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Fast floating-point computations are critical in a wide range of applications. To-

day, the performance of these applications is limited by power constraints. The

traditional power reduction schemes, which relied primarily on technology and

voltage scaling, are not sufficient any more. In this thesis, we propose two novel

asynchronous pipeline templates and multiple operand-dependent optimiza-

tion techniques to significantly reduce the overall power consumption while

preserving the average throughput.

Our novel pipeline templates reduce power consumption by minimizing the

handshake circuitry and employing single-track handshake protocol. Noise and

timing robustness constraints of our pipelined circuits are quantified across all

process corners. A completion detection scheme based on wide NOR gates is

presented, which results in significant latency and energy savings especially as

the number of output tokens increase.

Furthermore, this thesis presents novel operand-dependent optimization

techniques to improve the energy efficiency of IEEE-754 compliant floating-

point adder and floating-point multiplier designs. Some of these optimiza-

tions are highly challenging, if at all possible, in a synchronous design because

they increase the worst case critical path but on average have negligible impact

on performance. To our knowledge, this is the first detailed design of high-

performance asynchronous floating-point adder and floating-point multiplier.
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Chapter 1

Introduction

1.1 Motivation

Efficient floating-point computation is important for a wide range of appli-

cations in science and engineering. Using computational techniques for con-

ducting both theoretical and experimental research has become ubiquitous, and

there is an insatiable demand for higher and higher performing VLSI systems.

Despite the remarkable advances in computing in the last few decades, the com-

puting needs of many emerging applications in the fields of molecular biology,

quantum chemistry, weather detection patterns, fluid dynamics, speech recog-

nition, and financial services are far from being fully satisfied. Some of these

emerging applications are essentially needed to address many critical global

challenges. These include climate change, curing life-threatening diseases, dis-

covering sustainable and alternative sources of energy, and predicting natural

calamities to name a very few.
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To meet the growing demands of some of these critical applications, today’s

faster super computers have exceeded the 1 petaFLOP (quadrillion floating-

point operations per second) performance mark. Recently, Japan’s K Com-

puter [6] achieved a performance of 8.162 petaFLOPS to clinch the title of world’s

fastest supercomputer. But this performance came at the cost of 9.89 megawatts

in power, which may be enough to power a small town. Furthermore, these

power hungry systems require elaborate and expensive cooling systems to en-

sure proper operation. These results mean that the manufacturers of large, fast

supercomputers and the VLSI chip designers of the underlying workhorse pro-

cessors can no longer afford to design for performance only. Top 500 supercom-

puter ranking takes into account the energy-efficiency of the system as well as

its performance.

Traditionally, VLSI designers primarily relied on CMOS technology and

voltage scaling to reduce power consumption [11]. However, with the scaling

of CMOS technology into ultra-deep sub-micron range, this no longer yields

the desired power reduction. With the transistor threshold voltage fixed [28],

VDD has been scaling very slowly if at all, which means all performance im-

provements come at an increased energy consumption. Furthermore, process

variations in deep sub-micron range have made devices far less robust, which is

increasingly making it difficult for synchronous designers to overcome the prob-

lems associated with clock skew rates and clock distribution [18]. The findings

of a recent in-depth study, to explore and devise ways to further scale super-

computer petaFLOP performance by 1000X, indicate the inadequacy of current

design practices and technologies to achieve the desired throughput within a

sustainable power budget [1]. This underscores a pressing need for alternate

design practices, to reduce energy consumption for floating-point computations
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while preserving robust behavior in advanced technology nodes, which is the

core motivation behind this thesis.

At the other end of the spectrum, embedded systems that have traditionally

been considered low performance are demanding higher and higher through-

put for the same power budget to support compute-intensive floating-point ap-

plications that improve the user experience. Some of these applications include,

but are not limited to, advanced gaming and animation softwares based on com-

plex physics motion equations, voice recognition, facial simulation, graphics

rending, advanced image and video processing applications. Since these appli-

cations have to be deployed on portable devices with limited battery-life, it is

critical that we develop energy-efficient floating-point hardware for these embed-

ded systems, not simply high performance floating-point hardware.

1.2 Operand Dependent Floating-Point Unit Design

Synchronous floating-point units, limited by worst-case computation delay, in-

clude complex circuitry to attain constant latency and throughput for the best,

average, and worst case input patterns alike. Consider an N-bit adder circuit,

for example. The delay of this adder depends on how fast carry reaches each

bit position. In the worst case, the carry has to be propagated through all bits,

which causes synchronous designers to consider complex, power-hungry adder

designs to meet their stringent timing requirements. The biggest disadvantage

of this design methodology is that it results in the same power consumption for

the best case carry propagation of zero bit position, even though the best case

could have been done much faster and more energy efficiently using much sim-

3



pler circuits. A preliminary input profile of a number of floating-point applica-

tions from SPEC [5] and PARSEC [9] benchmarks, shown in Figure 1.1, indicates

that the worst case of carry propagation happens very rarely, if at all, in a 56-bit

adder unit typically found in double-precision floating-point adder design.

Figure 1.1: Longest carry-chain length in a 56-bit Adder

The observation that there are infrequently occuring cases that make the

hardware difficult/slow leads to the natural question: can we design an energy-

efficient asynchronous floating-point unit? An asynchronous circuit does not use

a clock signal, and is not constrained to a global timing constraint. Perhaps we

could design an IEEE-compliant floating-point unit that was a bit slower when

certain infrequent cases occurred. This could result in a significant energy re-

duction during normal operation. Self-timing would enable this flexibility at a

very fine grain, allowing for operand-dependent performance and energy con-

sumption. In this thesis, we explore the possibilities of data dependent opti-

mizations in floating-point arithmetic circuits.
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1.3 Asynchronous Circuit Design

Asynchronous quasi-delay-insensitive (QDI) circuits, with their robustness to

process variations, no global clock dependence, and inherent perfect clock gat-

ing, represent a highly feasible design alternative for future chip design. QDI

circuits are also robust to voltage and delay variations, hence easing some of

the design verification efforts. QDI circuits have been used in numerous high-

performance, energy-efficient asynchronous designs [63] [23], including a fully-

implemented and fabricated asynchronous microprocessor [42]. In this thesis,

we harness the operand dependent execution and timing flexibility of asyn-

chronous pipelined circuits to design and implement high-performance, energy

efficient, asynchronous floating-point arithmetic circuits with truly data depen-

dent performance and energy footprint.

QDI circuit templates, though robust, lose some of their energy efficiency

gains in implementing handshakes between different parallel pipeline pro-

cesses. To ensure QDI behavior for each handshake, every up and down transi-

tion within a pipeline is sensed, which leads to significant handshake circuitry

and energy overhead. High throughput QDI pipelines only include a small

amount of logic in each stage. The large number of pipeline stages required for

high throughput make the handshake overhead a significant proportion of the

total power consumption. In this thesis, we try to circumvent the problem of

high handshake overhead in commonly used QDI pipelined circuits but with-

out sacrificing robustness.

5



1.4 Thesis Contribution and Organization

The primary contributions of this thesis are listed as follows:

• Design of two novel pipeline templates, which greatly minimize the hand-

shake circuitry of commonly used QDI templates by taking advantage of

some easily satisfiable timing assumptions. Compared to QDI templates,

the average throughput and latency are preserved, while the transistor

area is greatly minimized. As it is in the case of QDI templates, the cor-

rectness of these proposed templates is not a function of input and output

arrival times, which makes them very robust. We also present detailed

design trade-off analysis of these templates to help future designers make

appropriate pipeline selection based on their design constraints.

• Profiling results of various real life floating-point applications from many

diverse fields. The bit-level input and computation patterns within several

key logic blocks in the floating point unit datapath make a strong case for

introducing operand-based optimizations for energy efficiency.

• The design and implementation of a first high-performance, energy-

efficient, double-precision, asynchronous floating-point adder (FPA). The

FPA is implemented using asynchronous QDI pipelines and is fully

IEEE-754 standard compliant. It employs a number of novel operand-

dependent optimization techniques to greatly reduce the circuit complex-

ity and power consumption of various key logic blocks within the FPA

datapath, while preserving average throughput and latency.

• A full-transistor level implementation of an asynchronous floating-point

multiplier (FPM) datapath is presented. To our knowledge, our FPM is
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a first high-performance, double-precision, asynchronous unit of its kind.

It uses a mix of QDI and the newly proposed pipeline templates to im-

prove energy efficiency of various key logic blocks within the datapath. A

higher radix array multiplier design is introduced. The FPM provides full

hardware support for difficult to implement special cases in the IEEE-754

standard with minimal complexity.

The rest of the thesis is organized as follows: In Chapter 2, we provide

a background on IEEE-754 floating-point standard and several synchronous

floating-point unit designs from academia and industry. It provides details of

various floating-point applications that were profiled and outlines the key op-

erations within the FPA and FPM datapaths. An introduction to asynchronous

QDI pipelines is also presented. Chapter 3 introduces our novel energy-efficient

pipeline templates. It provides a detail discussion on various design trade-offs

of these templates and evaluates their efficacy using a non-trivial implementa-

tion of an 8x8 Booth-encoded array multiplier design. In Chapter 4, we present

the design and implementation of our high-throughput, energy-efficient FPA

unit. The application profiling results for floating-point addition operations are

presented. All operand-dependend optimizations are discussed in detail. We

conclude the chapter with an in-depth evaluation of our FPA across various in-

put sets. Chapter 5 presents our FPM datapath design. It introduces a higher

radix array multiplier which utilizes input patterns to significantly reduce over-

all circuit complexity and energy consumption while preserving the average

throughput. Hardware implementation of special cases within the IEEE stan-

dard is also discussed. In Chapter 6, we summarize our key findings and their

usefulness to future research.
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Chapter 2

Background

In this chapter, we provide a background on floating-point computations, their

various hardware implementations, and a set of diverse floating-point applica-

tion benchmarks that we used for data dependent optimizations. The chapter

also includes a brief introduction to asynchronous quasi-delay-insensitive (QDI)

pipelines.

2.1 Floating-Point Computations

Today, most floating-point is IEEE-compliant or has an IEEE-compliant mode.

A thorough background knowledge on what the standard entails is very impor-

tant to understand the various trade-offs involved in floating-point hardware

design.
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2.1.1 IEEE Floating-Point Standard

The IEEE 754 standard [49] for binary floating-point arithmetic provides a pre-

cise specification of floating-point number formats, computation operations,

and exceptions and their handling. This specification was determined after

much debate, and it took several years before hardware vendors developed

IEEE-compliant hardware. Part of the challenge was the belief that: (i) imple-

menting most of the standard was sufficient; (ii) ignoring a few infrequently

occuring cases led to more efficient hardware (e.g. [33]). Unfortunately ignor-

ing certain aspects of the standard can lead to unexpected consequences in the

context of numerical algorithms. Today, most floating-point hardware is IEEE-

compliant or has an IEEE-compliant mode.

The IEEE format specifies two main groups of floating-point format: single-

precision and double-precision. In this thesis, we primarily focus on double-

precision format since it is commonly used in most scientific and emerging ap-

plications. Figure 2.1 depicts the 64-bit double-precision floating-point number

format. It comprises 1-bit of sign, 11-bits of exponent, and 52-bits of mantissa

(also known as the significand).

The value of a normalized number, X, being represented is as follows:

X = (−1)S ∗ 1.M ∗ 2(E−bias)

where S is the value of the sign bit, M corresponds to the mantissa bits, E cor-

responds to the exponent bits, and bias has a value of 1023 in double-precision

floating-point format. The standard also specifies the format of a denormal num-

ber to represent the result of the computation whose value is between the small-

est possible representation of a normalized number and zero. The value of a

9



Figure 2.1: Double precision floating-point format

denormal number, X, being represented is as follows:

X = (−1)S ∗ 0.M ∗ 2(1−bias)

and differs from a normal number in that there is no implied bit and the

exponent with a value of zero is forced up by 1 to Emin, which is equal to -1022

in double-precision format. The format specifies other special types such as

Not-a-Number (NaN), +∞, and -∞. These special cases are detected by checking

the exponent and mantissa bits. For NaN, all exponent bits are one and the

mantissa is non-zero. Similarly, ∞ is indicated by an exponent comprising one

in each bit position but with zero mantissa. A denormal number is indicated

by a zero exponent and a non-zero mantissa, whereas zero input is detected

when all exponent and mantissa bits are zero. The IEEE format also includes

four different rounding modes, which specify how to deal with inexact floating-

point outputs.

The combination of a vast range of inputs, special cases, and rounding

modes makes the hardware implementation of fully IEEE 754 standard com-

pliant floating-point arithmetic a very challenging task.
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2.1.2 Floating-Point Adder

A floating-point adder is used for the two most frequent floating-point opera-

tions: addition and subtraction. It requires much more circuitry to compute the

correctly normalized and rounded sum compared to a simple integer adder. All

the additional circuitry makes the FPA a complex, power-consuming structure.

Figure 2.2 shows the FPA datapath for two double-precision 64-bit inputs.

The following summarizes the key operations required to implement an

IEEE-compliant FPA:

• The first step in the FPA datapath is to unpack the IEEE representation

and analyze the sign, exponent, and significands bits of each input to de-

termine if the inputs are standard normalized or are of one of the special

types (NaN, Infinity, Denormal).

• Prior to actual addition or subtraction, the absolute difference of the two

exponents is used as the shift amount for a variable right shifter which

aligns the smaller of the operands.

• In parallel with the right align shifter, the guard, round, and sticky bits are

computed to be used for rounding in latter stages of the FPA datapath.

• The next step is the addition or subtraction of two significands based on

sign information.

• Most high-performance FPAs use a special-purpose circuit popularly

known as a Leading-One-Predictor and Decoder (LOP/LOD) to predict

the position of the leading one in parallel with the addition/subtraction

step.
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Figure 2.2: Floating-point Adder Datapath
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• The post addition steps include normalizing the significands. This may

require either a left shift by a variable amount (using the predicted value

from LOP), no shift (if the output is already normalized), or a right shift

by one bit (in case of carry-out when the addition inputs have the same

sign).

• The exponent is adjusted based on the shift amount during normalization.

In parallel, the guard, round, and sticky bits are updated and are used,

along with the rounding mode, to compute if any rounding is necessary.

The sign of the sum is also computed.

• In case of rounding, the exponent and significand bits are updated appro-

priately.

• The final stage checks for a NaN, Infinity, or a Denormal outcome before

producing the correct result.

The complexity of the FPA datapath is not dominated by any single large

logic block, but instead it is distributed across multiple logic blocks. This ne-

cessitates the need to optimize all blocks to gain significant improvements in

energy efficiency.

2.1.3 Floating-Point Multiplier

In terms of micro-architectural complexity, for operations involving normal in-

puts, the floating-point multiplier (FPM) datapath is relatively simpler than

the FPA datapath. It does not require logic blocks such as Right Alignment

Shifter, Leading One Detection and Prediction unit, and Variable Length Normaliza-

tion Shifter, which increase the complexity of FPA datapath. The denormal and
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underflow operations in the FPM may require variable length shift for normal-

ization. We discuss these operations and their hardware requirements later in a

separate section. The FPM datapath for double precision multiplication opera-

tion is shown in Figure 2.3.

The following summarizes the key steps in an FPM datapath:

• The first step in the FPM datapath is to unpack the IEEE representation

and analyze the sign, exponent, and mantissa bits of each input to deter-

mine if the inputs are standard normalized or are of one of the special

types (NaN, infinity, denormal).

• The mantissa bits are extended with the implicit bit. It is set to one for

normal inputs and zero for a denormal input.

• The 53-bit long mantissas of both inputs are used to generate partial prod-

ucts corresponding to a 106-bit product. Since high throughput and low

latency are of essence in floating-point applications, most FPMs use some

form of an array multiplier, such as a booth-encoded multiplier as shown

Figure 2.3, to meet the performance demands. Most array multipliers em-

ploy an array of carry-save-adders (CSAs) [71] to reduce the large number

of partial products to two final full product-length bit streams.

• The most significant 53-bits of the two output bit streams from the CSA

array are summed up using a carry propagation adder (CPA) to generate

a 53-bit mantissa. The least significant 53-bits are used to generate the

carry input to the CPA as well as compute the guard, round, and sticky

bits to be used in post normalization rounding.

• In parallel, the exponent logic computes the resulting exponent, which is

a sum of the exponent values of both inputs minus the bias. The bias has

14



Figure 2.3: Floating-point Multiplier Datapath
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a value of 1023 in case of double-precision operations. The sign of final

product is also computed.

• The post multiplication step includes normalization of the 53-bit mantissa.

For normal inputs and non-underflow cases, either the mantissa is already

normalized or it may require a right shift by a single bit position, in which

scenario the exponent is adjusted, in parallel, by adding one to it. The

guard, round, and sticky bits are updated and are used, along with the

round mode, to determine if the product needs to be rounded or not.

• In case of rounding, the mantissa is incremented by one. If rounding yields

a carry out, the exponent is adjusted by adding one to it and right shifting

the mantissa by one bit position.

• The final stage checks for a NaN, infinity, or a denormal outcome before

outputting the correct result in the IEEE format.

With normalization step limited to a simple shift of no more than one-bit po-

sition and the exponent logic comprising only 11-bit long arithmetic, the FPM’s

complexity is largely a function of its 53x53 multiplier, sticky bit computation block,

and the final carry propagation adder. In this thesis, we present various structural

and circuit-level optimization techniques to reduce the complexity and power

consumption footprint of the aforesaid logic blocks.

2.2 Floating-Point Application Benchmarks

The high complexity of synchronous floating-point hardware arises out of the

need to compute the worst case floating-point operation within a stringent tim-

ing margin. The important question to ask is how often the worst-case happens.
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If it happens very frequently then it justifies burning extra power with complex

circuits to boost overall performance.

To answer this question, we used Intel’s PIN [38] toolkit to profile input

operands in a few floating-point intensive applications. This profiling analy-

sis gave us a great insight into the average case input properties in various real

life applications. We exploit this knowledge to provide a number of operand

dependent optimizations, which enable us to use simple asynchronous circuits

to meet our performance targets at a much reduced energy consumption.

For the floating-point adder (FPA) design, we profiled the followed applica-

tion benchmarks from SPEC2006 [5] and PARSEC [9] benchmark suites using

reference input sets:

• 447.deal: This C++ program utilizes a specialized program library targeted

at adaptive finite elements and error estimation. It has application in the

fields of fluid flow, electro-magnetics, acoustics, and general relativity to

name a few.

• 444.namd: It simulates large bio-molecular systems. Most of the runtime is

spent calculating inter-atomic interactions in a small set of functions.

• 416.gamess: It implements a wide range of quantum chemical computa-

tions.

• 450.soplex: It solves a linear program using the simplex algorithm. Like

most other implementations of the simplex algorithm, it employs algo-

rithms for sparse linear algebra.

• 482.sphinx: This is a widely-known speech recognition system from

Carnegie Mellon University.
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• 453.povray: It is an image rendering, ray-tracer program. Intersections of

rays with geometry objects are computed by solving complex mathemati-

cal equations using numerical methods or directly.

• 437.leslie3d: It is a computational fluid dynamics solver used to investigate

turbulence phenomena such as mixing, combustion, and acoustics.

• facesim: It simulates the motions of human face using underlying physics

motion equations.

• bodytrack: A computer vision application which tracks the human body

with multiple cameras. It has applications in video surveillance and char-

acter animation fields.

