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Acute myeloid leukemia (AML) is characterized by poor clinical outcome due 

to high rates of relapse driven by therapy-resistant leukemic stem cells (LSC).  Despite 

major advances in our understanding of the mechanisms that drive AML pathogenesis, 

our comprehension of responses to therapy remains poor, and treatment strategies 

have not dramatically changed over the past thirty years.  In this dissertation, we 

directly evaluated LSC responses to induction therapy by performing gene expression 

profiling of LSC and non-LSC blast populations from paired diagnostic:post-induction 

therapy patient samples.  Our work identified 5-lipoxygenase (5-LO), amongst several 

other genes, as potential chemoresistance mediators in AML LSCs.  Confirmation of 

the broad role of 5-LO in leukemia was observed through loss-of-function studies in 5-

LO deficient models of myeloid leukemogenesis, which exhibit improved survival and 

responses to chemotherapy both in vitro and in vivo.  In contrast, 5-LO deficient 

hematopoietic stem/progenitor cells exhibit enhanced recovery in response to 

myeloablative therapy.  Genetic and pharmacologic perturbation of 5-LO activity 

confirms that the leukotriene-synthetic capacity of 5-LO is a requirement for its 

chemoprotective effects.  Together, our data identify multiple novel regulators of LSC 

chemoresistance and highlight 5-LO as a target for therapies that seek to enhance the 

effect of induction therapy. 
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CHAPTER ONE:  
INTRODUCTION 

 

 

Beginning in early gestation, all cell types of the blood are specified in a 

hierarchical manner originating from a population of pluripotent hematopoietic stem 

cells (HSCs) through a process known as hematopoiesis.  Perturbations in this process 

result in a variety of hematological malignancies, including acute myeloid leukemia 

(AML), which arises due to a block in myeloid differentiation, resulting in an 

accumulation of leukemic blast cells.  As leukemic blasts are rapidly dividing, the 

majority of the tumor burden can be debulked using standard induction chemotherapy.  

However, chemotherapy is relatively ineffective in eliminating leukemic stem cells 

(LSCs), the cell of origin that initiates leukemia and drives relapse.  A better 

understanding of the mechanisms of LSC chemotherapy evasion is therefore likely 

required for realization of a cure in AML.  Directly studying the response of patient 

LSCs to induction therapy in vivo has the potential to identify novel chemoresistance 

pathways for the development of targeted therapies in combination with the current 

standard-of-care.  This chapter will present an overview of both the normal and 

diseased hematopoietic systems, our understanding of LSC biology, and the past and 

current efforts of identifying and inhibiting chemoresistance pathways in AML. 
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NORMAL HEMATOPOIESIS 

Hematopoiesis is the life-long process by which all cells of the blood system 

are replenished as they are lost or turned over.  This is accomplished by hierarchical 

specification of multipotent, oligopotent, and lineage committed progenitors, all 

originating from a rare population of hematopoietic stem cells (HSCs) (Seita & 

Weissman, 2010).   

Hematopoietic tissues 

Hematopoiesis begins in humans as early as embryonic day 21 (E21) in the 

yolk sac blood islands, and continues through the entirety of fetal development as 

HSCs rapidly cycle and proliferate to establish the blood system (Pietras, Warr, & 

Passegué, 2011).  HSCs in mice begin to colonize the aorta-gonad-mesonephros 

region from E8.5, the fetal liver from E11.5, and finally the bone marrow (BM) from 

E17.5, where they continue to expand through the first 3-weeks of postnatal life and 

then abruptly switch to a more quiescent state by 4-weeks (Bowie et al., 2006; 

Mikkola & Orkin, 2006).  The major site of adult hematopoiesis in both mice in 

humans is the bone marrow although extramedullary hematopoiesis can also occur in 

the spleen and liver during times of stress, such as bone marrow failure or tissue injury 

(Johns & Christopher, 2012; Kiel & Morrison, 2008).   

The majority of hematopoiesis and primary lymphogenesis occurs in the bone 

marrow of the axial and long bones.  The bone marrow is located in the central bone 

cavity and consists of a multitude of cell types, areas of cellular development, and 

specialized biological functions.  The endosteal surface of the bone marrow is 

inhabited by a heterogeneous mixture of cells including bone-synthesizing osteoblasts, 
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bone-resorbing osteoclasts, and mesenchymal progenitor cells (Kiel & Morrison, 

2008).  Arteries that carry oxygen, nutrients and growth factors into the bone marrow 

end in sinusoids before turning into the venous circulation.  Various cells surround the 

sinusoids, including reticular cells, mesenchymal progenitors, megakaryocytes, 

monocytes, and endothelial cells.  The marrow also consists of diverse hematopoietic 

tissue islands arranged in a deliberate fashion, including:  Erythroblastic islands, 

granulopoietic foci, and areas of megakaryopoiesis adjacent to the sinus endothelium 

(Weiss & Geduldig, 1991).  The structure of the bone marrow is more completely 

reviewed in: (Travlos, 2006) (Figure 1-1).  Together, these various anatomical 

features orchestrate a complex interplay required for functionally healthy 

hematopoiesis. 

Hematopoietic stem cells and lineage specification 

HSCs reside in specialized microenvironments within the bone marrow, 

collectively referred to as the bone marrow niche.  Both endosteal and perivascular 

regions have been shown to support HSCs, however the exact location of the HSC 

niche has remained elusive (Ehninger & Trumpp, 2011; Kiel & Morrison, 2008).  It is 

through cell-cell, cell-extracellular matrix, and receptor-ligand interactions with the 

niche that HSCs are maintained and induced to respond to stimuli.   

Despite their crucial role in blood regeneration, only 5% of adult HSCs 

actively divide under homeostatic conditions (Cheshier, Morrison, Liao, & Weissman, 

1999; Pietras et al., 2011).  The vast majority of HSCs are maintained in a dormant or 

quiescent state, ensuring their longevity and function, while leaving HSCs poised to 

re-enter the cell cycle when additional hematopoiesis is required  
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Figure 1-1: Bone marrow structure and its components 

From: (Travlos, 2006) 
 

  

554 TRAVLOS TOXICOLOGIC PATHOLOGY

FIGURE 5.—Diagrammatical representation of the vascular supply of the bone marrow. Adapted from: Abboud, C. N. and Lichtman, M. A. (2001) Structure of the
marrow and the hematopoietic microenvironment. In Williams Hematology, 6th edition. Copyright McGraw-Hill, used with permission. Adaptive drawing by David
Sabio. 6.—Representation of the maturation progression of the multiple cellular lineages present in the bone marrow. CFU = colony forming unit; E = erythyroid;
Meg = megakaryocyte; Gemm = granulocytic, erythyroid, monocyte-macrophage, and megakaryocytic; GM = granulocyte/monocyte; G = granulocyte; M =
monocyte; Eo = eosinophil; Baso = basophil; L = lymphocyte. Drawing by David Sabio.
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(Kiel & Morrison, 2008; J. Li, 2011).  HSC self-renewal and quiescence are highly 

associated with long-term reconstituting capacity and are critical for maintenance of 

the stem cell compartment (Blank, Karlsson, & Karlsson, 2008).  Defects in regulation 

of either self-renewal or quiescence can lead to exhaustion of the HSC pool, resulting 

in hematopoietic failure (Ding & Morrison, 2013; Ding, Saunders, Enikolopov, & 

Morrison, 2012; L. Li & Bhatia, 2011; Qian et al., 2007).  The decision to withdraw 

from the cell cycle, or undergo rounds of symmetric/asymmetric division is a highly 

regulated process involving both HSC-intrinsic and -extrinsic factors (Chotinantakul 

& Leeanansaksiri, 2012; J. Li, 2011; L. Li & Bhatia, 2011).  

HSCs have the ability to give rise to all mature lineages of the blood, with as 

little as one HSC providing long-term hematopoietic reconstitution (Kiel et al., 2005).  

Through asymmetric division and symmetric differentiation HSCs may give rise to a 

hierarchy of progenitors that become progressively more lineage-restricted.  Terminal 

differentiation results in production of mature blood cells, including erythrocytes, 

macrophages, granulocytes, megakaryocytes, and lymphocytes (Figure 1-2).   

Molecular markers of hematopoietic lineages 

The stem cell biology of the hematopoietic system is arguably one of the best 

characterized organ system under study.  Over the past several decades increased 

understanding of phenotypic expression patterns of cell type-specific cell surface 

markers has allowed for refined prospective identification of many cells of the blood 

(Purton & Scadden, 2007).  Lineage-specific markers for B cells (B220+), T cells 

(CD3+/CD4+/CD8+), granulocytes (Mac-1+Gr-1+), monocytes (Mac-1+Gr1-), 

megakaryocytes (CD41+), and erythrocytes (Ter119+) are well described.  The  
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Figure 1-2: The hematopoietic hierarchy 

Adapted from: (Doulatov, Notta, Laurenti, & Dick, 2012) 

Such high-resolution maps that accompany cellular transitions
have been generated for mouse hematopoiesis, and are being
continuously refined (Ji et al., 2010). Until recently, only highly
heterogeneous populations, based on the expression of CD34
and CD38, had been surveyed by gene expression profiling in
human hematopoiesis (Georgantas et al., 2004). An earlier study
also examined homologous genes with higher expression in LSK
Rholo primitive mouse cells compared with Lin+ cells. Of these,
39% were also more highly expressed in CB CD34+CD38– prim-
itive cells compared with human Lin+ cells (Ivanova et al., 2002).

This indicates conservation, but also specific differences
between mouse and human HSC expression. Transcriptional
comparison of CD49f+ HSCs and Thy1–CD49f– MPPs is yielding
more precise information about the stem cell state. Several tran-
scription factors are associated with the HSC state, including ID
genes, SOX8, SOX18, andNFIB, whileMYC and IKZF1 are upre-
gulated during differentiation into MPPs (Notta et al., 2011).
Regulators of stem cell function predicted by genomic

approaches must be functionally validated. Steady improve-
ments in xenograft models and lentiviral systems enable genetic

Figure 2. Current Models of Lineage Determination in the Adult Mouse and Human Hematopoietic Hierarchies
The major classes of stem and progenitor cells described in the text are defined by cell surface phenotypes, which are listed next to each population and in the
gray bars below each schematic. Terminally differentiated cells are shown on the right, and inferred lineage relationships are depicted with arrows. In mice (A),
HSCs can be separated into long-term (LT), intermediate-term (IT), and short-term (ST) classes based on the duration of repopulation. In humans (B), HSCs are
defined by the expression of CD49f and other markers, but their heterogeneity has not been investigated. In mice, differentiation of HSCs gives rise to transiently
engrafting multipotent progenitors (MPPs), and a series of immature lymphoid-biased progenitors (such as LMPPs) that undergo gradual lymphoid specification.
In humans, MPPs can be identified by the loss of CD49f expression; however, only one population of immature lymphoid progenitors (MLPs) has been described.
Both mice and humans have well-defined populations of myelo-erythroid progenitors: CMPs, GMPs, and MEPs. Lin: cocktail containing cell surface markers for
all terminally differentiated populations (B cell; T cell; NK; dendritic cell, monocyte, granulocyte, megakaryocyte, and erythrocyte).

124 Cell Stem Cell 10, February 3, 2012 ª2012 Elsevier Inc.

Cell Stem Cell

Review

Human	

Mouse	
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majority of immature stem and progenitor cells are defined as lineage-negative (Lin-) 

and c-Kit+.  Within this population HSCs are additionally Sca-1+CD34-CD150+, while 

multipotent progenitors are Sca-1+CD34+CD150hi/low.  Myelo-erythroid progenitors, 

including:  common myeloid progenitors (CMP), granulocyte-macrophage progenitors 

(GMP), and megakaryocyte-erythroid progenitors (MEP) are Lin-c-Kit+Sca-1-.  CMPs, 

GMPs, and MEPs are further defined by being CD34intCD16/32-, CD34+CD16/32+, or 

CD34-CD16/32-, respectively.  The same strategy has been employed for the 

identification of human stem and progenitor cells.  Cell surface markers for mouse and 

human are summarized in (Figure 1-2).  The ability to isolate highly purified cell 

populations has facilitated detailed analysis of their transcriptional and epigenetic 

landscapes in recent years (Ivanova et al., 2002; Ji et al., 2010), which has broadened 

our understanding of molecular and biochemical pathways that underlie HSC function. 

Indeed, much effort has been devoted to the identification of factors that 

influence HSC survival and self-renewal (Antonchuk, Sauvageau, & Humphries, 

2002; Lessard & Sauvageau, 2003; Varnum-Finney et al., 2000).  Genetic deletion of 

several cell cycle regulators and transcription factors, such as Rb, p53, p57, and 

Foxo1/3/4 show increased HSC cell cycle activity (Pietras et al., 2011).  Several 

extrinsic factors have been shown to regulate HSC fate decisions, including 

angiopoietin-1 from bone-lining osteoblasts, CXCL12 and stem cell factor (SCF) 

secretion from endothelial and lepr+ perivascular cells, as well as adherence 

interactions through integrin and N-cadherin (Ding & Morrison, 2013; Ding et al., 

2012; J. Li, 2011).  Administration of exogenous SCF and TPO cytokines, as well as 

various interleukins including: IL-3, IL-6, and IL-11, have been shown to promote 

both survival and proliferation of mouse HSCs ex vivo (Seita et al., 2007; Seita & 

Weissman, 2010). 
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Interestingly, the majority of transcription factors that are essential for 

hematopoiesis are often also linked to the promotion of leukemia.  Such genes include: 

mixed lineage-leukemia gene (MLL), Runx1, TEL/ETV6, SCL/tal1, and LMO2, 

which constitute the majority of leukemia-associated translocations in patients (Orkin 

& Zon, 2008).  Chimeric gene fusions can exert aberrant downstream effects on global 

transcription programs through target gene activation or repression and recruitment of 

alternative chromatin-modifying enzymes (Rosenbauer & Tenen, 2007).  Several other 

genes involved in human HSC identification and lineage specification, including Flt3 

and Dmnt3a, are also associated with poorer prognosis in patients with AML 

(Mclellan et al., 2010; Mizuki et al., 2000).  Therefore, understanding of 

hematopoiesis is intrinsically linked to our understanding of leukemia.  A more 

complete picture of HSC maintenance also has the added potential to facilitate their 

prolonged expansion ex vivo for clinical applications such as transfusable blood 

production and bone marrow transplantation.   

ACUTE MYELOID LEUKEMIA 

Over 250,000 adults are diagnosed with AML each year worldwide (Rowe & 

Tallman, 2010).  AML can arise due to preexisting hematological malignancies or 

from prior therapy, however the majority of new AML cases develop de novo in 

previously healthy patients (De Kouchkovsky & Abdul-Hay, 2016; Sill, Olipitz, 

Zebisch, Schulz, & Wölfler, 2011).  The disease is characterized by an uncontrolled 

expansion of immature myeloid cells in the bone marrow resulting in ineffective 

hematopoiesis and consequences of peripheral cytopenias.  Despite recent advances in 

our understanding of the genetic origins of AML, treatment options remain limited and 
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outcomes are very poor (Roboz, 2011).  Development of novel therapeutic approaches 

is therefore of great clinical importance. 

Clinical progression 

AML is defined by the abnormal proliferation and differentiation of a clonal 

population of myeloid cells, referred to as leukemic blasts.  Like normal 

hematopoiesis, leukemic blasts are generated in a hierarchical manner beginning with 

a self-renewing population of leukemic stem cells (LSCs, CD34+CD38-CD90-), 

resulting in distinct populations of leukemic progenitor (LPCs, CD34+CD38+) and 

leukemic blast (CD34-) cells (Bonnet & Dick, 1997).  However, unlike normal 

hematopoiesis where proliferation ceases and differentiation runs to completion, there 

is a block in development at the early myeloid stage, resulting in accumulation of 

immature cells with heightened proliferative capacity.  These leukemic blasts exhibit 

varying, but incomplete, phenotypic characteristics indicative of abnormal 

development (Olsson, Bergh, Ehinger, & Gullberg, 1996). 

The diagnosis of AML is established by the presence of greater than 20% 

blasts in the bone marrow or peripheral blood (Döhner et al., 2010).  The myeloid 

origins of the disease are then further identified through immunophenotyping or 

myeloperoxidase activity to distinguish the disease from other types of neoplasms.  

Recent advances in our understanding of the underlying cytogenetic and molecular 

genetic abnormalities of AML have allowed for more rigorous classification into six 

major disease entities, with 11 subtypes depending upon presence of distinct 

chromosomal translocations (Table 1-1).  The 2016 update to the WHO classification 

of AML is further reviewed here: (Arber et al., 2016). 
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Clinical manifestations of AML relate to peripheral cytopenias, including 

leukocytosis, anemia, and thrombocytopenia, which are indicative of underlying bone 

marrow failure.  Fever, fatigue, bruising, weight loss, and issues relating to wound 

healing are also common.  If left untreated, patients succumb to the disease within 

several months following diagnosis due to complications of infection or bleeding (De 

Kouchkovsky & Abdul-Hay, 2016). 

Impact on hematopoiesis 

In many ways, the aggressiveness of AML stems from an inability to sustain 

normal hematopoiesis.  As malignant cells expand, they outcompete healthy cells for 

nutrients, space in the BM and periphery, and otherwise inflict deleterious changes to 

the BM niche.  HSCs and LSCs share similar phenotypic markers, including CD34, 

CD38, CD71, and HLA-DR (Jordan, 2002) and are also dependent upon many of the 

same cytokines for growth, including IL-3, IL-6, and SCF.  Gene expression changes 

in blasts also put them in direct competition for resources with more differentiated 

normal hematopoietic progeny.  

Thrombopoietin (TPO), an important regulator of megakaryopoiesis and 

platelet production, also regulates maintenance of HSC self-renewal and quiescence 

(de Sauvage et al., 1996; Kimura, Roberts, Metcalf, & Alexander, 1998).  High 

expression of the TPO receptor MPL on leukemic blasts predicts neutropenia and 

thrombocytopenia in AML patients, and has been shown to deplete TPO in cell culture 

and in mouse models (Rauch et al., 2016). 

Hyperproliferation of AML blasts also has significant detrimental effects on 

bone marrow composition and niche maintenance.  Bone marrow stroma from AML  
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patients have been shown to be unable to support normal blood cell formation, with 

two thirds of AML patient cases demonstrating abnormally low levels of colony-

stimulating factor secretion from bone marrow monocytes and macrophages (Dührsen 

& Hossfeld, 1996; Peter & Greenberg, 1978).  AML blasts also secrete higher levels 

of matrix metalloproteinases, specifically MPP-2, which may lead to changes in BM 

extracellular matrix composition (Ries, Loher, Zang, Ismair, & Petrides, 1999).  

Increased hypoxia in the leukemic bone marrow also alters expression of many pro-

survival factors in AML blasts, including HIF-1a and FLT3, representing a potential 

positive feedback loop between altered BM microenvironment and enhanced leukemic 

cell survival (Benito, Zeng, Konopleva, & Wilson, 2013; Drolle et al., 2014; Sironi et 

al., 2015).  Additionally, it was shown that the tumor microenvironment sequesters 

normal CD34+ cells, resulting in a decline in their frequency, likely due to leukemic 

cell SCF secretion (Colmone et al., 2008). 

These perturbations to the BM are exacerbated in elderly patients with AML.  

The aged bone marrow is typified by onset of anemia, decreased competence of the 

adaptive immune system, and expansion of myeloid cells, potentially due to elevated 

levels of the pro-inflammatory CC-chemokine ligand (CCL5) secreted by the BM 

microenvironment.  Aged HSCs also demonstrate cell-intrinsic changes that alters 

their self-renewal, homing, and differentiation capacities, as demonstrated by elevated 

HSC frequencies, niche preferences in transplantation, and lymphoid progenitor output 

(Geiger, de Haan, & Florian, 2013).  Together, the complications of AML are a result 

of competition between leukemic blasts proliferation and normal hematopoiesis inside 

an increasingly compromised BM niche, which is further exacerbated by inherent 

hematopoietic deficiencies in the elderly. 
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Genetic and epigenetic alterations 

While advanced age is a major adverse prognostic factor (Appelbaum et al., 

2015), there are also numerous genetic and epigenetic abnormalities that are predictive 

of patient outcome.  Genetic mutations are identified in more than 97% of AML cases 

(J. P. Patel et al., 2012).  Younger adult patients are commonly grouped into favorable, 

intermediate, or adverse risk based cytogenetics (Grimwade et al., 1998).  A complex 

karyotype with three or more chromosomal abnormalities is associated with very poor 

outcome (Mrózek, 2008), which occurs in 10-12% of patients.  It is unclear how the 

interplay between multiple cytogenetic changes relates to AML pathogenesis, however 

the non-random pattern of these mutations is suggestive of a stepwise acquisition of 

genetic aberrations (Dash & Gilliland, 2001). 

Indeed, the karyotype of leukemic cells has been shown to be one of the 

strongest prognostic factors for response to induction therapy and survival (Mrózek, 

Heerema, & Bloomfield, 2004).  More than 100 different chromosomal translocations 

have been cloned in AML (Gilliland & Tallman, 2002).  Several gene-fusions are 

highly associated with development of AML, including:  RUNX1-RUNX1T1, CBFB-

MYH11, PML-RARA, MLLT3-KMT2A, DEK-NUP214, GATA2, MECOM, 

RBM15-MKL1.  These gene fusions result in enforced expression of hematopoietic 

transcription factors.  The aggressiveness of AML in elderly patients is, in part, 

attributable to increased incidence of adverse vs favorable chromosomal abnormalities 

in this patient group (Leith et al., 1997). 

Numerous models have been proposed to explain acquisition of clonal genetic 

defects in AML.  One of the most widely cited mechanisms, the two-hit model, 

postulates that the critical events in AML pathogenesis are a mutation in a 
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hematopoietic transcription factor combined with an activating mutation in a kinase.  

In this model, class I mutations activate pro-proliferative pathways, while class II 

mutations impair normal hematopoietic differentiation (De Kouchkovsky & Abdul-

Hay, 2016).  Support of this comes from studies describing the insufficiency of single 

transgenes for HRX-ENL, AML/MDS/EVI, and E2A-Pbx1, among others, in inducing 

acute leukemia (Cuenco & Ren, 2001; Lavau, Szilvassy, Slany, & Cleary, 1997; 

Thorsteinsdottir et al., 1999).  This model helps explain how the sheer number of 

mutational combinations observed in AML can result in grossly similar disease.  

Examples of class I mutations that promote proliferation include FLT3 ITD, 

K/NRAS, TP53, and c-Kit are found in roughly 28%, 12%, 8%, and 4% of cases, 

respectively (Voigt & Reinberg, 2013a).  Enhanced phosphorylation of STAT3 is also 

seen in up to 50% of AML cases, typically conferring a worse prognosis (Ghoshal, 

Baumann, & Wetzler, 2008).  Class II mutations include NPM1 and CEBPA, which 

are found in roughly 27% and 6% of cases, respectively (Kihara et al., 2014; Voigt & 

Reinberg, 2013b).  A third class of genes that affect epigenetic regulation and can 

simultaneously influence proliferation and differentiation have also recently emerged, 

including DNMT3A, TET2, and IDH-1/2 (Challen et al., 2012; J. P. Patel et al., 2012).  

Mutations in these genes are found in more than 40% of AML cases. 

