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Abstract 
 

We present a simple mathematical model of the collapse of tall multi-story buildings in 

general and of the World Trade Center (WTC) towers in particular with the object of 

predicting their collapse times. In constructing the model we first consider two modes of 

demolition, one in which the supports of the bottom floor are destroyed and a second 

where the supports of the topmost level are destroyed. In both modes it is assumed that 

the retardation of the brittle structure of the building is insignificant. In the first model the 

entire building collapses in free-fall, i.e. with one g acceleration.  In the second mode of 

collapse we show that for very tall buildings the ratio of the time for collapse and the free 

fall times, as well as the reciprocal velocities of collapse, approach the square root of 3 as 

the number of floors is increased indefinitely. We then model the destruction of the WTC 

towers as a combination of these two modes of collapse.  In this third mode of collapse, 

the destruction of the building results in an agglomeration of floors impacted from the top 

by free-falling floors and impacting the lower floors below it.   It may be shown that the 

agglomeration has an acceleration of (3/5) g.   A model constructed along these lines for 

the collapse of the WTC towers, which had fractures originating at different floors, 

results in collapse times that differ by 1.83 seconds.  This difference accords well with 

the measured 2 second difference in collapse times derived from video and seismic 

records. 
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The Collapse Times of Tall, Multi-story Buildings of Constant Cross-section 
Bradford Howland, Frank M. Howland, Howard C. Howland 

 
I Introduction and statement of the problem 

 

An important parameter that was measured during the collapse of each of the World 

Trade Center buildings was the duration of the collapse.   These measurements were 

made by correlation of the video data, which indicated times of initiation of collapse, and 

seismic data from an observatory located 34 kilometers north of the event. These times, 

so determined, were nine and 11 seconds, for the buildings impacted at the 82nd and 98th 

floors (Anonymous 2008), respectively. Due to uncertainty about the delay in receiving 

the seismic signal of collapse, the two second difference between the collapse times is of 

greater accuracy than the measured absolute times of collapse. This paper models the 

collapse times of the buildings and thereby explains the difference in collapse times. 

 

The mechanics of the collapse were previously considered in detail by Bazant and 

Verdure (2007).  However, these authors assumed  that the destruction occurs in two 

sequential phases, first a “crush down” phase and then, in their words, “After the lower 

crushing front hits the ground, the upper crushing front of the compacted zone can begin 

propagating into the falling upper part of the tower…”.  In contrast, as will be seen below, 

we believe that both types of crushing occurred simultaneously in the fall of the twin 

towers.  This is because the stories above the fracture are in free fall until they strike the 

compacted zone (which we term the “agglomeration”) and the agglomeration is falling 

with an acceleration less than that of gravity due to the reduction of velocity each time 

the agglomeration strikes an underlying stationary story.   

 

It was pointed out to us as we prepared the final draft of this paper that a model 

formulated along the same lines as ours, but less complete, could be found on a website 

(Kuhn,2008).  We note the differences between that model and ours at the appropriate 

point below. 
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II Two Contrasting demolition techniques 

 

We consider first the dynamics of a commonly used demolition technique used for tall, 

reinforced concrete buildings.  The support posts at the bottom floor are wired for 

explosives which are simultaneously detonated.  The building accordingly collapses as a 

free-falling structure with the lowest floor impacting the ground first. The retardation 

caused by energy absorption of the brittle structure being negligible compared to the 

gravitational energy liberated, the time of collapse, T, is very nearly equal to the freefall 

time, Tff,   for any heavy object falling from the height, H, of the topmost floor.  Thus: 

 

 T ≈  Tff  = gH /2          (1) 

 

where g is the gravitational constant of acceleration.  We note that the seismic signature 

of such a collapse would be many small impacts of individual floors with the ground, 

unequally spaced in time.   