• swaptions: A financial application which uses Monte Carlo simulation to

price a portfolio of swaptions.

For the floating-point multiplier (FPM) design, we profiled three more ap-

plications listed below:

• FFT: It measures the floating-point rate of execution of double-precision

complex three-dimensional Discrete Fourier Transform [2].

• LINPACK: It is a collection of subroutines that analyze and solve linear

equations and linear least-squares problems [4]. These subroutines are

commonly used to characterize the performance of highest performing su-

percomputers.

• SSCA: A graph theory benchmark representative of computations in infor-

matics and national security [3].
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Although, all these applications come from very diverse fields, the under-

lying computations have their roots in similar mathematical and physics prin-

ciples. Our goal is to exploit the existing common input patterns in all these

benchmark applications to improve energy efficiency and reduce floating-point

unit’s circuit complexity. The input operands in actual benchmark runs were

saved to disk, and then used for statistical analysis. The application profil-

ing statistics in the following chapters were tabulated using ten billion input

operands for each application.

2.3 Related Work

2.3.1 Asynchronous Arithmetic

The use of asynchrony to improve the performance of arithmetic circuits has

been exploited by a number of different researchers. As early as 1946, von Neu-

mann proposed using an asynchronous integer adder because the average-case

delay for a ripple-carry adder is O(log N) where N is the number of bits in the in-

put assuming that the input bits are independent, identically distributed (i.i.d.)

random variables [13]. More recently it was shown that it is possible to design

an asynchronous integer adder with an average-case latency of O(log log N) for

i.i.d. inputs [40] and that the design achieves the optimal asymptotic average-

case latency for any input distribution [39]. There have been numerous papers

on asynchronous adders with a variety of topologies (e.g. [42, 31, 25, 46]).

In terms of the multiplier design, the delay variability nature of itera-

tive multipliers makes them a popular choice amongst asynchronous design-
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ers [19, 30]. An iterative multiplier utilizes a few functional units repeatedly

to produce the result. In a simple iterative n by n multiplier implementation,

where n is the number of bits, the product is computed after n iterations. Each

iteration comprises a minimum n-bit addition and a serial shift by one-bit posi-

tion. Furber et al [37] proposed a low power integer multiplier which exploits

the commonly occurring pattern of low number of significant bits in integer

inputs as means to reduce the total number of iterations. These iterative multi-

plier designs, though highly energy efficient and compact in terms of area, are

not feasible to be used in a floating-point multiplier hardware due to their very

high latency and low throughput and the fact that unlike the inputs in integer

arithmetic, the most significant bits of floating-point mantissa inputs are non

zero.

To our knowledge, the work of Joel Noche et al. [45] is the only published

work on floating-point unit design using asynchronous circuits. Their work

claims a full working single-precision floating-point unit (FPU). However, their

FPU is completely non-pipelined, doesn’t include any energy optimization tech-

niques, and does not implement rounding logic. Their FPU has many orders of

magnitude higher latency compared to all recent floating-point designs from

synchronous domain. Their test vector for a floating-point addition operation

included one addition of two arbitrary single-precision floating-point inputs for

which they claim a completion time (latency) of 79 nanoseconds in a 0.35µm

process at 3.3V. For floating-point multiplication, they report a latency of 465

nanoseconds.
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2.3.2 Synchronous Floating-Point Adders and Multipliers

There is a large body of work on synchronous FPA and FPM design. Ercegovac

and Lang [21] contains an overview of the different techniques used to optimize

floating-point addition and multiplication.

Most of the earlier work on the FPA design has focused on improving FPA

latency [61, 7, 48, 47]. Oberman [47] proposes the use of two align shifters to im-

prove the latency of their single-precision FPA with only one rounding mode.

Seidel and Even [61] propose a two-path FPA design to reduce overall latency.

The R-path in their design deals with cases of effective addition (or subtrac-

tion with exponent difference greater than 1) and N-path deals with effective

subtraction with exponent difference less than or equal to 1. Both paths are in

operation at the same time and use their own significand adders.

There is less work on low-power FPAs compared to low-latency FPA de-

sign. Pillai et al. [52] propose the partitioning of the floating-point datap-

ath into three distinct, clock-gated datapaths for activity reduction. Only one

of the three paths is active during any operational cycle in their FPA. In our

proposed transistor-level optimized asynchronous FPA, we also use control-

inhibited pipelines but instead of using clock-gating to turn off the pipelines

(which may worsen clock skew especially for high performance FPAs in deep

submicron technologies) we use local asynchronous conditional split pipelines

which have no effect on overall throughput. Also, our design goes beyond

pipeline inhibitions as explained in sections 2.2 and 4.3. The FPA design by

Quinnell et al. [54] is one of the rare fully-implemented designs (65nm SOI)

from academia. Although, they use standard-cell library as opposed to our cus-

tom transistor-level construction, their work provides us with a good baseline
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to analyze our throughput and power results.

For synchronous FPM designs, the focus of prior work has been the array

multiplier block, which is the single largest logic structure within the FPM

datapath. Earlier designs have employed various architecture and circuit-

level optimizations to reduce array multiplier latency and increase its through-

put [73, 57, 48, 50]. However, there is relatively much less work on improving

the energy efficiency of multiplier datapath [15], which is one of the primary

contributions of this thesis. Traditionally, technology and voltage scaling has

been deemed sufficient to provide the necessary reductions in energy consump-

tion every few years. This is no longer the case any more. In this thesis, we

propose a number of data dependent optimizations, both at the architectural

and circuit-level, to significantly improve the energy efficiency of our FPM dat-

apath.

Recent years have seen a number of contributions in the design of Fused-

Multiply-Add (FMA) units [69, 54, 35, 60]. In [35], the authors propose tech-

niques to reduce the latency of a floating-point addition operation in an FMA.

In terms of performance and power-efficiency, the P6 Binary Floating-Point

Unit [69] represents the state-of-the-art. It supports an extremely aggressive

cycle time of 13FO4s. Power saving is done by clock-gating pipeline stages not

in use. Power simulations at 1.1V, 4GHz, and 100% utilization in a 65nm SOI

process consumed 310mW.
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2.4 Asynchronous Pipelines

High performance asynchronous circuits are composed of many parallel pro-

cesses. As opposed to synchronous circuits, which use a global clock to syn-

chronize data tokens between different pipeline stages, these asynchronous par-

allel processes use handshake protocols to communicate with each other. These

parallel processes are often referred to as fine-grain pipelined circuits. The fine-

grain pipelined circuits use designated channels for communication between

processes. A channel comprises a bundle of wires and a communication pro-

tocol to transmit data from a sender to a receiver. There are numerous asyn-

chronous fine-grain pipeline implementations [36] [72] [64] [24]. A robust family

of these circuit templates is referred to as quasi-delay-insensitive (QDI) circuits.

2.4.1 Quasi-Delay-Insensitive Circuits

QDI circuit templates use 1-of-N encoded channels to communicate between

different parallel processes. In an 1-of-N channel, a total of N wires is used to

encode data with only one wire asserted at a time. Most high throughput QDI

circuits either use 1-of-2 (dual-rail) or 1-of-4 encodings. In an 1-of-4 encoded

channel communication as shown in Figure 2.4, validity is signified by setting

one of the four data rails and neutrality is indicated by resetting of all four data

rails. In a four phase handshake process, which is commonly used in most high

speed QDI circuits, the sender process initiates the communication by sending

data over the rails i.e. by asserting one of the data rails. The receiver process

detects the presence of data and sends an acknowledge once it no longer needs

the data. At this point, the sender process resets all its data rails. The receiver
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process detects the neutrality of input tokens. It de-asserts the acknowledge

signal once it is ready to receive a new data token. The cycle repeats.

Figure 2.4: Asynchronous pipelines: sender-receiver handshake protocol.

Weak-Condition Half-Buffer

The weak-conditioned half-buffer (WCHB) template is an energy efficient QDI

pipeline template. Figure 2.5 shows a dual-rail WCHB pipeline along with

a transistor-level depiction of a two input C-element gate which is used in a

WCHB template. It is a simple buffer with dual-rail input token L and dual-rail

output token R. The signal L.e is the inverted sense of the acknowledge signal

seen in Figure 2.4.

A WCHB pipeline satisfies the weak conditions [62] i.e. the output being valid

implies that the input is valid (checked by the NMOS logic stack of C-element),

and the output being neutral implies that the input is neutral (checked by the

PMOS logic stack of C-element). For logic computations requiring more than 2

inputs, a WCHB template requires too many stacked PMOS transistors, which

makes it slower, more susceptible to noise, and less energy efficient. Therefore,
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Figure 2.5: A WCHB pipeline stage

use of WCHB templates is usually limited to simple buffers and copy opera-

tions.

Pre-Charge enable Half-Buffer

The pre-charge enable half-buffer (PCeHB) [22] template, which is a

slightly modified version of pre-charge half-buffer (PCHB) template proposed

in [36] [72], is a workhorse for most high throughput QDI circuits. It is both

small and fast with a cycle time of 18 transitions. In a PCeHB pipeline, the

logic function being computed is implemented by a pull-down NMOS stack.

The input and output validity and neutrality are checked using separate logic

gates. The actual computation is combined with data latching, which removes

the overhead of explicit registers.
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A PCeHB template can take multiple inputs and produce multiple outputs.

Figure 2.6 shows a simple two input and one output PCeHB template. L0 and

L1 are dual-rail inputs to the template and R is a dual-rail output. A PCeHB

template has a forward latency of two transitions. Each pipeline stage computes

logic by using a NMOS pull-down stack followed by an inverter to drive the

output.

Figure 2.6: A two input and one output PCeHB template.

To understand the cycle time of 18 transitions in a PCeHB template, let us

assume two PCeHB pipelines in series with time (t) increments taken in terms

of logic transitions.
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• At t = 0, input tokens arrive at the first PCeHB pipeline block.

• At t = 2, first pipeline block produces its output.

• At t = 4, second pipeline block produces its output.

• At t = 5, L.e in the first block goes low.

• At t = 7, L.e in the following block, which is the R.e of the first block, goes

low. This indicates that the output from the first pipeline block is no longer

needed and can be reset.

• At t = 9, en signal in the first block is de-asserted.

• At t = 10, R rails in the first block are pre-charged.

• At t = 11, output, R, rails of the first block are reset.

• At t = 12, R rails in the second block are pre-charged.

• At t = 14, L.e in the first block goes high.

• At t = 16, L.e in the second pipeline stage goes high. This indicates the

neutrality of the inputs in the second pipeline stage.

• At t = 18, en is set in the first pipeline block, which indicates that the

pipeline is ready to accept new input tokens and compute a new output.

The highlighted logic gates in Figure 2.6 are not used for the actual compu-

tation but are only required for the handshake protocol. This includes the gen-

eration of completion detection signal (L.e) as well as the en signal that is used

to enable computation or latching in the pipeline stage. For high-througput cir-

cuits, each PCeHB stage contains only a small amount of logic with only a few

inputs and outputs.

27



As the number of inputs into a PCeHB pipeline stage increases, the input

validity tree becomes more complex and may require extra stages to compute,

which leads to an increase in the cycle time. The same holds true as the num-

ber of outputs increase. Hence, for high-througput circuits each PCeHB stage

contains only a small amount of logic with only a few inputs and outputs. This

leads to significant handshake overhead, in terms of power consumption and

transistor count, as tokens may have to be copied for use in separate processes

with each process doing its own validity and neutrality checks.

Figure 2.7 shows the power consumption breakdown of a simple full-adder

circuit implemented using a PCeHB template. Only 31% of the total power is

consumed in the actual logic, while the rest is spent in implementing the hand-

shake protocol. This is a significant power overhead, which gets worse as the

complexity of PCeHB templates increases with more inputs and outputs. The

result in Figure 2.7 was one of the main motivating factors that prompted us to

consider alternative pipeline solutions with less handshake circuitry. These al-

ternative templates are discussed and analyzed in great detail in the next chap-

ter.

2.4.2 Fine-grain bundled-data pipelines

The fine-grain bundled-data pipelines have an instant area advantage over the

QDI pipelines because of their use of single-rail encoded data channels [64].

However, the bundled-data pipelines include far more timing assumptions than

QDI circuits which makes them less robust. The bundled-data pipelines con-

tain a separate control circuitry to synchronize data tokens between different
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Figure 2.7: Power breakdown of a full-adder circuit in a PCeHB pipeline.

pipeline stages. The control circuitry includes a matched delay line, the delay of

which is set to be larger than that of the pipeline’s logic delay plus some margin.

In [64], for correct operation, the designer has to ensure that the control circuit

delay satisfies all set-up and hold time requirements just like in synchronous

design. Since our goal was to design pipeline templates with robust timing and

with forward latency similar to that of precharged logic, we did not consider

any bundled-data pipeline implementations in this thesis.
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Chapter 3

Energy-Efficient Pipeline Design

In this chapter, we present two novel energy-efficient pipeline templates for

high throughput asynchronous circuits. The proposed templates, called N-P

and N-Inverter pipelines, use single-track handshake protocol. There are mul-

tiple stages of logic within each pipeline. The proposed techniques limit hand-

shake overheads associated with input tokens and intermediate logic nodes

within a pipeline template. Each template can pack significant amount of logic

in a single stage, while still maintaining a fast cycle time of only 18 transitions.

Noise and timing robustness constraints of our pipelined circuits are quanti-

fied across all process corners. A completion detection scheme based on wide

NOR gates is presented, which results in significant latency and energy savings

especially as the number of outputs increase.

Three separate full transistor-level pipeline implementations of an 8x8-bit

booth-encoded array multiplier are presented. Compared to a standard QDI

pipeline implementation, the N-Inverter and N-P pipeline implementations re-
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duced the energy-delay product by 38.5% and 44% respectively. The overall

multiplier latency was reduced by 20.2% and 18.7%, while the total transistor

width was reduced by 35.6% and 46% with N-Inverter and N-P pipeline tem-

plates respectively.

3.1 Improving Energy-Efficiency of Fine-Grain Pipelines

QDI circuits are robust since each up and down transition within a QDI pipeline

template is sensed. But this robustness comes at the cost of significant power

consumption in pipeline handshake circuitry as shown in Figure 2.7. The high

handshake overhead is one of the serious constraints hampering the wide-range

adoption of QDI circuits especially for logic operations with a large number of

input and output signals, such as a 32-bit multiplier.

Our goal is to improve the energy efficiency of high performance asyn-

chronous pipelines but without sacrificing robustness. To this end, we kept the

following objectives for our resulting pipeline templates:

• Keep the cycle time of each stage within 18 transitions.

• Increase the ratio of logic to handshake. The handshake power overhead

must account for less than 50% of total pipeline power.

• No increase in the total transistor count is allowed.

• All timing assumptions are either isochronic fork assumption [41] or have

at least the same timing margin as the half-cycle timing assumption [34]

according to which the difference in number of transitions between any

two delay races must be at least 4.5 transitions.
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• Stalls on input and output should not impact correct operation.

We envision these circuits being used for large chunks of local logic (e.g. a mul-

tiplier) wrapped with QDI interfaces, rather than globally.

In the past, researchers have tried to increase the logic density of QDI

pipelines by adding extra logic stages [8], but this still does not yield the desired

reduction in the handshake overhead and leads to an increase in cycle time. To

analyze this effect, let us suppose we increase the logic depth of a pipeline by

adding extra logic stages. To conform to QDI behavior, the up and down tran-

sitions of all newly-created internal signals must be acknowledged. This can be

done either by explicitly checking for each transition using completion detec-

tion logic as is done in the PCeHB template or using weak conditions [62] i.e. the

output being valid implies that the input is valid (checked by additional n-fets

in the logic stack), and the output being neutral implies that the input is neutral

(checked by additional p-fets in the logic stack). The limitations of weak condi-

tions for performance are elaborated in [62] [36]. In the case of explicit checking,

there is the associated high handshake overhead because of all the extra validity

and neutrality detection logic gates. All these extra transitions associated with

the newly added logic stages and completion detection logic gates limit energy

efficiency gains.

There is clearly a need to look beyond just adding extra logic stages to

each pipeline stage. To improve the energy efficiency of high throughput asyn-

chronous pipelines, we look at alternative handshake protocols as well as some

timing assumptions in QDI circuits.
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3.1.1 Four phase handshake vs. Single-track handshake

In a four phase handshake protocol, the pipeline stage needs to detect the va-

lidity and the neutrality of both inputs and outputs. During the second half of

the four-phase protocol when the pipeline is waiting for inputs and outputs to

be reset, no actual logic is being computed but it still consumes roughly half of

the cycle time. Furthermore, the power consumed in detecting the neutrality of

inputs and outputs rivals that consumed during their validity detection. Due to

these characteristics, the four phase handshake protocol is clearly not an ideal

choice for energy efficiency.

Single-track handshake [70] protocol tries to overcome this weakness of four

phase protocol by practically eliminating the neutrality phase. Figure 3.1 shows

an overview of a single-track handshake protocol. The sender process initiates

the communication by sending the data token. The receiver uses the data for

computing its logic. Once the data is no longer needed, instead of sending an

acknowledge signal back to the sender process, the receiver process resets the

input tokens itself by pulling the data wires low through NMOS transistors as

illustrated in Figure 3.1. There are as many NMOS discharge transistors as there

are data wires, but for simplicity we show only one discharge transistor in Fig-

ure 3.1. As the data wires pulled low, the sender detects the token consumption

and gets ready to send the next token. Hence, eliminating the transitions asso-

ciated with second part of the four phase protocol.

There has been very limited work on single-track handshake templates.

Most of the prior work has focused on using single-track handshake protocol

to reduce the cycle time of asynchronous pipelines to less than 10 transitions

and not on how to use these extra transitions to improve logic density and en-
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Figure 3.1: Single-track handshake protocol.

ergy efficiency. Ferretti et al [24] provide a family of asynchronous pipeline tem-

plates based on single-track handshake protocol. Just like high throughput QDI

circuits, each of their pipeline templates contains only a small amount of logic.

Furthermore, their 6-transition cycle time pipelines use some very tight timing

margins that may require significant post-layout analog verification. Single-

track circuits have been used in the control path of GasP [64] bundled-data

pipelines. However, the actual data path of the pipeline does not use a single-

track handshake protocol.

We employ single-track handshake protocol for our proposed pipeline tem-

plates. However, our design effort focuses on increasing the logic density and

energy efficiency of each pipeline stage and not on reducing cycle time.

3.1.2 Relative Path Timing Assumption

QDI circuits are highly tolerant of process variations as each transition within a

QDI pipeline is sensed. The isochronic fork assumption [41], which states that
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the difference in delay between branches of a wire is insignificant compared to

the gate delays of the logic reading their values, is the only timing assumption

allowed in QDI design. Recently, LaFrieda et al [34] exposed another timing

assumption that is quite commonly used in QDI implementations, which they

named as the half cycle timing assumption (HCTA). According to HCTA, the

difference in number of transitions between any two delay races must be at least

4.5 transitions for PCeHB-style templates. The resulting templates are referred

to as Relaxed QDI templates and are shown to be quite robust.

LaFrieda et al [34] exploited HCTA to improve energy efficiency of their four

phase handshake protocol pipelines. In this work, we look to improve energy

efficiency of single track handshake protocol pipelines by introducing timing as-

sumptions with a margin of at least 5 gate transitions between any two relative

delay races.

3.2 High Throughput Energy Efficient Pipeline Templates

3.2.1 N-P and N-Inverter Pipeline Templates

We use single-track handshake protocol for our proposed pipeline templates.