Studies over the past several decades have shown that AML is a highly 

heterogeneous disease, with interpatient variations significantly influencing prognosis 

and treatment choice.  While our understanding of the mutational drivers of AML 

have evolved significantly, our grasp of how these genes dictate response to therapy is 

still relatively naive.  Characterization of gene expression changes in response to 

therapy in specific AML subtypes represents a logical next step to expanding our 

understanding of AML biology and development of new therapeutics. 
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Treatment 

The standard induction therapy regimen is comprised of a combination of 

seven days of the nucleoside analog cytarabine (Ara-C) and three days of an 

anthracycline such as daunorubicin (DNR) (Ogbomo, Michaelis, & Klassert, 2008; 

Quigley et al., 1980; Roboz, 2011; Rowe & Tallman, 2010).  7+3 induction therapy 

has remained the standard of care for over four decades and complete remission (CR), 

defined as < 5% BM blasts, is achieved in 60% to 80% of young adults, which is 

unrivaled by any other current treatment option (Döhner et al., 2010) (Table 1-2).  

However without additional therapeutic interventions patients typically relapse, 

resulting in disease resistant to current therapies (Burnett et al., 2009; Cassileth et al., 

1992). 

Postremission strategies depend upon age, cytogenetics, and molecular genetic 

risk.  Postremission consolidation and maintenance in young patients and patients with 

favorable- and intermediate-risk cytogenetics typically consists of high-dose Ara-C 

(HiDAC) treatment followed by autologous or allogeneic hematopoietic stem cell 

transplantation (HSCT).  5-year remission rates are 65% in favorable-risk groups 

(Juliusson et al., 2014).  In patients with adverse-risk AML outcomes are much worse, 

even with current consolidation methods (Grimwade et al., 1998).  The treatment 

recommendation for this group is an allogeneic HSCT from a matched related donor, 

with survival of 44% versus 15% of patients receiving a single cycle of HiDAC 

(Slovak et al., 2015).  Management of older patients (>60 years of age) is often more 

complicated.  Increasing age is associated with poor performance status and 

comorbidities that can affect tolerance to induction therapy.  Elderly patients are also 

segregated into classes of increasing risk, which are highly correlated with their 
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Table 1-2: Treatment options for AML 

 
                                                             From: (Karp, 2011) 

 page 16  I  800.955.4572  I  www.LLS.org

Table 3. Some Drugs Used to Treat Acute Myeloid Leukemia

Most antileukemic drugs interact with the cell’s genetic material (the DNA).

Anthracyclines (Antitumor Antibiotics)
{{ daunorubicin (Cerubidine®)
{{ doxorubicin (Adriamycin®)
{{ idarubicin (Idamycin®)
{{ mitoxantrone (Novantrone®)

Antimetabolites
{{ cladribine (2-CdA; Leustatin®)
{{ clofarabine (Clolar®)
{{ cytarabine (cytosine arabinoside, ara-C; Cytosar-U®)
{{ fludarabine (Fludara®)
{{ hydroxyurea (Hydrea®)
{{ methotrexate
{{ 6-mercaptopurine (Purinethol®)
{{ 6-thioguanine (Thioguanine Tabloid®)

Topoisomerase Inhibitors
{{ etoposide (VP-16; VePesid®, Etopophos®)
{{ topotecan (Hycamtin®)

DNA Damaging (Alkylating) Agents
{{ cyclophosphamide (Cytoxan®)
{{ carboplatin (Paraplatin®)
{{ temozolomide (Temodar®)

Cell-Maturing Agents
{{ all-trans retinoic acid (ATRA, tretinoin; Vesanoid®)
{{ arsenic trioxide (Trisenox®)

Hypomethylating Agents
{{ azacitidine (Vidaza®)
{{ decitabine (Dacogen®)

Table 3.  I  This table lists some of the standard drugs and some of the drugs under study in clinical trials to treat 
AML patients. Various approaches to AML treatment are undergoing study in clinical trials. A patient may be 
treated with drugs that are not listed in this table and still be receiving appropriate and effective treatment. For 
a description of standard chemotherapy combinations, see page 15. It is essential to seek treatment in a center 
where doctors are experienced in the care of patients with acute leukemia.
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cytogenetics.  In elderly patients with adverse cytogenetics, CR rates are 30% or less, 

and overall survival (OS) is less than 5% (Juliusson et al., 2014).  There is also 

heightened therapy-related death and chemotherapy resistance in this group 

(Grimwade et al., 2001). 

A deeper understanding of the genetic basis of AML in recent years has led to 

the development of several molecularly-targeted therapies.  Cytotoxic agents linked to 

monoclonal antibodies against the myeloid-associated antigen CD33 (gemtuzumab 

ozogamicin), a cell surface marker highly expressed on leukemic blasts, was shown to 

produce remission in 15% to 35% of older patients, and up to 91% in younger patients 

in first relapse (Kell et al., 2003).  FLT3 inhibitors (midostaurin, lestaurtinib, 

sunitinib) and demethylating agents (azacitidine) are also being developed for the 

treatment of AML, the later demonstrating 2-year OS of 50% in older patients (Fenaux 

et al., 2010; Wander, Levis, & Fathi, 2014).  Widespread adoption of these targeted 

therapies depends upon their demonstrated therapeutic index, as well as CR and OS 

rates compared to, or in combination with, induction chemotherapy. 

Despite progress in our management of AML, there are still considerable 

questions relating to the appropriate number of treatment cycles, dosage and schedule, 

and combination of HiDAC with other agents.  The influence of discrete cytogenetic 

and molecular genetic abnormalities on treatment choice is still an area of active 

research.  Greater understanding of the genetic and epigenetic underpinnings of AML 

have led to the identification and pharmacologic development against aberrant 

proteins in acute leukemia.  But with the exception of retinoic acid and arsenic trioxide 

for acute promylocytic leukemia (APL) (S.-J. Chen & Zhou, 2012), these therapies 

have not significantly improved treatment responses alone, likely reflecting the 

influence of multiple genetic lesions that drive AML. 
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Issues with treatment 

There are many hurdles that must be overcome to improve the current standard 

of care for AML, including but not limited to:  Non-specificity of induction therapy 

between leukemic and normal cells, the neurological and cardiotoxicity of Ara-C and 

anthracyclines, low tolerance to chemotherapy in the elderly, and the inability for 

current therapies to directly target LSCs. 

As with most chemotherapeutic compounds, induction therapy elicits its effect 

through non-specific targeting of rapidly dividing cells.  Ara-C, a deoxycytidine 

analog, interferes with the synthesis of DNA through its incorporation into actively 

replicating DNA strands during S phase of the cell cycle.  Ara-C also inhibits DNA 

and RNA polymerase and nucleotide reductase enzymes required for DNA synthesis 

(Momparler, 2013).  Anthracyclines such as daunorubicin and doxorubicin inhibit 

rapidly dividing cells by intercalating between base pairs in DNA and RNA, as well as 

inhibition of topoisomerase II.  Despite the ability of these compounds to effectively 

kill leukemic blasts in the periphery and BM, common, sometimes severe side effects 

also occur, including:  Myelosuppression, rash, gastrointestinal toxicity, mucositis, 

and infection (Woelich et al., 2017).  Anthracyclines also exhibit cumulative cardiac 

toxicity, which limits their use clinically.  While occurrence of these side effects are 

often outweighed by the potential benefits of therapy in younger patients, treatment-

related death (defined as death within four weeks of therapy initialization) occurs in 

roughly 5% of patients, with significantly worse tolerance, especially to high-dose 

chemotherapy, in the elderly (Döhner et al., 2010; Marceau et al., 2014). 

As a percentage of total causes of death in AML, the risk of mortality due to 

therapy itself pales in comparison to the number of patients that die from relapsed 
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disease.  Indeed, relapse continues to be the leading cause of death in patients with 

AML, regardless of cytogenetic classification and risk stratification (Ravandi & 

Estrov, 2006).  Even in patients who achieve CR, relapse often occurs months or years 

later.  Given their quiescent nature, high expression of ATP-associated transporters, 

and resistance to apoptotic stimuli, it is widely believed that LSCs are able to escape 

induction therapy and drive reoccurrence of AML (Dean, Fojo, & Bates, 2005; Guan, 

Gerhard, & Hogge, 2003; Konopleva et al., 2002).  It is therefore imperative that we 

gain a better understanding of leukemic cell chemotherapy evasion, particularly in 

respect to LSCs, for the development of additional therapeutic approaches for 

complete eradication of the disease. 

LEUKEMIC STEM CELLS 

The clonal nature of AML suggests it arises from a single cell-of-origin.  

Similar to HSCs, LSCs are thought to lie at the root of clonal growth and therefore be 

the cell responsible for perpetuation of leukemia.  LSCs share many phenotypic and 

functional characteristics with HSCs, including:  Expression of similar cell surface 

markers, ability to self-renew, cell cycle quiescence, extensive proliferative capacity, 

and relative resistance to cytotoxic stress (Jordan, 2002).  The presence of residual 

LSCs following induction therapy are thought to be the primary driver of relapse.  The 

challenge of therapeutically targeting LSCs therefore lies in understanding the 

differences of LSCs not only from the bulk leukemic population, but also from normal 

HSCs and progenitor cells. 
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Identification 

The idea that a small population of stem cells, with the ability to self-renew 

and assert homeostatic control for the maintenance and propagation of cancer, 

particularly in the context of leukemia, is not new (Fialkow, Gartler, & Yoshida, 

1967).  In the past several decades, many of the same techniques that were used for 

phenotypic and functional elucidation of normal hematopoiesis were also employed 

for the identification of LSCs, including prospective isolation based on defined 

phenotypic markers and leukemia initiating studies in long-term transplantation 

systems.  Leukemia is now one of the best characterized systems for our 

understanding of cancer stem cells (J. C. Y. Wang & Dick, 2005).   

LSCs comprise anywhere from 0.1% to 1% of leukemic cells as assessed by 

leukemia initiating capacity of blasts injected into severe combined immunodeficient 

mice (Lapidot et al., 1994).  The marker expression profile of LSCs is minimally 

defined as CD34+CD38-CD90- with additional enrichment for CD117- (c-Kit) and 

CD123+ (IL-3R) expression (Blair, Hogge, Ailles, Lansdorp, & Sutherland, 1997; 

Bonnet & Dick, 1997; Jordan et al., 2000).  Excitingly, high LSC expression of certain 

self-renewal pathways such as Wnt/ β-catenin, Notch, and Hedgehog (Dick, 2003; 

Horton & Huntly, 2012), cell surface antigens such as CLL-1, CD44, CD96, and 

CD47 (Jordan et al., 2000; Majeti et al., 2009), SRC family kinases (Santos et al., 

2014), and anti-apoptotic molecules such as Bcl-2 (Lagadinou et al., 2013), have been 

identified in recent years.  This may offer unique therapeutic targets to eliminate LSCs 

while maintaining the normal HSC pool, an endeavor that has already produced 

several drug candidates (Feuring-Buske, Frankel, Alexander, Gerhard, & Hogge, 

2002; Hosen et al., 2007; Santos et al., 2014).  Therefore, additional understanding of 
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the mutagenic and gene expression events that occur in LSCs during malignant 

transformation and response to induction therapy will likely drive clinical 

development in coming years.  

Malignant transformation of LSCs 

LSC malignant transformation is thought to be a result of mutations in 

primitive hematopoietic cells (Figure 1-3).  LSC cell surface expression patterns, self-

renewal capacity, and ability to drive hierarchical, albeit incomplete, hematopoietic 

specification suggests that LSCs share many similarities to HSPCs.  The question is 

then, do LSCs arise directly from HSCs that have accumulated mutations such as loss 

of programmed cell death, or restricted progenitors that have gained an enhanced 

capacity to self-renew?  Due to the heterogeneity of LSCs it has been unclear for many 

years whether AML results directly from mutations in HSCs or other more mature 

precursor cells (Passegué, Jamieson, Ailles, & Weissman, 2003).  However, the 

development of refined LSC detection methods and more effective immunodeficient 

xenograft models has shown that, at least in some cases, LSCs are present in multiple 

phenotypic compartments (Pollyea, Gutman, Gore, Smith, & Jordan, 2014).  

There are several categories of mutagenic events that must occur for malignant 

transformation in AML, including: Increased self-renewal, impaired differentiation, 

and increased cell survival/proliferation (Reya, Morrison, Clarke, & Weissman, 2001).  

Mutations in genes that impart increased self-renewal, such as stabilization of β- 

catenin, or enforced signaling in pathways that promote progenitor self-renewal, such 

as Hox genes, Notch, and Shh have been described (Lawrence, Sauvageau, 

Humphries, & Largman, 1996; Niemann et al., 2003).  Gene fusions that directly   
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Figure 1-3: LSC transformation in AML 

From: (Jordan, Guzman, & Noble, 2006) 
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regrowth of the tumor. In cases in which bulk 
disease is eradicated and chemotherapy is given, 
only to be followed by a relapse, a plausible ex-
planation is that the cancer stem cells have not 
been completely destroyed (Fig. 3B). Therapeutic 
strategies that specifically target cancer stem 
cells should eradicate tumors more effectively 
than current treatments and reduce the risk of 
relapse and metastasis.

Cancer Stem Cells in the Hematopoietic 
System

The hematopoietic system is the best character-
ized somatic tissue with respect to stem-cell biol-
ogy. Over the past several decades, many of the 
physical, biologic, and developmental features of 
normal hematopoietic stem cells have been de-
fined18,19 and useful methods for studying stem 
cells in almost any context have been established. 
Hematopoietic-cell cancers such as leukemia are 
clearly different from solid tumors, but certain as-
pects of hematopoietic stem-cell biology are rele-
vant to our understanding of the broad principles 
of cancer stem-cell biology.6 In various types of 
leukemia, cancer stem cells have been unequivo-
cally identified, and several biologic properties of 
these stem cells have been found to have direct 
implications for therapy.1,20-22

Cancer stem cells are readily evident in chron-
ic myelogenous leukemia (CML)23 and acute my-
elogenous leukemia (AML),10,11 and they have 
been implicated in acute lymphoblastic leukemia 
(ALL).24-26 CML stem cells have a well-described 
stem-cell phenotype and a quiescent cell-cycle 
status. Similarly, AML stem cells are mostly qui-
escent,27-30 suggesting that conventional antipro-
liferative cytotoxic regimens are unlikely to be 
effective against them. AML stem cells have sur-
face markers, such as the interleukin-3–receptor α 
chain, that are not present on normal stem cells.31 
These markers may be useful for antibody-based32 

or other related therapeutic regimens.33,34 Early 
efforts have demonstrated the usefulness of an-
tibodies against the CD33 antigen in the treat-
ment of AML,35,36 and recent reports indicate 
that CD33 is expressed on some leukemia stem 
cells.37 Continued development of immunothera-
py against stem-cell–specific antigens is war-
ranted.

There has been extensive research on drugs 
that specifically modulate pathways implicated in 
leukemia-cell growth (i.e., “targeted” agents).38,39 

Use of the ABL kinase inhibitor imatinib mesyl-
ate (Gleevec) to treat CML has had particularly 
interesting results.40 Despite the remarkable clin-
ical responses achieved with imatinib, however, 
residual disease persists in many patients. In vitro 
studies indicate that inhibition of the CML trans-
location product BCR-ABL is sufficient to eradi-
cate most or all leukemia cells, but the drug does 
not appear to kill CML stem cells.41 Imatinib 
primarily affects the progeny of cancer stem cells, 
so CML usually recurs when therapy is discontin-
ued.42 Furthermore, although the newly approved 
CML agent dasatinib is effective for imatinib-
resistant disease, recent data suggest that it too 
may fail to eradicate CML stem cells.43

Normal
stem cell

Progenitor or
transit-amplifying

cells

Cancer
stem cell

Mutations

Mature
tissue

BulkBulk
tumortumor
Bulk

tumor

Figure 2. Stem-Cell Systems.

Normal tissues arise from a central stem cell that grows and differentiates 
to create progenitor and mature cell populations. Key properties of normal 
stem cells are the ability to self-renew (indicated by curved arrow), multi-
lineage potential (indicated by cells of different colors), and extensive pro-
liferative capacity. Cancer stem cells arise by means of a mutation in nor-
mal stem cells or progenitor cells, and subsequently grow and differentiate 
to create primary tumors (the broken arrow indicates that specific types of 
progenitors involved in the generation of cancer stem cells are unclear). 
Like normal stem cells, cancer stem cells can self-renew, give rise to hetero-
geneous populations of daughter cells, and proliferate extensively.
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impair hematopoietic differentiation, typically consisting of a transcription factor, such 

as AML1 or RARa, and a variable fusion partner, which may control cell survival and 

apoptosis such as PML, are also hallmarks of AML and are detectable in LSCs 

(Alcalay et al., 2001).  Gain-of-function mutations in cell death antagonists, such as 

Bcl-2, Bcl-xl, and Mcl-1 have also been linked to leukemia.  Most human AMLs 

express elevated levels of Bcl-2, and the AML1-ETO fusion has been shown to 

upregulate expression of Bcl-2 through binding its promoter elements (Delia et al., 

1992; Klampfer, Zhang, Zelenetz, Uchida, & Nimer, 1996).  Like most cancers, 

acquisition of these mutations in AML is thought to occur in a stepwise manner, 

resulting in an increasingly transformed clonal population of leukemic cells (Hanahan 

& Weinberg, 2000). 

Role in AML pathogenesis and relapse 

Regardless of whether the driver mutations are accumulated in a cell that was 

once an HSC or more committed progenitor, the transformed LSC has the ability to 

potentiate primary leukemic outgrowth, as well as relapse following therapy.  Studies 

in recent years have shown significant inter-patient variability in LSC marker 

expression and mutational status, likely arising as a consequence of difference in 

disease pathogenesis (Eppert et al., 2011; Sarry et al., 2011).  Transplanted LSCs give 

rise to secondary AML with a similar phenotype observed in the original patient, 

which speaks to the clonal nature of AML (Ho et al., 2016).  Patients harboring a 

higher LSC frequency or a more prevalent stem cell phenotype at diagnosis also 

exhibit significantly poorer outcomes than patients with fewer LSCs or a less 

prevalent stem cell phenotype (Gentles, Plevritis, & Page, 2012; Ran et al., 2012; Van 
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Rhenen et al., 2005).  Enrichment for an LSC gene expression signature results in 

significantly worse overall, event-free, and relapse-free survival in patients regardless 

of karyotype status (Gentles et al., 2012; Ng et al., 2016).  Therefore, a ‘stemness’ 

signature is thought to be an independent prognostic indicator of AML aggressiveness 

and patient response to treatment.  The relatively high LSC frequency (25-30% of all 

myeloid cells) may also help explain the particularly aggressive nature of the MLL-

AF9 leukemic mouse model (Somervaille & Cleary, 2006). 

Persistence of LSCs following therapy is also a primary driver of relapse.  To 

appreciate the role of LSCs in this process, it is helpful to understand clinical 

classification of response to therapy.  Induction therapy results in varying amounts of 

bulk tumor reduction, classified as complete remission (CR, < 5% BM blasts), 

complete remission with incomplete recovery (CRi, CR except residual neutropenia or 

thrombocytopenia), and molecular complete remission (CRm, reversion to normal 

karyotype) (Cheson et al., 2003; Döhner et al., 2010).  A summary of response criteria 

in AML are depicted in Table 1-3.  The heterogeneity in patient response is currently 

not well understood, however it is likely due to a combination of driver mutations, 

level of differentiation within the tumor, and patient-specific comorbidities (Estey, 

2009).  While our ability to detect residual leukemia at the molecular level by flow 

cytometry and PCR has improved consolidation and supportive care following 

induction therapy, the limit of detection is still a major hurdle in ensuring the complete 

elimination of leukemia (Grimwade & Freeman, 2016).  Therefore, although a patient 

may be classified as CRm, many still harbor minimal residual disease (MRD), 

comprised of a population of undetectable cells that have evaded therapy.   

Relapsed leukemia arises if this residual population contains leukemic cells 

that are disease-sustaining, with length of remission predicted by residual LSC self- 
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renewal and proliferation activity (Stiehl, Baran, Ho, & Marciniak-Czochra, 2015).  

The MRD population typically resembles the disease at diagnosis, suggesting that 

MRD contains LSCs (Van Rhenen et al., 2007).  A higher percentage of LSCs in 

complete remission following induction therapy strongly correlates with shorter 

patient survival, which can be further stratified based on frequencies of MRD (Terwijn 

et al., 2014).  This, combined with early studies demonstrating the ability of a single 

transplanted LSC to initiate leukemia in mice (Somervaille & Cleary, 2006), point to 

LSCs as the cell-of-origin not only for leukemia initiation, but also for relapse.  

Together, these findings highlight therapeutic targeting of LSCs as the next big 

hurdle in AML treatment.  LSCs have been shown to perpetuate the clonal progression 

of AML, with initial mutations likely driving malignant transformation at the level of 

HSPCs.  The intrinsic resistance and stem cell properties of LSCs renders them 

uniquely suited to evade induction therapy and drive relapse.  More complete 

elimination of LSCs will likely come from improved detection through LSC-specific 

biomarkers in MRD combined with novel therapies that simultaneously capitalize 

upon LSC-specific dependencies while avoiding normal HSPCs.  Better understanding 

of how to apply the unique characteristics of LSCs as targets for therapeutic advantage 

is therefore required. 

CHEMORESISTANCE MECHANISMS IN AML 

There are multiple examples of why LSCs may be more resistant to therapy 

than the bulk leukemia.  The quiescent nature of the LSC may render these cells 

impervious to the genotoxic stress of chemotherapy, which primarily targets dividing 

cells.  Enhanced expression of multiple drug efflux pumps, including ABCB1, 
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ABCC1, and ABCG2, have also been postulated as mediators of LSC chemoresistance 

(Dean et al., 2005).  Elevated levels of various anti-apoptotic proteins, such as Bcl-2, 

Bcl-xL, and Mcl-1 have been associated with leukemogenesis and poor response to 

therapy (Y.-H. Wang & Scadden, 2015).  Several of these processes are depicted in 

Figure 1-4.  Notably, the role of additional biological activities in chemoresistance, 

including:  Inflammation, lipid metabolism, and epigenetic modification, has been 

more greatly appreciated in recent years (de Visser & Jonkers, 2009; Guryanova et al., 

2016; H. Ye et al., 2016).  Expanded understanding of these processes in relation to 

chemoresistance and LSC biology has the promise to uncover additional targets for 

therapeutic development. 

Drug efflux 

Transmembrane drug transporters where one of the first described mechanisms 

of chemotherapy evasion (Juliano & Ling, 1976).  Despite the clear role of ABC-

family transporters in mediating multi-drug resistance (MDR) in leukemic cells both 

in vitro and in vivo, numerous agents developed to inhibit ATP-binding cassette 

transporters, including P-glycoprotein (P-gp) and MRP1 (ABCC1), have found limited 

clinical efficacy (Callaghan, Luk, & Bebawy, 2014).  First and second generation P-gp 

inhibitors were abandoned due to poor potency and off-target effects that caused 

severe toxicities, with third generation P-gp inhibitors also demonstrating poor 

pharmacokinetic profiles in combination with induction chemotherapy (Gottesman et 

al., 2002).  Additionally, both LSCs and HSCs have been shown to express heightened 

levels of drug efflux pumps, rendering them equally as susceptible to these inhibitors 

(Dean et al., 2005).  Therefore, while it is likely that transporters 
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Figure 1-4: Examples of chemoresistance mechanisms 

From: (Gottesman, Fojo, & Bates, 2002) 
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non-functional p53 (REF. 158). Alternatively, cells might
acquire changes in apoptotic pathways during exposure
to chemotherapy, such as alteration of ceramide levels13

or changes in cell-cycle machinery, which activate
checkpoints and prevent initiation of apoptosis.

