SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING

CORNELL UNIVERSITY
ITHACA, NEW YORK 14853

TECHNICAL REPORT NO. 948

December 1990

FINDING OPTIMAL BIPARTITIONS OF
POINTS AND POLYGONS

By

Joseph S. B. Mitchell
and
Erik L. Wynters

Finding Optimal Bipartitions of
Points and Polygons

Joseph S. B. Mitchell *
Erik L. Wynters

November 28, 1990

Abstract

We give efficient algorithms to compute an optimal bipartition of
a set of points or a set of simple polygons in the plane. We examine
various criteria involving the perimeter and the area of the convex
hulls of the two subsets.

1 Introduction

In the standard “bipartition problem”, we are interested in partitioning a
set S of n points into two subsets (S; and S,) in such a way as to optimize
some function of the “sizes” (u(S;)) of the two subsets. Avis ([Av]) gave
an O(n?logn) time algorithm to find a bipartition that minimizes the maxi-
mum of the diameters of the sets S; and S;. Asano, Bhattacharya, Keil and
Yao ([ABKY]) improved the bound on the time complexity of this problem,
obtaining an optimal O(n log) algorithm. Monma and Suri ([MS]) gave an
O(n?) time algorithm for minimizing the sum of diameters. Most recently,
Hershberger and Suri ([HS]) have considered the problem in which the mea-
sure of “size” i(S;) is (). the diameter, (b). the area, perimeter, or diagonal

*SORIE, Cornell University, Ithaca, NY 14853. Partially supported by NSF grants
IRI-8710858 and ECSE-8857642, and by a grant from Hughes Research Laboratories.

tCenter for Applied Mathematics, Cornell University, Ithaca, NY 14853. Supported by
a grant from Hughes Research Laboratories.

1

of the smallest enclosing axes-parallel rectangle, or (c). the side length of the
smallest enclosing axes-parallel square. They provide O(nlog n) time algo-
rithms to find a bipartition that satisfies u(S;) < g (¢ = 1,2) for two given
numbers p; and pa.

Here, we consider the version of the bipartition problem in which u(S;) is
the perimeter or area of the convex hull, conv(S;), and we desire a partition
that minimizes the sum p(S;) + u(Sz) or the maximum max{x(S51), #(S2)}-
We also consider the generalization in which S is a set of disjoint polygons.

Funnel trees and hourglasses are fundamental to several of our algorithms,
so we discuss their properties next.

2 Funnel Trees and Hourglasses

We use the term vertex to mean either a point in S or a polygon vertex. Let
n denote the total number of vertices.

The visibility graph of S is the graph whose vertices are the vertices
contained in or determined by S and whose edges are pairs of vertices (u,v)
such that the open line segment between u and v does not intersect any
polygon in S, The visibility graph can be computed in time O(E + nlogn)
and space O(E) where E is the number of edges in the graph. Note that
E is O(n?) when S is a set of points, but can be smaller when § is a set of
polygons.

A visible chain is a path in the visibility graph. It is well known that a
shortest path between two points in the plane that avoids polygonal obstacles
is a visible chain [Le, LP, LW, Mi, SS]; the subgraph of the visibility graph
consisting of all visible chains that are shortest paths from a fixed source
vertex s to some other vertex is called the shortest path tree rooted at s.

Consider a vertex a that lies to the left of a directed edge (u,v) and is
visible from a point b in the interior of the edge. Define the lower chain of
a determined by u, v, and b to be the unique convex visibile chain from a
to u for which the open region bounded by the chain and the line segments
#v and @b contains no vertices. Intuitively, think of taking a rubber band
between a and b in Figure 1 and sliding the end at b along %o until it reaches
u. Define the upper chain from a to v analagously. These two chains form a
- funnel with apex a and base (u,v).

We require the base of a funnel to be an edge on the convex hull of the

»

Figure 1: A funnel with base (u,v) and apex a.

set S of points or polygons we wish to partition. In this setting a funnel
is completely determined by its apex and by the next vertex on its lower
(or upper) chain, i.e., by the first directed edge on its lower (or upper) chain
[GM]. Therefore, the total number of funnels in the visibility graph is at most
2E. Furthermore, we can find all of the directed edges that determine funnels,
in time proportional to their number, by traversing part of the visibility graph
as explained below.