Figure 3.2 shows the gate-level depiction of our first proposed template with

5 arbitrary dual-rail outputs indicated by signals R0 to R4. We have named

the template N-P pipeline since it computes logic using NMOS pull-down and

PMOS pull-up stacks. Each NMOS and PMOS stage can comprise multiple logic

stacks. However, for simplicity, we do not show multiple logic stacks and global

reset signals.
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Figure 3.2: N-P pipeline template

A PCeHB template has two logic stages per each pipeline, with the second

logic stage comprising an inverter to drive the output rails. Hence, there is only

one effective logic computation per pipeline block. In contrast, the N-P tem-

plate has N arbitrary stages of actual logic computations. However, for ease of

explanation and to keep cycle time within 18 transitions, we use N-P pipelines
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with four stages of logic. In the reset state, the NMOS logic nodes in the pipeline

are precharged, whereas the PMOS logic nodes are pre-discharged. Each state-

holding gate includes a staticizer, which comprises a keeper and a weak feed-

back inverter, to ensure that charge would not drift even if the pipeline were

stalled in an arbitrary state. The staticizers, drawn as two cross-coupled invert-

ers, for the intermediate as well as the final output nodes are shown in Fig-

ure 3.2.

When 1-of-N encoded input tokens arrive, logic is computed in the first stage

by pulling down the precharged nodes. This is similar to how logic is computed

in QDI templates. We limit the number of series transistors in an NMOS stack to

a total of four. The second logic stage uses a stack of PMOS transistors to com-

pute logic by pulling up the pre-discharged nodes. As the PMOS transistors

have slower rise times, for throughput purposes we limit the number of series

transistors in a PMOS stack to a total of three (including the enable). As the out-

put nodes from the second stage pull up, the pull-down stacks in the third stage

get activated and compute logic by pulling down their output nodes. Finally,

the fourth stage computes logic by using its pull-up stack of PMOS transistors.

The four cascaded stages of logic in our pipeline are similar to cascaded domino

logic but without any static inverters in between dynamic logic stages.

There are no explicit validity detection gates for the arriving input tokens nor

for any intermediate outputs that are being produced. AckPrevious (explained

later in this section) signifies the validity of input tokens into the pipeline and

alleviates the need to explicitly check for validity. For intermediate outputs pro-

duced and consumed within the template, validity must be embedded in a pull-

up or pull-down logic stack that uses the intermediate output to compute the
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following stage logic output. This could incur additional cost, depending on the

function being implemented. However, for a logic stack inherently embedded

with input validity, for example a stack that computes the sum of two inputs,

there is zero validity detection overhead. The elimination of explicit validity

detection gates for input tokens and intermediate output nodes leads to consid-

erable power savings and minimization of handshake overhead.

There is an explicit completion detection logic for all the outputs that even-

tually leave the pipeline, either at the end of the second stage or the fourth stage.

The completion detection of the final outputs automatically signifies the validity

of all intermediate outputs as well as that of all the initial input tokens into the

N-P pipeline. The completion detection logic comprises a set of NOR gates and

a c-element tree as shown in Figure 3.2. Each of the c-element gates includes a

staticizer in parallel. These staticizers are not shown for simplicity. The outputs

from the NOR gates are combined using a c-element tree which de-asserts the

Ack signal once all outputs are valid. This leads the discharge signal to go high,

which initiates the reset of all input tokens. The discharge signal is only set for a

short pulse duration. The de-asserted Ack signal also sets the enP signal to high

which discharges all pull-up nodes in logic stage two. The enN signal is set low,

which precharges all pull-down nodes in logic stages one and three. Since the

neutrality of the internal nodes is not sensed, we introduce a timing assumption

on their transition. The discharge of input tokens with a short pulse signal in-

troduces another timing assumption. These two timing assumptions entail the

following constraints:

• The pull-down nodes must be fully precharged before enN goes high and

pull-up nodes must be fully discharged before enP transitions low. This
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translates into a race condition of 1 pull-up/pull-down transition versus

9 gate transitions, the minimum transition count before both enN and enP

flip when two N-P pipelines are in series.

• All input tokens must be fully discharged within the short pulse discharge

period. The pulse has a minimum period of 5 gate transitions. There are

as many NMOS discharge transistors as there are input data rails.

The robustness of our pipeline template is not compromised as these timing

assumptions satisfy the minimum timing constraint of at least 5 gate transitions

between any two relative path delay races.

The discharge of any of the outputs before the validity of all other outputs

has been acknowledged can permanently stall the pipeline. To analyze this ef-

fect, let us suppose we have three N-P pipelines A, B, and C as shown in Fig-

ure 3.3. A produces two outputs, one of which goes to B and the other one to

C. B uses the output from A to compute its output. Since B has computed its

output, it can now discharge the input it received from A. If A’s other output,

which is headed for C, is not yet produced or acknowledged by the completion

detection logic of A, then B’s discharge of its input will make the completion

detection logic of A unstable. To prevent this, we add the AckNext signal to our

pipeline template. It is sent to all following pipeline stages that consume the

outputs from the current N-P pipeline. This signal is referred to as AckPrevious

in the destination pipeline as shown in Figure 3.2. It prevents the discharge of

the tokens coming from the sender stage before the validity of all outputs in the

sender has been acknowledged. As mentioned earlier, AckPrevious also signifies

the validity of input tokens into the pipeline, hence alleviating the need to check

for input token validity in NMOS pull-down stacks. In the case where inputs
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come from more than one pipeline block, the AckPrevious signals from all corre-

sponding pipeline blocks need to be added to the completion detection logic to

ensure against any premature discharge of input data rails.

Figure 3.3: Ack signals to ensure correctness

Forking of an output to two successors is also not allowed because then the

two successors can reset (discharge) the connection at different times, which

could lead to potential conflicts. Hence, we need to create explicit duplicate

outputs in the last logic stack for each output that goes to multiple destinations.

To determine the cycle time of the proposed N-P pipeline, let us assume two

N-P pipelines in series with time (t) increments taken in terms of logic transi-

tions.

• At t = 0, input tokens arrive at the first pipeline block.

• At t = 4, first pipeline block produces its output.
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• At t = 7, Ack signal in the first block is de-asserted which signifies the

validity of all output signals

• At t = 8, second pipeline block produces its output.

• At t = 9, input tokens in the first pipeline block are discharged. Internal

PMOS logic nodes are discharged.

• At t = 10, NMOS logic nodes in the first pipeline are precharged.

• At t = 13, output tokens from the first pipeline block are discharged by the

second pipeline.

• At t = 16, Ack signal in the first block is asserted which signifies the reset

of all output signals.

• At t = 18, enN is set and the pipeline is ready to accept new input tokens.

Hence, our proposed N-P pipeline has a cycle time of 18 transitions. Stalls on

inputs and outputs do not impact correct operation. The template waits in its

present state if inputs arrive at different times. This holds true for outputs being

computed at different times as well. The relative path delay assumption has a

root, Ack, which only changes after all inputs have arrived and all outputs have

been computed. As a result, correct operation is not a function of arrival time of

signals, which makes the N-P template quite robust.

We could invert the senses of the inputs and outputs by changing the order

of the logic stacks within N-P pipeline. With inverted inputs, the first stage

comprises PMOS logic stacks and the final logic stage comprises NMOS logic

stacks with the outputs produced in inverted sense. This could improve the

drive strength of the output signals especially in the case of high fan-out.
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Our second proposed pipeline template replaces the PMOS pull-up logic

stacks in stage 2 with an inverter, hence the name N-Inverter template, and in-

cludes only a single pull-up PMOS transistor in stage 4 as shown in Figure 3.4.

As PMOS logic stacks have slower rise times and relatively weak drive strength,

the N-P template cycle time may incur a performance hit. The N-Inverter tem-

plate addresses this by using inverters with faster switching time and strong

drive strength . It also results in better noise margins as discussed in detail in

Section 3.3. However, these improvements come at the cost of reduced logic

density as stage 2 and 4 no longer perform any effective logic computation. De-

spite these alterations, the N-Inverter and N-P templates use exactly the same

timing assumptions. The completion detection and handshake circuitry is also

identical.

3.2.2 Completion detection logic for large number of outputs

Since N-P and N-Inverter pipeline templates can pack significant logic in a sin-

gle pipeline block, there may be cases where a pipeline block has quite a large

number of outputs. To detect the validity of these large number of outputs, we

may have to expand the c-element validity tree by a couple of extra stages as

shown in Figure 3.5.

As a result of these two extra stages in the completion detection validity tree,

the cycle time of N-P and N-Inverter templates is no longer 18 transitions. There

are four extra transitions, two each for the validity and neutrality detection of

the output signals, which increases the cycle time to 22 transitions. Since our

goal was to keep the cycle time within 18 transitions, we explored a number of
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Figure 3.4: N-Inverter pipeline template

other completion detection circuits [56] [14]. To reduce the cycle time back to

18 transitions, we use wide NOR gates based completion detection circuitry as

proposed in [14], but with a couple of optimizations to make the circuitry fea-

sible for our proposed pipeline templates. These optimizations include the use

of only one output from the set of outputs destined for the same next pipeline
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Figure 3.5: Multi-stage c-element tree completion detection logic for large
number of outputs

block for neutrality detection and the addition of enP and enN transistors in the

pull-up stacks of DONE and RST circuits as seen in Figure 3.6. These optimiza-

tions and their benefits are outlined in detail towards the end of this section.

The Ack signals are generated using static NOR gates as previously. The

validity of the outputs is signaled by the setting of Done. To ensure that the Done

signal is only set once all Acks have gone low, the pull-up path resistance of the

Done circuit is set to be at least 4 times as big the pull-down path resistance when

only one pull-down transistor is conducting. To prevent a direct path between

VDD and GND, the Ack from one of the latest (slowest) outputs is used in the

pull-up stack.
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Figure 3.6: Completion detection logic for large number of outputs

The RST signal is used to sense the reset of all outputs. The various R.t and

R.f signals correspond to the actual dual-rail outputs being produced. The latest

(slowest) signal to reset is put in the pull-up stack. The pull-up path resistance

of the RST circuit is set to ensure that it only goes high once all pull-down

transistors in the RST circuit have turned off i.e. all output signals have reset.

The RST circuit has two pull-down transistors for each dual-rail output and

four pull-down transistors for each 1-of-4 output. As the number of outputs

increase, the RST rise time suffers significantly. A close inspection of our pro-

posed pipeline templates made us realize that for outputs destined for the same

pipeline block, we only need to check for the reset of one of the outputs and not

all because they use the same discharge pulse. Let us assume the dual-rail out-

puts R0 to R3 are all headed for the same pipeline block. We minimize the RST
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circuit by only using pull-down transistors corresponding to R0 output. The

transistors corresponding to R1, R2, and R3 dual-rail outputs are eliminated as

shown in Figure 3.6.

The addition of enP and enN transistors in the pull-up stacks of DONE and

RST circuits was another optimization we introduced. The enP signal cuts off

the pull-up path in the DONE circuit while the pipeline is waiting for the out-

puts to be reset. This prevents the occurrence of a direct path between VDD and

GND if any of the Acks other than Ackslow goes high first. Similarly, the intro-

duction of enN in the pull-up stack of RST cuts off the direct path between VDD

and GND during the evaluation phase.

3.2.3 Conversion Templates

We envision our proposed N-P and N-Inverter templates to be used for large

chunks of local logic wrapped with QDI interfaces. This entails conversion of

input tokens from four-phase handshake protocol to single-track protocol and

that of output tokens back to four-phase protocol . Figure 3.7 shows an example

of a pipeline template used in this protocol conversion. When an input token

arrives, it pulls down the pre-charged node, which in turn drives the output.

The input and output validity causes Ack to go low. This puts the pipeline in

pre-charge phase. The inverted Ack causes the sender process to reset the input

data rails. When the destination pipeline discharges the output rails, the tem-

plates sets Ack to high, which signals that the template is ready to receive the

next token. This template includes no timing assumption.

To convert output tokens from single-track protocol back to four-phase pro-
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Figure 3.7: Four-phase protocol to single-track protocol conversion tem-
plate

tocol, we use the template in Figure 3.8. The arriving input token pulls down

the pre-charged node, which in turn drives the output. The AckPrevious signal

is included to prevent premature discharge of input. It goes to low when it is

safe to discharge. The receiver process de-asserts the AckIn signal once it no

longer needs the data. At this point, the discharge pulse goes high. It has a

minimum period of 5 gate transitions and requires that input token be fully dis-

charged within this period. As in the case of our proposed pipeline templates,

this timing assumption meets our minimum delay race timing constraint.

Although, these templates do not add significant hardware complexity, they

nevertheless incur some area and energy overhead. In a design, with large
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Figure 3.8: Single-track protocol to four-phase protocol conversion tem-
plate

chunks of local computation, comprising multiple N-P or N-Inverter pipeline

stages, the conversion templates are used only once at each end of the design

boundary. This helps amortize their cost over the entire datapath. The overhead

could be further mitigated by merging useful computation in the logic stacks.
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3.3 Design Considerations and Trade-offs

3.3.1 Completion Detection Circuits

To quantify the trade-offs between the two completion detection schemes, we

carried out detailed SPICE level simulations with estimated wire loads for each

node. It is assumed that each output goes to a separate pipeline block, hence

the discharge of each signal is checked. The wide NOR completion detection

circuitry results in lower latency relative to multi-stage c-element tree detection

completion scheme across a wide range of outputs as shown in Figure 3.9. The

latency difference increases as the number of outputs increases since c-element

completion may require multiple extra stages. For 15 output signals, the wide

NOR completion results in 30% less latency.

In terms of energy consumption, the choice of a completion detection scheme

depends not only on the number of outputs but also on the arrival order and the

delay of the chosen latest signal as shown in Figure 3.10. The x-axis corresponds

to the arrival order of the chosen latest signal. For example, the data point cor-

responding to the arrival order of 9 means that our chosen latest output was the

ninth output to be set or reset. All of the remaining signals arrived after an ar-

bitrary 2-FO4 delay. This corresponds to a period of direct path between VDD

and GND for wide NOR based completion detection scheme. The c-element

based completion scheme consumes the same energy irrespective of the arrival

order. It is also more energy-efficient when the number of outputs is 9 or less.

However, with a greater number of outputs as may be required for some N-P

and N-Inverter pipeline templates, the wide NOR based completion detection

scheme consumes significantly less energy. Another noteworthy observation
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Figure 3.9: Latency comparison of completion detection schemes

from Figure 3.10 is that the effect of arrival order on energy consumption is

only profound when the latest signal is one of the last few signals.

The longevity of the period of direct path between VDD and GND, when the

chosen latest signal is the not the last one, may lead to significant energy con-

sumption for wide NOR based completion detection scheme. To explore this

effect, we simulated wide NOR completion circuits for 12 and 15 outputs by

varying the delay of late arriving signals as seen in Figure 3.11 and Figure 3.12.

For 12 outputs, unless any output arrives 3 or more FO4 delays after the cho-

sen latest signal, the wide NOR completion consumes less energy compared to

the c-element based completion scheme, irrespective of the arrival order of the

latest signal. For 15 outputs, the margin increases to 5 or more FO4 gate delays

for the wide NOR completion to consume more energy than the corresponding
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Figure 3.10: Completion detection energy consumption for different ar-
rival order of chosen signal

c-element based completion detection scheme. These results indicate that the

energy consumption of the wide NOR completion scheme is largely a function

of delay between the chosen latest signal and the actual last signal. In the case

of small delay variability between outputs produced within the same pipeline

block, for example most arithmetic operations, the wide NOR scheme consumes

less energy per operation than its c-element tree counterpart. In the unusual

scenario of large delay difference between outputs within the same pipeline, the

wide NOR scheme still functions correctly, albeit at higher energy consumption.

In terms of transistor area, the wide NOR completion detection circuit be-

comes more efficient as the number of outputs increase as seen in Figure 3.13.

The choice of a particular completion detection circuit is therefore a design
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Figure 3.11: WideNOR for 12-outputs with varying delay of latest signal

choice, which may depend on a number of factors: the number of outputs for a

pipeline stage, latency and throughput targets, power budget, area constraints,

and the delay variability of chosen latest output.

3.3.2 Throughput, Energy, and Area Trade-offs

Throughput, energy, and area are critical design considerations for a circuit de-

signer. We choose an 8-to-1 multiplexor design, which produces multiple copies

of the output as shown in Figure 3.14, to highlight some of these trade-offs in our

proposed templates. PCeHB, N-P, and N-Inverter pipelined versions of the cho-

sen circuit were implemented. Highest precision SPICE simulations were con-

ducted in 65nm bulk CMOS process with estimated wire loads for each node.
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Figure 3.12: WideNOR for 15-outputs with varying delay of latest signal

Although, all three templates have a cycle time of 18 transitions, the N-P

implementation results in an 8.5% lower throughput. The N-P implementation

is slower because it employs some logic computations in PMOS stacks, which

have slower slew rates and weaker drive strength than NMOS stacks. In a

PCeHB implementation, each 2-to-1 multiplexor represents a separate pipeline

stage with each stage incurring a significant handshake overhead as seen earlier

in Figure 2.7. There is a separate pipeline block for copy logic as well. Whereas,

in N-P and N-Inverter implementations, the full 8-to-1 multiplexor circuit in-

cluding copy logic can be packed completely in one and two pipeline blocks

respectively. The effect of this logic compaction on energy efficiency and total

transistor width is quite profound. Our N-Inverter implementation, operating

at the same throughput as a PCeHB design, consumed 52.6% less energy per
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Figure 3.13: C-Element vs WideNOR: total transistor width comparison

operation while using 48% less transistor width. With N-P pipeline, the energy

and transistor width savings shoot up to 71.2% and 65% respectively, albeit at

an 8.5% throughput penalty.

The proposed N-P and N-Inverter templates enable us to pack more logic

computations within a single pipeline stage while maintaining a very high

throughput. This flexibility is not available in standard PCeHB designs, which

are composed of pipeline stages with only one effective logic computation in a

single stage. More logic per a single stage in our proposed templates creates

a likelihood of a large number of outputs per pipeline, which may adversely

affect overall throughput as shown in Figure 3.16. The dependency of absolute

throughput on the number of outputs highlights an important design trade-off.

With more outputs, although the number of transitions remain the same with
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Figure 3.14: 8-to-1 multiplexor with 2 copies of Output

the use of a wide NOR completion detection logic, each of these transitions in-

cur a higher latency as shown earlier in Figure 3.9. The results would be even

worse if a c-element based completion logic was used as it would incur 4 extra

transitions per each cycle.

3.3.3 Noise Analysis

Noise feedthrough is one of the major concerns when it comes to the use of dy-

namic gates. Since our proposed pipeline templates use cascaded dynamic gates

55



Figure 3.15: 8-to-1 multiplexor design trade-offs for different pipeline
styles

for logic computations, we carried out comprehensive noise margin analysis of

our circuits. Dynamic gates from each pipeline template were simulated across

all process corners, typical-typical (TT), slow-fast (SF), fast-slow (FS), slow-slow

(SS), and fast-fast (FF), in a 65nm bulk CMOS technology with highest-precision

SPICE configuration at 1V nominal VDD and 85◦C operating temperature. Since

SPICE simulations do not account for wire capacitances, we included additional

wire load in the SPICE file for every gate in the circuit. For each pipeline tem-

plate, the lowest value of noise margin amongst all process corners was chosen.

