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Social contagion is a subset of contagion which includes all social phenomena

that can and do spread via social networks. The notion of how something be-

comes popular is very relevant to the concept of social contagion. Rumors, fads,

and opinions can spread through social networks like wildfire, “infecting” in-

dividuals until they become the norm. This thesis investigates the dynamics

of social contagion, employing a combination of formal analysis, simulation,

and empirical data mining approaches to examine the processes whereby so-

cial contagion spreads throughout social networks. I introduce the concept of

critical mass for a subclass of social contagion called complex contagion. This

concept builds on earlier work to describe the nonlinear dynamics whereby

most socially contagious phenomena infect very few people while a few become

overwhelmingly popular. I also investigate socially contagious phenomena that

arise when rational agents act under conditions of local information. Finally,

I examine how my analytic work applies to a large dataset of empirical social

contagion and draw implications for further research in the area.
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CHAPTER 1

INTRODUCTION

1.1 Social contagion

Social contagion is a subset of contagion which includes all social phenomena

that can and do spread via social networks. The notion of how something be-

comes popular is very relevant to the concept of social contagion. Rumors, fads,

and opinions can spread through social networks like wildfire, infecting indi-

viduals until they become the norm. What was originally a minority belief can

become a dominant one as more and more individuals are exposed to said belief

from their friends and choose to adopt it.

Products can also become socially contagious, via word-of-mouth market-

ing. In some cases, the success of a product can be entirely or mostly attributed

to traditional marketing methods, such as TV or newspaper advertisements,

which spread through informational networks (from TV stations or printing

presses directly to the homes of consumers). In other cases, however, word-

of-mouth recommendations by friends can account for many purchasing deci-

sions.

Social movements are a third kind of social contagion. What is initially an

unpopular or even marginalized cause can gather strong popular support as

individuals convince their family, friends and acquaintances to join.

For consistency of terminology, I refer to social contagion as the set of all

social phenomena that can and do spread via social networks. I refer to spe-

cific instances of social contagion (e.g. a specific product that spreads via viral
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marketing) as socially contagious phenomena.

The mechanisms whereby social contagion spreads are the subject of active

research in the computer, social and physical sciences. Understanding these

mechanisms is key to the central research questions surrounding social conta-

gion:

1. How far will a particular contagious phenomenon spread, i.e. how many

individuals will it infect before it stops infecting new ones?

2. Given a particular networked population, what is the ideal seed for a so-

cially contagious phenomenon, i.e. given the ability to infect some small

subset of a networked population with this phenomenon, the choice of

which particular subset will result in the greatest number of subsequent

infected?

3. What are the dynamics of social contagion spread, i.e. given a particular

networked population, will social contagion spread through certain parts

of this population faster than they do through others?

This thesis will explore the three research questions using a combination of

mathematical analysis, simulation, and empirical investigations of social conta-

gion. The focus will be on the third research question, as the dynamics of con-

tagion on a particular networked population inform both the ideal seed choice

and the ultimate number of infected individuals. While this question has been

received a lot of attention in previous work [72, 68], I explore the difference be-

tween the spread of social contagion and other contagion like information and

disease through social networks. In particular, I introduce a concept of criti-

cal mass that is specific to a class of social contagion called complex contagion
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[21]. Previous work [47] has examined the concept of critical mass in general,

but the critical mass I propose is unique to complex contagion. Critical mass

for complex contagion is tied to a phase transition in the range of ties through

which complex contagion spreads, a phase transition that does not appear in the

spread of non-social contagion like information and disease. My results show

that the dynamics of social contagion are substantively different from the dy-

namics of non-social contagion, both in the case of simulated contagion and in

the case of empirical contagion spreading on real-world networks.

The rest of this thesis is organized as follows. I begin with a background

chapter on the structural properties of social networks and on the mechanisms

whereby social contagion spreads through these networks. I also present a brief

overview of the mathematical models of social contagion and recent empirical

studies of social contagion, which will help frame the analysis in subsequent

chapters. In Chapter 2, I examine the mechanism of local information and its ef-

fect on contagion dynamics, and prove several interesting theorems about agent

decisions to adopt or not a contagious phenomenon spreading through different

kinds of networks under conditions of local information. In Chapter 3, I focus

on a particular class of social contagion known as complex contagion [21], and

show that there exists a critical mass of adopters beyond which complex conta-

gion is highly likely to spread throughout the entire network. Critical mass is

particularly relevant as some real-world behaviors and products, such as social

movements and virally marketed goods, may be examples of complex conta-

gion. In Chapter 4, I examine a set of empirical contagious phenomena - tags

in the Flickr photo sharing network - and attempt to apply the theoretical re-

sults from Chapter 3 to predicting their dynamics. I discover confirmation for

the theory of complex contagion and provide evidence that some empirical con-
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tagious phenomena reach critical mass. Furthermore, I observe that it may be

possible to anticipate the critical mass point for these phenomena by analyzing

the average estimated threshold of the contagious phenomenon from adoption

statistics. I conclude with a discussion and high-level remarks in Chapter 5.

1.2 The Structure of Social Networks

I begin with a brief theoretical discussion of the structure of social networks.

The simplest way to formally represent a network is a graph G = (V, E), where

V is the set of nodes or vertices, and E is the set of links or edges between the

vertices. Members of V are usually represented with a unique identifier (name,

address, etc.) and members of E are tuples of members of V . Some networks

allow multiple edges, in which case the tuples do not have to be unique. Other

networks allow self-edges, which means tuples of the form (i, i) are possible.

These tuples can be ordered or unordered, depending on whether the edges

represent asymmetric (citation of one paper by another) or symmetric (collab-

oration on a paper) relationships. If a graph has ordered tuples, it is called a

directed graph, or digraph for short; otherwise, it is called an undirected graph.

1.2.1 Network Properties

Given this formalism, one of the simplest properties to describe is the degree of

a node, and its macro-level equivalent, the degree distribution. In undirected

graphs, the degree of a node i is simply the number of tuples (u, v) where u = i

or v = i. In a directed graphs, we consider the out-degree of i, which is the
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number of (u, v) where u = i, and the in-degree of i, which is the number of

(u, v) where v = i. The degree distribution of a graph is the function P(x) which

for any integer x gives the proportion of nodes i that have degree (in-degree,

out-degree) equal to x. Naturally, P(x) can take on any form, but by far the

most common degree distribution in empirical networks is a power law, where

P(x) ≈ x−α, and α varies between 2 and 3 [3, 52]. This applies to both undirected

and directed networks, where both in-degree and out-degree follow a power

law [3, 52].

If we consider any two nodes i, j in a graph, we define a path between

them as a sequence of connected nodes starting with i and ending with j. The

geodesic distance or path length between i and j is the number of edges con-

necting the nodes in the shortest path between i and j (if no path between i

and j exists, the geodesic distance is infinite). At the network level, researchers

measure the mean geodesic, which is the arithmetic or harmonic mean path

length of the entire network. Almost all empirical social networks have a mean

geodesic on the order of f (log(N)) where N is the number of nodes [72] and f is

a polynomial function. Networks with path length polylogarithmic in N have

been called “small worlds,” after the title of the Stanley Milgram experiment

[48] that first discovered the phenomenon, and in popular literature this prop-

erty is called “six degrees of separation,” as the median number of connections

in Milgram’s original experiment was six.

We now consider, for some undirected graph G, any node i and the set of its

neighbors J, the nodes that i is connected to by an edge. Given any two neigh-

bors j, k ∈ J, we say the tuple (i, j, k) is a connected triple. Further, if ( j, k) ∈ E,

we say that (i, j, k) forms a triangle or transitive triple. Intuitively, the more tri-
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angles there are in the graph, the more it resembles a giant super-dense cluster.

This intuition leads to the network-level property of clustering coefficient CC,

the fraction of triangles to all connected triples in G. First appearing in math and

physics literature [13], this property has been studied in the sociology literature

under the name fraction of transitive triples. Researchers have found many em-

pirical networks that have high clustering coefficients independent of network

size [3, 52].

A more local clustering coefficient has been proposed by Watts and Strogatz

[72]. For any node i in undirected graph G, consider the number of ties ti j present

between j neighbors of i. The maximum number of such ties is k(k−1)/2, where k

is the degree of i. Then the fraction 2|ti j |

k(k−1) is defined as the Watts-Strogatz cluster-

ing coefficient of i,CCWS (i). The network-scale equivalent of this quantity, CCWS

is simply the average of CCWS (i) over all nodes. The Watts-Strogatz clustering

coefficient has been studied in the sociology literature under the name “net-

work density” [63] and found to differ from the fraction of transitive triples, as

it weights the contributions of low-degree vertices more than the latter quan-

tity. Still, empirical networks have high, size-independent values of network

density, as with their fractions of transitive triples.

At the highest level, a network consists of one or more components. We say

nodes i and j are in the same component (strongly connected component for di-

rected networks) if j can be reached from i following the edges of the network.

Otherwise, i and j are in different components. The number and size distribu-

tions of network components can give insight into the cohesiveness of its struc-

ture, by which I mean the fraction of all nodes that are in the giant component.

Studies of empirical networks [3] have almost uniformly found the presence
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of a giant component, with 80% or more of the nodes as members, and an ex-

ponential distribution of smaller components, indicating that many networked

systems are extremely cohesive. Related studies in network resilience [4, 16]

have looked at the distribution of component number and sizes in a network as

nodes are gradually removed from it. Empirical networks turn out to be robust

against the removal of random nodes, the giant component persisting with as

many as 70% of the nodes removed. At the same time, empirical networks are

vulnerable to the removal of high-degree nodes, and fall apart into a set of tiny

components with O(log(n)) members after just 2-3% of the highest-degree nodes

have been removed.

1.2.2 Network Models

Early work in network analysis focused on recording properties of real net-

works and constructing network models, often described as simple algorithms

that would give rise to networks with the same properties. Though initial work

on network models was done in the 1950s, the field has exploded with pub-

lications starting around a decade ago. There are now several comprehensive

reviews of network models [3, 52]. We begin the section with the simplest net-

work models, called random graph models, and then discuss generalized ran-

dom graphs, small world networks, and network growth models.

Poisson Random Graphs

The first research into network modeling was done independently by Rapoport

[58] and Erdos and Renyi [31] who proposed the very simple Random Graph
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model, which continues to be used as a comparative tool for other, more com-

plex models to this day. The Random Graph model consists of placing N nodes

and then adding some n < N(N−1)/2 edges between them. Alternatively, we can

say that every edge between the N nodes is present with a probability p = n/N.

Random graphs present an extremely simple model for network structure

with an interesting transition point from a disconnected assembly of small, tree-

like components to a giant component with many loops and a small diameter.

Properties of the random graph model above the transition point are evocative

of most empirical networks, which also feature a giant component with a small

diameter. While the model fails to capture many properties of empirical net-

works, such as power-law degree distribution and high clustering coefficient, it

is a good baseline for studying network phenomena and evaluating other, more

complex models. In particular, the random graph model is an excellent exam-

ple of how global network structure arises even in the complete absence of local

network structure, a phenomenon that suggests that networks are complex ar-

tifacts with multiple levels of organization.

Small World Graphs

The Small World graph model interpolates between two undirected graphs: an

Erdos-Renyi random graph and a lattice (the simplest lattice is a ring of nodes,

where every node has exactly two neighbors). The Erdos-Renyi random graph

has a small mean geodesic but low clustering coefficient, the ring lattice has

a large mean geodesic but high clustering coefficient, so interpolations of the

two graphs may exist that have both small mean geodesic and high cluster-

ing coefficient. Indeed, by starting with a ring lattice and randomly rewiring
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edges, Watts and Strogatz [72] were able to achieve an intermediate regime

where mean geodesic falls off drastically while clustering coefficient remains

high. Some researchers refer to this regime as the “small world region,” [72]

between the regularized world of the lattice and the random environment that

emerges when too many edges are rewired.

Researchers often make use of the small world model when studying social

networks, as it captures two critical properties of these systems. The robust lo-

cal connections of the lattice resemble small groups that abound in real social

networks (neighborhoods, groups of friends, reading circles), while the short-

cuts resemble the “weak ties” [34] observed empirically by sociologists since the

1970s (acquaintances, distant relatives). There is a lot of evidence that weak ties

are a critical property of social networks, allowing information to spread quickly

across many nodes and giving individuals access to resources (e.g. potential em-

ployers) that they would be hard-pressed to discover in their local social circles.

Weak ties are also an important catalyst of social integration, bringing together

groups of different people that would otherwise never interact socially. Natu-

rally, the small world model has become a useful tool for studies that investigate

weak ties, the spread of information and search in social networks.

Preferential Attachment Graphs

The Preferential Attachment graph model was formulated independently, first

by Price [26], then by Barabasi and Albert [12]. The critical principle of the

model states that when v joins a network and an edge is created between v and

w, the likelihood of some specific node w′ being picked as w is proportional to its

degree k(w′). This phenomenon was first studied by Herbert Simon [64] in the
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1950s. Price applied Simon’s methods to social networks, and Barabasi and Al-

bert coined the term “preferential attachment” (PA). The latter authors in [12, 4]

made two critical findings about PA: 1) the model generates networks with a

power law degree distribution, and 2) without either the network growth mech-

anism or the preferential attachment principle, the degree distribution does not

follow a power law. These findings suggest that preferential attachment cap-

tures a key element of the growth dynamics of empirical networks.

In addition to having a power-law degree distribution, networks generated

by the PA model have path lengths logarithmic in the number of nodes, and

commensurate with path lengths found in empirical networks of similar size

(as opposed to those generated by generalized random graph models). The

clustering coefficient of PA networks is dependent on network size, following

C N−.75. In contrast, the clustering coefficient of empirical networks seems to be

independent of network size.

1.3 Mechanisms of Social Contagion

We now turn to a background review of the mechanisms of social contagion.

These mechanisms are the various social forces that make products, rumors and

social movements spread from person to person. Influence is perhaps the mech-

anism most often associated with social contagion, but there are others. In this

section, I will describe in detail influence, as well as local information, social

identity, and social exclusion mechanisms that cause individuals to adopt things

their friends have already adopted. In addition, I describe homophily and en-

vironmental factors as selection mechanisms that create effects that may on the
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surface resemble the diffusion of social contagion but have distinct underlying

causes.

1.3.1 Influence

Perhaps the most well-studied mechanism of social contagion is influence. Al-

ters, individually or as a group, influence the ego to become more like them.

As a result, over time the ego’s actions or beliefs grow to reflect the actions and

beliefs of her alters. Key to the notion of influence is that of culture, a set of

“beliefs, attitudes and behaviors” [9] espoused by an individual. A common

representation of this set is a collection of features (e.g. Language, Religion,

Style of Dress) with a set of traits corresponding to each feature (Language can

be French, English, and so on). The cultural profile of an individual is the set of

traits, one per feature, that she most closely identifies with. The central hypoth-

esis of influence-based theories is, then, that the ego’s cultural profile changes

over time to more closely resemble the profiles of her alters. In the context of

social contagion, influence implies that if one or more of the alters espouses a

belief or adopts a product, the ego will be more likely to do so.

An alternative form of influence is negative influence, where alters influence

the ego to become less like them. This phenomenon has received much less

coverage in the literature, but it does appear in cases of teenage rebellion and,

in general, contentious social relationships. Negative influence does not play a

strong role in social contagion, as individuals would be influenced to not adopt

the contagious phenomenon their friends adopt.

It is important to note that even though influence is a prominent mecha-
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nism of social contagion, it is often triggered by other mechanisms like social

identity, so it is important to study those mechanisms when examining the role

of influence in the spread of contagion. I describe these mechanisms in subse-

quent sections. Similarly, the actual manifestations of influence as a mechanism

vary in social networks, from persuasion to enforcement of conformity through

threat of sanction to memetic spread (e.g. role modeling).

Influence accounts for the formation of many social structures. Local com-

munities arise in the course of personal identification with the in-group along

key cultural dimensions like religion and political beliefs (e.g. [44, 18], which

may arise in the course of local interactions, e.g. [24, 57]. At larger scales, there

is some evidence that nations are more likely to form when their people have

shared meanings and interlocking habits of communication [27, 28]. Similar

patterns occur in transnational integration and succession conflicts. Other stud-

ies have linked influence to the spread of social norms [43, 67, 8], the spread of

knowledge [19], the diffusion of innovations [59, 51] and the establishment of

technical standards [61, 10].

There are two main kinds of influence - social and interpersonal. Interper-

sonal influence accounts for the ability of high-status, impressive individuals to

dictate the behavior of their friends. Sometimes, all it takes is one popular alter

to purchase a product, to instantly compel ego to do the same. Social influence

accounts for the ability of groups to put social pressure upon an individual. The

impact of social influence on behavior changes is cumulative with the number

of alters who join in the behavior.

Influence is often triggered by other mechanisms of social contagion as, for

instance, by social identity. It is important to distinguish between general the-

12



ories of social and interpersonal influence as a mechanism of contagion (which

focus on the process of influence rather than its underlying causes) and theories

of social contagion that include social influence as part of a more complex mech-

anism (and focus on the underlying causes that trigger social influence and thus

enable the spread of social contagion). In this thesis, we focus on the latter set of

theories, as the process of influence has been well investigated in the literature

[9]. Furthermore, a number of empirical studies [25] have looked at the process

of influence as an empirical phenomenon but few have delved further into its

underlying causes.

1.3.2 Homophily

The concept of selection is, in the most general sense, that an individual’s at-

tributes may select for or against ties between that individual and others. A

more specific version of selection is the notion of homophily, which states that

an individual is more likely to develop social relationships with people who are

like him or her in some respect. Homophily can be formalized in the same cul-

tural profile framework as selection: over time, the set of social network alters

for a particular individual changes, based on that individual’s cultural profile.

New ties appear to alters with similar cultural profiles, old ties to alters with

different cultural profiles disappear. At any given point in time, homophily

predicts that ties between people with similar cultural profiles are much more

likely to exist than ties between people with different cultural profiles. In this

section, we focus on homophily in particular, as research of this phenomenon

has formed the bulk of selection-oriented studies.
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The classic social science study on homophily is Lazarsfeld and Merton’s [40]

observation of friendships in Hilltown and Craftown. The researchers drew on

earlier theoretical work, including anthropological studies of homogamy (ho-

mophily in marriage), to investigate the frequency of ties between similar peo-

ple in empirical data. They also applied the now-popular quotation “birds of

a feather flock together” to describe this phenomenon. Even before Lazarsfeld

and Merton, small-scale studies [15, 45] showed substantial homophily by de-

mographic characteristics like age, sex and education. Later work has looked

at homophily at larger scales, in schools [29], communities [69] or even the US

population as a whole [17].

Homophily is not a mechanism of social contagion, as it does not act as a

force that helps a behavior spread from one individual to another in a social

network. However, as a recent study [7] points out, homophily produces pat-

terns that closely resemble the spread of social contagion. If two individuals A

and B share a tie because they are similar, they may decide to adopt a behav-

ior independently of one another, but at different times. The pattern of the A

adopting, then B, will resemble that of the contagious phenomenon spreading

from the A to B (possibly as a result of influence of A upon B). For example,

two people A and B who are both avid runners may become friends through

their common love of running. When choosing a running shoe, A and B may

choose the same brand (even if neither is exposed to advertisements from this

brand - see below), because they have similar tastes in shoes. Due to chance, A

buys the shoe first, and then the pattern of A buying the shoe, then her friend

B buying the shoe suggests that A influenced B when in fact it was homophily

that induced both to buy the same brand.
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1.3.3 Environmental Effects

Environmental effects are another mechanism that creates effects that resemble

diffusion on the surface, when in fact no diffusion takes place. For instance,

consider a rain cloud that moves over a park. The movement of the rain cloud

is followed by a sequence of opening umbrellas in the crowd of park visitors,

but umbrella opening is not a socially contagious phenomenon, and no diffu-

sion takes place. Environmental effects are especially important when analyz-

ing large-scale adoption data: consider the spread of topical messages (tweets,

instant messages) through a social media network (Twitter, the Google Chat

network). In the case of topics like “breakfast”, it is easy to mistake an envi-

ronmental effect (rapid adoption starting with accounts in the East Coast of the

United States and moving to accounts in the West Coast of the United States)

for a diffusion pattern.

Environmental effects can interact with diffusion and homophily. Consider

the above example of two friends A and B who have bonded over their love of

running and have similar tastes in shoes. Then both A and B might be similarly

affected by the same advertisement for a particular shoe brand and both decide

to buy the shoe. Again, let’s assume that A buys the shoe first. Then the tem-

poral pattern of A buying the shoe then B buying the shoe might be mistaken

for A’s influence on B, and the shoe brand for a complex contagion, when in

fact the mechanism of brand adoption was an interaction of homophily (mutual

love of running, similar tastes in shoes) and environmental effects (exposure to

the same advertisement).

Such patterns are extremely difficult to distinguish from true patterns of con-

tagion diffusion. The key difference between the two processes is that, for a
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contagious phenomenon to be said to be adopted by B after it is adopted by A,

B needs to be exposed to A’s having adopted the phenomenon (the exposure

need not be deliberate on A’s part). If B sees A behaving in a particular way

and then decides to behave in the same way (for whatever reason, so long as it

is related to witnessing A’s behavior), then the phenomenon spreads from A to

B. If, however, A and B adopt the behavior independently, without seeing each

other engage in it, but rather due to a predisposition they share to engage in said

behavior (a sharing that implies some similarity between A and B), or due to a

predisposition they share to react similarly to a third party C, then we cannot

say a contagious phenomenon has spread from one to the other. Empirical data

analysis studies, even those with extremely rich data, often do not have access

to recorded exposure events. Experimental studies can control for exposure, but

lack the scale that data analysis can achieve. In this thesis, we mention existing

approaches for distinguishing true diffusion (whether as a result of influence

or other causes) from independent adoption events due to selection, whether

the selection is for similar environmental effects or similar friends (selection of

alters). We also indicate opportunities for future research in distinguishing dif-

fusion mechanisms from selection mechanisms in large-scale settings.

1.3.4 Social Identity

When analyzing social contagion, it is important to examine the perspective of

adopter identities, both at the individual and at the group level. Social Catego-

rization Theory [66] posits that identity is a continuum of self-categorizations.

