
TRACTION FORCE OPTICAL COHERENCE
MICROSCOPY: A NEW METHOD TO STUDY THE
DYNAMIC MECHANICAL BEHAVIOR OF CELLS
AND MULTICELLULAR COLLECTIVES WITHIN

SCATTERING MEDIA

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Jeffrey Alesh Mulligan

May 2020



c© 2020 Jeffrey Alesh Mulligan

ALL RIGHTS RESERVED



TRACTION FORCE OPTICAL COHERENCE MICROSCOPY: A NEW

METHOD TO STUDY THE DYNAMIC MECHANICAL BEHAVIOR OF

CELLS AND MULTICELLULAR COLLECTIVES WITHIN SCATTERING

MEDIA

Jeffrey Alesh Mulligan, Ph.D.

Cornell University 2020

Mechanobiology is a prominent research field which seeks to elucidate the role

of physical forces and mechanical interactions throughout various biological

processes, including morphogenesis, wound healing, and cancer metastasis,

among others. Traction force microscopy (TFM) is an important family of exper-

imental techniques used by mechanobiologists to study and quantify the forces

that cells exert upon their surroundings. Recent years have seen a growing de-

mand for TFM methods capable of studying the dynamic, 3D, and collective

behaviors of cells embedded within optically scattering media. However, tradi-

tional imaging modalities for TFM (e.g., confocal microscopy) do not currently

allow researchers to satisfy these demands.

In this dissertation, I present traction force optical coherence microscopy (TF-

OCM), a TFM platform based on optical coherence tomography (OCT), to ad-

dress the as yet unmet imaging needs of mechanobiology researchers and study

the dynamic mechanical behavior of cells and multicellular collectives within

scattering media. In the first half of this dissertation, I summarize current meth-

ods and emerging needs of the TFM field and provide detailed derivations and

discussions regarding signal processing methods for OCT imaging. In the latter

half, I present the key experimental findings of my research.



A pilot study was first performed to demonstrate the ability of OCT imag-

ing to capture substrate deformations induced by cellular traction forces (CTFs).

This was followed by a proof-of-concept study which enabled the quantitative

reconstruction of time-varying CTFs exerted by isolated cells, resulting in the

realization of TF-OCM as a full-fledged experimental technique. The critical

image reconstruction procedures developed along the way have since proven

useful in the context of other OCT imaging applications as well. Finally, a col-

laborative application-focused study was performed, which demonstrated the

ability of TF-OCM to study the dynamics of large multicellular collectives em-

bedded within scattering collagen substrates. Although much work remains to

be done in order to enable quantitative TF-OCM in such complex settings, these

findings show that TF-OCM offers a promising avenue to pursue new and valu-

able research endeavors in mechanobiology.
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6.2 Shearing artifacts in computationally refocused images. Pan-
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6.4 Automated segmentation of cell bodies aided by speckle reduc-
tion. (a) En face plane extracted from a single depth in a single
volumetric image. The imaged NIH-3T3 fibroblast exhibits sig-
nificant speckle artifacts, which hinder automated segmentation.
Arrow indicates cellular structure not retained by our segmenta-
tion procedure (see text for details). (b) The same en face plane as
in (a), after combining eight sequential volumetric acquisitions.
Speckle contrast is reduced, allowing for segmentation via K-
means clustering. (c) Summation projection of the 3D segmented
volume, which approximates the cell body. (d) 3D mesh of the
cell body, generated from the data depicted in (c). Note that (d)
was generated from a different viewing angle as (a-c) to more
clearly depict the cell’s 3D shape. Reprinted from Ref. [112] as
permitted under the CC BY 4.0 license for the original work. . . . 179

6.5 Time-varying, 3D substrate deformations measured with TF-
OCM. (a-c) Bead displacement data for three NIH-3T3 fibrob-
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were 37 nm, 32 nm, and 86 nm, respectively (see Section 6.6.6).
Reprinted from Ref. [112] as permitted under the CC BY 4.0 li-
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6.6 Average (mean) bead displacement magnitude for beads located
within 50 µm of the cell body, over time. The whiskers, boxes,
and circles depict the full range, interquartile range, and me-
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t = 30 minutes. Reprinted from Ref. [112] as permitted under the
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6.7 CTF reconstructions at a single time point for three NIH-3T3 fi-
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6.8 Total force exerted by three NIH-3T3 fibroblast cells (shown pre-
viously in Figs. 6.5 and 6.7) over time. Black dashed line in-
dicates when the contractility inhibitor (cytochalasin D) was in-
troduced to the samples 30 minutes into the experiment. See
Appendix L.1.3 for a description of the measurement of ‘total
force’ from 3D CTF distributions. Reprinted from Ref. [112] as
permitted under the CC BY 4.0 license for the original work. . . . 185

6.9 Total force exerted by all (n=10) cells examined for this study.
‘Total force’ is defined as in Fig. 6.8 and Appendix L.1.3. The
whiskers, boxes, and circles depict the full range, interquartile
range, and median value of the data, respectively. The contractil-
ity inhibitor (cytochalasin D) was added immediately after time
t = 30 minutes. Reprinted from Ref. [112] as permitted under the
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7.1 Invasion of WT ASC monoculture spheroid into collagen sub-
strate revealed via label-free OCM imaging and temporal
speckle contrast. Traditional OCM imaging (top row) records
scattering signals of cells and collagen alike. Temporal speckle
contrast enables segmentation of volumetric data into synthetic
‘cell’ and ‘collagen’ channels (rows 2-5). Scale bars = 200 µm. See
text for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.2 Invasion of WT ASC + MCF10AT1 co-culture spheroid into col-
lagen substrate revealed via label-free OCM imaging and tempo-
ral speckle contrast. Traditional OCM imaging (top row) records
scattering signals of cells and collagen alike. Temporal speckle
contrast enables segmentation of volumetric data into synthetic
‘cell’ and ‘collagen’ channels (rows 2-5). Scale bars = 200 µm. See
text for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

7.3 Time-lapse OCM imaging reveals collagen degradation by inva-
sive strands. (a) En face plane intersecting the center (i.e., the
‘equator’) of a WT ASC monoculture spheroid, acquired at time
t = 0 hr. The spheroid (green, highlighted via temporal speckle
contrast) is recently embedded, and has not yet invaded the
surrounding collagen (white). (b) The same en face plane as in
(a), acquired at time t = 48 hr. Invasive protrusions are abun-
dant. Large dark regions surrounding the spheroid and inva-
sive strands correspond to ‘voids’ with low/weak scattering sig-
nals, suggesting a lack of either cells or collagen. (c) Time-lapse
view of insets 1-3 from (a,b). Red arrows at time t = 48 hr indi-
cate newly formed ‘void’ regions where only collagen was ini-
tially present. These new ‘voids’ are likely due to degradation of
the collagen matrix by invasive strands with matrix metallopro-
teinase activity. Panels (a,b) span a 750 × 750 µm2 lateral FOV. . . 212
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7.4 Visualization of 3D collagen displacements in the vicinity of
an obese (ob/ob) ASC + MCF10AT1 co-culture spheroid at time
t = 24 hr. (a) Top-down view of the spheroid, using the same
depth-to-color projection as in row 3 of Figs. 7.1 and 7.2. (b) Top-
down rendering of the spheroid (shown in gray) accompanied
by colored arrows which indicate displacement of the collagen
matrix as measured with respect to its initial configuration at
time t = 0 hr. Arrow lengths have been exaggerated for visual-
ization purposes. (c) Re-rendering of panel (b) from an isometric
viewing angle. The flat surface of the spheroid corresponds to a
region where the spheroid comes into contact with the coverslip
bottom of the petri dish. . . . . . . . . . . . . . . . . . . . . . . . . 213

7.5 Collagen displacement for monoculture and co-culture spheroids.
(a) Schematic for quantification of collagen displacement. The
line plots in (b,c) were computed from the median radial dis-
placement of collagen fibers, as measured across the gray sur-
face (described in Section 7.5.9). The right-hand panel depicts
collagen fibers at t = 0 hr (green) and t = 24 hr (purple). Dis-
placements were tracked via elastic image registration. (b) Rep-
resentative images of local collagen displacement near mono-
culture spheroids at t = 24 hr. Median radial displacements de-
pict the full range of the data obtained from all spheroids of
the given type (MCF10AT1: n=2, WT ASC: n=3, and ob/ob ASC:
n=3). (c) Representative images of local collagen displacement
near co-culture spheroids at t = 24 hr, with plots of median ra-
dial displacement on the right (WT ASC + MCF10AT1: n=3 and
ob/ob ASC + MCF10AT1: n=2). Adapted with permission from
Ref. [94] c© WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
(2020) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7.6 (a) (Top) Representative images of local collagen displacement
near ob/ob ASC co-culture spheroids at t = 24 hr, under con-
trol and batimastat-treatment conditions. Plots of median ra-
dial displacement were computed using the same method as
Fig. 7.5(b,c) (control: n=2 and batimastat: n=3). (Bottom) Corre-
sponding morphology of the spheroids shown above. Color en-
codes depth over a range of ±100 µm with respect to the spheroid
equator. (b) Expanded view of the inset regions shown in (a).
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invasion than the regions corresponding to the blue and yellow
insets (bottom). Median radial displacements computed within
these local regions are shown at the right. All color bars are in
units of micrometers. All scale bars = 200 µm. Adapted with
permission from Ref. [94] c© WILEY-VCH Verlag GmbH & Co.
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7.7 Diagram of our custom-built OCM imaging system for perform-
ing high-resolution, wide-FOV, low-distortion imaging. Comp:
computer. BLS: broadband laser source. Spec: spectrometer +
line-scan camera. FC: fiber coupler (90% to reference arm, 10%
to sample arm). FPC: fiber polarization controller. DCF: disper-
sion compensating fiber (each arm contains different lengths of
fiber). A: aperture. M: mirror/retro-reflector. GM: galvanome-
ter mirror (x,y denote the axis along which each mirror tilts).
(Note: Only the position of the galvanometer mirrors along the
optical path is depicted here.) d: galvanometer mirror sepa-
ration (13.69 mm, imposed by housing). L1: Collimating lens
( fL1 = 19 mm). L2: Telescope lens ( fL2 = 100 mm). Cyl: Cylindri-
cal lens ( fx = ∞, fy = +700 mm, which helps to compensate for
coherence gate curvature resulting from the physical separation
between the x and y galvanometers along the optical axis). L3:
Objective lens (idealized). IBC: incubating bio-chamber. . . . . . 224

7.8 Depth-selective OCT image reconstruction and regions of inter-
est. See text for details. . . . . . . . . . . . . . . . . . . . . . . . . . 235

7.9 Calibration procedure for both ‘coarse’ (left column) and ‘fine’
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7.10 Fine coherence gate curvature removal and phase registration.
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7.11 Calibration procedure for focal plane curvature removal. Note
that the focal plane appears curved even though the coverslip
surface appears flat and level. See text for details. . . . . . . . . . 239

7.12 Procedure for joint application of coarse CGC removal, fine CGC
removal, phase registration, and FPC removal. Note that this
results in an image where the focal plane is flat and level, but the
coverslip surface is not. See text for details. . . . . . . . . . . . . . 241

7.13 Calibration procedure for bulk demodulation. See text for de-
tails. The red boxed region in the upper-left panel shows the
region that is used to perform the calibration (note that it ex-
cludes the glass surface which appears near the top of the im-
age). M(qx, qy) (defined in the text) is shown in the upper-right
panel. The intersection of the two red lines denotes the origin of
the lateral spatial frequency domain. . . . . . . . . . . . . . . . . 243

7.14 3D region of interest for axial localization of the focal plane. The
image shown in the right-hand panel intersects the origin of the
lateral FOV. See text for details. . . . . . . . . . . . . . . . . . . . . 244
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7.15 Procedure for defocus compensation with computational adap-
tive optics. See text for details. Panels at the right depict en face
planes before and after CAO at the depths indicated by the three
colored lines spanning the top-middle panel. Red/top: 225 µm
above the focal plane. Green/middle: 112.5 µm above the focal
plane. Blue/bottom: Focal plane. Scale bars = 200 µm. . . . . . . 245

7.16 Focal plane curvature restoration. The CAO-processed image
(left) is transformed to a final output image (right) wherein the
coverslip surface appears both flat and level. See text for details. 246

C.1 Magnitude profiles of time-domain pulses defined by hi(t) =

F −1
[
H(ω)e jαωi

]
, where H(ω) = e−ω

2 and α = 3. . . . . . . . . . . . . 267

E.1 Simulated axial point spread function (PSF) of an OCT system
imaging in water. This simulated system has the same spec-
tral profile as the Ti:Sapph laser in our lab (central wavelength
= 790 nm, full-width-at-half-maximum bandwidth = 136 nm).
There are two notable features: 1) As the system images deeper
into the medium, the axial PSF broadens as the dispersive prop-
erties of the medium cause nonlinear phase profiles to accumu-
late. 2) As the system images deeper into the medium, the re-
constructed axial PSF shifts to an apparent depth which is deeper
than the true physical depth within the sample. (This axial shift
is depicted along the horizontal axis of the plots above.) That is,
if we use an OCT image reconstruction routine which assumes
a constant refractive index, we will overestimate the depth from
which a scattering signal emerged. The severity of this error will
increase as we go deeper into the sample. . . . . . . . . . . . . . . 285

I.1 Sample arm optical setup which provides a compact post hoc so-
lution to coherence gate curvature (CGC) which arises from the
use of paired galvanometer mirrors. A collimated beam strikes a
pair of pivoting galvanometer mirrors which tilt the beam within
the xz- and yz-planes (GMx and GMy, respectively). These mir-
rors are separated by a short distance d along the optical axis.
After reflection, the beam enters a modified 4F telescope, con-
sisting of a pair of lenses with focal length f and a thin cylindri-
cal lens with focal lengths fx and fy (within the xz- and yz-planes,
respectively) at its center. Assuming fx and fy are chosen prop-
erly, the two galvanometer planes are imaged to the back focal
plane (denoted by ‘∗’) of the objective lens (with focal length fo),
thereby enabling 2D lateral beam scanning with minimal CGC
artifacts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
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I.2 Visualization of coherence gate curvature (CGC) before (left) and
after (right) hardware-based compensation. The top panels de-
pict the OCT image of a (physically flat) glass-air interface in the
xz- (green) and yz- (red) planes intersecting the origin of the lat-
eral FOV. Any observed curvature of the surface in these panels
is a consequence of CGC distortions. The bottom panels de-
pict the observed apparent depth (i.e., the optical path length)
of the surface as a function of lateral position. In the original
system, CGC causes image distortions which result in the (phys-
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CHAPTER 1

INTRODUCTION

1.1 Background

Mechanics play a key role in biological form, function, and behavior across spa-

tial scales–from organs and tissues all the way down to sub-cellular phenomena.

Physical forces, mechanical properties, geometric features, and the like have

been shown to influence and direct biological processes such as wound heal-

ing, angiogenesis, morphogenesis, cell migration, and cancer progression. As a

consequence, ‘mechanobiology’ has emerged as a diverse and growing research

field which seeks to elucidate how mechanical interactions govern physiology

and disease [71, 93]. As new lines of inquiry have been adopted, new techniques

and technologies have been developed to meet the growing needs of researchers

and their experiments alike.

Traction force microscopy (TFM) is a diverse family of techniques which

quantify the mechanical forces that cells exert on their surroundings. Since cel-

lular traction forces (CTFs) are involved in numerous biological processes, TFM

has become an important tool for mechanobiology research [111, 141, 152]. TFM

consists of two primary stages: imaging and force reconstruction. When cells

exert forces on a substrate, the substrate becomes deformed in response. Optical

imaging is used to record these deformations. Post-processing methods are then

used to both quantify the deformations and reconstruct the forces that would be

required to induce them, given the mechanical properties of the substrate.

TFM has a long history of application to the study of cells cultured on the
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surface of flat substrates [36, 152]. However, since cell behavior/phenotype can

differ substantially in 2D versus 3D environments [71, 117, 157, 180, 186], there

has been a growing demand for the development of TFM techniques which can

be used to study the behavior of cells embedded in physiologically relevant 3D

environments. The first instance of ‘3D TFM’ was reported in 2010 [89], and re-

lated techniques have emerged since [54, 61, 112]. In the meantime, the demand

for studies of large cellular collectives (in 2D and 3D) has grown substantially

[86, 116, 174]. (After all, animal cells rarely live or act in isolation.) However,

the standard imaging tools used for TFM have begun to confine experimental

capabilities in this area (especially for studies of 3D collective behavior).

Confocal fluorescence microscopy is the current standard method for gener-

ating the 3D image data required for 3D TFM. As a consequence, the range of

experiments and biological model systems which are readily compatible with

standard 3D TFM methods is limited. In particular, 3D image acquisition with

confocal fluorescence microscopes can be time-consuming (up to several min-

utes and longer). This limits the rate at which new data may be acquired and

may result in samples being exposed to laser light for long periods of time.

Photobleaching and phototoxicity due to such extended exposures can reduce

image quality and alter cell behavior. This impedes the ability of standard

3D TFM methods to perform extended time-lapse studies of dynamic systems

[47, 89]. Finally, confocal fluorescence microscopy has a limited penetration

depth which typically extends only a few hundred micrometers into optically

scattering media. This limits the ability of TFM to study large cell collectives

(such as spheroids or organoids, which can be hundreds of micrometers in size)

within physiologically relevant scattering media such as collagen.
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This dissertation presents a new method to circumvent the traditional imag-

ing limitations of 3D TFM by employing a nontraditional imaging modality:

optical coherence tomography.

Optical coherence tomography (OCT) is an interferometric imaging modal-

ity that enables non-invasive, label-free imaging of scattering contrast in bio-

logical samples. Operating on principles similar to broadband radar, ultra-

sound, and related techniques, OCT records the magnitude and phase of backscat-

tered light in the visible-to-near-infrared spectrum. As a result, OCT is capa-

ble of imaging in scattering media with a volumetric field-of-view (FOV) up

to 1 × 1 × 1 mm3 or larger,1 making it well-suited for volumetric imaging of ex-

tended cell collectives. These volumes can be acquired in only seconds to min-

utes, since modern OCT microscopes perform spatially multiplexed data ac-

quisition.2 This rapid acquisition speed (in combination with the near-infrared

illumination, low incident beam power,3 and label-free contrast of OCT) makes

OCT well-suited for both high-speed and extended time-lapse studies, since

photobleaching and phototoxicity are of little to no concern. Finally, by combin-

ing high numerical aperture optics with numerical image formation algorithms

inspired by synthetic aperture radar [3, 137], OCT can provide micrometer-scale

isotropic spatial resolution throughout the entire volumetric FOV. Considering

all of these factors together, OCT provides a convenient means to capture short-

to-long-term cellular behavior spanning micrometer-to-millimeter spatial scales

1This is due to a combination of the relatively long wavelength of red-to-near-infrared light
(in comparison to the ultraviolet-to-visible light typical to confocal microscopes) with enhanced
rejection of multiply-scattered light (due to the fact that OCT can distinguish multiply-scattered
light from singly-scattered light via the different amounts of time that each type of light spends
propagating throughout the microscope).

2A typical confocal microscope acquires 3D data via time-consuming 3D raster scanning of
an optical beam focus throughout the imaged volume. In comparison, OCT microscopes typi-
cally perform parallelized acquisition along one or more spatial dimensions, and thus require
scanning along only 2 or fewer dimensions in order to acquire an entire 3D image.

3Typically <5 mW.
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within scattering media.

Since the imaging capabilities of OCT are well-matched to the capabilities

required to meet the growing demand for TFM of 3D and/or multicellular con-

structs, we proposed traction force optical coherence microscopy (TF-OCM) as

a new method to study the dynamic mechanical behavior of cells and multi-

cellular collectives within scattering media [110]. Although OCT (and its high-

resolution counterpart: optical coherence microscopy, or OCM) have previously

been used to study dynamic cell behaviors [98, 139, 170], TF-OCM would addi-

tionally provide quantitative measurements of substrate deformations and cel-

lular traction forces, which are necessary for advancing research in mechanobi-

ology. Accompanying the development of TF-OCM, new image reconstruction

and image processing routines were devised [94, 112], and new opportunities

emerged which might pave the way to the creation of an OCT-based mechanobi-

ology research platform that can characterize both cellular traction forces and the

mechanical properties of surrounding substrates [87, 113].

1.2 Outline, scope, and objectives of this dissertation

This dissertation records key concepts, theory, methods, algorithms, and find-

ings which contributed to the development of traction force optical coherence

microscopy as a new experimental technique for conducting mechanobiology

research. Like all TFM techniques, TF-OCM relies upon the union of a broad

range of interdisciplinary knowledge and skills. It is crucial that future re-

searchers be provided with a strong foundation from which they may develop

new experimental capabilities and make new findings. It is my hope that this

4



dissertation will serve as a useful educational document, and that new oppor-

tunities might be found among the limitations of current methods. Toward this

end, the remaining chapters have been organized as follows:

Chapter 2 summarizes current standard approaches in TFM and reviews

recent innovations in the field. The goal of this chapter is to provide readers

with a basic understanding of TFM, and to serve as a starting point from which

new literature searches might begin and/or new methods might be pursued

and developed. Note that this chapter is a lightly edited version of a previously

published work (Ref. [111]) which was written during the summer of 2017 and

published in 2018.

Chapter 3 provides detailed derivations and discussions regarding the the-

ory of (spectral domain) OCT image acquisition and signal processing. The

goal of this chapter is to provide readers with the basic knowledge and skills re-

quired to perform fundamental research in OCT imaging (and by extension, TF-

OCM). Of course, similar knowledge may be obtained from literature searches

and experience within the OCT field. However, it is my hope that this partic-

ular digest of the basics will help beginners to better ‘hit the ground running’

(and/or give a new perspective to more established researchers).

Chapter 4 provides detailed derivations and discussions regarding compu-

tational image formation for OCT. Specifically, this chapter details methods for

the computational mitigation of defocus and optical aberrations (via compu-

tational adaptive optics and related techniques). This chapter also details addi-

tional image formation routines which were developed and used to compensate

for non-ideal imaging conditions. These latter routines were critical compo-

nents of TF-OCM workflows, and have found use in other OCT imaging stud-
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ies. Thus, the contents of this chapter serve as the current baseline which readers

must understand in order to replicate TF-OCM methods ‘from the ground up’.

Chapter 5 summarizes the methods and findings of a pilot study which

demonstrated the ability of computed OCT imaging to capture and measure

the action of cell forces upon a surrounding 3D substrate. This study paved

the way for follow-up research which used substantially more advanced meth-

ods and provided enhanced imaging capabilities. The findings shown in this

chapter were previously published in early 2017 (Ref. [110]).

Chapter 6 summarizes the methods and findings of a proof-of-concept

study which resulted in the first complete realization of TF-OCM. TF-OCM was

demonstrated to enable the quantitative measurement of dynamic cell traction

forces exerted by isolated cells embedded in a 3D Matrigel substrate. The critical

image formation routines outlined in Chapter 4.4 were first developed and/or

used for TF-OCM in this study. The findings shown in this chapter were previ-

ously published in early 2019 (Ref. [112]).

Chapter 7 summarizes methods and findings from an application-focused

study which adapted the TF-OCM methods of Chapter 6 in order to enable

multi-day time-lapse studies of multicellular spheroids embedded in collagen

substrates. The resulting imaging capabilities enabled experiments that con-

tributed key findings to a broader biological study which was published in 2020

(Ref. [94]). The image reconstruction routines detailed in this chapter are the

most recent and recommended methods for performing TF-OCM (as of this

writing). Notable challenges to quantitative TF-OCM in multicellular settings

are discussed and future potential investigations are proposed.
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Chapter 8 concludes this dissertation and summarizes the overall contribu-

tions of this work. A summary of possible areas for follow-up investigations is

also provided for future researchers to consider.
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CHAPTER 2

TRACTION FORCE MICROSCOPY: A REVIEW OF STANDARD

APPROACHES, ONGOING CHALLENGES, AND RECENT

INNOVATIONS

Content reuse disclosure The contents (text, figures, etc.) of this chapter have

been reprinted from a previously published book chapter of which I was the first

author.1 Minor alterations to the original work have been made for this adap-

tation. These include minor grammatical edits (for clarity) and the omission of

Figs. 15.1 and 15.6-15.10 from the original work (to avoid permissions conflicts

with other publishers). To view the full contents of the original chapter, please

see Ref. [111].

Author contributions statement The original book chapter on which this dis-

sertation chapter is based (Ref. [111]) was primarily written by me (J.A. Mul-

ligan), with guidance, editing, and minor text passages contributed by the co-

authors of the original book chapter. Figure 2.4 (Fig. 15.5, in the original publi-

cation) was contributed by co-authors F. Bordeleau and C.A. Reinhart-King.

1Reprinted with permission from Springer Nature Customer Service Centre GmbH: J.A.
Mulligan, F. Bordeleau, C.A. Reinhart-King, S.G. Adie. Traction Force Microscopy for Non-
invasive Imaging of Cell Forces. In: C. Dong, N. Zahir, K. Konstantopoulos (eds) Biome-
chanics in Oncology. Advances in Experimental Medicine and Biology, vol 1092. https:
//doi.org/10.1007/978-3-319-95294-9_15 c© Springer, Cham (2018)

8

https://doi.org/10.1007/978-3-319-95294-9_15
https://doi.org/10.1007/978-3-319-95294-9_15


2.1 Abstract

The forces exerted by cells on their surroundings play an integral role in both

physiological processes and disease progression. Traction force microscopy is

a noninvasive technique that enables the in vitro imaging and quantification of

cell forces. Utilizing expertise from a variety of disciplines, recent developments

in traction force microscopy are enhancing the study of cell forces in physiolog-

ically relevant model systems, and hold promise for further advancing knowl-

edge in mechanobiology. In this chapter, we discuss the methods, capabilities,

and limitations of modern approaches for traction force microscopy, and high-

light ongoing efforts and challenges underlying future innovations.

2.2 Introduction

The growing field of mechanobiology has resulted in a heightened understand-

ing of how cells both shape and respond to mechanical properties and forces

in their environment. Driving this understanding is a growing body of evi-

dence, which has revealed that the biophysical interactions of cells with both

the extracellular matrix (ECM) and neighboring cells play an integral role in the

progression of many physiological and pathological processes [180, 122, 18, 40,

186, 20, 145, 157]. In tumor progression, for example, the ECM progressively

stiffens due to increased cell-mediated collagen deposition and cross-linking

[134, 91]. In turn, the increased stiffness influences cancer cell growth, angio-

genesis, and metastasis [122, 91, 14]. Cells sense and respond to extracellular

biophysical cues through molecular mechanotransduction mechanisms, such

as integrin-based focal adhesion complex signaling and actin-myosin reorga-
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nization [51, 99, 149]. These biophysical interactions play a key role in the on-

set and progression of cancer [122, 18, 186, 20, 91, 49], stem cell differentiation

[58, 30, 53, 187, 38], morphogenesis [101], and wound healing [187].

A central feature shared among these biophysical phenomena is cell force.

Cell forces are well known to play critical roles in such processes as metasta-

sis [80], angiogenesis [70, 85], and dynamic self-organization of cell aggregates

[160]. It should therefore come as no surprise that the forces exerted by cells on

their environment, and how cells respond to mechanical stress and strain, are

of significant interest to researchers in the area of biophysics. As a result, there

is an ongoing demand in the field of mechanobiology to be able to quantify cell

forces and their impact on biological systems and phenomena.

Among the techniques that have been developed to enable the study of cell

forces, this chapter will focus on the methods that have collectively come to be

known as traction force microscopy (TFM). TFM encompasses a family of tech-

niques which enable the quantitative measurement of cell traction forces via

noninvasive optical imaging of deformations induced within continuous elastic

substrates. The term ‘traction force’ initially referred to the shearing forces ex-

erted by adherent cells cultured on flat 2D surfaces. However, TFM has since

grown to enable the measurement of general forces in three dimensions, ex-

erted by cells grown either on the surface of, or embedded within, a substrate.

In brief, TFM enables the indirect assessment of cell traction forces by first imag-

ing the deformations that traction forces induce in the ECM or other substrates.

Cell forces are then computationally reconstructed using a suitable model that

relates forces, deformations, and known substrate mechanical properties.

The origins of TFM lie in the experiments of Harris et al., who reported in
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1980 that cells cultured on a thin membrane of silicone rubber exerted contrac-

tile forces which caused the membrane to buckle and wrinkle [65]. The amount

of wrinkling could then be used to estimate the magnitude of cell traction forces.

Although these experiments laid the initial foundations for the optical measure-

ment of cell forces, they did not enable robust force quantification due to the

highly nonlinear and chaotic nature of membrane wrinkling. In 1999, Dembo

and Wang presented the seminal work which marked the beginning of true

TFM, as it is known today [36]. Silicone membranes were replaced with slabs

of polyacrylamide hydrogel, coated with ECM proteins. This change in ma-

terial and geometry eliminated wrinkling behavior, necessitating the addition

of fluorescent beads embedded in the substrate to be used as fiducial markers

for measuring deformations. As the substrate underwent transverse deforma-

tions in response to cell traction forces, the embedded beads were dragged along

with it. This enabled the measurement of local substrate deformations by imag-

ing displacements of the beads. Traction forces were then computed from these

displacements using a mechanical model of the substrate.

Since then, further developments have drawn upon various tools and ad-

vances in biology, materials science, imaging, signal processing, and comput-

ing, to make TFM the diverse and powerful tool that it is today. Alongside

TFM, other technologies for measuring cell forces have emerged [141]. For ex-

ample, to alleviate the difficulties of force reconstruction and substrate prepara-

tion in TFM, a new kind of substrate was developed, consisting of microfabri-

cated arrays of silicone posts [169]. In response to cell forces, these posts act like

deformable springs, with behavior that is both well-characterized and tunable

by controlling post geometry. However, as cells may only adhere to the top sur-

faces of posts, such systems present a geometrical constraint that is not observed
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in typical flat, continuous substrates, raising concerns about physiological rele-

vance. Another method has enabled the measurement of molecular stretching

under tension by making use of fluorescence resonance energy transfer (FRET)

[57]. However, the difficulty of obtaining quantitative force measurements that

account for cell environmental conditions currently limit this technology such

that it may only be used to complement, rather than serve as a substitute for,

TFM [152]. As a result, TFM remains at the leading edge for the quantitative

measurement of forces exerted by single cells and cell collectives on their envi-

ronment.

As a tool for research in mechanobiology, TFM is frequently applied to in-

vestigate the relationships between biochemical/biomechanical cues, signaling

pathways, ECM mechanics, mechanotransduction, and subsequent cell behav-

iors [8, 109, 129, 176, 105, 165]. Despite its broad use, there are limitations to

common incarnations of TFM, and many opportunities exist for further inno-

vation and application to novel biological questions. To address this issue, on-

going developments are enabling application of TFM to in vitro systems of ever

greater complexity and physiological relevance.

The remainder of this chapter has been written with a focus on the princi-

ples and techniques behind these recent developments in TFM. We review the

common methods and considerations which constitute the core of modern TFM

techniques, with the intent of fostering an awareness and appreciation for the

capabilities and limitations of common TFM methods. We also discuss potential

areas of growth and innovation for TFM research in the near future. In doing

so, we highlight various research achievements which have made critical steps

toward developing TFM into a more powerful tool for the study of cell forces in
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physiologically relevant systems and for making contributions to the growing

field of mechanobiology.

2.3 From engineered systems to cell forces

Although modern implementations of TFM are quite diverse, all methods fol-

low the same basic workflow (Fig. 2.1). Depending on the biological question

at hand and the system under study, a substrate material is chosen. This ma-

terial will deform when exposed to cell traction forces, and therefore must be

mechanically characterized to enable the reconstruction of forces later on in the

process. Fiducial markers (typically, fluorescent microbeads) are added to the

surface of, or embedded within, the substrate. This adds optical contrast to the

substrate, and allows traction force-induced deformations to be measured via

the imaging of marker displacements.

Two or more images of the substrate are required. One image captures the

non-deformed reference state, when there are no traction forces and the sub-

strate is fully relaxed. The additional image/s capture the deformed state (at a

single or multiple points in time), when adherent or embedded cells exert trac-

tion forces, causing marker agents to displace from their reference positions.

The reference and deformed images are then used to generate measurements of

the substrate deformations.

Once the traction force-induced substrate deformations are determined, this

data is combined with the known (measured) mechanical properties of the sub-

strate to reconstruct cell traction forces. Many force reconstruction methods

exist to choose from, with the selection depending on the choice of mechanical
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Figure 2.1: High-level overview of the basic TFM workflow. Red (sharp rectan-
gle) and yellow (rounded rectangle) panels indicate procedures and their output
data, respectively. The models and assumptions used in TFM (depicted by the
blue diamond) have direct bearing on the type of traction force reconstruction
methods that may be used. Dashed lines indicate experimental steps that may
not be necessary, depending on the specific TFM methods chosen. For full de-
tails of the TFM workflow, please refer to the text. Reprinted with permission
from Ref. [111]. c© Springer, Cham (2018)

model and any other relevant assumptions made for the study. Typical force

reconstruction methods rely on the assumption that the substrate material is

linear, elastic, isotropic, and homogeneous and undergoes only small deforma-

tions/strains due to cell traction forces. However, as discussed in Section 2.4,

recent advancements are beginning to reduce the need to rely on such assump-

tions [161, 173, 159, 54, 172]. Certain traction force reconstruction methods also

rely on additional imaging data, typically in the form of cell structural infor-

mation, such as a cell membrane outline, or the location of focal adhesion sites

[36, 158, 19, 150]. (The fact that this information is only required by some TFM

methods is indicated by the dashed lines in Fig. 2.1.) Once traction forces have

been reconstructed, they may be used to yield insights which address the origi-

nal biological question, or may even result in new unexpected discoveries.

Although the description above is sufficient to understand the general prin-
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ciples behind TFM, further detail is required to appreciate the common experi-

mental considerations, practical implementations, and limitations of TFM. The

remainder of this section discusses the individual steps of TFM in greater de-

tail. That said, the information provided below is still a very general overview.

Many useful and extensive reviews exist on these topics, which the reader is en-

couraged to explore if seeking additional perspectives and discussion beyond

that found here [152, 81, 62, 130, 128].

2.3.1 Substrate selection and mechanical characterization

Substrate selection is a critical choice in any TFM study. This is because sub-

strate composition and geometry are fundamentally linked to what types of

systems can be modeled, what behaviors cells will exhibit, what kinds of forces

can be exerted, what imaging and data processing methods are required, and fi-

nally, how traction force reconstruction may be performed. The founding works

of TFM provide an illustrative example of the importance of substrate design.

The transition from silicone membranes to polyacrylamide slabs played a cru-

cial role in enabling the first incarnation of modern quantitative TFM [36, 124].