Consider a funnel f with apex a and base (u,v), and suppose b is the
first vertex after a on its lower chain. There is a unique funnel p with apex
b and base (u,v) contained in funnel f; its left chain is obtained from that
of f by deleting edge (a,b). If we think of p as the parent of f, we see that
the funnels with base (u,v) form a tree in the visibility graph (taking the
location of a funnel to be that of its apex) rooted at u. Call this the lower
funnel tree on (u,v). Note that the path from the root of this tree to any
node is precisely the lower chain of the funnel corresponding to that node.
In an analogous way, the upper chains of funnels with base (u,v) determine
an upper funnel tree on (u,v) rooted at v. Figure 2 shows a lower funnel
tree, and an upper funnel tree on the same base.

Using the representation of the visibility graph generated by their algo-
rithm, Ghosh and Mount show that parents, clockwise and counterclockwise
siblings, and extreme clockwise and counterclockwise children of a node in a
funnel tree can be found in constant time [GM]. This implies that clockwise

®

Figure 2: A lower funnel tree (a) and an upper funnel tree (b).

Figure 3: An hourglass formed from two funnels.

and counterclockwise traversals of lower and upper funnel trees can be made
in the visibility graph without storing these trees explicitly. Also, we see
that, summing over all bases, the total time needed to traverse these trees is
O(E).

If f, is a funnel determined by directed edge (a,b) and f; is a funnel
determined by its reversal (b, a), then f; and f; together form an hourglass
as shown in Figure 3. Since it takes two funnels to form an hourglass and
each funnel is part of at most one hourglass, there are at most E hourglasses
contained in the visibility graph. We find hourglasses by traversing the lower
(or upper) funnel trees a second time and checking whether the reversal of
the directed edge that determines the current funnel also determines a funnel.

Suppose that some function of an hourglass can be computed in constant
time if the result of applying the function to the two funnels that form it is
known. For example, the length of one of an hourglass’s convex chains or the
area of the region enclosed by an hourglass is easily computed from the chain
lengths or areas of the funnels that form it. If the function is first applied
to funnels during the intitial funnel tree traversals, then the function can be
applied to all hourglasses during a second iteration of funnel tree traversals
in O(E) time. Furthermore, if the function can be evaluated on funnels in
amortized constant time, the whole process can be done in O(E) time.

We show below that the lengths of a funnel’s upper and lower chains and
the area of the region enclosed by a funnel can be calculated in amortized
constant time and space during funnel tree traversals. We calculate the

Figure 4: Partitioning the region enclosed by a funnel.

length of a funnel’s lower (or upper) chain in constant time during a preorder
traversal of the lower (or upper) funnel tree by simply adding the length of
its first edge to the length of the lower (or upper) chain of its parent.
Consider the funnel shown in Figure 4. We compute the area of the
region enclosed by the funnel by partitioning it into three smaller regions.
The central region is a triangle, whose area is easy to calculate. We focus on
the region between the lower chain and the segment Biu;. Call the area of
this region the lower area of the funnel. The lower area of the funnel is just
the lower area of its parent funnel in the lower funnel tree plus the area of
triangle Abjujuy. The upper area of the funnel is calculated analogously.
Our data structure for directed visibility graph edges allows us to store
with each instance of an edge, the result of applying these length or area
functions to the funnel or hourglass it determines. Thus the total amount of
space needed to store the results of all of the function evaluations is O(E).
In the algorithms that follow we also maintain a variable corresponding to
the current “best” hourglass, i.e., the one that minimizes the value of the
applied function. After completing the funnel tree traversals this variable

holds a representation of the optimal hourglass according to one of several
criteria.

In summary, we use funnel tree traversals to find optimal hourglasses in
O(E) time and O(E) space.

3 Hourglasses, Funnelglasses, and Biparti-
tions

Now we show that optimal bipartitions of points correspond to hourglasses
and that optimal bipartitions of polygons correspond to hourglasses or “fun-
nelglasses”.

Start with an hourglass in the visibility graph of a set of points S and
consider the two convex polygons formed by the set of edges obtained as
follows: start with the edges of conv(S) and delete the base edges of the
hourglass and insert the edges of its two convex chains. Since the two chains
(and hence the two polygons) are disjoint and the interior of the hourglass is
empty, the polygons are the convex hulls of 5y and S, for some bipartition
S 1"—51 U 52 of S.

