Chapter 1
Polynomial Time Algorithms for Some Evacuation Problems*

Bruce Hoppe!

Abstract

Evacuation problems can be modeled as flow problems on
dynamic networks. A dynamic network is defined by a
graph with capacities and integral transit times on its edges.
The maximum dynamic flow problem is to send a maximum
amount of flow from a source to a sink within a given
time bound T'; conversely, the quickest flow problem is to
send a given flow amount v from the source to the sink in
the shortest possible time. These dynamic flow problems
have been studied previously and can be solved via simple
minimum cost flow computations.

More complicated dynamic flow problems have numer-
ous applications and have been studied extensively. There
are no polynomial time algorithms known for many of these
problems, including the quickest flow problem with just two
sources, each with a flow amount that must reach a single
sink. The general multiple source quickest flow problem is
commonly used as a model for building evacuation; we also
call it the evacuation problem.

In this paper we consider three problems related to the
evacuation problem. We give a polynomial time algorithm
for the evacuation problem with a fixed number of sources
and sinks. We give a polynomial time algorithm for the
lexicographic maximum dynamic flow problem with any
number of sources; in this problem we seek a dynamic
flow that lexicographically maximizes the amounts of flow
leaving the sources in a specified order. Our algorithm for
the evacuation problem follows as an application.

We also consider the earliest arrival flow problem.
Given a source, sink, and time bound T, an earliest arrival
flow maximizes the amount of flow reaching the sink at
every time step up to and including 7. The existence of
such a flow is well known, but there are no polynomial
time algorithms known even to approximate it. We give
a polynomial time algorithm that for any fixed ¢ > 0
approximates an earliest arrival flow within a factor of 1+e.
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1 Introduction

When a bomb explodes beneath a skyscraper, the oc-
cupants must evacuate the building as quickly as possi-
ble. Panicked stampeding through hallways and down
stairwells can easily lead to catastrophic bottlenecks.
With hopes of preventing such disasters, engineers de-
vise evacuation plans; in an emergency, the occupants
need only follow the appropriate plan in order to exit
the building safely.

Dynamic networks can model building evacuation
and many other problems as well. A dynamic network
is defined by a directed graph G = (V,E) with
sources, sinks, and non-negative capacities u.y and
non-negative integral transit times 7., for every edge
zy € E. In a feasible dynamic flow, at most u,, units
of flow can be pipelined along edge zy with each time
step; flow leaving = at time 0 reaches y at time 0 + 75.

Two classical dynamic network flow problems are
the maximum dynamic flow problem and the quickest
flow problem; each applies to networks with only one
source and one sink. A maximum dynamic flow sends
as much flow as possible from the source to the sink
within a specified time bound 7'. Conversely, a quickest
flow sends a specified amount v of flow from the source
to the sink in the shortest possible time 7. Ford
and Fulkerson [4] showed that the maximum dynamic
flow problem can be solved via a single minimum-cost
flow computation. The quickest flow problem can be
reduced to the maximum dynamic flow problem by
binary search; Burkard, Dlaska and Klinz [2] gave more
efficient and strongly polynomial algorithms for this
problem.

The quickest flow problem with multiple sources,
each with a flow amount that must reach the sink,
is commonly used to model building evacuation; we
also call it the evacuation problem. Dynamic network
flow problems with several sources and sinks also arise
in many other applications (e.g., airline, truck, and
railway scheduling). While there has been a fair
amount of work in this area (see the surveys [1, 13]
and the bibliography), there are no polynomial time
algorithms known for most of these problems, including



the evacuation problem with just two sources. We
give a polynomial time algorithm for the evacuation
problem with a fixed number of sources and sinks.

It is not obvious how to describe a dynamic flow
efficiently when the time bound is large. All previous
polynomial time dynamic network flow algorithms have
relied on the notion of a temporally repeated flow to
describe a dynamic flow. Ford and Fulkerson [4] intro-
duced temporally repeated flows — a very simple class
of dynamic flows defined in Section 3 — and proved
that the maximum dynamic flow problem always has
a temporally repeated solution. This is not the case
for many simple variations of the problem, but no effi-
cient alternative to temporally repeated flows has been
proposed. In this paper, we describe a generalization
of temporally repeated flows, and we consider a num-
ber of dynamic network flow problems with generalized
temporally repeated solutions.