The new polyacrylamide platform provided flexibility and convenience for the

repeatable fabrication of substrates that could be tuned to match the stiffness

observed in a variety of in vivo tissues [124]. ECM proteins covalently bonded

to the substrate surface (to enable cell adhesion) provided cells with binding

domains that more closely resembled those of native ECM/tissue and pro-

vided an extra degree of freedom in experimental design. (Collagen and fi-

bronectin, which are among the most abundant ECM components found in tu-

mors [41, 183, 100], are often used for this purpose.) Finally, the geometry of the
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substrate, in combination with its linear elastic, homogeneous, and isotropic

properties, allowed the traction force reconstruction problem to be vastly sim-

plified, making quantitative and reliable TFM feasible to implement. The de-

velopment of these systems was so successful that cell culture experiments per-

formed on the surface of polyacrylamide hydrogels have since become the gold

standard for measuring cell forces with TFM.

With advancements in imaging, data processing, and computation, this clas-

sic platform has expanded capabilities. While 2D cell culture on the surface

of polyacrylamide hydrogels has been traditionally used to study purely trans-

verse deformations and forces, it has been shown that even cells grown on flat

surfaces can exert three-dimensional forces, causing out-of-plane deformations

of the hydrogel substrate [188, 103, 47]. The measurement of 3D cell forces ex-

erted in 2D cultures gave rise to what is referred to in the literature as either

2.5D- or 3D-TFM [188, 47]. (We will adopt the ‘2.5D’ naming convention here

to distinguish this method from 3D-TFM methods that quantify the 3D forces

exerted by cells embedded within 3D environments.) These 2.5D-TFM methods

can help to provide a more complete picture of traction force-mediated cellular

activity than is offered by 2D-TFM methods [188]. Despite these advances, the

polyacrylamide platform is limited in that it does not enable the measurement

of 3D forces exerted by cells residing within fully 3D environments. Since cell

behavior can greatly differ in 2D versus 3D environments [180, 186, 157, 117],

there is a need for substrate systems that enable TFM in 3D cell culture.

Approaches to obtain platforms compatible with 3D-TFM rely on either en-

gineered polymers or the use of native ECM scaffold materials. Legant et al.

performed 3D-TFM by making use of polyethylene glycol (PEG) hydrogels, in-
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corporating domains that allowed for both adhesion (fibronectin RGD binding

domain) and degradation (matrix metalloproteinase susceptible linkers) by em-

bedded cells [89, 107]. Other studies in 3D settings have chosen to make use of

materials that more closely approximate natural 3D tissue environments, such

as fibrin [70], Matrigel [110, 112], and collagen [54, 78]. As will be discussed in

Section 2.4, the use of these biopolymer substrates enables TFM in fully 3D en-

vironments, but can introduce complications such as nonlinearity, heterogene-

ity, and anisotropy. These factors complicate the characterization and modeling

techniques required to accurately reconstruct traction forces. Nevertheless, the

application of TFM to such systems that more closely approximate physiologi-

cal environments is expected to be a major theme in future TFM research.

Once a substrate is constructed, its mechanical properties must be character-

ized, since these properties will inform how traction forces relate to observable

deformations. As most TFM substrates are chosen/assumed to be linear, elas-

tic, isotropic, and homogeneous, it is typical that only macroscopic mechanical

properties, like the Young’s (elastic) modulus and Poisson’s ratio, are sought

[150]. As a result, mechanical characterization methods have historically been

fairly simple. The most common techniques include bulk rheometry [161], in-

dentation testing (such as by depressing a steel ball) [81], and atomic force mi-

croscopy (AFM) [173]. However, when biopolymers are used for constructing

TFM substrates, the (typically heterogeneous) mechanical properties on the mi-

cro/nanoscale throughout the substrate volume are unknown/inaccessible to

these methods. Possible future methods of characterization will be discussed in

Section 2.4.8.
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2.3.2 Obtaining a reference state

In order to quantify the impact of cell traction forces on the environment, TFM

requires measurements of the substrate in both reference (relaxed) and de-

formed (loaded) states. While the method for obtaining a reference state is rarely

discussed at length in the literature, it is an important experimental design con-

sideration. Some 2D culture-based methods image the substrate before the ad-

dition of any adherent cells to the sample [135]. This allows for a truly relaxed

state to be obtained, with no risk of substrate alteration due to cellular activ-

ity. However, this arrangement can be problematic, as the act of adding cells

to the sample may inadvertently disrupt the sample position and orientation

relative to the imaging system. If not prevented or accounted for by hardware

in the imaging setup, such misalignments complicate the measurement of trac-

tion force-induced deformations [135]. Specific experimental constraints such as

long culture times, or the possibility that cells will migrate into/out of the field

of view, can make obtaining the reference state first infeasible in some cases.

This method is not used for 3D-TFM with embedded cultures, due to the fact

that cells are added at the time of substrate fabrication, eliminating the opportu-

nity to obtain a truly cell-free reference state. As one potential solution, samples

may be imaged immediately after substrate polymerization, before cells have

had ample time to apply significant forces in the substrate [21]. However, other

factors, such as swelling of the substrate over time when immersed in culture

media, may hinder this approach.

Alternatively, the deformed state may be imaged first, after cells have been

added to the system and have begun exerting traction forces. Cell forces may

then be removed in situ via chemical treatment. The compounds applied may
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cause cell death, detachment, or inhibition of cell contractility. (In the last case,

the effectiveness of traction force inhibition must be established to ensure com-

plete relaxation is achieved.) Under the assumption that the substrate under-

goes purely elastic (reversible) deformation, the removal of cell traction forces

is sufficient to allow the substrate to return to its original relaxed state. How-

ever, this assumption is not necessarily valid when cells are capable of remod-

eling the substrate (such as in the case of 3D degradable ECM/hydrogels). In

this scenario, measurements taken over a long period of time (several hours

and longer) can be susceptible to alteration of the substrate geometry and me-

chanical properties by cell-induced remodeling. This would then have to be

accounted for in the force reconstruction process [54]. Therefore, it is recom-

mended that substrate recoverability is tested to ensure reliable traction force

reconstructions when not using TFM models that account for remodeling.

Finally, fabrication techniques can assist in obtaining a reference state. For

example, Polio et al. used an indirect micropatterning approach to bond flu-

orescently labeled fibronectin to the surface of a polyacrylamide gel [132]. The

fibronectin was deposited in discrete dots, forming a rectangular grid with 5 µm

spacing. These fibronectin dots were then used as fiducial markers to track sub-

strate deformations resulting from cell traction forces. Since the fabricated pat-

tern of markers was known a priori, deformations could be determined with-

out imaging a reference state. As a result, a single prepared substrate could

be used to image many separate cells across multiple fields of view, enabling

high-throughput imaging for 2D-TFM experiments. As an added benefit, the

fibronectin dots served as the only sites where cells could exert forces on the

polyacrylamide gel. Constraining the locations of cell tractions allows for sim-

plified and robust traction force reconstruction procedures, as will be discussed
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in Sections 2.3.5 and 2.4.1 [158, 150, 132, 163]. However, the artificial con-

straint on cell force locations imposed by this method may impact physiological

relevance, similar to the micropillar arrays mentioned previously. In spite of

this limitation, it should be noted that methods using micropatterned adhesion

sites/markers do enable novel studies on the effects of different patterns and

choices/combinations of ECM proteins on cell traction forces [131].

2.3.3 Noninvasive imaging of cell force-induced deformations

TFM may be considered a noninvasive technique in that the measurements of

substrate deformations are obtained through optical imaging, without disturb-

ing the experimental system. Since TFM frequently relies on the use of em-

bedded fluorescent marker beads to track displacements within the substrate,

widefield fluorescence and confocal fluorescence imaging are commonplace in

many TFM procedures. When images of cellular structure are required for force

reconstruction or visualization, phase-contrast imaging is also commonly used

in 2D- and 2.5D-TFM settings. While these standard microscopy techniques

have been in use for years, increasing demands for 3D imaging, speed, reduced

photobleaching/phototoxicity, and higher resolution, among other factors, are

driving the emergence of TFM conducted with alternative imaging methods,

which will be discussed in Section 2.4.9. Regardless of the imaging technique

used, there are three major factors that must be considered for imaging systems

in TFM: field of view, acquisition speed, and resolution.

An imaging system must have a large field of view to make reliable mea-

surements for TFM. In the context of cells cultured on a flat substrate, the field
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of view must be wide enough to capture regions far away from the cell/s un-

der study. If this is not achieved, cells outside the field of view, but close to the

cell/s of interest, may alter the substrate deformations within the field of view.

This can prevent the accurate reconstruction of traction forces exerted by the

cell/s of interest. Moreover, if cell migration is expected, the field of view must

be large enough to prevent the cell/s from exiting the field of view before the

conclusion of the experiment. In the case of cells cultured in 3D environments,

these field of view requirements must be extended to three dimensions. There-

fore, the imaging system must also be able to capture images over a large depth

range for the same reasons described above for the case of 2D systems.

Imaging speed is an important consideration when dynamic systems or pho-

tobleaching/phototoxicity are of concern. Cells can exert dynamic forces on

timescales as short as minutes [110, 112, 21]. Therefore, imaging speeds must be

faster than these dynamic processes, or cell forces may change during acquisi-

tion. For 2D imaging systems, this is rarely an issue. However, it can become

a major concern for 3D imaging systems, which can take several minutes to

acquire a single volume. Moreover, longer imaging times can risk causing pho-

todamage to cells (potentially altering cell behavior) and may result in photo-

bleaching of fluorescent markers or labels (disabling them for use in measuring

substrate deformations or cell structure).

Finally, imaging resolution is a vital component for TFM. As many TFM tech-

niques rely on obtaining information about cell structure, the imaging resolu-

tion must be sufficient to capture these features. Failure to do so may result in

inaccurate traction force reconstructions. Imaging resolution must also be high

enough to distinguish fiducial markers and capture their displacements within
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the substrate. This is a concern particularly when dense marker concentrations

are employed, a scenario which is discussed below in Section 2.3.4.

2.3.4 Measuring cell force-induced deformations

Substrate deformations are measured by tracking the displacement of at-

tached/embedded markers between the reference and deformed states of the

sample. Each marker provides a unique measurement in space of the underly-

ing deformations of the substrate. Therefore, the density of the markers (mark-

ers per volume) limits the spatial sampling frequency at which deformation data

may be acquired. It is therefore crucial that marker densities are high enough to

capture the spatial variations of the displacement field (i.e., to capture the vari-

ations with high enough resolution), while ensuring that the markers are small

enough and the density is low enough that the presence of the markers does

not appreciably alter the behavior of the system. Marker bead diameters typi-

cally lie within the range of tens of nanometers to micrometers [152], and typical

mean particle spacings are in the range of one to tens of micrometers [62]. As a

general rule-of-thumb, bead spacings for high-resolution TFM applications are

typically found to be on the order of ten times the bead diameter [89, 126, 61].

Those seeking very high resolution displacement field measurements often turn

to novel methods, such as the use of beads of different colors and multiple imag-

ing channels [128, 89, 144], or even super-resolution microscopy [28], to capture

useful images in samples with very high bead concentrations. The tracking of

markers is commonly performed using either of two paradigms: single-particle

tracking or cross-correlation-based tracking.
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Single-particle tracking involves tracking the position of individual mark-

ers. The primary challenge lies in uniquely identifying the same markers in

both the reference and deformed state images [43]. Images must therefore be of

high enough signal quality and imaging resolution that marker beads may be

reliably tracked with minimal errors and noise artifacts. The resulting displace-

ment field typically consists of measurements acquired at randomly distributed

locations in space (resulting from the random positions of marker beads). When

force reconstruction is performed, these random sampling locations may either

be used directly, or may be interpolated onto a grid, depending on the force

reconstruction method chosen.

Cross-correlation-based tracking does not identify the motion of individual

markers. Instead, it captures the motion of local groups of markers. This is com-

monly done via digital image correlation (DIC) for two-dimensional systems or

digital volume correlation (DVC) for three-dimensional systems. DIC and DVC

track the bulk motion of windowed regions of the sample containing multiple

markers. As displacements are computed wherever a window is constructed,

correlation-based tracking allows for the measurement of the displacement field

to take place on a rectangular grid, which can be convenient for later processing

steps (such as Fourier transforms) during force reconstruction.

When implementing cross-correlation-based tracking, cross-correlation win-

dow design plays a critical role in computing the displacement field. Large win-

dow sizes help reduce noise in the displacement field measurements, but come

at the cost of poorer resolution, degrading displacement features on the order

of and smaller than the window size. In other words, the window acts as a

low-pass filter over the displacement data. Window profiles modify the inten-
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sity across space within the windowed region and impact the spatial frequency

response of the cross-correlation. Consequently, an improperly designed win-

dow may amplify or attenuate displacement features of differing sizes in a bi-

ased manner [10]. Correlation methods in TFM typically rely on the assumption

of purely translational motion of marker clusters over small distances. Recent

efforts in TFM have sought to mitigate this issue, enabling efficient correlation-

based tracking of large deformations [10], as well as deformations which exhibit

dilation/stretching [46].

Although various implementations of particle tracking and cross-

correlation-based tracking are the most common tools employed by TFM re-

searchers, it is worth noting that measuring deformations between images is a

problem of ongoing interest and research in the field of computer vision. As

such, a wide variety of algorithms are available for adaptation to specific TFM

experimental settings and applications [167]. Optical flow algorithms are one

example that has been explored for use in TFM [67]. Ultimately, the choice of

tracking algorithm for a particular study will be influenced by many factors, in-

cluding experimental conditions, traction force reconstruction method, desired

accuracy, and available time and computing resources.

2.3.5 Force reconstruction

Of all the elements of TFM, the final reconstruction of cell traction forces is per-

haps the most diverse. Various models and techniques have been introduced,

with great potential for both refinement and innovation. Because force recon-

struction is closely tied to both experimental design and ongoing developments
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Figure 2.2: Common traction force reconstruction methods in TFM, at a glance.
Further details and discussion for each method can be found in the text.
Reprinted with permission from Ref. [111]. c© Springer, Cham (2018)

in TFM, it is important to be aware of its various forms, requirements, capabil-

ities, and limitations. What follows is an overview of common methods, with

large inspiration drawn from the review by Schwarz and Soiné [152], which

the reader is encouraged to explore for further detail. A summary of the trac-

tion force reconstruction methods discussed here may be found illustrated in

Fig. 2.2, with notable features outlined in Table 2.1.
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Table 2.1: Features of standard TFM reconstruction methods

TFM
method

Noise
sensi-
tivity

Typical noise
mitigation

Computa-
tional cost

Compatible
with com-
plex ge-
ometries &
materials?

Dimen-
sionality

Direct
TFM

High Data smoothing Low Yesa 2D,
2.5D,
3D

FEM-
TFM

High Regularization High Yes 2D,
2.5D,
3D

BEM High Regularization Medium No 2D,
2.5D

FTTC High Data smoothing
&
regularizationb

Very Low No 2D,
2.5D

TRPF Lowc Regularization Lowd No 2D,
2.5D

aAssuming a suitable stress-strain constitutive relation is available
bTypically uses cross-correlation-based tracking, which smooths data. Force re-
construction is often regularized.
cExtra information used by this technique helps stabilize force reconstruction
dDetermined by number of focal adhesion sites
Reprinted with permission from Ref. [111]. c© Springer, Cham (2018)

Direct and inverse methods

One intuitive method available for the reconstruction of cell traction forces is

what has been referred to as the ‘direct’ TFM method [152]. By making use of

measurements of the strain field within the substrate, stress can be computed

‘directly’ via the stress-strain constitutive relation which characterizes the sub-

strate material (such as Hooke’s law for linear elastic solids) [172, 62, 47, 63]. As

a result, the stress field can be determined throughout the deformed substrate

by plugging the measured strain field into the constitutive relation. Cellular
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traction forces located at the cell membrane can then be computed from the

stress field. This method relies on obtaining a reasonably accurate approxima-

tion of the strain field. In practice, the strain field is obtained by taking the

spatial gradient of the measured displacement field data. As a consequence,

the displacement field must be measured with high enough resolution to suffi-

ciently capture its variability over small regions. Moreover, the measurements

must have low noise, because gradient operations amplify noise artifacts, es-

pecially over short spatial scales. In the presence of sufficiently high noise, the

gradient operation must often be accompanied by some form of filtering or reg-

ularization operation [47]. Direct TFM is a younger member in the family of

traction force reconstruction methods. Used primarily in 2.5D-TFM settings,

its emergence has been enabled by the growing availability of high-quality 3D

imaging [152]. Though it is currently less prevalent than older methods, direct

TFM has demonstrated promise for application in substrates that exhibit large

deformations [172] or viscoelasticity [173], which many of the more common

methods (e.g., Green’s function methods, which will be discussed shortly) are

not compatible with.

An alternative framework is the family of ‘inverse’ TFM methods, which

constitute the majority of methods reported in TFM studies. Inverse TFM

does not compute stresses and tractions directly from the measured displace-

ment/strain data, as is done in direct TFM. Instead, a hypothesis is made about

what distribution of cellular traction forces would be most likely to produce

the measured displacement field, given the constraints of a suitable mechanical

model. Depending on the specific technique chosen, this estimate may be ar-

rived at either through direct computation or via iterative methods (although

iteration is the dominant approach) [152, 19]. Iterative methods are constructed
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to minimize (typically in the least squares sense) the discrepancy between the

measured displacements and the displacements that would result from the re-

constructed (hypothesized) traction field. To mitigate the impact of noise and

address the ill-posed nature of the inverse problem, this minimization proce-

dure is often regularized [152, 150, 144]. That is, the possible traction recon-

structions are constrained by the imposition of additional information and/or

constraints beyond those directly underlying the mechanical model [158, 150].

Regularization for inverse TFM will be addressed in greater detail at the end of

this section.

Finite element and Green’s function methods

In order to implement inverse TFM methods, one must be able to generate pre-

dictions of displacement fields that would result from hypothesized cell traction

forces. There are two major approaches in the inverse TFM family for making

such predictions: finite element methods (FEM) and Green’s function methods

(GFM).

The details underlying finite element analysis are beyond the scope of this

chapter. However, in brief, finite element methods operate by partitioning a

model of the sample into a set of discrete subunits, or elements. The behav-

ior of each element is governed by the fundamental (elasticity) equations of

the system, with constraints imposed on each element by its neighbors and/or

the boundary conditions of the substrate. This allows for the construction of

a system of equations that may be solved through various methods. FEM has

the advantage that it can be adapted to model complex geometries and gov-

erning equations. For this reason, FEM has found significant use in the area of
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3D-TFM, where complex cell boundaries prevent the use of analytical solutions

to the elasticity equations in the traction force reconstruction process [54, 89].

FEM is also suited to nonlinear material models and geometric nonlinearities

resulting from large deformations [152, 161]. As a result of its broad capabili-

ties, FEM has played a key role in many TFM studies and will likely continue to

do so in emerging methods and future studies (although applications of FEM to

biopolymer substrates will likely rely increasingly on novel mechanical charac-

terization techniques in order to take advantage of more advanced mechanical

models). Despite its clear advantages and future prospects, the power and flex-

ibility of FEM come at substantial computational cost, which motivates the use

of simpler models and computing methods to accelerate the process of traction

force reconstruction.

One family of alternatives to FEM is Green’s function methods. GFM mod-

els make use of several assumptions to enable efficient computation of traction

forces. These include the ubiquitous assumptions which constrain the substrate

to be composed of a linear, elastic, isotropic, homogeneous material (although

these assumptions often do not apply in tissues). In addition, GFM models rely

on the assumption of small strains (to avoid geometric nonlinearities from large

deformations) and are often confined, in practice, to simple substrate geometries

with traction forces applied on a planar surface (although this is not always the

case, as discussed in Section 2.4.1).

Although using these assumptions and constraints can limit the accuracy

and physiological relevance of TFM studies, they vastly simplify the computa-

tion required for traction force reconstruction. For GFM in particular, these as-

sumptions allow for the substrate to be regarded as a linear space-invariant (LSI)
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system which takes cellular traction forces as the input and yields substrate de-

formations as the output. The response of such a system to a point-like cell trac-

tion force (as might approximately occur at a focal adhesion site [158, 150, 132])

is described by a Green’s function, which is determined by the properties and

geometry of the system. Due to the linearity of the substrate, the solution to the

elasticity equations that relate traction forces to substrate displacements may

be written as a weighted sum of these Green’s functions. Specifically, the rela-

tionship between the substrate deformations and the applied traction forces is

described by a convolution relation [144]:

u(r) =

∫
G(r − r′)f(r′) dr′ (2.1)

where u(r) denotes displacement of the substrate at the location r = (x, y, z), f(r′)

denotes the cell traction force applied at the location r′ = (x′, y′, z′), and G(r − r′)

denotes the (spatially invariant) Green’s function of the system. The integration

over r′ signifies a summation of contributions from all the traction forces ex-

erted throughout the sample. In other words, the substrate displacement at any

one location is a net effect of all traction forces exerted throughout the sample.

The dimensionality of the system under study will determine the number of

components/elements in u(r), f(r′), and G(r − r′). As a simple example of how

Green’s functions relate traction forces to substrate displacements, consider a

2D-TFM system which assumes only transverse forces and displacements (as is

common throughout early and many modern TFM works). The displacement of

the substrate u (at r) in response to a single point-force f (at r′) can be expressed

using Cartesian coordinates (x, y) by:ux

uy

 =

Gxx Gxy

Gyx Gyy


 fx

fy

 (2.2)
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Figure 2.3: How Green’s functions relate traction forces to substrate displace-
ments. The above diagram serves as a depiction of how a 2D system gov-
erned by Eqns. (2.1) and (2.2) responds to localized traction forces. In principle,
Eqn. (2.1) allows displacements throughout the substrate to be computed from
any general distribution of cell traction forces, so long as a Green’s function
for the system can be determined. The goal of GFM-based force reconstruction
is to invert the above process (i.e., to generate a distribution of traction forces
from the known Green’s function and measured substrate displacement data).
Reprinted with permission from Ref. [111]. c© Springer, Cham (2018)

where ui and f j denote the components of displacement and force, respectively,

and Gi j denotes an element of the system’s Green’s function, which describes

the contribution of the j-component of force (at r′) to the i-component of dis-

placement (at r). Figure 2.3 provides an illustration of this example. As can be

seen with this notation, it is important to note that a force in one direction can

contribute to displacements in any direction.

As the relation of force to displacement is given by a convolution, the objec-
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tive of GFM is then to perform deconvolution, using the known Green’s func-

tion and displacement data to invert the relation in Eqn. (2.1) and reconstruct

the cell traction forces. There are various methods by which this deconvolution

is achieved in the field of TFM, which will be detailed below. Currently, GFM

has been applied to 2D- and 2.5D-TFM systems [36, 19, 150, 106, 35], with cells

adhered to an elastic substrate with a flat surface geometry. Green’s functions

have been determined and used for models of the substrate as an elastic half-

space [19] and as a slab of finite thickness [63]. A variation of GFM hybridized

with FEM has also been applied to 3D-TFM (detailed in Section 2.4.1).

One major theme to keep in mind throughout the following sections is the

issue of experimental noise. Green’s functions in TFM act as low-pass filters,

attenuating features that span short spatial scales. Upon measurement of sub-

strate displacements, noise corrupts the true displacement signal. As traction

force reconstruction involves inverting the low-pass effects of Green’s functions,

noise artifacts are amplified over short spatial scales and can have a severe im-

pact on the quality and accuracy of reconstructed traction forces [144]. This

motivates the use of regularization, which is detailed at the end of this section.

Common variations of Green’s function methods

There are three primary techniques used in TFM to reconstruct forces using

Green’s functions. These are the boundary element method (BEM) [36], Fourier

transform traction cytometry (FTTC) [19], and traction reconstruction with

point forces (TRPF) [150]. Application and implementation of these methods

involves several important considerations, which are discussed in the primary

literature. The basic concepts are outlined below.
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BEM was the first method to emerge among modern TFM techniques that

enable accurate quantitative traction force reconstructions [36]. BEM requires,

in addition to the displacement data, a tracing of the cell boundary. Once this

boundary is established, the surface region of the cell that is in contact with the

substrate is approximated by a discretized mesh. It is assumed that traction

forces may originate only from within this surface (Fig. 2.4, panel 3). The dis-

crete set of locations where cell tractions may originate is combined with the

discrete displacement data to convert Eqn. (2.1) into a linear system of equa-

tions, which may be solved using standard methods. (This makes BEM similar

in form to FEM but performed with simplified equations and without gener-

ating a mesh representation of the surrounding substrate.) In practice, due to

noise constraints, the system is usually inverted with a variation of regularized

least squares. In summary, this method solves the inverse problem in the space

domain but depends upon reliable cell tracing and can be sensitive to the chosen

meshing procedure [36, 144]. Because the linear systems of equations solved by

BEM are often very large and dense/non-sparse, BEM can take longer to execute

than other GFM techniques.

In contrast, FTTC solves the inverse problem in the Fourier domain, where

the relation described in Eqn. (2.1) takes the form:

ũ(k) = G̃(k)f̃(k) (2.3)

where ũ(k), G̃(k), f̃(k) denote the Fourier transforms of the displacement field,

Green’s function, and traction field, respectively, and k denotes the spatial fre-

quency coordinate [152, 19, 144]. Since convolution (Eqn. (2.1)) is converted

to multiplication in the Fourier domain (Eqn. (2.3)), the reconstruction of trac-

tion forces is reduced to f̃(k) = G̃(k)−1ũ(k), which is simply a multiplication of

the Fourier domain displacement data with the inverse of the Fourier domain
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Figure 2.4: Comparison of traction force reconstruction with FTTC versus BEM.
Phase contrast image of an MDA-MB-231 cell (left) and associated traction force
reconstructions using FTTC (middle) and BEM (right). The substrate consisted
of a collagen-coated polyacrylamide gel with Young’s modulus of 5 kPa, with
embedded Alexa fluor 488 polystyrene beads (diameter 0.5 µm). FTTC was reg-
ularized with Tikhonov regularization. Note that the tractions reconstructed
using FTTC do not necessarily correspond to the true cell surface. The recon-
structed traction forces are also very smooth, due to a combination of regulariza-
tion and low fluorescent bead density. The tractions reconstructed with BEM, on
the other hand, are confined exclusively to the cell surface but possess a more
irregular distribution of forces. This feature is likely to be an artifact of noise
and insufficient regularization. Reprinted with permission from Ref. [111]. c©
Springer, Cham (2018)

Green’s function. However, this procedure is sensitive to the presence of noise

or other errors in the displacement data, and therefore is typically modified with

a regularization procedure (which will be discussed in the next subsection). Fol-

lowing the inversion process, the reconstructed traction forces are obtained by

taking the inverse Fourier transform of f̃(k). Note that in order to make effi-

cient use of Fourier transforms (i.e., via the fast Fourier transform), displace-

ment data must be provided at locations on a uniform rectangular grid (either

through interpolation or the use of correlation-based displacement tracking). In

general, FTTC is very fast compared to space domain methods, since the Fourier

transforms and element-wise multiplications used by FTTC have lesser compu-

tational complexity than space domain operations like convolution and matrix

inversion. As a result, FTTC methods are very common in the literature due
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to both their simplicity and efficiency. One drawback of FTTC is that it does

not make use of any information about the cell structure and as a result is vul-

nerable to predicting the presence of traction forces originating outside the cell

boundary (Fig. 2.4, panel 2). FTTC may be modified to mitigate this concern.

However, such procedures are not frequently reported in the literature [19].

TRPF, as its name suggests, seeks to reconstruct a force distribution consist-

ing of point-like forces, unlike the smoother/continuous distributions gener-

ated by BEM and FTTC [150]. TRPF assumes that cell traction forces are local-

ized to focal adhesion sites. By imaging the locations of these sites in any given

cell with appropriate fluorescent labeling (assuming these additional imaging

capabilities are available), a set of acceptable locations where traction forces may

originate is established. Similar to BEM, this set of locations is used in conjunc-

tion with the displacement data to allow Eqn. (2.1) to be converted into a lin-

ear system of equations. Due to the sparsity of locations where traction forces

may be reconstructed, TRPF can mitigate the effects of noise (and the associated

need for regularization) by constraining the possible traction force solutions,

although this potential benefit degrades with increasing numbers/density of

point forces [150, 144].

Regularization

The reconstruction of cell traction forces from measured displacements via in-

verse methods is an ill-posed problem. That is, when the true substrate displace-

ments are not precisely known due to uncertainties from noise or errors in the

data, cell traction forces cannot be precisely reconstructed (i.e., the reconstruc-

tion process does not produce unique solutions). In addition, small changes in
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the displacement data can result in large changes in the reconstructed traction

field (i.e., the reconstruction process is sensitive to noise) [150]. As a result, the

presence of noise can have a severe impact on the accuracy and quality of trac-

tion force reconstructions. To address this issue, the inverse problem may be

regularized.

Regularization incorporates additional a priori information into the inverse

problem, beyond that which is already contained in the displacement data and

mechanical model used during force reconstruction. This information helps

constrain and stabilize the possible traction force solutions to the ill-posed in-

verse problem presented by TFM [150]. In other words, regularization assumes

that certain types of reconstructed force distributions are not valid solutions

to the inverse problem. The specific regularization procedure determines what

types of solutions are suppressed and what trade-offs may result. Although reg-

ularization can be formulated to impose many types of constraints, most forms

of regularization employed in TFM are specifically designed to suppress the

effects of noise artifacts in the reconstruction process.

FTTC can provide some intuition as to why noise is such a prevalent concern.

Following from Eqn. (2.3), unregularized FTTC reconstructs traction forces as

a product of the inverse Green’s function and the displacement data: f̃(k) =

G̃(k)−1ũ(k). However, Green’s functions in TFM typically act as low-pass filters.

In other words, the Green’s function may have singular values that approach

zero at higher spatial frequencies (i.e., when the magnitude of k is large). When

singular values are small, multiplying the displacement data by G̃(k)−1 is akin

to performing division by very small numbers. When this occurs, values in the

displacement data are strongly amplified during force reconstruction. This is
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a problem because any noise in the displacement data is also subject to these

amplification effects. Regularization in TFM seeks to mitigate this effect.

The most common form of regularization in TFM for mitigating noise is

zero-order Tikhonov regularization, which penalizes large values in the recon-

structed traction force data [152, 144]. That is, force reconstructions that contain

very large forces are assumed to be undesirable solutions to the inverse prob-

lem. Regularization suppresses these solutions by modifying the functions that

relate traction forces and displacement data. For example, zero-order Tikhonov

regularization applied to FTTC modifies the inversion process to take the form

[152, 144]:

f̃(k) =
(
G̃(k)TG̃(k) + λ2I

)−1
G̃(k)Tũ(k) (2.4)

where I denotes the identity matrix and λ is a scalar value, which determines

the strength of the regularization procedure. In the case where λ = 0, Eqn. (2.4)

is equivalent to the original unregularized FTTC formulation, f̃(k) = G̃(k)−1ũ(k).

The effect of this new formulation is to alter the Fourier domain Green’s func-

tion such that singular values close to zero have their magnitudes increased,

while large singular values are left relatively unchanged. Specifically, a singular

value with magnitude σ is modified by the regularization procedure to obtain

a new magnitude (σ2 + λ2)/σ. This reduces the amplification of noise where the

inversion process is most vulnerable (i.e., when the values ofσ are close to zero).

The trade-off of this regularization procedure in TFM is that reconstructed trac-

tion fields may be smoother than the true traction field and may underestimate

the maximum traction values. Although FTTC was highlighted in the above ex-

ample, the same principles apply to zero-order Tikhonov regularization in other

force reconstruction techniques.
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Selection of the regularization parameter λ involves making a trade-off be-

tween suppressing noise artifacts and over-smoothing the reconstructed trac-

tion field and must be taken into account when interpreting results. Selection of

a parameter often involves solving the inverse problem several times until an

optimal value can be determined. Because the optimal value may vary between

datasets, this iterative optimization procedure must often be repeated between

datasets, meaning that regularization parameter selection can add significant

computational cost.

Although zero-order Tikhonov regularization is prevalent in TFM, its inher-

ent suppression of large forces and tendency to smooth out the reconstructed

traction field may be undesirable for a given study. Alternative regularization

schemes may be sought to better meet experimental demands. For example,

first-order Tikhonov regularization suppresses rapid spatial fluctuations in the

traction field (by penalizing the gradient of the traction field, instead of the trac-

tion field itself). Although this regularization scheme would not directly sup-

press large forces, it would still act to smooth out the final reconstructed traction

field, in exchange for suppressing noise artifacts [144]. In applications where

cells exhibit strong localized forces, such as those seen at focal adhesion sites

in 2D/2.5D settings, L1-regularization may be an appropriate choice [9, 166].

This scheme imposes the assumption that the true traction field is sparse and so

attempts to reconstruct a small number of regions containing strong localized

tractions. In this manner, the mechanism by which L1-regularization constrains

the inverse problem is reminiscent of the TRPF method. However, this method

requires longer computation times than other common forms of regularization.

In general, this is because the solution to the L1-regularized problem cannot be

expressed in closed form and must be determined through an iterative process.
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From another perspective, unlike TRPF, which takes focal adhesion sites as an

input and reconstructs force, L1-regularization must determine both the loca-

tion and strength of cell traction forces simultaneously. Further discussion and

details regarding other possible methods for regularization may be found in the

literature of inverse problems [39].

It should be noted that regularization is not strictly necessary to address sen-

sitivity to noise. For example, the use of cross-correlation-based displacement

tracking (as is often done for FTTC) reduces noise artifacts through the filtering

effects of the cross-correlation windowing functions. Noise is therefore reduced

in the displacement data before it is input into the inverse problem. Of course,

accurate reconstructions rely on raw images and correlation windows that sup-

port the spatial resolution (and corresponding spatial bandwidth) necessary to

preserve all the relevant displacement data across the filtering operation. If this

condition is not met, noise may be suppressed, but the reconstructed traction

field may also become over-smoothed, similar to what happens in the case of

over-regularized traction reconstructions.

2.4 The future of TFM

Much remains to be achieved in order to extend TFM to the study of more com-

plex, physiologically relevant, biological systems. In addition, expanding the

use of TFM within mechanobiology will require advances that make new meth-

ods more accessible to researchers from diverse areas of study. This will be im-

portant to enable discoveries made through fundamental mechanobiology and

biomechanics research that may be later translated into new clinical diagnosis
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and treatment paradigms. Future improvements, such as addressing nonlin-

earity, heterogeneity, ECM remodeling, etc., have often been relegated to a few

cursory statements in the discussion sections of primary literature. This is not

unreasonable, as the work involved to experimentally address these concerns is

far from simple. However, ongoing research efforts have nevertheless persisted

and sought to advance TFM to address new levels of system complexity. In this

section, we review the motivations and recent advancements made to address

several factors that may be critical to future research efforts in TFM and cell

mechanics.

