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Summary

It is shown that if F s a distribution function and {én} <D a se-
quence of invertible continuous functions from R to itself, where D s a
space of such functions (typically a finite-dimensional parametric family)
satisfying a certain natural technical condition, then Mo dn can have a
nondegenerate (in a slightly modified sense) weak limit G only if there

exists a homeomorphism h between some interval (a,b) and R for which

n{1- F(d oh"l(-logt))T »t as n=e forall t>0, and in this case
[a,b] = support (6) and G(x) = exp[-exp(-h(x))]. In this context, the
Fisher-Tippett-Gnedenko theory of extreme-value distributions amounts to a
characterization of the F for which this can happen when dn(x) mist
have the form ax + bn‘ More general examples of families T are given
with corresponding enlarged domains of attraction to weak limits for sample
maxima. These results are also related via theorems of Darling (1952) to

the problem of nonlinear scaling of sample sums.



Introduction., In standard discussions of extreme-value theory--especially

in works describing applications {(eg. Barlow and Proschan, 1981; Gumbel,
1958)--one is left with an impression of inevitability of the "three
types of extreme-value distribution” obtainable as weak 1imits of
Fn(anx + bn) as n + o, where F is some distribution function (d.f.) and
a, > 0 and bn are constants. This impression is slightly misleading
for a few reasons: first, because the most general weak-convergence
theorem for sample maxima does not require linear (or any parametric)
rescaling; second, because the family of linear rescalings is not uniguely
distinguished among families of parametric rescalings of maxima with
respect to weak convergence; and third, because there is not enough
variety within the standard "three types” to accommodate efforts at
modelling lifetime distributions in Relability and Actuarial Science. We
now discuss these three points in greater detail.

If {Xi}?=1 is an independent identically distributed (i.i.d.) se-
quence of random variables (r.v.'s) with continuous d.f. F, then it is

well known that P{ max X, 5_F'1(1 - t/n)} » et as nse. Inother
1<i<n
words, n{l - F( max Xi)) has asymptotically a unit exponential distribu-
1<i<n
tion; a simple fact which lies at the heart of all asymptotic theory about

sample maxima, which makes no appeal to linear rescalings 3;1( ma X Xi - bn)
T I<i<n
of the maximum, and which allows the greatest possible generality for

domains of attraction to weak limits.

Our second remark above concerns the main subject of this paper. We

are interested in the question: for which families {dn(-)} of increas-

ing functions from the real line R to itself and which d.f.'s F can

Fn ° dn have a non-degenerate weak limit, and what limits are possible? If
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no restriction is placed upon allowable scaling sequences (d (¢}), then
this question is rather trivial: every F for which

& = Vim sup(l - F(x=))/{1 - F(x)) =1 where x_ = sup{x: F(x) <1} (and
F X4 % F

only such F) allows every d.f. G as limit of F" o d  for the choice

dn(s) z F'I(l + (1og G(s))/n). [If one restricts dn(x) to have the 1inear
form ax + bn, one is led back to the usual Fisher-Tippett-Gnedenko theory.
In Section 1 of this paper, we restrict {dn(')} to lie in a space D of
invertible continuous functions from R to R and derive some simple con-
sequences of a general technical assumption on D which will often be sat-
jsfied by finite-dimensional parametric families {f(+,8): € ¢ Rk}. After
presenting examples in Section 2 to illustrate the assumption on U, we
prove our main theorem in Section 3 showing how the tail behavior of F and
the structure of D must interact to allow nondegenerate weak limits of
F7 o dn for {dn} c D. The Theorem, together with some further examples in
Section & of domains of attraction, justifies our contention that the
family of linear scalings for maxima is not distinguished in any abstract
way, although it deserves pride of place as the parametric family easiest
to write down which already includes in the domains of attraction to its
possible weak limits (for " o dn) nearly all the common d.f.'s F of
practical interest. A similar situation exists with respect to nonlinear
scalings for sums of i.i.d. variables, and we discuss in Section 5 the
nonlinear scaling of sums for which it is known that no linear scaling can
give nondegenerate limits.