Our first result relates to the evacuation problem
with a single source. Suppose a bomb explodes beneath
a skyscraper on Sunday, when the only occupants are
tourists on the observation deck. The quickest flow
problem models a plan to minimize the time required
for all the tourists to leave the building. Given the
increasing amounts of fire and smoke, however, we
not only want the last person to evacuate as soon as
possible, we also would like that at every intermediate
time there are as few people in the building as possible.
This extra restriction is modeled by the earliest arrival
flow problem.

More formally, an earliest arrival flow simultane-
ously maximizes the amount of flow reaching the sink
at every time step # < T. The existence of such a flow
was proved by Gale [6]; and exponential algorithms to
compute it were described independently by Wilkin-
son [14] and Minieka [11]; but there is no polynomial
time algorithm known even to approximate this flow.
We give a polynomial time algorithm that for any fixed
€ > 0 finds a (1 + €)-approximate earliest arrival flow:
at every time step § < T the amount of flow that has
reached the sink is within a factor of 1 + € of the max-
imum possible. Our algorithm is a capacity scaling
shortest augmenting path algorithm; however, it has
the unusual feature of scaling upwards. First we use all
edges for augmentation; after sufficient augmentations,
the algorithm periodically rounds down the remaining
capacity and restricts all further augmentations to the
rounded network.

We next consider the lexicographic maximum dy-
namic flow problem. In this problem we are given an
arbitrary number of sources; the sources are ordered
to distinguish high priority sources from low priority
ones. Given a time bound T, we seek to maximize
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the amounts that the sources send to the sink in the
given lexicographic order. We give a polynomial time
algorithm for this problem. Interestingly, our solution
is analogous to an infinite horizon temporally repeated
flow — one with no time bound at all; however, because
the flow is identically zero after time T, it is equivalent
to a flow with time bound T'.

Finally, we consider the evacuation problem with
a fixed number of sources and sinks. Klinz [9] observed
that the minimum time required for evacuation with
a fixed number of sources can be computed in polyno-
mial time. However, her algorithm finds only the re-
quired time, and not the evacuation plan. We extend
her results by giving a polynomial time algorithm to
find the optimal flow for any fixed number of sources.
The solution to the evacuation problem with k£ sources
is obtained by combining the solutions to the k! lex-
icographic maximum dynamic flow problems, one for
each ordering of the sources. The algorithm can be
extended to solve the evacuation problem with a fixed
number of sources and sinks.

2 Definitions

A dynamic network N = (G,u,7,S,7) consists of
a directed graph G = (V,E) with a non-negative
capacity ugy and non-negative integral transit time 74,
associated with each edge zy € E, and a set of sources
S CV and sinks 7 C V. We will also refer to transit
times as length. We use n and m to denote the number
of vertices and edges in G. For notational simplicity
we assume that there are no parallel or opposite edges
and no zero length cycles in G. We use u,y = 0 when
zy € E, and 17y, = —74y for all zy € E; we will also
refer to the opposite pairs yz as edges. We assume that
sources have no entering edges in F, and sinks have no
leaving edges in E. We consider first the case with a
single source s and a single sink ¢.

A dynamic (s,t)-flowis a function f,(6) on E xN
that satisfies the conservation constraints

Vo eV\{s,t}, 0 eN: > fo () = 0,

yev

where we use the notation that fyz (6 + Tay) = — foy(6)
for every edge zy € E and time 6, f,,(f) = 0 for all §
if neither zy nor yz is in E, and f,,(#) = 0 for all zy if
f < 0. Dynamic flow f is feasible if it satisfies capacity
constraints foy(0) < ugy for every edge zy and time
0. Notice that by the symmetric notation for an edge
zy € E, the inequality fy, (04 T2y) < uye requires that
fay(0) > 0. The dynamic value of f given time bound
T € N is the net dynamic flow into ¢ for all time up to
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T, defined as

|f|T = —Z Z ftm(g)'

0=0zcV

In the absence of any time bound, |f| is the analogous
infinite sum. If a dynamic flow f is only defined up to
some time bound 7' € N (or equivalently it is zero for
all time after T') then f is a finite horizon dynamic flow;
otherwise it is an infinite horizon flow. Dynamic flows
with many sources and sinks are defined analogously.