An important principle in multidrug resistance is
that cancer cells are genetically heterogeneous. Although
the process that results in uncontrolled cell growth in
cancer favours clonal expansion, tumour cells that are
exposed to chemotherapeutic agents will be selected for
their ability to survive and grow in the presence of cyto-
toxic drugs. These cancer cells are likely to be genetically
heterogeneous because of the mutator phenotype. So, in
any population of cancer cells that is exposed to
chemotherapy, more than one mechanism of multidrug
resistance can be present. This phenomenon has been
called MULTIFACTORIAL MULTIDRUG RESISTANCE.

ATP-dependent transporters
Selection of cancer cells in culture with natural-prod-
uct anticancer drugs, such as paclitaxel, doxorubicin,
or vinblastine, frequently results in multidrug resis-
tance that is due to expression of the ABC transporter
PGP, the product of the ABCB1 (or MDR1) gene14,15.
PGP is a broad-spectrum multidrug efflux pump that
has 12 transmembrane regions and two ATP-binding
sites16 (FIG. 2). The transmembrane regions bind
hydrophobic drug substrates that are either neutral or
positively charged, and are probably presented to the
transporter directly from the lipid bilayer8. Two ATP
hydrolysis events, which do not occur simultaneously,
are needed to transport one drug molecule17. Binding

family of ATP-binding cassette (ABC) transporters that
share sequence and structural homology. So far, 48
human ABC genes have been identified and divided
into seven distinct subfamilies (ABCA–ABCG) on the
basis of their sequence homology and domain organi-
zation7. Resistance results because increased drug
efflux lowers intracellular drug concentrations. Drugs
that are affected by classical multidrug resistance include
the VINCA ALKALOIDS (vinblastine and vincristine), the
ANTHRACYCLINES (doxorubicin and daunorubicin), the
RNA transcription inhibitor actinomycin-D and the
microtubule-stabilizing drug paclitaxel8.

Resistance can also be mediated by reduced drug
uptake. Water-soluble drugs that ‘piggyback’ on trans-
porters and carriers that are used to bring nutrients into
the cell, or agents that enter by means of endocytosis,
might fail to accumulate without evidence of increased
efflux. Examples include the antifolate methotrexate,
nucleotide analogues, such as 5-fluorouracil and 
8-azaguanine, and cisplatin9,10.

Multidrug resistance can also result from activa-
tion of coordinately regulated detoxifying systems,
such as DNA repair and the CYTOCHROME P450 mixed-
function oxidases. Indeed, coordinate induction of the
multidrug transporter P-glycoprotein (PGP) and
cytochrome P450 3A has been observed11. This type of
multidrug resistance can be induced after exposure to
any drug. Recent evidence indicates that certain
orphan nuclear receptors, such as SXR, might be
involved in mediating this global response to 
environmental stress12.

Finally, resistance can result from defective apoptotic
pathways. This might occur as a result of malignant
transformation; for example, in cancers with mutant or

MULTIDRUG RESISTANCE

Simultaneous resistance to
several structurally unrelated
drugs that do not have a
common mechanism of action.

VINCA ALKALOIDS

A family of natural-product
anticancer drugs, extracted from
the periwinkle family, that
depolymerize microtubules.
Examples include vincristine
and vinblastine.

ANTHRACYCLINES

Semi-synthetic anticancer
derivatives of anthraquinone
that intercalate into DNA and
inhibit DNA topoisomerase II.
Examples include daunorubicin
and doxorubicin.

CYTOCHROME P450

A group of enzymes that are
located on the endoplasmic
reticulum, and are involved in
drug metabolism and
detoxification. They are
primarily expressed in the liver
and small intestine.

MULTIFACTORIAL MULTIDRUG

RESISTANCE

Multidrug resistance caused by
several different mechanisms of
resistance that operate
simultaneously.

Activation of DNA repair

* *

Increased efflux
(ATP-dependent
efflux pumps)

Decreased influx

Activation of 
detoxifying systems
(cytochrome P450)

Blocked 
apoptosis
(e.g. decreased 
ceramide levels)

Figure 1 | Cellular factors that cause drug resistance.
Cancer cells become resistant to anticancer drugs by several
mechanisms. One way is to pump drugs out of cells by
increasing the activity of efflux pumps, such as ATP-dependent
transporters. Alternatively, resistance can occur as a result of
reduced drug influx — a mechanism reported for agents that
‘piggyback’ on intracellular carriers or enter the cell by means
of endocytosis. In cases in which drug accumulation is
unchanged, activation of detoxifying proteins, such as
cytochrome P450 mixed-function oxidases, can promote drug
resistance. Cells can also activate mechanisms that repair
drug-induced DNA damage. Finally, disruptions in apoptotic
signalling pathways (e.g. p53 or ceramide) allow cells to
become resistant to drug-induced cell death.

Summary 

• Multidrug resistance of cancer cells is a potentially surmountable obstacle to effective
chemotherapy of cancer.

• ATP-binding cassette (ABC) transporters, including MDR1 (ABCB1), MRP1 (ABCC1)
and ABCG2, can confer multidrug resistance to cancer cells in vitro.

• MRP2 (ABCC2), MRP3 (ABCC3), MRP4 (ABCC4), MRP5 (ABCC5), ABCA2 and
BSEP (ABCB11) are capable of transporting drugs; future studies are needed to
determine a role in drug resistance.

• ABC transporters such as MDR1 and MRP1 are expressed in many human cancers,
including leukaemias and some solid tumours; in some studies, expression of these
transporters has been shown to correlate with response to therapy and survival.

• Inhibitors of ABC transporters such as MDR1/P-glycoprotein have been tested in  
clinical trials with a suggestion of benefit, especially in acute myelogenous leukaemia.

• Interpretation of clinical trials using inhibitors of MDR1/P-glycoprotein has been
confounded by their effects on the pharmacokinetics of anticancer drugs.

• Development of inhibitors of ABC transporters should focus on potency and
specificity to minimize unexpected pharmacokinetic effects.

• Efficacy should be confirmed using surrogate assays.

• Normal tissues might be protected from toxicity by gene transfer of drug-resistance 
genes.

• Prevention of ABC transporter induction in cancer cells might help to avert 
drug resistance.
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mediating drug efflux are important arbitrators of chemoresistance, the clinical utility 

of inhibiting these proteins is questionable.   

It may be possible to circumvent the MDR and dose limiting toxicities of 

chemotherapeutic compounds through drug encapsulation in liposomes or other 

polymers.  Indeed, recent positive Phase III trial results for CPX-351, a liposomal 

formulation of Ara-C and DNR, are very exciting for the treatment of patients with 

poor drug tolerance (Lancet et al., 2016).  This approach has the potential to increase 

local concentrations of Ara-C and anthracyclines, which would eliminate the need to 

inhibit their efflux from the cell.  Additional carriers that incorporate a packaged high-

dose of an anthracycline with an siRNA directed against the mdr1 gene have shown 

promise (Susa et al., 2010).  Additional advances in delivery and stabilization of 

induction therapy are likely to continue in coming years, however the non-specificity 

of both induction therapy and drug efflux inhibitors underscore the importance of 

identifying mechanisms of drug resistance that are unique to leukemic cells. 

Cell cycle and self-renewal 

Quiescence is a characteristic inherent in the biology of stem cells (Pietras et 

al., 2011).  The vast majority of HSCs are maintained in dormancy, yet are poised to 

re-enter the cell cycle when additional hematopoiesis is required (Kiel & Morrison, 

2008; J. Li, 2011).  If LSCs originate from HSPCs, it is easily extrapolated that they 

must also be quiescent as well.  Indeed, in one study as many as 96% of observed 

LSCs (CD34+CD38-CD123+) were in G0 phase of the cell cycle (Guzman et al., 2001).  

This may represent an innate process by which LSCs evade chemotherapy. 

Several cell cycle regulators have been shown to be induced with anthracycline 
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treatment (Laurent, Jaffrézou, & Jaffre, 2001).  Doxorubicin treatment induces p53 

activation, leading to the induction of WAF1/CIP1 p21 gene expression, a strong 

inhibitor of cyclin-dependent kinases responsible for G1 to S transition (El-Deiry et 

al., 1993).  High levels of WAF1/CIP1 protein are also associated with 

chemoresistance in AML, which is reversed with MEK inhibition (Milella et al., 

2001). 

LSCs that do divide have been shown to possess a higher self-renewal capacity 

than normal SCID-repopulating cells (Bonnet & Dick, 1997).  Studies in Bmi-1 

knockout mice demonstrate that presence of Bmi-1 regulates the serial 

transplantability of Hoxa9/Meis1 driven AML (Lessard & Sauvageau, 2003).  

However, Bmi-1 and Hox family genes are important for both LSC and HSC self-

renewal, limiting their clinical potential (Warner, Wang, Hope, Jin, & Dick, 2004).  

Additional self-renewal associated signaling pathways include:  Hedgehog (Hh), 

canonical Wnt, FoxO, and Notch; all of which have defined roles in embryonic 

development and have in the past decade been tied to leukemic development and 

chemoresistance (Heidel, Mar, & Armstrong, 2011).  Furthermore, increased 

expression of Musashi-2 (Msi2), a cell fate determinant that directs symmetric 

division, was associated with aggressive disease and immature phenotype in human 

AML (Ito et al., 2010; Kharas et al., 2010).  These studies suggest that the enhanced 

self-renewal capacity of LSCs may be a determinant of ability to evade therapy and 

drive relapse. 

Several inhibitors of LSC self-renewal pathways are currently under 

development for leukemia.  Gamma-secretase inhibitors MK-0752 and PF03084014 

are being tested for the treatment of T-ALL (NIH, n.d.).  Other Notch pathway 

inhibitors, including the Delta-like ligand 4 (DLL4) antibody therapy, have been 
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shown to reduce stem cell frequency in solid tumors (Hoey et al., 2009).  Hh inhibition 

with cyclopamine slowed disease onset and resulted in decreased colony forming units 

in vitro in combination with BCR-ABL inhibition in chronic myeloid leukemia (CML) 

(Dierks et al., 2008).  Interestingly, the MEK inhibitors PD98059 and PD184352 

demonstrated preferential effects on leukemic cell clonogenicity with minimal effects 

on normal hematopoietic progenitor cells, potentially through modulation of both 

CDK inhibitors and anti-apoptotic proteins (Milella et al., 2001).  This suggests that 

there may be some selectivity when it comes to inhibiting LSC self-renewal, 

especially with pathways such as MAPK that are constitutively activated in many 

AML cases (Towatari et al., 1997). 

Therapies targeting the cell cycle or promoting differentiation of LSCs can be 

implemented in several ways.  Methods of pushing LSCs out of quiescence or 

promoting their differentiation could precede induction therapy to render them more 

sensitive to genotoxic stress.  Alternatively, drugs that maintain LSCs in a quiescent 

state could be given chronically following induction therapy to suppress relapse and 

extend length of remission.  Several examples of potential therapy sequencing are 

depicted in Figure 1-5.  Importantly, these approaches are not mutually exclusive, 

with a combination of LSC-targeted therapies at different times during the treatment 

cycle potentially resulting in the best response. 

Apoptotic regulators 

For most anticancer therapies, including chemotherapy, the major mechanism 

of action is the activation of apoptosis (Y.-H. Wang & Scadden, 2015).  Evasion of 

apoptotic stimuli is a hallmark of cancer, with LSCs thought to be less sensitive to   
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Figure 1-5: Therapy sequencing in combinatorial treatment 

From: (Pollyea et al., 2014) 
 
 
 
 
 
 
 
 
 

 

and post-treatment tumor samples should be collected. To
quantify LSCs, limiting dilution experiments, in which
tumor cells are transplanted at decreasing dilutions into
xenograft models, should be performed. While not practical
to perform for all clinical trial participants or in a prospec-
tive manner, and although not definitive proof of efficacy
against LSCs, these experiments are highly instructive and
should be prioritized. 

Other methods to quantify LSCs after treatment are in
active development. For example, although it has long been
clear that assessing post-treatment stem cell eradication
was important, it was recognized that “...in the future, the
ability to detect residual (cancer stem cells) in patients fol-
lowing therapy will require substantial advances in...purifi-
cation strategies.”6 As predicted, immunophenotypic tech-
niques to identify and quantify the LSC population before
and after treatment have evolved significantly,46 and can
now be employed to quantify the LSC-targeting ability of
candidate drugs. These techniques are less technically diffi-
cult than xenograft experiments, and may provide a more
versatile means of estimating LSC frequency in those
instances in which resources for xenograft studies are limit-
ed. Furthermore, the types of mutations that occur in
leukemia, as well as improved molecular detection meth-
ods, will undoubtedly lead to significant improvements in
MRD detection. 

For these correlative experiments, the timing of the post-
treatment bone marrow aspirate is critical. Although it is
theoretically possible to purify the tumor and assay for a
particular marker that uniquely identifies the disease, wait-
ing several weeks after an effective treatment may result in
a comparison between diseased and normal bone marrow.
In the first cycle of therapy, we recommend a bone marrow
aspirate prior to treatment, another after roughly seven
days of treatment with the LSC-directed agent, and again
after completion of a cycle of treatment (usually approx. 28
days) (Figure 1).  At each of these time points, the relative
tumor burden must also be measured so that LSC frequen-
cy can be normalized to total leukemia levels. This level of
quantification is essential as a means to determine whether
LSCs are targeted, and if so, whether a given therapy is
more or less effective towards LSCs in comparison to bulk
tumor.  At the conclusion of the clinical trial, an assessment
regarding whether outcomes correlate with the elimination
of the LSC population must be reported. 

Principle 2: assessing relevant end points
Recent experiences in which standard clinical trial

response assessments were extended to drugs that target
the LSC population demonstrate how conventional end
points are not necessarily useful in early phase clinical trials.
For example, development of the anti-CD33 immunoconju-
gate gemtuzumab ozogamicin (GO) is instructive. CD33 is
expressed by LSCs,94 although this is now understood to be
an inconsistent feature of this population.94-96 The results of
single-agent studies with this agent were varied, at best
revealing response rates approaching 30%,97 but sufficient
to lead to an FDA label for this drug.98 Notably, GO was vol-
untarily withdrawn from the US market in 2010 based on
interim data from a randomized combination study sug-
gesting no improvements in outcome and increased fatal
toxicity, perhaps due to the dose of GO.99 However, other
large randomized studies of GO in combination with con-
ventional chemotherapy have shown improvement in clin-
ically meaningful end points such as event-free survival/dis-

ease-free survival and OS,100-103 prompting calls for reconsid-
eration of its approval status.104 It is an interesting observa-
tion that these beneficial end points were observed despite
no differences in disease response rates, because in other
studies the number of LSCs was prognostic for survival, but
response rates did not correlate with LSC burden.71 

Therefore, clinical trials that study novel therapies pur-
ported to target LSCs must give less weight to disease
response rates as an end point,6,69 and investigators must be
cautious when making decisions regarding the continuation
of studies based on this end point. Instead, as much as pos-
sible, these trials should be powered to study the most clin-
ically relevant end points, such as event-free/disease-
free/progression-free survival and OS. 

Principle 3: combination therapies
The dandelion hypothesis56 predicts that LSC-directed

therapies administered as single agents require a longer
treatment period to derive clinical responses compared with
therapies that target the bulk population. Therefore, LSC-
directed therapies, even if active, may be insufficiently rec-
ognized to be effective when standard definitions used to
assess clinical responses are applied. There are two options
to design studies that do not inadvertently underestimate or
lead to incorrect conclusions regarding the efficacy of these
treatments. The first option is to prolong the time to which
an assessment of a clinical response would be expected.
This is typically not feasible or clinically desirable with
hyperproliferative diseases such as AML. A second option
would be to design biologically rational combinations of
LSC-directed agents with therapies that target the bulk pop-
ulation. This allows the urgent matter of proliferative dis-
ease and its related morbidity to be addressed, while simul-
taneously targeting the root cause of the disease; this can
buy the necessary time to allow for a curative therapy to be
effective. Invoking the example of the GO experience once

D.A. Pollyea et al.

1280 haematologica | 2014; 99(8)

Figure 2. Sequencing of conventional therapies with LSC-directed
therapies in the context of combination clinical trials. (A) Sequential
treatment with conventional therapy and LSC-directed therapy. (B)
Concomitant treatment with conventional therapy and LSC-directed
therapy. (C) Modified concomitant treatment for the first cycle of a
phase I clinical trial, in which the LSC-directed therapy precedes the
conventional therapy for a period of several days.

A

B

C
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apoptotic signals than the bulk tumor (Hanahan & Weinberg, 2000; Signore, Ricci-

Vitiani, & De Maria, 2013).  Therefore, inhibiting these anti-apoptotic mechanisms is 

a method by which to directly potentiate the effect of chemotherapy. 

Excitingly, in multiple instances LSCs have been shown to depend more 

highly on mechanisms of suppressing apoptosis than normal HSCs, potentially as a 

result of their increased rate of proliferation and accumulation of genetic aberrations 

(Guzman et al., 2002).  One such example is nuclear factor kB (NF-kB), which has 

been shown to be constitutively active in LSCs but not normal HSCs (Guzman et al., 

2001).  NF-kB gene expression is also induced upon exposure to anthracyclines, 

presumably as a cell survival response (Laurent et al., 2001).  The proteasome 

inhibitor MG-132 and NF-kB-specific inhibitors such as parthenolide bortezomib 

induce apoptosis in AML and CML LSCs while sparing normal HSCs (Guzman et al., 

2002, 2005).  Additionally, LSCs express lower levels of FAS and FAS ligand, which 

is an important pro-apoptotic death receptor, with decreased sensitivity to FAS-

induced apoptosis (Costello et al., 2000).  Low FAS expression can be overcome with 

synthetic FAS ligand mimetics such as Apo010, which increases survival of glioma 

tumor-bearing mice both as a single agent and in combination with other cytotoxic 

drugs (Eisele et al., 2011). 

There are also examples of improving chemotherapeutic efficacy by directly 

targeting the pro-survival Bcl-2 family of proteins.  Multiple Bcl-2 family members, 

including Bcl-2, Bcl-xL, and Mcl-1 are upregulated in LSCs and high Bcl-2 

expression is associated with poor response to therapy in AML (Campos et al., 1993; 

Mak et al., 2012).  Loss-of-function studies of Bcl-2 also demonstrates its 

expendability for HSC maintenance and self-renewal (Matsuzaki et al., 1997).  

Therefore, the therapeutic potential of inhibiting Bcl-2 has been extensively explored 
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(Signore et al., 2013).  In one study, the Bcl-2 inhibitors ABT-263 and obatoclax were 

shown to preferentially induce LSC cell death with no significant impact on normal 

CD34+ progenitors, potentially through dependence upon oxidative phosphorylation 

rather than glycolysis in LSCs (Lagadinou et al., 2013).  All-trans retinoic acid 

(ATRA) has also been shown to increase AML cell chemosensitivity through down-

regulation of Bcl-2, particularly in CD34-negative AML. (Bradbury, Aldington, Zhu, 

& Russell, 1996). 

Microenvironmental changes in the BM may also render LSCs more resistant 

to apoptosis.  LSCs have been shown to preferentially home to niches in the bone 

marrow microenvironment that protect them from apoptosis (Ishikawa et al., 2007).  

CD44, a ubiquitously expressed cell surface receptor that mediates cell-cell adhesion 

has been shown to be upregulated in AML and is associated with poor prognosis 

(Bendall, Bradstock, & Gottlieb, 2000; Legras et al., 1998).  Antibody therapies 

directed at CD44 demonstrate specificity in inhibiting LSC trafficking to supportive 

microenvironments (Jin, Hope, Zhai, Smadja-Joffe, & Dick, 2006).  Therefore, anti-

apoptotic stimuli can be both cell-intrinsic and cell-extrinsic to the LSC, with multiple 

nodes that can potentially be leveraged for therapeutic intervention (Figure 1-6). 

Inflammation 

The inflammatory nature of the tumor microenvironment has also been 

postulated to promote leukemic progression and drug resistance (de Visser & Jonkers, 

2009).  Normal physiological inflammation, which is a combination of pro-

inflammatory molecule synthesis and inflammatory cell mobilization and recruitment, 

is an important step for wound healing and tissue repair (Zlotnik & Yoshie, 2000).   
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Figure 1-6: Inhibition of cell-intrinsic/extrinsic apoptotic pathways 

From: (Signore et al., 2013) 
 
 
 

 
 
 
 
 
 

p53 pathway in the generation of induced plutipotent stem
cells (iPS) and somatic cell reprogramming, directly corre-
lates pluripotency factors with apoptosis [92]. Many pro-
gresses have been made since the discovery of iPS through
gene transduction of mouse fibroblasts and researchers
are now able to partially control reprogramming by using
chemical compounds [93]. Understanding of the mecha-
nisms behind chemical reprogramming might pave the
way to the development of anti-cancer stem cell therapies.

In conclusion, several molecules that are in clinical
development might interfere directly with the CSC’s ability
to evade apoptosis. Notable examples include DR4/DR5 ago-
nists, small molecule inhibitors of Bcl-2, NF-kB inhibitors
(Bortezomib), kinase inhibitors and IAPs analogs [94].
Table 1 summarizes the studies in which targeted therapies
have been used to kill CSCs selectively. Although an exten-
sive characterization of the cells that mediate tumor initia-
tion and progression and studies of their molecular behavior
have not been performed, myriad therapeutic tools are
available to target CSCs for apoptosis (Fig. 2).

9. Concluding remarks

Defects in apoptosis can result in the expansion of a
population of neoplastic cells and because the death of tu-
mor cells by chemotherapy and radiotherapy is mediated
largely by the activation of apoptosis, deregulation of
apoptosis will render tumor cells resistant to antitumor

treatments. CSCs have many of the prerequisites for a tu-
mor cell to be resistant to treatments and reconstitute
the bulk tumor mass.

To achieve the maximum effect and eradicate a tumor,
the CSC compartment should be targeted specifically.
Because escape from apoptosis is one of the hallmarks of
cancer, an ability that CSCs have, future therapies that
overcome apoptosis resistance in tumor cells should be di-
rected toward CSCs to target the source of a cancer directly.
With this in mind, it is fundamental to build up in vivo
tumor models for preclinical testing of new agents for
them to make the leap from the bench to the bedside.
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Conversely, inflammation in the context of tumorigenesis is associated with aberrant 

expression of elevated and/or systemic levels of inflammatory cytokines such as 

interleukins and MCP-1 (Balkwill, Charles, & Mantovani, 2005).  Doxorubicin 

treatment also induces MCP-1, TNFa, and IL-8 in lung carcinoma cell lines, 

highlighting a potential link between inflammatory mediators and response to 

chemotherapy (Niiya et al., 2003).  Inflammation has been shown to influence several 

other chemoresistance pathways as well, including modulation of ABC-family 

transporters and CXCR4-dependent apoptosis (de Visser & Jonkers, 2009; Hartmann, 

Burger, Glodek, Fujii, & Burger, 2005).  The extent of inflammation generally 

correlates with poor clinical prognosis in many cancer types (Ueno, Toi, & Saji, 

2000).  Together, these studies establish a cyclical link between inflammation, 

chemotherapy, and induction of chemoresistance. 

While many reports interrogating the role of inflammatory processes in 

chemoresistance were conducted in solid tumor systems, some evidence has also been 

generated in the context of hematological malignancies.  PKCζ and NF-kB, have been 

shown to elicit chemoprotection in follicular cell lymphoma and B-cell non-Hodgkin’s 

lymphoma, respectively (Leseux et al., 2008; Vega, Jazirehi, Huerta-yepez, & 

Bonavida, 2005).  PKCζ has a demonstrated role in the regulation of NF-kB 

translocation through IKK signaling complex activation (Bourbon, Yun, & Kester, 

2000).  NF-kB, which has a clear role in regulation of apoptotic induction in LSCs, 

also promotes cytokine production, including the positive LSC growth-regulator IL-6 

(Brasier, 2010).  NF-kB activation can also induce cyclin D gene transcription and cell 

cycle progression, c-myc activation, and remodeling of the extra-cellular matrix 

(Pham, Tamayo, Yoshimura, Lo, & Ford, 2003; Takebayashi et al., 2003).  The 

multifaceted role of PKCζ and NF-kB may help explain the broad observations 
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concerning the effect of inflammation on chemoresistance (Figure 1-7). 