Finally, our third remark about the standard extreme-value distribu-
tions is that the motivation to choose life distributions from among them

or their counterparts for sample minima is usually rather weak. One
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observes that the standard extreme-value distributions all have monotone
hazard rate functions on their intervals of support. If one allows the
slightly greater generality of distributions of maxima {or minima) of
finitely many independent r.v.'s xl""’xk with different extreme-value
distributions, then one includes important 1ife distributions with U-shaped
hazards, such as the Makeham-Gompertz distributions of actuarial usage

(Jordan, 1967). This is essentially the idea of Brillinger (1961).
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Marjorie Hahn for making him aware of Darling's (1952} paper.
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1. Formulation of problems. Llet D be a family of continuous strictly

increasing functions d: R » R such that d{-=) = -=, d(+=) = +=. We

assume T satisfies

(D) if for sequences {en}, {dn} c D there exist real numbers

a<b, a <B, such that v d'l ° en{{a,b}} and

S

v e"1 o d ([a,8]) are bounded sets, then there exists a
S n -1

subsequence {nk} of integers such that dn °c e, converges
K Tk
pointwise to a continuous strictly increasing limit 4.
We recall in passing that pointwise convergence of nondecreasing functions

to a continuous function is equivalent to uniform convergence on compact

subsets of R. Let pD* denote the set of such limit functions A.

Definition. We call a d.f. 6 on R D-degenerate if there exists 4 ¢ D*

not the identity function such that G = G o A (or if G is degenerate).

Remark. Each A is continuously invertible on its range, which might

a priori be smaller than R. If & is such that G o A = G, then A(x) = x

i

for every point of increase of G. Thus G 0D-degenerate implies there
exists A ¢ D*, not the identity, which fixes the support of G. Typically,
if D has k-dimensional smooth parameterization, the D-degenerate d.f.'s

will concentrate at k - 1 or fewer atoms.

Lemma 1. (generalizing a Theorem of Khinchin, Theorem 1.2.3 in Leadbetter
et al., 1983). Llet {Fn} be a sequence of d.f.'s and G a non D-degenerate

d.f., and suppose dn ¢ D are such that

w
>

Fn(dn(a)) G(s) as no» =.
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Then for some nondegenerate d.f, G, and {35} <D,
— W
Fn(dﬂ(.)) * G*('}

iff d; ° dn converges uniformly on compact sets to some A ¢ D* and

G op

it

o
»

.

Proof. (=>) Since G, and G are nondegenerate, there exist a < b and

a < B such that 0 < G,(a) < G (b) <1, 0 < G(a) < 6{p) < 1. Now

o a1 ¢ ([a,b]) and u a3
n n n

n n
1 od_ (b) » =, then the weak convergence of F (d (.)) to a
K n n'on
. . - -1
proper d.f. G(-) implies F_{(d_ (b)) =F od_ (d " od_ (b)) 1 as
MMy Ny "oy My
k » =: a contradiction. Then property (D) of D implies every subsequence

1, d {+) converging
ko
uniformly on compact sets to some A ¢ D* (which a priori may depend on the

subsequence.) Therefore, F_ o d (d"1
" "
point of G o A, each ¢ > 0, and all sufficiently large k, between

° dn([a,gj) must be bounded, for otherwise,

e.g. if dn

of {d;1 ° 3&} possesses a further subsequence é;
° 56 (x)) 1lies, for each continuity
k

Goa(x-¢) -« and 6 °alx+e)+e. Thus F e Eﬁ Y6 o a, sothat
k k
G oA =G,. By non D-degeneracy of G, this relation determines 4

uniquely, and we conclude 6;1 °d >4 pointwiseas n > e.

{<=) Easy, by steps like those just used to show weak convergence

of FnA o dnk to G oA, O
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Now we can ask our main gquestion:
(1) For what d.f.'s F(s)} with corresponding i.1.d. sequences {xi}:=1 do
there exist sequences {dn} c 0 such that d;}( max Xi) (with d.f. Mo dn)

1<i<n
converges in distribution to some non (D)-degenerate r.v. with d.f. G?

What is of interest here is primarily the interaction between tail behavior
of F(+) and necessary structure of D, not the class of possible limits,
since for any fixed homeomorphism ¢ of R with itself, if

{e6f{ax + b): a> 0, b e R} c D then one may obtain all He ¢ as limits

G where H is one of the standard "extremal types" of Fisher-Tippett

(1928) and Gnedenko {1943).