For noise feedthrough analysis of N-P template, we analyzed a full-adder

NMOS logic stack followed by a two-input AND gate in a PMOS pull-up stack.

The noise margin, as defined in [71], of this cascaded N-P configuration is the

56



Figure 3.16: Throughput dependency on the number of outputs

difference in magnitude between the minimum low input voltage recognized

by NMOS logic stack on one of the inputs at unity gain point and maximum

low output voltage of the driving PMOS pull-up stack. For N-Inverter and

PCeHB templates, we analyzed a full-adder NMOS logic stack followed by a

static CMOS inverter, with noise margin defined as the difference in magnitude

between the minimum low input voltage recognized by NMOS logic stack on

one of the inputs and maximum low output voltage of the driving output in-

verter. The results are shown in Figure 3.17 which also shows the noise margin

of a two-input static CMOS NOR gate for comparison.

The N-P template has the lowest noise immunity. However, the noise margin

can be significantly improved by increasing the relative drive strength of the

staticizers to dynamic logic stacks. But this improvement comes at the cost of
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Figure 3.17: Noise margin analysis

throughput degradation and a slight increase in energy per operation as shown

in Figure 3.18 and Figure 3.19 respectively. The energy per operation results

are normalized to a PCeHB implementation energy per operation at a staticizer

strength of 0.1. As seen from these results, the choice of an exact strength value

for a staticizer represents a design trade-off, which should be made on the basis

of final throughput target, desired robustness, as well as circuit application.

3.3.4 Timing Margin

The N-P and N-Inverter pipeline templates include multiple timing assump-

tions, the breach of which could impact correct operation or stall the pipeline.

In Section 3.2, we discussed the timing margins necessary to ensure correct-
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Figure 3.18: Effect of staticizer strength on pipeline throughput

ness, but these timings margins were given in terms of gate transitions. To en-

sure sufficient robustness of our templates, we analyzed the exact timing con-

straints of full transistor-level implementations of our proposed pipelines in a

65nm bulk CMOS technology with highest-precision SPICE configuration at 1V

nominal VDD, 85◦C operating temperature, and estimated wire loads for each

gate. The timing constraint of 9 gate transitions for precharge and discharge

of internal nodes translated into 14.8 FO4 and 12.2 FO4 delays for N-P and N-

Inverter pipelines respectively, whereas the worst case transition corresponding

to precharge or discharge of an internal node took no longer than 2.67 FO4 de-

lays. This yields a very safe timing margin of over 12 FO4 and 9.5 FO4 delays

for N-P and N-Inverter pipelines respectively.

The second timing assumption in the N-P and N-Inverter pipelines pertains
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Figure 3.19: Effect of staticizer strength on energy/op

to the full discharge of all input tokens within the short pulse discharge period.

The 5 transition discharge pulse translates into 5 FO4 delays for both N-P and

N-Inverter templates. The discharge pulse timing margin is a function of in-

put load, which in turn is a function of input gate and wire capacitances. Since

we envision our proposed templates to be used for large chunks of local com-

putation and not for global communication, we found the short pulse period

sufficient for full input token discharge including the added wire capacitance

for each node, which corresponds to 12.5 µm wire length. In the worst case, an

input token took no longer than 2.5 FO4 delays to fully discharge, which yields

a timing margin of 2.5 FO4s. Since the discharge pulse period is not on pipeline

critical path for both forward latency and throughput, the timing margin could

be improved by adding two extra inverters to the pulse generator inverter chain
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without affecting performance. With these two extra inverters, the timing safety

cushion increases from 2.5 FO4 to 4.5 FO4 delay, which makes the templates sig-

nificantly more robust.

3.4 8x8 Booth-Encoded Array Multiplier

This section highlights the effectiveness of our proposed templates in an array

multiplier design. High performance multiplier circuits are an essential part of

modern microprocessors [55] [69] and digital signal processors [68]. The FPM

datapath’s complexity is a function of the array multiplier it uses. To achieve

high throughput and low latency, most high performance chips use some form

of booth encoded array multiplication hardware [10]. The array multiplier ar-

chitecture requires a large number of tokens to be in flight at the same time. Each

multiplication operation produces a number of partial products which are then

added together to produce the final product. We implemented an 8x8-bit radix-

4 booth-encoded array multiplier (at the transistor level) using PCeHB pipelines

to act as our baseline. To quantify the energy efficiency and other characteristics

of our proposed low-handshake pipeline templates, we implemented two full

transistor level 8x8-bit radix-4 booth-encoded array multipliers using N-P and

N-Inverter pipeline templates respectively. Since improving energy-efficiency

was the primary goal, we pack considerable logic within each pipeline stage,

even at the cost of incurring throughput degradation of up to 25% compared to

PCeHB style pipelines.

Figure 3.20 shows the top-level specification of our 8x8-bit multiplier. The

top part of Figure 3.20 shows the partial product generation for the array mul-
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tiplier. Each of the Y inputs is in a radix-4 format. The multiplicand bits are

used to generate the booth control signals for each partial product row. Since a

PCeHB pipeline can only compute a small amount of logic, each of the rectan-

gular boxes labeled PP represents a separate pipeline stage. The booth control

signals and multiplier input bits are sent from one pipeline stage to another,

while each pipeline stage produces a two bit partial product.

The second half of Figure 3.20 shows the order in which the partial products

are produced and summed up. The horizontal dotted lines separate different

time periods. Each of the dotted polygons represent a separate PCeHB pipeline

stage. The entries inside each polygon represent the inputs which are added

together to produce the sum and carry outputs for the next pipeline stage. PP

stands for two-bit partial product entry, C’ corresponds to sign bit for each par-

tial product row, SS stands for two-bit sum output from a previous stage, and C

stands for a single-bit carry output from a previous stage sum computation. The

final product bits are generated in a bit-skewed fashion, indicated by the sym-

bol RR. Hence, we need to add slack-matching buffers on the outputs as well

as some of the inputs to optimize the multiplier throughput [16]. For simplicity,

we do not show these slack-matching buffers in Figure 3.20.

The multiplier is highly pipelined but contains very little logic in each

pipeline stage. Section 2.4 includes an example of a PCeHB template similar

to the ones used in the 8x8-bit multiplier design. The highlighted logic gates in

Figure 2.6 are not used for the actual computation but are only required for the

handshake protocol. Since each PCeHB stage contains only a small amount of

logic, it leads to significant handshake overhead, in terms of power consump-

tion and transistor count, as tokens may have to be copied for use in separate
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Figure 3.20: 8x8-bit multiplier architecture using PCeHB pipelines

processes with each process doing its own validity and neutrality checks.
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Figure 3.21 shows an overview of N-P pipelines and their logic stacks for the

8x8-bit array multiplier. Both N-P pipelines have four stages of logic. The first

stage of the first pipeline generates all partial product entries. This is clearly

a big power saving, as booth control signals and multiplier inputs need to be

generated only once and not for each separate pipeline block as in the PCeHB

implementation. Each dotted polygon represents a logic stack and not a sepa-

rate pipeline stage, which leads to very high logic density in each pipeline block.

Each RR, SS, and C signal represents a single output channel, which translates

into 14 outputs for the first N-P pipeline block and 4 outputs for the second N-P

block. The N-Inverter pipeline implementation requires twice as many pipeline

stages as N-P implementation since no effective logic computation is performed

in its PMOS pull-up stacks. However, the rest of the design is similar to N-P

pipeline implementation with considerable logic within each pipeline stage.

In contrast to the large number of fine-grain pipeline blocks in the PCeHB

implementation shown in Figure 3.20, we only need two N-P and four N-

Inverter pipeline stages to implement the bulk of 8x8-bit multiplication logic.

The inputs to the first pipeline for both N-P and N-Inverter implementations are

four radix-4 multiplier bit entries and booth control signals for all rows, which

are generated separately using PCeHB style pipelines. We use conversion tem-

plates, shown in Section 3.2.3, to convert these tokens from four-phase protocol

to single-track protocol. For pipeline blocks with more than nine outputs, we

use wide NOR completion detection scheme. For outputs destined for the same

pipeline block, we only track the neutrality of one of the outputs going to the

second pipeline. This optimization greatly reduces the complexity of RST cir-

cuitry, reduces power consumption, and increases the throughput by up to 6.3%

for our proposed pipeline templates. To highlight the seamless integration of N-
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Figure 3.21: 8x8-bit multiplier using N-P pipelines
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P and N-Inverter pipelines within any four phase handshake environment, we

convert the resultant product outputs into four phase 1-of-4 encoding.

3.4.1 Evaluation of 8x8-bit Multiplier Designs

The transistors in our baseline PCeHB multiplier implementation and our pro-

posed N-P and N-Inverter pipeline implementations were sized using standard

transistor sizing techniques [71]. The slow and power-consuming state-holding

completion-elements were restricted to a maximum of three inputs at a time.

Keepers and weak feedback inverters were added for each state-holding gate

to ensure that charge would not drift even if the pipeline were stalled in an

arbitrary state.

Since HSIM/HSPICE simulations do not account for wire capacitances, we

included additional wire load in the SPICE file for every gate in the circuit.

Based on prior experience with fabricated chips and post-layout simulation, we

have found that our wire load estimates are conservative, and predicted en-

ergy and delay numbers are typically 10% higher than those from post-layout

simulations. Our simulations use a 65nm bulk CMOS process at the typical-

typical (TT) corner. Test vectors are injected into the SPICE simulation using

a combined VCS/HSIM simulation, with Verilog models that implement the

asynchronous handshake in the test environment. All simulations were carried

out at the highest-precision setting.

Figure 3.22 shows the power-consumption breakdown of our proposed

pipeline templates. In contrast to the PCeHB pipelines, which consume over

69% power in handshake overheads, the handshake and completion detection
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logic accounts for only 26% of the total power in our proposed pipelines. The

elimination of validity and neutrality detection logic for a large number of in-

termediate nodes in each pipeline is the main reason for the reduction of hand-

shake related overheads.

Figure 3.22: Power consumption breakdown of N-P and N-Inverter
pipelines

To fully quantify and evaluate our proposed pipeline templates, we simu-

lated all three 8x8-bit array multiplier implementations across a wide range of

voltages. All experimental results presented in this section include the explicit

overhead of conversion templates. These templates convert input tokens from

four phase protocol to single-track protocol and the outputs from single-track

protocol back to four-phase protocol.

The throughput and energy consumption results for all three pipeline im-

plementations with data points corresponding to 0.6V to 1.1V at 0.1V intervals
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plotted from left to right in Figure 3.23. As stated earlier, the N-Inverter and N-P

implementations were designed from energy efficiency perspective while allow-

ing throughput degradation of up to 25% compared to PCeHB design. To ensure

fair comparison, the N-P implementation used a higher staticizer strength to

yield similar noise margin as PCeHB and N-Inverter implementations. To min-

imize handshake circuitry, each N-Inverter and N-P pipeline block was packed

with considerable logic computations and produced a large number of outputs,

which reduced overall throughput. Hence, in terms of throughput, the PCeHB

pipeline implementation yields the best results across all voltages. But this per-

formance improvement comes at the cost of 45.4% and 59.5% higher energy

per operation compared to the N-Inverter and N-P pipeline implementations

respectively. Another key observation from Figure 3.23 is that for any single

throughput target, be it in low throughput range such as 400-500 MHz or in

high throughput range such as 1.3-1.5 GHz, our proposed templates consume

far less energy per operation than the PCeHB implementation.

The fact that our proposed pipelines worked across a vast voltage range

without requiring any transistor re-sizing highlights the robustness of our pro-

posed templates. The experimental results include the power consumed in tem-

plates that are required to convert the inputs from four phase protocol to single-

track protocol and the outputs from single-track protocol to four phase protocol.

The energy savings are largely due to:

• The massive reduction in the handshake circuitry because of the elimina-

tion of validity and neutrality detection gates for all internal nodes.

• The sharing of inputs and intermediate outputs within a same pipeline

block. In a PCeHB implementation, the inputs and outputs are copied
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Figure 3.23: 8x8-bit multiplier throughput vs energy for three different
pipeline styles

from one stage to another and are subjected to separate validity and neu-

trality detection checks within each pipeline block.

• The use of a more energy-efficient completion detection scheme.

To consider performance and energy together, we use two metrics: energy-

delay product and energy-delay2 product as shown in Figure 3.24. The re-

sults are normalized to the PCeHB implementation. The N-Inverter and N-

P pipelines reduce the energy-delay product by 38.5% and 44% respectively.

For energy-delay2 product, N-Inverter implementation yields a 30.3% reduc-

tion and N-P pipelines result in 22.2% reduction when compared to the PCeHB

implementation.
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Figure 3.24: 8x8-bit Multiplier energy-delay analysis for three different
pipeline styles

The N-Inverter and N-P implementations reduce the overall multiplier la-

tency by 20.2% and 18.7% respecitvely as shown in Table 4.4. These two pipeline

templates can pack significant amount of logic within a single pipeline block,

which reduces the total number of pipeline stages required and hence results

in latency reduction. Although, N-Inverter implementation requires twice as

many pipeline stages as N-P implementation, it results in a 1.85% lower overall

latency. This could be attributed to the use slower pull-up logic stacks in N-P

templates.

In terms of the total transistor count, the N-Inverter and N-P implementa-

tions use 42.2% and 54.2% less transistors respectively than the PCeHB imple-

mentation as shown in Table 3.2. The total transistor width in N-Inverter and

N-P designs is 35.6% and 46% less respectively than that in the PCeHB imple-

mentation. This huge saving in the transistor count and width can be directly
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Table 3.1: 8x8-bit Array Multiplier Latency

Pipeline Style Latency

PCeHB 663 ps

N-Inverter 529 ps

N-P 539 ps

attributed to the packing of more logic stacks within a single pipeline block and

the elimination of handshake logic for all intermediate nodes.

Table 3.2: 8x8-bit Array Multiplier Transistor Count

Pipeline Style No. of Transistors Width (µm )

PCeHB 17083 5290

N-Inverter 9864 3402

N-P 7819 2853

The choice of a particular pipeline implementation represents a design trade-

off. Critical factors such as target throughput, logic complexity, power bud-

get, latency range, total transistor count, noise margins, and timing robustness

will have to be taken into account simultaneously before choosing a particular

pipeline implementation. The N-P and N-Inverter templates represent a good

energy efficient alternative to QDI templates, especially for logic computations

which require a large number of inputs or outputs or those with multiple inter-

mediate logic stages. We envision these circuits being used for large chunks of

local logic (e.g. an array multiplier in a floating point unit) wrapped with QDI

interfaces, rather than globally.
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3.5 Summary

We propose two energy-efficient pipeline templates for high throughput asyn-

chronous circuits. These two templates, named N-P and N-Inverter pipelines,

use single-track handshake protocol. Each pipeline contains multiple stages of

logic. The handshake overhead is greatly minimized by eliminating validity

and neutrality detection logic gates for all input tokens as well as for all inter-

mediate logic nodes. Both of these templates can pack significant amount of

logic within each pipeline block, while still maintaining a fast cycle time of only

18 transitions. Stalls on inputs and outputs do not impact correct operation. A

comprehensive noise analysis of dynamic gates within our proposed templates

shows sufficient noise margins across all process corners. Since our templates

introduce multiple timing assumptions, we also analyzed the timing robustness

of our pipelines. A completion detection scheme based on wide NOR gates is

presented, which results in significant latency and energy savings especially as

the number of outputs increase.

Three separate full transistor-level pipeline implementations of an 8x8-bit

booth-encoded array multiplier are presented. Compared to the PCeHB im-

plementation, the N-Inverter and N-P pipeline implementations reduced the

energy-delay product by 38.5% and 44% respectively. The overall multiplier

latency was reduced by 20.2% and 18.7%, while the total transistor width was

reduced by 35.6% and 46% with N-Inverter and N-P pipeline templates respec-

tively.
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Chapter 4

An Operand-Optimized

Floating-Point Adder

In this chapter, we present the design and implementation of an asynchronous

high-performance IEEE 754 compliant double-precision floating-point adder

(FPA). We begin with a baseline asynchronous FPA that corresponds to a state-

of-the-art high performance synchronous FPA design. We provide energy-

consumption breakdown of a high-performance asynchronous FPA datapath,

and use this to guide our optimizations for energy-efficiency. We present our

operand-dependent optimization techniques to reduce the energy per opera-

tion of asynchronous floating-point addition, including some that result in poor

throughput in pathological cases. It is these optimizations that are challenging

in the synchronous context, because they increase the worst-case critical path

making the common case slower even though on average they have negligible

impact on throughput. To our knowledge, this is the first detailed design of a
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high-performance asynchronous double-precision floating-point adder.

4.1 A Baseline Asynchronous FPA

Our baseline unit is the first fully-implemented (at the transistor-level) asyn-

chronous double-precision floating-point adder of its kind. It supports all four

rounding modes and is fully IEEE-754 compliant. Fig. 4.1 shows the block dia-

gram of our FPA datapath, which is loosely based on recent high-performance

FPA/FMAs. It uses standard state-of-the-art techniques such as leading one

prediction and decoding, use of parallel prefix tree adder, and fast logarith-

mic shifters to keep an overall low latency and high throughput. To reduce

latency and overall complexity, the post-addition normalization datapath is sep-

arated in two paths. The Left path contains a variable left-shifter, whereas the

Right path includes a single-position right or left shifter along with all rounding

and increment logic. We equally weighed performance and power trade-offs in

the choice of our circuits for various functional blocks of the FPA. The follow-

ing subsections explain our choice of asynchronous pipelines, 56-bit significand

adder and LOP/LOD functional block.

4.1.1 Fine-grain Asynchronous Pipelining

We use quasi-delay-insensitive (QDI) asynchronous circuits in our FPA design.

Each QDI pipeline contains only a small amount of logic (e.g. a two-bit full-

adder). This fine-grain control over each logic computation enables us to intro-

duce very low level operand dependent optimizations.
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Figure 4.1: Asynchronous Baseline FPA Architecture
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Our baseline asynchronous FPA’s datapath is highly pipelined (thirty

pipeline stages) to maximize throughput. Unlike the standard synchronous

pipelines, the forward latency of each asynchronous pipeline is only two logic

transitions (the pull-down stack followed by the inverter), hence the thirty stage

asynchronous pipeline depth results in acceptable FPA latency. The fine-grain

asynchronous pipelines in our design contain only a small amount of logic (e.g.

a two-bit full-adder).

We use pre-charge enable half-buffer (PCeHB) pipeline, explained in Sec-

tion 2.4, for all data computation [22]. For simple buffers and copy tokens, we

use a weak-conditioned half-buffer (WCHB) [36] pipeline stage, which is much

smaller circuit than a PCeHB and hence is more energy-efficient for simple data

buffering and copy operations.

4.1.2 Hybrid Kogge-Stone Carry-Select Adder

The 56-bit significand adder is on the critical path of the FPA and is the single

largest functional block in the FPA datapath. Improvements in the adder de-

sign usually have the largest overall impact on the FPA, hence designers spend

considerable time in optimizing their adder circuits for performance and power.

Parallel prefix logic networks that use tree structures to compute the carry are

usually preferred for any adder with a large number of input bits. Tree adders

like Kogge-Stone [32], Brent-Kung [71], and Sklansky [71] can compute any N-

bit sum with a worst-case latency of O(log N) stages. Many commercial chips

use some form of these tree adders in their FPA implementations.