At one extreme, there is an emphasis on interpersonal differences and identity

manifests as a set of personal traits that define an individual as set apart from
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all other individuals. At the other extreme, there is an emphasis on intragroup

similarities and intergroup differences, so identity manifests as a set of social

categories that define an individual as a prototypical member of some group

in contrast to all members of different groups. A particular individual’s iden-

tity constantly shifts along this continuum, as she perceives social categories as

more or less salient to her beliefs and actions. These shifts also correspond in

changing the salience of interpersonal vs. social influence (e.g. in dyadic vs.

triangular relationships) and as such are highly relevant to the effectiveness of

influence as an adoption mechanism.

Turner and Oakes show that, as social categories become more salient, the

individual assumes a social identity that marks her as a member of some group

and places her at odds with members of different groups (here we assume

for simplicity that an individual can only belong to one group at a time). In

these conditions, social influence is highly relevant. The social identity creates a

perception of similarity between the individual and in-group members, which

leads the individual to expect a level of agreement between herself and the in-

group on all stimuli. A socially contagious phenomenon adopted by the rest of

the group but not by the individual in question is a new stimulus which violates

this assumption, creating a cognitive dissonance: in-group members are simi-

lar to the individual, similar people in the same setting should behave similarly

[66], but there is a difference of behavior between the in-group and the individ-

ual with respect to contagion adoption. In response to this cognitive dissonance,

the individual can:

1. “[Ignore] the cognitive dissonance and maintain the status quo

2. “[Attribute] the disagreement to perceived relevant differences between
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self and others,”

3. “[Attribute] the disagreement to perceived relevant differences in the stim-

ulus situation,”

4. “[Engage in] mutual social influence [with the in-group members] to pro-

duce agreement.”

Option 4 is often equivalent to the individual adopting the contagious phe-

nomenon as a result of social influence, especially if most of the in-group has

adopted the contagious phenomenon. The particular option chosen depends on

the individual, group and behavior in question. In this thesis, we are obviously

interested in option 4, but make sure to control for possible alternatives such as

options 1, 2 and 3 when investigating the effect of social identity on contagion

adoption in an empirical setting. Thus social identity acts as a mechanism for

the spread of social contagion.

One specific aspect of social identity relevant to the spread of social con-

tagion is the effect of triadic closure between in-group members on contagion

adoption. If two adopter friends of a non-adopter share a tie (forming a closed

triad between themselves and the adopter), all three are more likely to belong

to the same group and share a social identity. As Turner and Oakes have ar-

gued, this makes the adopters more likely to exert social influence upon the

non-adopter by virtue of their shared social identity, to the extent that a 2-1 im-

balance in adoption status within the closed triad group makes adoption the

dominant behavior in this instance of social contagion. So social identity sup-

ports the hypothesis that non-adopters will be more likely to adopt a socially

contagious phenomenon if their adopter friends are friends with each other.

Empirical studies that demonstrate the positive effect of triadic closure on adop-
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tion proability [11] are consistent with social identity. In this thesis, we investi-

gate the role social identity plays in this specific hypothesis via empirical data

analysis and experimental testing.

1.3.5 Local Information

Local information is a mechanism of social contagion, that, unlike influence or

social identity, does not affect the likelihood of infection, but, instead, affects

the likelihood of exposure. The origins of local information are in bounded

rationality theories [64] that attempt to explain why agents deviate from optimal

strategies given by rational choice theory.

One assumption of rational choice theory is that people have all the infor-

mation they need to make any sort of decision. In the real world, people often

lack critical pieces of information when making decisions, and so their decisions

might deviate from those predicted by rational choice theory.

A specific kind of incomplete information we are interested in is local in-

formation about the structure of connections between agents in a network-

embedded population. This concept appears in the economics literature on

network games [32] where “a player’s well-being depends on own actions as

well as actions taken by his or her neighbors.” Network games in general are

complex to analyze; the authors note that even very simple games played on

networks have multiple equilibria with a wide range of possible outcomes. In-

troducing incomplete information in global games tends to reduce equilibrium

multiplicity [50], but the precise kind of incomplete information to introduce

is somewhat arbitrary. Galeotti et al. argue that network games suggest two
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natural sets of incomplete information: information about the identity of future

neighbors and about the number of neighbors they will have. We focus on the

second of these suggestions and leverage it to define local information as fol-

lows: the local information of an agent playing a network game is the states and

connections between her neighbors.

Local information relates to the spread of social contagion via the concepts of

network externality [38]. In the economics literature a network externality is the

relationship between the number n of people who buy a product and the utility

of buying the same product for the n + 1st person 1 In the context of contagion,

agents deciding whether to adopt a particular contagious phenomenon may

base their decision on a utility function that is strictly increasing in the number

of adopters. Note that the concept of network externality would apply even for

contagious phenomena that have no monetary value, such as joining a social

movement, so long as the decision to adopt a contagious phenomenon can be

expressed as a utility function that compares cost and benefit, and either benefit

goes up or cost goes down in the number of current adopters.

In the case of perfect information, the agent will decide whether to adopt the

contagious phenomenon based on how many total adopters there are up to that

point. In reality, agents are often blind to such global behavioral patterns on the

population scale, but pay a lot of attention to similar patterns at the local neigh-

borhood scale: for instance, they may not know how many people in the world

own an iPod, but they know very well how many of their friends do. These local

patterns, in turn, may represent a biased sample of the entire population, and

thus distort the agent’s perception of global trends. To the extent this distortion

1We focus here on positive network externalities, where the relationship is monotonically
increasing.
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occurs, the agent may be said to be deviating from perfectly rational behavior

due to the effect of local information.

Early studies of contagion adoption [34] assume that everyone in the popu-

lation of potential adopters knows everyone else, so local information is equiv-

alent to perfect information. As a result, the spread of a contagious phe-

nomenon in Granovetter’s model is irreversible given a super-critical distribu-

tion of thresholds. In contrast, Morris [49] and Centola and Macy [21] explore

the dynamics of threshold-based social contagion that can spread only through

local interactions, and conclude such contagion spreads most effectively when

network structure at the local level is robust (many redundant ties). Centola and

Macy’s complex contagion may begin to spread throughout a network, but stop

after a few iterations due to local information effects embedded in the network

structure.

Models of local information do not have to rely entirely on local network

neighborhoods. In network-embedded models, agents may iteratively query

ever more distant nodes to get better information before adopting a particular

product. Tie strength is another relevant dimension, as highly local interactions

may arise when agents rely only on their closest friends (an even smaller set

than all their network neighbors!) when making an adoption decision.

In Chapter 2, we explore in detail a model where agents have to rely on lo-

cal information to make their decision about adopting a particular contagious

phenomenon, but may query more distant nodes, which may improve the in-

formation they receive, but incur a (constant) cost. We constrain the agents to

make their decisions prior to the spread of the contagious phenomenon. This

constraint mimics several real-life situations such as groups fighting “misinfor-
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mation contagion.” Consider the case of a community leader who wants to

prevent drugs from entering her community but knows that individuals will

make decisions based on the actions of their friends rather than some rational

cost-benefit analysis. Should the community leader enforce “quarantine”2 and

attempt to limit external influences on the community, cutting off outside ties

as much as possible; or should she encourage more outreach, hoping that as the

network size of community members increases, individuals will have ever more

heterogeneous networks, decreasing the likelihood that a new behavior (such as

drug use) will be dominant among their neighbors? Similar decisions may arise

for strategists trying to prevent contagion like climate change denial (or climate

change belief), and so on, from spreading to a target community. Note that in

these cases, it may not be possible (or prudent) to prevent the target community

from ever adopting a particular contagion, but it may be possible to delay (or

accelerate) adoption to avoid bias from local information. In other words, con-

sider some global utility ug of adopting a contagious phenomenon c, expressed

as a fraction of adopters in the entire population. We would like to investigate

optimal behavior with respect to adopting c exactly when ug of all agents have

adopted, not sooner or later.

Our motivation in Chapter 2 is based on the intuition of Galeotti et al. [32]

that: “when players have limited information about the network they are un-

able to condition their behavior on its fine details and this leads to a significant

simplification and sharpening of equilibrium predictions.” Indeed, we find that

it is not necessary to calculate explicit equilibrium conditions but rather to focus

on the general dynamics of a contagious phenomenon spreading through a net-

work. These dynamics naturally suggest strategies for a set of nodes wishing to

2The notion of quarantine is captured by the SIR model of contagion, see below.
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avoid adopting the contagious phenomenon too early (or too late) due to local

information effects.

The model in Chapter 2 resembles the “local knowledge” model of Michael

Chwe [22], who investigates games with participation thresholds based on the

decisions of network neighbors to participate or not. Chwe also looks at the

possibility that nodes query a mixture of local neighbors and distant nodes by

introducing a parameter into his model that governs the frequency of random

connections in the network. I discuss the differences between Chwe’s and my

model in more detail in Chapter 2.

1.3.6 Social Exclusion

Two previously described mechanisms of social contagion (influence and social

identity) enable the diffusion thereof by encouraging non-adopters to adopt.

Social exclusion acts in a diametrically opposite way: it enables diffusion of

social contagion by discouraging non-adopters from continuing to not adopt.

Social exclusion is a concept from social politics that encapsulates the denial

of access to economic, political or cultural systems which determine the social

integration of a person in society. [70]. It is important to note that this term

is often used in context of social change and in general perceived as a negative

aspect of social order. In this work, we focus on the narrow, technical problem of

how social exclusion interacts with diffusion of social contagion. Therefore, we

examine processes of social exclusion in the abstract, outside of a social change

framework. Nevertheless, it is important to note that the results of our work

may have important implications for empirical cases of social exclusion, and
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may cast light on certain aspects of social politics.

From a technical perspective, social exclusion has two important properties:

dynamics and locality. The first property is noted by [70] who describe social

exclusion as “the dynamic process of being shut out, fully or partially, from

any of the social, economic, political or cultural systems which determine the

social integration of a person in society.” The second property is referenced in

[46] who define social exclusion as a multi-dimensional process that find[s] a

spatial manifestation in particular neighborhoods. Social exclusion is a process

that happens over time rather than a static property of groups, and is situated

in local neighborhoods as opposed to global networks.

1.4 Mathematical Models of Social Contagion

Contagion is any behavior, message, product or organism that spreads through-

out a population. Contagious phenomena were first studied in the context of

epidemiology, as organisms (like bacteria) that spread from one member of a

population to another. Much more recently, interdisciplinary work in physics,

computer science and sociology has studied contagion more broadly as behav-

iors (e.g. smoking), messages (rumors), and products (gadgets) that spread

throughout populations. The body of work on contagion is voluminous and

diverse, and the associated terminology is not uniform, but a few key terms are

used commonly. I outline these terms first to inform the rest of the discussion.
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1.4.1 Node States

Contagious phenomena are most often characterized by a change in the state

of individuals within a larger population, from uninfected to infected. Other

states, like resistant or vaccinated, are possible but the binary distinction be-

tween uninfected and infected individuals is key to representing contagion. In

all contagion models, uninfected individuals can become infected. In some con-

tagion models, infected individuals can become uninfected again (people can

get over a disease, give up a a product, or change their behavior).

1.4.2 Success of a Contagious Phenomenon

Researchers often speak of the success or failure of a contagious phenomenon.

Again, several definitions of contagion success exist, but the common one is that

the success of a contagious phenomenon is the proportion of infected nodes at

equilibrium, i.e. when nodes no longer change state from infected to uninfected

(or vice versa). In models where the infection frequency at equilibrium is bi-

nary (either close to 100% or close to 0% nodes infected), the term takeover is

used to describe situations where the contagious phenomenon infects nearly all

of the nodes at equilibrium, and the term failure is used to describe situations

where the phenomenon takes over almost none of the nodes at equilibrium. In

the rest of this work, we will use the terms takeover and failure for binary in-

fection frequencies at equilibrium and the term success for continuous infection

frequencies at equilibrium.
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1.4.3 Infection Functions

The third key element of any contagion model is the process whereby unin-

fected nodes become infected. This process is often represented by a function

from a set of individual, local, and/or population-level attributes to a proba-

bility of infection. There are two major types of infection functions: determin-

istic or threshold functions, where the probability of infection is always either

1 (when input attributes take on certain ranges of values) or 0 (otherwise); and

probabilistic functions, where the output probability of infection is a continuous

variable. Mixtures of deterministic and probabilistic functions are possible, but

rarely used.

Infection functions also vary by their input variables: in fully-mixed con-

tagion models, any individual in a population can be infected by any other

individual at any time. Therefore, infection functions take as input only indi-

vidual (e.g. node state) or population-level (e.g. frequency of infected individ-

uals) variables. In partially-mixed contagion models, individuals can only be

infected by a subset of the population, identified by geographic proximity, so-

cial ties, etc. In partially-mixed contagion models, infection functions take as

input individual and local-level (e.g. frequency of infected indivdiuals among

friends) variables, but most often ignore population-level variables.

Some contagion models have recovery functions. These represent the op-

posite process of an infection function - the process whereby infected nodes

become uninfected. Recovery functions can also be threshold or probabilistic,

but we do not study them in great detail here.
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1.4.4 Models of Contagion

Finally, there are a number of contagion models in the literature. All of these

models attempt to describe the dynamics of contagion as it spreads from some

initial subset of the population (often called the seed) to other individuals, until

equilibrium in the state of individuals (infected vs. non-infected) is reached. We

present a brief overview of contagion models in the scientific literature, starting

with early epidemiological models and moving on to later computer science,

physics and social science applications.

1.4.5 The SIR Model and Variants

The earliest well-known model of contagion is the so-called SIR model [1, 5, 6,

36]. This model was first formulated (though never published) by Lowell Reed

and Wade Hampton Frost in the 1920s. It divides a population into 3 classes:

susceptible to some contagious phenomenon (S), infective (I) and Recovered (R).

The original work simply assumes that any susceptible individual has a uniform

probability β per unit time of catching the disease from an infective one, and

that infective individuals recover and become immune at some constant rate γ.

Recovered individuals can never become infected again. The distribution of the

three classes over time is then governed by a system of differential equations.

The SIR model is a fully-mixed model with a probabilistic infection function and

a probabilistic recovery function.

The SIR model exhibits critical behavior in its parameters.If β is low and γ

high, the phenomenon almost never spreads throughout the population. Con-

versely, if β is high and γ low, the phenomenon almost always takes over the
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entire population. In between these extremes, the model exhibits a non-linear

transition in the values of β and γ: if β is below a certain critical value, most

nodes remain uninfected, but if β exceeds that critical value, the phenomenon

rapidly takes over the entire population. Similarly, a decrease in γ below some

critical value leads to takeover whereas populations with higher values of γ

remain contagion-free. This property of the SIR model is reproduced in most

models of contagion we study below and is the focus of much interest in re-

search on the diffusion of contagion.

Grassberger [35] extended this fully mixed model onto a n-dimensional lat-

tice network (making it a partially-mixed model, again with a probabilistic in-

fection and recovery functions), where a susceptible node s can become infective

with probability β if and only if it has an infective neighbor, and any infective

node becomes recovered after a fixed length of time γ passes since its infec-

tion. The same paper shows that the networked version of the SIR model can

be mapped exactly onto results from a field of study called percolation theory.

Percolation theory arose in physics as the study of critical phenomena in current

flow. The major result of the field as it applies to network structure is that, start-

ing from a graph of many small connected components (sets of nodes that are

connected to each other but to no other node in the graph), and adding edges at

random to this graph, one arrives at a critical phase where the addition of just

a few edges instantly connects the many small components into one giant com-

ponent. Grassberger’s work showed that if the graph formed by connections

between all the infected nodes percolates (has a single giant connected compo-

nent), the partially-mixed SIR model predicts contagion takeover of the entire

graph, while if the same graph does not percolate (has many small connected

components), the partially-mixed SIR model predicts contagion failure.
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There are a few other variants of the SIR model that are worth mentioning.

Pastor-Satorras and Vespignani [54, 55] analyze the SIR model on networks with

power law degree distributions and show that for all non-zero β, the contagious

phenomenon takes over the network as long as the power law exponent is less

than 3. An interesting variant of the SIR model includes “vaccination,” the re-

moval from a network of some particular set of vertices prior to the contagious

phenomenon simulation. Pastor-Satorr and Vespignani [56] discuss this variant

at length, noting that removal of the highest-degree vertices makes the network

disconnected and prevents contagion takeover (a result that is inspired by stud-

ies of network resilience). Cohen et al. [23] investigate the vaccination problem

in a context where information about the network is limited and propose an in-

teresting workaround, to follow random edges in the network as those are most

likely to lead to nodes with the highest degree.

1.4.6 The SIS Model

An alternative to the SIR model is the SIS model, where the dynamics are as in

SIR, but infective nodes turn back to susceptible ones and never fully recover.

This model also exhibits critical behavior in the values of β and γ, transitioning

from contagion failure to contagion takeover. SIS cannot be solved analytically

as SIR but Pastor-Satorras and Vespigniani [54, 55] give a detailed investigation

of the model on a class of simulated networks known as configuration model

networks[53], and show that the contagious phenomenon persists in such net-

works (some non-zero fraction of the population is infected) for all non-zero β

values in this network class. A recent study by Leskovec et al. [42] uses an SIS

model to replicate data on information diffusion through a network of blogs.
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1.4.7 The SI Model

A third diffusion model is SI, which dates back to Mark Granovetter’s work

on threshold models of collective behavior [34]. Granovetter considered a fully

mixed population of susceptible individuals with different thresholds. An indi-

vidual i becomes infective if ti or more other infective individuals are currently

in the population, where ti is i’s infection threshold, and all infective individu-

als remain so forever. Granovetter showed that this model also exhibits critical

behavior: below a critical density of infective nodes, the model always resulted

in contagion failure, but at or above this density, the model always resulted in

contagion takeover. Granovetter’s model is fully-mixed with a deterministic

infection function and no recovery function.

Morris [49] constructed a partially-mixed (network embedded) model based

on Granovetter’s work with the restriction that a node becomes infective if some

fraction k of its neighbors are infective, so the infection threshold is uniform for

all nodes. Morris investigated the maximum k for which diffusion of a con-

tagious phenomenon can occur on an arbitrary size network, found an upper

bound k ≤ 1/2 and observed that actual maximum k are close to 1/2 when the

network resembles a lattice.

Watts [71] studied the same model in configuration model networks under

the name “cascading failure”. Watts was able to identify a high-connectivity

regime in which cascades were very rare but occasionally took over the entire

network (as in Granovetter’s work), and suggested that in the latter regime, the

ideal cascade seed neighbored a lot of average-degree nodes, as their thresholds

could be satisfied with fewer neighbors than the thresholds of very high-degree

individuals.
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Centola and Macy [21] focus on the Morris version of the SI model and study

the dynamics of this model on unrewired lattices and Small World networks.

Centola and Macy examine both the relative thresholds studied by Granovet-

ter and Morris, and absolute thresholds where a node is guaranteed to adopt

if some raw number a of its neighbors have adopted. They find that contagion

of any threshold (up to the maximum dictated by Morris’ k ≤ 1/2) spread in a

similar way on an unrewired lattice network. However, in a Small World net-

work, a difference between “simple” contagion of threshold 1 (or 1/z where z is

the number of neighbors), and “complex” contagion of threshold > 1 (or > 1/z)

emerges.3 Simple contagion spreads quickly through Small World networks,

whereas complex contagion spreads more slowly or not at all, depending on

the actual threshold value and the level of rewiring used to generate the net-

work. We discuss Centola and Macy’s work in much more detail in Chapter 3,

as it forms the basis for our analysis of complex contagion and discovery that

these phenomena have a critical mass of adopters.

1.5 Empirical Analysis of Social contagion

Empirical analysis of social contagion is a relatively recent field. Early inves-

tigations of diffusion have focused on online communities, which are seen as

potential targets for viral marketing. A virally marketed product would spread

on the network of connections in an online community much like a contagious

phenomenon, so work on LiveJournal [11] and blogs [2, 39] has been met with

a lot of interest. The first of these papers is especially interesting, as it finds

3The terms “simple” and “complex” contagion were coined by Centola and Macy in the same
paper
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that local network structure correlates heavily with probabilities of joining a

group in the LiveJournal site. Specifically, individuals with many ties between

their friends (high local clustering coefficient) are more likely to join groups

than those with few ties between their friends. Other studies [41] look prod-

uct recommendations in an online site, and make several empirical observa-

tions relevant to cascade models, including: the second recommendation of a

product heavily increases the probability of buying, but further recommenda-

tions do not; the number of recommendations exchanged between two people

does not positively influence the probability of buying; and there are categories

of products for which recommendations are very effective, including profes-

sional/technical and personal/leisure items (but not works of fiction).

More recently, empirical analyses of contagion have been extended to voice

mail products spreading through phone networks [30] and hashtags spreading

through Twitter [60]. We anticipate many more studies in this area as large-scale

data recording the adoption of behaviors and products online become available

to the research community.

32



CHAPTER 2

CHAPTER 2: LOCAL INFORMATION AND SOCIAL CONTAGION

In this chapter, I explore in detail a model where agents have to rely on local

information to make their decision about adopting a particular socially conta-

gious phenomenon, but may query more distant nodes, which may improve the

information they receive, but incur a (constant) cost. I constrain the agents to

make their decisions prior to the spread of the contagious phenomenon. This

mimics several real-life situations such as groups fighting “misinformation con-

tagion.” Consider the case of a community leader who wants to prevent drugs

from entering her community but knows that individuals will make decisions

based on the actions of their friends rather than some rational cost-benefit anal-

ysis. Should the community leader enforce “quarantine” and attempt to limit

external influences on the community, cutting off outside ties as much as possi-

ble? Or should she encourage more outreach, hoping that as the network size of

community members increases, individuals will have ever more heterogeneous

networks, decreasing the likelihood that a new behavior (such as drug use) will

be dominant among their neighbors? Similar decisions may arise for strategists

trying to prevent contagious phenomena like climate change denial (or climate

change belief), and so on, from spreading to a target community. Note that in

these cases, it may not be possible (or prudent) to prevent the target community

from ever adopting a particular contagious phenomenon, but it may be possible

to delay (or accelerate) adoption to avoid bias from local information. In other

words, consider some global utility ug of adopting a contagious phenomenon

c, expressed as a fraction of adopters in the entire population. I would like to

investigate optimal behavior with respect to adopting c exactly when ug of all

agents have adopted, not sooner or later.
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2.1 Background

the contagious phenomenon model I use assume that agents are rational

(that is, they will behave to optimize some utility function u(d) where d ∈

{adopt,not-adopt}, but are limited to local information about the decisions of

their neighbors, as opposed to global information about the decisions of ev-

eryone in the network. This model resembles the “local knowledge” model of

Chwe [22]. Chwe also provides a detailed analysis that demonstrates the effect

of local information on decision-making under conditions of different network

structure and threshold. My work differs from Chwe’s in two important aspects.