Multiple studies have implicated inflammation in control of the tumor 

microenvironment and bulk tumor growth, yet little is currently known regarding the 

direct effect of inflammatory processes on LSCs.  CML LSCs that localize to adipose 

tissues exhibit a pro-inflammatory phenotype, with strong upregulation of several 

inflammatory cytokines including IL-6, TNF-α, and CXCL1/2/3.  These adipose-

resident LSCs express high levels of CD36, are quiescent, and exhibit markedly higher 

resistance to chemotherapy (H. Ye et al., 2016).   

Eicosanoids such as prostaglandins and leukotrienes, synthesized by 

cyclooxygenase (COX) and 5-lipoxyganase enzymes (5-LO), respectively, have 

demonstrated roles in inflammation and cancer (D. Wang & Dubois, 2010).  

Interestingly the COX inhibitor indomethacin was shown to induce a 100-fold 

decrease in AML initiating cells in secondary recipients, potentially through 

abrogation of Ctnnb1 activity (Y. Wang et al., 2010).  Our studies have also identified 

5-LO as being upregulated in AML patients upon exposure to induction therapy (see 

Chapter Two).  We directly show that reduction in 5-LO leukotriene-synthetic 

capacity improves leukemic cell elimination in vitro and in vivo (see Chapter Three).  

Our data, together with studies performed in solid tumor stem cell maintenance and  

other myeloid neoplasms, identifies a role of canonical inflammatory mediators in the 

regulation of chemoresistance. 

Epigenetic modification 

Both DNA hyper- and hypo-methylated states have been linked to patient 

outcomes in AML.  Multiple recurrently mutated or translocated genes involved in  
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Figure 1-7: Pro-inflammatory signals in chemoresistance 

From: (Rimessi, Patergnani, Ioannidi, & Pinton, 2013) 
 
 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rimessi et al. PKCz in inflammation and cancer

state and promoting its translocation into the nucleus (56). PKCz

phosphorylates the IKKb subunit in vitro, possibly through a direct
interaction (Figure 2) (57). In HEK293 cells, PKCz interacts with
IKKb at each catalytic domain in a TNFa stimulation-dependent
manner, thereby activating IKK (57). In the lungs of PKCz-
deficient mice, TNFa-induced IKK activation is repressed (58).
Indeed, PKCz has been identified as a ceramide-activated pro-
tein kinase that is critical in stress-induced Jun N-terminal kinase
activation and NF-kB translocation (59). In lung carcinogene-
sis, through its ability to activate NF-kB-dependent inflammation,
PKCz triggers survival pathways (60), and the binding of p62 (also
known as sequestosome-1, required for both the formation and
autophagic degradation of polyubiquitin-containing bodies) to
its targets (61). Indeed, the regulation of NF-kB by the atypical
kinase is relevant to Ras-induced oncogenesis (24, 30). These find-
ings indicate that PKCz is involved in the IKK signaling complex
and, thus, in NF-kB activation.

Activated-NF-kB promotes cytokine production, including
that of the positive growth-regulator IL-6, favoring chemoresis-
tance. The importance of IL-6 signaling in mediating tumorige-
nesis has been examined in a number of studies, and in in vivo

FIGURE 2 | Fine regulation of NF-kB activation by PKCz. Schematic
model of the regulation of PKCz in the inflammatory response and
chromatin remodeling. Activated PKCz may activate IKK kinase and trigger
IkB degradation. This event precedes NF-kB activation and nuclear
translocation, which makes NF-kB free to interact with elements in the
promoters of inflammatory and survival genes. Indeed, the z isoform may
directly interact with and phosphorylate the RelA subunit on Ser311 (P),
leading to increased NF-kB transactivation. The Serine 311 residue is an
important residue for recruiting the CBP coactivator complex. This event
promotes acetylation (Ac) and the activation of cytokine transcription, that
of including IL-6. Under basal conditions, RelA is methylated (Me) by
SETD6, promoting the recruitment of GLP, which leads to repression of
transcription. STAT3 is a key player in mediating inflammation-driven
tumorigenesis, being constitutively activated by chronically high levels of
the pro-inflammatory cytokine IL-6. In tumors, STAT3 is known to enhance
cell survival and proliferation and to promote immune escape and
angiogenesis, invasion, and metastasis. Once activated via tyrosine
phosphorylation by receptor-associated JAK kinases, STAT concentrates in
the nucleus and regulates the expression of target genes. The established
inflammatory tumor microenvironment may contribute to the final outcome
of the neoplastic process.

studies, IL-6 signaling promotes the growth of tumors (62). Within
the tumor microenvironment, IL-6 binds to gp80/gp130, leading
to Janus kinase (JAK) activation and phosphorylation of Stat3,
which regulates the expression of genes that mediate cellular pro-
liferation and prevent apoptosis (Figure 2) (63). PKCz can control
the production of IL-6. Loss of the kinase in vivo leads to increased
tumorigenicity linked to the overproduction of IL-6 (26), which is
sustained by an inflammatory condition characterized by an M1-
type immunological response (64, 65). IL-6 is a known positive
regulator of growth in human tumors, including liver and lung
tumors (66); however, its production requires NF-kB and PKCz

(58, 67). IL-1 is known to induce the production of inflamma-
tory cytokines, such as IL-6, through a transcriptional mechanism
dependent on NF-kB activation (68, 69). Finally, PKCz may reg-
ulate IL-6 promoter activity and transcription through C/EBPb

regulation via an NF-kB-independent mechanism (26). This find-
ing suggests that PKCz can both positively regulate NF-kB and, at
the same time, regulate IL-6 transcription through independent
pathways.

One pathway through which NF-kB can be activated is the
Toll-like receptor (TLR) pathway, which occurs through the
adapter protein myeloid differentiation primary response gene
88 (MyD88). NF-kB activation is a result of underlying inflam-
mation or a consequence of the formation of an inflammatory
microenvironment during malignant progression characterized
by up-regulation of the tumor promoting cytokines IL-6 and
TNF-a (70). Activation of the TNF receptor promotes NF-kB
activation in breast cancer cells, leading to increased cancer cell
survival and resistance to ionizing radiation (71). Elevated lev-
els of activated-NF-kB induce cyclin D gene transcription and
cell cycle progression, activation of anti-apoptotic genes bcl-2
and bcl-xL, expression of vascular endothelial growth factor and
consequent tumor angiogenesis, activation of transcription factor
c-myc, metalloproteinase gene expression, and remodeling of the
extra-cellular matrix (72–74).

Cancer-associated p53 mutants acquire significant pro-
inflammatory activity mediated by NF-kB, which promotes both
tumor initiation and tumor progression (75). Mutant p53 iso-
forms exhibit a distinct gain-of-function activity, enforcing a
chronic state of TNF-a-induced NF-kB activation and result-
ing in persistent tissue damage, increased genomic instability,
extended inflammation, and an augmented capacity for mutant
p53-containing cells to evade apoptosis.

Altogether, these data confirm the involvement of the inflam-
matory tumor microenvironment in cancer, thus, attesting to the
contribution of NF-kB activation in chemoresistance.

Recently, Levy and co-workers described a precise mecha-
nism through which NF-kB activation is controlled directly by
Rel A (a subunit of NF-kB) via the methyltransferase SETD6-
mediated methylation of Lys310 (76). The methylated form of
RelA recruits the G9a-related methyltransferase GLP and induces
histone methylation, which represses the chromatin state of
NF-kB-dependent genes, ensuring that they are not transcribed
(Figure 2) (76). This event is coordinated by the PKC-z-dependent
phosphorylation of Rel A on Ser31, leading to the release of GLP
and the recruitment of CBP to RelA, followed by the acetyla-
tion of Lys310 and histones, resulting in enhanced transcription
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epigenetic regulation have been identified in AML, including:  the DNA methylating 

protein DNMT3A, demethylating protein TET2, α-ketoglutarate converter IDH1/2, 

and histone modifiers HDAC2/3, EZH2, MLL1, and CREBBP (Wouters & Delwel, 

2016).  Mutations in these proteins leads to broad changes in global transcriptional 

programs, which, when combined with other oncogenic drivers such as Flt3-ITD or 

Nras mutations, is sufficient for the onset of AML (Shih et al., 2015).  Commonly 

observed mutated epigenetic modifiers in AML are described here. 

Mutations in TET2 are observed in 8% to 27% of AML patients, which 

typically leads to poorer prognosis, particularly in patients with intermediate-risk 

AML (Metzeler et al., 2011).  Loss-of-function TET2 mutations result in global 

hypermethylation that overlaps between patients, suggesting that this pattern of 

aberrant methylation is not random (Busque et al., 2012).  IDH1 and IDH2 mutations 

are also commonly observed in AML, with missense mutations in 5% to 16% and 6% 

to 19% for IDH1 and IDH2, respectively.  Mutant IDH1/2 results in the synthesis of 

an aberrant metabolite, 2-hydroyglutarate, that has been shown to directly compete 

with α-ketoglutarate, resulting in TET inhibition (Ward et al., 2010).  However, the 

clinical impact of IDH mutations are conflicting, with several large cohort studies 

demonstrating discrepant prognostic value (Abdel-wahab & Levine, 2013). 

DNMT3A is mutated in 6% to 36% of AML patients (Voigt & Reinberg, 

2013b).  Mutation of DNMT3A appears to be an early event in leukemogenesis, as 

some patients have presented with T-lymphocytes harboring mutations in the gene, 

indicating presence of DNMT3A mutation in very early hematopoietic precursors that 

can give rise to both myeloid and lymphoid lineages (Shlush et al., 2014).  Recent 

reports have showed that the DNMT3A R882H mutation, the most common 

DNMT3A mutation in patients, promotes chemoresistance through impaired DNA 
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damage sensing and chromatin remodeling capacities (Guryanova et al., 2016).  AML 

patients with DNMT3A R882H mutation demonstrate poor response to standard-dose 

induction therapy, although better overall survival upon dose-escalation (Sehgal et al., 

2015).  DNMT3A transcript and protein were also shown to be upregulated in 

response to increasing doses of doxorubicin in human colorectal cell lines, with 

silencing of DNMT3A resulting in a larger percentage of senescent cells in response to 

doxorubicin treatment (Zhang et al., 2011).  Together, these studies highlight 

DNMT3A as a chemotherapy-responsive gene that abrogates response to therapy in 

vitro and in vivo.  

The reversible nature of epigenetic modifications makes the inhibition of 

histone modifiers or proteins that maintain DNA methylation an attractive strategy for 

therapeutic development.  Indeed, several clinical trials investigating inhibitors of 

mutant DNMTs and IDH1/2 are currently on going (Table 1-4).  Two DNA 

methyltransferase inhibitors, 5-azacytidine and decitabine, are currently approved for 

the treatment of MDS and low blast burden AML.  These compounds reverse global 

hypermethylation, which results in improved patient outcomes, with CR rates of 18% 

and 24% for azacytidine and decitabine, respectively (Cashen, Schiller, O’Donnell, & 

DiPersio, 2010; Fenaux et al., 2010).  Together these studies implicate aberrant 

epigenetic modification as a driver of leukemic transformation, however the role of 

methylation changes in LSC chemoresistance is just beginning to be investigated. 

Drug development 

Over the past decade, significant effort has been applied to the identification 

and inhibition of LSC-specific molecules (Table 1-5), many of which have been  
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discussed above.  While LSC-targeted therapies for AML are only recently being 

developed, there are several analogous examples of LSC targeting in other myeloid 

neoplasms that may help guide the drug development process.  Stem cells in CML 

have been shown to be relatively insensitive to imatinib (Graham et al., 2002).  

Administration of interferon-α (IFN) demonstrated a slower, but more durable 

response than imatinib, suggesting superior long-term efficacy of drugs that target 

LSCs (Angstreich et al., 2005).  In multiple myeloma, drugs such as bortezomib 

lenalidomide do not target myeloma stem cells and do not confer long-term cure.  

Alternatively, rituximab, an anti-CD20 antibody, has shown specificity to myeloma 

stem cells but is ineffective as a single agent (Zojer, Kirchbacher, Vesely, Hübl, & 

Ludwig, 2006).  This underscores the promise of combining therapies that debulk the 

tumor with LSC-targeted therapies for elimination of the complete leukemic cell 

population. 

Finally, although LSCs are likely the most chemoresistant cell population in 

AML, there are still distinct advantages of rendering the bulk leukemia more sensitive 

to chemotherapy as well.  One can imagine a case where a general chemoresistance 

mechanism is therapeutically targeted in combination with induction chemotherapy.  

Two examples help illustrate the benefit of such a treatment regimen:  1) A young 

adult with intermediate-risk AML is treated with standard concentrations of induction 

therapy in combination with the chemosensitizing agent.  A greater reduction in blast 

burden is observed than induction therapy alone, resulting in undetectable MRD and 

prolonged remission.  2) Reduced concentrations of induction therapy are used in 

combination with the chemosensitizing agent to treat an elderly AML patient, reaching 

the same level of efficacy with better tolerance and more effective hematopoietic 

recovery, resulting in improved overall survival.  Both cases would be attractive 
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clinically, highlighting the potential benefits of leukemic blast chemosensitization.   

In sum, it is likely that multiple processes act simultaneously to render LSCs 

resistant to chemotherapy.  Understanding the overlap between these processes is 

therefore required.  The timing of conventional induction therapy with drugs directed 

at eliminating LSCs will likely be important for optimal efficacy, which are expected 

to relate to the mechanism of action of said therapy.  While genetic mutations likely 

increase the baseline resistance of leukemic cells to therapy, it is evident that temporal 

changes in gene expression following exposure to therapy may also be telling of 

cellular mechanisms of chemoresistance.  Therefore, a better understanding of how 

LSCs react to chemotherapy at the transcriptional level is required. 

ARACHIDONATE 5-LIPOXYGENASE 

To this end, we have initiated studies that have identified multiple upregulated 

genes in AML patient leukemic cells, immediately following induction therapy.  

Among these genes, arachidonate 5-lipoxygenase (5-LO) was one of the most 

upregulated genes, with maximal expression observed in LSCs (see Chapter Two).  

Given the link between inflammatory processes and protection of LSCs from 

chemotherapy, combined with promising pre-clinical 5-LO inhibitor studies in the 

context of CML (Y. Chen, Hu, Zhang, Peng, & Li, 2009; de Visser & Jonkers, 2009), 

we were interested in investigating the role of 5-LO in AML chemoresistance. 

Role in inflammation 

Arachidonic acid is an abundant biologically active lipid derivative that is 
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enzymatically processed into the eicosanoids, leukotrienes and prostaglandins, by 5-

LO and cyclooxygenase (COX), respectively (Figure 1-8).  Both 5-LO and COX have 

demonstrated roles in inflammation and carcinogenesis in several tumor models (de 

Groot, de Vries, Groen, & de Jong, 2007; Dubois et al., 1998; Eyberger, Dondapati, & 

Porter, 2006), with inhibition of COX potentially reducing the frequency of AML 

initiating cells (Y. Wang et al., 2010).  However, for the sake of simplicity only 5-LO 

and leukotrienes will be elaborated upon here. 

5-LO is the primary catalytic enzyme involved in the synthesis of leukotrienes.  

Through interaction with the 5-LO activating protein (FLAP), 5-LO converts 

arachidonic acid into 5-HETE.  5-LO then mediates a second catalytic reaction to 

convert 5-HETE into the unstable leukotriene intermediate, LTA4.  Biologically active 

LTB4 is further converted from LTA4 by LTA4 hydrolase or to the cysteinyl 

leukotriene (cysLT) LTC4 by LTC4 synthase.  LTC4 is then further processed into 

LTD4, which is sequentially metabolized to LTE4 (Samuelsson, 1983).   

LTB4, as well as the cysLTs LTC4, LTD4, and LTE4 are all biologically active 

signaling molecules.  They elicit their effect by binding to specific receptors in either 

an autocrine or paracrine fashion.  The leukotriene receptors BLT1 and BLT2 (for 

LTB4), and CysLT1 and CysLT2 (for LTC4, LTD4, and LTE4), are g-protein coupled 

receptors (GPCRs) expressed on a wide variety of cell types, with the exception of 

BLT1 and CysLT1, which are expressed exclusively on leukocytes.   

Interestingly, leukotrienes can be produced by a single cell or through a 

process called transcellular biosynthesis, in which LTA4 is released by neutrophils at 

inflammatory sites and converted into LTB4, LTC4, and LTD4 by epithelial and 

endothelial cells (Folco & Murphy, 2006).  Leukocytes can also generate leukotrienes 

from arachidonic acid released from epithelial cells  
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Figure 1-8: 5-LO and leukotriene synthesis 

From: (D. Wang & Dubois, 2010) 
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(Zarini, Gijón, Ransome, Murphy, & Sala, 2009).  Through this process immune cells 

generate an excess of leukotrienes, which in turn amplifies the inflammatory response.  

How this process occurs in the inflammatory tumor microenvironment, particularly in 

the context of chemotherapy, is currently unknown. 

The role of 5-LO, particularly in respect to inflammation and immune 

response, is well characterized in the hematopoietic system.  Leukotrienes are potent 

broncho- and vasoconstrictors and are important for immediate hypersensitivity 

reactions such as asthma (Ogawa & Calhoun, 2006; Piper et al., 1991).  Leukotrienes 

also mediate adhesion of neutrophils to endothelial cells, extravasation of immune 

cells, and are strong chemotactic agents for eosinophils and monocytes (Corey, 1982).  

LTB4 and cysLTs mediate slightly different biologic response, with cysLTs being 

major mediators of airway anaphylaxis and LTB4 influencing greater effect on cell 

mobilization and recruitment. 

Endogenous and exogenous leukotrienes also mediate macrophage elimination 

of foreign microbes through enhanced effector function and secretion of pro-

inflammatory molecules (Medeiros et al., 2004; Peres et al., 2007).  Leukotrienes 

stimulate leukocyte migration and activation, CD4+ T cell chemotaxis, and primary 

and secondary immune responses against a variety of pathogens (Medeiros, Silva, 

Malheiro, Maffei, & Faccioli, 1999; Tager et al., 2003).  Studies in 5-LO knockout 

mice demonstrate an impairment in both innate and adaptive immune responses during 

fungal infection (Secatto et al., 2012).  It is therefore clear that leukotrienes potentiate 

many biological processes relating to the function and recruitment of blood cells. 

 

 



 

48 

 

Effects on hematopoiesis 

5-LO and its products have also been shown to directly affect myelopoiesis.  

Exogenous administration of LTB4 to mononuclear BM cells in culture leads to an 

increase in granulocyte-macrophage colony formation (Claesson, Dahlberg, & 

Gahrton, 1985).  Inhibition of 5-LO also inhibited colony-stimulating factor (CSF)-

induced colony formation in both murine and human BM cells (Ziboh, Wong, Wu, & 

Yunis, 1986).  CysLT binding to their cognate receptors on human monocyte and 

smooth muscle cells activates distinct gene expression changes, with elevated 

expression of FOSB, EGR2, EGR3, NR4A2, and TSC22D3 transcription factors 

(Eaton, Nagy, Pacault, Fauconnier, & Bäck, 2012; Lundeen, Sun, Karlsson, & Fourie, 

2006; Woszczek et al., 2008).  Many of these induced genes have themselves been 

linked to various inflammatory processes (Kharbanda et al., 1991; Thompson et al., 

2006).  Furthermore, exogenous TGF-β and/or GM-CSF were shown to upregulate 5-

LO expression in HL-60 cells (M. Brungs, Radmark, Samuelsson, & Steinhilber, 

1994).  Differentiation of U937, HL-60, and Monomac-6 cells with DMSO also 

upregulated 5-LO expression (Bennett, Chiang, Monia, & Crooke, 1993; Martina 

Brungs, Radmarkt, Samuelssont, & Steinhilber, 1995).   

Leukotrienes have been shown to elicit effects on more primitive cells of the 

blood as well.  LTB4 promotes the proliferation, cell survival, and differentiation of 

umbilical cord blood (CB) CD34+ HSPCs cultured ex vivo.  Conversely, LTB4 

receptor blockade with CD105696 increased the self-renewal of CD34+ HSPCs in 

culture (Chung, Kim, Mun, & Ahn, 2005).  LTD4 also promoted primary HSC 

proliferation, potentially through phosphorylation of ERK/MAPK.  Interestingly, a 

90% reduction in cysLT synthesis was observed when bone marrow stromal cells were 
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co-cultured with CD34+ HSPCs, suggesting a negative regulatory mechanism between 

HSPCs and the microenvironment (Boehmler et al., 2009).  LTB4 and LTD4 have been 

shown to activate overlapping gene expression programs and similar promotion of 

chemotaxis in monocytes, indicating redundant but cooperative biological functions 

(L. Y. Chen et al., 2011).  Together, these studies demonstrate that leukotrienes can 

affect multiple processes in hematopoietic function and differentiation, at both the 

physiological and transcriptional levels. 

5-LO inhibition and leukemia 

The role of leukotrienes in inflammation, particularly in inflammatory 

disorders, has led to the development of leukotriene inhibitors since the early 90’s.  

Several examples of FDA-approved inhibitors of leukotrienes include the leukotriene 

receptor inhibitors monteleukast and zafirlukast, and the 5-LO inhibitor zileuton 

(Drazen, Silverman, & Lee, 2000).  All three drugs reduce airway obstruction and 

granulocyte chemotaxis, and are approved for the treatment of mild-to-moderate 

asthma (Ogawa & Calhoun, 2006; Sladek et al., 1990).  5-LO has also been linked to 

atherosclerosis, another chronic inflammatory disorder, heightening interest in its 

inhibition (Mehrabian et al., 2002).  Moreover, the involvement of leukotrienes in 

tumorigenesis has become more clear in recent years (D. Wang & Dubois, 2010).  

Studies in a variety of solid tumor types, including human lung, breast, and pancreatic 

cancers, have reported a leukotriene-mediated promotion of tumor cell growth, which 

is reversed upon both 5-LO and leukotriene receptor inhibition (Bishayee & Khuda-

Bukhsh, 2013; Xiaoxin Chen et al., 2003; Wenger et al., 2002).  This has expanded the 

potential applications of 5-LO inhibition; however, none have been realized clinically. 
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Given the broad range of influence 5-LO has over the hematopoietic system, it 

is logical that leukemic cells also co-opt 5-LO biology to their advantage.  Indeed, the 

first hints of this came from 5-LO knockout studies in the context of CML.  5-LO gene 

expression was shown to be upregulated by BCR-ABL.  BCR-ABL 5-LO-/- mice 

failed to develop CML, with 5-LO-/- LSCs exhibiting a strong disadvantage when 

competitively transplanted in a 1:1 ratio with 5-LO+/+ LSC (Y. Chen, Li, & Li, 2009).   

BCR-ABL leukemic mice treated with zileuton have improved duration of survival 

compared to placebo or imatinib treated mice (Y. Chen, Hu, et al., 2009).  Gene 

expression profiling of Lin-c-Kit+Sca-1+ cells from 5-LO-/- leukemic mice 

demonstrated upregulation of Msr1, leading to potential impairments in LSC function 

through altered PI3K-AKT and β-catenin signaling (Y. Chen et al., 2011).  A high 

level of LTB4 induction following imatinib therapy is also associated with poor 

response rates in patients with CML (Lucas, Harris, Giannoudis, McDonald, & Clark, 

2014).  These studies implicate 5-LO in the self-renewal of chronic phase CML stem 

cells, however direct interrogation of the mechanisms by which this occurs are 

incomplete. 