2.4.1 Advanced force reconstruction methods

The development of novel force reconstruction methods largely relies on two

primary resources. First is the development of new mechanical models that in-

corporate additional information about the mechanical properties and features

of both substrates and cells. Second is the development of reconstruction meth-

ods that minimize computational complexity, in order to make efficient use of

available time and computing resources. New methods that help better address

these needs hold strong promise for advancing TFM and mechanobiology at

large. For example, the incorporation of additional cell structural data may en-

able the development of more robust and useful TFM models and results. Soiné

et al. presented what has been termed ‘model-based TFM’ (MB-TFM) [158]. MB-

TFM uses images of both focal adhesion sites and stress fibers to construct an

approximate mechanical model of the cell under study. Presently demonstrated

in a 2D setting, MB-TFM models stress fibers and the actin network together as

a cable network that distributes internal cellular tension and uses focal adhesion
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sites as anchor points that exert traction forces on the substrate. An FEM-based

algorithm determines what distribution of fiber tensions will produce the nec-

essary forces at the focal adhesion sites to generate the measured displacement

field. This method has been shown to be robust to measurement noise, without

the need for regularization. In essence, the constraints imposed by the cable

network mechanical model provide the necessary stabilizing information that

would otherwise be provided by regularization in other TFM methods. The rea-

son for this becomes clear when observing that the traction forces at individual

focal adhesions are related to one another, as mediated by the communication of

forces over the stress fiber + actin cable network. MB-TFM is thus more strongly

constraining than the TRPF method discussed previously, which did not assume

a mechanical correlation between forces at different focal adhesion sites. Finally,

in addition to the reconstructed traction forces, the network tensions yield in-

formation about the internal distribution of forces within the cell, offering po-

tential insight into the mechanisms of force transmission and mechanosensing

beyond what could be achieved with prior TFM methods. MB-TFM still has

its limitations, however. As described in the original work, MB-TFM cannot

be universally applied to all cell types/scenarios. In addition, MB-TFM relies

on high-quality imaging of cellular features, which is not always readily avail-

able, and can be negatively impacted by chemical reagents that modulate cell

contractility behavior [158].

Other advances have led to progress in the area of computation time. Al-

though GFM-based traction force reconstructions have allowed for the accel-

erated development of TFM as a tool for studying cell mechanics, future ad-

vances will likely rely on more computationally expensive methods like FEM to

analyze increasingly complex models of cells and surrounding environments.
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As such, novel computing methods that maximize the ability of researchers

to study complex systems while minimizing computational cost/time are of

high value to the field of TFM. One prime example is the method presented

by Legant et al. for 3D-TFM [89]. In brief, the complicated 3D geometry of

the cell-substrate interface made standard GFM impossible, since the system’s

Green’s function was no longer spatially invariant (a fundamental characteristic

leveraged by standard GFM models). In other words, the function G(r − r′) in

Eqn. (2.1) became a more general G(r, r′). In addition, an analytical formula to

describe the new spatially varying Green’s function would be incredibly com-

plex, which implies that FEM would be a superior computing option. How-

ever, iterative execution of FEM solvers to reconstruct the traction field would

be extremely computationally expensive. A hybrid solution was therefore de-

veloped. First, the cell-substrate interface was approximated with a discretized

mesh. FEM was then used to compute the displacements induced by a unit trac-

tion applied at a single facet of the discretized mesh. By repeating this process

for each facet, the spatially varying Green’s function was computed. This nu-

merically derived Green’s function was then used to accelerate the reconstruc-

tion of traction forces beyond what could be achieved with FEM alone. This

method and future hybridized methods like it, which use FEM to do the ‘hard

work’ of faster algorithms, may pave the way to making TFM a more efficient

and readily accessible tool in the arsenal of cell mechanics researchers working

on difficult and computationally intensive problems like 3D-TFM.
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2.4.2 3D forces and environments

It has been established that cell behavior can greatly differ in 2D versus 3D en-

vironments [180, 186, 157, 117]. Although 2D cell culture is convenient to study,

many cell systems of interest natively develop and interact with 3D tissue en-

vironments, where they are influenced by ECM mechanical properties and 3D

forces [14]. As such, the measurement of cellular forces in 3D settings may be

critical to future research in morphogenesis, cancer, and other processes. For

years, TFM was largely restricted to 2D environments and 2D cell traction re-

constructions. However, even cells cultured on 2D surfaces can exhibit signifi-

cant forces with components in all three dimensions [188, 47, 35], motivating the

development of ‘2.5D-TFM’ techniques that capture these 3D forces. In recent

years, 3D-TFM research has expanded the field to the study of 3D forces exerted

by cells cultured within fully 3D environments. As discussed in the previous

section, the methods presented by Legant et al. [89], which made use of a hy-

bridized FEM-GFM approach for traction force reconstruction, are a predomi-

nant work in the growing collection of 3D-TFM research [54, 62, 110, 78, 112].

Although 3D-TFM is not necessarily a ‘new’ technique and has already been

the subject of substantial research efforts, many outstanding challenges remain

to be addressed in order to realize its full potential for revealing the roles of cell

forces in 3D environments and behaviors.

Major challenges to 3D-TFM span the full spectrum of stages in the TFM

workflow, including sample fabrication, imaging, mechanical characterization,

modeling, and traction force reconstruction. Fabricated 3D substrates must

present a physiologically relevant environment that enables normal cellular ac-

tivity (and therefore requires the use of engineered polymers or natural biopoly-
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mers). The 3D imaging required to capture cell features and substrate displace-

ments can be time-consuming (a problem if cell behaviors and forces are dy-

namic) and can be impeded by optical challenges like scattering, absorption,

and photobleaching/phototoxicity. Many 3D substrate materials (such as ECM

proteins) can be highly nonlinear, heterogeneous, and anisotropic and are diffi-

cult or impossible to characterize on the micro- to nanoscale with conventional

methods. Finally, modeling and force reconstruction (implemented using FEM)

can be difficult to implement and incur substantial computational costs. Despite

these challenges, the need to understand the role of forces in 3D tissue models

will promote a continued growth of 3D-TFM methods in the future.

2.4.3 Collective behaviors

Many questions of interest in the field of mechanobiology involve not just sin-

gle cells, but entire cell collectives which contribute to emergent features and

behaviors [145, 135, 116, 23, 59, 168, 120, 37, 69, 192, 177, 175, 174, 123, 48, 86].

An increasing interest in the collective mechanical behavior of cells has arisen

from experimental evidence in both normal organism development [193] and

pathological data [59]. Collective cell behaviors have already been the subject

of extensive study in 2D settings, and recent research has begun to yield in-

sights into collective behaviors in 3D environments. These investigations have

enabled the observation of such phenomena as cell jamming [145, 59, 123], col-

lective polarization and migration [116], wave-like propagation of cell velocities

and tractions [154], emergent compressive stresses in the ECM, and mechani-

cal interaction of separated cell clusters [54]. TFM has contributed to several

studies of traction forces exerted by cellular collectives in both 2D and 3D set-
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tings [54, 135, 116, 175, 154], with expanded application likely in the future.

Measuring the traction forces of cell collectives presents several imaging chal-

lenges. Observation of collectives requires a large imaging field-of-view (in two

or three dimensions) while maintaining a sufficiently high resolution to capture

cell features and substrate deformation data at length scales appropriate to the

phenomena being studied. Moreover, imaging may need to take place over a

wide range of time scales, from minutes, to hours, to several days for standard

model systems, or even weeks in future studies of tumor formation or devel-

opment. Finally, as cell collectives can substantially modify the ECM and exert

strong forces, TFM with cell collectives will likely have to address several of

the other challenges discussed in the rest of this section, such as heterogeneity,

remodeling, and nonlinearity.

2.4.4 Beyond linear elasticity

Although linear elastic environments are easy to fabricate and study, they do

not capture many of the complex properties of biological tissue, such as vis-

coelasticity or nonlinearity, which may be crucial for understanding cell be-

havior. For example, it has been shown that stem cell differentiation and be-

havior are altered by the viscous/relaxation properties of their surroundings

[25, 24]. However, whether viscoelasticity has a corresponding effect on cell

traction forces remains to be characterized. Studying cell traction forces in such

environments requires new models to connect traction forces to substrate de-

formations. Toyjanova et al. have demonstrated one framework for TFM which

incorporates viscoelastic properties, opening new avenues for studying systems

beyond what current quasi-static/purely elastic models can accommodate [173].
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Nonlinearity is a potentially rich area for exploration with TFM. Indeed,

most biological materials in which cells reside exhibit nonlinear mechanical

behavior. It is therefore not surprising that cells are able to respond to these

nonlinear properties. For example, fibrous networks such as collagen support

long-range force transmission over small collections of fibers, a highly nonlin-

ear process that can enable long-range mechanical communication between cells

[70, 161, 61, 143, 138]. Steinwachs et al. recently demonstrated 3D-TFM of cells

cultured in a collagen environment, making use of a nonlinear model [161]. In

that work, collagen was modeled as having three regimes of mechanical be-

havior, corresponding to the buckling, straightening, and stretching of collagen

fibers. The FEM-based nonlinear 3D-TFM framework was used to study cell

traction forces and migration dynamics, as well as responses to varying col-

lagen concentrations. Hall et al. used another approach [61], wherein the 3D

collagen network surrounding the cell was modeled as containing both regions

of isotropically oriented fibers and regions of (anisotropically) aligned fibers.

A fiber network model was used to study how cell-induced strain may create

regions of aligned collagen fibers from initially isotropic orientations and how

such alignment alters the local ECM mechanical properties [182]. This network

model was then used to yield a nonlinear continuum model for FEM-based cell

force reconstruction, allowing insight into mechanical feedback interactions be-

tween cells and the surrounding collagen ECM [61, 182]. Future TFM studies

incorporating nonlinearity will likely face significant challenges in achieving

reliable mechanical characterization of samples. Inverse TFM methods will also

face a need for computationally intensive FEM-based models to enable traction

force reconstruction in nonlinear systems. Nevertheless, progress will continue,

as further extensions of TFM for nonlinear systems stand to greatly enhance un-
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derstanding of the diverse physical interactions of cells with physiological ECM

environments.

2.4.5 Heterogeneity

Although homogeneity has been a convenient assumption for the field of TFM,

the environments presented by tissues are often highly heterogeneous. Notably,

as revealed by in situ observations, the stroma becomes increasingly heteroge-

neous as collagen is deposited during tumor progression [134]. Heterogeneities

in tissue can take many forms, including changes in density, stiffness, archi-

tecture, pore size, and levels of cross-linking, all of which can have bearing on

cellular behaviors [14, 22, 104]. It is therefore likely that future TFM studies

will need to address the effects of heterogeneities on cell force. For example,

cells cultured on micropillar arrays with spatially varying stiffness have been

shown to exhibit a preference for stiffer substrates, where they exert greater

force [17, 179, 146]. Some initial work of TFM in the area of heterogeneity has

investigated the effects of stiffness gradients [179], barriers to cell migration [77],

and cell-induced mechanical heterogeneities [54]. Heterogeneities not only af-

fect cell behavior, but cell activity induces heterogeneity on many length scales

[54, 21, 74]. Cell-induced heterogeneity can also negatively impact cell traction

force reconstruction, if not properly accounted for [54]. Future work will require

both novel substrate fabrication techniques as well as new mechanical charac-

terization methods and improved computational models to better understand

the impact of heterogeneity on cell forces and behavior.
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2.4.6 Anisotropy

It has been demonstrated that anisotropy significantly impacts cell behavior

[21, 9]. For example, substrates with oriented nano/microtopographies have

been shown to influence cell alignment [6] and the differentiation of adult neu-

ral stem cells [136]. Cells will also preferentially align and migrate in the di-

rection of greatest rigidity [146]. In addition, remodeling of the ECM by both

single cells [21] and cell collectives [45] tends to result in anisotropic fiber align-

ments. That is, cells not only react to anisotropic environments, but they actively

create them as well. Anisotropy is therefore a potentially rich area of applica-

tion for future TFM research. Though uncommon, some work has been done

to apply TFM to anisotropic settings. For example, FEM-based TFM has been

conducted to reconstruct the 3D forces exerted by cells grown on a non-planar,

‘wavy’ surface (i.e., with topographical, as opposed to mechanical, anisotropy)

[159]. Anisotropic systems pose challenges for both mechanical characteriza-

tion and computational reconstruction of traction forces. In tissues, anisotropy

is often accompanied by heterogeneity and nonlinearity, adding further compli-

cations to traction force reconstruction. Depending on the system under study,

anisotropic samples may result in imaging consequences, such as a spatially

varying optical point spread function, which can impact the tracking of embed-

ded bead displacements [159]. Future TFM methods that address anisotropy

and its associated challenges will likely be crucial to the future study of accu-

rate tissue models and cell forces.
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2.4.7 Remodeling and dynamics

ECM remodeling and dynamics are essential features of many cellular processes

and behaviors [34]. For example, the migration of highly invasive cancer cells is

facilitated through remodeling of the ECM, resulting in the formation of tumor-

associated collagen signatures (TACS), such as increased collagen density, the

presence of straightened (taut) collagen fibers, and radially aligned collagen

fibers that facilitate invasion [134]. Radially aligned fibers oriented away from

a tumor, sometimes referred to as ‘collagen highways’, are associated with the

most invasive phenotypes of cancer and have been observed in vitro [23], in an-

imal models [134], and in clinical cases [31]. Cells can modulate the mechanical

properties of the ECM with traction forces via strain-hardening, and through

degradation of the ECM with matrix metalloproteinases [74]. Moreover, cells

can exert forces on the timescale of minutes [21] and can induce significant ECM

remodeling on the timescale of hours [54, 23]. Not only are dynamics and ECM

remodeling of interest to biomechanics research, but their effects can severely

impact traction force reconstructions (such as through the formation of hetero-

geneities, anisotropy, and nonlinear effects) [161, 54]. As a result, TFM tech-

niques that capture and accommodate ECM remodeling and cell dynamics are

crucial to generating a complete picture of biophysical phenomena.

Some works in TFM have already begun to investigate the relationship of

remodeling and dynamics with cell traction forces. Gjorevski and Nelson inves-

tigated the forces exerted by microfabricated mouse mammary epithelial tissues

embedded in collagen gels [54]. It was determined through imaging and AFM

that cellular activity introduced significant mechanical heterogeneity into the

collagen ECM. Incorporating this heterogeneity into the traction force recon-
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struction process suggested that failing to account for these cell-induced ECM

modifications may result in severe underestimation of cellular traction forces.

Other works in TFM have explored the role of traction forces in many scenar-

ios involving 2D collective cell migration and dynamics. For example, Notbohm

et al. investigated the traction forces and migration dynamics of confined mono-

layers of canine kidney cells. The monolayers exhibited collective traction forces

and motions that oscillated in time. Serra-Picamal et al. reported the presence of

‘waves’ of traction forces, intercellular stresses, and cell velocities propagating

through a cell monolayer [154]. These waves are not the result of passive phe-

nomena (as are everyday waves like sound, light, or vibrations). Instead, these

waves are hypothesized to be an active spatiotemporal phenomenon governed

by dynamic cellular responses to mechanical communication from neighboring

cells. Future works that explore cellular remodeling and dynamics with TFM

may lead to further novel observations of cellular behaviors and their effects on

the ECM environment.

2.4.8 Mechanical characterization of substrates

The use of synthetic substrates with established fabrication protocols has made

the task of substrate mechanical characterization a relatively simple one, when

compared to the biological and computational components of typical TFM ex-

periments. Mechanical characterization has often been performed using bulk

rheometry, indentation testing, or atomic force microscopy. However, as TFM

applications move increasingly toward the use of natural biopolymers which

exhibit complex mechanical behaviors, these established methods will become

less applicable. The study of three-dimensional systems and ECM remodel-
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ing will further compound this problem. As a result, future TFM efforts will

rely on the use of novel techniques for mechanical characterization in 3D ECM

and tissue environments. Several emerging techniques have made significant

strides toward addressing these needs. These include Brillouin microscopy

(BM) [4, 148, 190, 147], optical coherence elastography (OCE) [75, 184, 113, 87],

and optical tweezers-based active microrheology (AMR) [74, 79]. These emerg-

ing methods enable the noninvasive measurement of mechanical properties in

3D substrates. Although the ability of these methods to provide reliable quan-

titative mechanical properties relevant to TFM are currently limited, future re-

search into these and related techniques may enable the development of novel

imaging platforms capable of noninvasively capturing the 3D distributions and

dynamics of cell structures, traction forces, and ECM properties, an ambitious

endeavor with great potential for accelerating cell biophysics research.

2.4.9 Novel imaging platforms

To date, the imaging platforms of choice for TFM have been fluorescence mi-

croscopy and confocal fluorescence microscopy. However, with a growing di-

versity of TFM methods and application spaces, TFM research stands to benefit

from the use of novel imaging platforms to expand its capabilities. For example,

TFM has been recently performed using stimulated emission depletion (STED)

microscopy [28]. STED and other super-resolution methods may allow sub-

strate deformations to be imaged with higher resolution (by allowing for higher

bead concentrations) and can provide detailed information about protein struc-

tures in and around cells. Confocal reflectance microscopy was recently em-

ployed for 3D-TFM [76], eliminating the need for either fluorescent labels or
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marker beads. Instead, deformations were measured by directly tracking the

motion of collagen fibers. Optical coherence microscopy (OCM) has recently

been demonstrated as a means to enable 3D-TFM in highly scattering media

with rapid volume acquisition speeds [110, 112, 94] (see Chapters 5–7). Another

advantage of an OCM-based system would be the opportunity to merge TFM

and optical coherence elastography in a single imaging system, enabling mea-

surement of both substrate deformations and changes in substrate mechanical

properties due to remodeling and/or strain-hardening. Other rapid volumetric

imaging modalities, such as light sheet microscopy or swept confocally aligned

planar excitation (SCAPE) microscopy [16], may be well-suited for volumetric

TFM studies in substrates with lower optical scattering.

2.4.10 Advancing mechanobiology

Although great strides have been made in TFM to increase resolution, accuracy,

and compatibility with new environments, the fact remains that implement-

ing TFM–from experimental design, to imaging, to data processing and force

reconstruction–is not a trivial task. This is because the development and im-

plementation of new techniques relies on expertise from across a wide range of

academic disciplines. Ultimately, researchers in the field must often make trade-

offs. For example, incorrect assumptions or approximations can severely cor-

rupt traction force reconstructions. However, the data obtained may still yield

insight toward answering the biological questions at hand, and the ‘inaccurate’

method may turn out to be less time-consuming or easier to implement. The

question that must be answered is, what TFM protocols and performance levels

are sufficient for a given experiment? Alternatively, in the context of Fig. 2.1,
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what methods are sufficient to provide the necessary insights that address the

biological question? In some contexts, forces may not even be strictly necessary,

so long as information related to forces and cell energy expenditure are avail-

able. Koch et al. presented methods for quantifying ECM strain energy, circum-

venting the reconstruction of traction forces exerted by cells embedded in 3D

environments [78]. Similarly, Stout et al. devised the use of ‘mean deformation

mechanics’ as a substitute for cell force reconstructions when the mechanical

properties of the substrate are not well-characterized [162]. As TFM methods

advance, those who wish to make use of TFM as a tool for mechanobiology re-

search will have to carefully consider the quantitative needs of their research

questions and what the various TFM methods have to offer.

As new techniques in TFM migrate from development to widespread appli-

cation, methods to make the new tools compatible with the high-throughput

needs of biophysics and mechanobiology researchers will be a necessity. Even if

a method is imperfect, its ability to perform rapid and repeated experimentation

will be crucial to moving research efforts forward. As one example, Park et al.

have presented a high-throughput cell traction force screening platform based

on FTTC to enable rapid testing of how drug compounds impact cell forces

[119]. With the development of such platforms, TFM can begin to make broader

impacts and help further transform biophysics and mechanobiology research

into a standard practice in biomedicine.
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2.5 Conclusion

We have reviewed the central techniques and principles of traction force mi-

croscopy, including substrate choice, mechanical characterization, imaging,

measurement of substrate deformations, and traction force reconstruction.

Building on and moving beyond these principles, we have highlighted several

areas of active research and potential future innovation, which may fuel the

growth of TFM toward applications in the study of more realistic/physiological

engineered tissue and tumor-like microenvironments which manifest traits such

as nonlinearity, heterogeneity, and temporal variations due to cell-induced re-

modeling. TFM relies on a strong foundation of carefully engineered tech-

niques, as demonstrated by ongoing research efforts taking place at every step

of the process.

Underlying many of the ongoing technical innovations in TFM are two ma-

jor themes: (1) the utilization of new constraints and information to form more

complete mechanical models of cell biophysics and behavior and (2) the cre-

ation of novel force reconstruction methods that address both the challenges of

speed and compatibility with physiologically relevant sample properties and

geometries. Accompanying both of these themes are a few critical challenges.

The development of high-throughput experimental methods and the minimiza-

tion of computational complexity will play key roles in accelerating the inves-

tigation of new biological questions with TFM. And in order to make effective

use of new models that are compatible with physiologically relevant environ-

ments, TFM will rely on the continued development of technologies that enable

high-resolution mechanical characterization of tissue and ECM environments.

Although advances made in TFM and other fields will enable research under in-
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creasingly diverse conditions, managing trade-offs in accuracy versus through-

put will likely remain a common theme in the near future.

Overall, TFM is more than a rapidly growing tool for the noninvasive mea-

surement of cell forces. TFM has already played a leading role in many seminal

works of mechanobiology, revealing the influence of physical properties and

forces on cell behavior and exposing intrinsic differences between normal and

cancerous cells [122, 80, 127, 121]. As an area of research, TFM has merged ex-

pertise from a wide range of academic disciplines and is fostering close collab-

orations between physical scientists, biological scientists, and clinicians. With

future application in more physiologically relevant environments, TFM holds

the potential to offer insights into the biophysical behaviors of both single cells

and collectives over multiple length scales, spanning processes over minutes

to days. Whether used to investigate the processes of how cancer develops

and progresses, how wounds heal, or how cells go about their ‘normal every-

day functions’ such as growth and morphogenesis, TFM remains and will con-

tinue to be a central tool to help understand cellular forces and their role in

mechanobiology.
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CHAPTER 3

FUNDAMENTALS OF SIGNAL COLLECTION AND IMAGE

RECONSTRUCTION FOR SPECTRAL DOMAIN OPTICAL COHERENCE

TOMOGRAPHY

3.1 Introduction

One of the most important things I have learned in my research program is the

value of building a strong foundation. Innovation, just like learning, requires

researchers to make new connections between many initially separate concepts,

methods, and observations. The more tools, skills, and ways of thinking you

have available, the easier it becomes to build those connections.

Although prior literature is rich in information and provides a good starting

point, I found that doing the math, writing the code, and playing around with

the concepts for myself was critical to developing a useful understanding and

intuition about my field of study. I owe most of my own research achievements

to long days and nights spent contemplating what might otherwise be consid-

ered trivial, mundane, or ‘solved’. Such is the luxury of a doctoral program!

I found teaching to be an excellent way to identify holes in my own knowl-

edge and to get asked just the right kinds of ‘strange questions’ that would

ultimately lead to new ideas. Between the Fall of 2015 and the writing of this

dissertation during the 2019-2020 academic year, I trained new lab members

in the fundamentals of OCT imaging and signal processing. These ‘OCT-101’

lessons have been a fun tradition for me, and I will miss teaching them. I cannot

understate how valuable they were to me (and hopefully, to the lab).
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This chapter is my attempt to record and share these lessons with you.

Although OCT systems are simple to construct and use,1 a strong under-

standing of the mathematics underlying OCT imaging is critical to the devel-

opment of new methods, system designs, and algorithms. The sections that

follow provide derivations and explanations of the equations underlying signal

collection and image reconstruction for spectral domain OCT (SD-OCT). If you

are not already familiar with these concepts, I strongly advise that this text be

used as a guide while you perform independent derivations for yourself. If you are

already familiar, I always recommend revisiting the derivations anyway. You

never know what you will learn! Good luck, and most importantly, have fun!

3.2 Principles of OCT imaging

OCT microscopes record the position and contrast of scattering interfaces within

an object via low coherence interferometry. In general, broadband light is made

to propagate along two distinct optical paths following a free-space or fiber-

based splitter. Along one path (hereafter referred to as the ‘sample arm’), the

light illuminates a 3D scattering object (the ‘sample’) whose structure is to be

recorded. Along the other path (hereafter referred to as the ‘reference arm’), the

light propagates freely until it strikes a mirror (the ‘reference mirror’). Light

scattered by the sample is recombined with light reflected by the reference mir-

ror, and the interference pattern generated by the two superimposed fields is

recorded by a detector. This interferometric process generates images which

record both the magnitude and phase of the scattered optical field collected from

1 ;)
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the sample. As a consequence, OCT can leverage unique advantages over more

conventional intensity-based microscopes for performing high-throughput and

high-resolution imaging.

The key information encoded in the optical field is the time taken for light

to propagate into the sample and back out to the detector. This ‘time of flight’

(TOF) is proportional to the ’optical path length’ (OPL) traveled by the light

via the relation OPL = c × TOF, where c is the speed of light in a vacuum. If

light propagates within a vacuum, OPL corresponds to the physical distance

traveled by the light. However, for a homogeneous medium with a refractive

index of n, the physical distance traveled will instead be OPL/n.2 Therefore, it is

important to note that a measurement of OPL does not always provide a direct

measurement of the physical distance traveled by light. However, a physical

distance may be determined if the refractive index is known everywhere along

the light’s optical path. In OCT images, OPL dictates where (specifically, how

deep) a signal appears in the image, and the amount of light measured at a given

OPL dictates how bright that location appears.

In this manner, OCT generates 3D images via measurements of the time de-

lay and strength with which waves ‘echo’ back from scattering objects, analo-

gous to related technologies such as ultrasound, sonar, and radar. However,

although these related techniques can typically measure TOF directly, OCT can-

not. The speed of light is simply too fast for standard electronics to directly mea-

2If this concept is unclear, here is one way to think about OPL: Say you have monochromatic
light (i.e., light consisting of a single precise temporal/angular frequency) that is propagating
along a given path. Now, freeze time! Count the number of wavelengths (peak-to-peak, trough-
to-trough, etc.) between two selected points along the optical path. The physical length of
a given wavelength may vary as a function of the local refractive index (i.e., the light waves
compress/stretch when entering a medium with a higher/lower refractive index). The OPL
of your selected path segment is given by the number of wavelengths counted times the free-
space/vacuum wavelength for that angular/temporal frequency of light.
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sure TOF at the scales required for microscopy (micrometer-scale spatial resolu-

tion in OPL requires TOF measurements with femtosecond-scale temporal res-

olution). Instead, TOF measurements are made indirectly via the interference

of the fields collected from the sample and reference arms. Consequently, OCT

measures the difference between the TOF of the scattered sample arm light and

the TOF of the reflected reference arm light (which is typically held constant).

Sample structure is preserved in this process, since this indirect measurement

only differs from the true sample arm TOF by an additive constant.

3.3 Beam-scanning SD-OCT

Although interferometer designs, data acquisition methods, and signal process-

ing techniques differ among the various ‘species’ of OCT, the core underlying

mathematical concepts are conserved. However, since the original research re-

ported throughout this dissertation was performed using beam-scanning spec-

tral domain OCT (SD-OCT), all discussions pertaining to system design, data

acquisition, and algorithm design will focus specifically on this class of OCT mi-

croscopes. Should you wish to explore these principles in the context of other

types of OCT systems, deriving the basic imaging equations is always highly

encouraged. If the derivations in the next section are not directly applicable,

they still ought to serve as a decent guide for setting up the proper equations.

Beam-scanning OCT microscopes assemble 3D images from a sequence of

independently acquired ‘A-scans’. Each A-scan consists of a 1D array of data,

acquired when the scanned imaging beam is centered at a particular lateral po-

sition (x, y), and encodes signals acquired across a (large) range of depths (z). In
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SD-OCT, all of the depths encoded in an A-scan are acquired in parallel by the

1D pixel array of a spectrometer camera. This eliminates the need to perform

physical scanning of the beam focus, sample, or reference mirror along the axial

(depth) dimension. Consequently, a full 3D image may be obtained by perform-

ing a single 2D raster scan of the imaging beam across the set of desired lateral

(x, y) positions. (Compare this to confocal microscopes, which must perform 3D

raster scanning of the focal spot of the imaging beam through every single de-

sired (x, y, z) position in the sample.) This enables SD-OCT systems to acquire

3D images with a millimeter-scale field-of-view (FOV), micrometer-scale spa-

tial sampling, and acquisition times on the order of seconds to minutes. This

makes SD-OCT an attractive option for performing rapid volumetric imaging

of scattering biological samples.

However, the speed benefit provided by SD-OCT via its parallelized acqui-

sition of data along z is not without trade-offs. Due to the lack of axial scanning

when acquiring 3D data, the optical focus of the imaging beam will remain at

a single fixed depth within the sample. Data acquired at positions away from

this depth will be imaged while out-of-focus. For very low numerical aperture

systems (with a lateral resolution on the order of 10 µm or larger at focus), this

typically does not impose a significant penalty to image quality across the axial

FOV of the system. For higher numerical aperture systems (with a lateral res-

olution on the order of 10 µm or smaller at focus), defocus severely degrades

image quality outside the focal plane. This is the classic trade-off between focal

plane resolution and depth-of-field (DOF) of an imaging system. Fortunately,

due to the interferometric nature of OCT image acquisition, numerical image

formation methods are available to combat this trade-off. One such method is

computational adaptive optics (CAO), which enables the mitigation of defocus
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and optical aberrations in OCT images during post-processing [3]. Under the

right conditions, this can synthesize/restore focal plane resolution throughout

the imaged volume. For SD-OCT, this enables cellular resolution imaging over

depths ranging from hundreds of micrometers to millimeters while still leverag-

ing the speed benefits of parallelized acquisition along depth. CAO is discussed

in detail in Chapter 4, and so the derivations of this chapter will present only a

simplified picture of the full imaging process that takes place.

3.4 The SD-OCT spectral signal

3.4.1 System model

Beam-scanning SD-OCT systems typically take the form of a Michelson interfer-

ometer, such as that shown in Fig. 3.1. Although the system shown in the figure

consists entirely of free-space optics, SD-OCT systems are typically constructed

from a mixture of free-space and fiber optics. Other standard components (such

as scanning mirrors, polarization controllers, etc.) have been omitted from the

model for simplicity. In order to construct a model for OCT signal acquisition,

we must describe the path that light takes through the system, and define perti-

nent variables along the way which can impact the optical field.

To begin, broadband light is emitted by the source (e.g., a pulsed-mode laser,

superluminescent diode, or supercontinuum laser) and propagates a distance z0

to the splitter. A fraction at of the incident power transmits through the splitter

(and enters the reference arm) while a remaining fraction ar reflects (and enters

the sample arm).
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Figure 3.1: Diagram of a basic SD-OCT imaging system based upon a Michel-
son interferometer. Some common components (scanning mirrors, polarization
controllers, optical fibers, etc.) have been omitted for simplicity.

In the reference arm, the light propagates a distance zr until it strikes the ref-

erence mirror, upon which the light reflects and propagates a distance zr back to

the splitter. Only a fraction R of the total optical power within reference arm re-

turns to the splitter, as determined by the reflectivity of the reference mirror and

the size of the (adjustable) iris. Finally, a fraction ar of the returning reference

arm power reflects off of the splitter and enters the detection arm.

In the sample arm, a similar process takes place. The sample arm light prop-

agates a distance zs and strikes a scattering interface in the sample. A fraction

η(zs) of the incident optical field then scatters and propagates a distance zs back

to the splitter. (Note that η(z) defines a depth-dependent ‘scattering potential’,
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which is what the final OCT image will encode.) Finally, a fraction at of the

returning sample arm power transmits through the splitter and enters the de-

tection arm.

The two superimposed fields (returning from the reference arm and sample

arm, respectively) propagate a distance zd through the detection arm until they

are measured at the 1D pixel array of a spectrometer camera. Along this path, a

diffraction grating is used to cause the various wavelengths of light within the

beam to split apart in space and travel to different camera pixels. As a result,

each pixel of the camera corresponds to a particular wavenumber k of light. The

wavenumber-dependent interference pattern formed by the combination of the

reference and sample arm fields forms the raw SD-OCT spectral signal, from

which an OCT image may be reconstructed.

Although Fig. 3.1 depicts focused beams at various locations, the math that

follows throughout this chapter will assume the use of optics with a very low

numerical aperture (i.e., extremely long focal lengths) such that the lateral and

angular dependence of the optical signal may be ignored. In other words, we

will focus entirely on one-dimensional signals with respect to k and z. Depen-

dence on x and y will be addressed in Chapter 4.

Armed with this simple model, we may now proceed to derive a formula for

the SD-OCT spectral signal.

63



3.4.2 Derivation of the SD-OCT spectral signal

The optical field incident on the spectrometer camera is a superposition of the

reflected reference arm field Er and the scattered sample arm field Es. The total

field Etot for a particular wavenumber of light k is then given by:

Etot(k) = Er(k) + Es(k) (3.1)

However, the spectrometer camera cannot measure this field directly, and in-

stead can only measure the time-averaged intensity Itot of the total field. This

intensity measurement corresponds to the raw ‘SD-OCT spectral signal’, which

must undergo further processing in order to generate an OCT image.

Itot(k) ∝ |Etot(k)|2 (3.2a)

= |Er(k) + Es(k)|2 (3.2b)

= (Er(k) + Es(k)) (Er(k) + Es(k))∗ (3.2c)

= Er(k)E∗r (k) + Es(k)E∗s(k) + Es(k)E∗r (k) + E∗s(k)Er(k) (3.2d)

= |Er(k)|2 + |Es(k)|2 + Es(k)E∗r (k) +
(
Es(k)E∗r (k)

)∗ (3.2e)

The first two terms of Eqn. (3.2e) correspond to the intensities of the reference

arm and sample arm fields, respectively. The sum of the latter two terms corre-

sponds to the (real-valued) interference pattern formed by the superposition of

Er and Es at the detector. It will be shown that the third term encodes the data

required to reconstruct the desired (complex-valued) OCT image signal.