Now consider a bipartition S = S; U S; of a set of points S. Note that it
is always beneficial to have both S, and S; nonempty in the bipartition since
letting S be a single vertex of the convex hull conv(S) implies #(S1) = 0and
1(Sz) < p(S). This also implies that we never want conv(S1) C conv(Sz)
or vice versa. And it’s easy to see that any bipartition in which the convex
hulls overlap cannot be optimal because the points in the intersection can be
swapped from one set of the bipartition into the other in such a way that a
new bipartition is created that reduces the perimeter and the area of each
convex hull.

Suppose that we have a bipartition of S satisfying conv(S1) Nconv(Sy) =
0. Then an inner common tangent to these convex polygons will be a line
lying along a visibility graph edge (u,v), and each of the (closed) half-spaces
determined by this line will contain one of the sets (S;). Since the hourglass
determined by (u,v) is empty and each of the half-spaces above contains one
of its convex chains, it will determine two polygons, as mentioned above, that
are precisely conv(S;) and conv(Sz).

We have shown that in any candidate S = S; U S; for an optimal bi-

partition of a point set S, S; and S; must have disjoint convex hulls. And
any bipartition for which the convex hulls are disjoint can be obtained from
an hourglass. Furthermore, every hourglass determines such a partition.
Therefore, the problem of finding an optimal bipartition of a set of points is
equivalent (via a linear-time reduction) to that of finding an optimal hour-
glass.

We also discuss the problem of finding an optimal bipartition of a set of
polygons. Intuitively, when we were bipartitioning point sets, we were using
two disjoint closed fences to contain the points, and we were minimizing the
perimeters or areas of the fenced-in regions. We generalize this idea to the
polygon case by considering only those bipartitions S = S; U Sy of a set of
polygons S that have the property that the shortest closed fence containing
the obstacles in Sy and the shortest closed fence containing the obstacles in .5
form simple polygons with disjoint interiors. Recall that when partitioning
points, if a point p of S; was contained in the convex hull of S; (or vice versa),
it was better to delete p from Sy and insert it in S;. This led us to conclude
that the fences needed to be disjoint. With polygons, however, a polygon P
belonging to S; may be partially contained in the convex hull of Sy insuch a
way that changing its membership increases the lengths of the fences. This
means that optimal fences need not be convex - they may bulge in around
polygons not contained in the fence — and they need not be disjoint — they
may coincide along some portion of their length.

Now we define the polygon partitioning problem more formally. We say
that a bipartition S = S; U Sy of a set of polygons S is valid if S; and S,
can be separated by a simple path between distinct edges of the convex hull
of S (note that when partitioning points, valid partitions were separable by
a single line). Given a valid bipartition, the relative convex hull reonv(Sy)
with respect to S is the minimum perimeter polygon that contains every
polygon in S; but contains no interior point of a polygon in S,. Figure 5
shows a valid bipartition and Figure 6 shows the resulting relative convex
hulls.

If the relative convex hulls rconv(S;) and rconv(S;) of a valid bipartition
are disjoint, then they are also convex and can be obtained from an hourglass
as above. In general, however, they will share a sequence of edges, i.e., they
will coincide along a visible chain. In this case, they form what we call a
funnelglass. A funnelglass is a pair of funnels and a shortest path between
their apices that together satisfy the following conditions: the funnels are

8

Figure 5: A simple path determines a valid bipartition of a set of simple
polygons.

Figure 6: The relative convex hulls corresponding to the bipartition of Fig-
ure 5 and their corresponding funnelglass.

disjoint or they intersect only in having a common apex, and the extension
of each funnel chain along the inter-apex path is a locally shortest or “taut
string” path. The funnel chains and bases and the shortest path form a
weakly simple polygon (one formed by a path with repeated vertices or edges
but no self-crossings) as shown in Figure 6.

The correspondence between funnelglasses and bipartitions with “touch-
ing” relative convex hulls is as follows. Start with a funnelglass in the visi-
bility graph of a set of polygons S and consider the two “touching” polygons
formed by the set of edges obtained as follows: take the edges of conv(S)
and delete the base edges of the funnelglass and insert the edges of its convex
chains and its inter-apex path. Since the interior of the funnelglass is empty
and since the inter-apex path can be extended through the interior of each
funnel to a point on the funnel’s base, the funnelglass separates the set of
polygons and thus corresponds to a valid bipartition S = A4;US; for some S;
and S,. Furthermore, the “taut-string” property ensures that the polygons
formed from it have minimal perimeter, i.e., they are precisely rconv(S;) and
rconv(S;).