First, I do not model the contagious phenomenon problem as a simultaneous

game, so agents in my model never make decisions based on what their neigh-

bors might do, but only based on what their neighbors have done so far. Second,

in my model individuals can change their neighborhoods so as to adopt as close

as possible to the time step (if any) when they would have adopted given global

information.

2.2 General Model

Consider a graph G where the vertices are abstract agents, and the edges are

social ties between the agents. A contagious phenomenon C diffuses along this

graph. Each agent a ∈ A ≡ V(G) has an adoption state S (a) where S (a) = 1 if the

agent has adopted C and S (a) = 0 otherwise. Let us assume that the utility of

adopting C is a step function in the density of adopters:
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u(adopt(C)) = 1 if D(C) > ρcrit 0 o.w.

u(non-adopt(C)) = 1 − u(adopt(C))

where D(C) is the density of adopters, the number of adopters N(C) divided by

the total size of the population P. Here ρcrit is the critical density value above

which adoption becomes the optimal strategy. At or below ρcrit, non-adoption is

the optimal strategy. Agents with perfect information will always adopt when

D(C) > ρcrit and not adopt when D(C) ≤ ρcrit. From this model it follows that

any contagious phenomenon C on G will not spread unless seeded with pρcritPq

adopters, and will spread instantly if that condition is met.

2.3 Bounded Rationality and Myopia

We now introduce bounded rationality into the decision function. We will

assume that agents are myopic, that is, they can see the state T (a) only for

a ∈ L(a) ⊂ A. Beyond L(a), the agent is only aware of the existence of other

agents, but not of their states nor of their network connections. We will investi-

gate three scales of myopia:

• M1: L(a) consists of one neighbor a′ of a

• M2: L(a) consists of all neighbors a′ of a

• M3: L(a) consists of all neighbors a′ and all neighbors-of-neighbors a′′ of

a.
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Under each level of myopia, the agent must make her decision solely based on

the states of alter agents in L(a). To represent this limited decision-making, we

introduce a new utility function uL:

uL(a, adopt(C)) = 1 if DL(a,C) > ρcrit 0 o.w.

uL(a,non-adopt(C)) = 1 − uL(a, adopt(C))

where L is the set of all local information sets L(a) and DL(a,C) is the local

adopter density of a, that is, the number of adopters in L(a), NL(a,C), divided

by |L(a)|. Myopic agents will adopt if DL(a,C) > ρcrit and not adopt otherwise.

For notational purposes, we consider uL to be the adoption utility function with

respect to L.

Under conditions of bounded rationality, far fewer than pρcritPq seeds are

necessary for the contagious phenomenon to spread to the entire population.

Consider the following scenario:

• A graph G represented by a sequence 〈a1, a2, ...an〉 such that each ai is con-

nected only to the preceding ai−1 (if exists) and the following ai+1 (if exists).

• M1 for this graph: ai−1 (if exists).

• A contagious phenomenon C with ρcrit = 1/2 − ε for some small ε > 0

• seeds for the contagious phenomenon: a1 and a2.

Under these conditions, for each scale of myopia as defined above, a3 will adopt

C, then a4, and so on until the contagious phenomenon has spread to every
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agent in the graph. Note that under conditions of bounded rationality, global

adoption rate does not instantly change from 0 to 1 (as it did for perfect in-

formation), but goes up over time. We can define an artificial timeline for the

adoption process by running a simulation where at t0 the scenario is set up as

above and a1 and a2 are seeded as adopters, and at t1 and each timestep there-

after, each agent simultaneously makes a decision about whether or not to adopt

C. Then at timestep t1 node a3 will adopt, at timestep t2 node a4 will adopt until

at timestep tn−2 node an adopts and the entire set A has adopted the contagious

phenomenon.

2.4 Deviation from Optimal Behavior

The scenario above shows how agents can act in a suboptimal manner due to

the effects of local information. Let’s assume n = 20, Pcrit ≡ pρcritPq = 10. Then,

during a run of the simulation described above, agent a3 acts in a suboptimal

manner at times t1 through t9: at these timesteps, she decides to adopt whatever

the scale of myopia chosen, because her local decision function indicates that

adoption is optimal (DL(a,C) > ρcrit), but the true decision function evaluated

at these points indicates non-adoption as the optimal behavior (D(C) ≤ ρcrit).

Similarly, agent a20 acts in a suboptimal manner at times t10 through t17: at

these timesteps, she decides to adopt because her local decision function in-

dicates that non-adoption is optimal, but the true decision function evaluated at

these points indicates adoption as the optimal behavior. In fact, only agent a12

acts optimally at all times because she decides to adopt starting precisely at the

timestep when it becomes true that D(C) > ρcrit.

37



2.5 Optimization of Local Information

The simulation example in the previous section suggests a general formulation

of the local information problem: given a contagious phenomenon C spreading

on a graph G of myopic agents, is it possible to predict which agents have such

local information sets L(a) that they will adopt C if and only if it is optimal to

do so? A related problem is, given a subset of all agents on the above graph, is

it possible to change their local information sets L(a) so that they will adopt C

if and only if it is optimal to do so? Again, optimality here is defined accord-

ing to the true decision function, which mandates adoption if and only if the

u(adopt(C)) > u(non-adopt(C)) and non-adoption otherwise.

These formulations, while ideal from a rational choice perspective, are too

restrictive to be applicable to empirical contagion, where adoption events may

be influenced by external factors and therefore perfect information about the

utility of adoption cannot be captured in our model. However, we can examine

the related question of whether certain local information sets can enable agents

to act optimally as often as possible, controlling for external factors. This ques-

tion can be restated as an optimization problem of local information:

Given a contagious phenomenon C spreading on a graph G of myopic agents and a sub-

set S (A) of all agents in the graph, is it possible to change the local information sets L(a)

for a ∈ S (A) so that these agents act optimally as often as possible?

We can formalize this problem as the search for a transformation OptLocal of the

local information sets L(a) for agents a ∈ S (A) that generates new local informa-

38



tion sets for these agents that minimize the amount of time each agent spends

acting suboptimally:

OptLocal(S (A)) = argmin
f (L)

∑
a∈S (A)

∑
t∈T

u(dt(a)) − u f (L)(a, dt(a))

where f (L) produces a new set of information sets L′ that consists of the original

information sets L(a) for all agents a < S (A) and new information sets L′(a) for

all agents a ∈ S (A). The next step is to determine what sets L′ produce the least

bias and what transformations f generate these sets.

2.6 Constraints on Optimization

Without further constraints, the optimal transformation f is one that maximizes

the size of local information sets of all agents in S (A). To avoid this trivial solu-

tion, we impose a constant cost c for each bitwise difference between L(a) and

L′(a) for each agent. To calculate this cost, first we order all the agents a ∈ A to

create a sequence < a1...an > where n = |A|. Now we can represent each local

information set L(a) as a binary vector V(L(a)):

V(L(a)) =< i : i = 1 if ai ∈ L(a) 0 o.w. >

now the cost of transforming one local information set is simply:

Cost(L′(a)) = c ∗ ‖V(L(a)) − V(L′(a))‖
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we can use this cost function to modify OptLocal to OptLocalCost, the cost-

constrained optimal transformation of L:

OptLocalCost(S (A)) = argmin
f (L)

∑
a∈S (A)

Bias( f (L(a)) ∗Cost( f (L(a))

where:

Bias( f (L(a)) =
∑
t∈T

u(dt(a)) − u f (L)(a, dt(a))

The optimization problem as I have set it up is linearly separable at the level of

agents, that is, the choices of new local information set by one agent do not affect

the choices of the other agents. This separability only holds under a further

assumption, that the choice by agent a of agent b to be in L(a) is a directed

relationship (so a is not automatically in L(b)). I begin examining the problem

under this assumption, and leave the implications of lifting this assumption for

future work.

The new optimization problem to find OptLocalCost(S (A)) is non-trivial, and

in fact the space of possible local information sets L′(a) for a particular agent

a is exponential: |{L′(a)}| = 2|A|. I now narrow down his space by considering

possible strategies for optimization.

2.7 Strategy Spaces and Agents

It is important to remember that, even though I have formulated local informa-

tion as an optimization problem, standard quantitative techniques for solving
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such problems may not be applicable to the model.

Many techniques for solving optimization problems rely on learning or it-

erative improvement. Such techniques, however, require global information:

the agent must know how well she did at any given time in order to decide

whether it was better or worse than previous times. For example, in the case of

supervised learning, the agent can consult a teacher, who would tell the agent

how often she behaved optimally vs. sub-optimally during the contagious phe-

nomenon adoption process. The model I have set up purposefully avoids all

sources of global information: a key hurdle for the agents to overcome is the

lack of any reference point about the states of all but a few other agents. If a

teacher were available, she could simply tell the agent everyone’s state as they

adopted, granting her perfect information which would automatically lead to

optimal behavior.

Furthermore, these techniques require the contagious phenomenon process

to happen multiple times, so that the agent has many opportunities to pick a

local information set. In the model as set up, the contagious phenomenon pro-

cess happens only once and is irreversible: both u and uL are step functions,

so all non-seed agents will not adopt until adopter density reaches a critical

value, at which point they will adopt forever. Some empirical contagious pro-

cesses (like getting a body piercing or joining a protest) behave according to this

model, while others do not. This opens up an opportunity to introduce alterna-

tive models of local information, but for the purposes of my analysis I will focus

on the model as presented.

Finally, it is possible to create highly tailored strategies that allow for opti-

mal behavior. For instance, in the sequence graph described in Section 2.3, let’s
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consider as S (A) the sequence of agents < a13...a20 >. These agents could change

their local information sets to {a11}, and then all would adopt precisely when it

became optimal to do so. However, these tailored solutions again require global

information: the agents have to be aware of the full set of connections in G, and

of the seed nodes. Such level of knowledge is outside the scope of the model.

Absent iterative improvement and tailored strategies, what sorts of strate-

gies are available to agents? To answer this, let’s consider the knowledge agent

a has about other agents. At a minimum, a knows well any of the agents in L(a),

and so can choose them to be in L′(a). However, a may also know about the

behavior of other agents not in L(a): in empirical social networks, some very

popular individuals, like celebrities, have their behavior broadcast via informa-

tion streams, word-of-mouth, and other channels. As a result, many people may

be aware of a celebrity’s adoption state for particular contagious phenomenon,

such as whether she endorses a specific product, without knowing her directly.

I integrate the notion of popularity into the myopic model as follows: a can pick

at random any agent b outside of L(a) to be in L′(a), with probability of picking

some particular b proportional to b’s popularity, which I define as her degree.

The highly local nature of information available to agents in the myopic ver-

sion of the model greatly reduces their strategy space. Only two strategies are

available for agent a: pick an agent in L(a), or pick a random agent not in L(a)

with probability proportional to that agent’s degree. Using these two strate-

gies, the agent makes up her new local information set L′(a). I reflect this in the

formal definition of the optimization problem by further constraining f (L):
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f (L) = L′ = {L(a) : a < S (A)} ∪ {L′(a) : a ∈ S (A)}

L′(a) = a∗l a∗g : al ∈ L(a), ag < L(a) ∧ P(ag) ∝ k(ag)

where P(ag) is the probability of picking a particular agent ag not in L(a) and the

∗ symbol implies zero or more of the previous items, as in regular expressions.

We can now write down the full set of equations that describes the cost- and

agent-awareness- constrained optimization of the set of local information sets

to optimize adoption behavior:

OptLocalCost(S (A)) = argmin
f (L)

∑
a∈S (A)

Bias( f (L(a)) ∗Cost( f (L(a)) (2.1)

Bias( f (L(a)) =
∑
t∈T

u(dt(a)) − u f (L)(a, dt(a)) (2.2)

f (L) = L′ = {L(a) : a < S (A)} ∪ {L′(a) : a ∈ S (A)} (2.3)

L′(a) = a∗l a∗g : al ∈ L(a), ag < L(a) ∧ P(ag) ∝ k(ag) (2.4)

2.8 Network Structure

So far, we have considered the problem of local information set optimization

in the abstract. In particular instances of this optimization problem, the struc-

ture of connections between agents has a big effect on the flow of contagion

through the network, and thus, on the optimality of different local information

sets. As the example in section 2.3 shows, it is easy to predict the flow path of a
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contagious phenomenon on particular network structures. However, the analy-

sis of the flow of a particular contagious phenomenon on a particular network

may not generalize to other networks, other contagious phenomena and other

instances of the local information set optimization problem. Instead, I analyze

contagion flow on several network models, or broad classes of network structures

meant to replicate empirical networks (human society, the World Wide Web,

social media). This section briefly describes these models.

2.8.1 Poisson Random Graph

The simplest network model is that of a Poisson Random Graph (cite - Er-

dos/Renyi), which is initialized as a set of N nodes with no connections between

them. Subsequently, each pair of nodes is connected with probability p. The pa-

rameters p and N fully describe the model. A well-known property of Poisson

Random Graphs is a phase transition around pN = 1. For pN < 1, the graph

is a set of tiny components with no connections between them. For pN > 1,

a giant component emerges. Poisson Random Graphs have low diameter like

empirical networks, but are poor candidates of empirical social structures in

other respects: they have a Poisson degree distribution (instead of a power law

or a log normal), and a relatively low clustering coefficient. Nevertheless, the

simplicity of construction for a Poisson Random Graph makes it a good starting

point for studying the structure and dynamics of networks from an analytic and

simulation perspective.
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2.8.2 Small World Graph

The Small World Graph (cite - Watts/Strogatz) is initialized as an n-dimensional

lattice with N nodes. Each node in the lattice has k neighbors. After initializa-

tion, ties are randomly added (cite - Watts) or rewired (cite - Maslov / Snep-

pen) to create shortcuts in the lattice. The lattice is a degree-regular graph with

high diameter and high clustering coefficient. The added or rewired ties creates

shortcuts, which decreases diameter but also decreases clustering coefficient.

Watts and Strogatz showed that, for a certain range in the density of shortcut

ties, diameter decreases dramatically (to the levels of a random graph), but clus-

tering coefficient remains high. Lattices with shortcut density in this range are

known as small world graphs. Small world graphs are good models of many

empirical social structures as they combine dense local structure (high cluster-

ing coefficient) with high connectivity (low diameter) that many researchers say

is indicative of human social networks. For instance, many human social net-

works exhibit dense local structure around circles of friends, neighborhoods, or

co-workers; at the same time, “weak” ties through distant acquaintances make

these networks highly connected in what is known as the Six Degrees of Sep-

aration phenomenon in popular culture. The drawback of small world graphs

is their uniform (for rewired shortcuts) or Poisson (for added shortcuts) degree

distribution, which is not representative of many empirical networks.

2.8.3 Preferential Attachment Graph

Preferential attachment graphs (cite - Barabasi/Albert) are initialized with one

or a small number of nodes with no connections between them. Subsequently,
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the model adds new nodes to the graph one at a time. When a new node i ap-

pears, it immediately makes a number a of new connections to existing nodes.

For each node j that is already not a neighbor of i, the probability of an i − j tie

is proportional to j’s degree. By this mechanism, nodes j that already have high

degree are ever more likely to have even higher degree as new nodes i appear.

This “rich-get-richer” effect on degree accumulation is known as preferential

attachment in network analysis, and results in a power-law degree distribu-

tion that is representative of many empirical networks. Preferential attachment

graphs also have low diameter, but have low clustering coefficient as well, lack-

ing the dense local structure of small world graphs.

2.8.4 Other Models

Other models like Forest Fire(cite - Kleinberg) attempt to capture different as-

pects of the structure and dynamics of empirical networks. Some models explic-

itly seek to combine high clustering coefficient with power law degree distribu-

tion and low diameter. Other models focus on the dynamics of tie formation

and attempt to replicate empirical tie formation processes. For the purposes of

the local information model, I will focus on the three models presented above,

as they cover a broad spectrum of network structures. My analysis of random,

small world, and preferential attachment graphs should serve as a foundation

on which future work can examine contagion flow and local information in

more complex network models.
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2.9 Analysis and Results

I now turn to analysis of the optimal local information set problem on vari-

ous network structures. Before discussing particular network structures, it is

important to consider the problem in a general way, to help frame the structure-

specific analyses. Broadly, we are interested in making nodes in S (A) becoming

infected by some contagious phenomenon C that starts from some seed set E(A)

and spreads throughout the network, under very specific circumstances: that is,

as close to as possible to the moment when C has infected exactly Pcrit nodes.

2.9.1 General Results

Theorem 2.9.1. Consider an instance of the local information set optimization prob-

lem as defined above, where |E(A)| is O(Pcrit). Then the optimal sampling strategy for

nodes in S (A) is to sample entirely from the set L(a), assuming the graph is random,

or heavily from the set L′(a) = a∗g otherwise. In particular, for degree-regular networks

the optimal sampling strategy is to sample entirely from the set L′(a) = a∗g, whereas

for degree-skewed networks the optimal sampling strategy is to sample from the set

L′(a) = ag[ρcrit]al[1 − ρcrit], in other words, to include nodes ag with proportion ρcrit in

L′(a) and include nodes al with proportion 1 − ρcrit in L′(a).

Proof. In the case where |E(A)| is O(Pcrit), the optimal point for adopting the con-

tagious phenomenon may be at the start of its diffusion, or very shortly after, so

the goal for all nodes in S (A) is to become infected right away. So the optimal

strategy for all nodes in S (A) is to construct a local information set that consists

of at least ρcrit infected nodes.
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In the case of a Poisson Random Graph, the ties of any node represent a ran-

dom sample of the network, so ρcrit of them are expected to be in E(A). In this

case, the optimal strategy is to stick with the local information set L(a) corre-

sponding to the node’s network neighborhood.

In the case where the network is degree-regular (such as a small-world

graph), then sampling nodes from a∗g yields a true random sample of the net-

work, which, as for the Poisson Random Graph, is likely to contain ρcrit nodes

that are in E(A).

Conversely, assuming the network is not heavily rewired, sampling nodes

from a∗l is a wasteful strategy: for nodes that are in E(A) already, this strat-

egy will with high likelihood produce a sample where nodes in E(A) are over-

represented, whereas for nodes that are not in E(A) this strategy will produce a

sample where nodes in E(A) are under-represented. Since nodes have no way

of knowing in advance whether they will be in E(A) or not, the optimal strategy

remains to sample entirely from a∗g. It is possible to rely more heavily on a∗l for

networks that are heavily rewired and thus resembling random graphs, but it

is also impossible to tell the rewiring level of the network without global infor-

mation about it, and even when the network is completely rewired, sampling

from a∗g will continue to result in an optimal local information sets given the

constraints of the optimization problem.

Thirdly, in the case where the network has a skewed degree distribution

(such as a preferential attachment network), sampling from a∗g will lead to a

sample of high-degree nodes. These nodes are not likely to be in E(A) (since

there are very few of them in the network), but they are highly likely to be in-

fected first once the diffusion process starts (since most ties from all over the
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network, E(A) inclusive, lead to them). Accordingly, making sure that the lo-

cal information set has nodes from ag with frequency ρcrit will guarantee that a

adopts at the first time step.

Theorem 2.9.2. Consider an instance of the local information set optimization problem

as defined above, where |E(A)| << Pcrit and the contagious phenomenon never reaches

Pcrit nodes. Then the optimal sampling strategy for nodes in S (A) is to sample from

L(a).

Proof. In the case when E(A) is much smaller than Pcrit. In this case, if the conta-

gious phenomenon never reaches Pcrit nodes then the goal is for no node in S (A)

to ever become infected. In particular, if the contagious phenomenon does not

spread very far beyond E(A), then the vast majority of the nodes in the network,

and so, in S (A), will behave optimally using only their local information sets

L.

The third, intermediate case, is when E(A) is much smaller than Pcrit but

the contagious phenomenon may eventually reach Pcrit nodes. This is the most

interesting case and the one we will explore in the following sections.

2.10 Poisson Random Graph

Consider a Poisson Random Graph with N nodes and probability of connection

between two nodes p and some small set of seeds E(A) with sum degree m, with

the assumption that |E(A)| << Pcrit. Let us further assume that p is O( 1
N ) so a

giant component has formed, but not much larger, so the graph does not form a

clique [52]. Then I claim that:
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Theorem 2.10.1. For ρcrit ≤
1

N p , contagion spreads throughout the entire network in a

logarithmic number of time steps, so the average number of sub-optimal time steps for

nodes in S (A) is minimal given original local information set L(a).

For 1
N p < ρcrit, contagion dies out in a logarithmic number of time steps, so only

O(|E(A)|/N)|S (A)| nodes in S (A) should behave suboptimally.

Proof. The key to this proof lies in the highly random structure of the PRG,

which leaves very little room for redundant ties that would allow high-

threshold contagion to spread.

In the case where ρcrit ≤
1

N p , contagion can spread through just one tie be-

tween an infected and an uninfected node. This means that starting from E(A),

contagion will infect all the neighbors of E(A), then all their neighbors, and so

on until it takes over the entire network. In the extreme case where there are

no redundant ties, contagion takes over the entire network in O(logm(N)) steps,

so on average no node in S (A) will behave suboptimally for more than a log-

arithmic number of time steps in the size of the network, even if the strategy

chosen is to rely entirely on the original local information set L(a). The number

of redundant ties at each step “slows down” contagion, and so increases the

time that nodes in the network spend behaving suboptimally if they rely only

on L(a).