First, expressions for Er and Es must be obtained by accounting for all optical

‘operations’ that take place between the light source and detector along each

arm of the microscope. For simplicity, propagation along a small distance dz

will be modeled as an operation which advances the phase of the optical field by
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n(k, z) × k × dz, where n(k, z) is the wavenumber- and location-varying refractive

index along the optical path of the light. For now, we will assume propagation

through a vacuum, such that n(k, z) = 1. All other optical operations will be

assumed to modify only the magnitude of the optical field.3

We begin by deriving an expression for Er. Starting with an initial field am-

plitude spectrum A(k) emitted by the source, we traverse the reference arm opti-

cal path shown in Fig. 3.1, and accumulate the effects of each optical operation

encountered along the way. The resultant reference arm field is given by:

Er(k) = A(k) × e jkz0 ×
√

at × e jkzr ×
√

R × e jkzr ×
√

ar × e jkzd (3.3a)

= A(k)
√

aratR e jk(2zr+z0+zd) (3.3b)

Deriving an expression for Es requires more detail. First, we define the ‘scat-

tering potential’ η(z) of the sample, where z is a distance along the sample arm

optical path with respect to the location of the splitter. This scattering potential

is defined as the ratio of the magnitude of the scattered field to that of the inci-

dent field (typically, η(z) � 1). If the sample arm contains a scattering interface

at a single location zs (i.e., η(z) = η(zs)δ(z − zs), for δ(·) the Dirac delta function):

Es(k; zs) = A(k) × e jkz0 ×
√

ar × e jkzs × η(zs) × e jkzs ×
√

at × e jkzd (3.4a)

= A(k)
√

arat η(zs)e jk(2zs+z0+zd) (3.4b)

Equation (3.4b) bears a close resemblance to Eqn. (3.3b) because we have

assumed that the sample is effectively a very weak mirror. However, when

the sample contains scattering interfaces at many different depths, Eqn. (3.4b)

3For example, although operations such as transmission versus reflection at the splitter im-
pact the phase of the optical field, these effects will not substantially affect our derivations and
conclusions, and so will be ignored.
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must be revised to be a summation of scattered field contributions from every

depth within the sample. Under the first Born approximation (i.e., that the in-

cident/illumination field is not appreciably altered by the sample4), we obtain:

Es(k) =

∫ ∞

−∞

A(k)
√

arat η(zs)e jk(2zs+z0+zd) dzs (3.5a)

= A(k)
√

arat e jk(z0+zd)
∫ ∞

−∞

η(zs)e j(2k)zs dzs (3.5b)

Note that although the above integrals have a lower bound of −∞, η(zs) will

be assumed to be zero for z < 0 since, given our system model, we should not be

obtaining scattering signals from any location except those which appear after

the splitter (which was defined to be located at z = 0). The lower bound of

−∞ (instead of z = 0) is retained for mathematical convenience. With that in

mind, the integral component of Eqn. (3.5b) may appear familiar. It is merely

the Fourier transform of the scattering potential η(z) with respect to the family of

basis functions: exp(− j2kz). For brevity, we will designate this Fourier transform

of η(z) by the function η̃(k′) via the relation:

η̃(k′) =

∫ ∞

−∞

η(z)e− jk′z dz, (3.6)

where k′ = −2k. In order to minimize the number of variables which appear

in our equations, we will also define h̃(k′) = |A(k)|2. Using these relations, and

substituting Eqns. (3.3b) and (3.5b) into Eqn. (3.2e), we obtain:

Itot(k′) ∝ (arat)h̃(k′)
[
R + |η̃(k′)|2 +

√
R e jk′zr η̃(k′) +

(√
R e jk′zr η̃(k′)

)∗]
(3.7a)

= Ir(k′) + Is(k′) + S̃ (k′) + S̃∗(k′) (3.7b)

Each term/expression in Eqns. (3.7a) and (3.7b) is discussed below.
4Failure of the first Born approximation results in a variety of artifacts, including shadows,

‘phase shadowing’ (a common problem in OCT angiography and optical coherence elastogra-
phy), sample-induced dispersion and optical aberrations, and reduced signal-to-background
ratio due to multiple scattering.
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3.4.3 Interpretation of the SD-OCT spectral signal

Interferometer collection efficiency: (arat)

This scaling term is defined solely by the properties of the splitter used to

separate the sample and reference arms. Following conservation of energy,

at + ar ≤ 1. Therefore, the maximum possible value of this coefficient (given

our system model) is 0.25, attained when at = ar = 0.5.5 Any deviation from

this maximal uniform splitting ratio will decrease the total signal collection effi-

ciency of the system. However, practical considerations for microscope design

often result in the use of non-uniform ratios. The microscopes used to perform

the studies detailed in this dissertation used ratios of at : ar = 90:10. Such a

skewed splitting ratio reduces the incident power on the sample, which can be

important for minimizing thermal damage or other optical disturbances to bio-

logical systems.

Illumination power spectrum: h̃(k′) = |A(k)|2

This term corresponds to the power spectrum of the light source, and acts as

a wavenumber-dependent scaling factor across the entire spectral signal. Since

light sources always exhibit a finite bandwidth, this term acts as a bandpass

filter on the spectral signal, and therefore limits the axial resolution that can

be achieved in reconstructed OCT images. Note that the axial and lateral reso-

lutions of OCT microscopes are typically decoupled.6 The illumination power

spectrum limits the best possible axial resolution, whereas the numerical aper-

ture of the sample arm optics limits the best possible lateral resolution.

5Note that different types of interferometers and/or OCT systems have been shown to be
able to exceed this efficiency value [142, 7].

6This is the trend for most OCT systems (which have small numerical apertures by typical
microscopy standards). However, higher numerical aperture OCT systems can break this trend.
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Reference arm reflectivity: R

This term is simply the (power) reflectivity of the reference arm. It serves to

modify the strength of the signals Ir(k′) ∝ R, S̃ (k′) ∝
√

R, and S̃∗(k′) ∝
√

R. Typi-

cally, the reflectivity (0 ≤ R ≤ 1) is adjusted with a tunable aperture/iris placed

within the reference arm to ensure that all four components of the spectral signal

will be recorded within the dynamic range of the spectrometer camera.7

Background spectrum: Ir(k′) = arath̃(k′)R

This signal is a scaled version of the illumination power spectrum. Since Ir(k′)

contains no information about sample structure, it can be considered a constant

‘background’ term within the full spectral signal, hence the name ‘background

spectrum’. Under typical imaging conditions, the background spectrum will

always possess the greatest power among all four terms in Eqn. (3.7b). As a

consequence, a large fraction of the spectrometer camera’s dynamic range will

be occupied by this signal, instead of the desired image spectrum.

Self-interference/auto-correlation spectrum: Is(k′) = arath̃(k′) |η̃(k′)|2

This signal corresponds to the power spectrum of the light collected from

the sample arm. Since the expression for Is(k′) contains no information about

the reference arm field, this is the only component of the spectral signal which

remains constant under changes to both the reflectivity and position of the refer-

ence arm mirror. Often referred to as the ‘self-interference’ or ‘auto-correlation’

signal of the sample arm, Is(k′) is not typically of use for reconstructing OCT im-

ages. Since it is typical that η(z) �
√

R, it often follows that |η̃(k′)|2 ≪ R. In fact,

Is(k′) is typically the smallest component of the spectral signal, and is so weak

7The dynamic range is the range of collected energy which is both above the detector noise
floor and below the maximum/saturation level.
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that standard OCT reconstruction algorithms completely ignore its existence.

However, when this assumption fails (i.e., the sample scatters or reflects a large

quantity of light back to the detector), this signal can create artifacts that cor-

rupt the reconstructed OCT image. For an extended discussion regarding such

artifacts, see Appendix A.

OCT image spectrum: S̃ (k′) = arath̃(k′)
√

R e jk′zr η̃(k′)

This signal is the first of two components in the spectral signal generated by

the interference of Er(k) and Es(k) at the detector. As a result, this signal encodes

a mixture of information from both the reference and sample arms of the micro-

scope, and will be referred to as the ‘OCT image spectrum’ S̃ (k′). This mixture

of information is precisely what allows OCT to measure TOF and OPL (up to an

additive constant), and by extension, the structure of the sample. The process

by which an image is generated from this image spectrum will be explored in

the next section.

Conjugate image spectrum: S̃∗(k′) =
(
arath̃(k′)

√
R e jk′zr η̃(k′)

)∗
As its name implies, this term is the complex conjugate of the OCT image

spectrum S̃ (k′). As a result of this relationship, S̃∗(k′) must encode a variation of

the OCT image signal, which will be referred to as the ‘conjugate image signal’.

The impact of this second image signal will be explored in the next section.
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3.5 SD-OCT image reconstruction

Now that we have a model for the raw spectral signal captured by an SD-OCT

system, we can define methods to reconstruct an OCT image. In particular, we

desire a process to isolate and reconstruct a depiction of the scattering poten-

tial η(z), which corresponds to the position and strength of scattering interfaces

within the sample.

3.5.1 Image reconstruction under ideal conditions

In order to derive the process by which an OCT image is reconstructed from its

spectral signal, we first assign our initial raw spectral signal (with equality) to

the function I0:

I0(k′) = Ir(k′) + Is(k′) + S̃ (k′) + S̃∗(k′) (3.8)

Observing the standard assumption that the self-interference spectrum is negli-

gibly small yields:

I0(k′) ≈ I1(k′) = Ir(k′) + S̃ (k′) + S̃∗(k′) (3.9)

Next comes the first ‘official’ step in a standard OCT image reconstruction rou-

tine. We must remove the background spectrum, which does not encode any

information about the sample, but nevertheless occupies a large fraction of the

total energy of the spectral signal. If we have characterized our background

spectrum (see Appendix B), we simply perform ‘background subtraction’:

I2(k′) = I1(k′) − Ir(k′) = S̃ (k′) + S̃∗(k′) (3.10)

We now arrive at what appears to be an impasse. The spectral signal is acquired

by a camera, which can only return real-valued (intensity) measurements. How-
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ever, S̃ (k′) and S̃∗(k′) are complex-valued functions. Since the two spectral sig-

nals are conjugates, their sum remains real-valued, as we would expect of our

measurements. Unfortunately, this also means that the imaginary parts of the

two spectra completely annihilate each other such that:

I2(k′) = 2R[S̃ (k′)] = 2R[S̃∗(k′)] (3.11)

where R[·] denotes the ‘real part’ operator. It is clear that the two signals are

not separable, in the general case, without the assistance of additional explicit

knowledge or optical ‘tricks’. We will return to this problem momentarily. For

now, we substitute in the expressions for the remaining terms in Eqn. (3.10):

I2(k′) =
(
arath̃(k′)

√
R
) (

e jk′zr η̃(k′) + e− jk′zr η̃∗(k′)
)

(3.12)

We drop the constant terms (for simplicity), yielding:

I3(k) = h̃(k′)
(
e jk′zr η̃(k′) + e− jk′zr η̃∗(k′)

)
(3.13)

Since we wish to reconstruct a space-domain image signal, we must take an

inverse Fourier transform to obtain η(z) from η̃(k′). (This inverse Fourier trans-

form is the ‘final step’ in a standard OCT image reconstruction routine.) In the

fashion of Eqn. (3.6), we define the inverse Fourier transform relation:

η(z) =

∫ ∞

−∞

η̃(k′)e jk′z dk′ (3.14)

Note that any scalar coefficients that emerge from the use of this unnormal-

ized transform will be ignored for simplicity (and because they do not appre-

ciably affect the interpretation of image data anyway). Leveraging the con-

volution theorem (i.e., frequency-domain multiplication corresponds to space-

domain convolution), we obtain the inverse Fourer transform of the first term
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in Eqn. (3.13) to define the ‘OCT image signal’:

S (z) = h(z) ? δ(z + zr) ? η(z) (3.15a)

= h(z) ? η(z + zr) (3.15b)

where h(z) denotes the inverse Fourier transform of h̃(k′), and ‘?’ denotes the

convolution operator. From Eqn. (3.15b), we observe that the sample struc-

ture/scattering potential η(z) has been shifted such that any structures physically

located at a distance of approximately zr downstream from the splitter appear

near the origin (z = 0) in the reconstructed OCT image. That is, the reference

arm length directly determines which part of the sample will appear centered

in the reconstructed image. h(z) corresponds to the axial point spread function

(PSF) of the imaging system and is determined solely by the illumination power

spectrum.8 Since h̃(k′) is a real-valued function, it follows that h(z) is conjugate

symmetric (i.e., h(z) = h∗(−z)). We can now take the inverse Fourier transform of

the second term in Eqn. (3.13) to yield the ‘conjugate image signal’:

Sc(z) = h(z) ? δ(z − zr) ? η∗(−z) (3.16a)

= h(z) ? η∗(−(z − zr)) (3.16b)

= h∗(−z) ? η∗(−z + zr) (3.16c)

= S∗(−z) (3.16d)

Eqn. (3.16d), shows that the conjugate image signal is merely a conjugated and

space-reversed version of the OCT image signal from Eqn. (3.15b), with the re-

versal taking place about the origin of the reconstructed image. The ‘total image

signal’ remains a superposition of the two image signals:

Stot(z) = S (z) + S∗(−z) (3.17)
8If ar, at, and R were not constants, and were instead functions of k, then they too would

modify the axial point spread function.

72



Recall that the OCT image spectrum and conjugate image spectrum terms in

Eqn. (3.10) were not directly separable, in the general case, due to their iden-

tical real parts and mutually annihilated imaginary parts. However, from

Eqn. (3.17), we can now define a condition under which the image signals can

be separated. If the OCT image signal obeys the condition: S (z) = 0 for z ≤ 0,

then Sc(z) = 0 for z ≥ 0, and the two image signals are separable, since their

non-zero regions do not overlap in space. This can be achieved by adjusting the

sample location and/or the reference mirror position9 such that the sample sur-

face is located at a position zsurf > zr.10 Note that if these conditions are satisfied,

then the two spectra in Eqn. (3.10) actually are separable in the spectral domain

via a Hilbert transform, since the Hilbert transform relies on these exact same

assumptions/conditions in order to be valid.

In summary, given an ideal imaging process, the OCT image signal is ob-

tained from the raw OCT spectral signal via the following procedure:

1. Ignore the self-interference spectrum term (assuming this is appropriate)

2. Background subtraction (assuming Ir(k′) is properly characterized)

3. Inverse Fourier transform

4. Retain the image signal only in the region z > 0 (assuming the sample was

appropriately placed to allow for separation of the OCT image signal from

the conjugate image signal)
9It is recommended that adjusting the reference mirror position takes priority, especially if

the focal plane of the imaging beam is already located at a ‘good spot’ within the sample.
10This statement assumes h(z) is a delta function. In practice, since h(z) has a finite non-zero

width, the sample surface must be placed at a slightly greater depth (i.e., at least one-half of
the width of h(z) further away from the splitter in comparison to the reference mirror) than this
condition specifies.
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3.5.2 A simple example

Consider a sample that consists of a weak mirror located at a position z = zs

with respect to the splitter. Assuming that this mirror is very thin and has a

scattering potential of ηs, we define the sample scattering potential as:

η(z) = ηsδ(z − zs) (3.18)

It follows that η̃(k′) = ηse− jk′zs , and we obtain our spectral signal:

Itot(k′) ∝ (arat)h̃(k′)
[
R + |η̃(k′)|2 +

√
R e jk′zr η̃(k′) +

(√
R e jk′zr η̃(k′)

)∗]
(3.19a)

= (arat)h̃(k′)
[
R + η2

s +
√

Re jk′zrηse− jk′zs +
(√

Re jk′zrηse− jk′zs
)∗]

(3.19b)

∝ h̃(k′)
[
R + η2

s + ηs

√
Re− jk′(zs−zr) +

(
ηs

√
Re− jk′(zs−zr)

)∗]
(3.19c)

= h̃(k′)
[
R + η2

s + 2ηs

√
R cos(k′(zs − zr))

]
(3.19d)

= h̃(k′)
[
R + η2

s + 2ηs

√
R cos(k′∆z)

]
,∆z = zs − zr (3.19e)

The three terms in Eqn. (3.19e) correspond to the background spectrum, the self-

interference spectrum, and the (real-valued) superposition of the OCT image

spectrum and conjugate image spectrum, respectively. For this simple example,

the superposition term clearly demonstrates how the SD-OCT spectral signal

encodes the brightness and position of scattering interfaces. For now, we ignore

the h̃(k′) term by assuming that h̃(k′) = 1. What remains of the superposition

term is merely a cosine wave defined by two degrees of freedom: its amplitude

(which is proportional to ηs) and its frequency in the spectral domain (given by

∆z). Of course, ηs determines how much light our sample scatters and therefore

controls the ‘brightness’ of the object in our reconstructed image. Likewise, ∆z

encodes the difference between the OPL of the sample arm light and the OPL

of the reference arm light, and therefore encodes a position for our sample to

appear at in the reconstructed OCT image.
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In order to reconstruct our example OCT image, we first assume that η2
s � R

and η2
s � 2ηs

√
R, yielding:

I1(k′) = h̃(k′)
[
R + 2ηs

√
R cos(k′(zs − zr))

]
(3.20)

Next we perform background subtraction:

I2(k′) = I1(k′) − h̃(k′)R = h̃(k′)2ηs

√
R cos(k′(zs − zr)) (3.21)

For demonstration purposes, we break our real-valued signal into its complex-

valued constituents (the OCT image spectrum and conjugate image spectrum):

I3(k′) = h̃(k′)ηs

√
R

(
e− jk′(zs−zr) + e jk′(zs−zr)

)
(3.22)

and take an inverse Fourier transform:

Stot(z) =
(
ηs

√
R
)

h(z) ? (δ(z − (zs − zr)) + δ(z + (zs − zr))) (3.23a)

=
(
ηs

√
R
)

(h(z − (zs − zr)) + h(z + (zs − zr))) (3.23b)

Consistent with our previous derivations, this image signal is conjugate-

symmetric about its origin. Here, we have two bandwidth-limited pulses ap-

pearing at z = zs − zr and z = −(zs − zr), corresponding to the OCT image signal

and conjugate image signal, respectively. We can define this correspondence

only because we have ‘cheated’ by having access to the full complex-valued

signals in our derivations. In practice, if we were presented with only the to-

tal image signal (and possessed no knowledge about the value of zs), we would

have no way of knowing which of the two pulses corresponds to the OCT image

signal.11 This ambiguity is readily resolved if the sample and reference mirror

are set up such that the condition zs > zr (or alternatively, zs < zr) is guaranteed.
11The reader is invited to derive the total image signal for a sample with a scattering potential

of η(z) = ηsδ(z− z′s), where z′s = 2zr − zs. This will cause the positions of the OCT image signal and
conjugate image signal in Eqn. (3.23b) to be swapped, but the total image signal (along with its
associated ambiguity) will remain unchanged. Given only the total image signal, we would not
be able to determine whether the sample was located at zs or z′s.
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3.5.3 Dispersion

The derivations and procedures we have discussed so far relied upon the as-

sumption that imaging was performed in a vacuum (i.e., that the refractive in-

dex n(k, z) = 1). However, this assumption is far from reality for everyday OCT

imaging. Optical fibers, optical elements, and samples all have refractive in-

dices which differ drastically from that of a vacuum. By itself, a refractive index

, 1 is not a problem. (We will see in the derivations below that imaging in-

side a medium with a constant refractive index merely scales the reconstructed

OCT image along the axial dimension.) Challenges do arise, however, from the

fact that glass and other optical materials are dispersive (i.e., the refractive in-

dex varies as a function of wavenumber). To understand the consequences of

dispersion, we will have to perform a new round of derivations.

We return to the optical ‘operations’ used to define Eqns. (3.3b), (3.4b), and

(3.5b). Light propagation through a dielectric medium advances the phase of

the optical field according to:

φ(k) =

∫
Ω

n(k, z)k dz (3.24)

where Ω denotes a specific optical path along z. Now, we must define the ap-

propriate phase changes induced by propagation through each arm of the OCT

system in Fig. 3.1 (from source to splitter, splitter to reference mirror, splitter to

76



a location z = zs in the sample arm, and splitter to detector, respectively):

φ0(k) =

∫ z0

0
n0(k, z)k dz (3.25a)

φr(k) =

∫ zr

0
nr(k, z)k dz (3.25b)

φs(k, zs) =

∫ zs

0
ns(k, z)k dz (3.25c)

φd(k) =

∫ zd

0
nd(k, z)k dz (3.25d)

where n0, nr, ns, and nd are the space- and wavenumber-dependent refractive

index profiles along each branch of the microscope. We will neglect any scatter-

ing that emerges from sharp changes in these refractive index profiles (such as

the air-glass interface of a lens). As a result, we will assume that the only light

returning to the microscope comes from either the sample (described by η(z)) or

the reference arm mirror. Although this assumption is not true, it is practically

relevant (as will be noted later in the discussion on discretely-sampled signals).

We next obtain our revised reference arm field:

Er(k) = A(k) × e jφ0(k) ×
√

at × e jφr(k) ×
√

R × e jφr(k) ×
√

ar × e jφd(k) (3.26a)

= A(k)
√

aratR e j(2φr(k)+φ0(k)+φd(k)) (3.26b)

We also obtain our revised sample arm field (for an isolated scattering interface):

Es(k; zs) = A(k) × e jφ0(k) ×
√

ar × e jφs(k,zs) × η(zs) × e jφs(k,zs) ×
√

at × e jφd(k) (3.27a)

= A(k)
√

arat η(zs)e j(2φs(k,zs)+φ0(k)+φd(k)) (3.27b)

And finally, we obtain the total sample arm field by accounting for scattering

from all valid depths12 within the sample:

Es(k) = A(k)
√

arat e j(φ0(k)+φd(k))
∫ ∞

−∞

η(zs)e j2φs(k,zs) dzs (3.28)

12Recall the assumption that η(z) = 0 for z < 0.
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Recall that the integral term in Eqn. (3.5b) was a Fourier transform. However,

the integral term in Eqn. (3.28) can no longer be considered a Fourier transform,

even though its form does remain similar to one. Instead of a projection onto

a basis of complex (sinusoidal) exponential functions, we now have a projec-

tion onto a basis of functions which are ‘chirped’ by the refractive index profile

within the sample arm. By itself, this equation will not be terribly enlightening.

We will have to apply (reasonable) assumptions to gain intuition.

However, we will first continue with our derivation to obtain expressions

for the four terms of our spectral signal. As a reminder, we are plugging our

revised reference and sample arm fields into the expression:

Itot(k) = |Er(k)|2 + |Es(k)|2 + Es(k)E∗r (k) +
(
Es(k)E∗r (k)

)∗ (3.29)

By inspection, we determine that the background spectrum will remain un-

changed from the previous derivation. Likewise, although the expression for

the self-interference spectrum does change, it will not be shown here, since we

will still assume this term to be negligibly small for the purposes of performing

image reconstruction. The OCT image spectrum S̃ (k′) will be given by:

S̃ (k′) = arath̃(k′)
√

Re− j2φr(k)
∫ ∞

−∞

η(zs)e j2φs(k,zs) dzs (3.30)

where h̃(k′) and k′ = −2k are defined as before. At this stage, assumptions must

be leveraged to advance further. First, we will ‘split’ the sample arm into two

regions. The first region (immediately after the splitter) encompasses all of the

optical components used for directing light to–and collecting light from–the

sample. The second region begins at the sample surface (located at z = zsurf)

and extends to infinity. This second region will be assumed to have a depth-

and wavenumber-invariant refractive index n. This approximation is usually
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acceptable for standard OCT imaging in homogeneous biological and/or poly-

mer samples to depths on the order of 1-2 mm.13 If η(z) = 0 for z < zsurf, then:

S̃ (k′) = arath̃(k′)
√

Re− j2φr(k)
∫ ∞

−∞

η(zs)e j2φs,1(k)e j2kn(zs−zsurf) dzs (3.31a)

φs,1(k) =

∫ zsurf

0
ns(k, z)k dz (3.31b)

Simplifying further (and dropping constant terms for simplicity), we obtain:

S̃ (k′) = h̃(k′)e j∆φ(k′)
∫ ∞

−∞

η(zs)e− jk′nzs dzs (3.32a)

∆φ(k) = 2(φs,1(k) − φr(k) − knzsurf) (3.32b)

∆φ(k′) = 2(φs,1(−k′/2) − φr(−k′/2) − (−k′/2)nzsurf) (3.32c)

(Note that the casting of ∆φ as a function of k′ is done to keep in line with our

previous conventions and avoid mixing the variables k and k′ in our equations

below.) Our assumptions have allowed us to arrive at a ‘proper’ Fourier trans-

form relation in the integral term. However, due to the introduction of the sam-

ple refractive index n, the integral now evaluates to η̃(nk′) (instead of the previ-

ously defined function η̃(k′)). If we assume our image reconstruction algorithm

is ‘blind’ to the the value of n, then the OCT image signal is still obtained by

taking the inverse Fourier transform defined in Eqn. (3.14), yielding:

S (z) = h(z) ? hφ(z) ? η(z/n) (3.33)

where hφ(z) denotes the inverse Fourier transform of e j∆φ(k′). Note that the re-

constructed scattering potential η(z/n) is an axially scaled version of η(z).14 In
13Numerical mitigation strategies can be employed when this assumption fails (such as when

acquiring data over a large depth range within strongly dispersive media). Details may be
found in Appendix E.

14If n > 1, η(z/n) is ‘stretched’ compared to η(z) by a factor of n. This is a manifestation of
the fact that OCT measures OPL and not physical distance. As stated at the beginning of this
chapter, if an object has an optical path length of dOPL in the reconstructed image, its physical
length d will be given by dOPL/n. The division by n cancels out the ‘stretching’ present in η(z/n).
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Eqn. (3.15a), hφ(z) was equal to δ(z + zr), and was responsible for shifting the re-

constructed image data such that the origin of the image signal was centered

about the physical location z = zr in the sample arm. However, the more gener-

alized formulation for hφ(z) that we have just derived may not be so benign.

To better understand the nature of hφ(z), we first perform a Taylor series ex-

pansion of ∆φ(k′) about the point k′ = k′c = −2kc, for kc the central wavenumber

of the bandwidth of the light source:

∆φ(k′) = α0 + α1(k′ − k′c) + α2(k′ − k′c)
2 + α3(k′ − k′c)

3 + O
(
(k′ − k′c)

4
)

(3.34)

Assuming the high-order terms are negligible, we can rewrite Eqn. (3.32a) as:

S̃ (k′) ≈ h̃(k′)e jα0e jα1(k′−k′c)e j(α2(k′−k′c)2+α3(k′−k′c)3)η̃(nk′) (3.35)

The OCT image signal is then given by:

S (z) = h(z) ? e j(α0−α1k′c)δ(z + α1) ? hα(z; α2, α3) ? η(z/n) (3.36a)

∝ h(z) ? hα(z; α2, α3) ? η((z + α1)/n) (3.36b)

where hα(z; α2, α3) is the inverse Fourier transform of e j(α2(k′−k′c)2+α3(k′−k′c)3). With

this refined formulation of Eqn. (3.33), we can develop a clearer picture regard-

ing the impact of hφ(z) ≈ e j(α0−α1k′c)δ(z+α1)?hα(z; α2, α3). The constant scaling term

e j(α0−α1k′c) is inconsequential for image analysis, and can be discarded (alongside

the numerous other scaling factors we have dropped throughout these deriva-

tions). The δ(z + α1) term will merely shift the origin of the reconstructed image

within the sample (analogous to the δ(z + zr) term in Eqn. (3.15a)). If the coef-

ficient α1 shifts the image origin to an undesired location in the sample arm,

its value can always be tuned by adjusting the reference arm mirror position

zr. Therefore, the δ(z + α1) term is also inconsequential. This leaves hα(z; α2, α3)

as the only remaining source of potential trouble. Since hα is the only term to
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be a function of α2, α3, and any higher-order terms (if relevant), hα encodes the

consequences of using dispersive optical materials in an OCT system.

It turns out (see Appendix C) that hα(z; α2, α3) causes image blurring along

the axial dimension when (α2, α3) , (0, 0). For standard microscopes, image

blurring can be difficult to mitigate, especially in samples with dense internal

structure. Thankfully, there are multiple simple ways to address this issue in

OCT imaging. If axial blurring is significant (i.e., if the length of the blurred

PSF is hundreds of micrometers or greater), extra optical components can be

introduced to mitigate the blurring (see Appendix D). This hardware-based

compensation of dispersion merely requires that the reference arm and sam-

ple arm contain the same total amount of dispersion (such that the quadratic and

higher-order terms of φs,1 and φr from Eqn. (3.32b) cancel out). If an OCT system

contains only one type of material besides air (e.g., a single type of glass for all

optical components), then the impact of dispersion will be minimal when the

sample and reference arms contain the same total amount of glass. Alternatively,

if the ‘dispersion mismatch’ between the sample and reference arms is relatively

small (resulting in a blurred PSF whose length is only a few hundred microm-

eters or smaller), computational compensation is a very simple option for can-

celing out dispersion coefficients. If α2 and α3 are characterized (via empirical

measurement or a suitable optimization procedure), computational dispersion

compensation is performed via:

S̃α(k′) = S̃ (k′)e− j(α2(k′−k′c)2+α3(k′−k′c)3) (3.37a)

= h̃(k′)e jα0e jα1(k′−k′c)η̃(nk′) (3.37b)

yielding:

Sα(z) ∝ h(z) ? η((z + α1)/n) (3.38)
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and the original (unblurred) axial PSF h(z) is restored. However, we must not

forget that this computational dispersion compensation will not only be applied

to the OCT image spectrum, but to the conjugate image spectrum as well.

S̃tot,α(k′) =
(
S̃ (k′) + S̃∗(k′)

)
e− j(α2(k′−k′c)2+α3(k′−k′c)3) (3.39a)

= h̃(k′)[e jα0e jα1(k′−k′c)η̃(nk′) + . . .

e− jα0e− jα1(k′−k′c)e− j2(α2(k′−k′c)2+α3(k′−k′c)3)η̃∗(nk′)]
(3.39b)

As a result, the total image signal is:

Stot,α(z) = h(z) ? [Aαη((z + α1)/n) + . . .

A∗α
(
η∗((−z + α1)/n) ? h∗α(−z; 2α2, 2α3)

)
]

(3.40)

for Aα = e j(α0−α1k′c). Although the blurring of the OCT image signal is mitigated,

the axial blurring of the conjugate image signal is doubled in the dispersion-

compensated total image signal. If hardware-based compensation were em-

ployed instead, both the OCT image signal and conjugate image signal would

have been corrected in equal amounts.15

In summary, given the presence of artifacts introduced by dispersion mis-

match between the sample and reference arms, the OCT image signal is ob-

tained from the raw spectral signal via the following procedure:

1. Ignore the self-interference spectrum term (assuming this is appropriate)

2. Background subtraction (assuming Ir(k′) is properly characterized)

3. Computational dispersion compensation (using α2 and α3 at minimum)

4. Inverse Fourier transform
15This is a common theme in OCT. Measuring the complex-valued optical field enables the

use of computational methods which mimic physical optical processes. However, despite their
convenience, computational methods often exhibit limitations which may not exist for their
hardware-based analogs. The ‘no free lunch’ principle continues to hold.
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5. Retain the image signal only in the region z > 0 (assuming the sample was

appropriately placed to allow for separation of the OCT image signal from

the conjugate image signal). Do not forget to account for axial ‘stretching’

of the image signal by a factor of n when interpreting the output image.

3.5.4 Discretely sampled spectra

Thus far, we have performed derivations using infinite and continuous domains

in wavenumber and space. However, OCT image data is always acquired in a

finite and discretized fashion. The spectrometer camera used to capture Itot(k)

contains a 1D array of N pixels, corresponding to a finite set of wavenumbers

ki ∈ {k0, k1, . . . , kN−1}, yielding the discrete OCT spectral signal Itot[ki]. Although

the mathematics for OCT image reconstruction remain largely unchanged, a few

important practical considerations do emerge.

Assume that the spectrometer acquires Itot[ki] with uniform sampling (i.e.,

ki+1−ki is a constant ∆k for i ∈ {0, 1, . . . ,N−2}). Assuming there are no dispersive

elements in our microscope, the discrete OCT spectral signal will be given by:

S̃ [ki] =
(
arat

√
R
)

h̃[ki]e− j2kizr

∫ ∞

−∞

η(zs)e j2kizs dzs (3.41)

where h̃[ki] = |A[ki]|2. We have kept all functions in terms of ki (instead of

k′i = −2ki) to minimize complications in our derivations downstream. The OCT

image signal can be obtained from an inverse discrete Fourier transform (DFT)16:

S [zm] =

N−1∑
i=0

S̃ [ki]e− j2kizm (3.42)

16Recall that we previously defined our OCT spectral signal to be a Fourier transform of the
sample structure η(z) with respect to a set of basis functions of the form e− j2kz.
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for m an integer (usually, but not necessarily, constrained to the set {0, 1, . . . ,N−1}).

Eqn. (3.42) is the discrete analog to the continuous inverse Fourier transform

that we defined previously17:

S (z) =

∫ ∞

−∞

S̃ (k)e− j2kz dk (3.43)

Although Eqn. (3.42) is easy enough to understand, it must be noted that the

standard formulation of the DFT (and its inverse) are computationally ineffi-

cient, and are typically replaced with a fast Fourier transform (FFT) algorithm.

However, using the FFT presents a problem. Most programmers will leverage

highly optimized FFT routines obtained from a pre-made library. These rou-

tines do not allow us to explicitly encode physical values of ki and zm into the

transform. Instead, the FFT18 computes the signal:

S [zm] =

N−1∑
i=0

S̃ [ki]e− j 2πm
N i for m ∈ {0, 1, . . . ,N − 1} (3.44)

In order to understand the consequences of this transformation, we return to

our previous simple example of a sample consisting of a single weak scatterer:

η(z) = ηsδ(z − zs). Our discrete OCT spectral signal would then be given by:

S̃ [ki] =
(
arat

√
R
)

h̃[ki]e− j2kizrηse j2kizs (3.45)

Dropping scaling factors and plugging into Eqn. (3.44) yields:

S [zm] =

N−1∑
i=0

h̃[ki]e j2ki(zs−zr)e− j 2πm
N i for m ∈ {0, 1, . . . ,N − 1} (3.46a)

= h[zm] ?
N−1∑
i=0

e− j( 2πm
N i−2ki(zs−zr)) for m ∈ {0, 1, . . . ,N − 1} (3.46b)

17Now in terms of k instead of k′.
18A forward FFT was used here to utilize the same sign convention in the phase term as our

inverse DFT defined in Eqn. (3.42). Note that both the forward and inverse FFT can be used for
OCT image reconstruction. Both transforms will yield the desired OCT image signal–except one
of the transforms will return the OCT image signal upside-down compared to the other.

84



This begs the question: what are the discrete values of zm at which our OCT

image signal is (‘perfectly’) reconstructed? The DFT and FFT both assume data

is uniformly spaced in both the space and spectral domains. We will assume

that ki = k0 + i∆k and zm = m∆z. We can obtain ∆k from the full bandwidth of our

spectrometer: ∆k = (kN−1 − k0)/(N − 1). But what will be the value of ∆z? Assume

the scatterer is located at a position z = zr + m̂∆z, for m̂ an integer. Eqn. (3.46b)

then becomes:

S [zm] = h[zm] ?
N−1∑
i=0

e− j( 2πm
N i−2kim̂∆z) for m ∈ {0, 1, . . . ,N − 1} (3.47)

Given that the sample structure takes the form of a delta function at z = zr + zm̂,

the reconstructed OCT image signal should yield a pulse centered at zm = zm̂.

This is achieved when the phase term in Eqn. (3.47) satisfies the condition:

2πm
N

i − 2kim̂∆z = 0, for i ∈ {0, 1, . . . ,N − 1} and m = m̂ (3.48)

Applying this condition for i = i0 and i = i1, we infer:

2πm̂
N

i0 − 2ki0m̂∆z =
2πm̂

N
i1 − 2ki1m̂∆z (3.49a)

2πm̂
N

(i0 − i1) = 2((k0 + i0∆k) − (k0 + i1∆k))m̂∆z (3.49b)

2πm̂
N

(i0 − i1) = 2(i0 − i1)∆km̂∆z (3.49c)

∆z =
π

N∆k
(3.49d)

So, for FFT-based OCT image reconstruction, the height of each pixel along z (in

terms of OPL19) will be given by Eqn. (3.49d). At first glance, this would appear

to imply that the full axial range available to the reconstructed image signal will

be [0, (N − 1)∆z]. However, the OCT image signal must typically lie within only

the first half of this ‘full range’ (i.e., zm ∈ [0, (dN/2e − 1)∆z]). Understanding why

19Inside a medium of refractive index n, the physical value of ∆z is π/(nN∆k).
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this is the case requires an understanding of the conjugate image signal, a back-

ground in the basic theory of discrete signals and Fourier transforms (which

will not be detailed here), and knowledge of the optics underlying spectrome-

ter design. In brief:

1. The conjugate image signal appears as a mirror image of the OCT image

signal about the origin of the reconstructed OCT image. This should

be apparent if you have followed the derivations of this chapter so far.