Conversely, if we start with the optimal valid bipartition S = 5; U Ss,
and rconv(S;) and rconv(S;) coincide along a visible chain, then the edge
set E = conv(S)Arconv(S;) Urconv(Sy) forms a funnelglass as follows. The
intersection rconv(S;) N rconv(S,) must be a shortest path between two
vertices u and v by optimality of the bipartition, and also the “taut-string”
property must hold. And where the edges diverge at u and v they form
funnels since relative convex hulls are convex where they don’t “touch”.

We have shown that an hourglass or a funnelglass determines a valid
bipartition of a set of polygons. Furthermore, the optimal bipartition can
always be obtained from an hourglass r a funnelglass. Therefore, the problem
of finding an optimal bipartition is equivalent (via a linear-time reduction)
to that of finding an optimal hourglass or funnelglass.

4 Partitioning Points

Now we consider the case in which S is a set of points in the plane, and the
“sizes” u(S;) of the subsets are taken to be the perimeters or areas of their
convex hulls. We seek a bipartition that minimizes the sum u(S:1) + u(S2)
or the maximum max{p(S1), u(S2)}. This gives us the following set of four

10

problems:
1. the min-sum perimeter problem,
2. the min-max perimeter problem,
3. the min-sum area problem, and
4. the min-max area problem.

Note that it is always beneficial to have both S; and S; nonempty in
the bipartition since letting S; be a single vertex of the convex hull conv(S)
implies 4(S;) = 0 and p(S;) < p(S). We will show later that this is not
always the case when partitioning polygons.

Our results about partitioning point sets are summarized in the following
theorem.

Theorem 1 Given a set S of n points in the plane, a bipartition of S, S =
S1 U S,, that solves any of problems I through 4 above can be found in time
O(n3) using O(n) space. Alternatively, problems 1 through 3 above can be
solved in O(n?) time using O(n?) space.

Proof: The algorithm for the first claim is based on the observation that
there are only O(n?) distinct ways to partition n points, after which the
convex hulls conv(S;) can be examined in a straightforward manner:

(0). Sort the points S by z-coordinate. Compute the convex hull of S.

(1). Consider each pair of points p,q € S (p # ¢) in turn. Each pair (p,q)
such that pg does not lie on the boundary of the convex hull of S defines
a line that partitions S into two nonempty subsets: Use the line Ly,
obtained by taking the line through p and ¢ and rotating it clockwise
by an infinitesimal amount about the midpoint of the segment pg.

(a). For a given pair (p,q), we march through the list of points S (in
z order), marking each point as being on the left or the right side
of the oriented line through L, ,. This yields each of the two sets
S, and S (for this pair (p,q)) in sorted z order.

(b). In time O(n), we can then find the convex hulls of Sy and ;.

11

(c). Once we have the convex hulls of each set S; and S, we can easily
compute the sum u(S;)+p(S2) or the maximum max{xu(S1), ©(S2)}
in linear time, where u(S;) denotes either perimeter or area (or
any other function on a convex polygon that can be computed in
linear time).

By keeping track of the best partitioning so far, we will have an optimal
partitioning of S by the time we have examined all pairs (p,q) (since an
optimal partitioning must correspond to some pair (p,q))-

The above algorithm clearly requires linear time per pair (p, q), so O(n®)
time overall. The space requirement is only linear.

To prove the second claim of the theorem, we rely on methods developed
in Section 2. Each pair of points (p,q) determines an hourglass whose bases
are edges on the convex hull of 5. The two convex chains of the hourglass
together with the edges remaining in the convex hull after deleting the two
base edges form two convex polygons that correspond to some bipartition of
S. Conversely, every bipartition of S corresponds to an hourglass.