The following dynamic network flow problems ap-
ply to networks with one source and one sink. In the
mazimum dynamic flow problem we are given a time
bound T'; we seek to maximize the value |f|r of a fea-
sible dynamic flow f with time horizon 7T". In the quick-
est flow problem we are given a flow amount v; we seek
to find the minimum time T so that there is a feasi-
ble dynamic flow f with time horizon T" and |f|7 > v.
In the earliest arrival flow problem we seek a feasible
dynamic flow f with specified time horizon 7" that si-
multaneously maximizes the amount of flow reaching
the sink at every time step § < T'. Such flows are also
known in the literature as universal mazimal dynamic
flows.

In the lezicographic mazimum dynamic flow prob-
lem there are k sources S = {s1,...,5,} and we seek
a feasible dynamic flow with specified time horizon T'
that lexicographically maximizes the amounts leaving
the sources. The evacuation problem is the multiple
source version of the quickest flow problem. We are
given amounts v > 0 for every source s € S, and the
objective is to minimize the time 7" so that there is a
feasible dynamic flow f with time horizon 7" where the
amount of flow leaving source s is at least v,.

We will refer to flows in G in the traditional sense
as static flows. A static (s,t)-flow is a function g on E
that satisfies the conservation constraints }-, gay = 0
for every node z # s,t, where we use again the
symmetric notation that gy, = —g.y for every edge
zy € FE, and gy = 0 if neither zy nor yz is in
E. Static flow g is feasible if it also satisfies capacity
constraints gzy < uzy for every zy. The residual graph
of the static flow g subject to capacities u is defined as
Gug = (V,Eyy), where Ey g = {2y : gay < Uay}; the
associated residual capacity function is u§, = uzy—gay-
We will also use the notation G4 and E, when u is
clear. An edge with zero residual capacity is saturated.
Note that due to the symmetric notation for an edge
zy € E, the opposite edge yz is saturated if g,y = 0.
The static value of g is |g| = Y, g=¢. Static lows with
many sources and sinks are defined analogously.

A finite horizon dynamic flow f with time bound

T is equivalent to a static flow in the time-ezpanded
graph G(T) = (V(T), E(T)). Each vertex z € V has
T + 1 copies in V(T), denoted z(0),...,z(T). Each
edge 2y € E has T — 7,y + 1 copies in E(T'), denoted
z(0)y(0 + 7o) for any time 0 < § < T — 74y. In
addition, E(T') contains a holdover edge z(0)z(0 + 1)
with infinite capacity for each vertex z and time 8 < T'.
Dynamic flow f is a static flow in G(T') where the
value of the flow on edge z(0)y(8 + Toy) is fay(6).
The dynamic network flow problems in this paper are
equivalent to easy (static) flow problems on the time
expanded graph; however, the size of the graph G(T)
is not polynomial when T is large. An infinite horizon
dynamic flow is equivalent to a static flow in the
infinite time-expanded graph G(x), defined analogously
to G(T).

3 Generalized Temporally Re-
peated Flows

If the time bound T is large, then it is not clear how to
describe a dynamic flow in polynomial time. Ford and
Fulkerson [4] introduced temporally repeated flows to
represent some dynamic flows. All previously known
polynomial time dynamic network flow algorithms use
this representation, which we define below.

A chain flow v = (v, P) is a static flow of value
v along the path P. Let 7(v) denote the length of
P. Let T' = {71,...,7} be a multiset of chain flows.
We say that ' is a chain decomposition of static flow
g if Ele vi = g; and furthermore, I' is a standard
chain decomposition of g if all of its chain flows use
edges in the same direction as g does. We say that v
is a chain flow “in” g if there is some standard chain
decomposition of g that contains v.

A standard chain decomposition I' of a feasible
static flow ¢g can be used to induce a feasible dynamic
flow. Given time bound 7', suppose that every chain
flow in I' has length at most 7. FEach chain flow
v = (v, P) € I induces a finite horizon dynamic flow
simply by sending v units of flow every time step from
time zero till time 7" — 7(vy). Summing these induced
dynamic flows for all v € T" yields a feasible dynamic
flow that ends at time 7. Such a dynamic flow is
called a temporally repeated flow, and we denote it by
[[])T. Analogously, we denote by [['] the dynamic flow
induced by repeating each chain flow endlessly. Note
that |[T])7|s = |[T]|s for every 8 < T.