Our baseline asynchronous FPA uses a hybrid Kogge-Stone carry-select adder
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topology. A Kogge-Stone adder is a parallel prefix form carry look-ahead

adder [32, 71]. It generates carry outputs in logarithmic time. We use eight-bit

Kogge-Stone blocks that compute two speculative sum outputs (assuming the

carry-in is either zero or one). There are a total of seven such blocks to support

the full 56-bit addition. In parallel, we use a parallel prefix carry computation

logic to compute the actual carry inputs for each of the seven Kogge-Stone adder

blocks. The final stage selects the correct eight-bit sum output from each block

using actual carry values, hence the name carry-select.

The choice of eight-bit Kogge-Stone sub-blocks was made for energy-

efficiency as blocks with more bits would have resulted in higher energy due

to long wiring tracks that have to run across the total width of the block [51].

Most blocks in the adder use radix-4 arithmetic and 1-of-4 codes (like the adder

in [42]) to minimize energy and latency. The rationale behind the choice of a hy-

brid Kogge-Stone carry-select adder is that most high-performance floating-point

adders use a similar topology.

Subtraction is done in the usual way by inverting the inputs and using a

carry-in of one for the entire adder. The choice of significand to invert is im-

portant from the energy perspective. Since IEEE floating-point uses a sign-

magnitude representation, a final negative result requires a second two’s com-

plement step. To avoid this, our asynchronous FPA always chooses to invert the

smaller of the two significands.
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4.1.3 Leading One Prediction and Decoding

Most modern FPA implementations use LOP/LOD logic to determine the shift

amount for normalization in parallel with the significand adder. This reduces

the latency of the FPA, because the shift amount is ready when the adder out-

puts are available.

Our LOP logic is inspired from the LOP scheme proposed by Bruguera et

al. [12]. It subtracts the two significands using a signed digit representation

producing either a 0, 1, or -1 for each bit location. There is no carry propagation

in signed digit subtraction, which alleviates the need to use an expensive adder

topology. The output for each bit position is encoded using an 1-of-3 encoding,

which sets a separate data rail for each case. The bit string of 0s, 1s, and -1s

can be used to find the location of the leading one [12], except that it could be

off by one in some cases. Instead of using a correction scheme that operates

in parallel with the LOP hardware (requiring significant more energy), we use

the speculative shift amount and then optionally shift the final outcome by one

in case there was an error in the estimated shift amount. This also requires an

adjustment to the exponent. To make this adjustment efficient, both values of

the exponent are computed concurrently by using a dual-carry chain topology

for the exponent adder.

4.1.4 Evaluation of Baseline Asynchronous FPA

We use a 65nm bulk CMOS process at the typical-typical (TT) corner. The

steady state throughput and energy per operation results for our baseline asyn-

chronous FPA with highest-precision HSIM/HSPICE simulation configuration
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are shown in Fig. 4.2. The different data points correspond to different supply

voltages (0.6V and 1.1V). We added additional wire load in the SPICE file for

every gate in the circuit.

Figure 4.2: Baseline FPA Energy vs Throughput

At a VDD of 1V, the FPA operates at a throughput of 2.15 GHz with an average

power dissipation of 149mW, an energy/operation of 69.3 pJ/op. The power

values include the gate and sub-threshold leakage power. Compared to the

standard-cell library FPA in a 65nm SOI process by Quinnell et al. [54] operating

at a throughput of 666 MHz with an average power-consumption of 118mW,

our baseline FPA design operating at 3.2 times higher throughput consumes

2.6 times less energy per operation even though we are using a bulk process.
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4.1.5 Power Breakdown and Analysis

The last decade witnessed a significant change in the focus of arithmetic cir-

cuit designers from purely performance oriented high-speed circuits to energy-

efficient circuit implementations. To improve the efficiency of any VLSI system,

it is critical to first understand where energy and power are dissipated. We

have not found a detailed energy/power breakdown of a state-of-the-art FPA

datapath in the open literature.

Fig. 4.3 shows a detailed energy/power breakdown of our FPA datapath.

Starting with 11% of Front-End and proceeding in the clock-wise direction, the

energy/power contributions are in the same order as listed in the legend in the

figure. Since in asynchronous PCeHB and WCHB pipelines the actual compu-

tation is folded and coupled into the pipelines, the percentage power usage of

any particular functional block includes all pipeline overhead i.e. input validity,

output validity and handshake acknowledge computation. Although, the Hy-

brid Kogge-Stone carry-select Adder is the largest power-consuming functional

block in the pipeline, it is interesting to note that there is no single dominant

high-power component in the FPA datapath. Hence, any effective power-saving

optimizations would require us to tackle more than one function block.

The Right-Align Shift block which comes second in terms of power-

consumption includes logic to compute the guard, round, and sticky bits to be

used in the rounding mode. In the worst case, the sticky bit logic has to look at

all 53 shifted out bits. To do this fast and in parallel with the right-align shifter,

considerable extra circuitry is needed which consumes more power. The post

addition Right Pipeline block is the third most power-consuming component of

the FPA datapath. It includes the single position left or right shifter as well as
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Figure 4.3: FPA Pipeline Power Breakdown

complete rounding logic which includes significand increment logic and expo-

nent increment/decrement logic blocks.

4.2 Coarse-Grain Power Reduction

The delay of an N-bit adder primarily depends on how fast the carry reaches

each bit position. In the worst-case, the carry may need to be propagated

through all bits, hence synchronous implementations resort to tree adder

topologies. However, as shown in Fig. 4.4, for most application benchmarks,
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almost 90% of the time the maximum carry-chain length is limited to 7 radix-4

positions.

Figure 4.4: Radix-4 Ripple-Adder Carry-Length

An N-bit ripple carry asynchronous adder has an average case delay of

O(log N), the same order as a more complex synchronous parallel-prefix tree

adder such as Kogge-Stone. However, the use of ripple-carry asynchronous

adders is not feasible for high-performance FPA circuits because the pipeline

stage waiting for the carry input stalls the previous pipeline stage until it com-

putes the sum and the carry-out. Even a delay of one carry-propagation (which

is two gate delays) stalls the preceding pipeline by a significant amount.
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4.2.1 Interleaved Asynchronous Adder

To circumvent the average throughput problem, we use an interleaved asyn-

chronous adder as shown in Fig. 4.5. It uses two radix-4 ripple-carry adders:

the left and right adders. Odd operand pairs are summed by the right adder, and

even operand pairs are summed by the left adder. The notion of interleaving

blocks has been used for a number of different structures in the past, including

FIFOs [16] and high-speed communication circuits [67].

Figure 4.5: Interleaved Asynchronous Adder

In a standard PCeHB reshuffling, the interleave stage has to wait for the ac-

knowledge signal from ripple-stage before it can enter neutral stage and accept
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new tokens. However, this would cause the pipeline to stall in case of a longer

carry chain. Hence, we do not use PCeHB reshuffling in our adder topology. In-

stead of waiting for the output acknowledge signals from the right ripple-carry

adder, the interleave stage checks to see if the left ripple-carry adder is available.

If it is, the interleave stage asks for new tokens from the previous pipeline stage

and forwards the arriving tokens to the left adder. The two ripple-carry adders

could be in operation at the same time on different input operands. Since our

pipeline cycle time is approximately 18 logic transitions (gate delays), the next

data tokens for the right adder are scheduled to arrive after 36 transitions of

the first one. This gives ample time for even very long carry-chains to ripple

through without causing any throughput stalls.

Table 4.1 shows the throughput results of our interleaved asynchronous adder

using SPICE simulations with different input sets. Compared to the 56-bit Hy-

brid Kogge-Stone Carry-Select Adder which gave a throughput of 2.17 GHz and

energy/operation of 13.6pJ when simulated by itself, the interleaved adder op-

erates at an average throughput of 2.2 GHz for input cases with carry-length of

fourteen or less while consuming only 2.9pJ per operation. Not only it reduces

the energy/operation by more than 4X, it also reduces the number of transistors

in the 56-bit adder by 35%.

Deal corresponds to operand data from 447.deal SPECFP 2006 application

benchmark. Other applications from the SPECFP suite had similar statistics, so

we simply picked one representative benchmark for comparison. The synthetic

input sets (I to IV) are designed to have specific carry chain lengths, as can be

seen from the statistics in Table 4.1. The synthetic input sets III and IV generate

input operands for the adder that yield fixed maximum carry-chain lengths of
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Table 4.1: Throughput across different carry lengths

Input 0-3 4-7 8-14 15-20 27 Frequency

Deal 88% 9% 2.7% 0.3% 0% 2.2 GHz

I 0% 100% 0% 0% 0% 2.2 GHz

II 0% 0% 100% 0% 0% 2.2 GHz

III 0% 0% 0% 100% 0% 1.38 GHz

IV 0% 0% 0% 0% 100% 0.78 GHz

20 and 27 (maximum for radix-4 56-bit addition) respectively. We did observe

a dip in throughput for these two input sets, but since our statistical analysis

reported earlier in the section show the probability of such high carry-chain

lengths to be quite rare, it is feasible to take a throughput penalty for such rare

occurrences (0.5% or less) in order to save more than four times the energy per

operation for the 99.5% of input patterns with maximum carry-chain length of

14 or less.

4.2.2 Left or Right Pipeline

In our baseline asynchronous FPA, the post-addition datapath is divided into

two separate pipelines: Right pipeline and Left normalize pipeline as shown

in Fig. 4.1. The two pipelines handle disjoint cases that could occur during

floating-point addition. The Left normalize pipeline handles cases when de-

structive cancellation can occur during floating-point addition, requiring a large

left shift for normalization. The destructive cancellation scenario happens only

when the exponent difference is less than two, and the FPA is subtracting the
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two operands. The Right pipeline handles all other cases.

Instead of activating both pipelines and selecting the result, we compute the

selection condition early (prior to activating the LOP/LOD stage) and then only

conditionally activate the appropriate path through the floating-point adder.

The LOP/LOD function blocks determine the shift value for the left normaliza-

tion shifter. The shift amount determined by LOP/LOD is only needed in cases

which could potentially result in destructive cancellation. Hence, in the case of

Right pipeline utilization, we also save energy associated with the LOP/LOD

stage, because the results of the LOP/LOD are only used by the Left normal-

ize pipeline. Compared to the baseline FPA, we get power savings of 13% for

operands using the Left pipeline and power savings of up to 18% (11% Left pipe

& 7% LOP/LOD) for operands using the Right pipeline which is the more fre-

quent case as shown in Fig. 4.6.

4.3 Operand-Based Optimizations

This section further improves the energy-efficiency of the FPA by examining

other properties of the input operand distribution. We optimize four additional

aspects of the FPA pipeline: (i) initial right align shifter; (ii) leading one predic-

tion; (iii) post-addition increment; (iv) zero input operands.

4.3.1 Two-Way Right-Align Shift

The Right-Align Shift block is the second-most power consuming structure in the

baseline FPA. It includes the right shifter logic as well as the logic to compute
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Figure 4.6: Left/Right Pipeline Frequency

the guard, round, and sticky bits used for rounding. The sticky bit is set to one

if any of the shifted out bits from the alignment shift stage is one; otherwise it

is set to zero. In the worst case, the sticky bit logic has to examine all 53 shifted

bits. To do this fast and in parallel with the right-align shifter, considerable

extra circuitry is needed which consumes more power. For high throughput,

the other (non-shifted) significand is slack-matched to the right-align shift logic

using a number of WCHB pipeline stages. The Right-Align Shift block also com-

pares the two significands to determine which of the two significands should

be inverted in case of subtraction. The exponent difference and sign bit is used

to generate enable control for the LOP. Each control bit is shared for two (one

for each operand) radix-4 significand entries. Overall, this comparison of sig-

nificands and generation of large number of control bits is not cheap in terms of
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power consumption.

The shifter comprises of three pipeline stages. The first stage shifts the signif-

icand between 0 to 3 bit positions based on the shift-control input. The second

pipeline shifts by 0, 4, 8, or 12 bit positions and the third stage shifts by 0, 16, 32,

or 48 bit positions using the shift-control input signals for the respective stages.

Each radix-4 significand entry shift pipeline resembles a PCEHB template with

a 4-to-1 multiplexor as the pull-down logic. Each stage produces multiple out-

put copies to feed into 4 different PCEHB multiplexor blocks of the following

pipeline stage. All this circuitry makes the shifter a costly structure in our FPA

datapath.

The key advantage of the shifter topology is its fixed latency for any shift

value ranging between 0 and 55 (the maximum align shift in a double-precion

addition/subtraction). This advantage is also one of its drawbacks as it con-

sumes the same power to do a shift by zero and a shift by a large value.

Fig. 4.7 shows the right align shift patterns across 10 different benchmarks using

operands gathered through PIN application profiling. Although, these bench-

mark applications are from totally unrelated disciplines, they exhibit a common

property: a significant proportion of right align shift values range between 0 to

3 inclusive. For one benchmark, the proportion of right align shifts of 0 to 3 is

almost 81%.

In our baseline right-align shift topology, shifts by 0 to 3 are done in the first

pipeline stage. However, in spite of that the significand still needlessly goes

through the other two shift stages and in doing so wastes considerable power.

It would have been an acceptable trade-off if most operations required align

shifts by a large value, but the shift patterns shown in Fig. 4.7 make it evident
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Figure 4.7: Right Align Shifter Statistics

that our baseline align shifter topology is highly non-optimum from an energy

perspective.

To improve the energy-efficiency of the align shifter, we split it into two

paths. The first stage dealing with a right shift of 0 to 3 is shared between

two paths. In case of a shift greater than 3 bit positions, the significand is for-

warded to the second shift pipeline stage as in the original topology. However,

for shifts of 0 to 3 bit positions, the significand output is bypassed to the post

align-shifter pipeline stage as shown in Fig. 4.8. The post align-shift stage con-

sists of a merge pipeline which receives inputs from both the regular shift path

and the short bypass shift path. It selects the correct input using the buffered

control signal which was earlier used to direct the significand to one of the two

paths.The short shift path has multiple features which lead to significant power

savings:
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Figure 4.8: Two-Path Right-Align Shift

• The shifted significand skips the remaining two shift pipelines.

• In contrast to the baseline topology which produces multiple significand

outputs to be consumed in the following shift stages, the bypass shift path

needs only one output for each significand.

• The guard, round, and sticky computation becomes quite simple and re-

quires minimal energy as only a maximum of 3 bits are shifted out.

• The other (non-shifted) significand also bypasses the WCHB slack-

matching buffers.

• No shift select signals need to be generated and copied for the second and
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third shift pipeline stages.

The new shifter topology poses a design choice of slack-matching the control

to either the long-shift path with two pipeline stages or the short-bypass path

with no pipeline buffering at all. If control is slack-matched to the short path, the

shifts requiring long path may suffer from stalls and degrade the FPA through-

put. Slack-matching the control to the long path increases the short path latency.

The worst-case scenario is when the pipeline alternates between the two paths.

However, our application profiling analysis in Fig. 4.9 reveal that across all ap-

plication benchmarks, the proportion of times a short path shift follows another

shift along the same path is considerably high. We saw similar results for the

long path shifts. A detailed throughput and latency analysis, based on the pro-

filed shift patterns, favored a control path which is slack-matched to none of the

two shift paths. In our implementation, the merge control input has only one

WCHB pipeline and has a throughput within 1.3% of the baseline FPA in the

worst-case scenario.

4.3.2 Minimizing LOP Logic

For subtraction, the bits of the shifted significand are inverted except when the

exponent difference is zero which then requires input from the significand com-

parison block to determine which one of the two significands is smaller. Since

the case of exponent difference of zero corresponds to the bypass shift path, the

significand comparison logic requiring multiple pipeline stages cannot be done

in parallel with the bypass path without incurring a throughput penalty. Hence,

the significand comparison is moved to earlier pipeline stages in the optimized
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Figure 4.9: Right Align Shift Short Path Pattern

FPA datapath.

With the result of significand comparison available early, the LOP logic stack

can be simplified. As Bruguera et al. point out in [12], the logic to predict lead-

ing one when the sign-digit difference of two operands is positive is different

from the case when the sign-digit difference of two operands is negative. In our

optimized FPA, using the significand comparison result early in the FPA en-

ables the LOP computation to assume that its first operand always corresponds

to the larger significand. This information enables us to significantly reduce the

circuitry required for LOP computation.

In the baseline FPA, there is a separate pipeline stage to conditionally in-

vert bits in case of subtraction. The baseline FPA generates control signals for

each radix-4 position specifying which of the two significands if any need to be
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inverted. Since the LOP control bits in our optimized FPA already contain infor-

mation about the larger significand, we merged the conditional invert stage with

pre-LOP selection pipeline which determines the larger of the two significands

as LOP’s first operand. This eliminates the need of separate control signals for

inverting bits and including savings from cutting a full pipeline stage leads to

energy reduction of over 3%.

4.3.3 Post-Add Right Pipeline

The Right Pipeline block is the third most power-consuming structure in the

baseline FPA. It includes a single-position right or left shifter, a 53-bit signif-

icand incrementer, rounding logic, and final exponent computation block for

operands utilizing the Right Pipeline. As shown earlier in Fig. 4.6, on average

more than 80% of the FPA operations use this block. Hence, power-optimization

techniques for the circuits in this block have a notable impact on average FPA

power savings.

The baseline carry-select incrementer comprises of four-bit blocks with each

computing the output for the carry input of one into that block. In parallel, there

is a fast carry-logic which computes the correct carry-input for each four-bit

block. Lastly, there is a mux pipeline stage which selects either the incremented

output or the buffered non-incremented bits for each four-bit block using the

carry select input. In case of a carry-out of one, the significand is right shifted

by one bit position.

The key advantage of our baseline incrementer topology is its fixed latency

for the best (no carry propagation) and worst-case (carry propagates through
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all the bits) alike. However, as seen in Fig. 4.10, for over 90% of the operations

using the increment logic, the carry propagation length is less than four radix-4

bit positions. Also, the case of a final carry-out occurs no more than 0.5% of the

time.

The carry-select incrementer targeted for worst-case scenarios is a non-

optimum choice for the average-case incrementer carry-length patterns. To im-

prove energy-efficiency, we instead use an interleaved incrementer similar to

earlier described interleaved adder. Instead of using two ripple-carry adders, it

uses much simpler two radix-4 ripple-carry incrementers. The odd data token

is forwarded to the right incrementer. For the next arriving data token, the inter-

leave stage checks to see if the left incrementer is available. If it is, the interleave

stage forwards the arriving tokens to it. The interleave merge stage receives the

inputs from both incrementers and forwards those to the next pipeline stage in

the same interleaved order in which they were scheduled. This allows the two

incrementers to be in operation at the same time on different input operands.

The incrementer is used to adjust the result due to rounding. Our new incre-

menter topology computes either the correct incremented or non-incremented

output (not both) using the round-up bit as the carry-in, hence alleviating the

need to have a separate mux stage to choose between two possible outputs.

Our simulation results for the new topology show no throughput penalty for

average-case inputs. Also, there is no need for a separate post-increment right

shift pipeline stage. The case where the final result must be right shifted by one

only occurs when all significand bits are one, and the result must be rounded

up. In that scenario, the incrementer output is all zero and hence both shifted

and unshifted versions of the incrementer result are identical. Hence, for correct
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output, only the most significant bit needs to be set to one.