Given our previous discussions on how to place the sample in order to

keep the OCT image signal and conjugate image signal separable, we also

know that our imaging system should be set up so that the OCT image

signal appears in the region where z > 0, and the conjugate image signal

appears where z < 0. Note that the standard DFT/FFT equations above

(which are ‘blind’ to the details of our system) perform reconstructions for

zm ∈ [0, (N − 1)∆z]. This might appear to imply that the conjugate image

signal should not be present in the reconstruction. However, that brings

us to the next point.

2. Finite-length discrete signals and their Fourier transforms are ‘periodic’.

This means that if the DFT/FFT were extended to perform reconstructions

across all possible locations in space, they would produce a periodic signal

with period N∆z. Therefore, a conjugate image signal that is ‘truly’ located

in the region −(N/2)∆z < z < 0 (a region that our equations above did not

reconstruct) will also appear in the region (N/2)∆z < z < N∆z (a region that

our equations above did reconstruct). So in practice, our OCT image signal

can only extend to a depth of (N/2)∆z before it begins to experience over-

lap with the conjugate image signal. Therefore, for the case of discretely

sampled signals, the only way to guarantee that the OCT image signal
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and conjugate image signal do not overlap is to ensure that η(z) = 0, for

z < zr and for z > zr + (N/2)∆z. Thick samples often fail the latter criterion.

However, image signal overlap may be mitigated by our final point.

3. SD-OCT signals get weaker as the OPL mismatch between the sample

and reference arm increases. This is called the spectrometer ‘roll-off’ or

‘fall-off’ effect. For a scattering surface located at a fixed position z = zs,

the amplitude of the measured interference signal formed between the sam-

ple and reference arms decays as the difference between zs and zr grows.

This is a result of spatial averaging that takes place within the spectrom-

eter. Due to a combination optical limitations and the size of camera pix-

els, a given pixel within the spectrometer will collect light over a range of

wavenumbers. (A good spectrometer design will attempt to minimize this

range, but will never be able to decrease the range to zero.) As a result, the

pixel can only measure the average intensity of the spectral signal about its

corresponding central wavenumber ki. When interference fringes (such as

the cosine wave in Eqn. (3.19e)) vary rapidly as a function of k, the local

average intensity of the spectral signal about ki can vary drastically from

the true intensity of the spectral signal at precisely ki. The consequence is

that the origin of reconstructed OCT images will exhibit the greatest sig-

nal strength, while signals from other depths will decline with distance

from the origin. Signals which originate from an OPL that differs drasti-

cally from zr (e.g., those beyond our (N/2)∆z cut-off discussed above) can

be significantly attenuated, and will eventually fall below detectable lev-

els. This is why reflections off of optical surfaces (such as lenses) in our

sample arm do not typically cause problems during image reconstruction.

The OPL mismatch between those optical surfaces and the reference mir-
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ror is typically so great that the interference fringe signal between them is

obliterated by spatial averaging within the spectrometer.20

In summary, given a discretely sampled SD-OCT spectral signal of length

N (with uniform sampling period ∆k in the spectral domain), the OCT image

signal is obtained from the raw spectral signal via the following procedure:

1. Ignore the self-interference spectrum term (assuming this is appropriate)

2. Background subtraction (assuming Ir[ki] is properly characterized)

3. Computational dispersion compensation (using α2 and α3 at minimum)

4. Discrete Fourier transform or fast Fourier transform (forward and inverse

transforms are acceptable)

5. Retain the image signal only in the valid region (of size (N/2)∆z where ∆z =

π/(N∆k) in terms of OPL). Do not forget to account for axial ‘stretching’ of

the image signal by a factor of n.

3.5.5 Non-uniformly sampled spectra

Before we can discuss how to actually implement an OCT image reconstruc-

tion algorithm, we must address one final (and critical) point. Our deriva-

tions above for discretely sampled signals assumed that the SD-OCT spectral

signal was sampled at uniform intervals along k (i.e., ki+1 − ki is a constant

∆k for i ∈ {0, 1, . . . ,N − 2}). However, designing a spectrometer that achieves

20However, the average energy from those far-away surfaces does still get captured, resulting
in an anomalous increase in the apparent value of the background spectrum. In general, the use
of anti-reflection coatings is recommended to minimize this effect and maximize the available
dynamic range of the camera.
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uniform sampling can be difficult...and expensive! In practice, most SD-OCT

spectrometers sample the spectral signal along a non-uniformly spaced set of

wavenumbers k̂i ∈ {k̂0, k̂1, . . . , k̂N−1} (for which k̂i+1 − k̂i is not constant with re-

spect to i ∈ {0, 1, . . . ,N − 2}). In order to properly reconstruct an OCT image, the

image reconstruction procedure must be modified to correct for non-uniform

sampling. The standard way to do this is to incorporate a resampling step that

numerically estimates the values of the spectral data across a uniformly spaced

set of locations (the values of ki defined previously) from the original data (ob-

tained at each value of k̂i). Implementations of this spectrum resampling step

will not be discussed here.21 However, a few recommendations will be made:

1. It is recommended that the uniformly spaced set of query points ki be de-

fined to cover the same range as the original non-uniformly spaced set of

points k̂i. That is, if k̂0 and k̂N−1 correspond to the extremal values of the

total range spanned by all k̂i, then define ki = k̂0 + i∆k for i ∈ {0, 1, . . . ,N − 1}

and ∆k = (k̂N−1 − k̂0)/(N − 1). This will allow you to avoid problems with

extrapolation, truncation, and insufficient or redundant interpolation.

2. High-order interpolation is typically needed to perform spectrum resam-

pling. Sinc, spline, and cubic polynomial interpolators (or approximations

thereof) may be a good choice. Low-order interpolators (e.g., nearest-

neighbor or linear interpolators) are almost universally bad choices. The

errors introduced by low-order schemes can severely corrupt the image

signal, especially at depths far from the image origin (i.e., for large dis-

crepancies between zs and zr, as detailed in our prior discussions).

3. Since resampling is one of the most computationally expensive steps in

21For instruction purposes, however, you can find a tutorial on the construction of cubic spline
interpolators in Appendix F.
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FFT-based OCT image reconstruction algorithms, the algorithm must be

chosen to balance accuracy and speed. I would personally suggest that

you beware of ‘nested’ interpolators (such as up-sampling procedures fol-

lowed by additional interpolation). With a little effort, such procedures

can usually be combined into a single step (see Section 3.7).

4. OCT literature is full of algorithms which get passed along from user to

user, and paper to paper. Not all of these algorithms are efficient. Al-

though it is best not to reinvent the wheel, it can be beneficial to obtain a

better wheel. If you will be developing an OCT reconstruction algorithm,

make sure you know enough math to identify the right wheel for the job.

If spectrum resampling is neglected (or is performed improperly), the ax-

ial resolution of the reconstructed OCT image will be degraded in a depth-

dependent fashion. This consequence can be readily inferred if we consider the

reconstruction of a point scatterer. To begin, we redefine Eqn. (3.45) to apply to

the case of non-uniformly sampled data:

S̃ [k̂i] =
(
arat

√
R
)

h̃[k̂i]e− j2k̂izrηse j2k̂izs (3.50)

Assuming our OCT image reconstruction algorithm fails to account for this non-

uniform sampling, we (incorrectly) attempt to reconstruct the image signal via:

S [zm] =

N−1∑
i=0

S̃ [k̂i]e− j2kizm (3.51a)

=

N−1∑
i=0

(
arat

√
R
)

h̃[k̂i]e− j2k̂izrηse j2k̂izse− j2kizm (3.51b)

where zm = m∆z, for m ∈ {0, 1, . . . ,N − 1}, ∆z = π/(N∆k), ∆k = (k̂N−1 − k̂0)/(N − 1),

and ki = k̂0 + i∆k, for i ∈ {0, 1, . . . ,N − 1}. For simplicity, we drop all constant
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scaling terms and assume a uniform power spectrum (h̃[ki] = h̃[k̂i] = 1):

S [zm] =

N−1∑
i=0

e− j2k̂izr e j2k̂izse− j2kizm (3.52a)

=

N−1∑
i=0

e j2(k̂i(zs−zr)−kizm) (3.52b)

At this stage, the subtleties of discrete-domain signals start to become a distrac-

tion to building intuition. However, it should be clear that the mismatch be-

tween the non-uniformly spaced k̂i and the uniformly spaced ki in Eqn. (3.52b)

may cause some strange and undesirable effects. We convert the equation into

a continuous domain analog:

S (z) =

∫ ∞

−∞

e j2(k̂(zs−zr)−kz) dk (3.53)

Since our sample is a point scatterer, and since we have assumed a uniform (and

infinite) laser spectrum, our reconstructed image ought to be a delta function

(under ideal image reconstruction conditions). Realizing this scenario would

require that the phase term in the equation above be linear with respect to k.

But what actually happens? We define a Taylor series expansion relating k̂ to k:

k̂(k) = β0 + β1(k − kc) + β2(k − kc)2 + β3(k − kc)3 + O
(
(k − kc)4

)
(3.54)

for kc the central wavenumber of light acquired by the spectrometer. If we

choose to ignore higher-order terms, Eqn. (3.53) becomes:

S (z) =

∫ ∞

−∞

e j2((β0+β1(k−kc)+β2(k−kc)2+β3(k−kc)3)(zs−zr)−kz) dk (3.55)

Without any further derivations, it should be clear that the phase term in the

above expression is decidedly nonlinear with respect to k, given values of β2, β3,

etc. , 0. This nonlinearity in the phase term will cause the reconstructed image

of the scatterer to deviate from an ideal delta function and become ‘blurred’ (see
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Appendix C). Moreover, observe that the nonlinearity increases proportionally

to the value of zs − zr. This means that scatterers imaged near the origin of the

reconstructed image will suffer only a small degree of nonlinearity, and thus

will only be blurred along z to a small degree. Scatterers imaged far from the

origin will suffer a large degree of nonlinearity and will be blurred substantially.

In summary, given a discretely sampled SD-OCT spectral signal of length N

(with non-uniform sampling in the spectral domain), the OCT image signal is

obtained from the raw spectral signal via the following procedure:

1. Ignore the self-interference spectrum term (assuming this is appropriate)

2. Background subtraction (assuming Ir[k̂i] is properly characterized)

3. Spectrum resampling (mapping from k̂i to ki)

4. Computational dispersion compensation (using α2 and α3 at minimum)

5. Discrete Fourier transform or fast Fourier transform (forward and inverse

transforms are acceptable)

6. Retain the image signal only in the valid region (of size (N/2)∆z where ∆z =

π/(N∆k) in terms of OPL). Do not forget to account for axial ‘stretching’ of

the image signal by a factor of n.

3.6 FFT-based reconstruction

Given our previous derivations, we can construct a minimal MATLAB script

for reconstructing 3D OCT images. It is inefficient and it needlessly generates

several intermediate copies of the data,22 but it should still be instructional.
22Do not use it with large data sets!
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%%----------------------------------------------%%
% VARIABLES ASSUMED TO EXIST %
% raw : Raw spectral data. Dims->(k,x,y) %
% c : Spectrometer calibration coeffs; maps %
% camera pix -> wavelength (nm), see code %
%%----------------------------------------------%%

%% SET UP --------------------------------------%%
[N,X,Y] = size(raw);
lambda = zeros(N,1);
for i = 1:length(c)

lambda = lambda + c(i)*((1:N).ˆ(i-1))’; %(nm)
end
kraw = 1000*(2*pi./lambda); %(rad/um), non-uniform

%% BACKGROUND SUBTRACTION ----------------------%%
% Frame-by-frame *estimate* of power spectrum
bkgnd = median(raw,2);
d_nonuniform = bsxfun(@minus,raw,bkgnd);

%% SPECTRUM RESAMPLING -------------------------%%
k = linspace(kraw(1),kraw(end),N)’;
d_uniform = interp1(kraw,d_nonuniform,k,’spline’);

%% DISPERSION COMPENSATION ---------------------%%
alpha2 = 0; % Tune as necessary, symmetric blur
alpha3 = 0; % Tune as necessary, asymmetric blur
kc = 0.5*(k(1) + k(end));
phi_disp = alpha2*(k-kc).ˆ2 + alpha3*(k-kc).ˆ3;
d_corr=bsxfun(@times,d_uniform,exp(-1i*phi_disp));

%% INVERSE FOURIER TRANSFORM + DISPLAY----------%%
img = ifft(d_corr,[],1);
frame = 1; % Tune to scroll through volume
imagesc(abs(squeeze(img(:,:,frame))));

3.7 Matrix-based reconstruction

3.7.1 A tale from the lab

In the Fall of 2016, I encountered a problem. I had a large collection of time-

lapse OCT images to reconstruct and analyze. With only one week remaining
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until a paper submission deadline, I realized that I did not have enough time left

to reconstruct my images on our lab computer using my (then current) recon-

struction routine (let alone analyze the images and complete a manuscript). It

was frustrating, especially since there was only a narrow range of depths that I

needed to analyze. My raw spectral data consisted of 4096 pixels/A-scan. Since

I was using an FFT-based algorithm, each A-scan in my reconstructed 3D im-

ages contained 4096 distinct depths. However, 2048 of those had to be reserved

for the conjugate image signal (in order to keep it separable from the OCT image

signal). And among the 2048 depths that remained, the portion of my sample

that I cared about occupied less than 500 of those depths. So in the end, more

than 85% of the depths my routine was reconstructing were ‘useless’ to me.

One afternoon, I was working in the lab. By working, of course, I mean that

I was complaining about my plight to one of my fellow researchers: Gavrielle

Untracht. I do not recall the precise details of our exchange, but I said something

to the effect of “I wish there was a way to reconstruct only the regions I cared

about, and stop wasting resources on those I don’t need.” Gav’s response was

something along the lines of “Well, maybe there is a way.” And I realized she

was right.

The reconstruction method that is detailed below is what emerged from that

interaction. In brief, several key steps (spectrum resampling, dispersion com-

pensation, the Fourier transform, and windowing out my desired depths) were

combined into a single operation: a matrix multiplication. (Unfortunately, this

did not turn out to be an original discovery. Examples of matrix-based OCT

reconstruction in the literature include complex master-slave OCT [140] and

compressive sensing OCT [97].) Of course, matrix multiplication is extremely
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inefficient compared to operations like the FFT. However, matrix-based OCT

image reconstruction did help to drastically speed up my own image recon-

struction routine, given that particular lab computer, and given the constraint

of a MATLAB-based programming environment. I did not meet my deadline, in

the end, but I did manage to get by with a one-week extension. I would not have

managed it without finding this method. I cannot guarantee that this formalism

will be helpful to you for a given application, but it is a tool that may be worth

keeping in mind nevertheless.

3.7.2 Vector-matrix formulation of OCT image reconstruction

Let v ∈ RN×1 denote a single A-scan of raw SD-OCT spectral data. Each entry

vi for i ∈ {0, 1, . . . ,N − 1} records the SD-OCT spectral signal corresponding to

a particular wavenumber k̂i from a non-uniformly spaced set of wavenumbers

{k̂0, k̂1, . . . , k̂N−1}.

Background subtraction

Let b ∈ RN×1 denote the background spectrum. Each entry bi records the back-

ground spectrum at the corresponding wavenumber k̂i. (See Appendix B for

characterization methods.) Background subtraction is then performed via:

v − b (3.56)
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Spectrum resampling

Define a uniformly spaced set of wavenumbers {k0, k1, . . . , kN−1} which obey

the relation ki = k0 + i∆k for i ∈ {0, 1, . . . ,N − 1}, where k0 = k̂0 and ∆k =

(k̂N−1 − k̂0)/(N − 1). Spectrum resampling interpolates the spectral data in order

to estimate the value of the spectral signal at each query value ki. Many common

interpolation methods (e.g., nearest neighbor, linear, polynomial, spline, sinc,

and combinations thereof) compute interpolated values via weighted sums of

the original data (see Appendix F for a discussion on cubic splines). That is, a re-

sampling/interpolation operation that maps a vector f ∈ RB×1 to another vector

g ∈ RA×1 can be described as:

ga =

B−1∑
b=0

Wa,b fb (3.57a)

g = Wf (3.57b)

where W ∈ RA×B denotes a ‘resampling matrix’ whose entries Wa,b are the ‘re-

sampling weights’. For spectrum resampling, W ∈ RN×N , and the specific values

of each Wa,b are determined by the set of all k̂i, ki, and the chosen resampling

scheme. In general, W is a sparse matrix (most entries are equal to, or very

nearly, zero). As a result, Eqn. (3.57a) can be computed very efficiently (and is

the standard method for performing spectrum resampling). Equation (3.57b),

by comparison, is computationally inefficient, but will be useful to us. We can

perform spectrum resampling on our spectral signal (after performing back-

ground subtraction) via:

W (v − b) (3.58)
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Dispersion compensation

Dispersion mismatch causes axial blurring in the OCT image signal by inducing

a curved phase profile (see Appendix C) across the spectral signal. If this curved

phase profile can be well approximated by the function φ[ki] = α2(ki−kc)2+α3(ki−

kc)3, where kc = (k0 + kN−1)/2, then dispersion compensation can be performed

on our resampled spectral data via:

AW (v − b) (3.59)

where A ∈ CN×N = diag
(
e− jφ[ki]

)
.

Fourier transform

Define the discrete Fourier transform matrix F ∈ CN×N with entries:

Fa,b = e− j 2πa
N b (3.60)

Then, we can obtain our complex-valued OCT image signal s ∈ CN×1 from our

resampled and dispersion-compensated spectral signal via:

s = FAW (v − b) (3.61)

Depth-selective reconstruction

Although matrix multiplications are computationally inefficient, the advantage

of Eqn. (3.61) is that the individual matrices (which encode distinct steps of OCT

image reconstruction) can be combined into a single linear operator Θ = FAW,

allowing OCT image reconstruction to be performed with a single matrix multi-

plication. Moreover, this single operator allows for the selective reconstruction
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of individual depths in the image by discarding rows which would otherwise

reconstruct depths outside the region of interest. Any single row of the OCT

image can be individually reconstructed via:

sa =

N−1∑
i=0

Θa,i(vi − bi) (3.62)

Other linear operations

The ‘OCT reconstruction matrix’ defined in Eqn. (3.61) can be considered as a

linear mapping operator Θ : k̂ → z over a finite and discrete set of locations

within its input and output domains. Many other useful operations can be

formulated as linear mappings, including magnitude/phase filters, up-/down-

sampling, and space/frequency-varying filters (such as depth-dependent dis-

persion compensation–see Appendix E). Incorporating these additional opera-

tions does not add to the computational complexity of the final combined map-

ping encoded by the OCT reconstruction matrix.

3.7.3 Computational complexity

Of course, most of the linear operations which comprise the OCT image recon-

struction process are sparse, making their execution via matrix multiplication a

poor choice from the standpoint of computational efficiency. Even the Fourier

transform (a ‘dense’ linear mapping) can be computed with the FFT algorithm,

which has only N log2 N complexity compared to the N2 complexity of the full

matrix-based DFT. Even when only reconstructing M < N depths in the image

(by discarding rows of the reconstruction matrix), the reduced complexity (MN)
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of the OCT reconstruction matrix may still exceed the complexity of the sparse

operations and FFT.

That being said, depending on external constraints such as applica-

tion, available computing hardware, programming environment, and data

read/write considerations, matrix-based OCT image reconstruction may be a

useful alternative to more conventional OCT image reconstruction algorithms.

Moreover, the matrix formalism is easy to modify for making optimizations. For

example, the various steps preceding the Fourier transform can be combined

into a single sparse operation using the matrix formalism as a guide. Thus, OCT

reconstruction can be split into a single sparse operation followed by a Fourier

transform. Again, the utility of such methods will depend on your settings and

application.

3.7.4 Matched filter formulation

There is another method to formulate OCT reconstruction matrices: matched

filters. Given an OCT image signal containing a single scattering interface lo-

cated precisely at the position z = m∆z (in terms of OPL), we can ask ourselves:

what would be the corresponding (complex-valued) OCT spectral signal that we

would expect to observe in our raw spectral data (ignoring the background, self-

interference, and conjugate terms)? Assuming a uniform laser power spectrum

(and ignoring scaling factors) the OCT spectral signal Ψ ∈ CN×1 which we would
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expect to observe would be:

Ψm
i = e j(2k̂im∆z+φ[k̂i]) (3.63a)

∆z =
π

N∆k
=

π(N − 1)

N(k̂N−1 − k̂0)
(3.63b)

φ[k̂i] = α2(k̂i − kc)2 + α3(k̂i − kc)3 (3.63c)

kc = (k̂0 + k̂N−1)/2 (3.63d)

This signal model accounts for both non-uniform sampling and dispersion in

the signal phase.23 Note that ∆z is given in terms of OPL instead of physical

distance (since we do not necessarily know the refractive index of our sample).

We can concatenate a collection of such signals to define a ‘signal prediction

matrix’. If we wish to reconstruct an (origin-centered, length N) set of depths

m∆z for m ∈ {−bN/2c, . . . , dN/2e − 1}, then

Ψ ∈ CN×N =

[
Ψm=−bN/2c . . . Ψm=0 . . . Ψm=dN/2e−1

]
(3.64)

We can now define an OCT reconstruction matrix as Θ = Ψ†, where ‘†’ denotes

the Hermitian (conjugate transpose) operator. This OCT reconstruction matrix

is a depth-dependent, phase-only matched filter which reconstructs OCT im-

ages without the need to define a resampling procedure. If we wish to define

a ‘true’ matched filter, then we could incorporate the laser spectrum h̃ ∈ RN×1

via Θ =
(
H̃Ψ

)†
, where H̃ = diag

(
h̃
)
. As before, other linear mapping operations

may be incorporated into this matrix as well.

The signal prediction matrix Ψ has additional uses. It can be used as a for-

ward model for compressive sensing/sparse signal processing applications. It

can also be used as a test bed for comparing OCT reconstruction procedures. If

a reconstruction procedure (matrix-based or otherwise) is ‘perfect’, then using
23Depth-dependent dispersion can be accounted for by modifying the phase term of

Eqn. (3.63a). See Appendix E for further details.
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Ψ as the input will yield an identity matrix at the output. In practice, there will

tend to be cross-talk between distinct depths (e.g., the ‘ideal’ identity matrix

output will instead be blurred along depth).

3.7.5 Phase-only matched filter implementation

%%----------------------------------------------%%
% VARIABLES ASSUMED TO EXIST %
% raw : Raw spectral data. Dims->(k,x,y) %
% c : Spectrometer calibration coeffs; maps %
% camera pix -> wavelength (nm), see code %
%%----------------------------------------------%%

%% SET UP --------------------------------------%%
[N,X,Y] = size(raw);
lambda = zeros(N,1);
for i = 1:length(c)

lambda = lambda + c(i)*((1:N).ˆ(i-1))’; %(nm)
end
kraw = 1000*(2*pi./lambda); %(rad/um), non-uniform

%% BACKGROUND SUBTRACTION ----------------------%%
% Frame-by-frame *estimate* of power spectrum
bkgnd = median(raw,2);
data = bsxfun(@minus,raw,bkgnd);

%% DISPERSION COMPENSATION PARAMETERS ----------%%
alpha2 = 0; % Tune as necessary, symmetric blur
alpha3 = 0; % Tune as necessary, asymmetric blur

kc = 0.5*(kraw(1) + kraw(end));
phi_disp = alpha2*(kraw-kc).ˆ2 + ...

alpha3*(kraw-kc).ˆ3;

%% PHASE-ONLY MATCHED FILTER -------------------%%
m = (-floor(N/2):ceil(N/2)-1);
dz = pi*(N-1)/(N*abs(kraw(end) - kraw(1)));
Psi= exp(1i*bsxfun(@plus,2*dz*(kraw*m),phi_disp));
O = Psi’;

%% IMAGE RECONSTRUCTION ------------------------%%
img = reshape(O*reshape(data,[N X*Y]),[N X Y]);
frame = 1; % Tune to scroll through volume
imagesc(abs(squeeze(img(:,:,frame))));
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CHAPTER 4

COMPUTATIONAL IMAGE FORMATION METHODS FOR

VOLUMETRIC OPTICAL COHERENCE MICROSCOPY

4.1 Introduction

In the previous chapter, we performed extensive derivations and analyses of

SD-OCT signal collection and image reconstruction methods. However, those

derivations relied on the assumption of an optical system which used very low

numerical aperture optics. This allowed the SD-OCT spectral and image signals

to be approximated as 1D functions of k and z, respectively. Such a model will

be insufficient for the analysis of high resolution 3D OCT imaging systems.

In this chapter, a focused Gaussian beam with a non-negligible numerical

aperture will be incorporated into our models. This will require accounting for

the lateral dimensions (x, y) and their corresponding spatial frequencies (qx, qy).

The focused beam will introduce a depth-dependent lateral resolution, which

may be further impacted by optical aberrations. Additional image formation

routines (computational adaptive optics (CAO), in particular) are therefore re-

quired to optimize the resolution of reconstructed 3D OCT images. Further

modifications to these routines were developed to mitigate distortions which

emerge from the interaction of CAO with non-idealities in the optical system.

Similar to the prior chapter, I advise you to perform your own derivations

and to work with real data and code to develop your understanding and intu-

ition about the contents of this chapter. The best tip that I can offer is to ensure

that you have developed a strong background in Fourier analysis for 1D signals.
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Higher-dimensional Fourier analysis will rely on the same principles, but will

have more variables at play. Thankfully, examining 1D components of higher-

dimensional functions will often be sufficient for understanding the principles

at play in 2D/3D signals and systems.1

4.2 The 3D SD-OCT point spread function

In order to understand and manipulate the 3D SD-OCT image signal, we must

determine the OCT spectral signal which will be acquired from a point scatterer

(i.e., we must determine the 3D point spread function). Previously, we derived

this signal as a function of k only. Here, we will derive this signal as both a

function of wavenumber k and lateral position of the scanning beam (x, y).2

4.2.1 Effective PSF of beam-scanning systems

The sample arm of beam-scanning SD-OCT imaging systems share a common

imaging geometry, which is illustrated in Fig. (4.1). For now, follow the beam

path denoted by the black rays, which are aligned to the optical axis of the imag-

ing system. Light is emitted from a pinhole (usually, the tip of an optical fiber)

into the illumination path of the system. Within this path, the beam of light is

collimated and transported to an objective lens, which focuses the beam into

the sample. A scattering particle (the green dot) which lies within the beam

1In fact, you will find that 3D image formation routines are strongly analogous to the 1D
routines outlined in the previous chapter. For example, interferometric synthetic aperture
microscopy (ISAM) is analogous to spectrum resampling, and computational adaptive optics
(CAO) is analogous to (depth-dependent) dispersion compensation.

2We will assume that the beam does not shift along z.
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Figure 4.1: Illustration of optical paths within the sample arm of a typical beam-
scanning SD-OCT imaging system. See text for details.

path scatters the incident optical field, and acts as a point source which supplies

light to the collection path of the system. Note that the particle need not lie at

the focus of the illumination beam in order to generate a scattering signal.

The light traverses the collection path of the system, and is eventually fo-

cused onto another pinhole (again, this is usually the tip of an optical fiber).

Note that this focusing may not be perfect and is determined by the location of

the scattering particle with respect to the collection path optics. Another way to

think about this is to visualize a virtual ‘collection beam’ which is emitted from

the collection pinhole and focuses within the sample via the collection optics.

If the scattering particle does not lie at the focus of the collection beam, then

the light scattered by the particle will not be perfectly focused upon the collec-

tion pinhole. Scattered light which successfully traverses the collection pinhole

is recombined with light from the reference arm and sent to the spectrometer

camera for interferometric signal acquisition.

Lateral scanning of the illumination and collection beams is usually per-

formed with a set of scanning mirrors located within the illumination and col-
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lection paths. However, in Fig. (4.1), scanning is performed via lateral trans-

lation of the illumination and collection pinholes. For an ideal optical system,

pinhole-based scanning is equivalent to mirror-based scanning and is easier to

illustrate and use for constructing a mathematical model. To visualize the effect

of scanning upon the optical signal, follow the red rays in Fig. (4.1).

Lateral position within the planes of the illumination pinhole, scatterer, and

collection pinhole are denoted by the vectors r, r′, and r′′, respectively. Assume

that the emitted field takes the form of a delta function, which is translated to

a position r = −rs,i in order to shift the beam. That is, our initial field in the

r-plane is given by δ(r + rs,i).

We next assume that a field originating at a position r in the r-plane is

mapped to the field distribution gi(r′ + r) in the r′-plane. Note that this as-

sumes that the optical system is linear, space-invariant in the lateral dimensions,

and has a magnification factor of -1. In order to compute the illumination field

within the r′-plane, we integrate the field contributions from across the r-plane:∫
r∈R2

gi(r′ + r)δ(r + rs,i) dr2 = gi(r′ − rs,i) (4.1)

Assuming that the sample contains a single small scattering particle at a po-

sition r′ = rp such that the scattering potential is given by η(r′) = δ(r′ − rp),

then the scattered field within the r′-plane will be given by the product of the

illumination field and the scattering potential: gi(r′ − rs,i)δ(r′ − rp).

Similarly to the illumination path, let the collection path be described by a

linear, laterally space-invariant, and -1 magnification function gc(r′′ + r′), which

maps a point source at a position r′ in the r′-plane to a field distribution in the

r′′-plane. Integrating the scattered field contributions from across the r′-plane
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to obtain the total scattered field in the r′′-plane yields:∫
r′∈R2

gi(r′ − rs,i)δ(r′ − rp)gc(r′′ + r′) dr′2 = gi(rp − rs,i)gc(r′′ + rp) (4.2)

Finally, we assume that the collection pinhole takes the form of a delta func-

tion centered at a position r′′ = −rs,c in the r′′-plane. Integrating the scattered

field in the r′′-plane over the collection pinhole yields the total field which will

be collected by the optical system:∫
r′′∈R2

gi(rp − rs,i)gc(r′′ + rp)δ(r′′ + rs,c) dr′′2 = gi(rp − rs,i)gc(rp − rs,c) (4.3)

From this relationship, we observe that the total point spread function of the

imaging system will be a product of an illumination PSF gi with a collection

PSF gc. For standard beam-scanning SD-OCT systems, the illumination and col-

lection paths are one and the same. Backscattered light simply traverses the

illumination path in reverse until it is collected by the original illumination pin-

hole. This will be referred to as a ‘double-pass’ imaging geometry.3 Under these

conditions rs,i = rs,c, and both terms may be replaced by a single term rs. Fur-

thermore, if we assume that the optical system is reciprocal, then gi = gc, and

we obtain a final field measurement of g2
i (rp − rs), corresponding to a net PSF of:

g2
i (−rs) (4.4)

All together, we conclude that a model of the 3D SD-OCT point spread func-

tion may be obtained from a model of the illumination beam.

3OCT systems with distinct or ‘forked’ illumination and collection paths do exist. The dif-
fering paths allow for greater control of optical system properties. However, such systems are
uncommon due to their increased complexity and difficulty of construction.

106



4.2.2 Spectral domain propagation kernel

In order to model the illumination beam, we need to be able describe the propa-

gation of light through 3D space.4 For 3D propagation of planar wavefronts, the

scalar wavenumber is replaced by a 3D wave vector k = 〈kx, ky, kz〉 = kr̂, where

r̂ is a unit vector which points in the direction of propagation. As a result, the

total phase change observed between two locations r0 and r1 will be given by

∆φ01 = nk · (r1 − r0).

Given a beam propagating along the z-axis, assume that we know the opti-

cal field distribution E(x, y, z, k) within the xy-plane at a particular depth z and

wavenumber k. This 2D field can be decomposed into its lateral spatial fre-

quency spectrum via:

Ẽ(qx, qy, z, k) =

∫ ∞

−∞

∫ ∞

−∞

E(x, y, z, k)e− j(qx x+qyy) dx dy (4.5)

In a vacuum, there is a direct correspondence between the spatial frequency vec-

tor q = 〈qx, qy, qz〉 and wave vector k = 〈kx, ky, kz〉. However, in a homogeneous

medium with refractive index n, q = nk.5 We can always perform lateral Fourier

transforms with respect to (qx, qy) so long as we know the discrete set of (x, y)

points that we scan our beam through. However, taking a Fourier transform

with respect to k also requires knowledge of n. Given this distinction, we will

have be careful to not confuse q and k when performing our derivations.

In order to determine how the beam evolves along z we need only modify the

phase of Ẽ(qx, qy, z, k). Specifically, we need to change the phase by nk·〈0, 0,∆z〉 =

nkz∆z, where ∆z is the physical distance traveled along z. Using the relations
4Recall from the previous chapter that for 1D light propagation, the phase was assumed to

evolve as dφ / dz = nk. We need to expand upon this.
5Note that this relationship only holds for modeling beam propagation. It will not necessar-

ily hold for Fourier transforms of the OCT image signal!
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k2
x + k2

y + k2
z = k2, q2

x + q2
y + q2

z = q2, and q = nk, we conclude that:

Ẽ(qx, qy, z + ∆z, k) = Ẽ(qx, qy, z, k)e jnkz∆z (4.6a)

= Ẽ(qx, qy, z, k)e j∆z
√

(nk)2−(nkx)2−(nky)2 (4.6b)

= Ẽ(qx, qy, z, k)e j∆z
√

(nk)2−q2
x−q2

y (4.6c)

We will define e j∆z
√

(nk)2−q2
x−q2

y as the ‘spectral domain propagation kernel’, which

we can use to perform beam propagation operations to signals defined within

the spatial frequency domain.

4.2.3 Paraxial Gaussian beam model

Now that we have a general model for the (space-varying) 3D OCT PSF as a

function of the illumination beam, and can predict how such a beam evolves

along depth, we can plug in an appropriate beam model to derive useful for-

mulas for the 3D OCT spectral and image signals. Since most beam-scanning

SD-OCT systems use single-mode optical fibers to introduce light to (and col-

lect light from) the sample arm, the Gaussian beam makes for an appropriate

and analytically tractable model.