Ford and Fulkerson observed that the dynamic
value of [[']T depends only on the static flow g, and
is independent of the choice of the standard chain



decomposition I The dynamic flow value can be
expressed as

(1) " = > (T -rn+1)h
(2) = (T+1)lgl = > Toygay-

zye R

This implies that finding a maximum temporally re-
peated dynamic flow is equivalent to a minimum cost
circulation problem: assign every edge xy cost czy =
Tzy and introduce a return arc ts with infinite capac-
ity and cost —(7'+1). Ford and Fulkerson showed that
there is always a maximum dynamic flow in the class of
temporally repeated flows; thus a maximum dynamic
flow can be computed with one minimum cost circula-
tion computation.

Unfortunately, many dynamic network problems
do not yield to this efficient approach. Neither the ear-
liest arrival flow problem, nor the lexicographic maxi-
mum dynamic flow problem, nor the evacuation prob-
lem necessarily have temporally repeated solutions.

We use non-standard chain decompositions to in-
duce dynamic flows: the chain flows in the decompo-
sition may use oppositely directed flows on arcs. We
refer to the resulting dynamic flows as generalized tem-
porally repeated flows. Notice that equation (2) is valid
on any chain decomposition; however, when using a
non-standard chain decomposition, the resulting dy-
namic flow might not be feasible. Consider a feasible
chain flow 7 that uses an edge zy € E and a chain
flow +' that uses the opposite edge yz; then 4’ “can-
cels” the flow of v on zy. If the portion of v from
the source to z is longer than the corresponding part
of 7', then the resulting dynamic flow is not feasible:
the flow 4/ reaches yz too early — before the flow «
(which it needs to cancel) has reached zy. A similar
problem occurs if the portion of o from y to the sink is
longer than the corresponding part of 4': the flow that
7' needs to cancel has left already.

The earliest arrival flow algorithms of Wilkin-
son [14] and Minieka [11] can be viewed as computing a
generalized temporally repeated flow. Suppose that a
static minimum cost maximum flow g* in G with costs
Czy = Tey i8S computed via the shortest augmenting
path algorithm of Ford and Fulkerson [4]. The augmen-
tations of this algorithm define a chain decomposition
I'* of g*. Wilkinson and Minieka showed that [T'*]7 is
an earliest arrival flow. We will refer to the chain de-
composition I'* as a chain decomposition inducing an
earliest arrival flow.

The proof that [['*]T is a feasible dynamic flow
depends on the property of the shortest augmenting
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path algorithm: for any vertex z € V, the shortest
residual path lengths from s to z and from z to ¢ do
not decrease during the algorithm.

Theorem 3.1 [['*|T is a feasible dynamic flow.

The proof that [['*] is an earliest arrival flow de-
pends on another property of the shortest augmenting
path algorithm: after a length # augmentation, the re-
sulting circulation is of minimum cost if the return arc
ts is given cost —f. Therefore, for any time bound
6 < T, the subset I'j = {y € T*: 7(vy) < 0} induces
a maximum dynamic flow with time . Note also that
I'* —T'; has no effect on the flow value until after time
6.

Theorem 3.2 [T*]7 is an earliest arrival flow.

As shown by Zadeh [15], the shortest augmenting
path algorithm is not polynomial. In the next sec-
tion, however, we describe a very similar algorithm that
computes an approximate earliest arrival flow in poly-
nomial time.

4 Approximate Earliest Arrival
Flows

In this section we develop a capacity-scaling algorithm
that computes an approximate earliest arrival flow in
polynomial time. For this algorithm we assume that
the capacities are integral and bounded by U. The
algorithm has the unusual feature of scaling upwards.
Traditional scaling algorithms work initially with ca-
pacities rounded by a big scaling factor; the idea is that
large capacity edges are more important than small ca-
pacity edges. In a dynamic flow, however, a small ca-
pacity edge that is short might carry more flow than a
large capacity edge that is long.

The algorithm is shown in Figure 1. In essence,
it computes a minimum cost flow in an appropriately
rounded static network via repeated shortest augment-
ing paths. We use the chain decomposition defined by
the sequence of augmentations to induce a dynamic
flow. The rounding guarantees that the number of
augmentations can be bounded by a polynomial in n,
logU, and e~!, where € > 0 is an error parameter.