In the case where 1
N p < ρcrit, contagion must spread through at least two ties

between infected nodes and an uninfected node. This means that starting from

E(A), contagion will infect only the neighbors of nodes in E(A) who have a min-

imum of two ties to nodes in that set. If this set is smaller than E(A), then the

next set will be even smaller (due to the homogeneous structure of the random
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network), and so on, so instead of spreading to the entire network in a logarith-

mic time, contagion will “die out” in logmred (1/m) time steps, where mred is the

fraction of redundant to all ties. In the case where there are no redundant ties,

contagion will only infect |E(A)| nodes, so only a very small fraction of nodes in

S (A) is ever likely to become infected, with the rest behaving optimally (never

becoming infected). More redundant ties will increase mred, slow down the die-

out time, and increases the number of nodes in S (A) that behave suboptimally.

We now prove a lemma that provides an asymptotic bound for the fraction

of m ties coming out of E(A) that are redundant, for a Poisson Random Graph.

This bound is very close to 0 for small m (which we assume at the beginning

of this theorem), so we can assume the cases with no redundant ties described

above hold in close approximation for this family of graphs, and the theorem is

proved

Lemma 2.10.2. Consider a Poisson Random Graph defined as above in Theorem 8.3.

Then for some set E(A) of nodes with sum degree m, the total number of redundant

ties among these m is O((m/N)2) which is close to 0 given the assumptions laid out in

Theorem 8.3.

Proof. Each of the m distinct ties coming out of E(A) targets a node at random

with uniform probability. The resulting number of n distinct nodes targeted by

these m ties is, therefore, equal to the number of n distinct elements that results

from a sampling m times from a population of N with uniform probability. This

quantity is given by Tillé(2006) as:

N −
(N − 1)mN!
Nm(N − 1)!
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which reduces to:

N
(
1 −

[
N − 1

N

]m)
(2.5)

Focusing on the inner term, we have:

[
N − 1

N

]m

=

[
1 −

1
N

]m

=

[
1 +
−1
N

]m

=

by binomial expansion:

=

m∑
k=0

(
m
k

) [
−1
N

]k

=

(
m
0

)
1 +

(
m
1

)
−1
N

+

(
m
2

)
1

N2 + ... +

(
m
m

) [
−1
N

]m

This series S has the property that, for any k = 0, k ≤ m, the k + 1st element is

smaller in magnitude and opposite in sign to the kth element. The sign opposi-

tion comes from the −1 in the power term of the series. The magnitude differ-

ence comes from the fact that the k + 1st element is O([m/N]k), which decreases

in k since m < N.

This property implies that the first few terms will dominate the series. In

particular, we can establish bounds of the series with the first two partial sums:

1 and 1 − m/N. Every subsequent term will alternatively drive the series closer

to 1 and to 1 − m/N, by an ever-decreasing degree, so the final sum will always

stay within those bounds. Also note that, by the same property, the final sum

will be much closer to 1 − m/N than to 1. Accordingly, we can approximate the

inner term as follows:
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[
N − 1

N

]m

≥ 1 −
m
N

≈ 1 −
m − ε

N

we can now rewrite Equation 5 as:

N
(
1 −

[
N − 1

N

]m)
≈ N

(
1 −

[
1 −

m − ε
N

])
(2.6)

≈ m − ε (2.7)

What does Equation 7 tell us? Instead of targeting m distinct nodes, m random

ties in a PRG target some slightly smaller number m − ε nodes. In other words,

m − ε ties target distinct nodes in the network, and the remaining ε ties are re-

dundant.

We can approximate the magnitude of ε by taking the difference between the

second and the third partial sums of S which is equal to:

ε ≈
m(m − 1)

2N2 which is O
([m

N

]2
)

Since we assume p is O( 1
N ) and |E(A)| << Pcrit, we have:

m = |E(A)|pN ≈ |E(A)| << Pcrit < N

and so ε ≈ 0 for large N.
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2.11 Small World graph

Consider a Small World graph with N nodes where each node has k edges and

p is the probability of any edge being rewired. Such graphs can often be rep-

resented as rewired dimensional lattices. In principle, the lattice can be of a

dimension d, but this is not a parameter frequently used in Small World graph

analysis, so for simplicity we keep d = 1. I first examine the simplest case where

p = 0, where the network is an unrewired lattice. I present a lemma that gives

the baseline bias for this case, i.e. the bias when the local information set of

every a in S (A) consists entirely of L(a), a’s network neighbors.

Lemma 2.11.1. For an unrewired lattice graph G with each node having k edges, and

a contagious phenomenon seeded with one node e and its network neighborhood, so

E(A) = e ∪ Nbrs(e), if the contagious phenomenon reaches at least Pcrit nodes, the bias

associated with local information set L(a) for node a is:

Bias(L(a)) = ρcrit |D(a, E(A))k − Pcrit|

where D(a, E(A)) is the graph distance between a and the seed cluster E(A).

Proof. The case where contagion does not reach Pcrit nodes is covered in subsec-

tion 8.1, so we are interested in the alternative - the case where contagion does

reach Pcrit nodes. Recall that in this case the bias for node a is given as the dif-

ference in time steps between the point when contagion infects node a and the

point when it infects Pcrit nodes.
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Since the network structure of an unrewired lattice is isomorphic across all

neighborhoods, successful contagion will spread in a uniform pattern isomor-

phic to the seed cluster. The seed cluster contains k + 1 nodes total, a seed node

plus its k neighbors. For minimal threshold ρcrit = 1/k, at each time point conta-

gion will infect an additional k nodes. For maximum threshold that can spread

on the lattice, somewhere around 1/2 (cite - Morris), at each time point conta-

gion will infect an additional 2 nodes. So contagion will infect Pcrit nodes after

ρcritPcrit time steps.

At the same time, if the local information set of a is L(a), contagion will in-

fect a shortly after it infects its immediate network neighbors. The distance d

between the seed and a’s network neighbors is D(a, E(A)) − 1. In each time step,

contagion covers between 1/d (for ρcrit = 1/k) and k/(2d) (for rhocrit = 1/2) of

that distance: of the nodes it infects in each time step, exactly one half form an

unbroken path that is between E(A) and a on both endpoints. So contagion will

infect a’s neighbors after ρcritD(a, E(A))k time steps. So the bias for node a will

be given by:

Bias(L(a)) = O (ρcrit |D(a, E(A))k − Pcrit|)

It is important to note that this bias value is unknown for agents a, since they

don’t know how close, or far, they are to E(A). We have to include randomly

selected agents ag into a’s local information set to get a determinate bound on

bias.

Now consider the local information set L′(a) = al[q]ag[r], i.e. with exactly q
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elements al and exactly r elements ag. We already know what happens when

r = 0. Therefore, it is possible to calculate the improvement in bias by consid-

ering the marginal effect of increasing r in L′(a). We begin by calculating the

distribution in the distance between nodes ag and E(A) as a function of r. For

simplicity, we hold q constant at 0.

Lemma 2.11.2. For a Small World graph G represented as an unrewired lattice with

each node having k edges, and a contagious phenomenon seeded with one node e and its

network neighborhood, so E(A) = e∪Nbrs(e), and a local information set L′(a) = ag[r],

no more than 1/z2 of the r nodes will fall outside of z standard deviations σ from the

expected value E(P) of distance between ag and E(A), where:

E(P) =
1
2

(N
k

+ 1
)

σ(P) =

[(N
k

+ 1
) (1

6

(
2N
k

+ 1
)
−

1
4

(N
k

+ 1
))]1/2

Proof. Consider the case where r = 1. Then L′(a) contains exactly one agent ag

picked uniformly at random from the total population (since the graph is de-

gree regular, each agent has equal probability of being picked using the random

strategy). As in the previous lemma, we are interested in the distance between

this randomly picked agent and E(A). This distance is picked from a distribu-

tion:

P = P(D(ag, E(A))

Note that all agents are evenly distributed into bins of k agents each that are at

56



some distance D from E(A). The closest bin is distance 1 away from E(A) and the

furthest bin is distance N/2 away from E(A). By Chebyshev’s inequality(cite), no

more than 1/z2 agents can be further than z standard deviations σ away from the

mean E(P). The mean is given by:

E(P) =
1
N

N
k∑

i=1

ki =
k
N

N
k∑

i=1

i

=
1
2

(N
k

+ 1
)

The standard deviation of P is given by:

σ(P) =
√

E[(X − E(P))2]

E[(X − E(P))2] =
k
N

N
k∑

i=1

(
i −

1
2

(N
k

+ 1
))2

=
k
N


N
k∑

i=1

i2 −

(N
k

+ 1
) N

k∑
i=1

i +
1
4

(N
k

+ 1
)2


=
k
N

(
1
6

N
k

(N
k

+ 1
) (2N

k
+ 1

)
−

1
2

(N
k

+ 1
) (N

k

) (N
k

+ 1
)

+
1
4

(N
k

+ 1
)2)

=

(N
k

+ 1
) (1

6

(
2N
k

+ 1
)
−

1
4

(N
k

+ 1
))

σ(P) =

[(N
k

+ 1
) (1

6

(
2N
k

+ 1
)
−

1
4

(N
k

+ 1
))]1/2

We now have all the tools to prove the following theorem:
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Theorem 2.11.3. For a Small World graph G represented as an unrewired lattice with

each node having k edges, and a contagious phenomenon seeded with one node e and

its network neighborhood, so E(A) = e ∪ Nbrs(e), populating the local information set

L′(a) of a with r agents picked at random from the population (ag) will at best decrease

the bias of a as O(
√

r) up to the theoretical maximum threshold ρcrit = 1/2.

Proof. Recall from Lemma 10.1 that when the local information set of a is L(a),

the bias is a function of Pcrit and the distance between E(A) and a. In the case

where r > 0 (and q as in Lemma 10.2, set to 0), the bias is no longer a function

of the distance between E(A) and a since a no longer relies on its immediate net-

work neighbors when deciding whether to adopt the contagious phenomenon.

Instead, a relies on some random nodes ag and will become infected when these

nodes become infected, or not at all. When r = 1, the bias of node a is given by:

Bias(L′(a)) = O
(
pcrit

∣∣∣D(ag, E(A))k − Pcrit

∣∣∣)
= O (pcrit |E(P)k − Pcrit|)

The advantage of this new bias value is that it is known to the agents, because it

can be calculated from known information (N, k, and Pcrit). The agent can now

estimate the impact of increasing r on the bias. As more and more randomly

picked agents are added to this local information set, Chebyshev’s inequality

states that some very few of them will fall far outside the mean. In particu-

lar, in a set of r agents, Chebyshev’s inequality states that at most one agent

(1/r) will fall
√

r standard deviations away from the mean. Since the mean E(P)

and the standard deviation σ(P) are both O(N/k), then a choice of r randomly

picked agents will yield at most 1 agent that lies outside the following range of
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distances from E(A):

(
1
2

(N
k

+ 1
)
−
√

rc
N
k
,

1
2

(N
k

+ 1
)

+
√

rc
N
k

)

for some constant c. The one-sided version of Chebyshev’s inequality allows us

to pick one side of that range (for instance, picking all the nodes that are more

than
√

r standard deviations closer to E(A) than the mean, by changing r to r + 1

(no significant impact on sample size).

First let’s consider the case where Pcrit << E(P)k. Then most randomly

picked agents will lie relatively far away from E(A), so relying on their informa-

tion will prevent a from adopting early enough, keeping the bias at the expected

value for r = 1 or even increasing it. As r goes up, however, a very small num-

ber of agents will be located closer than expected to E(A). Since the threshold

is very low, even one of these agents might bring a over the adoption threshold

earlier than it would have by relying only on a few randomly picked agents, and

thus decrease the bias. A linear increase in the size of r will bring a square-root

increase in the number of these closer nodes, and a square-root decrease in the

bias.

Now consider the case where Pcrit = E(P)k. Then:

ρcrit = Pcrit/N = E(P)k/N ≈ 1/2

which is the theoretical maximum threshold for a contagious phenomenon to

spread on an unrewired lattice, as cited above.
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We show the behavior of a’s bias as a function of Pcrit and r for specific val-

ues of these parameters in the simulation section. We also investigate interest-

ing behavior linked to the usage of nodes with L′(a) = a∗g as “shortcuts” in the

network.

We conclude by investigating the case where p > 0 so some of the ties are

rewired. In this case, the network is truly a small world, as it maintains some

degree of clustering, but also gains high connectivity.

Theorem 2.11.4. For a Small World graph G represented as a rewired lattice with each

node having k edges and edge rewiring probability p, and a contagious phenomenon

seeded with one node e and its network neighborhood, so E(A) = e∪ Nbrs(e), for ρcrit ≤

1/k, the phenomenon spreads throughout the entire network in a logarithmic number

of steps, so the average number of sub-optimal time steps for nodes in S (A) is minimal

given original local information set L(a).

Proof. A Small World graph has the connectivity of a Poisson Random graph,

and, as in a Poisson Random Graph, the targets of the rewired ties are random.

Since degree remains constant throughout rewiring, at ρcrit ≤ 1/k the contagious

phenomenon can spread through any tie in the network, and will follow the

spread pattern of a successful contagious phenomenon on a Poisson Random

Graph, infecting all nodes in a logarithmic number of steps, as per the argument

in Theorem 2.10.1

Finally, there is the case of Small World graphs where 1/k < ρcrit. I do not

present a formal proof for this case. Instead, I describe a general outline for

a’s strategies. In this case, as I will show in the next chapter, contagion goes

through two phases: a “ramp-up” phase when it moves through short-range
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ties outward from E(A) and a “critical” phase when contagion begins to take

advantage of the rewired ties. In the second phase, contagion behaves exactly

as simple contagion with ρcrit ≤ 1/k. The crucial question then becomes: does the

“critical” phase begin before, after, or exactly when Pcrit nodes have become in-

fected? In the first case, it is a’s goal to become infected later in the critical phase

than it would normally be infected if relying on L(a). In this case, a can mini-

mize bias by increasing r: even though most nodes will become infected very

quickly, merely by increasing the number of nodes in its local information set a

can increase the chances that it will discover some agents that become infected

later than others, and so delay its adoption time step. In the second case, it is

a’s goal to become infected before the critical phase. Again, a can accomplish

this by raising r, as it increases the chances of including nodes in E(A) or close

by in its information set. In the last case, the rest of the nodes become infected

shortly after the “critical” phase begins, and we can use reasoning similar to

Theorem 10.4 to show that 1 − Pcrit nodes behave optimally with their original

local information sets L(a).

2.12 Preferential Attachment Graph

The last model graph case we consider is the preferential attachment graph [12].

This graph model differs from the previous two: unlike the random graph, ties

are not created randomly between two nodes but rather in proportion to their

degree. This means some redundancy exists in the graph structure and I cannot

apply my analysis of local information sets on random graphs directly. At the

same time, the preferential attachment graph is far from degree-regular, so even

for a fixed value of ρcrit across all agents, a very few high-degree agents will take
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a lot of infected neighbors before they themselves become infected. As a result,

I cannot apply my analysis of local information on small world graphs. Instead,

I focus on a different analytical approach rooted in the existence of very-high

degree agents in preferential attachment graphs and the importance of those

agents for the graph’s connectivity.

I begin with a simple lemma:

Lemma 2.12.1. For a Preferential Attachment graph G with maximum agent degree

kmax, and a contagious phenomenon with threshold ρcrit ≤ 1/kmax, the number of time

steps any node behaves suboptimally is logarithmic in N, the number of nodes in G.

Proof. When ρcrit ≤ 1/kmax, any agent in the network will become infected

with having as little as one infected neighbor. In essence, the contagious phe-

nomenon can leverage any and all ties, starting with the ties out from E(A), to

spread throughout the graph. Thus, the contagious phenomenon will expand

outward from E(A) and reach any node a in S (A) in the number of time steps

equal to the number of hops in the shortest path between E(A) and S (A). In a

preferential attachment graph, the length of this path is logarithmic in G, so a

will become exposed to (and adopt) the contagious phenomenon in O(log(N))

time step.s

This lemma is helpful for setting a lower limit for the spreadability of conta-

gion on preferential attachment graphs, but the limit it places is in most cases too

low to be realistic. Given the highly skewed degree distribution of these graphs,

1/kmax can easily be as low as 1/1000 or less. Behaviors with such low threshold

may be very rare in nature. What happens when a higher-threshold contagious

phenomenon spreads on a preferential attachment network? To shed light on
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this question, I prove the following theorem:

Theorem 2.12.2. For a Preferential Attachment graph G with maximum agent de-

gree kmax, and a contagious phenomenon with threshold ρcrit > 1/kmax, the contagious

phenomenon begins by infecting nodes with lower degree to accumulate sufficient re-

inforcement ties to infect nodes with with higher degree. Specifically, if the contagious

phenomenon can infect nodes with degree less than d with just one exposure, then with

likelihood at most Ξφl(G) it can eventually overcome the threshold:

ρcritmin =
Ξ

Nk2−α
max − 1

where:

φl(G) = 1 − (1 − fg(d))l

Ξ < |E(A)|((1 − c)d)l

fg(d) = O
(

1
dα−2

)

In the equations above, c is a clustering coefficient parameter that gives the asymptotic

clustering coefficient for a node with degree d in a Preferential Attachment graph, and l

is a parameter indicating the length of a path outward from E(A) that contains no node

with degree d or greater.

Proof. I first outline the argument for this proof. When ρcrit > 1/kmax, the highest-

degree agents in the network need multiple ties to infected individuals be-

fore they themselves become infected. In its initial stages, the contagious phe-

nomenon must “sidestep” these agents as it spreads outwards from E(A) and
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infects lower-degree agents first. However, there is an important obstacle in

the way of this further diffusion - due to the nature of the preferential attach-

ment graph, all paths from E(A) to other agents in G are most likely to lead

through higher degree agents. A tradeoff emerges: the further the contagious

phenomenon spreads outward from E(A), the less likely it is to spread further,

since all paths are “blocked” by high-degree agents, but the more agents it has

infected, the more likely the contagious phenomenon is to have sufficient rein-

forcing ties to overcome the threshold of high-degree agents.

I now formalize this argument.

Consider a path P outward from E(A) of length l. This path is much more

likely to go through higher-degree nodes than lower-degree nodes. The fre-

quency f of these nodes is given by the definition of a preferential attachment

graph. Specifically, the likelihood f (d) of an edge pointing to a node with degree

d is:

f (d) =
d|{i ∈ G : deg(i) = d}|

S DG

where S DG is the sum degree over all nodes in G. In the limit, we can approx-

imate this quantity in terms of the degree distribution of G, which follows a

power law:

f (d) ≈
dP(d)∫ kmax

1
xP(x)dx

=
d1−α∫ kmax

1
x1−αdx
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now consider the likelihood fg(d) of an edge pointing to a node with degree d or

greater, which follows from the above:

fg(d) ≈

∫ kmax

d
x1−αdx∫ kmax

1
x1−αdx

=
k2−α

max − d2−α

k2−α
max − 1

= O
(

1
dα−2

)

Having the baseline probability of any edge in G pointing to a node with at least

degree d, we can calculate the same for any edge in a sequence of l edges. Let’s

call this quantity φl(G):

φl(G) = 1 − (1 − fg(d))l

Going back to the original problem, φl(G) tells us the likelihood that a path of

length l will have at least one node with degree at least d. Now consider all

paths out of E(A) of length l. The number of such paths is bounded by the sum

degree of the nodes in these paths (at most d − 1) and the clustering coefficient

of these nodes, which gives the fraction of paths that “loop back” on each other.

Specifically, the number Π of paths of length l out of E(A) is bounded by:

Π < |E(A)|((1 − c)d)l−1

where the clustering coefficent c of a node with degree d is O(d−1) [65]. Note

that this bound is only valid when c is low, as it is for Preferential Attachment
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graphs. The expected fraction of the paths that have at least one node with

degree at least d is bounded by:

Πφl(G) < 1 − (1 − fg(d))l|E(A)|((1 − d−1)d)l

This quantity gives the expected number of paths of length l that the contagious

phenomenon will spread through while avoiding nodes of degree d or greater.

Similarly, we can bound the number of nodes that lie within l steps from E(A)

as

Ξ < Π(1 − c)d

We can use the same formula as above to give the fraction t(d) of these that point

to nodes with degree d:

t(d) =
dP(d)∫ kmax

1
x1−αdx

Note that we here want to focus on nodes with degree exactly d which have

the greatest chance of being infected through reinforcing ties, as opposed to all

nodes with degree d or greater. The number of nodes within l distance from E(A)

that point to nodes with degree at least d is, in turn, given by Ξt(d). Meanwhile,

the number of nodes with degree d in the entire network is given by NP(d), and

each of the source nodes is equally likely to point to a target node, so the final

expected number of infected nodes pointing to a node with degree d is:
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t(d)Ξ/(NP(d)) =
Ξd

Nk2−α
max − 1

This quantity divided by d, finally, gives the expected threshold that can be

overcome by a contagious phenomenon as it avoids nodes of degree d or greater:

ρcritmin =
Ξ

Nk2−α
max − 1

2.13 Simulations

I conclude this section with a few simulation results that corroborate the analy-

sis above and extend it to cover more complex network structure and threshold

combinations. I begin with a simple plot of the size of infected cluster vs ρcrit

for a Poisson Random graph (N = 1000 nodes, p = .01). The plot shows that,

indeed, below ρcrit = 1
N p the contagious phenomenon takes over the entire net-

work, while above it the contagious phenomenon takes over only a few nodes.

Note that the transition does not happen exactly at 1
N p due to the stochastic na-

ture of tie formation in the network.