 

We next consider a contrasting demolition method, which we have invented for this 

problem.   Here, the fracture is initiated by destroying all the supports for the topmost 

surface, i.e the roof of the building, simultaneously. In this hypothetical case, the mode of 

collapse differs greatly from the previous one, and the collapse time will be considerably 

greater due to inertia effects.  We assume that the collisions between the concrete floors 

are inelastic.  At the first instant, the top surface (assumed to have the mass of a floor), 

now unsupported, accelerates downward at 1g until it impacts the floor below. The two 

merged floor masses, retaining half the velocity that the first attained by conservation of 

momentum, now accelerate at 1g until the next collision, where the growing stack of the 

floors loses one-third of its velocity, etc.  The termination of the process occurs when the 

stack of all the floors impacts the ground with a well-defined single seismic signature. 

 

A computer simulation  for a 110 story building of 416 meters in height revealed that the 

collapse time for the “top-down" collapse mode, Tc,  is 1.629 times the fee freefall time of 
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9.24 seconds. Furthermore the velocity at impact of this stack is 1/ 1.720 times the 

freefall velocity, vff, where 

    vff = gH2        (2) 

Neither of these ratios appears to be especially significant; however the situation becomes 

clearer when the number of floors in the computer simulation are increased from an 

initial value of 100 floors by successive orders of magnitude.  New collapse times and 

velocity ratios are given in Table 1. 

 

 

Table 1 Times and Terminal Velocities of Collapsing Buildings of Various Numbers 

of Stories where Collapse starts with topmost floor* 

 

No. of Stories Time of Collapse 

in Seconds 

Ratio of Tc
#/Tff Ratio of vc

+/ vff 

110 15.009 1.629 1.720 

100 14.269 1.624 1.719 

10,000 151.172 1.721 1.732 

1,000,000 1520.547 1.731 1.732 

100,000,000 15214.327 1.732 1.732 

 

*Note that the square root of 3 is 1.73205.  The value for g in New York City used in these calculations is 

32.161 ft/sec2 (Hodgman 1952).  #Tc is the time for collapse.  Tff is the time for free fall through the 

building’s height, 416 meters.  νc is the terminal velocity of the collapse νff  is the terminal velocity of free 

fall.  

 

We note that, as the number of floors is successively increased, both ratios, one more 

gradually, approach the value 1.73205, or the square root of three!  The mathematical 

explanation for this curious phenomenon is given in Appendix I where it is assumed that 

the number of floors is infinite -- matter being distributed evenly between the topmost 

floor and the ground. We note that a collapse time of the square root of three times the 

freefall time corresponds to a downward acceleration of the stack of one-third g. 
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The exact time of collapse for any number of floors in the “top-down" mode can thus be 

obtained by a simple computer simulation.    

Kuhn (2008) investigates this second demolition method and arrives at the same model as 

ours above for the special case of the top-down collapse, i.e. one initiated at the very top 

floor.  Kuhn (2008) attempts to generalize the problem, considering demolitions in which 

the fracture is below the top of building, e.g. the 96th floor.  His solution is to treat the 

entire structure above the fracture as a single mass which then successively impacts the 

floors below.   We believe that the floors above the point of destruction should instead be 

modeled as a collection of individual masses separated by very frail structures of 

negligible strength; this is Kuhn’s implicit assumption in modeling the impacts on floors 

below.     

Qualitatively, the situation is as follows: the portion of the building above the level of the 

initial fracture falls freely as an intact structure with the acceleration of gravity, 

collapsing into the stationary intact section of the building below the fracture. As the 

collapse proceeds, there accumulates between these sections of the building a plurality of 

floors which we term the “agglomeration". We shall show that the downward 

acceleration of the agglomeration, for the case of infinitely many floors, is exactly 3/5 

that of gravity. We note that this value is at least reasonable, since it must be more than 

that of the top-down collapse and less than that of the freefall value, the agglomeration 

being impacted by collisions with floors both above and below it. The calculation of the 

acceleration of the agglomeration for an infinite number of floors uses an extension of the 

method used to calculate the one third g acceleration of the stack in a top-down collapse; 

it is given in appendix II. 