In AML, the RUNX1-ETO9a gene fusion was shown to upregulate 5-LO 

expression, with loss of 5-LO reducing the activity of RUNX1-ETO9a, MLL-AF9, 

and PML-RARa leukemic cells in vitro (DeKelver et al., 2013).  AML LSCs exhibit 

high expression of receptors for both LTB4 and cysteinyl leukotrienes, as well as 

elevated 5-LO expression compared to normal hematopoietic stem and progenitor 

cells (Gentles et al., 2012; Seita et al., 2012; D. Wang & Dubois, 2010).  Studies in the 

context of a PML/RARa-positive model of AML demonstrated that pharmacologic 

inhibition of 5-LO with CJ-13,610 reversed PML/RARa activation of Wnt signaling, 

suggesting a link between 5-LO catalytic inactivation and inhibition of Wnt as a 
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leukotriene-independent mechanism of LSC survival (Roos et al., 2014).  However, 

these studies did not account for potential off-target effects of small molecule addition, 

nor did they assess the impact of 5-LO depletion on LSC chemoresponses in vivo.  

Therefore, additional studies that investigate the mechanism of 5-LO-medaited LSC 

chemoprotection are required. 

OTHER PUTATIVE CHEMORESISTANCE GENES 

Additional putative genes affecting chemoresistance elucidated from our 

studies include:  The inflammatory molecules S100A8 and S100A9, the anti-microbial 

molecule lysozyme (LYZ), the cathepsin inhibitor cystatin F (CST7), and the fatty 

acid transporter CD36.  These molecules all have described roles in the hematopoietic 

system, with their influence in AML beginning to be delineated.  As we show that 

these proteins are upregulated in response to chemotherapy in AML patients, with 

knockdown sensitizing human AML cell lines to both Ara-C and DNR (see Chapter 

Two), a brief overview of their role in hematopoiesis and leukemia is given here. 

Normal biological function 

Serum levels of S100A8/9 are important biomarkers for a range of 

inflammatory processes, including acute lung inflammation, inflammatory bowel 

disease, and rheumatoid arthritis (Foell & Roth, 2004).  S100A8/9 are expressed 

primarily by granulocytes, monocytes, and early macrophages (Vogl, Gharibyan, & 

Morozova-Roche, 2012).  S100A8/9 have been shown to induce neutrophil 

chemotaxis and adhesion (Ryckman, Vandal, Rouleau, Talbot, & Tessier, 2003).  
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Together, they constitute 40% of total cytosolic protein in neutrophils, potentially 

highlighting a role in rapid Ca2+ neutralization in this cell type, however this is yet to 

be experimentally validated (Hessian, Edgeworth, & Hogg, 1993).  

CST7 is a member of the family of cysteine protease (cathepsin) inhibitors, 

which are primarily responsible for mediating protein degradation in endolysosomal 

compartments (Mohamed & Sloane, 2006).  CST7 is expressed predominantly on cells 

of the hematopoietic system, including CD8+ T cells, natural killer (NK) cells, 

monocytes, and dendritic cells (Ni et al., 1998).  It is thought that CST7 mediates 

immune response through inhibition of cathepsins L (immune cell adhesion) and C 

(granzyme activation) (Hamilton, Colbert, Schuettelkopf, & Watts, 2008; Magister et 

al., 2012). 

Unlike S100A8/9 and CST7, CD36 expression is not restricted to 

hematopoietic cells, being present on not only phagocytes and erythroid precursors, 

but also hepatocytes, cardiomyocytes, and specialized epithelia of the breast, kidney, 

and gut (M Febbraio, Hajjar, & Silverstein, 2001).  In monocytes and macrophages 

CD36 primarily functions as a bioactive lipid transporter, with CD36-null mice 

exhibiting abnormal plasma lipid profiles and resting hypoglycemia (Maria Febbraio 

et al., 1999; Han, Hajjar, Febbraio, & Nicholson, 1997).  CD36-fatty acid interactions 

may contribute to the pathogenesis of metabolic disorders such as obesity and insulin 

resistance (Liang et al., 2004; Miyaoka et al., 2001) 

LYZ is a secreted bacteriolytic enzyme in many tissues and body fluids with 

roles in the innate immune system.  LYZ is highly expressed in hematopoietic cells, 

being found in granulocytes, monocytes, and macrophages, as well as their precursors 

in the BM (Dumoulin, Johnson, Bellotti, & Dobson, 1977).  Furthermore, Lyz 

expression was observed in a subset of HSCs.  Mice containing yellow fluorescence 
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protein knocked into the Lyz locus demonstrate complete hematopoietic reconstitution 

of EYFP+ HSCs into irradiated recipients (M. Ye et al., 2003).  This suggests that Lyz 

expressing HSCs can give rise to all hematopoietic lineages, however it is unclear how 

this HSC subset differs from the rest of the stem/progenitor pool. 

Implications in tumorigenesis 

Higher levels of S100A8 were found in mononuclear BM cells derived from 

patients with both primary and relapsed leukemia compared to healthy individuals or 

AML patients that achieved CR (Yang et al., 2012).  Elevated expression of S100A8/9 

in MLL-rearranged infant acute lymphoblastic leukemia (ALL) results in 

glucocorticoid resistance, a common treatment for this disease (Spijkers-Hagelstein et 

al., 2012).  Conversely, knockdown of S100A8 enhances AML cell killing upon 

treatment with arsenic trioxide (Yang et al., 2012).  S100A9 interaction with CD33, a 

cell surface receptor shown to be highly expressed on leukemic blasts, was 

demonstrated to drive myeloid-derived suppressor cell expansion and development of 

myelodysplastic syndrome (MDS) (Xianghong Chen et al., 2013). 

High CST7 expression was shown to be a better than both ERK and p53 as a 

marker for tumor progression in colorectal cancer (Georgieva et al., 2008).  Elevated 

CST7 expression was also associated with higher rates of liver metastasis and worse 

overall patient survival (Utsunomiya et al., 2002).  Aberrant Runx2 expression in 

prostate cancer also induced CST7 gene activity (Baniwal et al., 2010).  However, 

other studies have indicated that inhibition of cathepsins may be a method of inducing 

apoptosis in human leukemias (Stoka, Turk, Schendel, & Kim, 2001; Zhu & Uckun, 

2000).  CD36 expression was shown to mark a population of chemoresistant LSCs that 
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preferentially reside in gonadal adipose tissue (H. Ye et al., 2016).  The extracellular 

matrix protein, thrombospondin-1 (TSP-1), an endogenous CD36 antagonist, was 

shown to prevent inflammatory lymphoangiogenesis through CD36 blockade in 

monocytic cells (Cursiefen et al., 2011). 

Elevated levels of LYZ in plasma and urine is associated with a range of 

pathological disorders, and is considered a biomarker for monocytic leukemia.  

Indeed, in patients with myeloproliferative disorders, LYZ expression is elevated by a 

factor up to 4 (Osserman & Lawlor, 1966).  By French-American-British (FAB) 

classification, diagnosis of acute myelomonoblastic leukemia is based on presence of 

20% BM monocytes or serum lysozyme that exceeds the reference sample by three 

times.  Indeed, measurement of serum LYZ alone could identify an AML patient with 

eosinophilia and no immunophenotypic or cytochemical features of monocytic 

differentiation (Moscinski, Kasnic, & Saker, 1991).  However, the impact of LYZ 

expression on leukemogenesis, particularly in the context of LSC function, is unclear. 

Together, the putative chemoresistance mediators identified by our studies 

have canonical roles in a variety of diverse biological processes.  The majority of these 

genes are highly expressed in the hematopoietic system and underlie a number of 

diseases, including cancer.  We highlight another role for these genes in LSC 

chemoresistance and suggest co-option of their inhibitors for improving 

chemoresponses in AML. 

In sum, AML is characterized by genetic abnormalities that prevent normal 

myelopoiesis from running to completion.  This partial differentiation pathway is 

driven by a population of quiescent, relatively chemoresistance LSCs.  Multiple 

mechanisms of LSC chemotherapy evasion have been proposed, however our 

understanding of chemoresistance in AML is far from complete.  In order for novel 
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LSC-targeted therapies to be generated, we must first understand how patient LSCs 

respond to chemotherapy in vivo.  Chapter Two will focus on our interrogation of 

gene expression changes in LSCs, LPCs, and leukemic blasts sorted from patients 

undergoing induction therapy.  Chapter Three will then delve into the 

characterization of one novel AML chemoresistance gene, 5-LO, including its role in 

mediating chemoresistance in vitro and in vivo, and the effect of 5-LO depletion on 

normal hematopoiesis.
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CHAPTER TWO:  
IDENTIFICATION OF PUTATIVE 

CHEMORESISTANCE GENES IN AML 
 

INTRODUCTION 

Acute myeloid leukemia (AML) arises as a result of immature myeloid cell 

expansion in the bone marrow resulting in replacement of normal hematopoietic 

stem/progenitor cells, eventually leading to ineffective hematopoiesis and serious 

complications from peripheral cytopenias.  Despite the recent development of drugs 

targeting genetic lesions enriched in leukemia, including FLT3, CD44, and IDH1/2, 

treatment options for the majority of AML patients remain limited and outcomes are 

very poor (Estey, Levine, & Bob, 2015; Jin et al., 2006; Stone et al., 2005; Yu et al., 

2003).  Standard induction therapy – comprised of a combination of the nucleoside 

analog cytarabine (Ara-C) and an anthracycline such as daunorubicin (DNR) – induces 

complete remission (CR) in the vast majority of patients following induction therapy 

and has remained the clinical mainstay in AML therapy for nearly 30 years (Quigley 

et al., 1980; Roboz, 2011).  However, primary resistance occurs in 10 to 40% of 

patients, with durable long-term cures achieved in only a minority of adult AMLs 
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(Rowe & Tallman, 2010; Thol, Schlenk, Heuser, & Ganser, 2015).  Given the 

robustness of induction therapy, finding novel approaches to bolster the efficacy of 

this first line treatment has the potential to significantly improve patient outcomes. 

AML is thought to arise from, and be maintained by, leukemic stem cells 

(LSCs) (Bonnet & Dick, 1997).  Because LSCs are relatively therapy-resistant and can 

re-initiate disease after therapy, therapeutic targeting of LSCs represents an important 

hurdle in the treatment of leukemia.  While several genes mediating chemoresistance 

in AML have been identified, mechanisms of resistance are far from complete (Eppert 

et al., 2011; Guryanova et al., n.d.; Krivtsov et al., 2006).  Moreover, genes 

specifically mediating primary patient LSCs chemoresponses to induction therapy 

have not been directly evaluated.  Classical methods used to identify potential 

resistance mediators based on gene expression profiling at the time of diagnosis, while 

useful, only offer a static glimpse into baseline gene expression and cannot necessarily 

capture how leukemic cells respond to chemotherapy in vivo.  Therefore, new 

approaches which assess temporal gene expression changes in patient LSCs is an 

important unresolved question in AML biology. 

In this chapter we characterize gene expression changes in paired 

diagnosis:post-induction LSC-enriched samples from AML patients in order to 

identify novel chemoresistance mediators.  Our analysis has revealed LSC-specific 

gene expression changes in response to induction therapy.  A portion of these genes 

are expressed at relatively low levels prior to therapy, with robust induction after 

chemotherapy.  Indeed, many classical resistance genes including ATP-binding 

cassette transporters, BCL-2 related proteins, or regulators of self-renewal were not 

increased in response to chemotherapy in our study (Heidel et al., 2011; Tang et al., 

2008), demonstrating the pitfalls of evaluating leukemic cells based only on 
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expression levels at diagnosis.  Instead our data identify multiple previously 

unrecognized AML resistance genes including 5-LO, CD36, S100A8, S100A9, LYZ, 

and CST7, which we have validated as bona fide mediators of chemoresistance using 

in vitro and in vivo models.  Together, these studies show the importance of directly 

evaluating LSC responses to chemotherapy and demonstrate the potential of 

combining targeted therapies with standard induction chemotherapy to improve 

clinical outcomes. 

RESULTS 

Patient LSCs exhibit unique chemo-responsive transcriptional 

profiles 

To identify genes that exhibit altered expression following induction therapy, 

we sorted LSC-enriched (CD34+CD38-CD90-), leukemic progenitor cells (LPCs; 

CD34+CD38+), and CD34- cells from AML patient bone marrow aspirates, both 

before and 14 days following the initiation of standard “7+3” induction therapy.  

Patients in the study (N = 12) were heterogeneous with respect to age, cytogenetics, 

and response to therapy (Table 2-1).  Total RNA was extracted from cell-sorted 

samples and transcriptome profiling was performed using Affymetrix U133 Plus 2.0 

gene expression microarrays.  Despite the sample heterogeneity, we identified distinct 

gene expression changes in all three cell populations (Figure 2-1 A).  Treated and 

non-treated samples clustered by principle component analysis (PCA) (Figure 2-1 B).  

In total, we identified 5423 dysregulated genes in LSCs, LPCs, and CD34- cells 

following induction therapy (P < 0.05), 506 of which were unique to LSCs (Figure 2- 
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Patient information including blast counts assessed at the beginning (D0) and 14 
days after the start (D14) of induction therapy. 

 
 

 
 

 

 

# Age Sex % blast 
(D0)

% blast 
(D14)

1 44 M 80% 51%

2 60 M 42% 28%

3 54 M 40% 86%

4 64 M 9% 14%

5 13 F 51% 9%

6 60 M 30% 17%

7 2 M 29% NA

8 45 M 92% 94%

9 56 M 31% 25%

10 21 M 63% 15%

11 52 M 88% 79%

12 44 F 78% 40%

Table 2-1: AML patient information 
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Figure 2-1: LSC gene expression changes in patients undergoing induction 
therapy 

(A) Heatmaps of top fold-change dysregulated genes (P<0.05) upon induction 

therapy in patient LSC (CD34+CD38-CD90-), LPC (CD34+CD38-), and blast 

(CD34-) cell populations.  (B) Multi-dimensional scaling of patient LSC gene 

expression profiles before (D0, noTx, red circle) and after (D14, Tx, light blue 

circle).  (C) Venn diagrams depicting overlap in differentially expressed genes 

following induction therapy in LSC, LPC, and blast cell populations.  (D) GSEA 

and (E) KEGG pathway analysis of positive signature enrichment in differentially 

expressed patient LSC genes following induction therapy. 
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Fig. 1 | LSCs exhibit a unique gene expression profile following induction therapy. (Left) Venn diagram depicts 
differentially expressed genes identified in FACS-sorted LSCs (Lin-CD34+CD38-), LPC (Lin-CD34+CD38+) and CD34- 
blasts (FDR <0.1, P <0.05).  Within the LSC population, 47% of genes were uniquely expressed, 19.2% were commonly 
expressed between all three populations, 21.2% were shared with LPC and 12.5% were shared with CD34- blasts. (Right) 
Principle component analysis of diagnostic (noTX) and post-induction therapy (Tx) samples reveals clustering of samples 
based on treatment status. 

Fig. 2 | Functional shRNA 
screen identifies genes that 
mediate resistance to 
daunorubicin: The y-axis 
indicates the fraction of live 
cells remaining after 72 hrs of 
treatment with daunorubicin 
at its established IC50 (20 
uM), and the x-axis denotes 
the gene knocked down. Data 
represents the mean result for 
3 replicates of 3 shRNAs. 
Genes tested represent those 
that were upregulated in D14 
LSCs.  
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1 C).  Gene set enrichment analysis (GSEA) of dysregulated genes in LSCs revealed 

enrichment of doxorubicin resistance, CML dividing, and downregulated HSC gene 

signatures (Figure 2-1 D).  KEGG analysis demonstrated enrichment for cytokine-

cytokine receptor signaling, adipocytokine signaling, and JAK/STAT signaling in 

LSCs (Figure 2-1 E, Figure 2-2).  Interestingly, many of these pathways were 

enriched in LPC and CD34- cells as well, suggesting commonality in leukemic cell 

response to chemotherapy along the differentiation continuum (Figure 2-2).  These 

analyses indicate that, while leukemic cells share commonalities in response to 

chemotherapy, there are discrete differences at the level of individual gene 

dysregulation. 

LSCs exhibit chemotherapeutic response involving multiple pathways 

Comparison of our dysregulated genes from LSC, LPC, and CD34- 

populations revealed minimal enrichment in a curated gene set of known stemness 

regulators (Figure 2-3).  As expected, the stemness regulators that are represented in 

our gene set exhibit distinct expression profiles for the cell types tested (Figure 2-4 

A), which may be a general reflection of their differentiation potential (Stiehl et al., 

2015).  Interestingly, for all three cell populations, >85% of both known positive and 

negative stemness regulators do not significantly change (P < 0.05; Figure 2-4 B).  

Combined with our GSEA of LSC gene expression, this suggests that LSCs maintain 

their stem cell capacity while remaining primed for expansion immediately following 

induction therapy, which is distinct from published HSC gene signatures. 

 

 



 

63 

 

 

 

 

 

 

 

 

 

 

Figure 2-2: GSEA and KEGG pathways enrichment in sorted patient AML cell 
populations 

Additional GSEA and KEGG pathway enrichment plots for LSC (CD34+CD38-

CD90-), LPC (CD34+CD38+), and blast (CD34+) blast cell populations.  Signatures 

with positive enrichment are shown. 
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Figure 2-3: Patient expression of known genes affecting stemness 

(Left panel) Heatmaps of normalized LSC gene expression (log2 intensity) per 

patient in our D0 and D14 treatment cohorts.  Each column represents expression 

intensity for a single patient.  Genes with known positive and negative influence on 

stemness represent each row of the heatmap and are further depicted in the table 

(right panel). 
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Figure 2-4: Altered stemness regulators in AML patients 

(A) Log fold-change gene expression intensity from LSC (CD34+CD38-CD90-), 

LPC (CD34+CD38+), and blast (CD34+) blast cell populations is shown for many 

known positive and negative stemness regulators.  (B) Representation of positive 

and negative stemness regulators that are changed (P<0.05, grey) and unchanged 

(P<0.05, blue) in patient LSCs following induction therapy.  Significantly altered 

genes (P<0.05) and their associated log fold-change are depicted.  
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Gene expression changes are predictive of changes in 

chemosensitivity 

LSCs are thought to adopt multiple means of evading chemotherapy (Warner 

et al., 2004).  To further interrogate these processes in the context of chemotherapy, 

we selected a panel of 51 candidate genes for validation based on fold-change in LSCs 

after induction therapy (Table 2-2).  Genes in our panel are known to affect a variety 

of biological processes, including:  Inflammation, cell cycle regulation, and 

leukemogenesis.  Utilizing an in vitro cytotoxicity assay paired with shRNA-mediated 

knockdown of our panel of candidate genes we see increased chemosensitivity in 

response to DNR and/or Ara-C (Figure 2-5 A, Figure 2-6 A, B).  We also observed a 

decrease in the kinetic of Molm-13 cell growth in the presence of 5-LO knockdown, 

suggesting that 5-LO may not only media leukemic cell chemoresistance but also 

proliferative capacity.  Top hits from our cytotoxicity assay based on percent reduction 

of leukemic cells included:  5-LO, CST7, S100A8, S100A9, LYZ, and CD36, with 

knockdown of these genes also increasing caspase-mediated apoptosis (Figure 2-5 B, 

C).  Consistent with our AML patient data, treatment of human AML cell lines with 

either DNR or Ara-C in vitro resulted in an induction of 5-LO, CD36 and CST7 

mRNA in Molm-13 cells (Figure 2-7 A-C). These data demonstrate that leukemic cell 

response to chemotherapy is coordinated by multiple genes with disparate biological 

functions. 

As we observed a large amount of variability in baseline expression of 5-LO, 

CST7, and CD36 (Figure 2-7 D-F), we next sought to assess whether either high 

baseline gene expression correlated with relative chemosensitivity of these leukemic 

cell lines.  We therefore treated a panel of 10 human AML cell lines with either Ara-  
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Panel of putative chemoresistance mediators with their associated log fold-change 

and P-value observed in patient LSCs following induction therapy. 

 
 

 

Gene logFC P-value Gene logFC P-value

S100A8 4.61 0.0000 CTSO -1.03 0.0283
RRM2 3.71 0.0026 PAK2 -1.06 0.0006
CLU 3.54 0.0003 PIK3CA -1.12 0.0476
VCAN 3.07 0.0019 MIB1 -1.19 0.0351
CFH 2.95 0.0029 ETS2 -1.21 0.0194
ALOX5 2.88 0.0131 SKIL -1.28 0.0200
LYZ 2.59 0.0002 RICTOR -1.28 0.0022

S100A9 2.57 0.0003 ETV3 -1.33 0.0015
PIM1 2.12 0.0007 SOD2 -1.34 0.0354
CD36 2.02 0.0155 RBL2 -1.44 0.0102
CST7 1.95 0.0162 TXNDC12 -1.46 0.0470
HLF 1.91 0.0381 USP3 -1.48 0.0412
ETS1 1.74 0.0233 PRKCI -1.57 0.0269
TCF4 1.68 0.0312 IFNGR1 -1.59 0.0072
INHBC 1.68 0.0239 RASGEF1A -1.65 0.0446
FKBP5 1.35 0.0047 IL23A -1.68 0.0134
RAD51 1.35 0.0190 ETV6 -1.68 0.0135
FBXW11 1.09 0.0275 PDK1 -1.74 0.0018
HNRNPD 0.76 0.0247 FOSL2 -1.83 0.0450
SIRPA 0.64 0.0408 S	EPT6 -2.01 0.0017
CRB1 0.47 0.0568 ANGPT1 -2.09 0.0041

HDAC11 -0.57 0.0348 SMAD2 -2.10 0.0190
IL6ST -0.78 0.0366 TGFBR1 -2.47 0.0262

ALDH6A1 -0.88 0.0491 IKBKB -2.91 0.0042
FGFR1OP2 -0.90 0.0043 MGEA5 -3.27 0.0000
RAPGEF1 -1.01 0.0438

Table 2-2: Putative chemoresistance genes 
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Figure 2-5: Validation of putative chemoresistance mediators  

(A) Change in human AML cell line chemosensitivity (PI- cell count) to Ara-C and 

DNR in the presence of shRNA-mediated knockdown of putative chemoresistance 

genes that were upregulated in patient LSCs.  (B) Change in human AML cell line 

Ara-C or DNR chemosensitivity (PI- cell count) in the presence of multiple shRNAs 

targeted to top hits from initial validation panel.  (C) Measurement of apoptosis as 

determined by percentage caspase-3-cleavage positive cells.  Molm-13 cells 

contained either 5-LO (left panel) or CST7 (right panel) knockdown and were 

exposed to DNR or Ara-C, respectively.  The results are presented as mean ± 

standard error mean (SEM).  P-values were determined by the Student’s t-test; *P < 

0.05, **P < 0.01, ***P < 0.001. 
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Figure 2-6: shRNA knockdown verification and analysis of cell growth defects 

(A) Quantitation of shRNA-mediated knockdown of putative chemoresistance genes 

as determined by qPCR.  (B) Levels of LTB4 secretion in the presence of 5-LO 

knockdown as measured by ELISA.  (C) Western blot of CST7 protein expression 

in either HL-60 or Molm-13 cells in the presence of knockdown (shRNAs 135, 

136).  (D) Kinetic of Molm-13 cell growth in the presence of 5-LO shRNA-

mediated knockdown.  The results are presented as mean ± standard error mean 

(SEM).  P-values were determined by the Student’s t-test; *P < 0.05, **P < 0.01, 

***P < 0.001. 
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Figure 2-7: Baseline and induced chemoresistance gene expression 

(A) Fold-change induction of CST7 expression after 3 days (D3) or 10 days 

(D10) in HL-60 cells exposed to either Ara-C, DNR, or both for 72 hours.  (B) Fold-

change induction of 5-LO expression in Molm-13 cells measured daily.  (C) Fold-

change induction of CD36 expression in Molm-13, HL-60, NB4, and AML5Q AML 

cell lines exposed to DNR. Baseline expression of (D) 5-LO, (E) CD36, and (F) 

CST7 in a panel of leukemic cell lines.  All transcript levels were measured by 

qPCR.  The results are presented as mean ± standard error mean (SEM).  P-values 

were determined by the Student’s t-test; *P < 0.05, **P < 0.01, ***P < 0.001. 
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C, DNR, or both drugs together.  Cell survival, baseline 5-LO expression, and 5-LO 

transcript induction after treatment were then measured.  While we do not see an 

apparent relationship between baseline 5-LO expression and chemoresistance (Figure 

2-8 A), the cell lines that induced the highest levels of 5-LO were also the most 

chemoresistant (Figure 2-8 B).  Interestingly, we see that cell lines that induce 5-LO 

in response to DNR treatment, are more resistance to Ara-C, however the inverse 

relationship was not tested.  These observations are in agreement with our hypothesis 

that improved ability to resist chemotherapy is primarily a result of capacity to induce 

expression of chemoresistance genes.  Together, these studies identify bona fide 

mediators of chemoresistance in AML that represent a broad spectrum of biological 

functions. 