The “cost” of a bipartition is easily calculated from the chain lengths of
its hourglass in constant time when minimizing either the total or maximum
perimeter of conv(S;) and conv(Sz). Similarly, the total area of the two
convex hulls arising from a bipartition is just the area of the entire convex
hull minus the area of the hourglass corresponding to the partition. By
generating all hourglasses and comparing each newly considered hourglass to
the best hourglass seen so far, we obtain the optimal hourglass and hence
the optimal bipartition for each of problems 1, 2, and 3 above.

We compute the cost of all O(n?) hourglasses in time O(n?), as in Sec-
tion 2. The space required by this algorithm is quadratic, since we use the
(complete) visibility graph of the point set S. 1

Remark. It is an interesting open question to determine if one can reduce
the space complexity of the above algorithm to linear while maintaining the
quadratic time bound (e.g., using topological sweep [EG]).

5 Partitioning Polygons

Now we consider the case in which S is a set of (pairwise-disjoint) simple
polygons with a total of n vertices. The “size” of 5 (S2) will now be the

12

perimeter of the relative convex hull, rconv(Sy) (reonv(Sz)), of Sy (S2) with
respect to the set Sy (S1). Again we seek a bipartition that minimizes the
sum p(Sy) + p(S;) or the maximum max{u(S1), u(S2)}, giving us once more
the following set of four problems:

1. the min-sum perimeter problem,
2. the min-max perimeter problem,
3. the min-sum area problem, and
4. the min-max area problem.

Note that, in contrast to the case in which S is a set of points, it is not
always beneficial to have both S; and S; nonempty here in problems 1 and 2:
it may be that every nontrivial bipartition of S results in the perimeters of
rconv(S;) and rconv(Sz) each being greater than the perimeter of conv(S).
Therefore, for these problems we distinguish between the case in which we
want to find only beneficial bipartitions and the case in which we are forced
to find nontrivial bipartitions even if every one of them is non-beneficial. This
distinction is not necessary in problems 3 and 4 because the best nontrivial
bipartition for these problems will always be beneficial.

Our first polygon partitioning result is contained in the following theorem:

Theorem 2 Given a set S of (pairwise-disjoint) simple polygons with a total
of n vertices, one can find a beneficial bipartition of S, S = S1 U S, that
solves the min-sum perimeter problem (or report that none ezists) in time
O(En), using O(n) space. Alternatively, one can solve this problem in time
O(E + nlogn) using O(E) space.

Proof: The algorithm for the first claim is straightforward:

(0). Triangulate the polygon with holes formed by the convex hull of 5 and
the polygons in S.

(1). Generate the edges of the visibility graph using only O(n) working
space and O(E logn) time [OW]. As each edge (u,v) is found, do the

following calculations:

13

(a). Extend edge (u,v) at both ends until a polygon or the convex hull
of S is hit.

(b). If the convex hull was hit on each side, i.e., (u,v) determines
an hourglass, then compute the lengths of the hourglass’s chains
by finding the two funnels that form the hourglass as follows.
The funnel with apex u is found by propagating the extension of
(u,v) through adjacent cells of the triangulation until the triangle
containing the convex hull edge hit by the extension is reached.
The shortest paths from u to the endpoints of the convex hull
edge that lie within the simple polygon formed from the pierced
triangles is found in O(n) time, and these paths are the upper and
lower chains of the funnel [LP]. The funnel with apex v is found
similarly. Calculate the “cost” of this hourglass, compare it to
the current best one, and update if neccessary by storing the edge
(u,v) and its cost.

The above algorithm requires linear time per edge (u,v), so O(En) time
overall. The space requirement is only linear.

To prove the second claim of the theorem, we again compute hourglasses,
but we compute the entire visibility graph first in time O(E + nlogn) using
O(E) space [GM]. Then we traverse funnel trees as in Section 2 and find the
best hourglass in O(E) time.

1

Remark. It is interesting to note that partitioning polygons is potentially
faster than partitioning points (when E is sparse).

To handle the min-max perimeter problem, it is no longer sufficient to
consider only bipartitions corresponding to hourglasses; we must also con-
sider funnelglasses. A funnelglass is a pair of funnels connected by a shortest
path between the two apices of the funnels. Funnelglasses correspond to
partitions in which the two relative convex hulls coincide along some visible
chain.