 

III Consequences of the (3/5) g acceleration of the agglomeration 

 

Appendix II demonstrates that the downward acceleration of the agglomeration 

approaches 3/5 g, as the number of floors approaches infinity.   The assumption that this 
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value suffices for approximately solving the collapse of a building with a finite number of 

floors leads to several interesting results.  Consider first the building of height H, with a  

fracture initiating a lesser height h. The agglomeration begins to form at height h and falls 

with the acceleration of 3/5 g. We now ask: at what height h* will the agglomeration hit 

the ground at the same time as the top floor in  freefall mode?  We set these times to be 

equal as follows: 

 

  gH /2   = gh )5/3/(*2       (3) 

 

thus   h* = (3/5) H.                                                                                    (4) 

 

Let us now assume that we have a 110 story building with the fracture initiating at 3/5 of 

the height, i.e. the 66th floor level. The foregoing result implies that the top 44 floors, 

falling with the help of gravity, will succeed in demolishing the lower 66 floors, all in 

freefall time.  

 

More generally, if the fracture begins K floors below the top, the agglomeration will 

cease to fall with acceleration of (3/5) g when it has fallen (3/2) K floors, since it will 

then have used up all the floors above the agglomeration. From this point on, the pile of 

floors already accumulated will fall as a stack with reduced acceleration of approximately 

(1/3) g, in the “top down" model of collapse described before.   Note that the above is 

true only for fractures initiated above the 66th floor, as was the case with both of the 

World Trade Center buildings. 

 

The general computational solution to the problem of determining the collapse times is 

now at hand: a) for fractures originating above the (3/5) H level, the time will be found 

by adding the times for two successive modes of collapse, first the agglomeration with 

downward acceleration of (3/5) g,  then the top-down mode of collapse with the stack 

accelerating at roughly (1/3) g. For this case the joining of the two solutions ignores one 

subtle error in the calculation of the total collapse time.  We show in Appendix III that 

the velocity of the agglomeration exceeds that of a stack for an equivalent height building, 
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by the factor 25/27 or approximately 1.04. Thus, at the transition point between the 

two phases of the collapse, the computer simulation must increase the velocity of the 

stack by 4% before proceeding with the remainder of the calculation. 

 

For fractures originating below (3/5) of the height of the building, the agglomeration will 

hit the ground before the freefall time for the top of the building with reduced force of 

impact. This will occur at the time )66/)(/*2( Fgh  where F is the number of the floor 

where the fracture initiates. This, the major seismic impact, will be followed by smaller 

irregularly spaced impacts of individual floors, the collapse sequence terminating at the 

freefall time gH /2 . 

 

For a specific example of how the solutions for the agglomeration and the stack are 

joined together, consider a 110 story building with a fracture initiated at the 98th floor, 12 

floors below the top, the case of the World Trade Tower.   In the agglomeration mode of 

collapse, the top 12 floors, falling with an acceleration of (3/5) g into the lower structure 

will demolish 1.5 times as many floors, i.e. 18, or all above the 80th floor, 30 floors 

below the top. At this time there remain no more floors above the agglomeration, 

therefore the collapse proceeds as a “top-down" collapse with the lower value of 

acceleration, g/3.  The corresponding stack velocity must then be increased by 1.04, or 

25/27 , and then the remaining time of the collapse will be computed.  The times of the 

two modes are then added. The building collapse times are shown, as a function of the 

floor number of initial fracture, in fig. 1. 

 

We note from this curve that the collapse times of the two World Trade Center buildings 

with fractures originating at the 82nd and 98th floors are, respectively 10.49 seconds and 

12.32 seconds. It is the difference between these two times which should be compared to 

the difference of the measured seismic and video derived times of nine and 11 seconds. 

The agreement is therefore between 1.83 and 2 seconds.   This near equality is the most 

important substantiation of the calculation presented here.  It should be noted that the 

difference between the measured elapsed times is independent of any assumption as to 
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the exact delay time in the seismic wave, or, more unlikely, to a timing discrepancy with 

the video records. The results also imply that the seismic delay times are in error by 1.49 

seconds, on average. 

 

IV  Summary 

 

We have attempted to calculate the collapse times of the buildings of the World Trade 

Center as a function of the height of the floor at which fracture began. It is generally 

agreed that the collision between reinforced concrete floors will be inelastic, and further 

that the strength of the supporting structure, once the collapse is initiated, will have 

minimal effect on the rate of progression of the collapse.  Instead, inertial factors, for 

example collision with stationary floors below, dominate.  For the special case of "top – 

down” collapse, initiated at the 110th, or topmost floor, a computer simulation indicates 

that the collapse will require 1.629 times the freefall time from the top, or 15.0 seconds. 