Figure 4.10: Radix-4 Incrementer Carry Length

In the baseline FPA, until the incrementer carry-out is computed the correct

exponent value cannot be computed. Since the carry-out is not available until

the fourth pipeline stage in the Right Pipeline block, to prevent latency penalty

the exponent values of exponent+C are always computed for C = 0,±1,+2, with

a mux stage choosing the correct output. To circumvent the problem of latency

penalty, we replace the exponent computation block with an interleaved incre-

menter/decrementer which mitigates any latency degradation with its average-

case behavior. It uses a two bit carry-in (first bit is set to 1 for increment, second

bit is 1 for decrement, and both bits are 0 for a simple pass through) to compute

exponent. Using dual-carry chain, exponent + 1 is also computed simultaneously

to be selected in case of a carry out. Overall, this computation of two exponent

values is far more energy-efficient than the baseline.
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4.3.4 Zero-input Operands

Fig. 4.11 shows that a few application benchmarks have a significant proportion

of zero input operands. For the applications involving sparse-matrix manipula-

tions such as Deal and Soplex, in spite of the use of specialized sparse-matrix

computation libraries, the percentage of zero inputs can be as high as 36%.

For other benchmarks, the zero-input percentage varies widely. In our base-

line FPA and almost all synchronous FPA designs, operations involving zero-

input operands use the full FPA datapath. Although, if one or both of the FPA

operands are zero, the final FPA output could be computed without needing

power-consuming computational blocks such as right-align shifter, significand

adder, LOP/LOD, post-add normalization, and rounding.

Figure 4.11: Zero-input Operands

Since the Unpack pipeline stage already checks to see if any operand is zero,
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our optimized FPA utilizes the zero flag to inhibit the flow of tokens into the reg-

ular datapath. The zero flag is used as a control in the conditional split pipeline

just prior to Swap stage to bypass the final sign, exponent, and significand bits

to the last pipeline stage in case of a zero input. The last stage is replaced with a

conditional merge pipeline which uses the buffered control signal to choose the

input from either the zero bypass path or the regular FPA datapath. The huge

slack disparity between two split pipelines makes the choice of control slack a

critical one.

Figure 4.12: Zero-input Pattern

Fig. 4.12 shows that for benchmark applications with significant proportion

of zero inputs, the percentage of a zero-input followed by another zero-input

operation is quite high except for the Swaptions benchmark. To choose the op-

timum level of control buffering, we simulated the optimized FPA with a num-

ber of synthetic input-patterns over a wide-range of control slack possibilities
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as seen in Fig. 4.13. Mix-flip refers to input sequence with alternating zero-input

and nonzero-input operands. Mix-pattern sequence closely resembles the zero-

input pattern seen in most benchmark applications. Based on these results, we

chose to buffer the control with eight WCHB pipeline stages.

Figure 4.13: Zero-Path Control Slack Analysis

Some zero-input patterns take a significant throughput hit even with eight

WCHB pipeline stages for the control. To circumvent this problem, we explored

the effect of adding some slack on the bypass path. Fig. 4.14 shows that the

addition of two WCHB stages on the bypass path for sign, exponent, and sig-

nificand bits greatly alleviates the throughput penalty albeit at a small cost in

energy. Overall, the best throughput results are again attained with a slack of

eight WCHB stages on the control. For Mix-pattern sequence, the throughput

increases by 7.5% to 2 GHz. For the worst-case input set, Mix-flip, throughput
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increases by 49.8% to 1.95 GHz. The improvement in throughput comes at a

cost of extra WCHB logic and hence more power. Our simulations using only

one WCHB stage didn’t show such profound throughput improvement and for

cases beyond two WCHB pipeline stages, the small increases in throughput are

overshadowed by power consumed in additional buffer stages.

Figure 4.14: 2-WCHB Zero-Path Control Slack

4.4 Evaluation of Operand-Optimized FPA

The functional correctness of our asynchronous operand-optimized FPA was

verified using prsim, our in-house asynchronous gate-level simulation tool.

Ten billion randomly generated inputs were sourced into the FPA and the out-

99



puts were verified against the expected values from a standard processor. The

random input set included verification tests for all four IEEE rounding modes

as well as denormal, NaN, and infinity data inputs. The FPA was further tested

with one billion stored inputs from actual application benchmarks. In the past,

many of the designs have opted to handle denormal numbers using software

traps [55] which can lead to long execution times [59]. Our design includes

hardware support for denormal numbers.

Our improved asynchronous FPA combines all optimization techniques dis-

cussed in sections 2.2 and 4.3. On top of the energy savings associated with

the these techniques, we were able to compact more logic together and in doing

so eliminated a full pipeline stage. The transistors in our baseline FPA were

sized using standard transistor sizing techniques [71]. To meet high perfor-

mance targets, the pull-down stack was restricted to a maximum of six tran-

sistors in series (including the enable). The slow and power-consuming state-

holding completion-elements were restricted to a maximum of three inputs at a

time. Keepers and weak feedback inverters were added for each state-holding

gate to ensure that charge would not drift even if the pipeline were stalled in an

arbitrary state.

Since HSIM/HSPICE simulations do not account for wire capacitances, we

included additional wire load in the SPICE file for every gate in the circuit.

Based on prior experience with fabricated chips and post-layout simulation, we

have found that our wire load estimates are conservative, and predicted en-

ergy and delay numbers are typically 10% higher than those from post-layout

simulations. Our simulations use a 65nm bulk CMOS process at the typical-

typical (TT) corner. Test vectors are injected into the SPICE simulation using
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a combined VCS/HSIM simulation, with Verilog models that implement the

asynchronous handshake in the test environment. All simulations were carried

out at the highest-precision setting.

As seen in Fig. 4.15, the energy per operation of the optimized FPA is ap-

proximately 2.3X (56.7%) less than that of baseline FPA across a wide range of

throughput values for the same non-zero operands. In terms of overall through-

put, our optimized FPA is within ±1.5% of the baseline FPA across a range of

voltages (0.6V to 1.1V). As noted earlier, it is possible to create pathological in-

put operands that could degrade the throughput, for example long carry-chain

lengths in the interleaved adder/incrementer or the case of alternating zero and

non-zero operands; however, in practice, such inputs are rare. Even if they do

occur, our FPA still operates correctly and produces IEEE-compliant output al-

beit at lower throughput.

The baseline FPA gives an energy-per-operation of 69.3pJ at an average

throughput of 2.15 GHz for all input operands alike. The optimized FPA’s

energy-per-operation and throughput vary considerably based on the input

operands as seen in Table 4.2. These results, for SPICE simulations at a VDD

of 1V with no slack on the zero operand bypass path, show our improved FPA

design to be far superior in energy-efficiency than our baseline FPA.

The energy-efficiency and throughput results for the FPA implementation

with two WCHB pipeline stages on the zero bypass path are shown in Table 4.3.

The results for non-zero operands remain the same as before and hence are not

repeated. The improvement in throughput for all zero-input patterns comes

with additional power consumption. This offers a design choice to be made

based on throughput and energy targets.

101



Figure 4.15: Optimized vs. Baseline

Table 4.2: Optimized FPA Energy & Throughput

Input Set Energy/FLOP Throughput

Nonzero (Align Shift 0-3) 30.2 pJ 2.15 GHz

Nonzero (Align Shift 4-55) 35.1 pJ 2.10 GHz

Nonzero (Align Shift Mix) 32.4 pJ 2.12 GHz

Zero Only 13.1 pJ 1.51 GHz

Zero-Nonzero Alternate 25.1 pJ 1.31 GHz

Zero 30% 27.4 pJ 1.85 GHz

Zero 8% 31.0 pJ 1.96 GHz
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Table 4.3: Optimized FPA 2-WCHB Zero Bypass

Input Set Energy/FLOP Throughput

Zero Only 14.2 pJ 2.1 GHz

Zero-Nonzero Alternate 26.1 pJ 1.95 GHz

Zero 30% 28.4 pJ 2.0 GHz

Zero 8% 32.1 pJ 2.1 GHz

In terms of actual application benchmarks, Zero 8% input mix corresponds to

416.gamess, whereas Zero 30% corresponds to an average mix of operands from

three applications: 447.deal, 450.soplex, and 437.leslie3d.

The latency of our optimized FPA is also highly operand dependent. Ta-

ble 4.4 shows that compared to the baseline FPA’s average latency of approx-

imately 1098ps, the optimized FPA has an average latency of 737ps for zero

operand cases (same for both two WCHB slack matching and no slack match-

ing zero bypass implementations) and 1060ps for nonzero operands with align

shifts of 0 to 3; a latency reduction of 32.8% and 3.5% respectively. The increase

in latency, seen for rare some cases, could be attributed to the use of a variable-

latency interleaved adder instead of fixed latency parallel-prefix tree adder.

Table 4.4: Optimized FPA Latency

Input Set Latency

Nonzero (Align Shift 0-3) 1050-1070 ps

Nonzero (Align Shift 4-55) 1080-1120 ps

Zero 737 ps
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Since leakage power has become an important design constraint, our simu-

lations model sub-threshold and gate leakage effects in detail. Table 4.5 com-

pares the total leakage power of our baseline and optimized FPAs at a VDD of

1V. Although, our optimized FPA includes extra control circuitry for multiple

split-merge pipelines, there is a 19% reduction in leakage power.

Table 4.5: Leakage Power

Leakage Power

Baseline FPA 0.72 mW

Optimized FPA 0.58 mW

The decrease in leakage power could be attributed to the use of the inter-

leaved adder and incrementer which use far fewer transistors compared to the

Hybrid Kogge-Stone Carry-Select Adder and Carry-Select Incrementer. Also,

compacting of logic stages eliminated a full pipeline stage and helped to reduce

the total leakage power further. In terms of the total number of transistors, our

optimized FPA uses 12% less transistors than the baseline.

Table 4.6 compares the performance, power, and energy of our optimized

FPA against both our own baseline and some of the latest FPAs and FMAs from

industry and academia. The computer arithmetic literature has a large body of

work on FPA and FMA designs, but few contain a detailed implementation that

provides a reasonable point of comparison in a modern process. This guided

our choice of other FPA/FMAs in Table 4.6. Our baseline and optimized FPA

results are for simulations with an input-set comprising non-zero operands with

right align shifts of 0 to 3.

We caution that the FMA numbers are not meant to be a direct comparison
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with our proposed FPA since an FMA contains additional circuitry. The FMA

performance and power numbers were only included to show what is the best

out there in industry and academia and that in spite of using a bulk process,

our proposed FPAs are competitive both in terms of performance and energy-

efficiency. Quinnell [54] has a lower overall latency for nonzero operands than

our optimized FPA as well as our baseline FPA. However, this lower latency

does not take into the latching overhead, which could be significant in high

performance designs, and comes at the cost of 3.2X lower throughput and 5.9X

higher energy per operation, as well as a higher VDD.

Table 4.6: Comparison to other FPAs and FMAs

Name Type Process VDD Frequency Latency Energy/Op

Async Optimized FPA 65nm 1 2.15 GHz
57.2FO4s

1060ps
30.2pJ

Async Baseline FPA 65nm 1 2.15 GHz
59.3FO4s

≈ 1098ps
69.3 pJ

IBM Power6 [69] FMA 65nm SOI 1.1 4 GHz 78FO4s 77.5 pJ

Merrimac [17] FMA 90nm 1 1 GHz NA 110 pJ

Quinnell [54] FPA 65nm SOI 1.3 666 MHz 946ps 177.17 pJ

All of our transistor-level simulation results quoted so far were for

HSIM/HSPICE simulations done at a default temperature of 25◦C. A set of sim-

ulations at 85◦C showed a similar trend between the baseline and optimized

FPAs but with an expected small performance degradation (10%) at higher tem-

perature.

The high GFLOPS/Watt ratio of our optimized asynchronous FPA (26

GFLOPS/Watt at 2.5 GHz 1.1V) make a case for adopting asynchronous cir-
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cuit solutions, similar to ours, in future high performance computing systems.

Since asynchronous chips have been shown to work at fairly low voltages and

are quite robust [20, 43, 23], getting 85.4 GFLOPS/Watt at a decent throughput

of 450 MHz (at 0.6V) also shows the potential of our solution for embedded

systems that require floating-point computation.

4.5 Summary

We presented the detailed design of an asynchronous high-performance energy-

efficient IEEE 754 compliant double-precision floating-point adder. Using QDI

asynchronous pipelines, we created a high-performance design based on state-

of-the-art FPA architectures. We analyzed the power consumption of the

FPA datapath, identifying opportunities for energy reduction. By using asyn-

chronous techniques that exploit average-case behavior, we reduced the energy

of the FPA operation with nonzero operands by 56.7% compared to our baseline

implementation while preserving the average throughput.
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Chapter 5

Floating-Point Multiplication

In this chapter, we present the details of our energy-efficient asynchronous

floating-point multiplier design. We discuss design trade-offs of various mul-

tiplier implementations. A higher radix array multiplier design with operand-

dependent carry-propagation adder is presented which yields significant en-

ergy savings while preserving the average throughput. We provide a number

of operand-dependent optimizations across the entire FPM datapath to reduce

energy consumption. Our FPM implementation also includes a hardware im-

plementation of special cases in the IEEE-754 standard such as denormal and

underflow cases.

5.1 Introduction

Traditionally, most floating-point units have been designed from the perspec-

tive of scientific applications. In these traditional benchmark applications, ad-
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dition and subtraction operations account for most of the floating-point op-

erations [53, 65]. As a result, optimizing the floating-point adder datapath

has remained the prime focus of arithmetic circuit designers. However, a dy-

namic instruction profile, as seen in Figure 5.1, of a number of emerging com-

mercial, consumer, engineering, and advanced scientific applications shows

floating-point multiplication operations to be as frequent as floating-point ad-

dition/subtraction operations.

Figure 5.1: Frequency of floating-point instructions

A floating-point multiplier (FPM) consumes significantly more energy com-

pared to a floating-point adder (FPA) [54]. This combined with the knowledge

that the frequency of floating-point multiplication operations in emerging appli-

cations is similar to that of floating-point addition computations makes energy

and power optimizations in the FPM datapath highly essential for an efficient

full floating-point unit (FPU) design. In this thesis, we introduce a number of
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micro-architectural and circuit level optimizations to reduce power consump-

tion in the FPM datapath.

5.2 Power Breakdown and Analysis

Unlike in the FPA datapath where total power is distributed roughly evenly

amongst a number of different logic blocks, the FPM’s complexity is largely a

function of its 53x53 multiplier. This is highlighted in Figure 5.2 which shows

the power breakdown estimates of a fully QDI FPM datapath. QDI booth-

encoded array multiplier accounts for roughly 76% of the total power consump-

tion. Hence, in this thesis, we primarily focus on reducing energy/power of the

array multiplier block.

Figure 5.2: FPM Pipeline Power Breakdown

109



The Front-End/Exponent block corresponds to the logic that unpacks IEEE

format inputs and analyzes the sign, exponent, and mantissa bits of each input

to determine if the inputs are standard normalized or are of one of the special

types (NaN, infinity, denormal). It also includes the logic to compute the resul-

tant exponent of the FPM product, which is a sum of the exponent values of both

inputs minus the bias. The bias has a value of 1023 in case of double-precision

operations. The array multiplier outputs two 106-bit streams. The most signifi-

cant 53-bits of the two output bit streams from the array multiplier are summed

up using a carry propagation adder (CPA) to generate a 53-bit mantissa. The

least significant 53-bits are used to generate the carry input to the CPA as well

as compute the guard, round, and sticky bits to be used in post normalization

rounding. The sticky bit computation block and the final carry propagation adder are

the other power consuming structures within the FPM datapath which show

opportunities for operand-dependent optimizations. The post multiplication

step includes normalization of the 53-bit mantissa. For normal inputs and non-

underflow cases, either the mantissa is already normalized or it may require a

right shift by a single bit position, in which scenario the exponent is adjusted, in

parallel, by adding one to it. The pack block checks for NaN, infinity, or denor-

mal outcome before outputting the correct result in the IEEE format.

In this thesis, we present various structural and circuit-level optimization

techniques to reduce the complexity and power consumption footprint of the

aforesaid logic blocks.
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5.3 Multiplier Design Trade-offs

The choice of a particular multiplier design depends on a number of factors.

These include: desired throughput, overall latency, circuit complexity, and

the allowed power budget. There is a large body of work on multiplier de-

signs [71, 21]. Traditionally, high performance has been the key driving factor in

multiplier design. However, as power consumption has become a major design

constraint lately, a number of low-power multiplier designs have been proposed

both in synchronous [29, 15] and asynchronous domains [37, 30, 27].

5.3.1 Iterative Multipliers

Iterative multipliers represent a low complexity design choice. An iterative mul-

tiplier utilizes a few functional units repeatedly to produce the result. In a sim-

ple iterative n by n multiplier implementation, where n is the number of bits,

the product is computed after n iterations. Each iteration comprises a minimum

n-bit addition and a serial shift by one-bit position.

Iterative multipliers can be used to reduce energy consumption by exploit-

ing input data patterns; stages which add zero to the partial product could be

detected in advance and skipped, hence reducing delay and energy consump-

tion. The delay variability nature of iterative multipliers has made them popu-

lar amongst asynchronous designers [19, 30]. Furber et al [37] proposed a low

power integer multiplier which exploits the commonly occurring pattern of low

number of significant bits in integer inputs as means to reduce the total number

of iterations. These iterative multiplier designs, though highly energy efficient
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and compact in terms of area, are not feasible to be used in a floating-point mul-

tiplier hardware due to their very high latency and low throughput and the fact

that unlike the inputs in integer arithmetic, the most significant bits of floating-

point mantissa inputs are non zero.

Reduction in the total number of partial products is the key goal of all mul-

tiplier optimization techniques, as it helps to reduce both latency as well as en-

ergy consumption. Along these lines, Efthymious et al [19] proposed an asyn-

chronous multiplier implementation based on the original Booth algorithm [10].

Their design scans the multiplier operand and skips chains of consecutive ones

or zeros. This can greatly reduce the number of partial product additions re-

quired to produce the product. The downside is that it requires a variable length

shifter to correctly align multiplicands for generating each partial product row.

The effectiveness of this algorithm for high performance FPM hardware is de-

pendent on the number of variable length shifts, which in turn depends on the

number of partial product rows that are to be generated. Our application pro-

filing results in Figure 5.3 indicate that although the original Booth algorithm is

able to reduce the number of partial products from the maximum of 27, a suf-

ficiently large number of partial products rows, more than 18 on average, still

need to be generated, each of which requires the use of variable shifter. The la-

tency overhead of such a large number of variable shift operations is too costly

for any high performance FPM design. Hence, we did not pursue this algorithm

any further.

112



Figure 5.3: Number of partial products terms with original Booth algo-
rithm .

5.3.2 Array Multipliers

Array multipliers are the common choice for high throughput and low latency

multiplication operations in most commercial FPM designs [69, 50]. They pro-

duce a pre-determined fixed number of partial products, which greatly min-

imizes if not fully eliminates the opportunities for exploiting data dependent

optimizations. For example, introducing logic to bypass a zero partial product

instance may add the same amount of delay as summing the extra term in a

carry save adder (CSA) used to reduce the partial product terms. As array mul-

tipliers present very limited opportunities for data dependent optimizations,

there has not been much work on asynchronous array multiplier solutions.

The simplest implementation of an n by n array multiplier produces n partial
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products in parallel, which are then summed up using CSAs. The large num-

ber of partial products makes this simple design unfeasible for both latency and

power consumption perspective. As a result, many advanced multiplier im-

plementations from academia [54] and industry [69, 50, 73] use some form of

radix-4 modified booth algorithm, which cuts the number of partial products to

n/2. The reduction in the number of partial products yields significant savings

in energy consumption, latency, as well as the total transistor count.