The algorithm starts by augmenting along exact
shortest paths. Depending on ¢, the algorithm periodi-
cally rounds down the residual capacities by an increas-
ing scaling factor A. This implies that all residual ca-
pacities are integer multiples of A, so that subsequent
augmentations carry at least A units of flow in the
static network. Notice that if an edge zy € E carries
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F'—0; A—=1; 4=u; g=0
while (3 (s,t)-path in Gy 4 of length < T') {
og—0
while ( (¢ < mA/e) and
(3 (s,t)-path in G4 4 of length < T) ) {
P — shortest (s,t)-path in Ggg4
v « minimum residual capacity of P
augment g by v along P
Lo+ {(v,P)
g—0o+v
}
A — 2A
Yo,y €V digy — fiay — (@g, mod A)

Figure 1: Earliest Arrival Flow (1 + €)-Approximation
Algorithm

less than A units of flow, then rounding the residual
capacity of yx results in a negative capacity for edge
yz, that is, a lower bound on the flow of edge zy. This
corresponds to “irreversible” flow on edge zy.

Theorem 4.1 [I]7 is a feasible dynamic flow.

Proof: The rounded capacity function % never in-
creases on any edge throughout the algorithm. Thus,
feasibility with rounded capacity % implies feasibility
with capacity u, and the monotone residual path length
property used by Theorem 3.1 is maintained as well.
The feasibility of [[]T then follows as in Theorem 3.1.
O

Each rounding reduces the capacities, and so the
maximum dynamic flow value in the rounded network
might decrease. To analyze the amount of lost dynamic
flow we need some additional notation. Say there are
k + 1 scaling phases during the algorithm, numbered 0
to k. We index phases so that A = 2¢ during the inner
loop of phase 7. Let I'; denote the multiset of chain
flows at the end of phase i; let 7; denote the length of
the longest chain flow in I';; let g; denote the static flow
after phase 2; and let i; denote the rounded capacity
function at the beginning of phase 2.

First we analyze the decrease in the dynamic flow
value due to a single rounding. Let A} denote a
chain decomposition inducing an earliest arrival flow
in the residual graph Gy, ,q,, and let /L— denote a chain
decomposition inducing an earliest arrival flow in the
further rounded residual graph Gy, 4,- For any time
0, the loss in dynamic flow value due to the rounding

5

at the end of phase i is [[A]]s — |[As]|s. The following
lemma bounds this loss by e times the value of the
dynamic flow induced by the chain flows added during
phase 2:

Lemma 4.2 [[A7]]p — [[Ai]le < €[[ls —Ti1]lo
Proof: Let static flow g7 equal the sum of all chain
flows in A}. Construct §; from g by repeatedly
finding any edge where g} violates the rounded capacity
constraint %41, and then subtracting some 2¢_value
chain flow in ¢/ that uses that edge. Because the
rounding of phase ¢ reduces the capacity of any edge by
at most 2¢, this process subtracts no more than m chain
flows from g¢;. Furthermore, every canceled chain flow
has length at least T;, since after phase i there is no
(s,t)-path of length less than T; in the residual graph
Gy, ;- Let A; denote a standard chain decomposition
of the resulting flow §;. We have that

[A7)le = [A]le < m2i(6 - T2).

Note that [A;]7 is feasible for the earliest arrival
flow problem defined on the rounded residual graph
Gipe,g:0 DUt [A;]7T is feasible and optimal for the same

problem, so that |[A;]|¢ > |[As]|s, and therefore
Af1le = [[Aille < m2°(6 - T0).

Finally, since the_chain flows of I'; — I';_1 have total
value at least m2*/e, and every chain flow has length
at most T;, we obtain

T = Tiza]le > (m2'/€)(0 — To).
O

Theorem 4.3 For any time # < T, let v; denote
the maximum dynamic flow value in time 8. The
algorithm of Figure 1 computes dynamic flow [T]T in
time O(me~!(m + nlogn)logU) such that v < (1 +
o)1 o

Proof:  The claimed running time follows easily.
There there are O(logU) scaling phases. Capac-
ity rounding guarantees that there are O(m/e) aug-
mentations per phase, each of which requires one
non-negative edge length shortest path computation
of complexity S(m,n), where S(m,n) = O(m +
nlogn) [5].

We use Lemma 4.2 to prove the approximate
optimality. Theorem 3.2 implies that phase z+1 begins
to compute an earliest arrival flow in the rounded
residual graph G of phase 7. This means that

Uit1,95

[(Tixr = Ti) + Afalle = |[Ad]le.