 

Out of curiosity, we extended this computer calculation to buildings of several orders of 

magnitude more floors, i.e. 1000, 10,000 etc. and found this interesting result: Both the 

time for collapse divided by the freefall time and the reciprocal velocity as compared to 

the freefall velocity approached the square root of three, as the number of floors was 

increased indefinitely.  The theoretical justification of this result is easily proven using 

algebra, under the assumption that matter is evenly distributed between the top and 

bottom floors. The proof is given in appendix I. 

 

The more complex case, wherein the fracture is initiated at some level below the top floor 

can also be treated by a simple extension of this algebraic argument. The resultant 

gathering “agglomeration" of floors, impacted from both the top free-falling structure, 

and the stationary intact section below is shown in Appendix II to have a downward 

acceleration of (3/5)g. Both modes of collapse played a part in the World Trade Center 

building collapses.  The resulting collapse times are shown to be consistent with the data 

obtained from seismic and video observations.   
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Appendix I  

The (1/3) g Acceleration of the Stack 

 

Let the vertical distances be represented as increasing downward, so that velocity and 

acceleration are positive values.  A building is assumed to have height, H, and a total 

mass M, with uniform cross-section. The quotient M/H. equals m0, the mass per unit 

height. We assume here that the fracture is initiated at the top floor, and that time, t, is 

measured there from.  We shall use Newton's second law of motion, namely that force is 

equal to the time derivative of momentum. We further assume that the stack falls with a 

constant acceleration α; therefore the velocity of the stack at time t equals α t. 

 

The mass of the stack is equal to the height of fall, α t2/2, times its mass per unit height 

and therefore 

 

  Mstack =  m0 α t
2/2       (AI 1) 

 

The momentum of the stack is the velocity times its mass or mo α
2 t3/2.  By Newton’s law 

the time derivative of this momentum, (3/2) mo α
2 t2, must equal the force of gravity 

acting on the stack or g Mstack.  Thus:    

 

  (3/2) mo α
2 t2  = g mo α t

2/2       (AI 2)           

 

This reduces to : 

 

  α = g/3         (AI 3) 

 

This is the acceleration of the stack in the “top-down” collapse.  We note the curious fact 

that the collision of lower floors with the stack does not enter into the momentum 

calculation, since, being stationary, they carry no momentum. 
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Appendix II 

The (3/5) g Acceleration of the Agglomeration 

Assume, as in Appendix I, that time, t, is measured from the onset of the fracture which 

occurs a significant distance below the top of the building. The agglomeration is that of 

the floors which accumulate between the freefalling top section of the structure and the 

collapsing, stationary portion below. The downward acceleration of the agglomeration 

will be termed β and assumed to be constant. As before the mass per unit height of the 

building is m0.  The time, t, is measured from the onset of fracture. The mass of the 

agglomeration increases at the same rate as the height of the building, with the top section  

 

 

and freefall decreases.  Thus: 

 

  Magg  =  mo (1/2) g t2       (AII 1) 

 

The velocity of the agglomeration is equal to β t.  The momentum of the agglomeration is 

accordingly equal to its mass times its velocity or: 

 

 MOMagg =  (1/2) m0 β g t3       (AII 2) 

 

Computing the time derivative of the momentum which has the dimension of force 

according to Newton's laws we obtain: 

 

 (d/dt)[(1/2) m0 β g t3]  =  (3/2) m0 β g t2     (AII 3) 

 

Balanced against this rate of change of momentum are two terms:  a) the force of gravity 

acting on the agglomeration and  b) the rate of increase of momentum caused by the 

impact of the structure falling faster from above. We note that the impacts of the 
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agglomeration with stationary floors below add no momentum to the agglomeration after 

each inelastic collision. (It is assumed here that the all inter-floor collisions are inelastic.) 