Separately I show the average bias for the default local information set L(a)

over all nodes a in S (A) (as defined in section 6) vs. ρcrit. For ρcrit <
1

N p , the

bias is small, on the scale of log(N). Above this value, bias is 0 as the contagious

phenomenon never spreads beyond the seed nodes and so does not infect nodes

in S (A).
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Figure 2.1: ρcrit vs. size of infected cluster for Poisson Random Graph
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Figure 2.2: ρcrit vs. average bias for Poisson Random Graph
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Figure 2.3: r vs. average bias for Unrewired Lattice Graph

We now examine the unrewired lattice graph (N = 1000 nodes, k = 4) and show

the effect of increasing r on average bias, for ρcrit = 1/k. The points show av-

erage bias vs. the value of r on log-log axes (points), the best fit to the data,

and a fitted line of the form y ≈
√

(x) (red line). The first set of results show a

dramatic decrease in bias as r increases that greatly exceeds the expectations set

by analysis. After further investigation, I have discovered why this is the case:

in the model as written, a node in S (A) can, once infected, go on to infect its

neighbors if the ρcrit is sufficiently low. As a result, nodes in S (A) that by chance

have their local information sets close to the seed nodes act as “shortcuts” in the

network, accelerating the spread of the contagious phenomenon. This has two

effects: one, it decreases the time to infect Pcrit nodes. Two, it decreases the time

to infect other nodes in S (A). As a result, bias shrinks overall.

To correct for this effect, I changed the simulation to never spread through nodes

in S (A) - so nodes in S (A) can become infected, but can never infect their neigh-
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Figure 2.4: r vs. average bias for Unrewired Lattice Graph without “short-
cuts”

bors. This change prevents these nodes from acting as shortcuts without dra-

matically changing the other aspects of the diffusion process (so long as the size

of S (A) is small, and ρcrit low, the contagious phenomenon can essentially ignore

these nodes as it spreads throughout the network). After changing the simula-

tion, I reran it to generate a new plot of average bias vs. r as shown in Figure

2.4. The plot shows a sublinear decrease in bias as a function of r that is consis-

tent with the square root function (again, a fitted function of the form y ≈
√

(x)

is shown as a red line). For higher values of r, the decrease becomes slower

yet, indicating that while
√

r remains an upper bound for bias decrease, other

factors may contribute to an even slower decrease in bias. It remains an open

question what these factors are and how to account for them.

Finally, I plot the time to infect all nodes vs. ρcrit for a Barabasi-Albert prefer-

ential attachment graph (N = 1000 nodes, m = 5). I vary ρcrit from 1/kmax to

1/kavg, the average network degree. As expected, the time to infect all nodes t
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Figure 2.5: time to infect all nodes vs. ρcrit for Barabasi-Albert graph

is logarithmic in N and goes up linearly as ρcrit goes up due to the delay factor

of accumulating sufficient reinforcement ties to infect the highest-degree nodes.

As a result, average bias over this set of ρcrit values remains logarithmic in N.

2.14 Discussion

The analytic and simulation results suggest several high-level observations

about strategies for optimizing local information sets of agents to adopt as close

as possible to the globally-optimal time step. The first observation is that net-

work structure often plays a more important role than threshold. For instance,

on a Poisson Random graph, the optimal strategy is to maintain one’s original

local information set L(a) regardless of the threshold ρcrit. In contrast, on an un-

rewired Small World graph, the optimal strategy is to query nodes at random

from the population, again across the range of ρcrit values. This observation sug-

71



gests that real-world applications of this model should pay attention to network

structure at least as much as if not more than threshold value: trying to optimize

the adoption behavior of agents in a poorly-connected network with few hubs

is very different than trying to optimize the behavior of individuals in a well-

connected network with many hubs, both for high-threshold and low-threshold

contagion.

The second observation is that for well-connected networks with little local

structure (such as the Poisson Random Graph and the Preferential Attachment

Graph), the original local information set L(a) is often an optimal local infor-

mation set. Low-threshold contagion on these networks spread in logarithmic

time, making any potential improvement from changing local information sets

effectively insubstantial. In contrast, high-threshold contagion will often not

spread at all, as these networks lack the redundant ties to facilitate their spread.

The third observation is that the analysis and simulations are closely linked

to the somewhat stylized structure of the model. Empirical networks exhibit a

complex interplay of local structure and global interconnectivity that is hard to

capture in a model network. Individual decision-making often does not follow

strict utility functions. Tie strength is not homogeneous in empirical networks,

and people in the real world may pay more attention to the decisions of their

close friends than to those of acquaintances. It is important to be aware of these

differences and not assume that the results of analysis and simulation in this

chapter will carry over to real-world agents. More research is required, both on

individual decision-making patterns, on the structure of social networks, and on

the nature of social contagion in general, before it is possible to translate models

into experiments and policy implications. Still, I remain confident that the core
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principles outlined in this chapter will survive, in some form, application to

real-world problems of optimal decision-making, such as misinformation con-

tagion.
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CHAPTER 3

CHAPTER 3: COMPLEX CONTAGION AND CRITICAL MASS

Why do some contagion “go viral” and others do not? Research on “small

world” networks [72] shows how a very small number of long-range ties that

bridge between clusters can allow contagion to spread almost as rapidly as on

a random network of equal density. Recent research shows how long-range ties

that accelerate the spread of information and disease can impede the spread of

complex contagion—behaviors, beliefs and preferences that diffuse via social in-

fluence and therefore often require contact with multiple adopters [21]. In con-

firming this result analytically and extending the analysis from small world to

power law networks, we discovered that complex contagion requires a critical

mass of infected nodes that corresponds to a phase transition in the ability of the

contagious phenomenon to take advantage of the ”shortcuts” created by long-

range ties. We demonstrate how this critical mass is related to the dynamics of

the contagious phenomenon and identify implications for modeling behaviors

that spread via social influence, such as viral marketing and social movements.

3.1 Background

“Critical mass” refers to the point at which a dynamical process becomes self-

sustaining, as in nuclear fission. Our interest focuses on critical mass in the

spread of complex contagion [21] – behaviors, beliefs, and preferences that

spread via social influence and therefore require contact with multiple adopters.

Examples include the tipping point in the adoption of a virally marketed prod-

uct, the take-off point at which a new fashion becomes a fad, and the sudden
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explosion of participation in a new social movement whose appeal increases

with its popularity. For complex contagion, critical mass is the level of infection

at which the contagious phenomenon becomes self-sustaining, such that each

additional infected node leads to one or more additional nodes to become in-

fected, until the contagious phenomenon saturates the target population. We

model the dynamics of critical mass in complex contagion and identify the criti-

cal value at which the spread of complex contagion phenomenon becomes self-

sustaining. We show how this value can be derived analytically, and how the

value depends on network topology and the network externality of the conta-

gious phenomenon.

In contrast to simple contagion, complex contagion have a critical value at

both the individual and the network levels. At the individual level, network

externality refers to the effect of infection of some node in a network on the

probability that adjacent nodes will also become infected. The spread of many

social contagion phenomena—which may be risky or costly to adopt—has a

positive network externality, so the probability of a node’s infection increases

with the number of that node’s infected neighbors. We focus on a very simple

model of positive network externality: the threshold model of contagion, where

a node will become infected if and only if a critical fraction of its neighbors have

become infected. This property has important implications for the population

dynamics: complex contagion phenomena may die out early on due to a lack of

redundant exposures to multiple infected neighbors. Thus complex contagion

can have a critical value at both the individual level and the population level.

At the individual level, the critical value is the proportion of neighbors who

must be infected in order to infect a given individual, which we define as the

”threshold.” At the population level, the critical value is the proportion of the
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population who must be infected in order for the contagious phenomenon to

become self-sustaining, which we define as the ”critical mass.” Our research in-

vestigates the relationship between individual-level thresholds and population-

level critical mass in social contagion.

The population-level and individual-level critical values are known to be re-

lated [34, 62], but the form of the relationship is not well understood. We show

that for two widely studied network structures – small world and power law

networks – a population-level critical mass exists that may be far smaller (as a

proportion of population size) than is the individual level threshold (as a pro-

portion of neighborhood size, where a neighborhood is defined as a node and all

nodes adjacent to it). This critical mass corresponds to a phase transition, from

local to global propagation, once the contagious phenomenon acquires the abil-

ity to escape the region of initial infection via long-range ties that bridge across

clusters. We demonstrate how this critical mass is related to the dynamics of

the contagious phenomenon. Prior to reaching critical mass, complex conta-

gion phenomena are fragile and highly dependent on the idiosyncrasies of local

network structure. However, once contagion reach critical mass, they become

self-sustaining and highly likely to spread throughout a connected population.

In the conclusion, we discuss the theoretical implications of our analysis for

explaining how and why contagion phenomena ”go viral” and the practical im-

plications for viral marketing and social movement mobilization.

Empirical research into complex contagion is a relatively new field, how-

ever, we would like to draw attention to two recent studies. Centola [20] stud-

ies the spread of health behavior in artificially structured online communities,

and finds that individual adoption was more likely when participants received
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social reinforcements from multiple network neighbors and that health behav-

ior spread farther and faster across clustered-lattice networks than across cor-

responding random networks. Romero et al. [60] study the diffusion of “hash-

tags” (which include information, memes, and proxy for certain behaviors like

joining a political movement) through the Twitter social network and find that

hashtags related to internal Twitter memes are less likely to be adopted after

multiple exposures relative to hashtags related to politics, suggesting that polit-

ical hashtags may more closely resemble complex contagion than memes. Based

on these and other studies, we believe that our research into the dynamics of

complex contagion has appications to the spread of behaviors and products in

the real world.

3.2 Model

Our research builds on and extends the model of complex contagion developed

by Centola and Macy [21], which is identical to the Watts and Strogatz small-

world model [72] except that it allows for individual thresholds greater than

one. The model operates on a networked population of N agents, where each

agent has one binary state, “infected” or “uninfected,” representing whether the

individual has adopted a behavior (e.g. acquired a new technology), belief (e.g.

an urban legend), or norm (e.g. smoking is uncool). The agents in this popu-

lation can change their state only from uninfected to infected, in the following

deterministic way: if some threshold quantity a, or fraction z/n of an uninfected

agent’s neighbors are infected, its state changes to infected as well. The quan-

tity a is called the absolute threshold of infection for a node, and the fraction z/n

is called the relative threshold of infection. We first consider the case of absolute
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thresholds but explore relative threshold models towards the end of our analy-

sis. Following Centola and Macy, we define ”simple contagion” as a=1 for abso-

lute thresholds and z = 1/n for relative thresholds. A contagious phenomenon is

”complex” if a > 1 or z > 1/n. A small set of nodes A have threshold a = 0, corre-

sponding to ”innovators” who will buy a product or join a movement without

social influence from prior adopters in their neighborhood. Centola and Macy

restrict the set A to the neighborhood of a randomly chosen node. Starting with

the set A, the contagious phenomenon is propagated throughout the population

until no more agents can be infected (which can happen if all agents are infected

or if no uninfected agent has at least a infected neighbors (or z/n)).

3.3 Analysis

Centola and Macy focus on the spread of complex contagion on a perturbed

regular lattice of degree eight, with p ties that are randomly rewired (0 ≤ p ≤ 1)

in pairs so as to leave the degree of each node unchanged. If p = 0, all ties in the

lattice have range 2 since every pair of adjacent nodes has at least one neighbor

in common. A small amount of random rewiring transforms the lattice into a

”small world” network characterized by a few long range ties and high average

clustering coefficient. That is because random rewiring on a large lattice almost

always replaces ties with minimal range (a path length of two steps) with long-

range ties that create “shortcuts” for the spread of a contagious phenomenon

over the lattice. These shortcuts allow simple contagion to spread throughout

the network far more quickly than would be possible along highly clustered

short-range ties. For example, in a small-world network of N nodes, the path

length between any two nodes via short-range ties is O(N1/2) steps, whereas the
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path length via long-range shortcuts is O(log(N)) steps.

Centola and Macy’s contribution was to show that complex contagion phe-

nomena spread farther and faster on an unperturbed lattice (p = 0) than on a

small-world network (e.g. p = .1). The spread of these phenomena on a small

world network depends on the probability of contact with additional infected

neighbors, given that there is contact with one infected neighbor. For nodes

whose networks are highly clustered (their neighbors are also neighbors of one

another), if a node has one infected neighbor then that node is highly likely to

have other infected neighbors, even when the proportion of the population that

is infected is still very small. In contrast, for nodes whose neighbors are ran-

domly chosen, when the size of the infected population is small, so too is the

probability that a node will have additional infected neighbors, given that the

node has one infected neighbor. As the number of infected nodes grows, so too

does the probability that random ties will connect an uninfected node with a

sufficient number of infected neighbors for that node to also become infected.

We identify the critical mass as the point at which the proportion of infected

nodes is sufficient for contagion to take advantage of the shortcuts created by

long-range ties. For simple contagion, the critical mass is uninteresting, since

it is achieved at a single infected node, i.e. the seed node of the contagious

phenomenon. For complex contagion, the critical mass is always greater than

one, and knowing how much greater is important from both a theoretical and

practical perspective.
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3.3.1 Small World Networks

We begin by deriving the critical mass for small world networks, modeled as a

perturbed regular lattice. This model captures two defining properties of em-

pirically observed small world networks – that most ties have minimal range

(the modal range is 2 in most empirical networks), while the network also has

a relatively small number of long-range ties. The short-range ties correspond to

the high level of clustering that is observed in most empirical social networks,

while a few long-range ties make possible the surprisingly short mean geodesic

(such as the widely observed “six degrees of separation”). Rewired ties on the

perturbed lattice are a highly stylized representation of the empirical regularity

that nodes in a social network have some mix of highly clustered ties (usually to

close friends and family) and long-range ties (usually to acquaintances). Follow-

ing Centola and Macy, we impose the conservative simplification that infected

acquaintances exert as much influence as close friends. Relaxing that assump-

tion is equivalent to increasing a, the threshold number of infected neighbors

that are required for a node to become infected. The derivation of the critical

mass is based on the probability PRWa of an uninfected node having a rewired

ties to infected nodes, as the number of infected nodes increases.

Theorem 3.3.1. Given a randomly rewired lattice of N nodes, where every node has

probability p of having one of its ties rewired, and I infected nodes on that network, the

probability that any uninfected node c has a rewired ties to infected neighbors is given

by:

PRWa ≈ 1 − PNIa(c)(
k
a)(N−I) (3.1)
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where

PNIa(c) = 1 − pa + pa


(

N−1
a

)
−

(
I
a

)(
N−1

a

)  (3.2)

Proof. We can interpret PRWa as one minus the probability that no node has a

rewired ties to infected nodes:

PRWa = 1 −
∏

(c)∈V\F

PNI(c) (3.3)

where V is the set of all nodes and F is the set of infected nodes. Then, PNI(c)

is the probability that c does not have rewired ties to a infected nodes. This

probability is approximately uniform over all c on a randomly rewired lattice,

except in the case where N − I is very small so the number of possible targets

that are not infected nodes is quickly exhausted. Given this qualification, we

can rewrite the above as:

PRWa ≈ 1 − PNI(c)N−I (3.4)

NI(c) holds if we can’t pick a of c’s ties such that all a are rewired and both point

to infected nodes. There are
(

k
a

)
independent ways to pick a of c’s ties, where k

is c’s degree (uniform over all nodes in a lattice). So we can again rewrite:

PRWa ≈ 1 − PNIa(c)(
k
a)(N−I) (3.5)

where PNIa(c) is the probability that, having picked some set of c’s ties with a

elements, at least one of these ties is not rewired and/or does not point to an
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infected node. Tie rewiring is an independent process (the probability of one

tie being rewired does not affect the probability of other ties being rewired), so

with probability 1 − pa at least one tie is not rewired and NIa(c) holds. In the

opposite case, NIa(c) still holds so long as the targets of all a ties are not in F.

Note that the number of possible targets of c’s ties is N−1, since c can’t have ties

to itself. More formally:

PNIa(c) = 1 − pa + pa


(

N−1
a

)
−

(
I
2

)(
N−1

a

)  (3.6)

For small a, we can approximate PNIa(c) as follows:

PNIa(c) ≈ 1 −
( pI

N

)a

(3.7)

This theorem calculates the most conservative case where a contagious phe-

nomenon has to spread to some node entirely via long-range ties, even though

it is possible for the contagious phenomenon to spread through any combina-

tion of long-range (rewired) and short-range (unrewired) ties. Consequently,

the results in this paper slightly understate the point at which a contagious phe-

nomenon begins to take advantage of shortcuts in the network. We follow the

conservative approach for two reasons: greater simplicity of analysis, and (more

importantly) the implication of spreading entirely through long-range ties for

the growth rate of the contagious phenomenon, which we discuss towards the

end of the paper.
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3.3.2 Power Law Networks

Theorem 3.1 can be extended beyond the rewired lattice. We now present a

lemma that derives an approximation to PRWa for power law networks. In

power-law networks, the notion of a “rewired” tie does not apply. Instead, fol-

lowing the Barabasi-Albert model of power-law networks [12], we assume that

ties are formed according to preferential attachment, with higher-degree nodes

more likely to be the targets of ties.

Lemma 3.3.2. Given a power-law network of N nodes with sum degree NI where de-

gree follows a power-law distribution and ties are formed according to preferential at-

tachment, and I infected nodes with sum degree S I on that network, the probability that

any uninfected node c has a ties to infected neighbors is approximated by:

PLRa ≈ 1 −
[
1 −

( S I
S N

)a]kαNTa

(3.8)

where k is a factor parameter given by:

k =
aa

a!
(3.9)

and NT is a parameter estimated from the degree distribution by:

NT ≈ (N − I)
a

mindeg

−α+1
(3.10)

with mindeg the minimum degree in the network and α the power law exponent.

Proof. The proof is very similar to the proof of Theorem 3.1, so here we con-
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centrate only on the differences. First, PNIa(c) no longer depends on rewiring.

Without preferential attachment, we could write PNIa(c) as simply:

PNIa(c) =

(
N−1

a

)
−

(
I
a

)(
N−1

a

)
= 1 −

(
I
a

)(
N−1

a

)
≈ 1 −

( I
N

)a

The only correction we have to make is related to the power-law degree dis-

tribution, where each node gets up-weighted by its degree. We can transform

these weights into discrete values by counting each node as many times as it has

degree. Combinations of nodes from the resulting augmented sets are equiva-

lent to weighted combinations from the original sets. The resulting equation

is almost the same, except we substitute S I and S N, the sum degrees of all I

infected nodes and all N nodes in the full population:

PNIa(c) ≈ 1 −
( S I
S N

)a

(3.11)

The other difference from the proof of Theorem 3.1 is that PNI(c) is no longer

uniform over all nodes, as they do not all have the same degree. This results in

the upper exponent N − I being replaced with a sum S E of N − I terms, where

each term represents all the ways to choose a nodes from all the neighbors of a

particular uninfected node:
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S E =
∑

i∈V\F

(
N(i)

a

)
(3.12)

Here N(i) is the number of network neighbors of a particular uninfected node i.

We now examine the terms in this sum. Each of these terms is a fraction:

(
N(i)

a

)
=

N(i)!
a!(N(i) − a)!

(3.13)

we can take 1/a! out of the sum, and transform as follows:

S E =
1
a!

∑
i∈V\F

N(i)(N(i) − 1)...(N(i) − a + 1) (3.14)

for small a and large N(i) (which will dominate the sum), we can approximate

as follows:

S E ≈
1
a!

∑
i∈V\F

(N(i))a (3.15)

Note that we can ignore all terms in this sum where i has fewer than a neigh-

bors (since there are no ways to choose a units from a set smaller than a, those

terms are 0). Since the degree distribution follows a power-law, the number of

uninfected nodes with degree ≥ a is given by:

NT ≈ (N − I)
a

mindeg

−α+1
(3.16)

where mindeg is the minimum degree for any node in the network (we can

crudely estimate it as 1) and α is the exponent of the power law distribution.
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So there are NT terms in the sum overall. In a power-law distribution with

discrete values, term density thins out at a rate proportional to the exponent,

that is, individual degree values will be roughly powers of the exponent α. The

smallest of the relevant values lies somewhere between a and αa. Since a will be

by far the smallest term in the sum, we can drop it and approximate as follows:

S E ≈
1
a!

NT∑
j=1

aaαa j (3.17)

Finally, we can extract aa and the sum becomes a geometric series:

S E ≈
aa

a!
αa(NT+1) − 1
αa − 1

≈
aa

a!
αNTa

3.3.3 Critical Behavior

Number of Infected Nodes

We now examine the behavior of PRWa at limiting values of I. First, let us con-

sider I < a, where a threshold a contagious phenomenon cannot spread. For the

rewired lattice we have:
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PNIa(c) = 1 − pa + pa

(
N−1

a

)
− 0(

N−1
a

) = 1 (3.18)

and for the power-law network we have:

PNIa(c) = 1 −
0(

N−1
a

) = 1 (3.19)

so PRWa = PLRa = 0 for all other parameter values. So the contagious phe-

nomenon is indeed guaranteed not to spread through long-range ties when too

few nodes are infected, because there are too few infected nodes to who unin-

fected nodes might be tied. In the opposite case, when I = N − 1, for rewired

lattice we have:

PRWa = 1 − (1 − pa)(
k
a) (3.20)

which indicates that the probability of the final node being infected depends

only on that node having a rewired ties, as the model suggests. For the power-

law case, PNIa(c) = 0, since it no longer depends on rewiring, hence:

PLRa = 1 − 0S E (3.21)

If S E > 0 (the last uninfected node has degree a or more), then PRWa = 1, since the

node is guaranteed to have a infected neighbors. If S E = 0, then PRWa = 1−00 = 0,

since the node has insufficient ties to become infected.
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Threshold

Next, we consider the behavior of PRWa at limiting values of a for both the

small world (perturbed lattice) and power law networks. For the case a = 0

for rewired lattices we have:

PNIa(c) = 1 − p0 + p0 1 − 1
1

= 0 (3.22)

and for the power-law case we have:

PNIa(c) =
1 − 1

1
= 0 (3.23)

So, assuming p > 0 (for the rewired lattice) and I < N −1, PRWa = PLRa = 1, which

shows that a contagious phenomenon with threshold 0 is guaranteed to spread

on all networks.