Assume that the illumination beam of our SD-OCT system is a Gaussian

beam with waist (1/e radius) w, focal plane depth of z = z f , and uniform power

spectrum (|A(k)|2 = 1). Let the (scalar, at focus) illumination field take the form:

Ei(x, y, z f , k) = e−(x2+y2)/w2
(4.7)
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Applying a 2D lateral Fourier transform yields6 (see Appendix G):

Ẽi(qx, qy, z f , k) = w2e−(w2/4)(q2
x+q2

y ) (4.8)

In order to determine the optical field at depths outside the focal plane, we

advance the phase of Ẽi(qx, qy, z f , k) via multiplication with the spectral domain

propagation kernel from Eqn. (4.6c), yielding:

Ẽi(qx, qy, z − z f , k) = w2e−(w2/4)(q2
x+q2

y )e j(z−z f )
√

(nk)2−q2
x−q2

y (4.9)

Applying the paraxial approximation, we obtain:

Ẽi(qx, qy, z − z f , k) = w2e−(w2/4)(q2
x+q2

y )e j(z−z f )
√

(nk)2−q2
x−q2

y (4.10a)

≈ w2e−(w2/4)(q2
x+q2

y )e j(z−z f )(nk−(q2
x+q2

y )/2nk) (4.10b)

= w2e−(w2/4)(q2
x+q2

y )e jnk(z−z f )e− j((z−z f )/2nk)(q2
x+q2

y ) (4.10c)

= w2e−(w2/4+ j(z−z f )/2nk)(q2
x+q2

y )e jnk(z−z f ) (4.10d)

Returning to the space domain along the lateral dimensions yields:

Ei(x, y, z − z f , k) = F −1
(x,y)→(qx,qy)

[
w2e−(w2/4+ j(z−z f )/2nk)(q2

x+q2
y )e jnk(z−z f )

]
(4.11a)

= e jnk(z−z f )F −1
(x,y)→(qx,qy)

[
w2e−(w2/4+ j(z−z f )/2nk)(q2

x+q2
y )
]

(4.11b)

= e jnk(z−z f )
(

w2

w2/4 + j(z − z f )/2nk
e−(x2+y2)/4(w2/4+ j(z−z f )/2nk)

)
(4.11c)

∝ e jnk(z−z f )
(

w2

w2 + j2(z − z f )/nk
e−(x2+y2)/(w2+ j2(z−z f )/nk)

)
(4.11d)

= aw2e jnk(z−z f )e−a(x2+y2), a = 1/
(
w2 + j2(z − z f )/nk

)
(4.11e)

6All Fourier transforms of Gaussian functions shown in this chapter will be denoted with
equality, even though constant factors not related to w or z will be dropped. These dropped
factors do not impact our analyses here.
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4.2.4 Measured field from a point scatterer

For an SD-OCT imaging system that obeys the PSF model which culminated in

Eqn. (4.4), the SD-OCT image spectrum that would be measured (after interfer-

ometric detection) from a scatterer located at a position r′ = 〈x′, y′, z′〉 will be:

S̃ (x, y, k; r′, z f ) = E2
i (x′ − x, y′ − y, z′ − z f , k)e j2k(z f ,OPL−zr,OPL) (4.12a)

= a2w4e j2nk(z′−z f )e−2a((x′−x)2+(y′−y)2)e j2k(z f ,OPL−zr,OPL) (4.12b)

= a2w4e j2nk(z′−z f )e−2a((x−x′)2+(y−y′)2)e j2k(z f ,OPL−zr,OPL) (4.12c)

where z f ,OPL is the OPL between the splitter and the focal plane of the beam

and zr,OPL is the OPL of the reference arm. For brevity, we will hereafter de-

fine z f r = z f ,OPL − zr,OPL.7 We will assume that background subtraction, spectrum

resampling, and dispersion compensation have already been performed in or-

der to obtain S̃ (x, y, k; r′, z f ) from the raw SD-OCT spectral data. We once more

return to the spatial frequency domain:

S̃ (qx, qy, k; r′, z f ) = F(x,y)→(qx,qy)

[
a2w4e j2nk(z′−z f )e−2a((x−x′)2+(y−y′)2)e j2kz f r

]
(4.13a)

∝ aw4e j2nk(z′−z f )e−(q2
x+q2

y )/8ae− j(qx x′+qyy′)e j2kz f r (4.13b)

= aw4e j2nk(z′−z f )e−(q2
x+q2

y )(w2+ j2(z′−z f )/nk)/8e− j(qx x′+qyy′)e j2kz f r (4.13c)

= aw4e−(w2/8)(q2
x+q2

y )e− j(qx x′+qyy′)e j2kz f r e j2nk(z′−z f )e− j(z′−z f )(q2
x+q2

y )/(4nk)

(4.13d)

= aw4e−(w2/8)(q2
x+q2

y )e− j(qx x′+qyy′)e j2kz f r e j(z′−z f )(2nk−(q2
x+q2

y )/(4nk)) (4.13e)

≈ aw4e−(w2/8)(q2
x+q2

y )e− j(qx x′+qyy′)e j2kz f r e j(z′−z f )
√

(2nk)2−q2
x−q2

y (4.13f)

Let’s analyze the terms of Eqn. (4.13f):

7Not coincidentally, z f r is the depth (in terms of OPL) at which the focal plane will appear in
reconstructed OCT images.
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• The leading term a =
(
w2 + j2(z′ − z f )/nk

)−1
encodes depth-dependent

changes in signal magnitude and phase. If zR = nkw2/2 denotes the

Rayleigh range of our illumination beam, then a = e jψ(z′−z f )/(wW(z′ − z f )),

where ψ(z′ − z f ) = − arctan((z′ − z f )/zR) corresponds to the Gouy phase shift

and W(z′ − z f ) = w
√

1 + ((z′ − z f )/zR)2 is the 1/e radius of the illumination

beam as a function of depth. Although the Gouy phase induces phase cur-

vature along the k-axis, this term is negligible for our analysis of defocus.

• The first exponential term is a real-valued function corresponding to a

Gaussian magnitude profile along the lateral spatial frequencies. The

width of this function in the spatial frequency domain increases as the fo-

cal plane beam waist decreases. This is consistent with the principle that

attaining smaller focal spots requires larger spatial frequency bandwidths.

• The second exponential term is a phase-only function which is modulated

by the lateral position (x′, y′) of the scattering particle. Since these phase

profiles are linear, they do not cause any distortions or image degradation.

They merely shift the PSF along x and y such that the function is centered

on the location of the scattering particle.

• The third exponential term is a phase-only function which, similarly to the

second term, encodes a spatial position. In this case, the term encodes the

position of the focal plane with respect to the origin of the reconstructed

OCT image (in terms of OPL).

• The fourth (and final) exponential term is yet another phase-only function.

However, we encounter a problem. The phase profile is curved along all

three of our spectral variables, qx, qy, and k. As discussed in Appendix C,

these curved profiles will cause blurring of the space-domain OCT image

signal (along x, y, and z, respectively). This blurring scales proportionally
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to (z′ − z f ), causing an increase in image degradation with increasing dis-

tance from the focal plane. Note that if we apply the assumptions of the

previous chapter (i.e., we assume a very low numerical aperture such that

a signal is present only for very small values of qx and qy), then this term

is well-approximated by e j2nk(z′−z f ). In this form, the term would merely

encode the depth of the scattering particle with respect to the focal plane.

However, for systems with a non-zero numerical aperture, the term takes

its present form in Eqn. (4.13f) and induces degradation of the image.

In general, we will have to manipulate our signal S̃ (qx, qy, k) in order mitigate

the blurring caused by the final exponential term in Eqn. (4.13f) (which will

hereafter be referred to as the ‘defocus kernel’). Doing so will allow us to restore

an optimal focal plane resolution throughout our imaged volume (regardless of

axial position with respect to the focal plane).

4.3 Defocus mitigation

Defocus mitigation techniques seek to remove depth-dependent blurring in

OCT images by reducing or removing the phase curvature introduced by the

defocus kernel. Unlike refocusing techniques for intensity-based imaging, de-

focus mitigation techniques for OCT can be formulated as direct, non-interative

methods so long as the location of the focal plane is known, and the spectral-

domain variables can be determined from the operating characteristics of the

system (e.g., spatial sampling rates in (x, y), a mapping from spectrometer pixel

to wavenumber, and the refractive index of the sample8). This is thanks to the

8Typically, the refractive index of water is used to describe biological samples.
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fact that OCT measures the phase of the scattered optical field through inter-

ferometric detection. Here we will review methods for defocus mitigation, in

order of increasing computational efficiency.

4.3.1 3D phase correction

The first, perhaps obvious, method for defocus mitigation is to perform a 3D

phase correction which cancels out the phase of the defocus kernel:

φ(qx, qy, k; z − z f ) =
(
z − z f

) √
(2nk)2 − q2

x − q2
y (4.14)

In order to refocus our scattering particle (located at a depth of z = z′), we need

to apply a phase of −φ(qx, qy, k; z′ − z f ). Applying such an operation to our signal

from Eqn. (4.13f) yields:

S̃ (qx, qy, k; r′, z f )e− jφ(qx,qy,k;z′−z f ) = aw4e−(w2/8)(q2
x+q2

y )e− j(qx x′+qyy′)e j2kz f r (4.15)

Ignoring the Gouy phase term encoded in a, we find that the phase of our ‘cor-

rected’ signal no longer has curvature with respect to qx, qy, or k. However,

we also appear to have destroyed information about the axial location of our

scattering particle, since the variable z′ has been canceled out. In fact, the axial

location of the image of the scattering particle has been shifted such that it is

co-localized with the focal plane at the OPL position z f − zr in the reconstructed

OCT image. So, not only has the particle been ‘refocused’, the image of the

particle has been shifted into the focal plane of our image. This has the unin-

tended consequence that any other scatterers which were originally imaged at

the focal plane have now been shifted out of the focal plane, and have become

defocused in the process. This means that, even though 3D phase correction
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can bring different depths into focus, each depth in the image requires its own

unique 3D multiplication operation in order to be refocused by the procedure.

This makes 3D phase correction extremely computationally expensive, and so

this technique is not employed for OCT, as far as I am aware. However, for

instructional purposes, here is the most efficient formulation that I know of:

Assuming we have identified the location of the focal plane in the defocus-

corrupted OCT image, then we have also determined z f r (which corresponds

to the axial location of the focal plane in the OCT image, in terms of OPL). We

compute the function:

S̃ z f =0(qx, qy, k) = S̃ (qx, qy, k)e− j2kz f r (4.16)

which has the effect of axially shifting the space-domain image data such that

the focal plane is located at the orign (z = 0) of the image. We then perform

depth-dependent refocusing and extraction of the refocused plane S (x, y; z) via:

S (x, y; z) = F −1
(x,y)→(qx,qy)

[∫ −∞

−∞

S̃ z f =0(qx, qy, k)e− jφ(qx,qy,k;z) dk
]

(4.17)

Note that the (z−z f ) = (z−0) term used for computing φ(qx, qy, k; z) must be given

in terms of the physical length (not OPL)!

4.3.2 Interferometric synthetic aperture microscopy

Interferometric synthetic aperture microscopy (ISAM) is a vastly more efficient

method for performing defocus mitigation. First reported in 2007 [137], ISAM

leverages techniques which were originally developed to optimize the resolu-

tion of synthetic aperture radar images. In order to understand the operating
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principles underlying ISAM, we first return to the phase of our defocus kernel:

φ(qx, qy, k; z − z f ) =
(
z − z f

) √
(2nk)2 − q2

x − q2
y (4.18)

This curved phase profile causes blurring which increases proportionally to dis-

tance from the focal plane. We have encountered depth-dependent blurring

before. Specifically, we encountered depth-dependent axial blurring when our

OCT image reconstruction procedure failed to account for non-uniform sam-

pling of the spectral data (Section 3.5.5). Recall that SD-OCT data is typically

acquired with non-uniform sampling with respect to k. Instead, spectral data is

sampled uniformly with respect to a distorted variable k̂, which was defined as:

k̂(k) = β0 + β1(k − kc) + β2(k − kc)2 + β3(k − kc)3 + O
(
(k − kc)4

)
(4.19)

for kc the central wavenumber acquired by the spectrometer. When we failed

to resample the data from being uniformly sampled in k̂ to being uniformly

sampled in k, a residual curved phase profile emerged whose magnitude was

proportional to the distance of the scattering particle from the origin of the re-

constructed image (i.e., the resulting axial blurring grew proportionally to dis-

tance from the image origin). Just as a resampling procedure is used to pre-

vent/mitigate depth-dependent axial blurring, ISAM uses a resampling proce-

dure to mitigate depth-dependent beam defocus.

Define the variable:

qz(qx, qy, k) =

√
(2nk)2 − q2

x − q2
y (4.20)

ISAM resamples the spectral signal S̃ (qx, qy, k) (which is uniformly sampled with

respect to k) to be uniformly sampled with respect to qz, yielding S̃ (qx, qy, qz).9

9If spectrum resampling was not performed, S̃ (qx, qy, k̂) can also be mapped to S̃ (qx, qy, qz).
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Performing this resampling operation results in a new phase profile:

φ(qx, qy, qz; z − z f ) =
(
z − z f

)
qz (4.21)

This profile has no curvature with respect to qx, qy, or qz. The lack of any phase

curvature in the new profile means that blurring due to defocus has been elimi-

nated entirely. The resampled phase profile now merely encodes axial position

with respect to the focal plane. In order to correctly apply our resampling pro-

cedure, however, a few more details are required.

Since all the terms defining our signal will be subjected to resampling, we

must ensure that the resampling procedure which mitigates the phase curvature

of the defocus kernel will not induce blurring by warping the phase of other

terms. We restate our signal from Eqn. (4.13f):

S̃ (qx, qy, k; r′, z f ) = aw4e−(w2/8)(q2
x+q2

y )e− j(qx x′+qyy′)e j2kz f r e j(z′−z f )
√

(2nk)2−q2
x−q2

y (4.22)

Given that the Gouy phase shift contained in a is negligible (such that we can

assume a ≈ |a|), the third exponential term (e j2kz f r ) is the only other term besides

the defocus kernel which is a function of k. Unfortunately, since this term is

linear with respect to k, applying the ISAM resampling procedure will induce

curvature in this component of the signal. Thankfully, there is a simple solution

to this. Since the term contains no explicit information about individual scatter-

ers, we can simply remove this term before performing resampling, and restore
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the term afterward:

S̃ ISAM(qx, qy, qz; r′, z f ) = ISAM
[
S̃ (qx, qy, k; r′, z f )e− j2kz f r

]
e j(z f r/n)qz (4.23a)

∝ ISAM
[
ae−(w2/8)(q2

x+q2
y )e− j(qx x′+qyy′)e j2kz f r e j(z′−z f )

√
(2nk)2−q2

x−q2
y e− j2kz f r

]
e j(z f r/n)qz (4.23b)

≈ |a| e−(w2/8)(q2
x+q2

y )e− j(qx x′+qyy′)ISAM
[
e j2kz f r e j(z′−z f )

√
(2nk)2−q2

x−q2
y e− j2kz f r

]
e j(z f r/n)qz (4.23c)

∝
(
1/W(z′ − z f )

)
e−(w2/8)(q2

x+q2
y )e− j(qx x′+qyy′)ISAM

[
e j(z′−z f )

√
(2nk)2−q2

x−q2
y

]
e j(z f r/n)qz (4.23d)

=
(
1/W(z′ − z f )

)
e−(w2/8)(q2

x+q2
y )e− j(qx x′+qyy′)e j(z′−z f )qze j(z f r/n)qz (4.23e)

where ISAM [·] denotes the ISAM resampling operation which maps k → qz.

The pre-multiplication by e− j2kz f r has the effect of axially shifting the OCT image

signal such that the focal plane is located at the origin of the reconstructed im-

age.10 The post-multiplication by e j(z f r/n)qz (although not strictly necessary) shifts

the focal plane back to its original depth in the image after ISAM is performed.

Restoring the space domain signal is achieved via a 3D Fourier transform:

S ISAM(x, y, z; r′, z f ) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

S̃ ISAM(qx, qy, qz; r′, z f )e j(qx+qy−qz) dqx dqy dqz

(4.24a)

∝
(
1/W(z′ − z f )

)
e−(2/w2)((x−x′)2+(y−y′)2)δ(z − (z′ − z f ) − z f r/n)

(4.24b)

The phase of the signal in Eqn. (4.23e) is linear with respect to qx, qy, and qz.

This means that the resolution of the image is no longer a function of position,

and is limited only by the lateral bandwidth (defined by the first exponential

term e−(w2/8)(q2
x+q2

y )) and the axial bandwidth (defined by the resampled laser spec-

trum |A(qz)|2, which we did not include in our derivations above). Interestingly,

10This is identical to the operation performed in Eqn. (4.16). As was described for that sce-
nario, z f r may be calibrated based solely on the OCT image itself (rather than requiring explicit
knowledge about the actual position of the focal plane and reference mirror).
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ISAM is able to mitigate defocus within 3D data using only a 1D resampling

operation.11 This allows ISAM to be very computationally efficient compared

to depth-dependent 3D phase correction. However, under the right conditions,

defocus mitigation can be performed even faster, and with greater flexibility.

4.3.3 Computational adaptive optics

Computational adaptive optics (CAO) is a method which assumes that the cur-

vature of the defocus kernel is negligible along the k-axis [3]. In doing so, CAO

is able to replace the depth-dependent 3D operations of the 3D phase correc-

tion method with depth-dependent 2D operations, resulting in vastly improved

computational speeds which can even surpass that of ISAM. Furthermore, the

speed of CAO can be leveraged to enable the measurement and mitigation of

optical aberrations (within certain limits, of course). One last time, we return to

the phase profile of our defocus kernel:

φ(qx, qy, k; z − z f ) =
(
z − z f

) √
(2nk)2 − q2

x − q2
y (4.25)

As we discussed previously, this phase profile exhibits curvature along all three

spectral variables qx, qy, and k. But what are the relative amounts of curvature

11Granted, the resampling operation does change as a function of (qx, qy). However, this is not
a major concern, especially if a look-up table can be used to define each resampling operation.
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along each dimension? Under the paraxial approximation (qx, qy � 2kn):

∂φ

∂k
=

2nk
(
z − z f

)
√

(2nk)2 − q2
x − q2

y

≈
2nk√
(2nk)2

(
z − z f

)
= 1

(
z − z f

)
(4.26a)

∂φ

∂qx
=

−qx

(
z − z f

)
√

(2nk)2 − q2
x − q2

y

≈
−qx√
(2nk)2

(
z − z f

)
=
−qx

2nk

(
z − z f

)
(4.26b)

∂φ

∂qy
=

−qy

(
z − z f

)
√

(2nk)2 − q2
x − q2

y

≈
−qy√
(2nk)2

(
z − z f

)
=
−qy

2nk

(
z − z f

)
(4.26c)

In the absence of curvature, we would expect the derivatives above to be con-

stant with respect to the spectral variables. Since ∂φ/∂k satisfies this condition

(under the paraxial approximation), we conclude that the defocus kernel ex-

hibits negligible curvature along the k-axis, meaning that defocus is due almost

entirely to curvature along the qx- and qy-axes12. As a result, we can approximate

the phase of our defocus kernel by:

φ(qx, qy, k; z − z f ) ≈ φ(qx, qy; kc, z − z f ) =
(
z − z f

) √
(2nkc)2 − q2

x − q2
y (4.27)

where kc is the central wavenumber that we have previously defined through-

out our derivations. Since we have lost dependence on k, we no longer require

the signal to be in the 3D spectral domain (qx, qy, k) in order to cancel out the

phase profile of the defocus kernel. Instead we need only be in the spectral

domain along the lateral dimensions (qx, qy).

12Of course, if we use a very high numerical aperture system, this conclusion breaks down,
as do our paraxial beam model and associated derivations. Thankfully, even ‘high resolution’
OCM systems tend to obey the paraxial approximation ‘well enough’. If you want to investigate
this subject with a little more rigor (while still being able to apply the paraxial approximation),
examine the second-order derivatives of φ: ∂2φ/∂k2, ∂2φ/∂q2

x, ∂2φ/∂q2
y , ∂2φ/∂k∂qx, ∂2φ/∂k∂qy, and

∂2φ/∂qx∂qy. You may predict/observe some interesting phase curvature (and consequent spa-
tial blurring) properties of defocus for high numerical aperture OCT systems and/or for low
numerical aperture OCT systems at large distances from the focal plane! For example, for large
amounts of defocus/blurring, the PSF of the OCT system will start to become ‘bowl-shaped’,
as opposed to flat, like our analysis above predicts. 3D phase correction and ISAM account for
this, while CAO does not!
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Starting with a reconstructed 3D OCT image S (x, y, z) (which is corrupted by

beam defocus), we take a 2D lateral Fourier transform to obtain S̃ (qx, qy, z). If we

recast z f as the depth of the focal plane with respect to z = 0 in the OCT image,

the defocus-corrected image can be obtained via:

F −1
(x,y)→(qx,qy)

[
F(x,y)→(qx,qy)

[
S (x, y, z)

]
e− j(z−z f )

√
(2nkc)2−q2

x−q2
y

]
(4.28)

(Note that z− z f must be given in terms of physical length, not OPL!) If there are

phase aberrations (e.g., astigmatism, coma, spherical aberration, etc.) present

in addition to defocus, CAO can compensate for these aberrations as well. If

the total phase aberrations of the optical system are well approximated by the

function φa(qx, qy), then the aberration-corrected image will be given by:

Sac(x, y, z) = F −1
(x,y)→(qx,qy)

[
F(x,y)→(qx,qy)

[
S (x, y, z)

]
e− j(z−z f )

√
(2nkc)2−q2

x−q2
y e− jφa(qx,qy)

]
(4.29)

Of course, optical aberrations are not typically known a priori. Instead, φa(qx, qy)

is often formulated as a weighted sum of Zernike polynomials13 across a user-

defined aperture. If we define qr,max = 4/w as the 1/e2 radius of the Gaussian

magnitude term in Eqn. (4.13f), then φa(qx, qy) may be approximated as:

φa(qx, qy) ≈
∞∑

i=1

aiZi(qx/qr,max, qy/qr,max) (4.30)

where ai is a scalar weighting coefficient and Zi is the ith Noll-indexed Zernike

polynomial.14 Appropriate values of ai can be computed via an optimization

procedure which maximizes/minimizes a suitable metric function of the CAO-

processed image.15 Although analogous methods for aberration correction are

13Any number of basis function families could be used. The Zernike basis is just the standard,
and is particularly well-suited for efficiently describing common optical aberrations.

14Typically, going beyond i = 15 becomes impractical.
15Lp-norms of Sac(x, y, z) are common choices for metric functions. (The only exception is the

L2-norm, which cannot be optimized, as a consequence of Parseval’s theorem.) Entropy-based
metrics and metrics of the spatial frequency content of the Fourier transform of |Sac(x, y, z)| are
also common choices.
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also possible for the 3D phase correction and ISAM methods detailed previ-

ously, the formulations become cumbersome and computationally expensive.

The simple formulations and computational efficiency enabled by the 2D nature

of CAO make optimization routines that sense defocus and aberrations feasible.

There is a lot of room for further discussion about the intuition, theory,

properties, and implementation of CAO for higher-order aberration correction.

However, such topics did not play a significant role in the research of this dis-

sertation. Therefore, I will defer to my colleagues in the lab and in the field

at large to provide these discussions in their own publications and disserta-

tions! From this point on, we will work exclusively with the defocus-mitigation

implementation of CAO from Eqn. (4.28). In spite of this, the optimizations

and discussions outlined in the remainder of this chapter do have relevance to

higher-order implementations of CAO.

4.3.4 Limitations of computational image formation methods

Of course, the capabilities of CAO (and the related techniques we have dis-

cussed) to optimize resolution are limited. If aberrations are very large, they

can contribute to irreversible signal loss. In the case of pure defocus, the mag-

nitude of the OCT image signal degrades with distance from the focal plane, as

governed by 1/W(z′ − z f ). This signal reduction implies that, despite our defo-

cus mitigation efforts, the SNR of the OCT image will eventually drop below

the noise floor at depths far from the focal plane. This signal degradation will

take place over especially short distances for high numerical aperture systems.

Higher-order aberrations can have more complicated effects, such as contribut-
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ing additional depth-dependent effects to the image SNR and modifying the

depth-dependent modulation transfer function of the optical system (which can

degrade resolution, even when CAO corrections are optimal). Moreover, these

degradations can make the metric functions of aberration-sensing optimization

procedures non-convex, and therefore difficult to solve in an efficient manner.

4.3.5 Basic CAO implementation

%%----------------------------------------------%%
% VARIABLES ASSUMED TO EXIST %
% data : Defocused OCT image S(z,x,y) %
% Size = [Z,X,Y] %
% k : Uniformly spaced wavenumber axis %
% Size = [N,1] %
% dx,dy: Pixel size in beam-scanning grid %
% n : Refractive index of medium %
% zf : Location of focal plane (physical units)%
% with respect to first pixel in ’data’ %
%%----------------------------------------------%%

%% SET UP --------------------------------------%%
[Z,X,Y] = size(data);
[N] = length(k);
kc = mean(k);

dk = abs(k(end)-k(1))/(N-1);
dz = abs(pi/(n*N*dk));

qx = (2*pi/dx)*(1/X)*(0:1:X-1)’;
qx = qx - qx(ceil((X+1)/2));

qy = (2*pi/dy)*(1/Y)*(0:1:Y-1)’;
qy = qy - qy(ceil((Y+1)/2));

[qx,qy] = ndgrid(qx,qy);
qr = sqrt(qx.ˆ2 + qy.ˆ2);
qr = ifftshift(qr); % Optimize out fftshifts

% Aperture to prevent imaginary #’s. Can shrink to
% perform low-pass filtering of signal as well.
aperture = (qr <= 2*n*kc);

% Defocus kernel
phase = aperture .* sqrt((2*n*kc)ˆ2 - qr.ˆ2);
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%% PERFORM CAO----------------------------------%%
output = data;
for i = 1:Z

planeFD = fft2(squeeze(data(i,:,:)));
correction = aperture.*exp(-1i*(dz*i-zf)*phase);
plane = ifft2(planeFD .* correction);

output(i,:,:) = plane;
end

4.4 Mitigation of system non-idealities

Although standard image formation techniques (‘basic’ SD-OCT image recon-

struction combined with CAO) readily generate high-resolution 3D OCT im-

ages, those images are not guaranteed to be suitable for applications which re-

quire the quantitative analysis of sample structure. For example, traction force

optical coherence microscopy (TF-OCM, which will be detailed in Chapters 5-7)

was developed to quantify the forces exerted by cells embedded in a 3D extra-

cellular matrix (ECM). A key step in TF-OCM is the measurement of 3D sub-

strate deformations induced by the action of cell forces upon the surrounding

environment. As a consequence, TF-OCM is sensitive to non-idealities in the

imaging process which cause images to become spatially warped and distorted.

Therefore, the development of TF-OCM required the development of multiple

modifications to the standard SD-OCT image formation procedure in order to

compensate for non-ideal imaging conditions [112]. The sections that follow

detail both common system non-idealities and methods that can be used to mit-

igate them (with the goal of minimizing the emergence of distortions across

time-lapse image data). Detailed equations and diagrams regarding the current

recommended implementation of these methods may be found in Chapter 7.6.
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4.4.1 Bulk modulation

Beam misalignment and/or sample tilt can cause the detected OCT signal to

become modulated (i.e., the lateral bandwidth of the OCT signal shifts from

being centered at (qx, qy) = (0, 0) to being centered at (qx, qy) = (q′x, q
′
y). Applying a

naive CAO procedure which fails to account for signal modulation results in an

interesting interaction. Starting with an ideal (i.e., free of defocus) image signal

S (x, y, z) which has been modulated by the function e j(q′x x+q′yy), we approximate

the original defocus-corrupted signal in the spatial frequency domain as:

S̃ (qx − q′x, qy − q′y, z)e j(z−z f )
√

(2nkc)2−(qx−q′x)2−(qy−q′y)2 (4.31)

Note that the modulation affects both the desired signal and the defocus kernel.

If we apply a CAO algorithm which fails to account for modulation, we obtain:

S̃ (qx − q′x, qy − q′y, z)e j(z−z f )
√

(2nkc)2−(qx−q′x)2−(qy−q′y)2
e− j(z−z f )

√
(2nkc)2−q2

x−q2
y (4.32)

The defocus kernel and the correction that we have applied do not match.

As a consequence, the residual phase term will induce distortions in the out-

put image signal. Under the paraxial approximation and the assumption that

q′x, q
′
y � 2nkc, we approximate the above expression with:

S̃ (qx − q′x, qy − q′y, z)e j(z−z f )(2nkc−((qx−q′x)2+(qy−q′y)2)/4nkc)e− j(z−z f )(2nkc−(q2
x+q2

y)/4nkc) (4.33a)

= S̃ (qx − q′x, qy − q′y, z)e j(z−z f )((q′xqx+q′yqy)/2nkc−(q′x
2+q′y

2)/4nkc) (4.33b)

= S̃ (qx − q′x, qy − q′y, z)e j(z−z f )(q′xqx+q′yqy)/2nkce− j(z−z f )(q′x
2+q′y

2)/4nkc (4.33c)

Returning to the space domain yields a corrupted image signal:

S (x − x0(z), y − y0(z), z)e j(q′x(x−x0(z))+q′y(y−y0(z)))e− j(z−z f )(q′x
2+q′y

2)/4nkc (4.34)

where

(x0(z), y0(z)) =

(
−

q′x
2nkc

(z − z f ),−
q′y

2nkc
(z − z f )

)
(4.35)
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We observe that the ideal image signal S (x, y, z) has undergone a lateral shearing

operation (akin to pushing against the side of a deck of cards).16 This shearing

increases proportionally to distance from the focal plane, and is directly propor-

tional to the strength of the initial signal modulation.

Ideally, this artifact would be mitigated by optimizing system alignment.

However, if the optical system lacks the necessary degrees of freedom or fine-

tuning capabilities, performing computational mitigation prior to CAO is a vi-

able option. First, the amount of modulation along the x- and y-dimensions

must be determined. The heuristic that I have used is, given an OCT image

signal S (x, y, z) (not to be confused with the S (x, y, z) used above), compute:

Ŝ (qx, qy) =

∫ ∞

−∞

∣∣∣F(x,y,z)→(qx,qy,qz)
[
S (x, y, z)

]∣∣∣ dqz (4.36)

For a system which uses Gaussian beams, this (real-valued) function will have

an approximately Gaussian profile. There may be some local noise or sharp

peaks, which can be removed with a 2D median filter. Local quadratic curve fit-

ting can then be used to locate the peak of the Gaussian profile. The coordinates

of the peak correspond to the modulation parameters (q′x, q
′
y). Bulk demodula-

tion is then be performed via:

S (x, y, z)e− j(q′x x+q′yy) (4.37)

This will mitigate the modulation of the signal and the consequent formation of

shearing artifacts when performing CAO. An alternative formulation for miti-

gating signal modulation is to shift the phase correction function applied during

CAO such that it is centered at (q′x, q
′
y) in the spatial frequency domain. This lat-

ter method has been used as a key step to combat distortion artifacts which

emerged when applying CAO algorithms to astigmatic OCT systems [95].
16Since we typically visualize only the magnitude of OCT images, we can safely ignore the

phase terms in Eqn. (4.34).
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4.4.2 Phase instability

There is extensive literature on the phase stability requirements of CAO and re-

lated methods. References [155, 156] provide useful information on this topic. In

brief, any phenomena which cause the phase of the OCT signal to evolve in com-

plex and unexpected ways during signal acquisition can degrade or completely

eliminate the benefits of computational image formation methods. Sources of

instability include sample motion, OPL fluctuations in the optical system due to

vibrations, temperature changes, etc., and laser source instability, among others.

Since phase instability is often induced by random processes, it can be difficult

to mitigate its effects. To gain a more intuitive understanding of the effects of

phase instability, we can work through a simple thought experiment.

Assume that an SD-OCT imaging system acquires A-scans over a set of (x, y)

locations following a lateral raster scanning pattern. Let the x-axis correspond

to the ‘fast axis’ of this scanning pattern, while the y-axis corresponds to the

‘slow axis’. Let the phase of the ‘true’ (defocused) OCT image signal S (x, y, z)

be corrupted by some time-varying phase function φs(t) throughout the acqui-

sition process due to phase instability. The raster scanning pattern used to ac-

quire the image can be described by a time-varying set of lateral beam posi-

tions: (x(t), y(t)). This scanning patterns maps φs(t) to a space-domain function

φs(x(t), y(t)), such that the acquired image signal can be described by:

Ss(x, y, z) = S (x(t), y(t), z)e jφs(x(t),y(t)) = S (x, y, z)e jφs(x,y) (4.38)

Assuming that φs(t) fluctuates about some constant mean, we can think about

φs(t) in terms of its amplitude and its frequency content. These properties con-

trol the local rate at which φs(t) evolves over time. The relative speed of the raster

scanning pattern versus the rate of phase fluctuations determines how severely

126



φs(x, y) changes with respect to position. The faster φs(t) evolves compared to the

speed of scanning beam, the steeper the local slope of φs(x, y) will be (i.e., in units

of radians per unit length). The slow axis in particular will be especially vulner-

able to phase instability, since the slow axis is typically traversed 2-3 orders of

magnitude slower than the fast axis of the raster scanning pattern.

If we zoom in on a particular lateral patch (centered at (x̂, ŷ)) of our image

data, we can approximate the local signal of that patch by:

S (x − x̂, y − ŷ, z)e jφs(x−x̂,y−ŷ) ≈ S (x − x̂, y − ŷ, z)e jφ(x̂,ŷ)e j(φs,x(x̂,ŷ)(x−x̂)+φs,y(x̂,ŷ)(y−ŷ)) (4.39)

where φs,x and φs,y denote the gradient of φs with respect to x and y, respectively.

This bears a close resemblance to the bulk modulation problem discussed previ-

ously, but now we have a local signal modulation, meaning that any distortions

which emerge from CAO will vary as a function of (initial) lateral position (in

addition to growing in strength with distance from the focal plane). From this,

we can infer the general effect of different levels of phase instability:

• Very slow fluctuations, such that the phase is approximately constant

throughout image acquisition, will have a negligible effect.

• Slow fluctuations, such that the phase evolves approximately linearly

across the entire FOV, will appear equivalent to a bulk modulation.

• Moderate fluctuations, such that there are several ‘hills’ and ‘valleys’ of

phase fluctuations across the FOV (which are much wider than the local

uncorrected/pre-CAO PSF width), will result in local image distortions

(especially along the slow axis) after CAO.

• Rapid fluctuations, which are not well-approximated by 1st-order poly-

nomials (linear functions) over length scales on the order of the local
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uncorrected/pre-CAO PSF width, will prevent CAO from functioning

properly. Images will still ‘refocus’, but some of the signal energy will no

longer localize properly, such that images of point scatterers will appear

to be corrupted by local, space-varying aberrations.

• Very rapid fluctuations, such that the phase evolves substantially over

length scales smaller than the local uncorrected PSF width, will signifi-

cantly impair or completely eliminate the ability of CAO to refocus sig-

nals. Images of point scatterers will be surrounded by a ‘haze’ of signals

that cannot be localized to a single point using even high-order aberration

corrections. In the worst case, a ‘corrected’ PSF may appear no better than

the original uncorrected PSF.

Note that these principles have been inferred in the context of small phase fluc-

tuations (which tend to emerge from axial OPL fluctuations that are smaller than

the axial resolution of the system). Large vibrations in the sample or imaging

system (along any dimension) can cause our assumptions that the image signal

exists on a rectangular grid of points in (x, y, z) to fail, and we will lose our abil-

ity to perform Fourier analysis, in the general case, and our formulation of (and

ability to perform) FFT-based CAO algorithms will fall apart.