A related (but much harder) question, dealt with only briefly in this
paper, is:

(2) When can d;I( Xi) converge in distribution to a r.v. with non-

[y e

i=1

degenerate d.f. G?
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2. Examples of nonlinear scaling families.

(i) The example of D on which virtually all previous work has been done
is p = {ax + b: a>0,beR}. If dn(x) IR S bn for n>1 and
ngl dn([g,n]} is bounded, where & < m, then obviously both {a} and

{;n} are bounded and have convergent subsequences: however 2, might con-
verge to 0. If also ngl ﬁ;l (Ta,p]) is bounded for some a < B, then
{lfan} is also bounded. Since 7 1is a group under composition, it sat-
jsfies (D). Also, in this case D-degeneracy and degeneracy are the same.
(ii) For every strictly monotone continuous function ¢ sending R onto
itself, the family 5; z {@(a-¢'1(-) +b):a>0,be R} is conjugate-
equivalent to QL and provides another example of 0 satisfying (D).

(iii) Examples based on finite-order polynomials can take the form

2i+1,

M
p?,% = {izg (aéx + bi} ca; >0, 3 a; >0,b, e R}. Here again the condi-

tion (D) holds, although it is more laborious to verify. The main idea

M .
is the following: suppose dn(x} = ) (agn)x + bgn))21+1 and
i=0

M
- - —{n) —(n),2i+1 . -1 =
dn(x) z sgs (ai x + by ) with u d dn([a,b]) and
u 5;1 ° d_([a,8]) bounded and not all coefficients agn}, bgn), Eﬁn), Eén)

bounded as n + =. Then one can find dominant values of 1, j such that,

along subsequences of integers n = n,, for x 1in bounded intervals

(agﬂ)x + bgﬂ})2§+} and (Eén}x + Eén))Zj*l are of the same order of

magnitude as dn(x} and 'En{x} respectively. There may be more than one

choice for each of 1, j; but in case they are unique, then (at least along

1

subsequences of nk) one can check that d; ° Eg{x) is asymptotic to a

2j+1
2i+1

R P
convergent sequence of functions [{agnfx + bén)) - bgn}3!a§n) which
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2i+1
can have limits only of the form (£x + n)21+1 . The most general limits
in Dg’M will always be contained in {d'1 °od: d ¢ QP’MI’ d e QP,MZ,

0 <M, <M.
(iv) A particularly fruitful example for our later considerations is

D¢

st

{(ax + b)cz a, ¢ >0, beRY}, where for z <0 we understand z€

c c
c _ n - - = =N
to mean (sgn z)}z? . If d(x) = (e x+ b)) and d (x) = (@ x+b) ",
then
c /c
d " eod (x) =
n n CH

and an examination of cases (to which we will return later} shows that con-
dition (D} holds.

(v) If D is the collection of all homeomorphisms d: R onto R, then (D)
does not hold, since the subcollection of all homeomorphisms of R which
fix [a,b] is not relatively compact with respect to the topology of

uniform convergence on [a,b]. In this example, G is D-degenerate iff

support {G) # R.
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3. Reductions and main theorem. Consider question (1) re-stated as: when

can Fn{dnéo)} Y G{«) for non-D-degenerate G with {dn} c D7 It makes
sense to restrict to non-D-degenerate G, especially when dealing with
classes D of parametric functions with finite-dimensional parameter,
since D-degenerate d.f.'s are typically concentrated at a finite number of
atoms (related to the dimension of parameter-space) and can occur as weak-

. -1 .
limiting d.f.'s for d. (1§$§n Xi) with d ¢ D.

We further restrict attention to d.f.'s for which

b = Tig$§¥p (1 - F(x=})/(1 - F(x)) = 1,
where X = sup{t: F(t) < 1}, since O'Brien (1974) shows that there caﬁ’be
no nondegenerate limits G(e) (indeed, no limits of Fn(dn(x}) strictly
between 0 and 1) if 5p > 1.

