy gy € PITEY) for some i then ¥ ™ e PRl for some n.

However, since the union i{’? gg}{k”} contains the same number of elements as the

4

5

disjoint union 2‘? ii‘ﬁ, and since hik’) 2 hik") by choice of 4", it follows that the

converse is alse true, that s, if ‘Yiﬁ {Yim} & P{hg for some h, then
g vy e pOTgey  for  some i Then 1 v B )-v™myy < e

3z



by {5.13} and hencs i}\.i’é'}ik"}m}x{m}{k”}i £ Z2e’+e”, Thus, since £" satisfies the

conclusion of Lemma 5.5,
distg )£y = o(e na33*),

establishing {5.12}.

Finally, we prove that if Yi‘g}{k”},‘s{m}{k”} € P’iﬁ {k"y for some |} then
“{i"’z}»‘f{m} e plhl for some h. Assume otherwise. Then
5‘*?{‘@}-?%33}3 > gg” by {5.14} and hence él{‘g}—lgm}é > se” - Z2e’,
Assuming 8 2 3 and thus 8¢” - 2¢’ 2 3¢"/3, and using 871 < {n@z}n, we

conclude from (5.4} that

(5.13) dis(s#) e ™) = o3¢/ [n217?),

However, since ‘f%g}ik”}ﬁ{{m}&”} & Pgé} k", we have that
%lm}{k"}—}\gm}%”}i £ 2¢' + €", and hence, since the conclusion of Lemma 5.5
holds for 47,

éﬁ.ES} é;g{ii‘é},?{mi} - {}{6" {ﬂz}gﬁégl}‘

But for 8 = o {nﬁé}jﬂﬂ?}}, {5.15) and (5.18) contradict one another, concluding the

proof of the proposition. 0

Finally, we turn to proving Provositions 4.4 and 4.5. We begin with 2 lemma.

oy

Lemma 5.7: Fix £ {m} and assume £ i m) # 0. i

diste ey < g My 20y, then

el el

(5.17) . ,
neCE 7 2y (miy
(5.18) H;iﬁ) i S(m}%! < ang ™% ase e W)y
55{3 Eim ggim}gz

Proof: Assume %{ﬁ} = WEE{Q}; %{mé = wgé{m} satisfy i!i"{g;}ﬁ = §§%{m}§§ = 1 and



dis(g 14 gty = zt®) _ glmly, since  dis(e) 6™y < 2™z i s
easily shown that i?é‘g}i z i%im} § /2, and hence {B.17.

Note that
s - sl - |z - 255
2 m e m
\ selm) {83 ;

M

7 : (23 (m)
12{8) 12! )

Howsever, 2?3‘?’?}; = iféﬁ’gm}i = afgm}§fi§§{m)§£, Now {5.18) follows. (|

Here is Proposition 4.4 restated as

Proposition 5.8: Assume that for all 4w € {1,853 we have that
éis(ii‘g},gim}} € €”. For all €” = 0{1//n), the following is then true. Let i’ be

an index satisfving

!a‘%?{{u} %:: max 5‘§R§u %
§ts%§ u=0 i % i =}

and let X € ﬁ:né‘i be the vector

X, = *{""3%3(32
i 3 D-1 -
uys @ui u=0

i= 1,0+

Then dis(X,£%)) = Ome™) for all «.

Proof: Fix me€ £1,...%3 and lst {" denote an  index  satisfving
§£{m>§ Z §§$§m}§§/’j&+l. Then, by {5.17}, assuming €7 € 1/2/n+1, ws

have that 1§ 471 > e hi/2/55T for all 2 € €1,...,23.
Next, note that by definition of i’ and using Ri{u) = n{&*~’
£



{23
S g = f;"z}? §§ I R
%}ﬁ«?u = giﬁ * i
i S
Hence, for at
{k}
eV

we have that
Z
e 3

least one ke £1...93,
!iii}i. Since §€§§>i Z §§£i
ne®hy/2 /57T, It

€” £ 1/4/0+1, then

kéi!/z‘fﬁ'& i. we  thus  have

thus follows from {5.17) that if

(5.19) g4

£ 3 ngWn/a/mFT for all 4.