 

We compute terms a) and b) as follows 

 

  a) The force of gravity, F,  is equal to g times the mass of the agglomeration or: 

 

  F =   mo (1/2) g2 t2       (AII 4) 

 

 b) The rate of addition of momentum from floors impacted from above is equal to 

the product of the momentum per unit mass, which is its downward velocity, g t, times 

the rate of collision of mass above the agglomeration with the structure. This rate equals      

(g – β) t,   their velocity difference.  Thus term b) is given by: 

 

 d/dt (MOMb)  =  mo (g – β) t (g t)    =  mo (g – β) g t2              (AII 5) 

 

Next, using Newton’s second law, by setting the previously computed rate of change of 

momentum of the agglomeration equal to the gravitational force plus the rate of 

momentum transfer from the floors impacting from above, we have: 

 

  (3/2) m0 β g t2  = mo (1/2) g2 t2 + mo(g – β) g t2   (AII 6) 

 

Dividing each of these terms by mo (1/2) g t2, we have: 

 

  3β = g + 2g -2 β   or  5 β =3 g or  β   =  (3/5)g   (AII 7) 

 

Thus the acceleration of the agglomeration is three-fifths that of gravity. 

 

 

Appendix III 
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Derivation of the 25/27  Velocity Correction 

 

It is instructive to compare the impact velocity of two modes of building collapse: that of 

the agglomeration, where the fracture is initiated at the 3/5 height level, e.g., the 66th 

floor of a World Trade building, with the velocity of impact into top-down collapse mode 

for a building of equal height.   In each case all the floors hit the ground together. 

 

The velocity of fall of the agglomeration, vagglom, falling from 3/5 H at an acceleration of 

3/5 g will be given by: 

 

  vagglom = Hg )5/3()5/3(2   = gH)25/18(               (AIII 1) 

 

where H is the height of the building. 

 

Furthermore the velocity of the fall in the “top-down” collapse mode is: 

 

  vtop-down = gH)3/2(                  (AIII 2) 

 

since the acceleration is g/3. 

 

The ratio of these two impact velocities equals 25/27 , with the agglomeration falling 

approximately 4% faster than the building which collapses from the top down. This 

correction is easily made, at the transition point between the end of the agglomeration 

phase, and the beginning of "top-down" collapse in the computational program. The 

resulting curve of collapse times, versus height of initial fracture, incorporating the 

correction is given in the curve of fig. 1. 

 

 

Appendix IV 

Energy considerations 
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We first investigated the “top-down" model of collapse , and showed that the velocity of 

the stack which comprises all the floors above ground level, impacts the ground with a 

velocity close to 1/ 3  times the freefall velocity from the height of the building. 

The total gravitational energy available is equal to the weight of all the floors of the 

building times the height of the center of gravity which is H/2. If all of this gravitational 

energy were converted to kinetic energy, the stack would fall at a velocity equal to the 

freefall velocity divided by the square root of two, since energy is proportional to velocity 

squared. The kinetic energy of the stack is thus equal to the gravitational energy times 

( )3/1 2/ ( )2/1 2, or 2/3.  The missing one third of the total energy is evidently dissipated 

in the totality of inelastic inter-floor collisions during the collapse. 

 

One third of the total gravitational energy is still an enormous amount of energy, and will 

account for a good part of the fragmentation of the reinforced concrete parts of the 

structure. The same calculation for the maximum energy agglomeration -- due to impact 

at (3/5)H, or the 66th floor indicates that 72% of the available energy is expended when 

the agglomeration hits the ground, leaving 28% to be dissipated by inter-floor collisions. 

 

Knowing the total energy of the falling stack or agglomeration, as the case may be, we 

could theoretically compute the Richter number for the impact; however we have no 

present knowledge of the efficiency with which the energy of impact is coupled to the 

seismic waves which are so generated. One can show that, since the Richter number is a 

logarithmic measure, the seismic impact for fractures initiated between the top floor and 

the 66th floor would differ by less than 0.023 Richter units. 
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Figure Caption.   
 
Fig. 1.  Collapse times for a building of 110 stories.  Segment a gives the time for 

complete collapse when the destruction begins above the 66th floor. Segment b 
gives the total collapse time when the fracture is at the 66th floor or below.  
Segment c gives the time it takes for the agglomeration of collapsed floors to hit 
the ground. During the time interval between segments b and c, the upper stories 
in free fall are individually hitting the agglomeration on the ground. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 