Our method of deriving functional equations for G(e) 1in this setting
follows closely the ideas of de Haan (1970) as expounded in Leadbetter,
Lindgren and Rootzen (1983, Chapter 1). Suppose now that Fn(dn(o)) % G(.)
as n » =, where 6F is 1, dn e D satisfying (D), and G() is non-0-
fs(*)) 3 6(+) as

n > =, where [ ] here denotes greatest-integer function. Thus

degenerate. For each fixed s > 0, we have F{ns](d

Fn(d[ns}(')} Y Gl/s(-) and our Lemma implies d'l

n
uniformly on compact sets, while 6 © A = Gl/s.

© d{nsj -»> és £ 3*

Remark. With not much greater difficulty, one finds the analogous func-
tional equation for (2) to be:
for each integer k > 1, there exists Biky € U

such that 6+ o By = 6

;
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where G*k denotes k-fold convolution-product. However, since character-
istic functions do not necessarily behave well under composition with D*
functions, the author has made no further progress on {2), which remains

open.

We require one further definition for the statement of our result for

(1).

Definition: for a given d.f. F(«) with 5 = 1, we call {cn(-)} {a se-

quence of right-continuous functions from [0,=], to R ) a scaled quantile

sequence if for each s > 0,

é?(cn(s)) + S as n+ =.

Here and from now on, we use the notation F(x) to denote 1 - F(x).

To motivate our Theorem, suppose there exists some increasing homeo-
morphism h(+) of a subinterval of R onto R itself and some scaled
quantile sequence {Cn(’)} for F such that cn(e'h(’)) ¢ D for each
n > 1. Then putting dn(c) z cn(e'h(')), we have by definition for each
teR, limFod(t) = et ang

N

F'(d, ()

#l

(1-F od (£)" + exp(-e™"t))

gs N » e,

Theorem. Assume F has éF 1 and D satisfies (D). The d.f.'s

Moo dn for {dn} c 7 have a non-D-degenerate weak limit G if and only
if there exists a continuous strictly increasing function h{(«) of a sub-
interval (&,n) of R such that h{g) = -=, h{n) = +=, for which

{dﬁ ° h-l(-?og t}}n is & scaled quantile sequence for F.
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Remark. There would be nothing more to prove if we knew G had points of
increase ({£,n) and support [Z,n], for then we could reverse the steps of
our "motivation” above. As it is, we must use our functional equation for

G to prove these properties and extract the function h{s).

Proof. In deriving a functional equation, we have found a measurable curve
s (+) from [0,=) to D*. Letting t = Tog(s), o (+) = a(+), and
¢{+) = -log{-1og G{+)) {as an extended-real-valued function) we can
rewrite our functional equation as

(3.1) ¢ ° o - t=¢ for each t e R

The relation G ¢ 52 = 61/2

already implies that G cannot have a jump at
 either extreme of its support, so we can regard ¢ as a right-continuous
monotone function on a closed interval [-=,o] to itself, with

¢{-=) = -=, ¢{+=) = +=, which is continuous at the endpoints. Let

o{x) = ¢'1(x) z inf{t: ¢(t) > x} define the right-continuous inverse of ¢
on [-=,»]. We want to re-write the last equation in terms of inverse-

functions, but the D* functions {¢) are so far known only to be

%
continuously invertible on their ranges Rt < R.

Now if ¢(b) = « for b < =, then (3.1) implies for all ¢,
¢{ct(b)} = », Putting b = Xg = supix: G{x) < 1}, we find Gt(x6>-i Xg s
while for each ¢ > O, ¢{x8 -¢) <= implies ct(xG -€) < Xg By con-
tinuity of ct(-), we conclude x. and similarly w, = inf{x: G(x) > 0}
must be fixed points of all {ct(-}}tE R’ and range (ct) > (we,xG). Thus we

can regard ¢{e¢) and Ut(') as functions from the {possibly infinite)

closed interval {wg,xsj respectively to [-=,=] and [wG,xG}, and each
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oy is continuous and continuously invertible. Taking inverse functions in

(3.1), we can now write

(3.2) o(y) = of (6(t + )

or o, (6{y)) = e(t +y) forall teR. Therefore, if zj e(-=,=) fis
not a point of (left or right) increase for ¢(«)}, then neither is t + ;-
{Recall that o4 is strictly increasing). So ¢: [-=,=] » [wG,xG} mist

in fact be strictly increasing. Similarly, if ¢{(.) has a jump at vy,

then it must also have a jump at t + y, so that ¢(+) 1is also continuous.
Hence for each x ¢ [ws,xG], ct(x) is strictly increasing and continuous in

t ¢ R. From (3.2) we deduce
(3.3) ¢(t) = 0, (6(0)), o 4 (6(2)) = o (or(e(2))).