Similarly, we have vy = |[[g + AZ]T|e = |[To + Ad]ls-
Now we get the following chain of equalities:

I[To]le + [[Ag]le

Tlle + 3 (ITlo — [[Teralle) + A3
1=0

k—1
Telle + 3 (11Azelle — [[Aillo ) +11A3]lo
=0

mullo + Y (151l = [1Rdls) + A7l

Since the phase-k residual graph Gy, 4, contains no
(s,t)-paths of length less than 6, it follows that
[[A3]le = 0. Applying Lemma 4.2 and observing
[[Tx-1]le < |[T'%][e, we obtain:

I[To + Aglle < [[Tk]le + €l[Tk]lo-

5 Lexicographic Maximum Dy-
namic Flows

Minieka [11] and Megiddo [10] showed that in a static
network with source set S = {s1,...,sr} there exists
a feasible flow such that the amount of flow leaving
the sets of sources §; = {s1,...,s;} is simultaneously
maximum for every ¢. Such a flow is clearly a lexico-
graphically maximum flow. This observation applies
to the formulation of the lexicographic maximum dy-
namic flow problem using the time-expanded graph.

Figure 2 presents a polynomial time algorithm
that computes chain decomposition I' such that the
dynamic flow [I'] is a lexicographic maximum dynamic
flow. The chain decomposition seems to induce an
infinite horizon flow; however, there is no flow left in
the network after time 7.

We introduce a supersource s, incident to infinite
capacity artificial edges ¢ts with transit time —(7 + 1)
and ss; with zero transit time for all 1 < ¢ < k.
Let G* denote the resulting graph. First we compute
a minimum cost circulation ¢* in the static network
using transit times as costs. The rest of the algorithm
consists of k iterations indexed in descending fashion.
In iteration i we delete the edge ss;y; from Git!
to create graph G%, and compute a minimum-cost
maximum flow f¢ from s to s;41 in the residual graph
of the flow g**! in G*. We add this minimum cost flow
to the flow g**! to obtain flow g*. Each flow f* yields
a standard chain decomposition. The assumption that
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V —VU{s}
E—FEU{ts}U{ss;:i=1,...,k}
where uis = Ugs;, = 00, Tes = —(T +1), 7ss, =0

¢ < minimum cost circulation using 7 as edge costs
I' — standard chain decomposition of g
fori—k—1,...,0 {

delete edge ss;+1 from E

[« minimum cost maximum (s, s;11)-flow in G,

using 7 as edge costs

g—g+f

A « standard chain decomposition of f

T'—T+A

Figure 2:
Algorithm

Lexicographic Maximum Dynamic Flow

there are no zero length cycles in G guarantees that
there are no cycles in the decomposition. The chain
flows are accumulated into chain decomposition T.
Note that chain flows using the arc st leave ¢ at time
T+1. We use p(z) to denote the shortest residual path
length from s to vertex z € V in G,; T'% denotes the
chain decomposition accumulated by iteration z; and
Ai—l — ]_'\i—l _ I\z

We say that chain flow v = (v, P) touches an edge
zy if zy € P or yz € P, and that v covers zy at time 6
if [{7}]4y(#) # 0. Note that the infinite horizon of [I']
means that if v covers zy at time @, then v also covers
zy at all times after 6.

Artificial edge ts and the assumption that s; 1 has
no entering edges in G guarantee that after iteration
i, the node s;41 is balanced in the static flow gi. This
implies the following lemma:

Lemma 5.1 For any iteration i, static flow ¢* is a
minimum cost circulation in graph G*.

The feasibility of the resulting dynamic flow rests
fundamentally on the following observation:

Lemma 5.2 For any vertex z € V and any iteration i,
pi(z) 2 p ().

Lemma 5.2 follows from the facts that that every
iteration computes a minimum cost flow, and we delete
and do not add edges between iterations. To prove the
correctness of the algorithm we also need the following
lemmas:

Lemma 5.3 Suppose vy € A" ! and 2,y € V. Then vy
does not cover zy at any time before p*(z).
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Proof: By definition, the residual graph G'; contains
no (s,z)-path of length less than p*(z). The path of
any chain flow in A*~' is a path in G%;, and hence
cannot cover zy at any time before pi(z). O

Lemma 5.4 Supposey € A’and z,y € V. If y touches
zy, then « covers zy at time p*(z).

Proof: By contradiction. If v touches zy, but does
not cover it at time p‘(z), then the path of v gives
a residual path from z to s in G;i of cost less than
—pi(z). Together with the definition of pf(z) this
means that the residual graph G’;i has a negative cycle,
contradicting Lemma 5.1. O

Theorem 5.5 [I'] is a feasible dynamic flow.