Consider the identity

byl

YR (u) 43 L)
E] = {@"1}% E £ ﬁ § H .

auff}q%ui u=0 ;zg Tomzg }

Defining X as in the statement of the proposition, we thus have

(4>
. p 4 —
{5.20) “"‘m = {21} = é@

gl* i

However, using (5.18) and (5.19), if €” € 1/8/n+1 we have that for any m,

! (m) (2>
H% ny ~ 2 giiﬁﬁ@%hﬂm@
g;a ,éi:;, ’

Hence, for any m, {5.20} gives

X g(m
—toy - 2 || S 64(2!)(n+1)e™.
¢ b

Since iifim}iifi Egr:%}i z 1, it follows that éisi"}i,%im}} = D{ne”). 0

Finglly, we prove Proposition 4.5 restated as

Proposition 5.9¢ Let § ¢ {1,...%2 contain N elements, where 0 < N < 2. Assume

35



that for all 2,m € 8, we have dis{éég},%’{m}} £ g%, Let % &€ ﬁiﬁ+1, % 2 0
Assume that i £ € 8, then iig‘ﬁ}*xi % }oiiiiw}ié iixl, and assume that Iif
2 & 8, then éé'{"é}*% z §2§§§{§§§§ lixil  where gy > 0. Then for all
€” = 0{1//n) and for all ,61/;92 = O{e”/Pin), the following is true. Let 1’ be

an index satisfving

N i N
i@ ENiu) :mgxiﬁ Réu} ;
Emie U=x i 'i*}asi UEX

and let X € ﬂ?ﬁﬂ be the vecior

K. = —OLRCu)

1 aﬁf

""iﬂ., e
3 C}isi =g

Then dis(X, &% = 0w2e™) for all 2 € S.

Proof: The proof is analogous to, but much more complicated than, the proof of
Proposition 5.8,

We begin by showing that if €% and ,91;’ py are as small as certain
prescribed guantities, then %Ei'g}% Z ﬁ{’{"g}i%f%fm for all 2 € 8.

Fix mE S and fet i” denote an index satisfving
re{™y > g™/ /RFT. Then, by (5.7, i €7 € 1/2/FFT  we have
that

e8] 2 ne@hi/2/f5T  for all 2 € 5.

Consider the identity

a¥r (2) (2)
(5.21) L =3[ m i) o ¢y
du;;g g=x 4EL 2EL

where the summation is over all ordered N-tuples (£4...#4p) of distinct indices
from €£1,....93, and where £ € L is used 1o dencte £ € €§},,e,,£§}. Let
Eg denote summation over the N! N-tuples with 2 12...,,32% & 8, and lset Zm

denote summation over the remaining tuples. Then from {5.21}

3é



i dVr

%ﬁ g:‘ﬁ}’gs\ﬁnsﬁg =x§ ) {iu?ﬁ u=x

3

(5.22) 2€8 € s
(2. E5%
- Z**{gégxa gz£§x§{£§§\s szég-x}'

i!i

Note that ) 1&%9)x/e{8)) < 2o, /AFThxit for all 2 €S since
e8> ugiyaaeT for all 2 €S (1)
g8 /8@ x1 < 1/p ixl for all 2 € S; () LNS and S\L have the same
number of elements: {ivl at least one £ & 8§ satisfies 2 € L for each of the

wE R BE s
tuples defining ¥ : v} £ iz & summand over fewer than 9! N-tuples; and {vi}

by choice of i'. Assuming £y ;:2/8;'{1%- 191, it then follows from (5.22}) that

FXR IR RS AL

2 1 d¥r

Relving on the identity {5.21} with i’ replacing 1", this bescomss

£ (0
(., G50
2€s ¢34
(5.23)
(2) , (2)
®R £:% (23 £:5

+ 3 { o ~%~7}[ I i—?—§i}{ i ~?&7—~]1 > N - 2

sesnu 687 e 6887 T lgeins 69870 4

Making use of the above observations {i)~{v} with ' replacing " in {ii}, as

well as E %g“? }f§§%> i € 2/n+1 for all 2 €8 {gsince
?Eé’g}i 2 535{“@}13/2,{:1*3 for all £ € 8B}, and assuming that

py € ngéizgn‘%i}gfé}i it follows from {5.23} that
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st