In the course of my research, I encountered ‘moderate’ phase instability,

which caused local depth-dependent shearing distortions in my images. For

an example, see Supplementary Movie 1 in Ref. [112]. Thankfully, these distor-

tions can be mitigated with ‘phase registration’ procedures that are commonly

available for in vitro imaging applications.

First, assume we have acquired an image of a sample which includes a glass

coverslip. The coverslip has two surfaces: one which contacts the sample, and
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the other which is exposed to the open environment (typically, the immersion

fluid of the objective lens, be it air, water, oil, etc.). The latter coverslip surface

serves as a strong and isolated reflector. If phase instability is due primarily to

axial OPL fluctuations, then the signal from the glass surface provides a good

measurement of the corrupting phase function, and can be used to mitigate the

effects of phase instability.17

Phase registration method 1

If the surface of the coverslip is flat and level in the image (i.e., the surface exists

along a single depth zc), then we extract the phase of the image signal at this

depth:

φc(x, y) = ∠Ss(x, y, zc) (4.40)

and use this phase to cancel out the corrupting phase:

(
S (x, y, z)e jφs(x,y)

)
e− jφc(x,y) ≈ S (x, y, z) (4.41)

Since imaging a glass surface that is perfectly flat and level is unlikely to oc-

cur, this method often needs to be supplemented with other procedures (e.g.,

coherence gate curvature correction, which is described in the next section).

Phase registration method 2 (preferred)

Given the limitations and dependencies of method 1, I recommend using this

method instead. Given a coverslip surface that is approximately flat and level,

17Note that the coverslip surface needs to be clean! Do not get the surface of your sample dirty
or scratched, or you will be out of luck for performing high-resolution imaging beneath the sites
of contamination/damage.
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centered about a position z = zc, identify a minimal axial range [zc −∆zc, zc + ∆zc]

which fully contains the image of the glass surface (axial PSF and all) yet does

not contain any other scattering interfaces/surfaces. Create a copy of the original

dataset Ss(x, y, z) and apply a window:

Sc(x, y, z) = Ss(x, y, z)W(z − zc; ∆zc) (4.42)

where

W(z; ∆zc) =


1 |z| ≤ ∆zc

0 otherwise

(4.43)

Next, compute:

φc(x, y, qz) = ∠Fz→qz

[
Sc(x, y, z)

]
(4.44)

This phase function encodes the position of the glass surface (including any

corrupting phase shifts as well as residual dispersion that our previous routines

may have failed to compensate). Finally, phase registration is achieved via:

F −1
z→qz

[
Fz→qz

[
Ss(x, y, z)

]
e−φc(x,y,qz)e− jqzzc

]
(4.45)

Analogous to our previously described dispersion compensation and CAO

procedures, this function cancels out any phase shifts and residual dispersion

in the image signal. It also has the side effect of axially shifting each A-scan

until the glass appears flat and level in the output image.18 The factor of e− jqzzc

ensures that the glass appears at its original depth of zc in the output image.

18This is actually a useful effect, as discussed in the section on coherence gate curvature.
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4.4.3 Coherence gate curvature

Coherence gate curvature (CGC) is a phenomenon which results from the use of

non-ideal optical systems and manifests as space-varying distortions in recon-

structed OCT image data [55]. Detailed derivations and explanations regarding

CGC may be found in Appendix H. In brief, a major feature of CGC is to cause

planar surfaces in the sample to appear as curved surfaces in the OCT image.

In particular, this curvature results from axial shifting of the OCT image signal,

where the amount of axial shifting varies as a quadratic function of the lateral

beam position. Although it is relatively easy to derive an idealized model of

CGC, deriving the exact form of CGC for a real system (which may have many

non-ideal optical elements) is not always feasible. Such was the case for the

imaging systems used for this dissertation. As a consequence, heuristics were

used for establishing acceptable computational CGC mitigation techniques.19

Coordinate system heuristics

In practice, planar surfaces tend to appear both tilted and curved in OCT images

due to a combination of non-idealities in optical design (e.g., CGC, beam mis-

alignment, etc.) and sample positioning. Determining how much tilt and/or

curvature is a real feature of the sample versus an artifact of the optical system

can be difficult. Therefore, the following heuristics were applied throughout the

research of this dissertation.

1. Assume the presence of a flat reflective surface in the sample (such as a

19Although these heuristics were sufficient for my purposes in developing TF-OCM (detailed
in later chapters), there is still room to improve CGC mitigation techniques. Some possible
avenues for exploration are discussed in Appendix H.
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glass coverslip for in vitro biological experiments).20

2. Assume that the ‘ideal’ or ‘correct’ coordinate system for image analysis is

one in which this surface appears both flat and level in the OCT image.21

3. Assume that a coordinate transformation which consists solely of lateral

position-dependent axial shifting/translations will suffice to arrive at a

decent approximation of the ‘ideal’ coordinate system.

4. This approximate coordinate transformation will not result in sufficient

residual distortions that substantially harm experimental capabilities

which rely upon subsequent processing of the OCT image data.

These heuristics were chosen in order to prioritize an approximate method

(which is both simple and consistent) over a more accurate method (which

could be both complicated to calibrate and computationally expensive to apply).

A consequence of using this heuristic is that residual image distortions may be

present which can neither be corrected nor readily accounted for. However,

the method is easy to implement and apply across numerous systems without

time-consuming calibration procedures or other analyses. As with any com-

putational method, improved system designs that minimize the initial problem

(via hardware) will make residual errors in post-processing a vanishing concern.

For an example of such a system, see Appendix I.

CGC mitigation method 1

Recall that phase registration method 2 has a ‘side effect’ of making the win-

dowed glass surface appear flat and level in the output OCT image. This corre-

20We require such a surface for performing phase registration anyway.
21The ‘level’ condition is not necessary, but is useful in practice.
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sponds exactly to the desired output image established by our heuristics. There-

fore, the easiest way to perform CGC mitigation is to apply phase registration

method 2! Such a technique was first reported in Ref. [55].

CGC mitigation method 2

The problem with CGC method 1 is that the (tilted and curved) glass sur-

face could span an axial range of up to 50-100 µm for images exhibiting large

amounts of CGC and/or using a very large lateral FOV. In such extreme cases,

the windowed signal Sc(x, y, z) from phase registration method 2 will contain a

lot of ‘empty space’ and so may incorporate a large quantity of background

noise which degrades the resulting output image. Even worse, it may not

be possible to window out the entire surface without including other surfaces

within the windowed axial range. As a result I developed an alternative method

specifically for applications to time-lapse data (which leverage the same or sim-

ilar corrections repeatedly).

First, the glass surface is approximated by a quadratic function:

zc(x, y) = axxx2 + axyxy + ayyy2 + axx + ayy + a0 (4.46)

Then, this curvature is removed using the Fourier shift theorem:

Sflat(x, y, z) = F −1
z→qz

[
Fz→qz

[
S (x, y, z)

]
e jqz(zc(x,y)−zc,0)

]
(4.47)

where c0 is a constant (e.g., zc,0 = a0). For time-lapse data, zc,0 should be chosen

to be constant across all processed images. This will cause the images to be

axially registered following CGC mitigation.
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CGC mitigation method 3

Since CGC mitigation method 2 relies on a curve-fitting procedure, it is not guar-

anteed to completely mitigate CGC. Therefore, I recommend a third method:

Perform CGC mitigation method 2 for ‘coarse’ corrections and follow up with

CGC mitigation method 1 for ‘fine’ corrections. This method yields the best re-

sults since the first step will make the glass surface used by all methods appear

nearly flat and level. Step two can then be performed using a very narrow axial

window, thus minimizing noise or other artifacts which would otherwise cor-

rupt the procedure. (The resulting image will also be phase-registered!) You can

find equations and diagrams outlining this procedure in Chapter 7.6.

CGC mitigation method 4

The very last method that I developed in my research was a hybrid of hardware-

based and computation-based methods. My optical system was redesigned to

physically minimize CGC artifacts in my image data (see Appendix I). Data was

then processed using CGC mitigation method 3.

4.4.4 Focal plane curvature

The focal plane of an imaging system is often assumed to be flat and level. How-

ever, as a consequence of using non-ideal optical systems, the focal ‘plane’ of an

imaging system may instead take the form of a curved surface. To complicate

matters, this focal plane curvature (FPC) may be different from the CGC of the

optical system. This means that even after performing CGC mitigation, the focal
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plane may still appear titled and/or curved in the OCT image. (For an example

of how this can happen, see Appendix J.)

This creates a problem for typical CAO algorithms like that defined in

Eqn. (4.28). Such algorithms rely upon the assumption of a laterally-invariant

PSF. However, when the focal ‘plane’ is curved due to FPC, the lateral PSF varies

as a function of lateral position. CAO algorithms which can accommodate for

a laterally varying PSF do exist [84], however, such algorithms can be difficult

to calibrate and/or computationally expensive to perform. In order to address

this problem, I devised a simple method to temporally ‘remove’ FPC, perform

CAO, and then ’restore’ FPC back to its original state (and thus restore the image

to a state where CGC is minimal). Specifically, starting with a CGC-mitigated

image, the focal ‘plane’ is approximated with a quadratic function:

z f (x, y) = bxxx2 + bxyxy + byyy2 + bxx + byy + b0 (4.48)

Then, FPC is removed in a similar fashion to CGC mitigation method 2:

F −1
z→qz

[
Fz→qz

[
S (x, y, z)

]
e jqz(z f (x,y)−z f ,0)

]
(4.49)

where z f ,0 is a constant (such as b0 or the mean value of z f (x, y) across the FOV).

Unlike the constant zc,0 from CGC mitigation method 2, the value of z f ,0 may

be allowed to vary between time-points in a time-lapse dataset. The resulting

image exhibits a ‘flat’ focal plane and thus a lateral PSF which is approximately

invariant with lateral position. CAO is then performed to optimize the depth-

dependent lateral resolution of the image, and FPC is then restored via the in-

verse operation to Eqn. (4.49):

F −1
z→qz

[
Fz→qz

[
S (x, y, z)

]
e− jqz(z f (x,y)−z f ,0)

]
(4.50)

The resulting 3D image thus exhibits an optimal lateral resolution at all (x, y, z)

positions. An example illustrating the effects of this procedure is shown in
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Chapter 6 and Ref. [112]. Different methods for performing the initial quadratic

fitting step may be found in Chapters 6 and 7.

4.4.5 Order of operations

It is important that corrections for bulk modulation, phase instability, coherence

gate curvature, and focal plane curvature be done in the correct order. In brief,

CGC removal, phase registration, and FPC removal should be performed prior

to calibrating and removing bulk modulation. This is because the bulk modula-

tion calibration can be corrupted by curvature artifacts and/or phase instabili-

ties (which warp, distort, and/or smear the lateral spatial frequency content of

the image). Once these steps are completed, CAO can be performed and fol-

lowed by FPC restoration and any subsequent image processing/analysis.
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CHAPTER 5

MEASUREMENT OF DYNAMIC CELL-INDUCED 3D DISPLACEMENTS

FOR TRACTION FORCE OPTICAL COHERENCE MICROSCOPY: A

PILOT STUDY

Content reuse disclosure The contents (text, figures, etc.) of this chapter have

been reprinted/adapted from a previously published journal paper of which I

was the first author.1 Some sections/passages of the original work have been re-

placed with updated/alternative content (e.g., the Introduction). Other sections

have been omitted to avoid redundancy with other content present elsewhere

in this dissertation (e.g., the Abstract, portions of the Discussion, etc.). The con-

tents of this chapter which have been reprinted/adapted will be indicated, as

appropriate. To view the full contents of the original paper, please see Ref. [110].

Author contributions statement All experiments/data/results were per-

formed/obtained/generated by me (J.A. Mulligan) in their entirety. The origi-

nal journal paper on which this chapter is based (Ref. [110]) was primarily writ-

ten by me, with guidance and editing contributed by the co-authors of the orig-

inal study.

1Reprinted/adapted with permission from The Optical Society: J.A. Mulligan, F. Bordeleau,
C.A. Reinhart-King, S.G. Adie. Measurement of dynamic cell-induced 3D displacement fields
in vitro for traction force optical coherence microscopy. Biomed. Opt. Express 8(2), 1152-1171
(2017). https://doi.org/10.1364/BOE.8.001152 c© The Optical Society (2017)
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5.1 Introduction

This chapter highlights the methods and findings of a pilot study which we per-

formed in 2016. The objective was to determine and demonstrate whether we

could use OCT imaging to record 3D deformation fields induced by the traction

forces of cells embedded in a 3D hydrogel substrate. Such capabilities are vi-

tal to performing traction force optical coherence microscopy (TF-OCM). This

study was originally published in Biomedical Optics Express in 2017 (Ref. [110]).

Please note that at the time of this study, many key image formation routines

(detailed in Chapter 4.4) and hardware developments (see Appendix I) had not

yet been developed. As such, this chapter should be used primarily for his-

torical context, and for its discussions of important factors related to the devel-

opment of TF-OCM. I have also included occasional footnotes containing new

thoughts that have emerged in hindsight.

Since this is the first instance of TF-OCM methods that appear in this dis-

sertation, the Methods will be detailed prior to discussing the results. In later

chapters, this will be reversed.

All remaining passages and figures in this chapter (below) have been

reprinted/adapted with permission from Ref. [110] c© The Optical Society (2017)
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5.2 Methods

5.2.1 Cell culture and 3D sample preparation

NIH-3T3 fibroblasts (ATCC, CRL-1658) were maintained in media consisting

of a 100:10:1 solution of Dulbecco’s Modified Eagle Medium (Life Technolo-

gies), bovine calf serum (Life Technologies), and penicillin-streptomycin (Life

Technologies). 3D cell cultures were prepared for imaging by first suspending

fibroblasts in chilled (4◦C) media at a density of 2 × 105 cells/mL. To provided

scattering contrast for use in deformation tracking, 0.5 µm diameter polystyrene

beads in aqueous solution (Sigma-Aldrich) were added to the cell suspension to

achieve a concentration of approximately 1 × 109 beads/mL. This suspension

was then combined in a 1:1 ratio (by volume) with Matrigel (Corning). The

resulting mixture was deposited in 100 µL aliquots onto the surface of glass-

bottomed petri dishes with a 10 mm diameter circular microwell (MatTek) and

left to gel/solidify for 30 minutes in an incubator. Samples were then covered

with culture media, left overnight in an incubator (∼12 hours), and imaged the

following day. In addition to these 3D cell cultures, imaging phantoms for dis-

placement tracking validation were prepared using an identical protocol, ex-

cluding the addition of cells.

5.2.2 OCM system and data acquisition

Samples were imaged using a custom-built spectral-domain optical coherence

microscopy (SD-OCM) system. The illumination source was a Ti:Sapphire laser

(Femtolasers, INTEGRAL Element) with a central wavelength of 800 nm and a
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full-width-at-half-maximum bandwidth of 160 nm. A-scans were acquired us-

ing a spectrometer (Wasatch Photonics) with a 300 nm full bandwidth, coupled

to a 4096 pixel 12-bit CMOS line scan camera (Teledyne Dalsa, Piranha4). This

yielded an axial sampling period of 0.75 µm per pixel (physical length in aque-

ous media) after image reconstruction. The system exhibited a sensitivity of

85 dB at 350 µm optical path delay from the zero optical path delay position,2

and a sensitivity fall-off of −10 dB/mm of optical path length. We believe that

the sensitivity was limited by the alignment of the line scan camera, which had

square 10.56 µm pixels, rather than ‘tall’ rectangular pixels which provide su-

perior tolerance to misalignment. The objective lens used in this study was

an Olympus XLUMPlanFl 20×/0.95 W /∞/0. Samples were imaged in an in-

verted configuration, with illumination and collection occurring through the

bottom surface of the glass-bottomed petri dishes. In this configuration, the

axial and transverse resolutions of the system were approximately 2.4 µm and

1.5 µm, respectively.

Volumes acquired under the time-lapse imaging protocol consisted of

1024 × 1024 A-scans, acquired at a line scan rate of 30 kHz with an exposure

time of 12 µs. The dimensions (z × x × y) of each full reconstructed volume

were 1536 × 420 × 420 µm3 in aqueous media (2048 × 1024 × 1024 voxels). How-

ever, due to constraints imposed by the limited depth-of-field of the objective

lens, only a 225 × 420 × 420 µm3 (300 × 1024 × 1024 voxels) volume surround-

ing the imaged cell/s was reconstructed and saved for further analysis using a

high-speed SD-OCM processing method for depth-selective reconstruction (see

Chapter 3.7) [27]. To achieve this, the imaged cells and the focal plane of the sys-

2For any who are unfamiliar with the term, zero optical path delay (OPD) denotes the posi-
tion in the OCT image where the OPL of light collected from the sample arm exactly matches
the OPL of light collected from the reference arm. In other words, it is the axial origin (z = 0
position) of the reconstructed OCT image.
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tem were co-localized prior to image acquisition at a position of 1 mm below the

zero optical path delay position, enabled by custom-built acquisition software

with a real-time live display and computational adaptive optics (CAO) enabled

[171]. Using these volume dimensions enabled the use of a high transverse spa-

tial sampling frequency (at 410 nm/pixel, to accommodate the high transverse

resolution) while maintaining a field-of-view which captured a large volume

surrounding each imaged cell, all while maintaining a manageable data set size

for analysis in MATLAB with limited computer memory (128 GB RAM on our

system). Approximately 150 GB of raw SD-OCM data was acquired for each

time-lapse imaging experiment.

5.2.3 Experimental design and time-lapse imaging protocol

Physiological temperature, humidity, and pH were maintained throughout

imaging using an incubation stage (Okolab, UNO-PLUS). To demonstrate the

viability of using OCM imaging to quantify the dynamics of 3D cell-induced

extracellular matrix (ECM) deformations, cells in the previously described 3D

culture were exposed to either cytochalasin D (a well-characterized actin cy-

toskeleton destabilizing agent that inhibits cell contractility [181]) dissolved in

dimethyl sulfoxide (DMSO) at a concentration of 0.5 mM for the experimental

group, or pure DMSO for the control group. The imaging and exposure protocol

was as described below.

To identify and select a fibroblast cell for imaging, the sample was translated

until a cell (which appears as a ∼30-100 µm scattering structure embedded in

the optically clear Matrigel) became visible in the live display. Since we sought
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to image cells that were actively interacting with the ECM, the candidate cell

was inspected for the presence of filopodia protruding into the ECM, and for a

generally elongated morphology, as is typical for healthy NIH-3T3 cells in 3D

culture [60]. If these features were not present (i.e., the cell lacked protrusions

or had a roughly spherical morphology), the cell was rejected and the searching

process continued. After identifying what appeared to be a suitable cell or cell

pair, the sample and imaging FOV were fixed in place for the remainder of the

experiment.

Each sample was imaged every 5 minutes for a total time of 90 minutes.

Baseline cell activity (i.e., without reagent exposure) was recorded during the

first 30 minutes. After 30 minutes, samples were exposed to the appropriate

reagent (cytochalasin D solution or pure DMSO). For the experimental group,

cytochalasin D solution was added to the culture media in which the sample

was immersed, resulting in a final cytochalasin D concentration of 1 µM, and a

final DMSO concentration of 0.2 vol%. For the control group, pure DMSO was

added to the culture media to achieve a final DMSO concentration of 0.2 vol%.

Cell activity was then monitored for an additional 60 minutes following the

introduction of these compounds, yielding a final total of 19 time-points per

sample.

5.2.4 Reconstruction of volumetric OCM data sets and image

sequences for displacement tracking

Volumetric data sets were reconstructed in MATLAB R2014b using the standard

operations of background spectrum subtraction, spectrum resampling, disper-
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sion compensation, and the Fourier transform (see Chapter 3) [102]. The high

resolution objective resulted in defocus artifacts which increased rapidly with

distance from the focal plane. Therefore, defocus was compensated using com-

putational adaptive optics (CAO, see Chapter 4) [3]. The technique used con-

sisted of a plane-by-plane 2D deconvolution, which was performed in the spa-

tial frequency domain using multiplication with a phase-only correction kernel

[3, 171]. The kernel parameters were determined via maximization of a peak

image intensity metric. This metric was used to obtain an initial estimate of

the proper defocus correction at each depth in a given volumetric data set.3

The final applied kernel parameters were obtained from a linear fit of the ini-

tial estimates, since the severity of the defocus phase aberration increases ap-

proximately linearly with distance from the focal plane.4 This fitting operation

helped to reduce noise in the metric-driven correction kernel calibration. The

underlying assumption is that phase aberrations vary slowly with depth, such

that adjacent or nearby depths must undergo similar corrections. The linear re-

lationship of the defocus phase aberration in depth is an assumption used in

prior work, and is based upon axial beam propagation (see Chapter 4) [171].

To study local average ECM deformations in the transverse and vertical di-

mensions of the sample, maximum intensity projections were obtained from the

reconstructed volumes. This operation collapses the 3D displacement tracking

3This was not explained well in the original publication. In brief, defocus was cor-
rected via the application of a phase-only function in the form of a 2D paraboloid with
a particular scalar weight a ∈ R. An initial estimate for a at a particular depth z
was obtained via â(z) = argmax

[
f (α; z)

]
, where f (α; z) is the metric function: f (α; z) =

L∞
[
F −1

(x,y)→(qx,qy)

[
F(x,y)→(qx,qy)

[
S (z, x, y)

]
exp

(
jα

(
q2

x + q2
y

))]]
, where L∞ denotes the ‘L-infinity norm’,

F(x,y)→(qx,qy) and F −1
(x,y)→(qx,qy) denote the forward and inverse 2D Fourier transform across the lat-

eral dimensions, and S (z, x, y) is the 3D complex-valued OCT image signal. I consider this an
outdated method for defocus correction. See Chapter 4 for an alternative formulation.

4That is, the final applied correction coefficient a(z) was given by the best-fit linear polyno-
mial for the coefficient estimates â(z).
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problem into multiple 2D tracking problems, which may be performed indepen-

dently within cross-sectional slices of the imaged volume along both the trans-

verse and vertical orientations. Projections in the transverse orientation were

obtained from the full 225 × 420 × 420 µm3 volumes previously described (form-

ing a 420 × 420 µm2 projection in the xy-plane). Vertically-oriented projections

were obtained by projecting along a 40 µm thick vertical slice intersecting the

imaged cell body/bodies (forming a 225 × 420 µm2 projection in the zx-plane).

Over the 90-minute imaging span, some bulk sample drift was present be-

tween acquisitions. This bulk drift between time-points was removed using 2D

cross-correlation performed over the full FOV of the maximum intensity pro-

jection image sequences. This operation acts as a high-pass spatial filter on the

computed cell-induced ECM displacement fields, and assumes that the imaged

cell does not cause a bulk displacement of the substrate it is embedded in. This

operation has practical benefits for computation time which will be discussed

in Section 5.2.6. Since the vertical slices exhibited intensities which rapidly de-

creased with distance from the focal plane, the mean intensity5 at each depth

was normalized prior to any displacement tracking.

5.2.5 Manual tracking of individual particles

To obtain a basic picture of cell-induced ECM deformation over time,

polystyrene beads embedded in the Matrigel substrate at selected regions of in-

terest were identified and tracked manually in the transverse (xy-plane) image

sequences. For this pilot study, this manual tracking was a simple alternative

5Note that in this work, ‘intensity’ was used to refer to the magnitude of the complex-valued
OCT image signal. This is an unfortunate oversight in terminology from my ‘younger years’.
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to automating the identification of cells, their orientation, and their behavior. It

also served as a simple means to assess the reliability of the automated displace-

ment tracking discussed in Section 5.2.6. In principle, automating the identifica-

tion of cell features in combination with our automatic tracking could eliminate

this step, but was not explored in this work.6

The manual tracking consisted of two steps. First, the approximate loca-

tion of a chosen bead was manually identified at each time-point. Second, the

bead centroid was computed using the image intensity. The centroid location

was assumed to correspond to the location of the bead. For both the control

and experimental cases, four beads were selected from four different regions of

interest in the vicinity of the imaged cell body/bodies. The selection of each

specific bead was arbitrary, as the manual tracking data are only meant to rep-

resent the general behavior of the neighborhood surrounding each bead. The

regions of interest for bead selection included the neighborhood near the lead-

ing edge of the cell (in the general direction of migration, determined from time-

lapse animations, such as Visualization 1 and Visualization 2 of Ref. [110]), the

neighborhood of the trailing edge of the cell (opposite the leading edge), the

neighborhood immediately adjacent to the cell body (neither leading nor trail-

ing, and less than 100 µm away), and a neighborhood far from the cell body (at

least 100 µm) that does not lie in the leading or trailing paths. The first three

neighborhoods are intended to demonstrate cell-induced ECM deformations,

while the fourth is meant to be a region of little to no deformation activity. In

the event that a suitable particle could not be found in a given region, a close

alternative was selected instead. For example, the control sample shown in

Fig. 5.3(a) contained two adjacent cells with opposite migration paths, so that

6See Chapter 6 for automated methods.
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no definite trailing edge could be identified. As a result, the trailing edge mea-

surement was replaced with another adjacent edge measurement.

5.2.6 Automated 3D displacement tracking

ECM displacement maps were obtained in a fully automated fashion us-

ing a digital image correlation (DIC) based technique to process the regis-

tered maximum intensity projection time sequences described in Section 5.2.4

[47, 164, 50, 118]. For a given time series of 2D maximum intensity projec-

tions, a 2D grid of interrogation points was established to specify where dis-

placement data would be computed. In the xy-planes, the interrogation point

grid spacing was 4.1 µm (10 pixels). In the zx-planes, interrogation point grid

spacings were 7.5 µm (10 pixels) and 4.1 µm (10 pixels) along the z and x direc-

tions, respectively. For each interrogation point, a reference image was win-

dowed from the current time-point image, centered at the interrogation point.

This reference image was 41.4 × 41.4 µm2 (101× 101 pixels) in the xy-planes, and

75.8 × 41.4 µm2 (101 × 101 pixels) in the zx-planes. This reference image was

cross-correlated with a deformed-state image, obtained from the next time-point

image and centered at the same interrogation point. This deformed-state image

was 33.2 × 33.2 µm2 (81× 81 pixels) in the xy-planes, and 72.8 × 33.2 µm2 (97× 97

pixels) in the zx-planes. It should be noted that the difference in size between

the reference and deformed-state images only allows for the measurement of

displacements that do not exceed ±10 pixels in the xy-planes or ±2 pixels in

the zx-planes. Although this limits the range of local displacements that may

be detected between time points, it helps to speed up computation over the

many cross-correlation operations required across a time-lapse data set. Any
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bulk drift present between time points would further reduce the maximum de-

tectable local displacement, if the reference and deformed state image windows

were not increased to compensate. This makes the image registration step de-

scribed in Section 5.2.4 vital for efficient performance of displacement tracking

in this work.

The cross-correlation of the reference and deformed-state images was up-

sampled by a factor of 11 via zero-padding in the Fourier domain to allow

measurement of sub-pixel displacements.7 The coordinates of the peak of the

up-sampled cross-correlation were taken to provide the 2D translation between

the reference and deformed-state images. This process was repeated for all in-

terrogation points between all pairs of images adjacent in time. The output of

this process is a local ECM displacement field at all interrogated locations in

the image sequence. A median filter was applied to reduce noise artifacts in

the computed displacement fields. This 2D filter spanned 10 × 10 interroga-

tion points.8 Using a method based on simulated sinusoidal deformations of an

imaged phantom [188], the spatial resolution of the displacement tracking algo-

rithm (that is, the full-width-at-half-maximum of the algorithm response to an

idealized point displacement) was found to be approximately 35 µm and 51 µm

in the transverse and axial directions, respectively.

To determine the algorithm’s sensitivity to small displacements, displace-

ment tracking was performed on sequential images of a stationary Matrigel

phantom (described in Section 5.2.1). This measurement yielded a displacement

7In hindsight, up-sampling is not necessary to obtain sub-pixel displacements. One can in-
stead perform local quadratic fitting about the peak of the cross-correlation function. Identifying
the peak of this quadratic function yields sub-pixel displacement measurements.

8Due to the way MATLAB performs median filtering, odd-valued edge lengths should al-
ways be used. The even-valued edge lengths used here must have caused a slight (subpixel-to-
pixel scale) diagonal shift in the profile of the computed displacement field.
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noise floor of approximately 110 nm and 60 nm between time points in the xy-

and zx-planes, respectively. Results and discussion of more generalized sensi-

tivity measurements using different correlation window and median filter sizes

may be found in Fig. 5.1 and Section 5.3.1.

To obtain the cumulative displacements of the ECM over time, the computed

displacements between time points must undergo a cumulative integration with

respect to time. However, the process described above computes displacements

at interrogation points which are defined at fixed locations with respect to the

lab coordinate frame. Thus, a direct cumulative summation of the data over time

will not accurately represent the displacement experienced by individual parti-

cles unless performed in the material coordinate frame. Let the vector r denote

a fixed position, defined with respect to the origin of the lab coordinate frame,

and let n ∈ {0, 1, . . . ,N − 1} denote the integer time step, where N = 19 is the

total number of time-points acquired. Now, we define two displacement fields.

The first is un(r), defined as the computed displacement undergone by a particle

between time n−1 and time n, given that its position in the lab coordinate frame

is r at time n − 1. The second is U0,n(r), defined as the cumulative displacement

undergone by a particle between time 0 and time n, given that its position in

the lab coordinate frame is r at time 0. In this work, the cumulative particle

displacement was computed using the relation:

U0,n(r) = U0,n−1(r) + un
(
r + U0,n−1(r)

)
, given U0,0 = 0 (5.1)

This relation was evaluated using the computed (lab frame) displacement data

obtained by the cross-correlation algorithm described previously, with values

computed using the built-in MATLAB function interp2 in order to evaluate

the computed displacement data across a continuous domain. The output is the

desired, time-varying 2D cumulative ECM displacement field, an example of
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which may be viewed in Visualization 1 and Visualization 2 of Ref. [110]. By

examining the displacement fields in both the xy- and zx-planes, we can study

the 3D ECM deformations occurring around the cells in the experiments. The

results of this analysis are described in the sections that follow.

5.3 Results

5.3.1 Sensitivity of automated displacement tracking

Images of stationary Matrigel phantoms (discussed in Section 5.2.1) were used

to test the displacement measurement noise floor of our fully automated

displacement tracking algorithm under varying conditions, including both

changes in cross-correlation window size and median filter size, in order to

study how these parameters affect our algorithm’s performance. The results

of this testing are summarized in Fig. 5.1. The correlation window side length

values correspond to the size of the windowed deformed state image. (The fi-

nal window side lengths used in this work were 81 pixels and 97 pixels in the

transverse and vertical planes, respectively.) In all cases, the side length of the

windowed reference-state was maintained at a constant 20 pixels greater than

the deformed-state window side length. In this way, each case was able to de-

tect displacements over a fixed range of ±10 pixels. After the initial correlation-

based displacement tracking was performed, median filters of different sizes

were applied across the data obtained at each interrogation point. (The final

median filtering used in this work took place over 10 × 10 interrogation points.)

The noise floor of the automated displacement tracking algorithm was taken
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Figure 5.1: Measurement noise floor of the DIC-based ECM displacement track-
ing algorithm (described in Section 5.2.6) in the (a) xy-plane and (b) zx-plane,
respectively. The variable ‘correlation window side length’ refers to the side
length of the windowed deformed-state image. The different curves repre-
sent the use of median filters of different sizes following the cross-correlation
operation. Displacement noise floors corresponding to the final parameters
used in the tracking of cell-induced displacements are denoted by black arrows.
Reprinted with permission from Ref. [110] c© The Optical Society (2017)

to be the standard deviation of the resulting computed displacement field. As

stated previously, the displacement sensitivity achieved under the processing

conditions used in the remainder of this work was 110 nm (∼0.25 transverse

pixels) and 60 nm (∼0.1 axial pixels) in the xy- and zx-planes, respectively, com-

parable to that reported in prior DIC work in optical coherence elastography

(OCE) literature [164].

There are two trends evident in these results. First, as the correlation win-

dow size increases, displacement tracking noise declines. This is likely due to

the fact that larger window sizes capture larger numbers of scattering beads

embedded in the sample substrate. The added structure and signal makes the
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cross-correlation more robust to noise in the reconstructed OCM images. How-

ever, this reduction in noise comes at the cost of a larger window, which acts

as spatial low-pass filter when measuring the displacement field. Second, as

median filter size increases, displacement tracking noise declines. The median

filter acts to suppress rapid changes across space in the measured displacement

field, and so also exhibits low-pass filter-like behavior. Though both of these

trends are related to the principles of low-pass filtering, it should be noted that

both the cross-correlation-based tracking and the median filtering are nonlinear

operations on the space domain displacement field signal. As a result, although

the general trends discussed here may be useful when designing experiments

and selecting processing parameters, the methods remain vulnerable to poten-

tially unpredictable and inconsistent behaviors that may depend on the images

being used.

Another feature that affects displacement measurement sensitivity is

CAO (performed here as a digital refocusing across depth, as described in

Section 5.2.4). To demonstrate the impact of CAO, out-of-focus en face planes

(located 30 µm below the focus) were extracted from the volumetric images of

the stationary phantoms described previously. Displacement tracking was per-

formed on both raw and digitally refocused versions of these en face planes in

a manner almost identical to the previously described method, with the only

difference being that these en face planes were extracted directly from the image

volume and not through a maximum intensity projection along depth. The re-

sulting displacement noise floor in the raw and digitally refocused cases were

1270 nm and 340 nm, respectively. The use of CAO therefore improved sensitiv-

ity of the displacement tracking algorithm by nearly a factor of 4. We attribute

this to the signal-to-noise ratio and resolution improvement that accompanies
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CAO [3]. The decrease in performance of these cases relative to the 110 nm

transverse displacement noise floor previously reported is likely due to a re-

duction in both signal content and signal strength, since the en face planes in this

test were not obtained via maximum intensity projection, and therefore lacked

additional signal contributions from nearby depths.

5.3.2 Three-dimensional ECM displacements of control versus

force-inhibited cells

The results of fully automated 3D displacement tracking are summarized in

Fig. 5.2 (as well as Visualization 1 and Visualization 2 of Ref. [110]). Figure 5.2

depicts ECM displacements at a single time-point, whereas the visualizations

depict displacements over time as animations. Although every sample un-

derwent displacement tracking, only one control sample and one contractility-

inhibited sample are fully illustrated in Fig. 5.2 and the visualizations. These

samples will be discussed in detail in the following sections as representative

results of our algorithm. The remaining imaged samples and their behaviors

will be discussed at the end of Section 5.3.3.