DISCUSSION 

Here, we developed a platform for identifying and validating putative 

chemoresistance mediators in the most clinically-relevant cell populations in patients 

undergoing chemotherapy.  The hypothesis tested was that these dysregulated genes 

will provide tractable targets for combinatorial inhibition with induction therapy.  We 

found that several genes upregulated in our AML patient samples, including 5-LO, 

CD36, CST7, and S100A9, improved chemosensitivity to cytarabine and daunorubicin 

when knocked down in vitro. This study provides a basis for identification of 

additional chemoresistance mediators and offers guidance for clinical development of 

therapies in combination with standard-of-care induction therapy. 

As cytarabine and daunorubicin primarily target dividing cells, the quiescent 

nature of the LSC is thought to be one mechanism of chemotherapy evasion 
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Figure 2-8: Level of 5-LO induction predicts chemosensitivity 

Leukemic cell line viability (PI- cell count) upon treatment with Ara-C as a function 

of (A) baseline 5-LO expression or (B) level of 5-LO induction upon exposure to 

DNR for 72 hours as measured by qPCR.  
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(Dean et al., 2005; Warner et al., 2004).  Interestingly, GSEA of our dysregulated LSC 

gene set showed strong enrichment of pathways promoting self-renewal and 

proliferation following chemotherapy.  Furthermore, we see that the majority of 

known stemness regulators remain unchanged in our LSC gene set.  This suggests that, 

while LSCs maintain their stem cell capacity, they are primed for expansion 

immediately following induction therapy.  It is unclear whether this relates to 

chemotherapy evasion or is a reflection of general cell expansion following 

myelodepletion of the bone marrow after chemotherapy (Woelich et al., 2017).  

However, through our validation studies we see that reduced 5-LO expression slows 

the kinetic of leukemic cell growth and also decreases chemoresistance.  This suggests 

that at least some genes identified by our studies may control both leukemic cell 

growth and resistance to therapy. 

Several other putative chemoresistance genes that regulate drug efflux and 

apoptosis have been investigated previously (Callaghan et al., 2014).  Most notably 

was the development of MRP1 and p-glycoprotein inhibitors that ultimately failed to 

exhibit clinical efficacy, despite significant positive in vitro data (Peng et al., 2004; 

Rumpold et al., 2007).  While the involvement of drug efflux pumps in 

chemoresistance is likely one way by which cells evade chemotherapy, these studies 

demonstrated that there is significant overlap in chemoresistance processes and that 

early evidence in primary patient samples is crucial for future clinical development of 

targeted therapies.  To our knowledge, our study is the first to use paired primary 

AML cases to assess gene expression changes in vivo for the identification of novel 

chemoresistance mediators.  Moreover, our study looks in specific cell populations 

separated by rigorous immunophenotyping (Horton & Huntly, 2012).  This represents 

an unbiased approach based on direct findings from patients undergoing therapy. 
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Through our studies, we have identified genes involved in a variety of 

biological process, beyond the mechanisms of drug efflux and cell-cycle regulation, 

including:  Inflammation, lipid metabolism, and protein turnover.  These pathways 

remain relatively understudied in relation to chemoresistance.  5-LO, a gene with 

canonical roles in inflammation, appears to confer chemoresistance through an anti-

apoptotic mechanism, however additional study of its mechanism of action is 

necessary (and is further described in Chapter Three).  Leukotrienes, the biological 

product of 5-LO activity have been shown to control inflammation in both normal and 

malignant contexts, partially through involvement of JAK-STAT signaling (Y. Chen 

et al., 2016; D. Wang & Dubois, 2010).  Our KEGG pathway analysis of dysregulated 

LSC genes shows enrichment of cytokine-cytokine receptor signaling and JAK-STAT 

signaling, providing additional support for the role of inflammation and cell 

proliferation in LSC survival.  Further investigation of leukotrienes and their control 

of inflammation in the context of chemotherapeutic insult is therefore required. 
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CHAPTER THREE:  
CHARACTERIZATION OF  

5-LIPOXYGENASE IN LEUKEMIC STEM CELL 
CHEMOTHERAPY EVASION 

 

INTRODUCTION 

Acute myeloid leukemia (AML) represents the expansion of immature myeloid 

cells in the bone marrow following the accumulation of numerous genetic and 

epigenetic changes (Renneville et al., 2008).  AML is thought to arise from, and be 

maintained by, a small population of leukemic stem cells (LSCs) that possess the 

ability to self-renew (Bonnet & Dick, 1997).  Due to the non-specific nature of 

chemotherapy, normal hematopoiesis is also further compromised with treatment, 

resulting in severe comorbidities, particularly in the elderly (Büchner et al., 2009; 

Ossenkoppele & Lowenberg, 2015).  Because LSCs are relatively therapy-resistant 

and can re-initiate disease following therapy, development of novel strategies to 

sensitize LSCs to chemotherapy hold the promise of improving outcomes while also 

avoiding the negative consequences of myelosuppression resulting from chemotherapy 

(Ravandi & Estrov, 2006). 
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Standard induction therapy is comprised of a combination of the nucleoside 

analog cytarabine (Ara-C) and an anthracycline such as daunorubicin (DNR) 

(Ogbomo et al., 2008; Quigley et al., 1980; Rowe & Tallman, 2010).  This treatment 

strategy has essentially remained unchanged for thirty years and while the majority of 

patients achieve complete remission following induction therapy, most will relapse 

without maintenance therapy or bone marrow transplantation (Burnett et al., 2009; 

Roboz, 2011). Finding new ways by which to bolster the efficacy of first line 

treatments, particularly against LSCs, is therefore imperative. 

LSCs are thought to be relatively quiescent, which renders them less 

responsive to chemotherapy (Warner et al., 2004).  Multiple additional mechanisms of 

chemoresistance have been identified in AML, including genes that regulate drug 

efflux and apoptosis, such as MRP1 and BCL-2 (Callaghan et al., 2014; Dean et al., 

2005).  However, high expression of ABC-family transporters are present in both LSC 

and hematopoietic stem cell (HSC) populations, with inhibitors of MRP1 and P-gp 

ultimately failing to exhibit clinical efficacy (Peng et al., 2004; Ravandi & Estrov, 

2006; Rumpold et al., 2007).  Several other cellular processes, including modulation 

of inflammation, lipid metabolism, and epigenetic modification have also recently 

been linked to chemoresistance (de Visser & Jonkers, 2009; Guryanova et al., 2016; 

H. Ye et al., 2016), but it is not currently clear how to translate these findings to the 

clinic.  Collectively, these studies underscore that chemoresistance likely involves 

multiple pathways, yet the specificity of these processes with respect to LSC response 

to chemotherapy is currently unknown.  Thus, understanding LSC mechanisms of 

resistance represents an important unmet need in AML biology.   

Herein we show that 5-lipoxygenase (5-LO), a protein with canonical roles in 

inflammation, mediates AML chemoresistance through a leukotriene-dependent 



 

81 

 

process in AML blasts.  As roles for 5-LO and other inflammatory mediators have not 

been extensively studied in the context of leukemic cell chemoresistance, and prior 

studies have implicated 5-LO in the self-renewal of chronic phase CML stem cells 

through unclear mechanisms (Y. Chen, Hu, et al., 2009), we investigated the role of 5-

LO in AML chemoresistance.  Genetic and pharmacologic loss-of-function 

experiments confirm that 5-LO not only positively regulated the leukemogenic 

potential of LSCs but mediated their chemosensitivity in vitro and in vivo.  

Importantly, 5-LO knockout (Alox5-/-) HSCs exhibit enhanced self-renewal capacity as 

demonstrated by long-term reconstitution potential in serial transplantation, suggesting 

that targeted inhibition of 5-LO may potentially enhance normal HSC function while 

simultaneously improving elimination of LSCs.  Together, these studies highlight 

combinatorial 5-LO inhibition with standard induction chemotherapy as a tractable 

therapeutic avenue for improving treatment responses in AML.   

RESULTS 

5-LO is induced in response to DNR and promotes therapy resistance 

in AML 

We have identified several genes upregulated in paired diagnostic:post-

induction therapy AML bone marrow (BM) samples from patients with residual 

disease after induction chemotherapy.  Among these 5-LO exhibited a log-fold 

induction of 2.8763 (P-value: 0.0131) specifically in patient LSC-enriched (CD34-

CD38+CD90-) cells (Figure 3-1 A).  Out of 3205 differentially expressed LSC genes 

(P < 0.05), 5-LO ranked in the top 0.22% by fold-change intensity.  5-LO was  
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Figure 3-1: 5-LO is induced with DNR treatment and overexpression increases 
chemoresistance 

(A) Average log2 probe intensity for patient LSCs immediately before (D0) or 14 

days following (D14) induction therapy (B) GEXC average 5-LO probe intensity for 

a panel of normal and AML cell types.  (C) Measurement of live cells by PI staining 

in uninfected and 5-LO shRNA-containing Molm-13 cells.  Cells were exposed to 

either cytarabine, DNR, or both in combination for 72 hours.  (D) Cysteinyl 

leukotriene synthesis as measured by ELISA in Molm-13 cells treated with DNR. 

(E) Western blot of 5-LO expression levels with doxycycline addition (OE+).  

Purified 5-LO peptide and Capan-2 cells were used as positive controls for detection 

of 5-LO, while empty vector (EV) and uninduced overexpression-containing cell 

lysates (OE-) were negative controls.  (F) 5-LO overexpression induced by addition 

of doxycycline in Molm-13 cells treated with DNR.  Relative live cells after 

treatment were measured as a percentage of %DAPI- cells.  (G) ELISA for 

leukotriene B4 synthesis with 5-LO overexpression.  (H) %DAPI- live cell 

frequency with 5-LO overexpression in the presence of two separate shRNAs (129, 

130) against 5-LO in either the absence of DNR (left panel) or presence of DNR 

(right panel), and associated 5-LO expression as measured by qPCR.  The results 

are presented as mean ± standard error mean (SEM).  P-values were determined by 

the Student’s t-test; **P < 0.01, ***P < 0.001. 
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expressed at significantly higher levels in leukemic cell types, including LSCs and 

LPCs when compared to normal BM and cord blood (CB) hematopoietic stem and 

progenitor cells (HSPCs) (Figure 3-1 B) (Gentles et al., 2012; Seita et al., 2012).  

Consistent with our observations in AML patient bone marrow, 5-LO was 

significantly induced in several human leukemic blast cell lines treated with DNR in 

vitro (Figure 3-2 A).  5-LO knockdown resulted in higher sensitivity of AML cells to 

DNR, suggesting that 5-LO primarily mediates blasts responses to DNR (Figure 3-1 

C).   

5-LO facilitates a required step in the synthesis of LTB4 and cysteinyl 

leukotrienes, and has been shown to promote cancer cell proliferation and migration in 

several solid tumor models (D. Wang & Dubois, 2010).  AML LSCs exhibit high 

expression of receptors for both LTB4 and cysteinyl leukotrienes, as well as elevated 

5-LO expression compared to normal hematopoietic stem and progenitor cells 

(Gentles et al., 2012; Seita et al., 2012; D. Wang & Dubois, 2010).  A high level of 

LTB4 induction following imatinib therapy is associated with poor response rates in 

patients with CML (Lucas et al., 2014).  Thus, we sought to determine whether 

leukotriene synthesis is also induced with chemotherapy in AML.  Heightened levels 

of cysteinyl leukotriene production were observed upon treatment of the human AML 

cell line Molm-13 with DNR (Figure 3-1 D).  Overexpression of 5-LO cDNA in 

Molm-13 cells reduced the cytotoxic effect of DNR, completely abrogating DNR-

induced cell death (Figure 3-1 E, F, Figure 3-2 B).  Overexpression of 5-LO also 

resulted in increased synthesis of LTB4, confirming that exogenous 5-LO induces the 

same biological activity as endogenous 5-LO (Figure 3-1 G).  While constitutive 

shRNA-mediated 5-LO knockdown increased leukemic cell sensitivity to DNR 

treatment, overexpression of 5-LO in these cells rescued both the observed cell growth  
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Figure 3-2: 5-LO leukemic cell line induction and overexpression 

(A) Fold-change (FC) in relative transcript quantity (RQ) of 5-LO in a panel of 

human leukemia cell lines.  Number of days refers to length of DNR exposure. (B) 

Plasmid features and insertion site of full-length 5-LO cDNA in the doxycycline-

inducible pLentiLox expression vector.  (C) Cell cycle distribution determined by 

Ki67 staining in MLL-AF9 leukemic cells treated with leukotrienes either alone or 

in combination.  (D) LTB4 synthesis as measured by ELISA in vehicle and Zileuton 

treated Molm-13 cells.  The results are presented as mean ± standard error mean 

(SEM).  P-values were determined by the Student’s t-test; *P < 0.05. **P < 0.01. 
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defect and chemosensitizing effect of 5-LO knockdown (Figure 3-1 H).  Together, 

these data provide support of induced 5-LO expression as a DNR-specific mediator of 

resistance in AML.  

Leukotrienes mediate 5-LO dependent therapy resistance 

As DNR treatment induces 5-LO, as well as cysteinyl leukotrienes, we tested 

whether leukotrienes mediate its chemoprotective effect.  Consistent with this model, 

administration of purified leukotrienes (LTB4, LTC4, LTD4, and LTE4) completely 

rescued the chemosensitizing effect of 5-LO knockdown in Molm-13 cells (Figure 3-3 

A).  Addition of leukotrienes to primary mouse MLL-AF9 blasts ex vivo promoted an 

increased percentage of cells in G1, with a concomitant decrease in S-phase 

percentage as assessed by Ki67 staining (Figure 3-2 C).  To directly test whether the 

observed increase in chemoresistance with 5-LO overexpression is due to increased 

presence of the 5-LO protein or its leukotriene-synthetic capacity, a catalytically-

inactivated form of 5-LO was expressed which is deficient in leukotriene synthesis 

(Figure 3-3 B).  While induced overexpression of wild-type (WT) 5-LO results in an 

increase in chemoresistance (Figure 3-1 E, Figure 3-3 C), expression of catalytically-

inactive 5-LO did not result in an observable change in chemoresistance despite 

comparable levels of overexpression (Figure 3-3 C, D).  Pharmacological inhibition 

of 5-LO using Zileuton in combination with DNR resulted in a 40% reduction in LTB4 

synthesis and increased the chemosensitivity of Molm-13 cells to DNR (Figure 3-3 E, 

Figure 3-2 D).  This is in agreement with the increased DNR sensitivity following 5-

LO depletion (Figure 3-1 C).  Together, these data implicate 5-LO, and specifically 

its leukotriene synthetic capacity, as a chemoresistance pathway in AML. 
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Figure 3-3: Leukotrienes mediate chemoresistance 

(A) PI- Molm-13 cells containing scrambled (scr) or 5-LO knockdown (shRNA 

129) normalized to untreated.  Cells were treated with DNR and a mixture of 

leukotrienes (LTB4, LTC4, LTD4, and LTE4), or DNR and leukotrienes alone (left 

panel) and relative 5-LO expression determined by qPCR (right panel). (B) LTB4 

synthesis as determined by ELISA in Molm-13 cells induced with doxycycline to 

overexpress either WT 5-LO (Alox5 WT) or catalytically-inactivated 5-LO (Alox5 

mut H-S).  (C) DNR treated Molm-13 cells induced with doxycycline to 

overexpress either WT 5-LO (Alox5 WT) or catalytically-inactivated 5-LO (Alox5 

mut H-S).  Live cells were measured as %DAPI-, which was normalized to 

untreated.  (D) Level of overexpression of WT 5-LO or catalytically-inactivated 5-

LO as measured by qPCR (top panel) and western blot (bottom panel).  (E) PI- 

Molm-13 cells after treatment with either Zileuton or vehicle (DMSO) at increasing 

concentrations in the presence of DNR.  The results are presented as mean ± 

standard error mean (SEM).  P-values were determined by the Student’s t-test; *P < 

0.05, **P < 0.01, ***P < 0.001. 
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Alox5-/- leukemic blasts transcriptional programs and response to 

DNR 

To investigate mechanisms of 5-LO regulation of chemoresponses, gene 

expression changes in MLL-AF9 WT and Alox5-/- leukemias were measured 

following exposure to DNR.  The MLL-AF9 leukemic model was adopted as this gene 

fusion has been shown to result in a particularly aggressive form of leukemia in 

patients (Stavropoulou et al., 2016).  Alox5-/- AMLs were generated by retrovirally 

transducing Alox5-/- bone marrow HSPCs (LSK; Lin-Sca-1+c-Kit+) with the MLL-AF9 

fusion, as previously published (Krivtsov et al., 2006).  MLL-AF9 WT and Alox5-/- 

blasts were then exposed to DNR ex vivo.  RNA sequencing revealed distinct 

responses of WT and KO blasts (Figure 3-4 A).  Untreated WT and Alox5-/- leukemias 

exhibit differential expression of 5840 genes, while there were 4337 differentially 

expressed genes between treated WT and Alox5-/- leukemias (P-value < 0.05), with a 

31.7% overlap between treated and untreated samples (Figure 3-5 A, Figure 3-4 B), 

suggesting that a significant subset of genes between WT and Alox5-/- blasts are 

responsive to chemotherapy (Figure 3-4 B).   

To determine the potential of 5-LO in mediating the observed resistance 

phenotype through interaction with other known resistance mediators, differences in 

expression of these genes pre- and post-therapy were evaluated.  Indeed, several 

putative chemoresistance genes identified by our studies, including S100a8, S100a9, 

and Lyz2 were significantly upregulated in WT but not Alox5-/- leukemias, suggesting 

an interdependency between these genes and 5-LO (Figure 3-5 B).  Several known 

chemoresistance mediators were also upregulated in WT but not Alox5-/-, including:  

Cd33, Mdm2, and c-Kit (Figure 3-5 B).  A number of  genes controlling DNA 
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Figure 3-4: 5-LO leukemic cell gene expression differs from WT 

(A) Multidimensional scaling (left panel) and hierarchical clustering (right panel) of 

WT and Alox5-/- leukemic cell gene expression with or without DNR treatment. (B) 

Venn diagram of differential gene expression overlap between untreated WT and 

Alox5-/- leukemias (WT[0] vs KO[0]), DNR treated WT and Alox5-/- leukemias 

(WT[5] vs KO[5]), and untreated and treated Alox5-/- leukemias (KO[0] vs KO[5]). 

Total differentially regulated genes for each treatment group are indicated adjacent 

to each circle.  Total number of overlapping genes is depicted within each section of 

the diagram.  (C) Enrichment plots from GSEA of pathways and targets upregulated 

(positive enrichment score) in WT vs Alox5-/- leukemic cells.  (D, E) Spectral shift 

of Hoechst 33342 peak emission with increasing concentration of DNR in WT and 

Alox5-/- MLL-AF9 leukemic cells treated ex vivo.  The results are presented as mean 

± standard error mean (SEM).  P-values were determined by the Student’s t-test; *P 

< 0.05. 
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Figure 3-5: 5-LO depletion alters global transcription programs and increases 
DNR binding to DNA 

(A) Heatmaps of differentially expressed genes between untreated WT and Alox5-/- 

MLL-AF9 leukemic cells (left panel) and ex vivo DNR treated WT and Alox5-/- 

MLL-AF9 leukemic cells (right panel).  (B) Significantly altered (P<0.05) known 

and putative chemoresistance genes.  (C) Baseline expression of selected genes (P-

value < 0.05) in WT and Alox5-/- MLL-AF9 leukemic cells for known 

chemoresistance genes.  (D) Enrichment plots from GSEA of pathways and targets 

upregulated (positive enrichment score) in WT vs Alox5-/- leukemic cells.  (E) 

Spectral shift of Hoechst 33342 peak emission with exposure to DNR in WT and 

Alox5-/- MLL-AF9 leukemic cells treated ex vivo. The results are presented as mean 

± standard error mean (SEM).  P-values were determined by the Student’s t-test; 

**P < 0.01.  n/s, not significant (P>0.05). 
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methylation and the DNA damage response, such as Tet1 and Parp family genes, were 

consistently downregulated in Alox5-/- blasts regardless of treatment status (Figure 3-5 

C). Comparison of WT and Alox5-/- blasts also revealed increased expression of Jak2 

and Stat4 in Alox5-/- cells, consistent with an inhibitory role of 5-LO in Jak/Stat 

signaling as previously described in other myeloproliferative neoplasms (Figure 3-5 

C) (Y. Chen et al., 2016).  GSEA profiling revealed positive enrichment of 4ebp1/2, 

Yy1, Eed, Sox2 and Cdh1 targets in WT leukemia, important genes in the regulation 

of differentiation, cell adhesion, and global transcriptional programs (Figure 3-5 D, 

Figure 3-4 C). 

While we did not see a significant difference in ABCB1, ABCC1, or ABCG2 

expression between WT and Alox5-/- blasts (Figure 3-5 B), given the important role of 

drug efflux in anthracycline resistance (Dean et al., 2005), DNR efflux and DNA 

intercalation were assessed.  Inhibition of MLL-AF9 WT blasts with Zileuton 

significantly increased DNR binding to DNA to levels slightly less than in Alox5-/- 

blasts, a trend that was maintained over a range of DNR concentrations (Figure 3-5 E, 

Figure 3-4 D).  Alox5-/- leukemic cells treated with DNR ex vivo exhibited increased 

DNA binding, but exhibited no significant difference in drug efflux (Figure 3-4 D, E).  

These data indicate that one role of leukotrienes is to limit the DNA damaging effects 

of DNR, primarily through preventing daunorubicin-DNA intercalation.   