For each funnel in a funnelglass, the total length of the two chains of the
funnel must be greater than the length of its base; that’s why we didn’t need
to consider funnelglasses when we were only interested in beneficial solutions
to the min-sum perimeter problem. But for the min-max perimeter problem,
a funnelglass may correspond to a beneficial partition, so it’s no easier to

14

find beneficial partitions than it is to find forced ones. We find beneficial
partitions by finding the best nontrivial partition first. If this funnelglass has
a lower cost then that of the entire convex hull, it is the optimal beneficial
solution; otherwise, no beneficial solution exists.

Our results for the min-max perimeter problem appear in the following
theorem.

Theorem 3 Given a set S of (pairwise-disjoint) simple polygons with a total
of n vertices, one can find a nontrivial bipartition of 5, S = 51U Sz, that
solves the min-maz perimeter problem in time O(E?n), using O(n) space.
Alternatively, one can solve this problem in time O(E? +n?log n) time, using
O(E) space.

Proof: The algorithm for the first claim appears below.

Generate the edges of the visibility graph using only O(n) working
space and O(E logn) time [OW]. As each edge (u,v) is found, do the

following:

(0). Extend edge (u,v) from u through v until it hits a polygon or an
edge of the convex hull of S.

(1). If an edge of the convex hull was hit, i.e., if (u,v) determines a
funnel, then

(a). Determine the chain lengths of the funnel determined by (u,v)
in linear time and space as in the proof of Theorem 2.

(b). Build a shortest path map rooted at u in O(n?) time and O(n)
space [RS].

(c). Generate the edges of the visibility graph using only O(n)
working space and O(E logn) time [OW] while holding edge
(u,v) from the outer loop fixed. As each edge (', ') is found,
if this edge determines a funnel, determine the chain lengths
of the funnel, and calculate the cost of the funnelglass formed
by this funnel, the funnel determined by (u,v), and the path
from ' to u in the shortest path map. Compare the current
funnelglass to the stored representation of the best funnelglass
found so far and update if necessary.

15

The time needed by the above algorithm is dominated by the time needed
to find all funnelglasses using one fixed funnel. This is an O(En) time com-
putation that needs to be done O(E) times. The space requirement is only
linear.

To prove the second claim of the theorem, we again find funnelglasses,
but we compute the entire visibility graph first in time O(E + nlogn) using
O(E) space [GM]. Then we find all O(E) funnels by traversing funnel trees
as in Section 2. While doing this we create a list of all the funnels and a list
at each vertex of the funnels having that vertex as their apex. Then for each
vertex u we do the following:

(0). Find the shortest path tree rooted at u using Dijkstra’s algorithm
(O(E + nlogn)).

(1). For each vertex v and for each pair of funnels, one with apex u and one
with apex v, compute the cost of the funnelglass formed by this pair of
funnels and the shortest path from u to v. Update the representation
of the best funnelglass found so far if necessary.

This algorithm requires time O(En +n?logn) for the n runs of Dijkstra’s
algorithm and O(E?) time to examine all pairs of funnels; thus the total
running time is O(E?+n?logn) and the total space required for the visibility
graph and funnel representations is O(E). §

When we are forced to consider non-beneficial partitions in the min-sum
perimeter problem, we have to look for funnelglasses as in the min-max case.
But there is a difference: in the min-max case, any of the O(n) funnels on
each vertex could be part of the optimal funnelglass, but in the min-sum case
there is a unique “best” funnel on each apex (taking the cost of a funnel to
be the sum of its chain lengths minus the length of its base). This lets us
find an optimal funnelglass more efficiently.

Our results for this problem appear in the following theorem.

Theorem 4 Given a set S of (pairwise-disjoint) simple polygons with a total
of n vertices, one can find a nontrivial bipartition of S, S = 51 U Sy, that
solves the min-sum perimeter problem in time O(n®), using O(n) space. Al-
ternatively, one can solve this problem in time O(En + n®logn) time, using
O(E) space.

Proof: The algorithm for the first claim is as follows:

16

(0).
(1).

(2)-

(3)-

Find the best hourglass (if one exists) as in the proof of Theorem 2.

Find all funnels in O(En) time and O(n) space as in the proof of
Theorem 2 maintaining a representation of the best funnel found at
each vertex together with its cost.

Now for each vertex u build the shortest path map rooted at u and as
each vertex v is labeled with its distance from u, calculate the cost of
the funnelglass formed from the best funnel on u and the best funnel
on v in constant time, updating a representation of the best funnelglass
found so far if necessary.