That is, {st(-)}te R isa family of transformations on [wG,xG] which

forms a group under composition. Putting z =0 1in (3.3), and recalling

671 (=) = 4(+), we have (writing £ = e(t) = o (s(0)))

(3.4) o, (2}

]
]

?y(°t¢(0})) o, (6(0)) = o

t+y o)y (e(0)

o Ly + ol2)).

H
H

6(e(g) + y)

We return now to make use of the primary assumption of our Theorem,
namely that Fn(dn(-)) 4 G(¢). One the one hand, we know from the defini-

tion of ¢{e) that G(.) = exp(—e'¢{°)), so that G(«) is continuous and
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strictly increasing on {xG,xG}. Therefore our weak convergence is point-

wise convergence, and we have for every t ¢ R,

(1- (- F@ @) o> e(-e¢())
so that

(1 - F(d,(4) o> &)

which implies {dn ° ¢‘1(-1og t)}n js a scaled quantile sequence for F.

Thus the function h{-) in the statement of the Theorem is ¢(«). O
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4. Domains of attraction. The Theorem of Section 3 describes the

interplay between the tail behavior of a d.f. F and the structure of
scaling family D allowing weak limits for Moo dn where dn e D. In
the present Section, for the various families D given in examples
(i)-(iv) of Section 2, we summarize which classes of F allow weak Timits
Fed »6 for d e0.

(1) The large body of work (taken farthest by Gnedenko, 1943; Marcus and
Pinsky, 1969; and de Haan, 1970) on domains of attraction for non-degener-
ate weak limits of maxima of i.i.d. random samples, has focussed

exclusively on the question re-expressed by our Theorem as:

(4.1) for which d.f.'s F (with 6 = 1) does there exist
a homeomorphism h from a subinterval Ih of R onto
R and a scaled quantile segquence {cn{-)} for F

such that

cn(e"h(')) e D, foreach n> 1, i.e.,

- - ?
for some a >0, bn ¢ R, cn(exp{ h(t))) = ant + bﬁ.

Gnedenko {1943) already showed that h could have only three possible

forms: (1) I =R, h(x) = ax + b with a> 0, b e R; (II) Ih = (-b/a,=)

=
P
>
e
it

« log{at + b), with a, 2@ > 0, b e R; {111} Ih = {-=,-b/a),

-
son,
>
R
t

= -g¢ log(-at-b), with a, @ > 0, b ¢ R. Gnedenko showed also that the
d.f.'s F corresponding in {4.1) to these three forms were respectively

(1) those d.f.'s for which there exists positive measurable g{«) such

that Tim,, F(t + xg{t))/F(t) = e X; (I1) those d.f.'s with Xp = @ such
F

that ?imtkm'?(tx)f?{t) = x % for o> 0; and (II1) those d.f.'s with
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xp < = such that ?imh+g'§(xg - xh}ff(xF - h) = x¥ forsome «> 0. In

what follows, we refer to G(s) = exp(-exp(-h{«))) in (I}-(III) as the

"

three standard forms of extreme-value distributions, and the allowable F

as the three standard domains of attraction.

(ii) For each homeomorphism ¢ of R onto itself, there exist {an,bn}

such that Fn(e;(an ¢'1(-} + bn)) Y H(s) (nondegenerate) as n+ o if and
only if F o ¢ 1is in one of the three standard domains of attraction, and
the possible 1imits H{+) are of the form G o ¢'1 with G a standard
extreme-value d.f. Thus all H with support a half-line or R itself are
possible limits of F' od  with {d} e D

¢
(111) Suppose {dn} < Dpy is such that as n s+ «, F" o Gn ¥ 6 nondegen-

for some  ¢.

erate. Possibly after passing to a subsequence, we can find monomials

Eh(x) = (agn) X + bén}}21+1 such that d;1 ° Eh converges pointwise and

uniformly on compact sets, say to A (see example {(iii) of Section 2.)