Proof: We prove that [['!] obeys all capacity con-
straints by reverse induction on i. I'* is a standard
chain decomposition of g*, therefore [['*] obeys all ca-
pacity constraints. Suppose 1 < i < k, and [['] is feasi-
ble; we show that [['“71] is feasible. Note that [[* 1] =
[[%] 4+ [A*~1]. Consider any edge zy and any time 6. If
[AT1],,(0) = 0, then [[* !,y (0) = [[].y (), and so
by the induction hypothesis the capacity constraint is
not violated. If [A"~1],,(6) # 0, then Lemmas 5.2, 5.3,
and 5.4 imply that [[],y(0) = ¢&,. Since [A* '] is a
feasible dynamic flow in G;i, the capacity constraint is
not violated.

Finally, we consider flow conservation. These con-
straints are trivial except at the source nodes: the
chain decomposition I' includes chains flows terminat-
ing at sources. However, the validity of the capacity
constraints and the assumption that no source has in-
coming edges in G guarantee that no source ever has
net incoming dynamic flow in G. O

Theorem 5.6 [I'] is a lexicographic maximum dynamic
flow.

Proof: Our proof relies on the infinite time-expanded
graph G(x). Given any index ¢ : 1 < ¢ < k, we
construct a (S;,t) cut C; in the time-expanded graph,
and show that [I'] saturates C;. More precisely, cut C;
separates the source set {s;(0):j =1,...,i} from the
sink node ¢(T).

Let C; = {z(6) : & > p’(z)}. First note that for
any source s; with j < i we have p’(s;) = 0 and so
5;(0) € C;. Second, observe that pi(t) = T + 1 for
every ¢. This means ¢t(f) € C; for any time # > T and
t(0) ¢ C; for any time § < T. Thus, no flow from S;
can reach sink ¢ by time 7" without crossing cut C;; and
furthermore, the net flow crossing C; must reach sink
t by time T

Consider any non-holdover edge z(8)y(6 + 7oy)
that crosses C;: then z(f) € C; and y(0 + 72y) ¢
C;. (The other case is considered as opposite edge
y(0 — Ty2)z(8).) By the definition of C;, this means
¢ > p*(z) and p*(y) > 0 + 7»y. Added together, these
two inequalities imply that p*(y) > p*(z) + Tay, which
means that zy must be saturated by static flow g°.

Regarding the dynamic flow, we consider the im-
plication of the above inequalities separately. By Lem-
mas 5.2 and 5.4, @ > p'(z) implies that any chain
in T that touches zy must also cover zy at time 6.
By Lemmas 5.2 and 5.3, p'(y) > 6 + 7, implies that
no chain in I' — I'¥ covers zy at time #. Since I'* is
a chain decomposition of g?, these observations imply
that [T'],, () = g, and hence z(0)y(0 + 74y) is satu-
rated.

Finally, consider any reverse holdover edge z(6 +
1)z(#) that crosses C;. (By the definition of Cj, the
holdover edge cannot cross C;.) If z is neither a source
nor the sink, then flow conservation implies that [I]
makes no use of any holdover edge z(#)z(6 + 1), and
so the reverse edge is saturated. If z = ¢, then § =T
and the holdover edge z(6)z(6+ 1) has no flow. If z is
a source, there are two cases: (1) z € S;. No reverse
holdover edge for = crosses C;. (2) z ¢ S;. There
is no net static flow out of z in g*. Note also that
p'(z) = 6 + 1. Since no chain flow in I — I'* starts in
S\S;, Lemmas 5.2 and 5.4 imply that no net flow leaves
x at any time after 8. This means that the holdover
edge z(6)z (0 + 1) has no flow. O

Dynamic flow [I'] appears to be an infinite horizon
dynamic flow, and so in Theorem 5.6 we explicitly
ignore any flow in [T'] reaching sink ¢ after time T}
however, [T'] is actually a finite horizon dynamic flow
in G with time bound 7.

Theorem 5.7 [I'] has time horizon T'.