Output the bipartition corresponding to the hourglass or funnelglass
with minimum cost.

The running time is dominated by the n shortest path map constructions
which take a total of O(n®) time. The total space requirement is linear.
The algorithm for the second claim appears below:

(0).

(1).

(2)-

Calculate the visibility graph in O(E + nlogn) time and O(E) space
[GM].

Generate all funnels and hourglasses using funnel tree traversals and
store with each vertex of the visibility graph a representation of the
best and the second best funnel having that vertex as apex. Also store
a representation of the best hourglass found.

For each edge e on the convex hull of S do the following:

(a). Make a copy VG, of the visibility graph.
(b). Form an augmented visibility graph VG as follows:
e Create an additional “funnel” node fn for each funnel f that
was determined to be one of the “top two” funnels on its apex.

o Connect each funnel-node frn to the node v corresponding to
the apex of funnel f. Let the length of edge (fn,v) be ¢(f)/2
where ¢(f), the cost of a funnel is the sum of its chain lengths
minus the length of its base.

17

o Create a “source” node s, linking it with an edge of length 0
to every funnel-node corresponding to a funnel with base e.
Similarly, create and link a “sink” node t to every funnel-node
not already linked to s.

(c). Find a shortest path from s to ¢ in VG;. This determines the
optimal funnelglass with one base on e.

(d). If necessary, update the stored representation of the best funnel-
glass found so far.

. Output the bipartition corresponding to the optimal funnelglass or

hourglass.

Funnelglasses are also used to solve the min-sum area problem. In this
problem, the length of the path connecting the two apices is irrelevant;
the cost of the funnelglass is just the area of the entire convex hull
minus the sum of the two funnel areas. But there is a difficulty here
that doesn’t arise in the other problems: the funnelglass of minimal
cost may not correspond to a feasible bipartition because its funnels
may overlap.

Our result for this case is stated in the following theorem.

Theorem 5 Given a set S of (pairwise-disjoint) simple polygons with
a total of n vertices, one can find a bipartition of S, S = S1U S, that
solves the min-sum area problem in time O(E’n?), using O(n) space.

The algorithm for this claim is based on the algorithm for the first claim
in Theorem 2. We again generate all pairs of funnels and calculate the
cost of each pair, but this time a funnel’s cost (or benefit) is the area of
the region it encloses. Since a funnel can be triangulated in linear time,
we can calculate its area in linear time and check that the two funnels
in a pair don’t intersect in linear time [?]. Therefore this algorithm
takes O(E?n) time and requires only linear space.

Finally, we consider the min-max area problem. We show that this
problem is NP-Hard by a polynomial-time reduction from the following
NP-Complete problem [GJ]:

18

=t

v(@)|

v(2)||7r2

’U(3) T3

v(n)|rs

Figure 7: A “stack” of rectangles corresponding to a set of objects.

Partition: Given a set T of n objects with positive integer values v(t), .
is there a partition T = Ty U T; such that Teq; v(t) = Lier, v(2)-

Theorem 6 The min-maz area problem is NP-Hard.

Proof: Given an instance of the partition problem, we generate in
linear time a “stack” of rectangles as shown in Figure 7. Rectangle
r, corresponds to object ¢ € T and has width 1 and length v(t). The
vertical separation between rectangles is infinitesimally small. Every
bipartition S = S; U S, of this set S of rectangles can be separated
by a simple path, and, for each subset in a bipartition, the area of its
relative convex hull is just the total area of its rectangles. Therefore, the
optimal solution of the min-max area problem would be a bipartition
S = §; U S, satisfying

3" Area(r)=) Area(r) = 1/23 w(t)

TESI TESQ teT

if and only if there exists a bipartition T = Ty U T of the objects
satisfying Yyer, v(t) = S, v(t). And such a bipartition of rectangles
can be transformed into the desired partition of objects in linear time.
1

19

6 Conclusion

Our results are summarized in the following table.

Points

Polygons

Beneficial Partitions

Forced Partitions

Min-Sum Perimeter

0(n?) / O(n?)
or

o(n?) / O(n)

O(E +nlogn) / O(E)
or
O(En) / O(n)

O(En + n?logn) / O(E)
or
0(n®) / O(n)

Min-Max Perimeter

0(rn?) / O(n?)