Then Fn

~

°‘En Y6 o 4, and upon letting §(y) = F(y21*l), we find that F

must be in one of the standard three domains of attraction. If f is of

b 2 B

type (II), then obviously so is F (with « replaced by e/(2i+1)). If
is of type (1) with given positive é(o), then F 1is also with g(.)

given by gs) = (2?*1}5255(21+1) §(sll(21*1)) for s ¢ R. Finally, if F
is of type (IIl), we assume Xe # 0 {since for X = 0, F is obviously of

type (I1I1)). Then for fixed x> 0, as h + O, f({x;[(2i+l) - xh)21+1)/

‘?((xFli(2i+l} -8y L putting x - Kz x;!(2%+1} 2 ang
observing for each ¢ > 0 that (x§/{2€+1) _ (x+e}K}21*1 Cxp XK <

(XFI/(21+1) - (x-)X)P*L, we conclude that Vim0 Flxp - xK)/F(xp - K) = x*

and F is of type (II1). Thus we have proved (via Gnedenko's 1943 results)
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Proposition. The set of d.f.'s F such that for some M > 0 there exist
{dn} c ﬁ; M with 7o dn YH for some non-degenerate d.f. ;H* is pre-
cisely the union of the three standard domains of attraction (1)-(111).

The possible 1imits H are the standard extreme-value distributions.

L]

(iv) The family UE {(ax + b)c: a, ¢ >0, be R} 1is an excellent example
to show how domains of attraction can be expanded by scaling maxima using
transformations dn(°) outside va As we have just seen, choosing

dn(x) = (anx + bn)C for fixed ¢ > 0 cannot possibly give weakly-con-
vergent o dn unless F were already in one of the standard domains of
attraction., However, if dn(x) = aﬁ(x + 5)Cn with fixed B ¢ R, then the
possible cases of non-degenerate limits for F" o dn are derived by simple
transformations from the standard three (in all cases a and « are
positive parameters): (I') if Xe > 0, and there exists g{e) > 0 such
that F(s exp[xg(s)])/F(s) » e X as s+ X, then there is a weak limit of
the form exp(-a(t + g) %) for t > -g; (I") if Xe < 0 and there exists
gle) > 0 with F(s exp[-xg(s)])/F(s) » e X as s+ X, then a weak limit
has the form exp(- a{t + g{“) for t < -p; (II') if x =+= and
F(s*)/F(s) » x™® as s » =, then a weak limit has the form

exp[-a{log{t + B) + ) % for to e C -g; (IIT") if 0 < Xp <= and
?(kax)f?(ka) >x% as » 4 1, then the limit is of the form

exp{-a!1og(t +B) + ci“] for -8 <t <e C -p; (II") if x. =0 and
?(-ls{x)f?(s) > X ® as s 40, thena limit has the form

exp[-alc - ]og‘t + 3‘)'“} for -e“-g <t < -p; and (III*) if x. <0 and
?(xpkx)f?(xe} > x%¥ as A ¢ 1, then the weak 1imit has the form

exp{-a(Yog‘t + ﬁ‘-c)“] for t < -p -eC.
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It is easy to see that domains (II'), (111'), (11"), and (III") (the
last two of which are relevant to Reliability and allon 1imiting distribu-
tions with hazards not monotone on their supports, e.g. U-shaped hazards)
are disjoint from the standard domains of attraction for extremal distribu-
tions and include, for example, d.f.'s with slowly varing tails such as
F(x) ~ a/(logx)® as x » = which will play a role in our subsequent dis-
cussion. The domains (I') and (I"), which respectively include domain (II)
and those parts of domain (II1) with xg < 0, actually contain more. For
example, the d.f. F(x) =1 - exp(-(log x)z) for x> 1 belongs to domain
(1') with gfs) = (2 1095)'1 and X ==, but evidently does not belong to
(11).