Now consider the case of simple contagion with threshold a = 1. For rewired

lattices we have:

PRWa = 1 −
(
1 −

pI
N − 1

)k∗(N−I)

(3.24)

and for the power-law case we have:

PRWa ≈ 1 −
[
1 −

S I
S N

]αN−I

(3.25)

This reduction indicates that the spread of simple contagion via long-range ties

is unproblematic. For rewired lattices, simple contagion will spread across any
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rewired ties between infected and uninfected nodes, even if there is only a sin-

gle infected node in the population. Moreover, for an infected cluster of a given

size, a simple contagion phenomenon on a power-law network is more likely to

spread through long-range ties than the same phenomenon on a rewired lattice,

due to the presence of nodes with very large degree in the power law distribu-

tion.

Rewiring Probability

It is also instructive to consider values of PRWa for rewired lattices for limiting

values of p. For p = 0, we have PNIa(c) = 1, so PRWa = 0 and the contagious

phenomenon cannot take advantage of long-range ties, because there are none.

For p = 1, we have:

PNIa(c) = 1 −

(
I
a

)(
N−1

a

) (3.26)

So the spread of the contagious phenomenon depends entirely on the size of the

infected cluster.

3.3.4 Estimation of Function Behavior

We analyze other critical points of PRWa and PLRa through numerical estimation

rather than by calculating precise solutions. The functional forms for these two

probability functions are not readily analyzable, but numeric estimates of the

functions show a number of interesting properties.
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Figure 3.1 shows PRWa as a function of the number of infected nodes I for

a particular set of parameters, k = 48, a = 2, p = .1, N = 40000. There are

two important features to note. First, there is an inflection point in PRWa as it

goes from ≈ 0 to ≈ 1. This inflection point happens early in the contagious

phenomenon diffusion process, with between 10 (or .025%) and 100 (or .25%)

nodes infected. Second, there is a rapid drop-off in PRWa for very high values

of I, when almost all nodes are infected. Between the inflection point and the

drop-off, the value of PRWa is very close to 1.

Figure 3.1: Inflection and drop-off points in the probability of a rewired
ties to an infected node as the level of infection increases on a
rewired lattice, a = 2, k = 48, p = 0.1, N = 40000

We find that the pattern evident in Figure 3.1 persists across the ranges of p,

a, and N. Below, we will explore the dynamics of PRWa for these parameters, but

here we focus on the only parameter that changes in the above plot, which is I.

This parameter is present in PRWa in two places: PNIa(c) and the exponent N − I.

As I increases, PNIa(c) decreases, causing an increase in PRWa , but the exponent

N − I decreases as well, causing a decrease in PRWa . Therefore, at the inflection

point the change to PNIa(c) outweighs the change to the exponent, while at the

drop-off near I≈N, the reverse happens. In other words, at the inflection point
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the likelihood of some uninfected node having a ties to infected nodes becomes

so high that the smaller pool of uninfected nodes does not bring it down. At

the drop-off, the pool of uninfected nodes becomes so small that the very high

likelihood of some uninfected node having a ties to infected nodes does not

bring the value of PRWa up.

The results of our numerical estimation suggest that the infection process

is self-sustaining between the inflection point and the drop-off. In this region,

each additional infected node adds more long-range ties between infected and

uninfected nodes, and makes further adoption via long-range ties more likely.

The beginning of this region corresponds to a phase transition where the con-

tagious phenomenon goes from spreading exclusively via short-range ties (be-

cause PRWa is near 0) to spreading via both long- and short-range ties (because

PRWa is near 1). This analysis suggests that I∗, the value of I at the inflection point

in Figure 1, corresponds to a critical mass in the size of the infected population,

above which complex contagion can leverage long-range ties with a sufficiently

high probability for propagation via long-range ties to become self-sustaining

(limited only by the declining pool of nodes that remain uninfected).

We now focus on the critical mass phenomenon and explore its values for

rewired lattice networks for a parameter space of different thresholds a and

rewiring levels p. Figure 3.2 below is a heat map that shows critical mass values

for a range of values of a (x axis) and p (y axis), holding k constant at 48 and

N constant at 40000. Colors of the contour plot correspond to values of the

critical mass: red colors indicate low values, yellow values indicate intermediate

values, white colors indicate high values.

Figure 2 shows how, holding p constant, low thresholds yield a smaller crit-
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Figure 3.2: Critical mass increases with threshold a and decreases with
perturbation p on a rewired lattice, k = 48, N = 40000. Colors
indicate critical mass from red (CM = 1) to white (CM = N)

ical mass, and so a faster rate of spread, than high thresholds. For any p > 0,

as a increases, the probability for an uninfected node to have a rewired ties to

infected nodes necessarily decreases. For simple contagion (a = 1), the critical

mass has its minimal value (1 infected node) regardless of p. Conversely, for

contagion with very high threshold (a ≥ 15), the critical mass has its maximum

value N regardless of p. For intermediate thresholds, the critical mass decreases

in p. Intuitively, the more ties that are rewired, the higher the probability that

a node will have a rewired ties to infected nodes, hence a given expected value

requires fewer infected nodes.

We conclude this section by replicating our analysis of PRWa on PLRa . As

power-law networks have no rewiring, we add a new parameter r to represent

the ratio S I/S N, which models the degree of the infected nodes relative to that

of the rest of the population. Formally:

r =
S I/NI

I/N
(3.27)
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Figure 3.3 shows the results for a particular combination of parameter settings,

a = 2, N = 40000, α = 2 and S I/S N = I/N (infected nodes have the same average

degree as all nodes). We find the same overall pattern for PLRa as for PRWa with an

even sharper transition (which appears as a step function due to floating-point

precision limitations).

Figure 3.3: Inflection and drop-off points in the probability of a rewired
ties to an infected node as the level of infection increases on a
power law network, a = 2, r = 1, N = 40000, α = 2α = 2α = 2

In Figure 3.4, we explore values of the critical mass (defined in the same

way as for PRWa) for a range of values of a (x axis) and r (y axis), keeping N

constant at 40000 and α constant at 2. Figure 4 shows that, for a given threshold,

complex contagion phenomena on power law networks have a much smaller

critical mass than complex contagion on rewired lattices. That is because the

higher variance in degree in a power law network, relative to a small-world

network, even with the same mean degree (k = 8) makes it more likely that an

uninfected node will have a ties to a few hubs that have become infected.
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Figure 3.4: Critical mass increases with threshold a and decreases with
skewedness r on a power law network, N = 40000, α = 2α = 2α = 2. Col-
ors indicate critical mass from red (CM = 1) to white (CM = N)

3.3.5 Absolute and Relative Thresholds

The preceding analysis assumed absolute thresholds. In this section, we briefly

consider relative thresholds z/n. In the relative threshold model, a fraction z/n

of a node’s neighbors must become infected for the node to switch its state to

infected. For degree-regular networks such as the rewired lattice, there is no dif-

ference between absolute thresholds a and relative thresholds z/n with respect

to analysis of contagion dynamics. For networks with a non-uniform degree

distribution, such as the power-law network, using a relative threshold makes

the analysis more complex, but it is still possible to make broad observations

about the dynamics of the contagious phenomenon. First, we have to rewrite

PLRa to incorporate the relative threshold z.

Lemma 3.3.3. Given a power-law network of N nodes with sum degree NI where de-

gree follows a power-law distribution and ties are formed according to preferential at-

tachment, and I infected nodes with sum degree S I on that network, the probability that

any uninfected node c has z/n (where n is the node’s degree) ties to infected neighbors is
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approximated by:

PLRz ≈ 1 −
∏

n∈deg(N)

[
1 −

( S I
S N

)dzne]( n
dzne)n−α

(3.28)

where deg(N) is the set of all distinct degree values in the network and α the power law

exponent.

Proof. The proof builds upon the derivation of PLRa but with the understand-

ing that PNIa(c) is now replaced with PNIz(n) which is only uniform for nodes

with the same degree. Substantively, PNIz(n) is the probability that no uninfected

node with degree n has zn connections to infected nodes. Note that the number

of nodes with degree n in a power-law distribution is proportional to n−α.

To analyze PLRz , consider the relationship between PNIz(n) and n. This prob-

ability has three terms, which govern its dynamics. The first is
(

n
dzne

)
, which fol-

lows the inequality:

zdzne ≤

(
n
dzne

)
≤ (ez)dzne (3.29)

By the inequality, the first term is exponentially increasing in n. The second term

is n−α, which is polynomially decreasing in n. The third term is 1−
(

S I
S N

)dzne
, which

approaches 1 at an exponential rate in n. On balance, these terms indicate that

PNIz(n) will approach 1 at a polynomial rate in n. Furthermore, as we discussed

in section 3.2, individual degree values will be roughly powers of the exponent

α. These two factors in combination suggest that elements of PNIz(n) for large n
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will be very close to 1. That is, the very small number of nodes with high degree

and the very large number of neighbors required to infect them will ensure that

hubs of the network are nearly immune to infection.

It follows that the success or failure of contagion with relative thresholds de-

pends decisively on the infection of low-degree nodes. There are two factors

at play: the choice of seed cluster (hub vs. non-hub) and the interconnectiv-

ity between low-degree nodes. Even if one of the seed nodes is a hub, and the

network contains multiple hubs, the contagious phenomenon can only reach

these uninfected hubs by spreading through low degree nodes that are suffi-

ciently clustered to propagate a complex contagion. This observation parallels

a well-known result by Morris [49] that behaviors with a high relative threshold

will spread best through local neighborhoods with a high degree of clustering.

If the contagious phenomenon seed does include a hub, some degree of inter-

connectivity between the low-degree nodes is still necessary, assuming that the

network contains multiple hubs. The fewer hubs in the seed cluster, the greater

the clustering that is needed among the low-degree nodes. A single infected hub

may put its low-degree neighbors over the threshold, but unless those neighbors

can infect further nodes, the contagious phenomenon will not spread. We leave

a more detailed analysis of relative-threshold contagion to future investigation.

3.4 Thresholds and Contagion Dynamics

We turn now from the identification of critical mass to the consequences for

the propagation dynamics of complex contagion, focusing on the contagious

phenomenon growth rate, that is, the proportional increase in the number of in-

96



fected nodes as the contagious phenomenon spreads throughout the network.

More precisely, we define the perimeter of an infected region as the number of

nodes about to be infected given I nodes already infected with the contagious

phenomenon, the area as the total number of nodes already infected by the con-

tagious phenomenon, and the growth rate as the size of the perimeter relative

to the area.

Definition 3.4.1. Given a contagious phenomenon with threshold a (or z/n) con-

tagion and I infected nodes, the perimeter x(I) of that infected set is the number

of uninfected nodes that have a or more (or z/n or more) infected neighbors.

The growth rate of a contagious phenomenon over time is the ratio of the num-

ber of nodes about to be infected (the perimeter) to the number of nodes already

infected, expressed as a function of I.

Definition 3.4.2. The growth rate of a contagious phenomenon λ(I) is given by

x(I)
I as a function of I.

Consider the growth rates of a complex contagion phenomenon on a perturbed

lattice before and after it reaches critical mass, starting with a single infected

neighborhood A. Since the lattice has uniform degree, the analysis applies

equally to absolute and relative thresholds. Before critical mass, the contagious

phenomenon is unlikely to spread through long range ties since it is unlikely

that an uninfected node will have a random ties to infected nodes. So, the con-

tagoni will spread by leveraging the local neighbors of A. Spatially, the neigh-

borhood A resembles a square (for a 2-dimensional lattice; this analysis extends

into lattices of dimension d). The local neighbors of A (i.e. those adjacent to

A) form a perimeter around this square. As these neighbors in turn become in-

fected, the size of the infected square increases, as does the perimeter around it.
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In general, until the contagious phenomenon reaches critical mass, the infected

set will always form a square with area I2 and its perimeter will always form a

square perimeter of size O(I). Then the growth rate λ(I) is given by

λpre(I) ≈
I
I2 ≈ I−1 (3.30)

Thus the growth rate prior to critical mass drops quickly as I increases, for the

simple reason that the perimeter of a square becomes smaller relative to its area

as the area increases.

After reaching critical mass, the picture is dramatically different. The

perimeter of the contagious phenomenon is not limited by the lattice structure,

but also includes the expected number of nodes infected via rewired ties. Spa-

tially, the infected set now consists of the infected square containing A plus the

set of randomly distributed nodes with a random ties to infected nodes. As the

size of the infected square continues to grow, one or more of these randomly in-

fected nodes may eventually be able to help infect one of its local neighbors, and

a second infected square will emerge which grows locally, as does the perimeter

around it. And then a third square, and so on, each happening more quickly

than the last, given the increasing overall number of infected nodes and thus

the increasing probability that an uninfected node will have random ties to a

infected neighbors. More formally, consider the quantity 1 − PNI(c), the proba-

bility of some particular node c having a or more infected neighbors:

1 − PNI(c) ≈ 1 −
[
1 −

( pI
N

)a](k
a)

(3.31)

We see that 1 − PNI(c) is a monotonically increasing polynomial function of I.
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Now consider the quantity NIc, the expected number of nodes that have a or

more infected neighbors. By an argument similar to that stated in Theorem 3.1,

NIc is not exactly uniform over all c as it tends to 0 as the set of available targets

(infected neighbors) is exhausted. The expected number of nodes with a or

more infected neighbors will, then, be a sum of terms dominated by 1 − PNI(c).

The total number of such terms will be N − I, the number of nodes remaining

uninfected. We can now write the post-critical perimeter as follows:

x(I) = O( f (Ia)(N − I)) (3.32)

where f (Ia) is some monotonically increasing polynomial function of I (i.e. 1 −

PNI(c)). Then, the growth rate is given by:

λ(I) = O( f (Ia−1)(N − I)) (3.33)

This is a product of two functions, one monotonically increasing in I, the other

monotonically decreasing in I. At first, λ(I) is dominated by the first term (many

uninfected noes available to infect through rewired ties), and grows in I. As the

number of uninfected nodes declines, the second terms begins to dominate and

λ(I) falls in I. In summary, the growth rate of a complex contagion on a rewired

lattice at first drops quickly in I but then, if the contagious phenomenon reaches

critical mass, the growth rate suddenly takes off and increases in I and then once

again drops in I as the contagious phenomenon runs out of nodes to infect.

We demonstrate this pattern empirically by plotting the observed growth

rate (renormalized as f (I)
I + 1 so the minimal growth rate is 1) against I for a

simulated contagious phenomenon with k = 8, a = 2, p = .1, N = 40000 (Figure
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3.5). The growth rate, shown in black on Figure 3.5, goes through three phases

– first a rapid drop, then a sharp rise, followed by another drop. Figure 3.5 also

shows (in red) the corresponding quantity 1 − PNI(c) ∗ (N − I), which shows the

change in the probability of infection through long-range ties. Note that the

latter starts growing more slowly and falls off later than the observed growth

rate. This is because propagation through rewired ties alone is a conservative

estimate of contagion growth and does not include growth through short-range

ties, which continues after critical mass is reached even though it plays an ever-

diminishing role.

Figure 3.5: Contagion growth rate (black) and probability that a random
node will be uninfected and have a random ties to infected
nodes (red), for a regular lattice with k = 8, a = 2, N = 40000,
p = .1

3.5 Beyond the Threshold Model

Following Centola and Macy, the preceding analyses assume discrete and de-

terministic thresholds of adoption. However, empirical contagion may be more

plausibly modeled as continuous stochastic decisions rather than thresholds.
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Previous studies [11, 41, 68] show that having multiple adopter friends does

increase the likelihood of adoption, sometimes in a non-linear way. We can for-

malize this relationship as follows:

P(adopt|a adopter friends) = f (a) (3.34)

where f is a monotonically increasing function. For small a (region around a = 2

in [11]), f is convex. For large a, f is concave, with each additional adopter

friend contributing a diminishing marginal likelihood of adoption.

We can use this formalism to adapt the analytical results above to conta-

gion phenomena that do not have a deterministic threshold, but do have a posi-

tive relationship between likelihood of adoption and number of adopter friends

(that is, the threshold is stochastic rather than deterministic). As in the previous

section, we focus on the quantity NIc, the expected number of uninfected nodes

that have a or more infected neighbors. We can simulate the behavior of NIc

over values of I and a. Figure 3.6 shows the log of NIc (y axis) as a function of

the log of I (x axis) on a rewired lattice with k = 48, p = .1 and N = 40000 and

a = 2 (green) and a = 3 (brown).

Figure 3.6 shows that for values I below 10000 (1/4 of the nodes infected),

NIc is an exponential function that appears linear on a logged axis. We can

also see that the difference between the number of nodes that have 2 or more

infected neighbors, and 3 or more infected neighbors, diminishes exponentially

and disappears for I > 10000. This general pattern applies across the range of N,

k and p, but for smaller values of k (holding all other parameters constant), the

lines for a = 2 and a = 3 do not converge before the pool of uninfected nodes is
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Figure 3.6: NIc (logged) as a function of the log of the area on a perturbed
lattice, k = 48, p = .1, N = 40000, and a = 2 (green) and a = 3
(brown)

exhausted.

The dynamics of NIc as shown in Figure 3.6 suggest an important property

of the diffusion of stochastic threshold contagion across regular networks: as a

contagious phenomenon leverages long-ranged ties, the number of nodes that

are exposed to a and not a + 1 infected neighbors shrinks exponentially. Given

the relationship between a and likelihood of infection given by f above, this

means that for small values of a, the likelihood of infection increases rapidly

in the early stages of contagion diffusion. Larger values of a yield a smaller

marginal likelihood, and do not need to be considered as closely. However,

predictive models of contagion adoption that take into account f should out-

perform models that ignore the marginal likelihood.

As an illustrative example, we consider the same network as above (rewired

lattice, p = .1, k = 48, N = 40000), and calculate the expected number of adopters

at the next step for a given number of current adopters based on two different

functions f . The first function, f 1, will be linear in a, the second function, f 2,
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will be non-linear in a. For simplicity, we consider only thresholds up to a = 3.

The specific forms of f 1 and f 2 are as follows:

f 1 = ((1, .02), (2, .03), (3, .04))

f 2 = ((1, .02), (2, .05), (3, .07))

Then we can calculate the expected number of adopters by determining the

number of uninfected nodes that have a neighbors and multiplying by the

appropriate value of f (a). We also include a “baseline” expected number of

adopters that is based solely on f (1), ignoring the marginal likelihood of adop-

tion due to multiple exposures. The results are summarized in Figure 7:

Figure 3.7: Expected number of adopters as a fiunction of I using only f1(1)
(black), all of f1 (red), and f2 (green), N = 40000, k = 48, p = .1

For I < 1000 and I ≈ N, the expected number of adopters is the same whether

using f 1(1), all of f 1, or f (2). In the intermediate range I ∈ [1000,N) (2.5%

and 25% of all nodes infected), there is a significant difference in new adopter

expectation. At the peak, around I = 10000 nodes, the “baseline” expectation is
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half as much as the expectation that uses a linear f , and a third as much as the

expectation that uses a non-linear f .

3.6 Discussion and Conclusion

The key contribution of this chapter is the demonstration of a bifurcation point

in the spread of complex contagion – the critical mass. For simple contagion

like information and disease, this bifurcation does not exist. Such contagion can

leverage long-range ties even with only one infected node, hence a single seed

is sufficient to create a critical mass.

For complex contagion, in contrast, the growth process will have two phases

separated by a very sharp transition. Initially, the contagious phenomenon can

only spread locally, that is, via short-range ties. Once every node that is reach-

able via short-range ties is infected, propagation terminates if the level of infec-

tion remains sub-critical.

However, if the region reachable via local propagation is sufficiently large,

the contagious phenomenon will reach critical mass and the contagious phe-

nomenon will “go viral.” On this side of the bifurcation point, the contagious

phenomenon can now spread via long-range ties that allow the contagious phe-

nomenon to “jump” to a fresh area. This area of infection then rapidly expands

through short-range ties. The increase in the size of the infected population in

turn increases the probability that the contagious phenomenon can spread to

yet another fresh region of the network via long-range ties. Simply put, once a

complex contagion phenomenon reaches critical mass, it begins to spread in the

same way as a simple contagion phenomenon – taking advantage of shortcuts
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to distant regions and eventually reaching every node in a connected network.

Our analysis also has an important theoretical implication for understanding

why some contagion phenomena “go viral” and others do not. For a simple

contagion phenomenon to escape the region of initial infection, it need only

reach a node with a long-range tie or a hub that can broadcast the contagious

phenomenon more widely. On a small world or undirected power law network,

that is guaranteed to eventually occur, so long as the contagious phenomenon

remains capable of passing from one node to another (e.g., there is no decline in

infectiousness such as might happen in a news cycle). For a complex contagion

phenomenon to go viral, it must infect sufficient nodes that a long-range tie or

susceptible hub can make a difference.

The existence of a bifurcation point in the propagation of complex contagion

phenomena has a potentially valuable practical implication for the ability to

predict the eventual outcome at the early stages of a viral marketing campaign.

Prior to critical mass, the growth rate decays, but as soon as the contagious

phenomenon is able to spread via long-range ties, the growth rate reverses and

rapidly accelerates. This qualitative change in the rate of growth from negative

to positive is a statistical signature of critical mass.

Another early indicator that the contagious phenomenon has gone viral is

if it is spotted in a fresh region of the network, not contiguous with the seed

area. Because propagation via long-range ties is self-sustaining, the first occur-

rence can be a useful indicator that the contagious phenomenon has reached

critical mass and will therefore continue to spread via every available tie, re-

gardless of its range. The caveat is that a false positive can also be caused by the

homophilous clustering of nodes with low thresholds (“early adopters”), but
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even in the case where a jump simply indicates an expansion to a set of “early

adopters” the consequent increase in the number of infected nodes in turn in-

creases the likelihood of a true positive.

This analysis also has practical implications for marketing strategy. The

greater the need for social reinforcement to persuade individuals to adopt an

innovation, the larger the size of the initial region of local propagation required

for the contagious phenomenon to go viral. Thus, in deciding where to launch

an innovation, the proportion of highly susceptible nodes in the initial region is

less important than the overall size, so long as the nodes are sufficiently suscep-

tible that the contagious phenomenon can spread through short-range ties.

The need for a critical mass also carries implications for initial pricing. For

simple contagion, it may be optimal to set prices initially high, in order to maxi-

mize profits from the most interested customers, early adopters. In contrast, for

complex contagion, it is better to set prices initially low to improve the chances

that the contagious phenomenon will reach critical mass.