For a 53x53-bit multiplier in an FPM datapath, a radix-4 booth-encoded al-

gorithm produces 27 partial products as shown in Figure 5.4. Each of the Y

and X inputs is in a radix-4 format. The multiplier bits, X, are used to generate

booth control signals for each partial product row. One of the big advantages

of radix-4 booth multiplication is the relative simplicity of the logic which gen-

erates partial product rows. The only multiples of the multiplicand that are

needed are: 0, ± Y, and ± 2Y. Partial product term Y is generated by simply as-

signing it the multiplicand. The 2Y multiple can be generated with relative ease

by assigning it one bit right shifted value of the multiplicand. Bitwise inversion

is used to generate complemented multiples. To reduce these 27 partial product

rows to two partial product rows, a reduction tree comprising 7 stages of 3:2

counters/carry-save-adders (CSAs), is usually employed [71].

The energy consumption of the multiplier array is directly correlated to the

number of partial product terms. With more partial product terms, more logic

is needed first to produce those terms and then to sum and reduce those terms

using a reduction tree. To further improve energy efficiency, one of the alter-

natives is to use a radix-8 Booth-encoded multiplier which reduces the number

of partial product rows from 27 down to 18 as shown in Figure 5.5. The biggest
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Figure 5.4: Radix-4 modified Booth multiplier.

disadvantage of a radix-8 multiplier is that it requires a 3Y multiple which needs

a full length carry propagation adder to compute. Since the 3Y multiple must

be available before any partial product term is computed, a tree adder topology

such as a hybrid Kogge-Stone carry-select adder, described in Section 4.1, must

be used to minimize any latency degradation in a synchronous design.

Table 5.1 compares three different radix length implementations of a 53x53-

bit multiplication unit in terms of the total partial products bits and the number
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Figure 5.5: Radix-8 modified Booth multiplier.

of logic stages required to reduce the total number of partial product rows to

two rows. A radix-8 Booth-encoded implementation produces 62.4% and 31.3%

less partial products bits compared to bitwise radix-2 and Booth-encoded radix-

4 multipliers respectively. But in terms of latency, when compared to a radix-

8 version, a radix-4 implementation needs only one extra logic stage because

partial product terms are summed and reduced using CSAs in a tree structure,

which has logarithmic logic depth. This gives a radix-8 multiplier a single logic
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stage cushion to compute the tough 3Y multiple. Hence, for any radix-8 Booth

multiplier to be considered a viable alternative, it must provide a very low la-

tency 3Y computation unit with energy consumption significantly lower than

the savings attained with the use of 31.3% less partial product bits. The use of

power intensive tree adders, discussed in detail in Section 4.2.1, greatly dimin-

ish the savings that result from the reduction in the number of partial product

terms. As a result, radix-8 multipliers are not commonly used in synchronous

FPM implementations

Table 5.1: Array Multiplier

53x53-bit Multiplier Type Partial Product Bits Reduction Tree Logic Stages

Radix-2 Bitwise 2809 9

Radix-4 Booth 1539 7

Radix-8 Booth 1056 6

5.4 53x53-Bit Radix-8 Array Multiplier

5.4.1 3Y Adder

The highly operand dependent nature of the 3Y multiple computation makes it

a strong potential target for asynchronous circuit optimizations similar to those

used earlier in our FPA design. The application profiling results in Figure 5.6

show that the longest carry chain in a radix-4 3Y ripple-carry addition is limited

to 3 ripple positions for over 90% of the operations across most floating-point

application benchmarks. The delay of an adder depends on how fast the carry
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reaches each bit position. For input patterns that yield such small carry chain

lengths on average, we need not resort to an expensive tree adder topology

designed for the worst-case input pattern of carry propagating through all bits.

Figure 5.6: Radix-4 3Y Adder Longest Carry Length

The interleaved adder topology, first explained in Section 4.2.1, provides an

energy efficient solution for computing the bottleneck 3Y multiple term required

in radix-8 Booth multiplication. It comprises two 53-bit radix-4 ripple-carry

adders, where each 3Y block shown in Figure 5.7 computes the 3Y multiple for

the corresponding Y input. The first arriving data tokens YRs are forwarded to

the right 3Y adder. In a standard PCeHB reshuffling, the interleave split stage has

to wait for the acknowledge signal from ripple-carry adder before it can enter

neutral stage and accept new tokens. However, this would cause the pipeline

to stall in case of a long carry chain. The interleaved adder topology circumvents

this problem by instead issuing the next arriving data tokens to the left 3Y adder.

118



Hence, the two ripple-carry adders could be in operation at the same time on

different input operands. The interleave merge stage receives outputs from both

right and left adders and forwards them to the next stage in the same interleaved

order. With our pipeline cycle time of approximately 18 logic transitions (gate

delays), the next data tokens for the right adder are scheduled to arrive after 36

transitions of the first one. This gives ample time to quite rare inputs with very

long carry-chains to ripple through as well without causing any throughput

stalls.

Figure 5.7: Interleaved 3Y Adder

For inputs patterns observed in our various floating-point application

benchmarks, the forward latency of computing the 3Y term using the inter-

leaved adder is less than that attained with power-intensive tree adders, which

are frequently used in synchronous designs to guarantee low latency compu-
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tation. Compared to a 53-bit hybrid Kogge-Stone carry-select tree adder im-

plementation, the interleaved adder consumes approximately 68.1% less energy

at 8.3% lower latency for the average case input patterns shown in Figure 5.6.

We exploit this data dependent adder design topology, not possible within a

synchronous domain, to design an energy-efficient radix-8 Booth-encoded mul-

tiplier for our asynchronous FPM datapath.

5.4.2 Pipeline Design

Although, the radix-8 multiplier reduces the number of partial products bits by

31.3% compared to a radix-4 implementation, it still needs to produce and sum

over 1050 partial product bits. As discussed earlier in Section 2.4, the standard

PCeHB pipelines, though very robust, consume considerable power in hand-

shake circuitry, which gets worse as the complexity of PCeHB templates in-

creases with more input and output bits. We showed earlier that the handshake

overhead, in a two-bit full adder PCeHB pipeline implementation, is as high as

69% of the total power consumption. Therefore, for circuits with large number

of inputs, intermediate and final outputs, such a multiplier array, the PCeHB

pipelines represent a non-optimum choice from energy efficiency perspective.

We use N-Inverter pipeline templates, first proposed in Section 3.2, to im-

plement the multiplier array. An N-Inverter pipeline reduces the total hand-

shake overhead by packing multiple stages of logic computation within a single

pipeline block, in contrast to PCeHB template which contains only one effective

logic computation per pipeline. The handshake complexity is amortized over a

large number of computation stacks within the pipeline stage. In Section 3.3.2,
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we showed that compared to a PCeHB pipelined implementation the N-Inverter

pipelines can reduce the overall energy consumption by 52.6% while maintain-

ing the same throughput. These improvements come at the cost of some timing

assumptions and require the use of single-track handshake protocol. The de-

sign trade-offs associated with N-Inverter templates are discussed extensively

in Section 3.3.

The block-level pipeline breakdown of our radix-8 multiplier array is de-

picted in Figure 5.8 . The granularity at which the array is split is critical from

both performance and energy efficiency perspective. The N-Inverter templates

allow us to pack considerable logic within each stage, which helps to reduce the

handshake associated power consumption significantly. However, as the num-

ber of logic computations within a pipeline block increase, so do the number of

outputs. With more outputs, although the number of transitions per pipeline

cycle remain the same with the use of wide NOR completion detection logic,

each of these transitions incur a higher latency as shown earlier in Section 3.3.2.

The choice of 8x4 pipeline blocks, with 15 outputs per each stage, was made to

provide a good balance of low power and high throughput. The pipeline block

labeled 8x4 Sign is identical to an 8x4 block except that it includes a sign bit

for each partial product row. The sign bit acts as an input of one in the least

significant position for any of the cases involving a complemented partial prod-

uct multiple of -Y, -2Y, -3Y, or -4Y. The pipeline blocks labeled 10x4 Sign Ext

are similar in design to the frequent 8x4 block, except that it provides support

for sign extension bits required for supporting complemented multiples. The

8x2 block is a reduced version of an 8x4 block with only two booth rows. The

similarity between these different pipeline blocks and the frequent use of the

8x4 pipeline block provides us with great design modularity, which helped to
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reduce the overall design effort required to optimize the multiplier array for

throughput and energy efficiency.

Figure 5.8: Radix-8 Multiplier Array

Due to the similarity between different pipeline blocks, we only present the

details of the 8x4 block. Each 8x4 pipeline block receives Booth-control, Y and

3Y input tokens. The eight bits of Y and 3Y inputs are encoded as four 1-of-4

tokens each. Figure 5.9 shows the intermediate and final logic outputs within

an 8x4 pipeline. It also shows the corresponding mapping of these outputs to a

simplified circuit level depiction of an N-Inverter pipeline template. The NMOS

stacks in the first stage compute four rows of eight bit partial product terms in

inverted sense. These inverted outputs drive the inverters in the second stage of

the pipeline block to produce corresponding partial product, PP, outputs. The

next stage of NMOS stacks implements carry-save addition logic [71] to sum

and reduce these four rows of partial products to two rows of inverted sum and

carry outputs. These inverted outputs drive the PMOS transistors in the last
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stage to produce sum and carry outputs, SS and CC, in correct sense for the

following pipeline blocks.

Figure 5.9: 8x4 Multiply Logic Block
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For array multiplication, all pipeline blocks have to be in operation in paral-

lel. The parallel operation requires multiples copies of input tokens to be con-

sumed simultaneously by multiple pipeline blocks. For example, each booth

control token is required in seven different pipeline blocks. To facilitate this,

we include multiple copy stages prior to initiating the array computation. These

copy blocks generate the desired number of copies for each input token. These

tokens are then forwarded to the pipeline blocks which consume them to pro-

duce sum and carry outputs.

The next computation step is the summation of the large number of SS and

CC outputs that are produced in parallel. This summation step is commonly

referred to as reduction tree in arithmetic literature. A reduction tree basically em-

ploys 3:2 counters, often referred to as carry-save-adders (CSAs), to sum and

reduce three inputs to two outputs at each stage of the tree. Within a few stages,

the large number of tokens spanning over many partial product rows are re-

duced to mere two 106-bit long rows, which are finally summed using a carry-

propagation adder. We implemented a full 3:2 counter reduction tree [71] using

multiple N-Inverter pipeline blocks. The NMOS stacks within each block im-

plement carry-save addition logic. In terms of logic density, each pipeline block

was restricted to produce no more than 15 outputs to maintain cycle time similar

to 8x4 pipeline blocks.

The N-Inverter templates use single-track handshake protocol. As a result,

the input tokens are first converted from four-phase handshake protocol into

single-track protocol using conversion templates. This adds an additional logic

stage to the FPM datapath latency. Since the final carry-propagation adder uses

four-phase handshake protocol, the output tokens from the reduction tree are
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converted back to four-phase protocol. We hide the latency of this conversion

stage by implementing the final stage of the reduction tree within these conver-

sion templates.

The energy, latency, and throughput estimates of FPM implementations with

radix-4 and radix-8 array multipliers are presented in Figure 5.10. The results

are normalized to FPM datapath with a radix-4 multiplier. The 31.3% reduction

in the number of partial product bits translates into 19.8% reduction in energy

per operation. But this improvement in energy efficiency comes at a cost of

5.9% increase in the FPM latency because of the 3Y partial product computation

that needs to determined prior to initiating the multiplier array logic. A part

of the 3Y computation latency is masked within booth control token-generation

and copy pipelines. Since the radix-4 multiplier requires one extra computa-

tion stage in the reduction tree compared to a radix-8 multiplier implementation,

the latency overhead of the 3Y computation can be further hidden. The 5.9%

latency increase is attributed to the 3Y multiple computation part which is not

masked. Despite the increase in latency, the throughput for both implementa-

tions remains the same due to sufficient slack availability within the interleaved

3Y computation block. The choice of a particular multiplier implementation

represents a design trade-off. Since our goal was to optimize for energy con-

sumption and throughput, we chose the radix-8 multiplier implementation in

our final FPM design.
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Figure 5.10: Radix-4 Multiplier vs. Radix-8 Multiplier

5.5 Sticky-bit Logic and Carry-Propagation Adder

The multiplier array outputs two rows of 106-bit long partial sum and carry

terms. The next step is to compute the 53-bit mantissa of the FPM output. This

requires the summation of the most significant 53-bits of the two incoming par-

tial sum and carry terms using a carry-propagation adder (CPA). The least sig-

nificant 53-bits of the partial sum and carry terms are needed to compute the

carry input into the CPA as well as the guard, round, and sticky [49] terms re-

quired during the rounding step.

In advanced high performance synchronous FPM designs [73, 50], the mul-

tiplier array and the CPA blocks occupy back to back pipeline stages. Each

of these units are designed, implemented, and optimized individually, in most
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cases by separate group of engineers, with a design goal to meet the cycle time.

The strict separation of these computation blocks in distinct pipeline stages

means that all 106-bit sum and carry terms from the multiplier array become

available together. This forces the high performance synchronous FPMs to use

some kind of speculative tree adder [71] topology in their CPA design as the

carry input is yet to be computed. The speculative computation makes the

CPA design expensive in terms of energy and area as we showed earlier in Sec-

tion 4.2.1. Towards the end of the pipeline stage, the actual carry input, com-

puted using the least significant 53-bit partial sum and carry terms, becomes

available and is used to select one of the two speculatively computed 53-bit

mantissa outputs.

The strict separation of computation blocks in distinct pipeline stages in syn-

chronous designs is done to minimize latching overhead. For example, splitting

the multiple array at a finer granularity would result in many more latching

gates due to the large number of intermediate partial product terms. Another

reason for such coarser pipeline split is that in arithmetic datapaths, most com-

putations usually operate on a full-width scale.

In contrast, asynchronous circuits provide much fine-grain pipelining,

which can be exploited to greatly reduce the complexity of the carry compu-

tation and CPA logic in the FPM design.

5.5.1 Carry Computation and Sticky-bit Logic

The multiplier array requires relatively less number of summation steps to pro-

duce its least significant output bits. This is because there are less partial prod-
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uct terms to be summed since each successive partial product row is skewed

by three bit positions from the previous one in radix-8 multiplication, as seen

in Figure 5.5 as well. As a result, the least significant bits are available rela-

tively earlier than rest of the multiplier array outputs. We take advantage of our

fine-grain pipelining by initiating the carry computation as soon as the least

significant bits arrive. Furthermore, the application profiling results in Fig-

ure 5.11 show that for over 90% operations across all applications the longest

ripple-carry length to compute the carry input term is less than four radix-4

bit positions. These average-case patterns indicate that the carry term could be

computed well in time for the CPA operation, hence alleviating the need of any

speculative CPA implementations.

Figure 5.11: Longest ripple-carry length for computing CPA carry input

The micro-architecture of carry and sticky-bit computation is depicted in Fig-

ure 5.12. It uses interleaved split and merge pipelines, first introduced with the
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design of interleaved adder in Section 4.2.1. The inputs A and B in Figure 5.12 are

in one-of-four encoded format and correspond to 52 least significant bits of par-

tial sum and carry output terms from the multiplier array. The odd data tokens

are sent on the output channels labeled with R prefix, while the next arriving

even data tokens are sent on channels with L prefix. Each Carry Sticky block

computes the carry and sticky bit terms at that bit position. With carry chain

lengths of less than four, as seen in Figure 5.11, the final carry term is computed

within four logic levels on average. This represents logarithmic average latency.

A synchronous design, constrained by worst-case carry propagation pattern,

would need an expensive tree adder topology to attain similar latency. The

interleaved topology prevents pipeline stalls in case of long carry chains by dis-

patching the next arriving inputs to the alternate computational unit. The odd

tokens are used to compute the carry term cinR used as carry input in the odd

ripple-carry adder of our interleaved CPA, whereas the next arriving even data

tokens compute the carry term cinL used as carry input in the even ripple-carry

adder of our interleaved CPA topology.

For sticky-bit computation, we use parallel tree topology which combines

bitwise sticky-bit values to compute the final sticky-bit. A ripple flow architec-

ture similar to the one used to compute carry input term was deemed not feasi-

ble as it yielded consistently long ripple chains as shown in Figure 5.13, which

caused throughput degradation. Our interleaved topology prevents throughput

degradation up to ripple lengths of 14 bit positions only. The sticky-bit ripple-

flow implementation yields ripple lengths of 15 or more quite frequently. The

sticky-bit is set to one if any of the bits is one, but for it to be set to zero it has to

ensure that all prior bits in the sequence are zero. This is what causes the long

ripple chains and renders ripple-flow design infeasible.
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Figure 5.12: Interleaved topology to compute sticky-bit and carry input

5.5.2 53-bit Carry-Propagation Adder

The 53-bit carry-propagation adder is on the critical path of the FPM datap-

ath. The delay of an N-bit adder primarily depends on how fast the carry

reaches each bit position. The high throughput synchronous FPM designs, con-

strained by worst case computational latency, employ expensive tree adder de-

signs to guarantee low fixed latency for all carry chain lengths. In contrast,

asynchronous designs have no timing constraints. We harness this timing flexi-
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Figure 5.13: Sticky-bit ripple-carry chain length

bility of our underlying asynchronous circuits by using interleaved adder topol-

ogy in our 53-bit carry-propagation addition. The interleaved adder comprises

two ripple-carry adders, one each for odd and even data tokens respectively.

The adder topology is identical to the one used earlier for significand addition

in our FPA design. Our choice of the interleaved adder was made on the basis

of application profiling results in Figure 5.14, which indicate very small carry

chain lengths on average across all application benchmarks. For such carry

chain lengths, the interleaved adder represents the most energy-efficient choice.

It yields average throughput similar to that attained with expensive tree adder

designs while consuming up to 4X less energy per operation. Section 4.2.1 dis-

cusses and quantifies the design trade-offs of interleaved adder topology in great

depth.
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Figure 5.14: CPA ripple-carry chain length

5.6 Denormal, Underflow, and Zero-input Case

While discussing the various trade-offs involved in the FPM datapath design,

we have so far ignored certain special cases specified in the IEEE format [49].

Two of these special cases: the denormal numbers and underflow case repre-

sent the most difficult operations to implement in an FPM datapath. The sce-

narios under which these two special cases arise and the tasks that need to be

performed are summarized as follows:

• One of the FPM inputs is a denormal number, which yields a mantissa

with zeroes in its most significant bit positions. If the non-bias exponent

for the product is greater than Emin value of one, the product needs to be

left shifted while decrementing the exponent until it is normalized or the
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exponent reaches the Emin value of one. We refer to this scenario as the

Denormal case.

• One of the FPM inputs is a denormal number or both FPM inputs are very

small numbers and the resulting exponent is less than the Emin value of

one. In this case, the mantissa needs to be right shifted. The value of right

shift is equal to the difference between Emin and resulting exponent or an

amount which zeroes out the mantissa, whichever of the two is smaller.

We refer to this scenario as the Underflow case.

The need of variable left shift and right shift logic blocks makes the hardware

support for denormal and underflow cases expensive. In the denormal case, the

hardware also needs to analyze the full mantissa to figure out the exact left shift

amount, which further adds to the FPM latency. In contrast, for all other regular

inputs the FPM datapath requires no variable shift blocks and only needs to

check the most significant mantissa bit for normalization.