Proof: For any z,y € V and any time § > T + 1,
we claim that [I'],, (#) = 0. Suppose some chain flow
in T touches zy (otherwise the claim is trivially true).
Notice that Lemma 5.1 and the assumption that G
has no zero length cycles imply that the static flow
g° is zero. By Lemmas 5.2 and 5.4, this implies that
[[],,(8) = 0 for any 6 > p‘(z), where i + 1 is the
maximum index with gif! # 0. Artificial edge ts
guarantees that p(z) is finite, and so there is no flow
left in the network after a sufficiently large time 7”.
Similarly, there is no flow entering sink ¢ after time 7'
(because of the canceling effect of chain flows using arc
st). Assume by contradiction that there is flow left
somewhere in the network after time T'. All edges with



positive capacity have non-negative length, so that this
flow cannot reach sink ¢ by time 7', and hence must stay
in the network forever. This contradicts the fact that
there is no flow left in the network after time 7”. O

The complexity of this algorithm is dominated by
the ¥ minimum cost flow computations, each of com-
plexity M (m,n), where M(m,n) = O((mlogn)(m +
nlogn)) [12].

Minieka [11] and Megiddo [10] observed that a
static lexicographic maximum flow problem with many
sources S and many sinks 7 can be solved by separately
solving two lexicographic maximum flow problems, one
with a single supersink and many sources, and one with
a supersource and many sinks. The two flows can be
pasted together along a minimum (S§,7) cut. This
observation implies that we can extend our result to
lexicographic maximum dynamic flow problems with
multiple sinks in addition to multiple sources: the
dynamic flow obtained is lexicographically maximum
simultaneously with respect to the priorities on the
sources and the sinks.

Theorem 5.8 A lexicographic maximum dynamic flow
with &k sources and sinks can be computed in
O(kM(m,n)) time.

Fixed

Number of Sources and Sinks

6 Evacuation with a

In this section we consider the quickest flow problem
with a fixed number of sources and sinks. We refer
to a source or sink as a terminal, and let D denote
the set of terminals. For a terminal z, let v, denote
the amount of commodity that needs to get out of z
(i.e., vy is negative if z is a sink). The problem is to
find a feasible dynamic flow that satisfies the demands
at the sources and sinks within the shortest possible
time 7. If T is known, this problem is equivalent to
a transportation problem in the time expanded graph
G(T). By the max-flow min-cut theorem of Ford and
Fulkerson [4] for static networks, a feasible flow exists
if for every subset X of terminals, there is a flow of
value vx = Y, x ¥ from X to D\ X in G(T).

Klinz [9] observed that for any subset X of termi-
nals, the problem of determining the minimum time 7T'x
such that vx total units of flow can be sent from any
terminals in X to any terminalsin D\ X is equivalent
to a single source and single sink quickest flow prob-
lem; and the minimum time required for the quickest
flow problem with k& terminals is the maximum of the
times T'x over the 2% subsets X C D. This implies that
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the optimal time for the quickest flow problem with a
fixed number of terminals can be computed in polyno-
mial time. Notice, however, that this approach gives
only the optimal time, and not the flow.

We give a polynomial time algorithm that for a
fixed number of terminals finds the quickest flow. First
we compute the optimum time 7" using the observation
of Klinz [9]. Then we use the lexicographic maximum
dynamic flow algorithm in Section 5 for every ordering
of the sources and sinks. We claim that a feasible
dynamic flow with time horizon T' that sends at least
vs flow out of every source s and puts at least v; flow
into every sink ¢ can be obtained by taking a convex
combination of the k! lexicographic maximum dynamic
flows. To see this, consider the polytope P in the k-
dimensional space of all terminal low amounts: v € P
if v > 0 for every source s and v; < 0 for every
sink ¢ and there exists a feasible dynamic flow with
time horizon 7' that produces excess v, at terminal
z. The results of Minieka [11] and Megiddo [10] imply
that the vertices of this polytope can be obtained by
static lexicographic maximum flow computations on
the time expanded graph G(T'). By also considering
lexicographic maximum dynamic flow problems for all
subsets of D, we can compute a convex combination
that exactly satisfies the demand at each terminal.

Theorem 6.1 For any fixed k£ and time 7', if there exists
a solution to the quickest flow problem with k& terminals
in time T, then the above algorithm finds one in time
O(M(m,n)).

In a forthcoming paper, we give two extensions of
the results in this section. Notice that the dynamic
network flow problem considered here is equivalent
to a transportation problem in the time expanded
graph G(T'). Therefore, if the problem is integral
and feasible, there must be an integral solution. Our
solution, however, is fractional: the algorithm takes
the integral lexicographic maximum dynamic flows and
finds an appropriate convex combination. Recently
we have discovered a more involved algorithm that
finds an integral solution. We have also extended
these results, by using the ellipsoid method, to obtain
a polynomial time algorithm for the (fractional or
integral) evacuation problem with a variable number
of sources.
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