We note these implications of the existence of a critical mass not as policy

recommendations but as suggested directions for theoretical and empirical re-

search. Our analysis assumes highly stylized topologies composed of nodes

with homogenous attributes. Much more research is needed before we can have

confidence in the predicted existence of a bifurcation point in the propagation of

complex contagion. Residential neighborhoods, college dormitories, and soccer

stadia may loosely resemble a regular lattice, and other empirical social net-

works have been shown to have degree distributions that approximate a power

law. Yet other social networks have degree distributions that are more irregular

than a lattice and less skewed than a power law. In addition, the nodes in empir-

106



ical networks have heterogenous attributes, thresholds that vary between inno-

vators, early adopters, and laggards [14, 37], and influence that varies between

influentials, opinion leaders, and followers [59]. Moreover, these attributes may

be homophilously clustered. These complications preclude the ability to use a

set of formal results to confidently predict the critical mass in natural settings,

and systematic empirical research is needed to see if the predicted existence of a

bifurcation point is observed in empirical social networks. The important con-

tribution of the present study is not that we have settled the question but quite

the opposite – the predicted existence of a critical mass opens up an important

direction for both theoretical and empirical research on why some contagion

phenomena “go viral” and others die.
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CHAPTER 4

CHAPTER 4: EMPIRICAL SOCIAL CONTAGION

In this chapter, I focus on a dataset of empirical contagion phenomena in an

effort to validate the complex contagion model [21] holds up in a real-world

setting. I use a dataset of photo tags from Flickr, where each tag is considered to

be a potential contagion phenomenon spreading through the network of friend-

ships between Flickr users. I first examine the distribution of thresholds over

the set of tags. I then analyze the tags to determine which, if any, are complex

contagion phenomena that have reached critical mass as described in Chapter

3, and find that at least some such tags exist. Finally, I show that simple nat-

ural language processing and statistical techniques can be used to narrow the

search space from to a much smaller space of candidates that meet the criteria

for complex contagion. These techniques make possible the efficient identifica-

tion of complex contagion phenomena even in very large datasets of potentially

contagious entities.

4.1 Introduction

In the previous chapters, I have described several models for the analysis of

contagious phenomena diffusing on a social network. In this chapter, I turn to

empirical contagion - actual behaviors, products and ideas that diffuse on real-

world social networks. I use the analysis from previous chapters to guide my

exploration of empirical contagion: the focus of this chapter will be to explore

how abstract concepts like contagion threshold and critical mass manifest in a

real-world setting.
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The first step towards empirical analysis of contagious phenomena is their

identification. In principle, a contagious phenomenon can be anything that

spreads on a social network. This definition, however, is too broad, as it

presents serious problems for identifying contagion. Some contagious phenom-

ena change as they spread, and tracking their transformation and diffusion is a

formidable problem in and of itself, which I leave to future work. Other phe-

nomena do not change as they spread, but are difficult to trace, as there is no

written record of their diffusion. Memes and behaviors that spread exclusively

through verbal networks, for instance, are very difficult to track. Therefore, I

focus on what I call empirical traceable social contagion: behaviors, products

and ideas that spread throughout a social network, and leave a digital trace of

their passage through the social ties between nodes in this network.

I can leverage this definition to apply theoretical concepts like threshold,

perimeter growth, and critical mass, described in previous chapters, to empiri-

cal contagion phenomena.

It is important to note that these concepts do not translate perfectly to real-

world applications: empirical contagion phenomena have no “hard threshold”

beyond which every individual will adopt the behavior in question, and be-

low which no individual will adopt it. Rather, the relationship between adop-

tion likelihood and number of exposures to adopted individuals is probabilistic,

with more exposures often (but not always) increasing the likelihood of adop-

tion [11, 41].

Furthermore, even if we relax concepts like threshold to allow for stochas-

tic adoption decisions, there remains a host of factors related to adoption that

are not covered by the analysis in previous chapters. Threshold heterogeneity,
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or its stochastic counterpart the heterogeneity of adoption likelihood functions,

means that some individuals are much more likely to adopt the same conta-

gious phenomenon given the same number of adopter friends as other indi-

viduals. Variations in interpersonal influence means that some individuals can

induce their friends to adopt even with one exposure when the baseline likeli-

hood of adoption remains low. Diffusion of some contagious phenomena via

multiple media (including mass media) means that some nodes will be exposed

to them even before any of their friends adopt the phenomenon in question.

Some phenomena diffuse better across stronger ties, meaning that the strength

of relationships in social media [33] has an effect of adoption likelihood between

specific pairs of agents. Finally, people can decide to un-adopt a contagious phe-

nomenon instead of sticking with it forever once adopted.

Despite these confounding factors, it remains possible to isolate a few and fo-

cus on their effect on adoption behavior. This chapter will follow recent research

[11, 60] to focus on large-scale effects first, looking for patterns at the level of an

entire network and/or across a large set of contagious phenomena. This focus

“washes out” statistical noise and idiosyncratic effects of interpersonal relation-

ships, preferences, etc. However, having examined adoption behavior at a large

scale, we also investigate a few specific examples as case studies. Case stud-

ies produce results which may be more idiosyncratic, but give a much more

detailed picture of the dynamics of, for instance, a particular contagious phe-

nomenon. Future work can leverage the results from case studies to perform

more large-scale analysis, completing the macro-micro analysis cycle.
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4.2 Theory

Before moving on to analysis of empirical data, we first describe how the con-

cepts of contagion threshold, first introduced by [34] and studied in detail by

[49, 21], and contagion critical mass, introduced in the previous chapter, trans-

late to an empirical setting. Consider an empirical traceable social contagion

phenomenon c as described in the introduction to this Chapter. Then the digital

trace of c’s passage through the social network consists of two datasets:

• A list AT (c) of (node n, timestamp t) adoption tuples where each tuple indi-

cates the adoption of c by n at t.

• A list RT (c) of (node n1, node n2, timestamp t) relationship tuples where

each tuple indicates the existence of an edge between n1 and n2 at t.

4.2.1 Threshold

In theory, the threshold of a contagious phenomenon is the critical number of

infected neighbors k at or above which any node n will automatically adopt c

(and below which no node n will ever adopt). In practice, such thresholds do

not exist; however, for any given k, we can calculate the likelihood p(k) that a

node with k neighbors will adopt c. I follow [60] in the method of calculation:

let E(k) be the number of agents who have had at any point k friends who have

adopted c, and I(k) the number of agents who have both had k friends who have

adopted c, and themselves adopted c before the k + 1st of their friends did so.

Then let p(k) = I(k)/E(k). The latter work calls p(k) calculated over a range of k
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for a particular contagious phenomenon the exposure curve of c. 1.

For contagion with a true threshold, the exposure curve is a step function,

going from 0 below the threshold to 1 at and above the threshold. We can ap-

proximate the threshold of an empirical contagion phenomenon by identifying

the region where the exposure curve most resembles a step function, and we

can give a give a confidence score for our approximation by estimating the ex-

tent to which the exposure curve resembles a step function in that region. More

formally:

Definition 4.2.1. The threshold a(c) of an empirical contagion phenomenon c is:

a(c) = argmax
k∈[1...Kmax]

∆ (p(k), p(k − 1))

Definition 4.2.2. The confidence score CS (a, c) for threshold k of an empirical

contagion phenomenon c is:

CS (a, c) =
∆(p(a), p(a − 1)

AvgDelta
− 1

where AvgDelta is the average ∆ (p(k), p(k − 1)) for k ∈ [1...Kmax]∧ p(k) > p(k− 1).

The latter restriction is necessary so as not to deflate the average artificially over

regions where p(k) actually decreases. We can ignore those regions as not being

candidates for points where p(k) resembles a step function.

Intuitively, a step-like exposure curve will have a point where p(k) grows

much faster than in the rest of the region, so a(c) will be the corresponding value

1In practice, for high values of k, there may be very few nodes with that many friends, and
p(k) is very noisy, so we focus on some subset of values k ∈ [0...Kmax]
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of k, and the confidence score will be high, as the growth rate may be several

times the average. In contrast, a more gradual exposure curve may have a point

where p(k) grows a little faster than in the rest of the region (possibly due to

noise), but the confidence score will be low, as the growth rate will be very close

to the average.

4.2.2 Critical Mass

In the previous chapter, we discussed the notion of contagion perimeter and

contagion growth rate. I repeat the definitions here:

Definition 4.2.3. Given a threshold a or z/n contagious phenomenon with I

nodes already infected, the perimeter x(I) of that infected set is the set of nodes

that have a or more (or z/n or more) infected neighbors.

The growth rate of a contagious phenomenon over time is the a ratio of the

number of nodes about to be infected (the perimeter) to the number of nodes

already infected, expressed as a function of I.

Definition 4.2.4. The growth rate of a contagious phenomenon λ(I) is given by

x(I)
I as a function of I.

For empirical contagion, I modify Definition 4.2.3 as follows:

Definition 4.2.5. Given a threshold a or z/n contagious phenomenon with I

nodes infected at time t, the perimeter x(t) of that infected set is the set of nodes

become infected at time t + 1.
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This new definition reflects both the fact that empirical contagion phenom-

ena have no true threshold, and the fact that empirical contagion data contain

explicit adoption timestamps in AT . We can now rewrite the Definition 4.2.4:

Definition 4.2.6. The growth rate of a contagious phenomenon λ(t) is given by

x(t)
Adopt(t) as a function of t.

Where Adopt(t) is the number of users who have adopted the contagious phe-

nomenon at timestamp t. Also in the previous chapter, we described that the

shape of the growth rate curve differs based on whether a contagious phe-

nomenon has reached critical mass. For contagious phenomena with thresh-

old greater than one, prior to critical mass, λ(t) will be decreasing as Adopt(t)−1,

whereas post critical mass, λ(t) will at first increase polynomially in Adopt(t)

until the contagious phenomenon exhausts the network, and then λ(t) will de-

crease linearly in Adopt(t). The achievement of critical mass corresponds to the

only period of growth in λ(t).

For an empirical contagion phenomenon, reaching critical mass may not lead

to complete network takeover. the contagious phenomenon may reach a criti-

cal mass and spread rapidly, but then reach a region of the network where the

threshold is much higher than elsewhere, and stop spreading. External factors

such as the appearance of new contagious phenomena may divert the atten-

tion of the networked population from c and limit its rate of spread. At the

same time, external events such as the broadcast of the contagious phenomenon

through different media, may create a burst of growth for c even absent critical

mass. Nevertheless, contagious phenomena whose growth rate does not in-

crease are less likely to have reached critical mass than contagious phenomena

whose growth rate increases. We therefore define the criticality ρ(c) of contagion
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c as follows:

Definition 4.2.7. The criticality ρ(c) of a contagious phenomenon c is the average

increase in the growth rate of c over the total timespan of adoption timestamps

in AT (c).

This definition encompasses both contagious phenomena that experience

many short bursts of growth and one sustained long burst of growth. In fur-

ther work, I hope to differentiate between these two dynamics.

A different approach to critical mass requires analyzing the average tie range

of edges through which the contagious phenomenon spreads. As I discussed in

Chapter 3, a critical mass of adopters for complex contagion is the point where

the contagious phenomenon goes from only being able to spread via short-range

ties to being able to spread via short- and long-range ties, as a simple contagion.

Empirical complex contagion phenomena that reach critical mass should, there-

fore, exhibit a jump in the average range of ties through which they spread

around the critical mass point. We define average tie range for empirical conta-

gion phenomena as follows:

Definition 4.2.8. The average tie range AT (c) of contagion c at time t is the aver-

age tie range between all users who have adopted the contagious phenomenon

at time t and their neighbors who have adopted c at some time t′ < t.

By mapping t to number of adopters at time t, it becomes possible to identify

a critical mass point for some empirical complex contagion phenomenon c as

the number of adopters where AT (c) experiences a burst of growth.
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4.3 Data and Methods

I now apply the above concepts of AT , RT , threshold and criticality to a specific

set of empirical contagion phenomena: the spread of tags on the Flickr photo

sharing service. Flickr is a social media tool that allows users to upload, share,

and tag photos. Flickr users can befriend each other. The friendships are mutual

relationships, so if a is a friend of b, then b is a friend of a. Flickr tags are single-

word text metadata that can describe anything from the subject of the photo

(“sunset”) to the camera used to take the photo (“nikon”) to the community or

competition the photo was submitted to (“goldstaraward”).

I use a Flickr dataset that contains records of all photos uploaded between

January 1st and July 1st, 2008, along with the upload timestamp and the tags ap-

plied to the photo.2 The dataset contains 60 million million photos and over 1.6

million thousand tags. A separate Flickr dataset contains records of friendships

between 500 thousand users in that time period. Unfortunately, Flickr friend-

ships do not have associated timestamps, so I must assume that all friendships

are present at all times during the dataset. This assumption introduces some

noise into my analysis, however, social network structures generally change

more slowly than the spread of contagious phenomena (for all but the most

costly contagious phenomena, the cost of adding or removing a tie is greater

than the cost of adoption, so an agent is in general more likely to adopt some

contagious phenomenon than to change his or her social network), so it is pos-

sible that the noise won’t significantly distort measurements of threshold and

critical mass across many contagious phenomena.

2It is important to note that photos can be tagged after upload, which introduces some noise
into our adoption tuple records
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I treat the tags in this dataset as potential contagious phenomena that can

spread through the Flickr friendship network. For these tags, I first generate the

associated datasets AT and RT For each Flickr tag τ, AT (τ) contains tuples (u, t)

where u is a user who tagged at least one of her photos with τ and t is the first

timestamp associated with any such photo. At the same time RT (τ) contains

tuples (u1, u2, t) that indicates that Flickr users, at least one of whom tagged at

least one of her photos with τ were friends at some point between January 1st

and July 1st, 2008.

Some of these tags may in truth be not contagious phenomena at all, but

achieve popularity independently of the Flickr friendship network. For exam-

ple, we can’t assume that if Flickr user a uses the tag “sunset” and then her

friend b uses the same tag, that a somehow infected b with the tag. Both users

may just have seen a sunset that they found visually appealing. In contrast,

tags like “nikon” represent the usage of a camera product that may have spread

virally from one Flickr user to another.

Overall, the issue of confounds like external sources or user homophily that

create contagion-like diffusion patterns of products that are not truly conta-

gious, is complex and subtle. Recent work by Aral et al.[7] investigates the

effect of homophily on creating such patterns. Not having access to user profile

data at the granularity required to replicate Aral et al.’s methods, I adopt a sim-

plistic solution at the level of all tags: remove from the set of all tags any that

are common English words from a dictionary word frequency list. It is impor-

tant to note that some tags that correspond to common English words may in

fact be contagious (e.g. “apple” when it refers to the personal computer brand),

it isn’t possible to differentiate between uses of these words as common nouns
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(picture of an apple) vs. as proper nouns (picture of an apple computer) with

the Flickr dataset I use. When focusing on specific tags later in this chapter, I an-

alyze the dynamics of tag diffusion further to look for signs of true contagious

phenomena as opposed to contagion-like diffusion patterns.

It is also important to note that analysis of critical mass will help identify

tags that are not true contagious phenomena. First, such phenomena should

be characterized by an absence of rapid spurts in perimeter growth or average

tie range, since they spread independently of the network. In contrast, they

should spread in a smooth way, with perimeter and tie range changing at a

near-constant rate throughout the diffusion period. I examine the perimeter

growth and tie range curves of a few tags that are candidate contagion in detail

in the Results section, to make sure this is not the case.

Finally, tags with very few adopters have very sparse AT data, so the re-

sulting exposure curves and growth rate data may be too noisy to accurately

determine contagion threshold and criticality as given above. Therefore, from

the set of Flickr tags that are not common English words, I focus only on the top

500 tags by total number of adopters as of July 1st, 2008. This is the final set of

tags T .

For each tag in τ′ ∈ T , I use AT (τ′) and RT (τ′) to generate exposure curves

and growth rate curves, and I use those curves to estimate the tag’s threshold

and criticality, as described in the previous section.
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4.3.1 Tag Coding

I also perform some manual coding of the tags τ. This coding is done for ex-

ploratory purposes and to replicate the recent work of [60], but was done en-

tirely by myself. Multiple coders are necessary to validate the results. My

coding reveals that the tags fall more or less neatly into one of four categories:

location / subject (referring to the location or subject of the photo), technique

(referring to the photographic technique or software used to create the photo),

camera (in some ways this category is a subset of technique, but it refers specif-

ically to the camera used to create the photo, and there are as many ) and group

(referring to the community or competition this photo belongs to).

There are 260 subject / location tags, including “baybridge” and “mediter-

raneo”; 44 technique tags including “depthoffield” and “backlight”; 21 camera

tags including “fujifilm” and “canoneos400d”; and 106 group tags including

“absolutelystunningscapes” and “catchycolors”. Of the latter two tags, the first

refers to a community that collects photos of “stunning ’scapes of all kinds -

landscapes, waterscapes” and the second refers to a competition.

4.4 Results

4.4.1 Threshold

I begin by describing the distribution of thresholds and confidence scores for the

500 tags studied. Figure 4.1 shows the distribution of confidence scores CS (a, c)

by threshold value a(c) for the top 500 tags. For sparsity reasons, I set Kmax = 6.
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Note that the threshold with the highest average confidence scores are 1 and

Kmax, respectively. The high confidence value for threshold 1 is due to the fact

that p(0) is typically very small. The denominator of p(0) is the number of peo-

ple who have 0 friends who have used the tag (which is the entire population),

while the numerator of p(0) is the number of people who began using the tag

before any of their friends did (a subset of the entire set of tag users, which is

usually a tiny percentage of the entire population). The very large denominator

means that p(0) << p(1) and that [0, 1] is usually the region where p(k) most re-

sembles a step function. The high confidence values for threshold Kmax is likely

due to the increased noise in p(k) for higher thresholds (note that the confidence

interval in CS (a, c) increases as (a, c) does. Setting Kmax to higher values and

rerunning the plot confirms that for values of k > 6, values CS (a, c) are much

noisier than for lower thresholds.
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Figure 4.1: Confidence score distribution by threshold value for Flickr tags

Figure 4.2 shows the distribution of threshold values across manually la-

beled categories described in section 4.1. Note that the “camera” and “tech-

nique” categories have an average threshold of 1, while the “group” and “lo-

cation” categories have a higher average threshold close to 2. This means that
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technological tags on Flickr are much more likely to spread as simple threshold-

1 contagion, whereas tags that are related to social aspects of Flickr like groups

and the subject / location of the photo are much more likely to spread as higher-

threshold contagion. This result is in line with the concept of complex conta-

gion: while technological innovations like cameras and techniques can spread

through weak ties and/or outside of Flickr (e.g. through advertisements), the

social aspects of photography like groups and subject / location preferences are

much more intrinsic to the social network of photographers, and more likely to

spread via strong ties as friends engage in conversation on Flickr.3 The caveat is

that, as seen in Figure 4.1, thresholds above 1 have lower confidence scores, so

some tags in the groups and subject/location categories may in fact not be con-

tagious phenomena at all, but become independently popular due to homophily

or other effects.

camera group loc technique

1
2

3
4

5
6

Figure 4.2: Distribution of threshold value by manually labeled category
for Flickr tags

Figure 4.3 shows a histogram of the persistence parameter F(P) over all 500

tags. Note that the distribution is close to normal, with a slight bump at the

highest interval.
3conversation on Flickr is possible through comment streams on photos
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Figure 4.3: Histogram of persistence parameters for Flickr tags

4.4.2 Critical Mass

I now turn to an analysis of critical mass across the set T of Flickr tags. I begin

with a plot of the criticality of each tag τ vs. the total number of adopters of

τ in the dataset, shown in Figure 4.4. The two quantities are strongly linearly

related (linear regression R2 = .81, fitted line shown in red on plot). This is to

be expected: the higher the criticality, the faster the contagious phenomenon

grows, the more adopters it accumulates. Still, there are a few outliers, tags that

have many more adopters than expected given their average perimeter growth

rate. Looking at the data, these adopters turn out to be the tags “iflickr” (the

Flickr app for the iPhone), “hdr” (the photography technique of high-dynamic

range imaging), and “2008” (the tag corresponding to photos taken in 2008).

Since the dataset covers the first half of 2008, the high growth rate of the last tag

is not surprising and likely has nothing to do with contagion. We investigate

the other two tags in the next section.

Figure 4.5 shows the distribution of criticality values by contagion threshold

a(c). Note that the criticality values (on the y axis) decreases slightly as threshold
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Figure 4.4: Contagion criticality ρ(c) vs. number of adopters for Flickr tags

increases. This finding is in line with the theory of complex contagion, as it

suggests that higher-threshold contagious phenomena grow more slowly. For

k = Kmax, the growth rate again rebounds, though that may be an artifact of

noisy data.

On this graph as on the previous one, I identify several outliers - points with

high criticality values and high thresholds. These turn out to be the tags “plat-

inumphoto”, ”naturesfinest”, “soe”, and “superbmasterpieces”, all referring to

awards photo competitions on Flickr. Note that such competitions and awards

can be contagious as a friend may nominate their friends’ photos to enter the

competition or win the award. We investigate these tags in more detail in the

next section.

Finally, I analyze critical mass by examining the dynamics of the average tie

range AT (t) vs. t for different tags. In order to compare multiple tags, I perform

two transformations to the x axis of the plot: first, I map each value of t for a

particular contagion c to the number of adopters |Adoptc(t)| who adopted c at t.

Second, I divide |Adoptc(t)| by the total number of adopters |Adoptc| to transform
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Figure 4.5: Contagion criticality ρ(c) vs. threshold a(c) for Flickr tags

a raw number of adopters into a percentile Perc(t) of the total adopter popula-

tion. I then plot AT (t) vs. Perc(t) for a number of different contagion. Due to the

computational complexity of calculating tie range at a large scale, I constrain

my analysis as follows: first, I only plot AT (t) for the top 50 tags by overall num-

ber of adopters. Second, I transform tie range from a continues integral variable

to a categorical variable with values 2 (for nodes that are neighbors and have

a neighbor in common), 3, and 4+. This limits very computationally expensive

calculations of ties with ranges above 3, without overly skewing the results, as

most ties will have a range of O(log(N)), which is not much higher than 4 for the

Flickr network. The final results are plotted in Figure 4.6.