The synchronous FPM implementations have a global clock constraint. The

use of logarithmic variable shifters is one design option to support these spe-

cial cases while staying within the clock bounds. The hardware complexity of

logarithmic shifters makes this an infeasible option especially since these spe-

cial cases do not happen frequently. Another solution that has been employed

in commercial FPM design includes the utilization of the existing logarithmic

shifters within the floating-point unit datapath [66, 58]. It requires a control

mechanism to first stall the pipeline and squash all earlier instructions. This

then enables the current special case instruction to use the variable logarithmic

shifters in other parts of the floating point datapath. The flushing of earlier

instructions and subsequent feedback of the current instruction results in a con-
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siderable throughput penalty. It is also wasteful in terms of energy consump-

tion since many already computed tasks of multiple earlier instructions in the

pipeline are discarded and need to be computed all over again. The big advan-

tage, however, is the hardware savings resulting from no additional logarithmic

shifters.

One technique to prevent pipeline stall and throughput penalty is to provide

a separate dedicated unit to handle these special cases. In this technique, em-

ployed in a few commercial chips [26], the intermediate results are forwarded

to this special unit which includes a large expensive shifter unit. The solution,

however, requires support for out-of-order execution, such as a reorder buffer,

since many subsequent instructions in the FPM datapath may complete before

the special case instructions.

The infrequent occurrence of these special case inputs and the extensive

hardware complexity required to support these operations has meant that many

FPM designs [73, 44] do not fully support these operations in hardware. Instead,

these operations are implemented in software via traps. This yields very long

execution time, which renders denormal numbers useless to programmers [59].

It also means that the FPM hardware is no longer fully IEEE compliant.

Asynchronous circuits are not constrained by any global clock. This timing

flexibility allows us to use some very simple circuits, such as serial shifters, to

provide full hardware support for these special case inputs. Figure 5.15 shows

the FPM datapath with hardware support for special case instructions. Using

conditional split pipelines, the output bits from the CPA are directed to either

Normal or Denormal/Underflow logic path. The control to divert the output bits is

computed using input type, exponent value, and the most significant mantissa
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bits.

Figure 5.15: Floating-point multiplier with support for special case inputs
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The Normal datapath includes a single-bit normalization shift block and

rounding logic. The Denormal/Underflow unit comprises variable left and right

shift blocks and a combined rounding block. As instructions do not have to be

fed back to earlier pipeline stages to utilize variable shift blocks in other parts

of the FPU, there is no need to flush any earlier instructions. The slack depth of

the FPM datapath also minimizes potential pipeline stalls.

For input tokens diverted to the Normal datapath, no dynamic power is

consumed within the Denormal/Underflow block and likewise for input tokens

headed for Denormal/Underflow block, there is no dynamic power consumption

in the Normal datapath. In contrast, synchronous design requires significant

control overhead to attain fine-grain clock gating.

Prior to the final Pack pipeline, there is a merge pipeline stage, which selects

the output from either the Normal or the Denormal/Underflow datapath using

buffered control token, Op Ctrl, which is generated much earlier in the datapath.

5.6.1 Denormal Numbers

We provide hardware support for this special case by implementing a full man-

tissa length 1-of-4 encoded bitwise serial left shifter and an 1-of-4 encoded bit-

wise exponent decrement logic as shown in Figure 5.16. Each box labeled Left

Shift and Dec represents a separate pipeline stage. The functionality of each

pipeline stage is dictated by the centralized control unit via its output tokens,

which travel serially through all pipeline stages. Each control token is encoded

using a 1-of-3 data rail with each rail indicating one of the following three tasks:
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Figure 5.16: Denormal operation hardware

• Init: This is the first control token received by each block and is received

only once per each operation. It directs the pipeline block to read the in-

coming token, ExpIn or Fin, and forwards its value on to the feedback chan-

nel to be fed back into the pipeline block in the next cycle. ExpIn input

corresponds to exponent and Fin input corresponds to mantissa bits. The

feedback loop for each pipeline stage is shown as a dotted line in Fig-

ure 5.16. The feedback path contains a full buffer stage for slack, which is

not shown for simplicity.

• Op: This token is received as many times as the number of one-bit left

shifts that are required. On its receipt, each Left Shift block uses its feedback

channel inputs to produce a left shifted copy for the feedback loop. Sim-
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ilarly, the Dec block reads its feedback channel inputs, decrements it, and

forwards it to its feedback loop. It also sends a copy to the Exponent Check

logic, which checks to see if the decremented exponent is equal to one.

• End: This is the last control token received by each block. It indicates the

ends of the computation. The feedback channel input is forward to the final

output channels, expOut and Fout.

On receiving the Activate Denormal token, the centralized control block ac-

tivates the rest of the hardware by issuing an Init token for both left shift and

decrement logic blocks. It then waits for the output of Exponent Check logic block

and the most significant left shift block. If the most significant bit is not one and

the exponent is greater than one, then it issues a new Op token. This step is

repeated until the number is normalized or the exponent reaches the minimum

value, at which point the control unit issues an End token. Although the left

shift and decrement blocks are functionally serial, their bitwise pipelined im-

plementation allows overlapped execution of multiple iterations. For example,

the most significant bit left shift blocks may start producing the final outputs

while the least significant blocks are still operating on the previous left shift it-

eration. As a result, the overall execution time per each denormal case is greatly

reduced.

5.6.2 Underflow Output

Our FPM datapath handles the case of underflow outputs with bitwise serial

right shift and decrement logic blocks as shown in Figure 5.17. Both of these

units are encoded using 1-of-4 data rails. This reduces the number of serial right
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shift pipeline blocks by half, which in turn reduces the latency of underflow

operations. The input count into the decrement logic specifies the number of

right shifts that are required to align the the mantissa such that the exponent

is equal to Emin. In the case where the exponent value is off from Emin by

more than the number of bits in the mantissa, the value of count is capped by a

maximum shift amount that causes the mantissa to zero out.

Figure 5.17: Supporting underflow case in hardware

In terms of the overall architecture, the underflow datapath is quite similar

to the earlier explained denormal datapath. The central control unit activates

the datapath by issuing an Init token. It then waits for the output of Count Check

logic block before issuing the next control token, which is an Op token unless

count has been decremented to zero, in which case an End token is issued.

139



5.6.3 Denormal/Underflow: Unified Rounding

Once the mantissa has been correctly aligned using variable left or right shift

block, a subsequent rounding operation may be required to increment the 53-

bit mantissa by one. We utilize ripple-carry 1-of-4 encoded increment logic

to implement rounding. An expensive increment logic topology would have

been futile since the output from variable shift blocks arrives in bitwise fashion.

The rounding logic is shared between the Denormal and Underflow datapaths as

shown in Figure 5.18 to further minimize the area overhead of supporting these

special case operations. The Rnd block receives incoming guard, round, sticky,

and rounding mode bits from both special case datapaths. It selects the correct set

of inputs to determine whether to increment the mantissa or not. Similarly, the

entire increment logic block is implemented using conditional merge pipeline

blocks [36]. As in the case of Rnd block, a copy of the activate token used to

initiate Denormal or Underflow datapath is used as control input in each 1-of-4

encoded increment pipeline block to select the correct input token from either

of the two datapaths. The exponent selection logic is implemented in similar

manner using conditional merge pipelines to enable the selection of input bits

from the correct datapath.

5.6.4 Zero-input Operands

Operand profile of floating-point multiplication instructions reveals that a few

application benchmarks have a significant proportion of zero input operands.

These primarily include applications with sparse matrix manipulations, such

as 447.deal and 437.leslie3d [5], despite their use of specialized sparse matrix
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Figure 5.18: Unified rounding hardware for denormal/underflow cases

libraries. For other benchmarks, the zero-input percentage varies widely as

shown in Figure 5.19. In most state-of-the-art synchronous FPM designs that

we came across [54, 73, 69], the zero-input operands flow through the full FPM

datapath. They yield similar latency and consume same power as any other

non-zero operand computation. This is highly non optimum since if one or

both of the FPM operands are zero, the final zero output could be produced

much earlier and at much reduced energy consumption by skipping most of the

compute intensive power consuming logic blocks such as the multiplier array,

carry propagation adder, normalization, and rounding unit.

We provide a zero bypass path in the FPM datapath to optimize its latency
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Figure 5.19: Operand profile of floating-point multiplication instructions

and energy consumption in the case of zero operands. To activate the bypass

path, the FPM utilizes the zero flag control output from Unpack stage, which

checks if any of the input operands is zero. But this information is not available

in time before the start of pipeline stages pertaining to Booth control and 3Y

multiple generation. One possible solution was to delay these pipeline stages

until the zero flag is computed and then use it to divert the tokens to either the

regular or the bypass path. Since this solution incurs a latency hit for non-zero

operands, it was discarded. In our design, instead of delaying the multiplier

array, we inhibit the flow of tokens much deeper in the datapath. As a result, in

our design the energy footprint of zero operand computations includes the over-

head of computing Booth control token as well as some parts of the 3Y multiple
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computation. But this still yields roughly 82% reduction in energy consump-

tion for each zero operand computation, while preserving same latency and

throughput for non-zero operand operations.

The Op Ctrl signal used to distinguish between Normal and Denor-

mal/Underflow block outputs is augmented to indicate zero input operations as

well. Although, a zero input operation skips all logic intensive stages, the Op

Ctrl token guarantees in-order operation as outputs are chosen in the same or-

der their corresponding instructions were issued to the FPM. A big difference

between the zero bypass paths of FPA and FPM is that unlike in the case of FPA

zero bypass path, the bypass path in the FPM contains no data tokens as the out-

put of the computation is zero irrespective of the value of the other operand (be

it zero or non-zero). As a result, no buffer stages are needed on the bypass path

despite the presence of huge slack disparity between regular and zero bypass

paths.

5.7 Floating-Point Multiplier: Experimental Results

This section presents the SPICE simulation results of our proposed FPM data-

path. Our design provides hardware support for denormal and underflow op-

erations. Operations involving zero-input operands skip the multiplier array,

carry-propagation adder, normalization, and rounding logic blocks. The tran-

sistors in the FPM were sized using standard transistor sizing techniques [71].

To meet high performance targets and to minimize charge sharing problems,

each NMOS stack was restricted to a maximum of four transistors in series (in-

cluding the enable). The slow and power-consuming state-holding completion-

143



elements were restricted to a maximum of three inputs at a time. Keepers and

weak feedback inverters were added for each state-holding gate to ensure that

charge would not drift even if the pipeline were stalled in an arbitrary state.

Since HSIM/HSPICE simulations do not account for wire capacitances, we

included an additional wire load equivalent to a wire length of 8.75 µm in the

SPICE file for every gate in the circuit. Our simulations use 65nm bulk CMOS

process at 1V nominal VDD and typical-typical (TT) process corner. Test vectors

are injected into SPICE simulation using a combined VCS/HSIM simulation,

with Verilog models that implement the asynchronous handshake in the test

environment. All simulations were carried out at the highest-precision SPICE

setting.

The denormal and underflow datapaths in our FPM design depict a truly

operand dependent behavior. Figure 5.20 shows the FPM throughput at var-

ious different proportions of denormal or underflow cases. Another factor

that greatly affects the throughput is the number of bit shifts required in each

case. Each of the four lines on the graph corresponds to a different constant

shift amount and yield different throughput results. The throughput degrades

considerably at higher percentage of these special case operations, however,

as seen earlier in Figure 5.19, these special cases happen very rarely, if at all.

Even if they do occur frequently, our FPM still operates correctly and produces

IEEE-compliant output albeit at lower throughput. At less than 0.1% frequency

of these special case operations, our FPM throughput for all shift amounts

is within 1% of the maximum FPM throughput attained with non-zero input

operands. The synchronous FPMs that need to stall and flush the pipeline first

to support these operations suffer a much greater throughput loss. When com-
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pared to an operating system trap implementation, our throughput results are

at least three orders of magnitude faster.

Figure 5.20: FPM throughput with varying proportion of denor-
mal/underflow cases

In terms of total transistor area, our proposed denormal and underflow dat-

apaths have a modest cost of only 8.5% of the total FPM transistor area. In

contrast, a hardware solution comprising full mantissa length logarithmic right

and left shift blocks and separate increment and rounding logic blocks would

have cost approximately 21.2% of the total FPM transistor area.

The FPM throughput and energy per operation results across all application

benchmarks are shown in Figure 5.21 and Figure 5.22 respectively. For non-zero

operands, the FPM registers a highest throughput of 1.53 GHz. In applications
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with a considerable percentage of zero operands, the average FPM through-

put rises to as high as 1.78 GHz, since zero input operations skip through-

put constraining N-Inverter templates in the multiplier array. This average

case throughput property highlights another advantageous aspect of our asyn-

chronous design which is not possible in a synchronous design, where the av-

erage throughput is limited by worst-case throughput.

Figure 5.21: FPM throughput across various floating-point applications

In Table 5.2, we compare our proposed asynchronous FPM design against

a custom FPM design by Quinnell et al [54] in 65nm SOI process at 1.3V nom-

inal VDD. The energy, throughput, and latency results include only non-zero

operand operations in order to provide the worst-case comparison. Despite us-

ing 65 nm bulk process, our FPM design consumes 3X less energy per operation
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Figure 5.22: FPM energy per operation across various floating-point appli-
cations

while operating at 2.3X higher throughput. Both designs have similar latency

at 1.3V. However, the custom FPM latency results do not include any internal

pipeline latches, which account for a significant proportion of overall latency es-

pecially in high throughput designs. Our asynchronous FPM design compares

quite favorably against the custom synchronous FPM implementation despite

employing radix-8 Booth-encoded multiplier, which has an average 5.9% higher

latency than a radix-4 Booth-encoded multiplier design.

For frequently occurring zero input operations in sparse matrix applications,

our proposed FPM yields an even lower latency and energy per operation. The

results for zero input operands are shown in Table 5.3, which highlights the
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Table 5.2: Asynchronous FPM vs Synchronous FPM

Design Energy/op Throughput Latency @1V Latency @1.3V

Proposed FPM 92.1 pJ 1.53 GHz 1070 ps 705 ps

Quinnell FPM 280.8 pJ 666 MHz NA 701 ps

efficacy of zero bypass path.

Table 5.3: Zero Operand Features

Design Energy/op Latency

Proposed FPM 15.8 pJ 464 ps @ 1V

Quinnel FPM 280.8 pJ 701 ps @ 1.3V

Since leakage power has become an important design constraint, our simu-

lations model sub-threshold and gate leakage effects in detail. The total leakage

power of our FPM in idle mode was estimated at 1.62 mW using typical-typical

process corner at 90◦C and a VDD of 1V.
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Chapter 6

Conclusion

Fast floating-point hardware is critical in a wide range of applications. Emerg-

ing applications in various disciplines of science, engineering, and finance are

further pushing the demand for faster and faster performing floating-point

hardware. Today, this performance is limited by power constraints. The tra-

ditional power reduction schemes, which relied primarily on technology and

voltage scaling, are not sufficient any more. In this thesis, we circumvent the

problem of power and energy inefficiency by taking a two-pronged approach.

This includes an improved pipeline design and multiple operand-dependent

optimization techniques.

Firstly, we discovered the inherent inefficiency of asynchronous QDI

pipelines for operations involving a large number of tokens in flight, such as

an array multiplier. QDI circuits, though very robust, incur a significant en-

ergy overhead in orchestrating handshake protocol between different parallel

pipeline processes. To circumvent this problem, this thesis proposes two novel
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energy-efficient templates for high throughput asynchronous pipelines. The

proposed templates, called N-P and N-Inverter pipelines, use single-track hand-

shake protocol. Noise and timing robustness constraints of our pipelined cir-

cuits are quantified across all process corners. A completion detection scheme

based on wide NOR gates is presented, which results in significant latency

and energy savings especially as the number of outputs increase. Compared

to a standard QDI pipeline implementation of an 8x8-bit Booth-encoded array

multiplier, the N-Inverter and N-P pipeline implementations of 8x8-bit Booth-

encoded array multiplier reduced the energy-delay product by 38.5% and 44%

respectively. The overall multiplier latency was reduced by 20.2% and 18.7%,

while the total transistor width was reduced by 35.6% and 46% with N-Inverter

and N-P pipeline templates respectively.

Furthermore, this thesis presents novel operand-dependent optimization

techniques to improve the energy efficiency of IEEE-754 compliant floating-

point adder (FPA) and floating-point multiplier designs (FPM). We begin with

a baseline FPA that corresponds to a state-of-the-art high performance syn-

chronous FPA design. We provide a detailed breakdown of the power con-

sumption of the FPA datapath implemented using standard asynchronous QDI

pipelines, and use it to motivate a number of different data-dependent opti-

mizations for energy-efficiency. Some of these optimizations are highly chal-

lenging, if at all possible, in a synchronous design because they increase the

worst case critical path but on average have negligible impact on performance.

Our baseline asynchronous FPA has a throughput of 2.15 GHz while con-

suming 69.3 pJ per operation in a 65nm bulk process. For the same set of

nonzero operands, our optimizations improve the FPA’s energy-efficiency to

150



30.2 pJ per operation while preserving average throughput, a 56.7% reduction

in energy relative to the baseline design. To our knowledge, this is the first

detailed design of a high-performance asynchronous double-precision floating-

point adder.

This thesis provides a thorough analysis of the trade-offs involved in using

radix-4 and radix-8 array multiplier designs. Both designs were implemented

using the newly proposed energy-efficient N-Inverter templates. The radix-8

design was preferred since it further reduced the total FPM energy consump-

tion by 19.8% while preserving the average throughput. These significant en-

ergy savings were made possible by the highly energy-efficient interleaved adder

topology, which exploits the average-case short carry propagation chains to

greatly minimize the adder hardware complexity. This optimization is not pos-

sible within synchronous design because of the worst-case cycle time constraint.

This thesis also presents a modest hardware implementation for denormal

and underflow operations. With average-case input patterns, the proposed de-

sign’s performance matches that of a much complex hardware design which

uses 2.5X more transistors. Compared to many synchronous designs, which do

not fully support these operations in hardware [73, 44], the proposed design has

many orders of magnitude higher performance.

The full FPM datapath with numerous operand-dependent and pipeline

optimizations is fully quantified using 65nm bulk process. When compared

against a custom synchronous FPM design [54] in 65nm SOI process, it con-

sumes 3X less energy per operation while operating at 2.3X higher throughput.
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6.1 Future Work

In future, we plan to extend this work to develop asynchronous fused multiply-

add architectures guided by similar principles to those outlined in this the-

sis. We intend to explore operand-dependent opportunities in floating-point

division, square-root, and other functional units to design a complete energy-

efficient floating-point unit. In this thesis, we restricted our novel low-

handshake pipeline templates to the array multiplier design only. However,

in future we intend to utilize these energy-efficient templates across the entire

FPU datapath to further reduce the overall energy consumption.

An asynchronous FPU’s application is not restricted to an asynchronous pro-

cessor only. Since a floating-point unit is a self-contained system and has been

employed as a co-processor in many commercial microprocessors, we envision

asynchronous FPUs with operand-dependent optimizations similar to those in-

troduced in this thesis to be used within synchronous microprocessors. As part

of our future work, we plan to explore all design trade-offs involved in a hy-

brid synchronous and asynchronous microprocessor design with an operand-

dependent FPU.
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