5-LO regulates LSC frequency and chemosensitivity in vivo 

Consistent with our results with 5-LO knockdown (Figure 3-1 C, H), MLL-

AF9 Alox5-/- cells treated ex vivo exhibited a doubling in sensitivity to DNR (Figure 

3-6 A).  To determine whether 5-LO also mediates chemoresistance in vivo, MLL-  
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Figure 3-6: 5-LO depletion sensitizes LSCs to chemotherapy in vivo 

(A) PI- cells as a percent of untreated in WT and Alox5-/- MLL-AF9 leukemic cells 

treated with DNR ex vivo.  (B) Kaplan-Meier curves of mouse survival harboring 

WT or Alox5-/- MLL-AF9 leukemia either with or without treatment for 5 days with 

Ara-C and 3 days with doxorubicin (n = 10).  (C) Average fold-reduction in 

leukemic burden between in vivo treated WT and Alox5-/- MLL-AF9 mice (n = 4) as 

measured by decrease in GFP+ cell frequency.  (D) Representative FACS plots of 

GFP+Lin-c-Kit+Sca-1- LSCs from WT and Alox5-/- MLL-AF9 mice by bone 

marrow aspiration (left panel), frequency of (GFP+Lin-Sca-1-c-Kit+CD34+CD16+) 

L-GMP cells harvested before and after treatment with 5+3 induction therapy (right 

panel).  (E) LIC frequency determination by Log fraction nonresponding as a 

function of number of transplanted leukemic cells in a limiting dilution assay.  

Mouse survival times are presented as median survival ± standard error (s.e.).  P-

values were determined by log-rank test (chi-sq).  All other results are presented as 

mean ± standard error mean (SEM).  P-values were determined by the Student’s t-

test; **P < 0.01, ***P < 0.001. 
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AF9 WT and Alox5-/- AMLs were transplanted into WT mouse recipients and the 

resulting leukemias were treated with a modified “3+5” doxorubicin + Ara-C 

treatment protocol designed to mimic AML induction therapy (Figure 3-7 A) (Zuber 

et al., 2009).  In agreement with our ex vivo analyses, Alox5-/- leukemic mice treated 

with chemotherapy in vivo exhibit a significant extension in survival compared to WT 

treated mice (P-value = 0.0022; Figure 3-6 B).  Additionally, depletion of 5-LO alone 

reduces the leukemogenic potential of MLL-AF9 driven leukemia (Figure 3-6 B).  

Mice harboring comparable levels of leukemic burden (0.5% < GFP < 3%) prior to 

treatment display a 3-fold greater reduction in leukemic burden in Alox5-/- MLL-AF9 

mice (Figure 3-6 C, Figure 3-7 B).  Together, this suggests a role of 5-LO in 

mediating both leukemogenesis and resistance to induction therapy in vivo. 

Since LSCs drive relapse in AML, we next examined whether 5-LO regulates 

LSC response to therapy.  As functional LSCs in MLL-AF9 leukemias can be 

identified based on their immunophenotype, which resembles normal granulocyte-

macrophage progenitors (i.e. leukemic GMP (L-GMP); Lin-c-Kit+Sca-1-CD34+CD16+) 

(Krivtsov et al., 2006), we assessed the frequency of these cells following treatment 

with induction therapy in vivo.  Alox5-/- LSCs were significantly reduced compared to 

WT LSCs, supporting the importance of 5-LO in their survival in the presence of 

chemotherapy (Figure 3-6 D).  To further determine Alox5-/- leukemia-initiating cell 

(LIC) activity in vivo, a limiting dilution assay of Alox5-/- leukemic cells was 

performed in WT recipient mice.  Alox5-/- blasts exhibited an LIC frequency of 

1/60,780 compared to 1/18,409 in MLL-AF9 WT AML (Figure 3-6 E).  These data 

are in agreement with the diminished leukemogenic capacity observed in transplanted 

Alox5-/- leukemia (Figure 3-6 B, Figure 3-7 B).  
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Figure 3-7: 5-LO depletion increases chemotherapeutic efficacy in vivo 

(A) Workflow for establishment of MLL-AF9 leukemic mice and in vivo 

chemotherapy treatment.  (B) Levels of leukemic burden as measured by GFP+ cell 

frequency as a percent of total PI- cells.  Cells were harvested both prior to 

treatment (top panel) and after treatment (bottom panel) by bone marrow aspiration.  

(C) Genotyping of Alox5+/+ and Alox5-/- mice to confirm presence of homozygous 

Alox5 deletion.  The results are presented as mean ± standard error mean (SEM).  P-

values were determined by the Student’s t-test; ***P < 0.001.  
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Loss of 5-LO improves normal HSC function  

As LSC-directed therapies should exhibit specificity over HSCs, and given the 

defined role of leukotrienes in promoting hematopoietic progenitor proliferation and 

stimulation of granulocyte/macrophage production (Claesson et al., 1985; Ziboh et al., 

1986), HSC maintenance in the context of 5-LO depletion was evaluated.  Bone 

marrow from WT and Alox5-/- mice was isolated and stem cell frequency was 

assessed.  During steady-state hematopoiesis, Alox5-/- mice exhibited higher absolute 

LSK (Lin-c-Kit+Sca-1+) cells in the bone marrow, particularly the lymphoid-biased 

HSCs (Lin-c-Kit+Sca-1+CD34-CD150-) (Figure 3-8 A). Bone marrow cell counts and 

HSPC and lineage distribution were normal for all other cell types assessed (Figure 3-

9 A-C), confirming results from a previous study (X.-S. Chen, Sheller, Johnson, & 

Funk, 1994).  All peripheral blood counts were within the normal range (Figure 3-10 

A), and peripheral blood lineage frequencies were comparable to WT with the 

exception of elevated effector T cell frequency (Figure 3-10 B).  

Histologic sections of WT and Alox5-/- mouse BM revealed a significant 

increase in megakaryocytes in Alox5-/- mice (Figure 3-11 A).  Elevated 

megakaryocytes were also observed in the peripheral blood of Alox5-/- mice at steady 

state (Figure 3-11 B).  Despite slightly decreased total colony number, purified Alox5-

/- HSCs also produced significantly more CFU-MK in primary and secondary plating 

than WT (Figure 3-11 C, D).  Together these data depict grossly similar steady state 

hematopoiesis between 5-LO WT and KO mice, with Alox5-/- mice exhibiting subtly 

elevated LSK and megakaryocyte frequency. 

As the increase in LSK cells in Alox5-/- mice is suggestive of a gain in HSC 

function, this possibility was evaluated in long-term reconstitution experiments.   
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Figure 3-8: 5-LO depletion improves normal HSC function 

(A) Absolute cell numbers of (Lin-Sca-1+c-Kit+) LSK and (Lin-Sca-1+c-Kit+CD34-

CD150-) L-HSC cells in the bone marrow of WT and Alox5-/- mice (top panel), 

representative FACS plots (bottom panel).  (B) Flow cytometric scatter plot of 

recipient (CD45.1) and donor (CD45.2) cell chimerism in WT mice transplanted 

with either of WT and Alox5-/- HSCs 16 weeks after transplantation.  Bar graphs 

depict quantitation of mean CD45.2+ donor cells as a frequency of total PI- cells.  

(C) LSK frequency of total CD45.2+ cells and HSC frequency of total LSK cells in 

mice transplanted with WT and Alox5-/- MLL-AF9 donor cells.  Primary (1’), 

secondary (2’), and tertiary (3’) transplantation.  The results are presented as mean ± 

standard error mean (SEM).  P-values were determined by the Student’s t-test; *P < 

0.05, **P < 0.01, ***P < 0.001. 
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Figure 3-9: 5-LO KO mice have phenotypically normal bone marrow 
cellularity at steady-state 

(A) Total cellularity of bone marrow stem and progenitor cell populations.  (B) 

Total cellularity of differentiated myeloid and lymphoid cell populations in the bone 

marrow of WT and Alox5-/- mice.  (C) Total bone marrow mononuclear cell counts 

for WT and Alox5-/- mice.  The results are presented as mean ± standard error mean 

(SEM).  P-values were determined by the Student’s t-test; *P < 0.05. 
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Figure 3-10: 5-LO KO mice have phenotypically normal peripheral blood 
cellularity at steady-state 

(A) Complete blood counts in the peripheral blood of WT and Alox5-/- mice.  (B) 

Frequency of differentiated myeloid and lymphoid cell populations in the peripheral 

blood of WT and Alox5-/- mice.  The results are presented as mean ± standard error 

mean (SEM).  P-values were determined by the Student’s t-test; *P < 0.05. 
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Figure 3-11: 5-LO KO mice exhibit elevated megakaryocyte output in vivo and 
in colony formation assay 

(A) Frequency of megakaryocyte frequency in the sternum of WT and Alox5-/- mice.  

Paraffin embedded sections were H&E stained and visualized by brightfield 

microscopy.  Representative images shown.  (B) Representative FACS plots of 

peripheral blood CD41+ cells from WT and Alox5-/- mice (left panel) and 

quantitation of average CD41+ frequency (right panel) from mice at steady state (n 

= 6).  (C) Total colony number of purified WT and Alox5-/- HSCs plated in 

methylcellulose.  (D) Total CFU-MK colony counts.  Primary (1’), secondary (2’) 

and tertiary (3’) platings.  The results are presented as mean ± standard error mean 

(SEM).  P-values were determined by the Student’s t-test; *P < 0.05, **P < 0.01, 

***P < 0.001. 
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Double FACS-sorted (Lin-c-Kit+Sca-1+CD34-CD150+) HSCs were transplanted into 

lethally irradiated WT recipients with 2.4x105 cells BM MNCs as rescue cells.  While 

no gross phenotypic abnormalities were observed in primary WT and Alox5-/- 

transplants, serial transplantation revealed progressive enhancement in total peripheral 

blood chimerism in Alox5-/- transplanted mice (Figure 3-8 B).  Secondary Alox5-/- 

donor cell recipients exhibited a doubling in LSK and a tripling in HSC frequencies 

compared to WT (Figure 3-8 C).  Myeloid progenitor cells (Lin-c-Kit+Sca-1-), and 

particularly GMP (Lin-c-Kit+Sca-1-CD34+CD16+), also exhibited elevated donor cell 

frequencies in secondary and tertiary recipients (Figure 3-12 A).  The trend of 

increased myeloid chimerism was also evident amongst mature myeloid cells, with 

significantly elevated donor chimerism in peripheral blood granulocytes and 

macrophages in secondary and tertiary Alox5-/- recipients (Figure 3-12 B).  Together 

these data suggest that 5-LO depletion improves normal HSPC function in vivo, with 

elevated myeloid cell output in serial transplantation and colony forming assays. 

Alox5-/- HSPCs exhibit normal response to genotoxic stress 

Considering the observed increase in LSC chemosensitivity, we next sought to 

determine whether Alox5-/- HSPCs may be more resistant to genotoxic stress.  WT and 

Alox5-/- mice were treated with a single dose of 5-FU and the bone marrow and 

peripheral blood cell composition and numbers were measured weekly following 

treatment (Moore & Warren, 1987).  The expected reduction in RBC and hematocrit 

was observed within seven days following treatment with 5-FU (Figure 3-13 A).  

While total lineage negative frequency increased in the bone marrow of both WT and 

Alox5-/- mice seven days following treatment with 5-FU, a preferential increase in 
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Figure 3-12: 5-LO KO recipients exhibit elevated progenitor and myeloid 
lineage output in serial transplantation 

(A) Frequency of (Lin-Sca-1-c-Kit+) progenitor and (Lin-Sca-1-c-Kit+CD34+CD16+) 

GMP cells as a percentage of total CD45.2+ WT and Alox5-/- donor cells over serial 

transplantations.  (B) Peripheral blood CD45.2+ WT and Alox5-/- donor cell 

chimerism within (Gr1+Mac1+) granulocyte and (Gr1-Mac1+) macrophage cell 

populations.  Tail bleeds were taken every 4 weeks for 16 weeks total.  Primary (1’), 

secondary (2’) and tertiary (3’) transplantation.  The results are presented as mean ± 

standard error mean (SEM) .  P-values were determined by the Student’s t-test; *P < 

0.05, **P < 0.01, ***P < 0.001. 
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Figure 3-13: 5-LO KO mice exhibit normal hematopoietic recovery following 5-
FU treatment 

(A) Total blood counts in WT and Alox5-/- mice treated with 5-FU [100mg/kg] were 

acquired weekly for 6 weeks.  (B) Bone marrow HSPC cell frequency in WT and 

Alox5-/- mice 7 days (B) and 6 weeks (C) following 5-FU administration.  The 

results are presented as mean ± standard error mean (SEM) .  P-values were 

determined by the Student’s t-test; *P < 0.05, **P < 0.01. 
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white blood cells and leukocytes, including neutrophils, eosinophils, and basophils, 

was observed in the peripheral blood of WT mice compared to Alox5-/- (Figure 3-14 

A, B).  Interestingly, reticulocytes in Alox5-/- mice were relatively unaffected by 5-FU 

treatment, suggesting a role of 5-LO in mediating 5-FU sensitivity in this cell type 

(Figure 3-14 A).  Untreated Alox5-/- mice exhibited significantly higher LSK 

frequency, which was reduced upon treatment with 5-FU (Figure 3-14 B).  Following 

5-FU treatment, WT and Alox5-/- 5-FU treated mice exhibited comparable bone 

marrow stem and progenitor cell frequencies and complete blood counts (Figure 3-13 

A-C).  While these data suggest that Alox5-/- peripheral blood and bone marrow cells 

are slightly more sensitive to genotoxic stress than WT, there is no long term 

detriment to hematopoiesis.  Combined with our data in Alox5-/- leukemic mouse 

models, these studies suggest that 5-LO has unique functions in normal and leukemic 

hematopoiesis and highlight 5-LO as a tractable pharmacologic target in combination 

with induction therapy. 

DISCUSSION 

These studies identify 5-LO as a potent chemoresistance mediator in AML.  While 5-

LO is not expressed at significant levels prior to exposure to DNR, treatment rapidly 

induces expression of both 5-LO mRNA and protein, resulting in elevated leukotriene 

synthesis and conferral of a therapy-resistant state.  This is reversed upon 5-LO 

knockdown or pharmacologic inhibition.  Loss of 5-LO also diminished MLL-AF9-

driven leukemogenesis and improved the chemosensitivity of leukemic blasts in vivo, 

with a significant survival extension observed in treated MLL-AF9 Alox5-/- mice.  

Alox5-/- mice exhibit elevated LSK frequency at steady state and improved HSC 
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Figure 3-14: Alox5-/- mice exhibit normal hematopoietic recovery following 5-
FU treatment 

(A) WT and Alox5-/- mice were treated with a single dose of 5-FU and blood 

samples were collected by tail vein bleed weekly for 6 weeks.  CBC analysis of 

lymphoid and leukocyte frequency are depicted.  (B) Bone marrow HSPC 

frequencies in WT and Alox5-/- mice 6 weeks after 5-FU treatment.  The results are 

presented as mean ± standard error mean (SEM).  P-values were determined by the 

Student’s t-test; *P < 0.05, **P < 0.01, ***P < 0.001. 
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function in serial transplantation.  Therefore, loss of 5-LO synergizes with induction 

therapy to improve chemoresponses, while potentially also enhancing normal 

hematopoietic recovery. 

5-LO is a known regulator of inflammation through conversion of arachidonic 

acid to leukotrienes, a bioactive group of fatty acids involved in bronchoconstriction 

and leukocyte chemotaxis (Radmark, 2000).  Altered metabolism of arachidonic acid 

through upregulation of 5-LO has been linked to carcinogenesis in several solid tumor 

models, positively regulating cancer cell viability, proliferation, cell migration, and 

activation of anti-apoptotic signaling cascades (Bishayee & Khuda-Bukhsh, 2013; D. 

Wang & Dubois, 2010).  Several metabolites of arachidonic acid, including 

prostaglandins, are also known to protect cancer cells from different chemo-preventive 

measures, however the importance of leukotrienes and their relevance to AML is 

poorly understood (Kurtova et al., 2014; Rioux & Castonguay, 1998).  Recent studies 

have also implicated leukotrienes in the regulation of HSPC homeostasis, though their 

effect on cancer stem cell growth is only beginning to be investigated (Boehmler et al., 

2009; Chung et al., 2005; D. Wang & Dubois, 2010). 

Our data suggest that 5-LO exerts its chemoprotective effect through the 

generation of leukotrienes, which in turn inhibit binding of DNR to DNA.  While the 

inability of MLL-AF9 Alox5-/- leukemic blasts to produce leukotrienes improved their 

sensitivity to DNR, we also show that administration of exogenous leukotrienes can 

rescue the effect of 5-LO shRNA-mediated depletion.  This suggests that leukotrienes 

may modulate chemoprotection of leukemic blasts by both cell-intrinsic and cell-

extrinsic means.  Further investigation of the tumor microenvironmental secretion of 

leukotrienes and their effect on leukemic cells is therefore required. 

Prior studies in the context of a PML/RARa-positive model of AML 
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demonstrated that pharmacologic inhibition of 5-LO with CJ-13,610 reversed 

PML/RARa activation of Wnt signaling, suggesting a link between 5-LO catalytic 

inactivation and inhibition of Wnt as a leukotriene-independent mechanism of LSC 

survival (Roos et al., 2014).  In the context of MLL-AF9 driven leukemia, we observe 

a suppression of leukotriene synthesis in Molm-13 cells induced to overexpress 

catalytically inactivated 5-LO, which resulted in an inability to improve 

chemoresistance in these cells (Figure 3-3 C, D).  MLL-AF9 Alox5-/- leukemic blasts 

also did not exhibit significantly altered expression of several Wnt pathway-related 

genes, including:  Axin1, APC, cyclin D1, and GSK3b (data not shown).  This 

supports the hypothesis that 5-LO primarily mediates chemoresistance through 

synthesis of leukotrienes. 

Curative therapies in AML must achieve complete elimination of LSCs 

(Horton & Huntly, 2012).  Our data and data of others have shown that, while 

induction therapy partially reduces LSC counts, a portion of LSCs often persist, the 

frequency of which directly correlates with overall survival and length of remission 

(Stiehl et al., 2015; Terwijn et al., 2014).  An attenuation in LIC frequency and an 

almost complete reduction in L-GMP frequency following induction therapy was 

observed in Alox5-/- mice in vivo (Figure 3-6 D, E).  This suggests that loss of 5-LO 

not only decreases the number of LSCs, but also heightens the sensitivity of these 

remaining cells to treatment. 

The combination of chemosensitization of LSCs and improved HSC function 

in Alox5-/- mice makes 5-LO an attractive candidate for further clinical development.  

Importantly, there is already an FDA-approved inhibitor of 5-LO, Zileuton, used to 

treat asthma (Berger, De Chandt, & Cairns, 2007).  Our preliminary studies combining 

Zileuton with DNR showed a synergistic effect in vitro, likely through potentiation of 
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DNR binding to DNA (Figure 3-3 E, Figure 3-5 D).  This is further supported by 

studies in CML that demonstrated Zileuton alone extended survival better than 

Imatinib in a BCR-ABL mouse model (Y. Chen, Hu, et al., 2009).  As DNR results in 

cumulative toxicity in patients, combinatorial therapy that allows for a better 

therapeutic index of DNR could significantly change the treatment landscape in AML 

(Gianni et al., 2008).  Our studies therefore offer a foundation for additional pre-

clinical assessment of combining Zileuton with induction therapy for future clinical 

translation. 
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CHAPTER FOUR:  
METHODS 

 

 

Patients and samples 

All patient studies were performed at Stanford Cancer Center (San Jose, 

California).  AML patients were enrolled regardless of age, gender, ethnicity, AML 

subtype, or cytogenetics.  The majority of patients received 7+3 induction therapy 

(Ara-C + Doxo), while a subset received alternative therapy in addition to, or as a 

replacement for, induction therapy.  Day 0 and Day 14 blast percentages were 

annotated from BM analysis at Stanford’s pathology laboratory.  LSC (CD34+CD38-

CD90-), LPC (CD34+CD38+), and blast (CD34-) cells were FACS sorted based on 

immunophenotype and RNA was extracted for transcriptome analysis.  Summary of 

patient demographics and treatment response are summarized in Table 2-1.   

Transcriptome analysis and bioinformatics 

Gene expression analysis of sorted patient samples was performed on the 

Affymetrix U133 Plus 2.0 gene expression microarray platform (Affymetrix, Santa 
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Clara, California).  Sample clustering analysis was performed by multidimensional 

scaling of all samples.  Heatmaps of the top 100 differentially-expressed genes in each 

comparison were generated for genes meeting fold change cutoff log2, adjusted p-

value cutoff 0.05, and mean coverage of at least 15.  Pathway analysis was performed 

using the GSEA software package (Mootha et al., 2003; Subramanian et al., 2005).  

Differential gene expression overlap between comparisons was performed using the 

Gene List Venn Diagram software (Pirooznia, Nagarajan, & Deng, 2007). 

In vitro cell line studies 

Human cell lines (MOLM-13) were obtained from American Type Culture 

Collection (ATCC) and Deutsche Sammlung von Mikroorganismen und Zelkulturen 

GmbH (DSMZ) and were maintained according to their respective guidelines.  

MOLM-13 cells were lentivirally transduced with shRNAs against 5-LO depicted in 

Table 4-1 in the pLKO-Puro vector backbone or vector alone as a control.  

Transduced clones were selected with puromycin.   

Molm13 or HL-60 cells were lentivirally transduced with shRNAs against the 

51 gene panel depicted in Sup. Table 2 in the pLKO-Puro vector backbone or vector 

alone as a control (Sup. Table 3).  Transduced clones were selected with puromycin.  

Overexpression of Alox5 cDNA was achieved in pLenti-Lox-GFP-mCherry vector 

backbone (Table 4-1).  GFP+ transduced clones were FACS-sorted by flow cytometry 

and expression was induced by the addition of doxycycline and tracked by mCherry 

fluorescence.  Catalytically inactive 5-LO was accomplished through single point 

mutation of HIS368SER in the cDNA of the 5-LO overexpression construct, as  
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Target Primer Sequence Remarks

ALOX5 Forward GCAGGAAGTGGCTACTGTGGA Common	(for	genotyping)

ALOX5 Forward TGCAACCCAGTACTCATCAAG Wild-type	(for	genotyping)

ALOX5 Forward ATCGCCTTCTTGACGAGTTC Knockout	 (for	genotyping)

ALOX5 Forward GTACGAATTCGTTTTCCCAGTCACGAC Overexpression cloning

ALOX5 Reverse GCTAACCGGTCAGGAAACAGCTATGAC Overexpression cloning

ALOX5 Forward GACCATCACCTCGCTTCTGCGAAC Mutagenic PCR

ALOX5 Reverse GTTCGCAGAAGCGAGGTGATGGTC Mutagenic PCR

pLentiLox GCGATACTAGAGCTTGCATGC Sequencing primer	for	ALOX5	
incorporation

ALOX5 Forward ACTGGAAACACGGCAAAAAC qPCR

ALOX5 Reverse TTTCTCAAAGTCGGCGAAGT qPCR

hPRT1 Forward TCCAGCAGGTCAGCAAAGAA qPCR

hPRT1 Reverse GAACGTCTTGCTCGAGATGT qPCR

Table 4-1: Primers 
 



 

122 

 

previously described (Table 4-1) (Ishii, Noguchi, Miyano, Matsumoto, & Noma, 

1992; Nguyen, Fealgueyret, Abramovitz, & Riendeau, 1991). 

5-LO drug inhibition 

For cytotoxicity studies, cell death was assessed after 3 days of chemotherapy 

treatment with DNR (Sigma, cat no: 30450).   For combination with Zileuton, cells 

were treated with daunorubicin (7nM) for 3 days with addition of Zileuton (0-100uM, 

LKT Laboratories cat no: Z3444) or vehicle (DMSO) 24 hours prior to addition of 

daunorubicin and every 24 hours after.  Cell death was assessed by addition of PI 

(0.5ug/mL) and flow cytometry. 