This graph suggests two results: first, the general trend of tie range vs. per-

centile is smooth and positive. This trend indicates that most popular tags do

spread over longer-range ties over time, but do not have a true critical mass

point - there is no sudden jump in the tie range values. Second, there are a

number of exceptions to this general trend. In Figure 4.6 I highlighted three

contagion that go through a “bursty” period of tie range growth. These con-

tagion are the “iflickr” tag (discussed in more detail below), the “smartphone”
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Figure 4.6: Average tie range for ties through which contagion spreads vs.
percentile of adopters

tag (corresponding to pictures taken via smartphone) and the “newyorkcity”

tag (corresponding to pictures taken in New York City). Each one of these tags

goes through a period of rapid tie range growth, which suggests a possible crit-

ical mass point. For “iflickr” and “newyorkcity”, the candidate critical mass

point is around 20% of all adopters, whereas for “smartphone” the critical mass

point is around 50% of all adopters.

These results are interesting in two ways. First, the candidate critical mass

points for the three highlighted tags are larger (in terms of adopter percent-

age) than critical mass points for preferential attachment graphs theoretically

derived in Chapter 3. Second, every one of these three tags goes through a burst

period of growth followed by an decrease in the average tie range, suggesting

that the tag goes through a period of spreading via short ties after it spreads

via long ties. Clearly, network structure is not the only factor in determining

critical mass. However, as more detailed analysis of the “iflickr” tag in the next

subsection suggests, we cannot attribute these fluctuations entirely to external

events such as mass media coverage. It is most likely that the effect of network
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structure is mediated by threshold heterogeneity, external stimuli, interpersonal

influence and other factors with the final result showing dynamics qualitatively

similar to, but quantitatively different from, the predictions of the complex con-

tagion model.

The results by threshold and critical mass are in line with the theory of com-

plex contagion and critical mass outlined in previous work. However, I do not

find any clear clustering of threshold or criticality values - there is no easily

identifiable set of tags that has a much higher threshold or average growth rate

than others. Instead, I discover that the distributions of these quantities are

skewed, with a high density of low-threshold, low-growth rate tags and a few

outliers that score unusually high on one or both of these measures. Similarly,

while I find that criticality has a strong linear relationship with total number of

adopters, a few outliers have an unusually high number of adopters given their

average growth rate. Thirdly, the tie range dynamics for a few tags are much

more indicative of critical mass than the general trend. The next logical step is to

investigate some of these outliers in more detail, to see what they tell us about

the behavior of unusually fast-growing or popular tags.

4.5 Case Studies

I begin with a table of the six tags identified in the previous section.

Table 4.7 shows the threshold a(c), the confidence CS (a, c), the average

growth rate ρ(c), the total number of adopters, and the timespan (last timestamp

- first timestamp of adoptions in the dataset, in days) for six outlier tags identi-

fied in the previous section. These tags represent every contagion threshold in
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tag a(c) CS(a,c) ρ(c) totaladopters timespan
iflickr 1 2.03 1.12 4504 170
hdr 1 1.76 1.42 6911 180

platinumphoto 3 1.43 1.32 3279 180
soe 4 1.78 1.31 2960 180

naturesfinest 5 1.23 1.30 3300 180
superbmasterpiece 6 1.34 1.32 2368 180

Figure 4.7: Threshold and criticality statistics for six contagion

the range except 2. Exploratory analysis of the six tags shows that “iflickr” has

some of the most interesting dynamics, so below I focus on that tag. There is

another reason to focus on “iflickr” - it is associated with the flickr application

for the iphone, so by analyzing the spread of this tag, we can infer the spread of

that application. This analysis has interesting implications for viral marketing,

as it offers a useful proxy for application developers to study the spread of their

product. At the end of the section, I present summary dynamics results for all

six outlier tags for comparison to “iflickr.”

I begin by looking at the growth rate λ(t) for iflickr in more detail. In Figure

4.8 I show the total number of adopters (orange dots) and λ(t) (black line) as a

function of time. We see that the growth rate experiences several jumps early

on (probably due to noise, as the number of adopters is very small), and two

jumps later on, one around day 75 and a second around day 110. These jumps

both correspond to jumps in the number of adopters; furthermore, the slope of

the number of adopters increases after the jumps.

Intuitively, these jumps indicate points where the iflickr tag may have

reached critical mass and began to spread much faster. But what if they were

caused by events external to flickr? To check for external influence on the diffu-
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sion of the iflickr tag, I first consulted the iflickr blog to look for major releases or

announcements around the days corresponding to the jumps (mid-March and

end of April, 2008, respectively), and found none. I next used the Google Trends

service to find points of major news / blog coverage for the string “iflickr.” The

black vertical lines in Figure 4.8 correspond to two such points - they both come

about a week after the respective jumps in the growth rate curve. It seems that

the growth spurts in tag adoption anticipate spurts in external coverage of the

tag.
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Figure 4.8: Number of adopters and contagion growth rate by time for the
iFlickr tag

I next examine several threshold-related measures for iflickr as a function of

time. Figure 4.9 shows the total number of adopters (orange dots) as well as

the number of Flickr users who have not yet adopted the iflickr tag but have

redundant (two or more) ties to tag adopters, as a function of time (green line).

Vertical lines corresponding to Google trends data are repeated from Figure 4.8

for reference. Note that the number of redundant ties from adopters to non-

adopters goes through several spurts, the first two of these corresponding to

(and slightly anticipating) spurts in the number of adopters.
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Figure 4.9: Number of adopters and number of redundant ties from
adopters to non-adopters by time for iFlickr tag

Figure 4.9 tells us about number of nodes multiply exposed to iflickr

adopters, but not about the actual adoption events. I next bin the adopters

of iflickr by the timestamp during which they adopted, and for each bin cal-

culate the average number of adopter friends bar(a) each user in the bin had at

that timestamp. This measure approximates the average threshold of adoption

for Flickr users in the bin. The result is plotted in Figure 4.10: total number of

adopters (orange dots), bar(a) for each value of t (brown line), and bar(a) for

each value of t excluding adopters who had no adopter friends at the time (blue

line).

The brown line essentially tracks the overall spread of iflickr through the

Flickr population (regardless of network structure), whereas the blue line tracks

only the adopters who may have decided to use their tags because of their

friends’ influence, and so the potential spread of iflickr through the Flickr friend-

ship network. Figure 4.10 shows that at first both lines are relatively flat, but the

brown line increases prior to the first jump in the number of adopters, and the

blue line increases prior to the second such jump. The implications of these
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Figure 4.10: Average number of adopter friends by time for the iFlickr tag
(brown - all tag adopters, blue - only tag adopters with one or
more adopter friends

two jumps are very interesting: at first, when both lines are relatively flat, and

the brown line is near 0, the average threshold of iflickr adopters is also near 0.

This implies that the tag is essentially spreading independently of the Flickr net-

work. Shortly prior to the first jump, the brown line begins to grow, while the

blue line stays relatively flat. In this region, more and more users with thresh-

old greater than 0 begin to adopt iflickr; at the same time, users with threshold

greater than 1 are not yet adopting iflickr (otherwise, the blue line would be

growing). Finally, the blue line begins to grow prior to the second jump in the

number of adopters. This region corresponds to the period where more and

more users with threshold greater than 1 adopting flickr, as both lines are grow-

ing. In summary, Figure 4.10 suggests that the two jumps in the number of

adopters are preceded by an increase in the average adopter threshold, which

means the contagious phenomenon is expanding into populations that assign a

higher cost to adoption.

Figures 4.9 and 4.10 are consistent with the notion of critical mass, as both
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the number of exposures to multiple adopters and the number of adoptions

given multiple exposures increase shortly prior to a rapid increase in the the to-

tal number of contagion adopters. Therefore, plots of similar quantities for other

tags could provide a useful litmus test for whether a contagious phenomenon is

reaching critical mass (and, as a baseline, whether the contagious phenomenon

is sprading through the network at all). For simplicity, we reproduce Figure 4.10

for the six outlier tags in Table 4.7. All six plots are on the same temporal scale

(t ∈ [0...180] days) on the x axis and the same abstract scale [0...5] on the y axis.

The results are shown in Figure 4.11.

Note that iflickr is the only tag where the average number of adopter friends

is initially close to 0, and the only tag where the number of adopter friends

for all adopters vs. adopters with at least one friend grow closer together. For

“hdr”, these two lines are parallel though somewhat far apart. For the other

four tags, the lines are parallel and very close together. Finally, note that the

“superbmasterpiece” tag is the only one with a pronounced and long decline

in average number of adopter friends, which precedes a marked decline in the

contagious phenomenon growth rate.

4.6 Discussion and Conclusion

In this chapter, I’ve analyzed Flickr tags both at a large scale (a subset of 500

tags) and in detail (six specific tags). The results of the large scale analysis are

consistent with Centola and Macy’s [21] theory of complex contagion, while

the in-depth analysis suggests that a closer look at empirical contagion phe-

nomena is needed to determine their dynamics with respect to critical mass.
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Figure 4.11: Average number of adopter friends by time for six different
tags

While iFlickr has a very large number of adopters for its criticality ρ(c), it also

has a small threshold and a large confidence score in that threshold (relative to

other outlier tags). Indeed, Figure 4.10 confirms that a substantive proportion of

iFlickr adopters were the first of their friends to use the tag. However, the same

figure also reveals that over time, the tag spreads to populations with a much

higher adoption threshold.

This sort of fine-grained analysis allows one to make much more confident

statements about the dynamics of individual contagion on Flickr, whether these

contagion indeed spread through the social network, whether they achieve crit-

ical mass, and so on. At the same time, the large-scale analysis makes it possible

to select a small number of interesting tags that could behave like contagious

phenomena, without having to manually inspect the dynamics of hundreds or

thousands of candidates. In future research, I hope to find an efficient way

to summarize the adopter friends curves in Figures 4.10 and Figure 4.11 and
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allow for efficient analysis of critical mass dynamics across many contagious

phenomena. Nevertheless, the advantages of in-depth analysis (such as being

able to investigate Google trends and other sources for external factors that may

contribute to tag diffusion) make it an important step in determining what tags

(and, in general, what products and behaviors) are truly examples of social con-

tagion.

The fine-grained analysis also seems to suggest that the “iflickr” tags is the

only clear example of a contagious phenomenon in the dataset that may have

reached critical mass. This is not entirely surprising, as Centola and Macy’s[21]

original research describes complex contagion as a set of rare and fragile phe-

nomena. The vast majority of contagious phenomena either never reach critical

mass, or have such a low threshold that the concept of critical mass is irrelevant

to them (this applies to simple contagion). Furthermore, the search for com-

plex contagion phenomena is complicated by the fact that a contagious phe-

nomenon’s threshold may change over time and/or threshold heterogeneity in

the underlying population (Figure 4.10 is in line with the latter effect). While

more efforts must be made to identify complex contagion phenomena and crit-

ical mass regions, the low yield of the current study may be representative of

future work. Searching for the rare high-threshold behavior that becomes pop-

ular is like looking for a needle in a haystack; conversely, searching for low-

threshold behaviors or behaviors that never become popular is trivial, because

they are the modal types of contagious behavior.

Finally, it is important to note that in several of the temporal plots, pre-

critical-mass contagion properties (change in the average number of adopter

friends) anticipate post-critical-mass contagion properties in and out of the net-
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work (change in the accumulation of new adopters, appearance on Google

trends). Such results appear in Figures 4.8 and 4.11. The implication of these

results is that it may be possible to predict critical mass in empirical contagion

phenomena by looking at certain pre-critical-mass contagion properties. Given

the heterogeneity of contagious phenomena and the noise inherent in empiri-

cal data, it is far too early to make strong claims about contagion prediction.

Nevertheless, this area of research demands further exploration and in the fu-

ture it may be possible to integrate properties of the ties between adopters and

non-adopters into a broader predictive model of contagion dynamics.
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CHAPTER 5

CHAPTER 5

5.1 Summary of Results

This thesis explores social contagion from three different perspectives. In Chap-

ter 2, I focused on the mechanism of local information and its effect on contagion

dynamics. I showed that it is possible to formulate an optimization problem for

agents trying to adopt a contagious phenomenon only when a critical fraction

of the entire population has adopted, but having to rely on local information

about the adoption states of their network neighbors. I formulate the optimiza-

tion problem as minimizing the time an agent spends behaving suboptimally

- being a contagious phenomenon adopter when a critical fraction of the en-

tire population hasn’t adopted, or not being a contagious phenomenon adopter

when a critical fraction of the entire population has adopted.

Furthermore, I showed that for three common network models - the Poisson

Random Graph, the Small World Graph, and the Preferential Attachment graph

- it is possible to formulate strategies for agents as a combination of relying on

their local network neighbors or querying the network at random, to approxi-

mately solve this optimization problem. For the Poisson Random Graph, most

contagion either spread in logarithmic time or not at all, so reliance on local net-

work neighbors produces a near-optimal strategy for nearly all combination of

threshold values. For the Small World Graph, I showed that if the graph is an

unrewired lattice (probability of edge rewiring p = 0), then querying the net-

work at random k times produces a reduction of at most
√

k in the time an agent

spends behaving suboptimally. Finally, for the preferential attachment graph, I
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showed that for very low thresholds contagion spread in logarithmic time, but

as threshold increases, there is a delay factor as the contagious phenomenon

must first infect low-degree nodes before spreading to the hubs. Simulations

show that this delay factor is linear in the threshold.

Chapter 3 focuses on a subset of social contagion called complex contagion.

Complex contagion phenomena are interesting because they require multiple

reinforcement to spread - an agent will only adopt a complex contagion phe-

nomenon if a > 1 of her friends have already adopted. Previous work [21] has

shown that the requirement of multiple reinforcement induces a drastically dif-

ferent dynamics for complex contagion than for simple contagion (a = 1). Com-

plex contagion spreads on Small World Graphs in a fragile way: for a given

Small World Graph and a given threshold a, a contagious phenomenon with

that threshold may spread throughout the entire network starting with a small

number of seed nodes, or stop spreading after reaching just a few nodes outside

the seed set.

We demonstrate that there exists a bifurcation point in the spread of complex

contagion – the critical mass. For simple contagion phenomena like information

and disease, this bifurcation does not exist. Such phenomena can leverage long-

range ties even with only one infected node, hence a single seed is sufficient to

create a critical mass.

For complex contagion phenomena, in contrast, the growth process will have

two phases separated by a very sharp transition. Initially, the contagious phe-

nomenon can only spread locally, that is, via short-range ties. Once every node

that is reachable via short-range ties is infected, propagation terminates if the

level of infection remains sub-critical. However, if the region reachable via local
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propagation is sufficiently large, the contagious phenomenon will reach critical

mass and “go viral.” On this side of the bifurcation point, the contagious phe-

nomenon can now spread via long-range ties that allow it to “jump” to a fresh

area. This area of infection then rapidly expands through short-range ties.

The analysis also has an important theoretical implication for understand-

ing why some contagion phenomena “go viral” and others do not. For simple

contagion to escape the region of initial infection, it need only reach a node with

a long-range tie or a hub that can broadcast the contagious phenomenon more

widely. On a small world or undirected power law network, that is guaranteed

to eventually occur, so long as the contagious phenomenon remains capable

of passing from one node to another (e.g., there is no decline in infectiousness

such as might happen in a news cycle). For a complex contagion to go viral, it

must infect sufficient nodes that a long-range tie or susceptible hub can make a

difference.

Finally, in Chapter 4, I explore contagion in the real world, focusing on a set

of photo tags that propagate through the Flickr photo sharing network. I begin

with large-scale analysis of the photo tags, and find two results in line with the

concept of complex contagion: first, I find that tags that correspond to social as-

pects of Flickr, like groups, are much more likely to spread as higher-threshold

contagion phenomena than technological tags that describe the camera or tech-

nique used to take the photograph. Centola and Macy [21] posit that many

complex contagion phenomena, such as joining social movements or the spread

of rumors, are social in nature. Second, I find that higher-threshold contagion

phenomena grow more slowly over time, which is consistent with Centola and

Macy’s [21] observation that complex contagion needs to spread through short-
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range ties, which limits the contagious phenomenon’s growth rate.

Next, I focus on a few tags in detail. Of special interest is the “iflickr” tag

that corresponds to the spread of the Flickr app for the iPhone. Early on, the tag

is picked up by a large number of threshold 0 adopters (people who use the tag

before any of their friends do so), but its growth rate is slow. Only after higher-

threshold adopters pick up the tag does the growth rate of “iflickr” take off. This

result is anecdotal but points to the fact that empirical contagion phenomena can

and do reach critical mass, and can’t rely on early adopters to spread throughout

the target population. Furthermore, the reaching of higher-threshold adopters

for iFlickr precedes a spurt in the tag’s growth rate. Similar analysis of five other

tags shows that minor changes in the number of higher-threshold adopters do

not precede changes in overall growth rate, but drastic increases precede growth

spurts while drastic decreases in the number of higher-threshold adopters pre-

cede slowdowns. These results call for more investigation, but suggest that it

may be possible to anticipate a critical mass point for a contagious phenomenon

by analyzing the average threshold of adopters over time.

5.2 Broader Implications

The results of this thesis have broad implications in the areas for viral mar-

keting as well as policymaking around social contagion like social movements

and rumors. Chapter 2 shows that network structure and contagion threshold

play an important role in optimizing adoption behavior given local informa-

tion. This is a somewhat counterintuitive result, since understanding network

structure and threshold seem to require global information about the contagious
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phenomenon. However, it may be possible to estimate both from local infor-

mation or from prior studies. For instance, policymakers wishing to prevent a

social movement from spreading to a particular area may have a general under-

standing of the global structural properties of the network (degree distribution,

connectivity) and may be able to estimate the threshold of the social movement

cheaply in an experimental setting or a small-scale field study. They can then

leverage this information to decide whether to isolate the target area from the

rest of the network or to flood it with new connections, depending on whether

the new connections increase the likelihood of infection or induce a higher level

of neighborhood diversity to the target area.

Chapter 3 shows that the growth rate of contagion can change drastically

over time. Prior to critical mass, the growth rate decays, but as soon as the

contagious phenomenon is able to spread via long-range ties, the growth rate

reverses and rapidly accelerates. This qualitative change in the rate of growth

from negative to positive is a statistical signature of critical mass. The existence

of a bifurcation point in the propagation of complex contagion has a potentially

valuable practical implication for the ability to predict the eventual outcome at

the early stages of a viral marketing campaign.

The analysis of complex contagion also has practical implications for mar-

keting strategy. The greater the need for social reinforcement to persuade in-

dividuals to adopt an innovation, the larger the size of the initial region of lo-

cal propagation required for the contagious phenomenon to go viral. Thus, in

deciding where to launch an innovation, the proportion of highly susceptible

nodes in the initial region is less important than the overall size, so long as the

nodes are sufficiently susceptible that the contagious phenomenon can spread
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through short-range ties.

The need for a critical mass also carries implications for initial pricing. For

simple contagion, it may be optimal to set prices initially high, in order to maxi-

mize profits from the most interested customers, early adopters. In contrast, for

complex contagion, it is better to set prices initially low to improve the chances

that the contagious phenomenon will reach critical mass.

Finally, Chapter 4 applies the results from Chapter 3 in an empirical setting

and presents important methodological considerations for the study of social

contagion. The in-depth analysis suggests that a closer look at empirical conta-

gion phenomena is needed to determine their dynamics with respect to critical

mass. At the same time, the large-scale analysis makes it possible to select a

small number of interesting tags that are potential instances of social contagion,

without having to manually inspect the dynamics of hundreds or thousands of

candidates. In the future, I hope to find more efficient ways of combining the

macro-scale and the micro-scale approaches.

The fine-grained analysis in Chapter 4 yields few positive results, which car-

ries important implications for future studies of complex contagion. The vast

majority of contagious phenomena either never reach critical mass, or have

such a low threshold that the concept of critical mass is irrelevant to them (this

applies to simple contagion phenomena). Furthermore, the search for com-

plex contagion phenomena is complicated by the fact that a contagious phe-

nomenon’s threshold may change over time and/or threshold heterogeneity in

the underlying population. The search for examples of complex contagion and

critical mass will require intensive data mining for a small yield. Nevertheless,

the discovery of examples like the “iflickr” tag shows the importance of this
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area of research: the prediction of critical mass in an empirical setting could be

a great boon to marketers and policymakers alike.

5.3 Future Work

It is important to acknowledge the limitations of current research on social con-

tagion. Chapters 2 and 3 are heavily theoretical, and the application of the anal-

ysis therein to empirical social contagion phenomena is not straightforward.

This analysis assumes highly stylized topologies composed of nodes with ho-

mogenous attributes. Some empirical networks have degree distributions that

don’t approximate those of Poisson Random Graphs, Small World Graphs, or

Preferential Attachment Graphs. In addition, the nodes in empirical networks

have heterogenous attributes, thresholds that vary between innovators, early

adopters, and laggards [14, 37], and influence that varies between influentials,

opinion leaders, and followers [59]. Moreover, these attributes may be ho-

mophilously clustered. These complications preclude the ability to use a set

of formal results to confidently predict the critical mass or optimize behavior

under conditions of local information in natural settings. Much more empiri-

cal research is needed to make the transition from theoretical models to applied

predictive systems in the area of social contagion.

In future work, I hope to address several natural extensions to the study of

empirical social contagion phenomena: attribute and threshold heterogeneity,

tie strength (which may increase or decrease the probability of contagion trans-

mission via a particular network tie), and contagion confounds like homophily.

The ultimate goal of this research is to create a comprehensive predictive model
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for social contagion phenomena that would be able to incorporate theoretical re-

sults from this thesis along with more standard predictive mechanisms (e.g. ma-

chine learning) to forecast the rate of spread, equilibrium number of adopters,

and other dynamic properties of socially infective behavior. I do not expect to be

able to accomplish this goal on my own, and call for more research on empirical

social contagion. Recent work such as [60] along this vein is especially promis-

ing and suggests that this area of study is fruitful with many opportunities for

further research.
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