5(.{5‘}
1 i § at _ L
gié%s el I

Pud

- N ’
Hence, for a2t least one m € B we mnmust have ;gég?}é 2z g%g?ﬁ’g!& Hince

§$§§f}% z éiéim}ﬁf'zyfﬁ-ﬂ, it now follows from {5.17} that if €% < 1/8/n+1,

then
(5.24) |69 2 ne@i/s /AT forall ¢ € 8.
Consider the identity, for any i,
(2>
73T 7 §§§ = N-1 2 €§£§
b . T Cdu, fus s E%
iggsgl }[ﬁgsg xé B R
{5.25)
L(2)
s (23 % < 1
+ 2 i o = glx, L4,
{ﬁés\i g4 j{egtﬁ\s séﬁj-x} N

where LU = %‘:"éi’““’ﬁ%—l} and

(2,0 (2.0
{ g, N/ N if gy € s
Le, M7eUndex a5 2 € 5.

Making use of the above observations (iiij-{v} and {8.23), we find from (5.25)

that if ’Q‘i/ Lo € e”/8/n+1, then for X as defined in the statement of the

proposition, we have

(2,
[ e S RS
lees * ) Lges !

However, using {5.18) and {5.24), if €% £ 1/i6/n+1 we have that for any
meE 5,
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[Em
£ - 2
g m 2€

i

TWT“ £ 256(N-1}{n+1)e”.

Hence, for any m € 8, {5.26) gives

“ i ML ] < e v t6-Ds e
- £ 7 + 1I6{N-1in+lle™.
| o ef®) [ n e®ex] ™ 53 :
2€s 265
Since i€ {m}éé,/ i £ .?fi}% z 1, the proposition follows. o
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Appendix

Here we prove the claim (1.1} Let &' = E/é{i%%—l}g, 0 < g

£ R, and
assume that X{ii i=1,.,% are € -approximations to all of the zero lines of F. In
the notation of section 1, nx®ux®y - £ {i§!§§€{i§§§§i £ £ where the zero lines
of F are precisely the lines ()% {i}; hE L3

For each E{ﬁ such that %Tiii z {0, let

s
g i}’”" ]

n+1

(1) (i),
26 - [f; £

n+i

Then

%}ﬁ} is the zerc of { corresponding to the solution line {Z}x%'{i}; nE L2
of F. Define I?%(i} analogously.

We show that

8.1

(i)
s 1 X i
ey g R —0Ell > 3
U 4(r+1)
and
NN
ixtiyy . e
(6.2) prly 2o D - Ey < e
Hx T a(r+1)
Together, {6.1}

and (6.2} imply that the points
{’%{}}; §Xi§_§ i/ !ii‘?’té{i}ﬁ > 3/4{R+1}3 are a solution for the {(e,Rj~approximation
probiem for f.

To prove (6.1},

webn < R i
ne®i2 < @211 682212 Thus, it 1EWH < R, then

firet  note  that

and only i

(1) (1)

%Xn+§§ ifn»ﬁ'l% e > {1 € } 1. 3
: e : - = - =

x0T ety 4(R+1)4 R+1

G(R+1)
In proving (6.2}, let 3?{{?‘} = X{i}/ﬁ?{{iééi and gﬁ} = £{i}f'i§&'ﬁ}iig Then,
assuming that §ii§ z 3/4iR+1}, we have

40



px_Fiy =

14

A

/8

o o~ (i)
1553 - 31 - s Hlvo - 58 w0

Xz) "gwii ;% i i g i

n+1 n+l n+1 n<1

1 { ) 26) Xn+1 Ensi
e renmdl L SR .
X 1 g

2
AN+t a+1f

g%<i>~?{i};}

2(R+1) {s’ R j
3 e
G{R+1)

iﬁﬁi}{iz% 2(R+1je'7 (by substituting
3

€' = €/4(R+1)% < 1/4(R+1)
in the dencominator)

4R+1Pe = ¢,

Hence, {6.2} is proven.
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