The other scaling sequences {dn} < D¢ which deserve special mention
are d (x) = (3 x+ bn)cn such that ‘bng > o with cn(an/‘bn})2 converg-
ing to 0. Such dn(x) are asymptotically of the form i_a; exp(béx) and
one can again by simple transformations of the standard domains and 1imits

read off the domains of attraction and limits for F" o dn with such dp.
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5. Complements and discussion. As we have argued in the Introduction,

with justification from our Theorem, results about limiting distributions
for maxims are most naturally presented in terms of 1imiting behavior of
P(max(xl,...,xn) 5-Cn(s)) for scaled quantile sequences Cn(')' Indeed,
the most far-reaching weak-convergence results related to maxima have been
stated in this way, and these carry over without difficulty to statements
about {dgl(max(xl,...,xk)}: 1 <k < n} whenever our Theorem applies.
The generalizations of the Gnedenko (1943) theory of asymptotic, distribu-
tions for sample maxima are of two main types: first, functional limit
theorems for partial maxima and for record-value processes (implying, for
example, asymptotic joint distributions of the k largest order-statistics
from i.i.d. samples) based on Resnick's {1975) point-process approach; the
second direction of generalization (in the work of Loynes, 1965; 0'Brien,
1974 and 1984; and Leadbetter, 1983) is from theorems about i.i.d. sample
maxima to maxima of stationary sequences satisfying conditions on mixing
and local dependence. The theorems of 0'Brien (1974) especially have shown
quite generally that up to an additional scaling parameter the behavior of
j.i.d. sample maxima and stationary-sequence maxima are the same. Thus for
marginal d.f.'s F and scaling families 7 to which our Theorem applies,
0'Brien's (1974) Theorem 3 implies the painless generalization to maxima for
uniformly mixing stationary seguences (satisfying additional conditions on
Tocal dependence). Leadbetter's {1983) and 0'Brien's (1984) results imply
slightly broader generalizations.

Our question (2) in Section 1 about weak convergence of nonlinearly

scaled sums of i.i.d. random variables was discussed more than thirty years

ago by Darling (1952). Of course, as he noted, for any d.f. F for which
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the tails F{-x} + 1 - F(x) vary regularly a2t = with positive exponent
or are of smaller order than x ¢ for every o« >0 as x » =, it is well
known that a linear scaling F*n(anx + bn) has a nondegenerate weak limit.

In addition, Darling (1952) proved the following

Proposition. Suppose %im F(tx)/F(t) =1 for each x > 0 and
-3

%im F(-t)/(F(-t) + F(t)) = p <1 exists, where p may equal 0. Let

m

n
= - n ] - 3 *
g=1-p, {Xi}i=1 be i.i.d. F-distributed, S ) X5 and let X* be

i=1
the term X; with largest absolute value, 1 < i < n.
Put
r—-
F(x) if x>0
H(x) = ﬂ
F(x) if x < 0.
.

Then as n+ =

P{nH(S ) > ¥} > p exp(-y/p) + q exp(-y/q)
and

E!Sn/X; -‘1! s 0.

(Quite generally, the condition 5 = 1 with ?{xF-) =1 1is equivalent to

the property used by Darling that

P{ max X. =X. =X forsome Jj#k,1<j, k<n}» 0.
I<i<n 1 k - -
In particular if F has slowly varying tail, i.e. F(tx)/F(t) + 1 as t -+ =,

6p = 1 and Xg = ®. )
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The foregoing Proposition implies, for the significant class of d.f.'s
F satisfying its hypothesis, that while no linear scaling for Sn leads
to a non-degenerate 1imiting distribution, any nonlinear scaling {dn}
-1 1
with dn {

X*) convergent in distribution will also give d; (s,) a non-

degenerate asymptotic distribution. For example, if ?(ex) is regularly

varying at « with exponent o« > 0 and, say, F(-t)/F{t) » 0 as t + +=,

then F is in the domain of attraction (II') for D¢ in Section 4 (iv),

and by the Proposition we conclude (for {Xi}?=1 j.i.d. with d.f. F)

nla e e e
(X1 ...+ X)) » Y in distributionas n + e

with P{Y >y} = exp(-y %) for y > 0. This example (for « =1) was
given by Darling. It is clear that other F for which F(x) 1is regularly
varying at « as a function of a slowly varying function L(x) (other than
log x) can by other scaling-functions dn be brought within domains of

attraction for weak convergence of maxima and sums.
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