Myeloablation studies were performed by intraperitoneal administration of a 

single 100mg/kg dose of 5-flourouracil (Sigma, cat. no: F6627-1G) to C57BL/6J WT 

and Alox5-/- mice.  Peripheral blood samples were collected weekly for 6 weeks by tail 

vein bleed.  Bone marrow was collected by aspiration 7 days following 5-FU 

administration and upon experiment termination by crushing of the femur and tibia. 

Alox5-/- mouse studies 

C57BL/6J Alox5-/- mice were obtained from The Jackson Laboratory (JAX, 

stock no: 004155).  Homozygous deletion of Alox5 was confirmed through genotyping 

of ear tissue by PCR and gel electrophoresis (Figure 3-7 C).  Mice were maintained at 

Memorial Sloan-Kettering animal facility following standard protocols for animal 

maintenance.   

Alox5-/- serial transplantation studies were performed by transplanting purified, 

double sorted (Lin-c-Kit+Sca-1+CD34-CD150+) HSCs isolated from both WT and 
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Alox5-/- C57BL/6J mice.  Lethally irradiated (two doses of 475cGy) WT Pepboy 

recipients were transplanted with 300 purified HSCs per mouse along with 2.4x105 

Pepboy helper marrow by retro-orbital injection.  Mouse blood samples were collected 

every 4 weeks by tail vein bleed and CBC, chimerism, and lineage output was 

assessed.  Mice were sacrificed 16 weeks following transplantation and a full 

hematopoietic workup was performed, including:  Bone marrow cellularity, 

stem/progenitor and lineage frequency, and histological staining.  Secondary and 

tertiary transplants were performed by injected equal numbers of (Lin-Sca-1+c-Kit+) 

LSK cells.  Subsequent analyses were performed as in primary transplants. 

Tissues from WT and Alox5-/- transplanted mice were sectioned, fixed, and 

paraffin embedded by the MSKCC Molecular Cytology core.  H&E histological 

staining was performed and slides were imaged by brightfield microscopy (Zeiss 

Axio2Imaging microscope, 40x 0.75NA objective, Zeiss AxioCam HRc camera).  

Complete blood counts were acquired using the IDEXX Procyte Dx® Hematology 

Analyzer (IDEXX Laboratories) 

Colony formation assays were performed by initial plating of 70 purified, 

double sorted (Lin-c-Kit+Sca-1+CD34-CD150+) HSCs per well in triplicate. Colonies 

were allowed to form for 7-10 days and CFUs were manually scored.  Secondary and 

tertiary platings were performed with 2x104 cells homogenized from prior platings. 

Alox5-/- MLL-AF9 studies 

Leukemic mice were generated through retroviral incorporation of the MLL-

AF9 oncogene fusion as previous published(Krivtsov et al., 2006).  Double sorted Lin-

Sca-1+c-Kit+ cells (LSK) isolated from the bone marrow of either C57BL/6J Alox5+/+ 
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or Alox5-/- mice were transduced and sorted GFP+ cells were transplanted into primary 

C57BL/6J recipients.  Upon leukemic expansion, leukemic mice were sacrificed, bone 

marrow was isolated, and cells were taken for secondary transplantation into 

C57BL/6J recipients.  Leukemogenesis studies and in vivo chemotherapy treatment 

were performed with tertiary transplant recipients.   

MLL-AF9 Alox5 WT/KO mouse leukemic bone marrow cells were cultured ex 

vivo in RPMI media supplemented with 10% FBS, 1% penicillin/streptomycin/L-

glutamine (Gibco, cat no: 10378016), mIL-3 (10ng/mL), mSCF (20ng/mL), and mIL-

6 (10ng/mL).  Fresh cells were plated from frozen aliquots after 15-20 passages. 

A modified induction therapy regimen developed for mice containing Ara-C 

and Doxorubicin (doxo) “5+3” chemotherapy was used for in vivo chemoresistance 

studies as previous described (Zuber et al., 2009).  WT C57BL/6J mice at 10-12 weeks 

of age (The Jackson Laboratory) were sub-lethally irradiated at 475cGy and 

transplanted with either MLL-AF9 Alox5+/+ or MLL-AF9 Alox5-/- cells (6x105 GFP+ 

cells) 25 hours after irradiation by retro-orbital injection.  GFP+ engraftment was 

assessed by bone marrow aspiration 16 days post-transplantation.  Chemotherapeutic 

treatment was initiated when 3-5% GFP+ was detected in the bone marrow.  

Treatment consisted of a combination of cytarabine (100mg/kg, LKT Laboratories cat 

no: C9778) and doxorubicin (3mg/kg, LKT Laboratories cat no: D5794).  Drugs were 

administered by intraperitoneal injection every 24 hours for 5 days or 3 days for 

cytarabine and doxorubicin, respectively.  Reduction in GFP+ leukemic burden was 

assessed 3 days after conclusion of treatment by bone marrow aspiration and flow 

cytometry.  End point measurement included death of mice from leukemia or resulting 

from a humane endpoint when mice suffered from paralysis, severe stress, or cachexia. 

Limiting dilution studies were performed by retro-orbital injection of log10 
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increasing concentrations from 2x103 to 2x105 of WT MLL-AF9 and Alox5-/- MLL-

AF9 GFP+ leukemic bone marrow cells into sublethally irradiated (475cGy) C57BL/6 

mice.  Leukemia-initiating cell frequencies were ascertained using the Extreme 

Limiting Dilution Analysis (ELDA) software (Hu & Smyth, 2009). 

Flow cytometry 

Cell sorting and analysis was performed using the BD FACSAria II sorter (BD 

Biosciences) or BD LSRFortessa (BD Biosciences), respectively.  Generally, antibody 

staining was performed for 60 minutes at 4C in the dark.  For cytotoxicity studies, 

propidium iodide (PI) and a fixed number of unstained beads were added and a ratio of 

live cell and bead counts were normalized to untreated controls (Table 4-2).  

Measurement of cell cycle status was performed using anti-Ki67 Kit (BD Pharmingen, 

cat no: 556027).  Cells were fixed and permeabolized using BD Cytofix/Cytoperm 

(BD Pharmingen, cat no: 554714) by manufacturer’s specifications.  Antibodies and 

other staining molecules used in all studies are depicted in Table 4-3.  Flow cytometry 

data analysis was performed using FlowJo 9.8.5 software (FlowJo, LLC). 

Daunorubicin intercalation and efflux were measured as previously described 

(Belloc et al., 1992; Smeets et al., 1999).  Briefly, spectral shift of Hoechst 33342 

(5uM) upon daunorubicin (0-100nM) intercalation to DNA in cell lines in vitro was 

measured using a 450 band pass (BP) filter and a 575 BP filter, respectively.  

Transmission efficiency was calculated to quantitate relative amount of daunorubicin 

bound.  Daunorubicin efflux was calculated by performing a pulse-chase of 

daunorubicin (0-1uM) for 60 minutes at 37C, washing cells, and then incubating with 

H33342 for 120 minutes at 37C, followed by flow cytometric analysis. 
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Dye Concentration Use Source Catalog	No.

DAPI 0.01µg/mL Cytotoxicity	assay Fisher	Scientific 26-829-810MG

PI 0.5µg/mL Cytotoxicity	assay Sigma-Aldrich 81845

H33342 5µM Daunorubicin	DNA
binding	assay

Sigma-Aldrich B2261-100MG

Table 4-2: DNA dyes 
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Antigen Conjugate Clone Use Source Catalog	No.

c-Kit PE/APC 2B8 Flow	Cytometry Biolegend 105808/
105812

Sca1 PerCP D7 Flow	Cytometry Biolegend 108122

CD34 APC 581 Flow	Cytometry Biolegend 343510

CD38 PE DL-101 Flow	Cytometry Biolegend 352306

CD16/32 A700 93 Flow	Cytometry eBioscience 56-0161-82

Mac-1 PB M1/70 Flow	Cytometry eBioscience 48-0112-82

Gr-1 PE-Cy7/PE RB6-8C5 Flow	Cytometry Biolegend/
eBioscience

108416/
12-5931-82

B220 PE-Cy5 RA3-6B2 Flow	Cytometry Biolegend 103210

CD3 APC-Cy7 17A2 Flow	Cytometry eBioscience 47-0032-82

Ter119 PE-Cy7 TER-119 Flow	Cytometry Biolegend 116222

Ki67 PE B56 Flow	Cytometry BD	Biosciences 556027

ALOX5 - Rabbit
monoclonal

Primary	in	
Western	Blot

Cell	Signaling 3289S

β-actin - Rabbit
monoclonal

Primary	in	
Western	Blot

Cell	Signaling 4970S

Rabbit	IgG HRP Polyclonal Secondary	in	
Western	Blot

Cell	Signaling 7074P2

Table 4-3: Antibodies 
 



 

128 

 

RNA analysis 

Changes in RNA transcript (CST7, CD36, 5-LO, S100A8, S100A9, LYZ) 

were quantitated by qPCR.  RNA was extracted from cells (Qiagen RNeasy Mini Kit, 

cat no: 74104) and cDNA was generated (ThermoFisher SuperScript III, cat no: 

18080051) by manufacture’s specifications.  qPCR was performed (ThermoScientific 

ABSolute Blue SYBR Green ROX Mix, cat no: AB-4162/B) with primers specific to 

the transcript of interest (Table 4-1).  The DDCT method was used to calculate 

differences in gene expression.  Briefly, CT was measured by qPCR and expression of 

the gene of interest was normalized to hPRT1.  Normalized values were then weighted 

to a reference sample and expression fold change was determined by converting from 

log2.  Each reaction was performed in triplicate. 

For RNA-sequencing analysis, WT MLL-AF9 and Alox5-/- MLL-AF9 

leukemic cells were treated ex vivo with 5nM DNR for 72 hrs.  RNA was extracted 

from cells (Qiagen RNeasy Mini Kit, cat no: 74104) and paired-end RNA-seq was 

performed by Illumina® Hiseq™ with SMARTer amplification and a read depth of 30-

40x106 reads per sample.  Alignment metrics for each sample were calculated by 

GATK’s CollectRnaSeqMetrics and AlignmentSummaryMetrics.  Sample clustering 

analysis was performed using either hierarchical clustering or multidimensional 

scaling of all samples.  Heatmaps of the top 100 differentially-expressed genes in each 

comparison were generated for genes meeting fold change cutoff log2, adjusted p-

value cutoff of 0.05, and mean coverage of at least 15.  Pathway analysis was 

performed using the GSEA software package (Mootha et al., 2003; Subramanian et al., 

2005).  Differential gene expression overlap between comparisons was performed 

using the Gene List Venn Diagram software (Pirooznia et al., 2007). 
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Protein analysis 

Cells were centrifuged at 1500rpm for 5 minutes at 4C (Eppendorf Centrifuge 

5810 R).  Cell pellets were resuspended in 100ul NP-40 lysis buffer (10mM HEPES 

pH 7.9, 250mM NaCl, 5mM EDTA, 0.1% NP-40, 10% Glycerol) and incubated on ice 

for 30 minutes.  Lysates were spun at 13000rpm for 10 minutes at 4C and supernatants 

were extracted.  Protein concentrations were quantitated by Bradford assay with BSA 

standard curves.  Proteins were denatured in LDS buffer (C.B.S. Scientific ClearPage, 

cat no: FB31010) at 95C for 5 minutes and loaded onto SDS-PAGE pre-cast gels (4-

20% Mini-PROTEAN TGX Precast Protein Gel, cat no: 4561094).  Blots were 

transferred to 0.45uM nitrocellulose membrane, blocked with non-fat milk (BioRad) 

or 5% bovine serum albumin (Sigma), and washed with 0.1% Tween 20 tris-buffered 

saline.  Primary and secondary antibodies used are listed in Table 4-3.  ECL Western 

blotting detection reagents (Millipore) were used. 

LTB4 and cysteinyl leukotriene synthesis was measured by Enzo LTB4 ELISA 

kit (Enzo Life Sciences, cat no: ADI-900-068) and Enzo Cysteinyl leukotriene ELISA 

kit (Enzo Life Sciences, cat no: ADI-900-070), respectively.  Cells were stimulated 30 

minutes prior to extraction of supernatant with calcium ionophore (320nM, Sigma cat 

no: C7522) and arachidonic acid (16uM, Sigma cat no: 10931).  ELISA was 

performed by manufacturer’s specifications. Leukotriene add-back experiments were 

performed as follows:  MOLM-13 cells were incubated in the presence of 

daunorubicin (5nM) for 3 days with addition of LTB4 (4nM, Caymen Chemical cat 

no: 20110), LTC4 (100nM, Caymen Chemical cat no: 20210), LTD4 (100nM, 

Caymen Chemical cat no: 20310), and LTE4 (100nM, Caymen Chemical cat no: 

20410) every 24 hours.  Live (PI-) cells were quantified by flow cytometry.  
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CHAPTER FIVE:  
DISCUSSION 

 

 

Acute myeloid leukemia (AML) is a disease characterized by an accumulation 

of genetic aberrations that lead to a clonal outgrowth of incompletely differentiated 

myeloid blast cells, resulting in a progressive loss of normal hematopoietic ability.  

While the exact cell of origin for AML is still disputed (Pollyea et al., 2014), it is clear 

that the leukemic stem cell (LSC) has the ability to initiate both primary and relapsed 

leukemia (Somervaille & Cleary, 2006; Van Rhenen et al., 2007).  Improved methods 

of LSC identification and isolation have allowed for better characterization of this 

relatively chemoresistant population (Blair et al., 1997; Bonnet & Dick, 1997; Jordan 

et al., 2000).  In this thesis we demonstrate the first example of prospective isolation 

and transcriptomal analysis of paired diagnosis:post-treatment LSC populations from 

AML patients.  Furthermore, our studies identified and experimentally validated 

multiple novel chemoresistance mediators in vitro and in vivo.  Our approach not only 

offers a platform for characterization of additional LSC chemoresistance mediators in 

AML, but also a methodology that can be applied to the study of therapy resistance in 

other neoplasms. 

This work addressed several previously unanswered questions in the field:  1) 
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How do LSCs change in response to chemotherapy in vivo?  2) Do LSCs primarily 

rely on canonical chemoresistance pathways such as drug efflux, quiescence, and anti-

apoptosis?  3) Is baseline gene expression or induced gene expression more telling of 

ability to evade chemotherapy?  Additionally, as it relates to the biology of 5-LO:  4) 

Does 5-LO improve leukemic cell survival through leukotrienes or another acquired 

process?  5) How does genetic loss of 5-LO impact normal HSC function in vivo?  

Insights to these questions obtained from our investigations are expanding upon 

below. 

Our data demonstrate that expression of several canonical chemoresistance 

genes such as ABC-family transporters and cell death antagonists Bcl-2, Bcl-xL, and 

Mcl-1 do not significantly change in LSCs following induction therapy, despite 

consistently high levels at baseline.  Indeed, several ABC-family transporters 

including:  ABCC1, ABCB7, and ABCD4 were in fact downregulated in patient LSCs 

following induction therapy.  While this does not necessarily invalidate these genes as 

chemoresistance mediators in AML, we identify a subset of previously unrecognized 

genes, including 5-LO, S100A8/9, and CD36 that are upregulated in LSCs in response 

to chemotherapy.  We see that leukemic cell lines which can more efficiently induce 

expression of 5-LO are more resistant to chemotherapy in vitro.  Many of these cell 

lines also demonstrate relatively low levels of 5-LO expression at baseline.  This is 

one potential reason why many of the genes identified by our studies do not exhibit 

prognostic significance based on expression at diagnosis in ECOG and TCGA (Slovak 

et al., 2015; Voigt & Reinberg, 2013a).  Therefore, our data suggest that confining 

prognostication of patients based solely on gene expression at diagnosis may not be 

the best method of predicting response to therapy.  Work is currently underway in our 

laboratory to assess the ability of our induced LSC gene expression signature to 
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predict CR and length of remission compared with other published LSC and bulk 

leukemia gene signatures (Gentles et al., 2012; Ng et al., 2016). 

We see that rather than withdrawing from the cell cycle, which is thought to be 

one method of LSC evasion of chemotherapy (Guzman et al., 2001; Pietras et al., 

2011), LSC gene expression reflects a more proliferative state immediately following 

induction therapy.  This is the first example indicating that LSCs are primed to expand 

immediately following chemotherapy in patients.  This underscores the importance of 

post-induction consolidation and suggests that the process of relapsed leukemic 

outgrowth may begin as soon as therapeutic pressure is removed. 

Additionally, we show through mutagenesis of the catalytic residues within the 

active site of 5-LO that the leukotriene-synthetic function of 5-LO is required for 

conferral of chemoresistance.  Although prior data regarding the role of leukotrienes in 

leukemia are controversial (Y. Chen, Hu, et al., 2009; Roos et al., 2014), our data 

suggests that they are important primary mediators of chemoresistance in AML.  Our 

approach offers several distinct advantages:  Whereas previous publications used 

constitutive 5-LO overexpression, small molecule-mediated catalytic inactivation of 5-

LO, or assessment of 5-LO inhibition in LSCs prior to transplantation, we generated 

ALOX5-/- leukemic mice and directly assessed changes in LSC chemoresponses in 

vivo.  We catalytically inactivated 5-LO through mutagenic PCR, which eliminated the 

possibly of non-specific interactions inherent with use of small molecules.  

Importantly, we correlated all of our studies with changes in leukotriene synthesis and 

directly tested the effect of exogenous leukotriene administration on resistance to 

DNR.  Together, our data demonstrate the sufficiency of genetic deletion of 5-LO in 

improving LSC chemosensitivity in vivo and highlight the role of leukotrienes in 

chemoresistance by multiple approaches. 
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Our studies also expand upon the only partially characterized role of 5-LO in 

the hematopoietic system.  While our data are in agreement with published reports 

showing relative normalcy of ALOX5-/- mouse total blood cell populations and bone 

marrow cellularity at steady state (X.-S. Chen et al., 1994), we see a marked 

improvement in ALOX5-/- HSC function in long-term reconstitution and maintained 

hematopoietic recovery during 5-FU treatment.  Our data therefore suggest that 

therapeutic targeting of 5-LO in combination with genotoxic therapies such as 

induction therapy is not likely to confer increased normal cell toxicity.   

Together, our data identify several novel chemoresistance genes in AML with 

known involvement in a wide variety of biologic processes, from inflammation to lipid 

metabolism to protein turnover. These genes are also upregulated in a breadth of 

diseases, including:  Diabetes, infection, asthma, and many solid tumors.  The question 

is therefore:  How can genes involved in such disparate biological processes share 

commonality in LSC response to chemotherapy?  One potential unifying link is that 

these genes also have demonstrated importance in the hematopoietic system, including 

their pattern of cellular expression, role in hematopoiesis, and regulation of HSC 

maintenance.  Our studies in the context of AML, a disease driven by LSCs resulting 

in incomplete myeloid differentiation, are therefore not completely unexpected.  Based 

on the known positive regulation of these genes in disease pathogenesis and 

dependence within the hematopoietic system, we postulate that the LSC chemo-

responsive gene expression signature identified by our studies is a reflection of 

aberrant induction of non-canonical, hematopoietic-specific cell survival pathways.  

Therefore, therapies designed for the elimination of LSCs should acknowledge the 

unique nature of the cells, environment, and functions of the hematopoietic system.   

In this context, a “one size fits all” approach through targeting of drug efflux 
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pumps or global cell death pathways, may not yield the desired clinical outcomes, as 

exemplified by the inability of MDR inhibitors to improve chemoresponses in 

patients.  Indeed, gene expression profiling of 380 known chemoresistance genes in a 

cohort of 11 relapsed AML patients showed significant inter-patient variably in their 

mechanism of chemoresistance (C. Patel et al., 2013).  This highlights that a tailored 

assessment of a patient’s particular chemoresistance profile, in addition to 

consideration of LSC-specific chemoresistance pathways, may be required to improve 

treatment.  Undoubtedly, through increased understanding of the process by which 

LSCs originate and drive leukemia, additional therapeutic targets in AML will be 

identified. 

While our data gives an unprecedented glimpse into the gene expression 

characteristics of LSC, LPC, and blast cells immediately following induction therapy 

in AML patients, it has also presented several additional questions that require further 

investigation.  The question of whether cell-intrinsic or cell-extrinsic chemoresistance 

mechanisms have a greater influence on LSC chemotherapy evasion has so far 

remained unanswered.  In our validation studies we see that in vitro treatment with 

cytarabine and daunorubicin directly upregulates putative chemoresistance genes in 

leukemic cells.  This suggests that, at least for a subset of genes, leukemic cells 

respond in a cell-intrinsic manner to chemotherapy.  Conversely, we observe an ability 

of exogenously administered leukotrienes to rescue the chemosensitization of 5-LO 

knockdown.  These cells were also unable to induce 5-LO to levels comparable with 

control cells upon treatment with DNR.  This highlights that, while the ability to 

induce expression of chemoresistance mediators is an important means of innate 

leukemic cell survival, presence of cell-extrinsic chemoresistance molecules may also 

be sufficient to evade therapy.  Further investigation of the role of the 
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microenvironment in protecting LSCs from chemotherapy, particularly in relation to 

leukotrienes secreted by leukocytes and BM epithelia, is therefore required. 

We have also shown that combination of zileuton with DNR improves human 

AML cell line elimination in vitro.  This data is promising as zileuton is already FDA-

approved for the treatment of asthma, with extensive safety and efficacy studies 

having previously been performed in humans (Berger et al., 2007; Carter et al., 1991).  

This makes the path for clinical translation of 5-LO inhibition in combination with 

induction therapy significantly more straightforward.  We have therefore initiated 

additional pre-clinical studies in leukemia-bearing mice for the assessment of zileuton 

to improve chemo-responses in vivo, the results of which have the potential to fuel 

clinical trials in AML patients. 

While modulation of individual chemoresistance genes in our study yielded 

marked increases in sensitivity to chemotherapy, our approach was limited by 

investigation of these genes in isolation.  For future clinical development, it is possible 

that parallel inhibition of several chemoresistance mechanisms will be required to 

significantly improve patient responses to induction therapy.  Experiments should 

therefore be performed combining inhibition of multiple candidate genes in vitro and 

in vivo.  Indeed, a hint of the potential interdependence between the genes identified 

by our studies came from gene expression analysis of MLL-AF9 WT and Alox5-/- 

leukemic cells.  While we see an induction of 5-LO, S100A8, S100A9, and Lyz2 in 

MLL-AF9 WT cells upon treatment with DNR, expression of these genes was not 

significantly altered in Alox5-/- blasts.  Several other known LSC chemoresistance 

mediators such as CD33, Flt3, and c-Kit were also not significantly changed in treated 

Alox5-/- cells.  This suggests that signaling downstream of 5-LO may proliferate 

signaling in additional chemoresistance pathways. 
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In sum, our studies offer an unparalleled perspective into LSC biology in 

response to chemotherapy.  Our transcriptome analysis of patient LSCs not only 

provides a glimpse into how LSCs change following therapy, but has also identified 

and validated several novel chemoresistance genes with known inhibitors already in 

development.  We show that inhibition of one chemoresistance mediator, 5-LO, 

improves chemo-responses in vitro and in vivo, while potentially preserving normal 

HSPC function.  Therefore, our work adds further depth to our understanding of LSCs 

and provides actionable targets for improvement of induction therapy.  Looking 

forward, increased understanding of how the chemoresistance pathways identified by 

our studies intersect in patients will allow for rational design of additional 

combinatorial therapies for the treatment of AML, with the ultimate goal being 

improved treatment responses and durations of remission. 
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