O(n%) / O(n)

O(E? + n’logn) / O(E)

O(E?n) | O(n)

O(E® + n%logn) / O(E)
O(EQ"C)E/ O(n)

Min-Sum Area

O(n*) / O(n?)
or
o(n®) / O(n)

O(E?n) |/ O(n)

O(E?n) / O(n)

Min-Max Area

0(n%) / O(n)

NP-Hard

NP-Hard

Several questions about these problems remain open. Perhaps the run-
ning times given for these algorithms can be improved. For several of
these problems our best algorithm uses only linear space. Is there a
faster algorithm using a quadratic amount of space? Also it might be
interesting to find approximate solutions to the NP-Hard min-max area
problem for polygons.

20

Acknowledgement

We wish to thank Esther Arkin, Robert Freimer, and Christine Piatko
for helpful discussions. This research was partially supported by a
grant from the Hughes Research Laboratories, Malibu, CA and by NSF
Grants IRI-8710858 and ECSE-8857642.

References

[AKM] E.M. Arkin, S. Khuller, and J.S.B. Mitchell, “Optimal Enclo-
sure Problems”, Technical Report TR 90-1111, Department of
Computer Science, Cornell University, 1990. Presented at the
First Canadian Conference on Computational Geometry, Mon-
treal, Canada, August, 1989.

[ABKY] T. Asano, B. Bhattacharya, M. Keil, and F. Yao, “Clustering
Algorithms Based on Minimum and Maximum Spanning Trees”,
Proc. Fourth Annual ACM Symposium on Computational Ge-
ometry, Urbana-Champaign, IL, June 6-8, 1988, pp. 252-257.

[Av] D. Avis, “Diameter Partitioning”, Discrete and Computational
Geometry 1 (3) (1986), pp. 265-276.

[EG] H. Edelsbrunner and L. Guibas, “Topologically Sweeping an Ar-
rangement”, Journal of Computer and System Sciences (1989),
38, pp. 165-194.

[GJ] M.R. Garey and D.S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W.H. Freeman and
Company, New York, 1979.

[GM] S.K. Ghosh and D.M. Mount, “An Output Sensitive Algorithm
for Computing Visibility Graphs”, Proc. 28th Annual IEEE
Symposium on Foundations of Computer Science, pp. 11-19,
1987. To appear: Algorithmica.

[HS] J. Hershberger and S. Suri, “Finding Tailored Partitions”, Proc.
Fifth Annual ACM Symposium on Computational Geometry,
Saarbriicken, West Germany, June 1989, pp. 255-265.

21

D.T. Lee, “Proximity and Reachability in the Plane”, Ph.D.
Thesis, Technical Report ACT-12, Coordinated Science Labo-
ratory, University of Illinois, Nov. 1978.

D.T. Lee and F.P. Preparata, “Euclidean Shortest Paths in
the Presence of Rectilinear Boundaries”, Networks, 14 (1984),
pp. 393-410.

T. Lozano-Pérez and M.A. Wesley, “An Algorithm for Planning
Collision-Free Paths Among Polyhedral Obstacles”, Communi-
cations of the ACM, Vol. 22, No. 10 (1979), pp. 560-570.

J.S.B. Mitchell, “A New Algorithm for Shortest Paths Among
Obstacles in the Plane”, Technical Report No. 832, School of
Operations Research and Industrial Engineering, Cornell Uni-
versity, October, 1988.

M. Sharir and A. Schorr, “On Shortest Paths in Polyhedral
Spaces”, SIAM Journal on Computing Vol. 15, No. 1, pp. 193-
215, February 1986.

C. Monma and S. Suri, “Partitioning Points and Graphs to Min-
imize the Maximum or the Sum of Diameters”, In Proceedings
of the Sizth International Conference on the Theory and Appli-
cations of Graphs, John Wiley & Sons, 1988.

M.H. Overmars and E. Welzl, “New Methods for Computing
Visibility Graphs”, Proc. Fourth Annual ACM Symposium on
Computational Geometry, Urbana-Champaign, IL, June 6-8,
1988, pp. 164-171.

J. H. Reif and J. A. Storer, ‘Shortest Paths in Euclidean Space
with Polyhedral Obstacles’, Technical Report CS-85-121, Com-
puter Science Department, Brandeis University, April 1985.

22