The control sample, visible in Figs. 5.2(a-c) (and Visualization 1 of

Ref. [110]), contains two adjacent fibroblasts (indicated by white arrows in

Fig. 5.2(a)). Although the cells are distinct during the final 10 minutes of the

experiment, it was unclear whether the cells were fully independent, or were

a pair of daughter cells in an ongoing cell division. These cells appear to pull

on the ECM in opposing directions toward the top and bottom of the en face

image frame, respectively. In the path of the upper cell lies a thin scattering
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Figure 5.2: Automated tracking of 3D deformations induced by NIH-3T3 fibrob-
lasts cultured in a Matrigel. These images represent the deformations accumu-
lated over a 90-minute imaging time, with reagents introduced to the sample
after the first 30 minutes of imaging. Cells were exposed to pure DMSO (a-c),
or cytochalasin D solution (d-f). Each sub-figure depicts displacements in the
en face (upper panels) and vertical (lower panels) orientations. (a,d) Superposi-
tion of the initial (t = 0 minutes, red channel) and final (t = 90 minutes, green
channel) states of the sample, obtained from the initial and final registered max-
imum intensity projection images described in Section 5.2.4. (b,e) Cumulative
displacement magnitude of the extracellular matrix (in µm) from a given ini-
tial location. (c,f) Cumulative displacement field depicting the direction and
relative magnitude of ECM displacement (with arrow lengths exaggerated for
visibility), superimposed on the initial (t = 0) maximum intensity projection im-
ages. Scale bars = 50 µm. Refer to the text for a discussion of the arrows in (a),
(d), and (e). Reprinted with permission from Ref. [110] c© The Optical Society
(2017)
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spindle (indicated by the yellow arrow in Fig. 5.2(a)), which may be a protein

fiber, dead cell, or other structure. As the upward-migrating cell reaches this

structure, ECM deformation in the vicinity of this object increases and extends

over a large area (see Visualization 1 of Ref. [110]). In fact, Figs. 5.2(a-c) show

that both cells influence ECM deformation as far as 100 µm or more away from

their bodies, consistent with prior literature [185]. The areas of greatest dis-

placement appear along the leading edges of cells, where cellular protrusions

can be seen dynamically changing structure and interacting with the ECM in

Visualization 1 of Ref. [110]. It should be noted that the calculated displace-

ment magnitudes and fields (Figs. 5.2(b,c,e,f)) may have greater error near the

edge of the FOV or in the vicinity of objects with variable scattering structure.

This may be due to boundary effects of CAO, cross-correlation, and median fil-

tering, and/or due to speckle decorrelation resulting from fast sub-resolution

changes in object structure. For example, see the region indicated by the white

arrow in Fig. 5.2(e). This region of apparent high displacement overlaps with

a round cell intersecting the edge of the FOV. As can be seen in Visualization 2

of Ref. [110], the large local displacements reported by the tracking algorithm

do not appear to be truly occurring in the neighborhood of the cell. This may

be due to the constantly changing speckle pattern formed by the internal struc-

ture of the round cell. This speckle pattern, which changes quickly relative to

the time-lapse sampling rate, could cause the assumptions underlying DIC (in

this case, assuming small changes in scattering structure between time points)

to break down, resulting in incorrect reported displacements.9

As shown by the images and computed displacement fields, the deforma-

tions are not confined to a single plane, but extend in all three dimensions

9As it turns out, rapidly varying speckle patterns from cells would be of critical importance
to the studies in Chapters 6 and 7.
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radiating away from the cellular protrusions into the ECM, forming a pattern

reminiscent of a dipole field [151]. The physiological significance of such long-

range, 3D deformations is an open area of investigation. Since cells have been

shown to respond to mechanical stimuli, the study of these deformation fields

may shed further light on mechanical communication and collective behaviors

among neighborhoods of cells [177].

The sample exposed to cytochalasin D, visible in Figs. 5.2(d-f) (and Visual-

ization 2 of Ref. [110]), exhibits differing temporal behavior compared to the

control case. Early in the experiment, the cell (indicated by the white arrow

in Fig. 5.2(d)) can be seen deforming the ECM in a similar fashion to the con-

trol sample discussed previously. It should be noted that the baseline rate of

cell-induced deformation (apparent in Visualization 1 and Visualization 2 of

Ref. [110]) differs between the cytochalasin D and control experiments. We at-

tribute this to natural variability in cellular activity. Such variability is apparent

both between and within the control and contractility-inhibited experimental

groups, as is discussed in Section 5.3.3 and can be seen in Figs. 5.4 and 5.5. Fu-

ture studies that seek to identify novel biological responses under uncharacter-

ized conditions will require large numbers of imaged cells and large quantities

of raw imaging data which are far in excess of that presented in this initial pilot

study.

Following the baseline activity of the first 30 minutes, Visualization 2 of

Ref. [110] shows that shortly after exposure to the contractility inhibitor at the

30 minute time-point, the cell and embedded scattering beads in both the en face

and cross-sectional planes can be seen to relax back toward their initial locations.

This relaxation is not complete, suggesting plastic deformation of the substrate,
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ECM remodeling, and/or some lingering contractility of the cell. Shortly before

the end of the sequence, the cell can be seen to begin contraction again. Un-

fortunately, further observation of this event was cut short by the end of the

experiment, since the behavior was not noticed until the data was studied in

post-processing. Overall, the observed particle displacements show that cell

contractility inhibition by cytochalasin D is measurable through the analysis of

OCM data.

5.3.3 Time-lapse particle displacements at selected positions

around cell bodies

Single particle tracking was used to assess the temporal dynamics of both sam-

ples. The results of both manual tracking of individual particles and auto-

mated DIC-based displacement tracking are depicted in Figs. 5.3, 5.4, and 5.5.

The manual tracking can be considered the ‘true’ displacement. Discrepancies

between the manual and automated tracking may arise from several factors

affecting the automated tracking, including the low-pass nature of the cross-

correlation operation and median filter, measurement noise, and interpolation

error. However, both cases exhibit comparable results, and may both be used to

distinguish the behaviors of the control and contractility-inhibited samples.

As shown in Fig. 5.3, in both the control and contractility-inhibited samples,

particles far from the cell bodies exhibit little displacement from their initial po-

sitions (less than 2 µm) over the 90-minute duration of both experiments. This

helps to confirm that the displacements measured in this study are true cellu-

lar traction forces and are not due to other factors. In contrast, particles near
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cells or placed in the leading or trailing paths of cell migration exhibited much

greater total displacements (with magnitudes up to 10 µm). In the control exper-

iment, the cells continually deformed the ECM over time, causing particles to

displace progressively further from their points of origin. The sample exposed

to cytochalasin D exhibits distinctly different ECM deformation dynamics. Ten

minutes after introduction of the contractility inhibitor, particle displacements

attain a maximum, shortly followed by motion back toward their points of ori-

gin. After the 70-minute time-point, this ECM relaxation appears to level off

at approximately half of the peak measured displacements. As stated previ-

ously, this partial relaxation may be due to plastic deformation/remodeling of

the ECM or residual cellular traction forces not inhibited by the cytochalasin D

during the experiment.

The trends discussed in these example cases are shared throughout the ex-

perimental groups, which are summarized in Figs. 5.4 and 5.5. For both the

control and contractility-inhibited groups, a total of 8 separate samples were

prepared, imaged, and analyzed for each case, using the same procedure as

that used to obtain the results presented in Fig. 5.3. As shown in Fig. 5.4, cells

exposed to DMSO tend to continually deform the ECM in an approximately lin-

ear fashion throughout the duration of the imaging experiment. Although each

sample exhibited this trend, the rate of ECM deformation is variable. Particles

located near the leading edges of cells exhibited average displacements rates

of 76 ± 29 nm/min (where the error bounds here, and in the remainder of this

section, denote plus or minus one standard deviation). We attribute this varia-

tion in displacement rates to both biological variability in cell behavior, and to

variability in the selected tracking location with respect the cell boundary and

orientation.
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Figure 5.3: Automated and manual tracking of embedded polystyrene bead cu-
mulative displacement magnitudes in time (top) at varying locations around
the cells (bottom) exposed to (a) pure DMSO, or (b) cytochalasin D dissolved
in DMSO. All displacement magnitudes are defined with respect to the initial
location of a given bead. Solid curves depict results of manual single particle
tracking; dashed curves depict results of automated DIC-based displacement
tracking. The vertical dashed lines in the displacement plots mark the time at
which the DMSO or cytochalasin D was added to the samples. Scale bars =
50 µm. Reprinted with permission from Ref. [110] c© The Optical Society (2017)
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Figure 5.4: Automated and manual tracking of cumulative displacement magni-
tudes undergone by embedded polystyrene beads at various selected locations
around fibroblasts exposed to the control conditions (DMSO). Each subplot (a-h)
depicts the results obtained from independent trials of the experimental proto-
col. The first subplot (a) depicts the same data discussed in Fig. 5.3(a). All dis-
placement magnitudes are defined with respect to the initial location of a given
bead. Solid curves depict results of manual single particle tracking; dashed
curves depict results of automated DIC-based displacement tracking. The ver-
tical dotted lines mark the time at which the samples were exposed to DMSO.
Reprinted with permission from Ref. [110] c© The Optical Society (2017)

Similar to the control case, samples exposed to cytochalasin D (as shown in

Fig. 5.5) also exhibit the approximately linear ECM deformation behavior (with

average leading edge deformation rates of 102 ± 45 nm/min) until sometime

after the introduction of cytochalasin D. As the compound takes effect, parti-

cles embedded in the ECM relax back toward their initial positions. The fea-

tures of this behavior manifest cell-to-cell variability. These include the time

that passes until relaxation begins (16 ± 8 min), the average rate of relaxation
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Figure 5.5: Automated and manual tracking of cumulative displacement mag-
nitudes undergone by embedded polystyrene beads at various selected lo-
cations around fibroblasts exposed to the contractility inhibiting conditions
(cytochalasin D + DMSO). Each subplot (a-h) depicts the results obtained from
independent trials of the experimental protocol. The first subplot (a) depicts the
same data discussed in Fig. 5.3(b). All displacement magnitudes are defined
with respect to the initial location of a given bead. Solid curves depict results
of manual single particle tracking; dashed curves depict results of automated
DIC-based displacement tracking. The vertical dotted lines mark the time at
which the samples were exposed to cytochalasin D solution. Reprinted with
permission from Ref. [110] c© The Optical Society (2017)

(−56 ± 60 nm/min), and the amount of relaxation that occurs before reaching a

steady state or the end of the experiment time (relaxation to 46±30% of the peak

displacement). Such variations may not only result from biological variability,

but from other factors such as the time required for cytochalasin D to diffuse to

the imaged cell.
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5.4 Discussion

5.4.1 Sample preparation for effective cross-correlation-based

displacement tracking

The 3D displacement tracking shown in this work is derived from perform-

ing 2D cross-correlation-based displacement tracking in transverse and vertical

planes. Full 3D displacement tracking throughout an imaged volume is possi-

ble, in principle, using digital volume correlation and/or single particle tracking

[89, 47, 188, 172, 13]. A key parameter for future work will be the density of scat-

tering particles present in a sample. Each particle acts as a sampling point of the

local deformation field. Successful tracking using correlation-based methods

benefits from the use of windows that capture several particles at once, so that

the arrangement can form a distinct structure that can be uniquely tracked over

time. As such, higher particle density allows for the capture of the deformation

field with a higher spatial resolution. In this work, the bead concentration re-

sulted in a mean particle spacing of approximately 12.5 µm. By comparison, re-

cent work in TFM makes use of mean particle spacings in the range of 1.5-25 µm.

High sampling frequency methods tend to keep within the 1.5-3 µm regime [62].

A key assumption of cross-correlation based methods is that local deforma-

tions are the result of purely translational motion. Other forms of deformation

can degrade or corrupt results (if not accounted for with additional processing

algorithms) [188, 172]. However, the high temporal sampling frequency offered

by OCM could help reduce the severity of this problem, by capturing more in-

termediate time-points between deformation states. Future work will have to
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investigate the limits of OCM for detecting small and variable deformations in

artificial samples. More advanced algorithms may be adopted from the exist-

ing TFM literature to build ‘smarter’ and more efficient algorithms than those

discussed so far [172]. Looking toward the future, tracking native scattering

features or speckle patterns may offer an avenue toward new processing tech-

niques and investigations of cell traction forces in vivo. Such algorithms are al-

ready in development for application within the optical coherence elastography

community [164, 50].

5.4.2 Computing cellular traction forces from measured dis-

placement fields

Cellular traction forces are related to ECM deformations via the constitutive re-

lationship between stress and deformation in the ECM. Reconstructing cell trac-

tion forces from raw displacement data is a formidable challenge for 3D TFM.

Reconstruction is an ill-posed problem, and requires extensive knowledge of

local material properties, boundary conditions, and reliable regularization tech-

niques [89, 188, 152, 111]. The most sophisticated method for solving this in-

verse problem is to use finite element analysis, but even this approach may fail

to account for the complexities of biological systems. Many TFM studies have

used simple linear elastic, isotropic hydrogels as a substrate for easy experi-

mentation and modeling. However, both natural and artificial ECM can violate

many of these conditions. Biological materials are often viscoelastic, nonlinear,

anisotropic, and have varying properties at different spatial scales [185, 68, 24].

Furthermore, since cells are capable of modifying their environment, even suc-
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cessful measurement of these properties in the neighborhood of a cell will only

be valid over a limited time-frame. For these reasons, TFM research must in-

clude a thorough accounting of assumptions and limitations of the approach

that is used to reconstruct cellular traction forces. If cell forces cannot be cal-

culated, other metrics of cell behavior, such as mean deformation mechanics

[162] or ECM strain energy [78], may still extract useful information from an ex-

periment. In this work, the raw displacement data yielded results that could be

used to reveal differences in cell behavior between the control and experimental

groups. If cell traction forces or a quantification of ECM remodeling are desired,

the field of TFM and mechanobiology at large will require new methods to cap-

ture the complex properties of biological materials.10

5.4.3 The ‘big data’ problem, TF-OCM system design, and data

acquisition/reconstruction strategies

Volumetric TF-OCM requires cellular resolution over a cuboidal FOV with side

dimensions on the order of ∼102 µm for single/isolated cell studies, or side di-

mensions on the order of ∼103 µm for studies on cell populations/networks.

When coupled with the requirement of high temporal resolution, in order to

provide sensitivity to fast cellular mechano-transduction events on the minute

time-scale or shorter, this will require the acquisition, and (ideally real-time)

processing, of large (‘big data’) volumetric data sets. A major challenge to the

practical implementation of TF-OCM will be to obtain as much relevant biolog-

ical information as possible per volumetric acquisition, while minimizing the

10For a more thorough review of this topic, see Chapter 2.4.
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amount of raw data that must be stored and processed to reconstruct images.11

In the present study, we employed CAO to increase the usable OCM depth

range from ∼75 µm (limited by degraded transverse resolution due to defocus)

to ∼200 µm (limited by photon collection of the confocal response and sensitivity

of our system). Furthermore, we pre-aligned the location of isolated cells to be

near the focal plane at the beginning of each experiment, so as to improve signal

strength and reduce the distance from the focal plane that needed to be recon-

structed with CAO. Finally, analysis of the resulting 150 GB12 of raw spectral

data per experiment (∼2.5 TB in total) was streamlined to ‘ignore’ depths that

were outside the usable CAO-OCM depth range (see Sections 5.2.2 and 5.2.4 for

details). As a result, only 1.4 TB of useful space domain data needed to be

reconstructed, as opposed to the 19.2 TB that would have been required for a

full volumetric OCT reconstruction using standard methods (assuming double-

precision complex numbers in MATLAB). Using these combined methods, a

greater amount of useful information could be obtained from each data set ac-

quired, and computational resources were not wasted reconstructing data that

contained no useful information to contribute toward the results of this work.13

In the more general case, such as the 3D tracking of ECM displacements

due to multiple isolated cells or cellular networks, or when imaging multiple

cell cultures to obtain statistically significant biological results, employing ad-

ditional strategies to address the ‘big data’ problem will become essential. One

11In hindsight, although this is a noble goal, I ultimately ended up relying on computing
resources becoming better and cheaper over time. ‘Big data’ remains a major problem. And
since the ability to acquire large data sets practically necessitates acquiring the biggest data sets
you can possibly accommodate (such is the life of a researcher), this problem will likely be here
to stay for the foreseeable future. That being said, I encourage everyone to do what they can to
improve efficiency wherever possible. You might just get a publication out of it!

12I laugh at such ‘tiny’ data sets only three years later!
13Note that this study was the one behind the story I told in Chapter 3.7.1.
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approach, in the case of sparse or low density samples, is the use of compressed

sensing [108].14 Another approach is to maximize the information content of

each volumetric CAO-OCM data set, for example through alternative hardware

designs. In particular, the rapid degradation of signal with distance from focus

that currently limits the usable depth range could be improved through the use

of an astigmatic optical system to equalize photon collection vs. depth, while

maintaining diffraction-limited focal-plane resolution throughout the volume

with CAO [3, 95].15 This could be coupled with real-time volumetric visualiza-

tion to optimize sample pre-alignment at the beginning of each TF-OCM exper-

iment.

Other OCT system designs can provide alternative approaches to address

the ‘big data’ problem. The use of full-field OCT (FF-OCT) [5, 11, 50], where

the scanning of the reference arm can be coupled with focus tracking, can pro-

vide highly efficient data acquisition spanning only the depth range of inter-

est. This approach offers a simpler image reconstruction procedure (relative

to CAO-OCM), together with enhanced focal-plane photon collection. Another

approach offering enhanced depth-dependent photon collection for volumetric

imaging is full-field swept-source (FF-SS)-OCM [66].16 This approach can offer

ultra-high volumetric acquisition rates, but the use of spatially-coherent full-

field illumination makes FF-SS-OCM more susceptible to cross-talk/multiple

scattering than beam-scanning OCM systems [72, 73].17 An alternative fast

imaging scheme with enhanced depth-dependent photon collection is parallel

14They are still working on it. I am not sure if it is ‘there’ yet, but you might still check it out.
15We looked into this idea in Ref. [96]. I would employ this method with caution, since it can

impose peak SNR penalties which may be unacceptable in samples with low scattering contrast
(i.e., cells in aqueous media). See Ref. [96] for details.

16This area has grown a lot during my PhD and appears poised to grow even more as laser
sources and data acquisition hardware improve.

17In recent years, promising attempts have been made to address this weakness of FF-SS-
OCM [15].
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Fourier domain OCT, which uses line illumination to collect A-scans in parallel,

with reduced cross-talk effects compared to FF-SS-OCM [56]. Photon collection

in beam-scanned OCM can be enhanced via the use of Bessel beam illumination,

that can provide spatially-invariant transverse resolution and uniform photon

collection over an extended depth range [88, 12]. This approach requires the use

of separate illumination and collection beams (that can be difficult to align in

practice18) to enhance SNR [90, 33].

5.4.4 Potential synergy with optical coherence elastography

TF-OCM may benefit from ongoing research in the field of optical coherence

elastography (OCE). OCE is a technique used to infer sample mechanical prop-

erties by measuring material deformations resulting from a known perturba-

tion. The scientific problem addressed by OCE is very similar to that of TFM

[113, 75, 184]. Both forms of microscopy make use of the fundamental relation-

ship between forces, ECM properties, and deformations. They simply differ in

which part of this relationship is treated as an unknown quantity, and from what

source the deformations originate (externally applied vs. cell-induced). In fact,

OCE could benefit TF-OCM by providing access to the ECM mechanical proper-

ties required for reconstructing cellular traction forces in mechanically hetero-

geneous media. We envision that, compared to existing approaches for TFM,

an OCM platform could provide a more complete measurement of cell-ECM in-

teractions, where OCE is used to quantify material properties of a substrate or

tissue, followed by TF-OCM to monitor how cells behave and modify the en-

vironment. The ability to perform both OCE and TFM in parallel, to monitor
18Update since the original publication: Former lab member Gavrielle Untracht has informed

me from experience that these systems are very hard to align and maintain!
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dynamic changes in mechanical properties and cellular forces in 3D environ-

ments, would constitute a significant advance that could support studies into

the dynamics of biological systems that are not possible with current methods

used in mechanobiology research.

5.5 Conclusion

In this study, we have demonstrated the first usage of OCM to quantify dynamic

displacements induced in 3D media by cellular traction forces. This marks a

first step toward the development of TF-OCM as a new imaging technique in

the field of mechanobiology. By imaging and analyzing cells exposed to both

control and contractility-inhibiting conditions, we have shown that our tech-

nique allows for comparison of cell traction force behavior in an in vitro system

of interest to mechanobiology research. The high-speed volumetric acquisition

capabilities of TF-OCM offers several advantages over existing techniques, and

may create opportunities for new discoveries in cell mechanics at previously in-

accessible spatiotemporal scales, in both low- and highly-scattering biological

media. With the potential to leverage the existing foundation and future ad-

vances in both traditional TFM and elastography, TF-OCM is primed for future

development and application as a technique for advancing mechanobiology.
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CHAPTER 6

QUANTITATIVE RECONSTRUCTION OF TIME-VARYING 3D CELL

FORCES WITH TRACTION FORCE OPTICAL COHERENCE

MICROSCOPY
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6.1 Introduction

In our previous study (Chapter 5), we proposed traction force optical coher-

ence microscopy (TF-OCM) as a new technique for conducting traction force

microscopy (TFM, Chapter 2). Specifically, by leveraging the capabilities of op-

tical coherence microscopy (OCM, Chapter 3) and computational adaptive op-

tics (CAO, Chapter 4), TF-OCM would enable 3D TFM in scattering media with

high spatiotemporal resolution and high spatiotemporal coverage, thus meet-

ing as yet unmet imaging needs of mechanobiologists who study dynamic, 3D,

and collective cell behavior (Chapter 1). Although our pilot study demonstrated

that we could indeed use OCM+CAO to observe and measure deformations in-

duced by cellular traction forces (CTFs) exerted within a Matrigel substrate, we

did not demonstrate the feasibility of all components (e.g., quantitative force re-

construction) required to make TF-OCM a full-fledged experimental technique.

In this Chapter (and Ref. [112]), we refine and expand upon our previously

developed methods, and present a complete quantitative implementation of TF-

OCM. With this new technique, we quantified time-varying 3D CTFs exerted by

isolated NIH-3T3 fibroblasts embedded within a Matrigel substrate. This was

achieved by analyzing OCM images acquired with five-minute temporal sam-

pling, spanning a 500 × 500 × 500 µm3 field-of-view (FOV). In order to obtain

OCM images suitable for TFM, we developed a computational image formation

procedure which mitigates a variety of detrimental image artifacts.2 Although

this procedure was developed for TF-OCM, the underlying mechanisms and

techniques are relevant to other applications of computed OCT/OCM imaging

which require geometrically accurate (i.e., low-distortion) reconstructions of ob-

2These methods were previously discussed in Chapter 4.4. This was the study in which we
developed and first employed those methods.
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ject structure [95, 189]. The results shown here represent the first quantitative

implementation of TF-OCM. This work set the stage for future (and ongoing)

research toward the application of TF-OCM to more complex model systems,

such as multicellular spheroids embedded in collagen substrates (Chapter 7).

This study was originally published in Scientific Reports in 2019 (Ref. [112]).

6.2 Overview of quantitative TF-OCM

For a detailed discussion of TFM concepts and methods, see Chapter 2. A brief

review is provided here, for convenience and clarity.

TFM does not measure CTFs directly. Instead, CTFs are numerically re-

constructed based upon how they deform the surrounding environment. CTF

reconstruction requires the measurement of three key pieces of information:

(1) substrate mechanical properties, (2) substrate deformations in response to

CTFs, and (3) boundary conditions (e.g., environment boundaries and cell ge-

ometry). The first is obtained through mechanical characterization of the sub-

strate material (e.g., polyacrylamide, Matrigel, collagen, etc.). The latter two are

obtained through a combination of optical imaging and appropriate assump-

tions/constraints. To measure substrate deformations in particular, the sample

structure must be known from both a ‘deformed state’ (when CTFs are present)

and a ‘reference state’ (when CTFs are not present). The ‘reference state’ is typ-

ically induced by a chemically-mediated inhibition of CTFs at the end of an

experiment. Once the three key pieces of information are known, numerical

methods are used to reconstruct the CTFs.3 This entire procedure can be per-

3Note that this only yields a best estimate of the CTFs that would be expected to generate the
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formed in a variety of ways, creating opportunities for the development of new

methods, such as the TF-OCM technique presented here [110, 111, 112].

Our implementation of TF-OCM follows these same general procedures.

Here, NIH-3T3 fibroblasts were embedded in a Matrigel susbtrate containing

scattering polystyrene beads. The cells exerted contractile CTFs, causing the

Matrigel to deform, resulting in displacement of the scattering beads from their

resting (i.e., reference) positions. A contractility inhibitor (cytochalasin D) was

then added to the culture. In response, the cells relaxed, allowing the scatter-

ing beads to return to their resting positions (due to the elasticity of the sub-

strate). This process was observed over a three-hour period with five-minute

temporal sampling using a spectral domain OCM imaging system. Volumet-

ric images (spanning a 500 × 500 × 500 µm3 FOV) were reconstructed using

a customized procedure which combined CAO and additional computational

methods [112, 3, 155, 156, 55]. These images were then used to obtain mea-

surements of time-varying bead displacements, and to generate time-varying

discrete meshes of cell surfaces. These data, in addition to the mechanical prop-

erties of the Matrigel substrate (as characterized by bulk rheology), were fed

into a previously reported finite element method (FEM) procedure [44] to ob-

tain quantitative reconstructions of time-varying 3D CTFs.

The computational workflow underlying TF-OCM is a union of two mod-

ules, which are depicted by the flowchart in Fig. 6.1. The computational image

formation module generates a time series of high resolution, volumetric OCM

images of a cell and its surroundings. The TFM module uses this image data to

quantify time-varying 3D CTFs. It is important to note that, although CAO can

observed deformation data, given a particular mechanical model, regularization parameters,
etc.
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Figure 6.1: Data processing workflow of traction force optical coherence mi-
croscopy. A time series of volumetric images is reconstructed via the compu-
tational image formation module (left). These images are then used to quan-
tify time-varying 3D CTFs via the traction force microscopy module (right).
Reprinted from Ref. [112] as permitted under the CC BY 4.0 license for the orig-
inal work.

restore focal plane resolution throughout an imaged volume, the structure of

the resulting image is not necessarily a reliable representation of the true sam-

ple structure. This can be detrimental to the accurate measurement of substrate

deformations and subsequent quantification of CTFs. The numerous steps pre-

ceding CAO were used to mitigate factors that corrupt the image formation

process, and thus played a critical role in our implementation of TF-OCM.
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6.3 Results

6.3.1 Phase registration and bulk demodulation mitigate shear-

ing and motion artifacts in computationally refocused im-

ages

Since our implementation of TF-OCM relies upon the accurate reconstruction

of high resolution volumes via CAO, we had to design our computational im-

age formation module to ensure that interferometric phase instability and other

factors would not corrupt the image data [155, 156]. Figure 6.2 and Supple-

mentary Movie 1 (of Ref. [112]) demonstrate the impact and necessity of our

phase registration and bulk demodulation procedures for mitigating such ef-

fects. In Fig. 6.2, the red and green channels (which correspond to images gen-

erated by our computational image formation module with and without these

procedures, respectively) exhibit a depth-dependent transverse misalignment

with respect to one another. The severity of this misalignment increases linearly

with distance from the focal plane. In addition, the direction of the misalign-

ment has opposite signs on opposite sides of the focal plane. The red and green

channels are therefore distorted relative to one another by a shearing deforma-

tion (analogous to pushing against the side of a deck of cards). Supplementary

Movie 1 of Ref. [112], which depicts a time-lapse of the en face planes shown

in Fig. 6.2, reveals additional features of this misalignment. In panels (a) and

(c) of the animation, the embedded scattering particles are at depths far away

from the imaged NIH-3T3 fibroblast cell, and are expected to exhibit little to no

motion in the animation. This expected behavior is exhibited by the red (phase-
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Figure 6.2: Shearing artifacts in computationally refocused images. Panels
(a-c) were obtained from 3 separate depths, located 200 µm above, at, and
200 µm below the focal plane, respectively. The red channel corresponds to im-
ages obtained using our phase registration and bulk demodulation procedures,
whereas the green channel corresponds to images obtained without these proce-
dures. The green channel exhibits a depth-dependent translation artifact, corre-
sponding to a shearing of the reconstructed volumetric image. Additional spa-
tial and temporal variations in this artifact are visible in Supplementary Movie
1 of Ref. [112]. Reprinted from Ref. [112] as permitted under the CC BY 4.0 li-
cense for the original work.

registered and demodulated) channel. In contrast, bead positions in the green

(uncorrected) channel fluctuate over time. These fluctuations are non-uniform

across the FOV and are most prevalent along the left-right axis, corresponding

to the slow scanning axis of our imaging system (which is known to be more

susceptible to interferometric phase fluctuations [155, 156]). Given that the red

channel exhibits the behavior we expect to observe (i.e., little to no motion of

beads far from the cell), we conclude that our phase registration and bulk de-

modulation procedures are effective at mitigating shearing and motion artifacts

in computationally refocused OCM images, and are therefore beneficial to the

accuracy of TF-OCM.4

4Theoretical predictions of the described image artifacts may be found in Chapter 4.4. Simi-
lar analyses are also available in the Supplementary Methods of Ref. [112].
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6.3.2 Focal plane registration facilitates CAO over a wide field-

of-view for systems with non-ideal optics

Non-idealities in the sample arm optics can negatively impact the reconstructed

resolution and signal-to-noise-ratio (SNR) of computationally refocused OCM

images, and are therefore detrimental to both the tracking of bead displace-

ments and identification of cell boundaries in TF-OCM. In this study, non-

idealities in our optics caused the axial position of the focal plane to vary as

a function of lateral position (such that the focal plane appears slightly tilted

and/or curved).5 This resulted in an imaging point spread function (PSF) that

varied across the 500× 500 µm2 lateral FOV of our images. Since our implemen-

tation of CAO applies a refocusing operation that is laterally invariant, it cannot

account for lateral non-uniformity in the imaging PSF.

In the absence of our focal plane registration procedure6, refocused im-

ages exhibited a non-uniform lateral resolution after CAO, as demonstrated in

Fig. 6.3(b). To mitigate this effect, we devised a focal plane registration proce-

dure which maps the image data to a coordinate system in which the axial posi-

tion of the focal plane is laterally invariant. (See Fig. 6.3(a) for a visual example

of this transformation.) Following this procedure, images refocused with CAO

exhibited a lateral resolution that was uniform across the lateral FOV, as shown

in Fig. 6.3(c). These results show that our focal plane registration technique al-

lows for a standard implementation of CAO to refocus volumetric data over a

wide FOV (500× 500 µm2), even when non-idealities in the optical system cause

the focal plane to be tilted or curved with respect to the axes of the image data.

5See the discussions of focal plane curvature in Chapter 4.4 and Appendix J.
6‘Focal plane registration’ is the original name that I used to refer to ‘focal plane curvature

(FPC) removal’, which is discussed in Chapter 4.4.
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Of course, spatially-varying CAO reconstructions may instead be employed to

address this problem at the cost of greater complexity [83, 84]. However, the

methods used in this study may be considered as a simple alternative to be

used when the tilt/curvature of the focal plane is small.

6.3.3 Speckle reduction aids automated analysis of cell geome-

try from OCM images

As discussed previously, the reconstruction of CTFs requires knowledge of

cell shape/geometry. Cell tracing based on automated image segmentation

of OCM images can be difficult, due to the presence of speckle (such as that

shown in Fig. 6.4(a)), which is ubiquitous to coherent imaging modalities like

OCT/OCM, ultrasound, radar, etc. However, the alternative prospect of per-

forming manual cell tracing would have been prohibitive to conducting TF-

OCM in time-lapse settings. For example, the 10 time-lapse experiments per-

formed in this preliminary study spanned a total of 370 distinct time-points.

Performing manual 3D tracing typically would have required manual 2D trac-

ing of at least 15 slices from the volumetric image corresponding to each time-

point. For this study alone, that would have entailed performing manual tracing

for more than 5500 individual 2D images. To overcome this obstacle and keep

TF-OCM feasible for larger experiments in the future, we employed speckle

reduction methods to aid the automated analysis of cell geometry from OCM

images. To reduce speckle artifacts in and around the cell body, we combined

multiple sequentially-acquired OCM images (as detailed in Section 6.6.7), which

resulted in images like the one shown in Fig. 6.4(b). The reduction in speckle
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Figure 6.3: Effects of focal plane registration on volumetric image reconstruc-
tions. (a) Cross-section of a volumetric image obtained with (red channel) and
without (green channel) focal plane registration. The bright horizontal band
spanning both channels corresponds to the focal plane. (b,c) En face planes ob-
tained from a region centered 50 µm above the focal plane in volumetric im-
ages reconstructed with CAO. Only beads which exhibited little to no overlap
with neighboring beads were retained in these images. The methods for gen-
erating these panels are detailed in Appendix L.1.3. (b) En face plane recon-
structed without focal plane registration, exhibiting a lateral resolution which
varies across the FOV. (c) En face plane reconstructed with focal plane registra-
tion, resulting in a uniform lateral resolution. FWHM indicates the full-width-
at-half-maximum diameter of the polystyrene beads shown in (b,c). This value
is not a measurement of the post-CAO imaging resolution, but is directly corre-
lated to resolution and is therefore used here to demonstrate the impact of focal
plane registration. Color bar applies only to (b,c). Reprinted from Ref. [112] as
permitted under the CC BY 4.0 license for the original work.
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provided by our technique enabled automated image segmentation and iden-

tification of the cell body via K-means clustering [133], yielding 3D segmented

regions like that depicted in Fig. 6.4(c). Segmented regions were converted to

3D discrete meshes, as in Fig. 6.4(d), for use in our FEM solver.

Note that some of the finer structures visible in Fig. 6.4(a,b) were not re-

tained in the segmentation shown in Fig. 6.4(c). We found that our speckle

reduction method can suppress cellular structures which exhibit more static

speckle patterns over short time scales (e.g., static regions of fine filipodial

extensions). Unlike the remainder of the cell body (which exhibited dynamic

speckle patterns), these suppressed structures were not effectively captured by

our K-means clustering algorithm. For the purposes of this preliminary study,

we assumed that the 3D image segmentation (and resulting 3D meshes) gener-

ated by our automated methods provided a sufficiently accurate approximation

of the cell surface for quantifying time-varying CTFs. Additional future exper-

iments will be needed to determine whether the loss of fine cellular structures

by our algorithm has any significant impact on the accuracy of CTF reconstruc-

tions. More advanced algorithms may yield improved cell tracings with higher

fidelity [32], and this aspect of TF-OCM merits further work. Future iterations

of TF-OCM may also benefit from the incorporation of hardware-based speckle

reduction methods [95, 92]. However, the methods presented here do have the

advantage that they may be performed using standard OCM microscopes with-

out modification. That is, our methods only require the acquisition of additional

images in time, and do not require the introduction of additional hardware or

specialized scanning geometries.
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Figure 6.4: Automated segmentation of cell bodies aided by speckle reduction.
(a) En face plane extracted from a single depth in a single volumetric image. The
imaged NIH-3T3 fibroblast exhibits significant speckle artifacts, which hinder
automated segmentation. Arrow indicates cellular structure not retained by our
segmentation procedure (see text for details). (b) The same en face plane as in
(a), after combining eight sequential volumetric acquisitions. Speckle contrast
is reduced, allowing for segmentation via K-means clustering. (c) Summation
projection of the 3D segmented volume, which approximates the cell body. (d)
3D mesh of the cell body, generated from the data depicted in (c). Note that
(d) was generated from a different viewing angle as (a-c) to more clearly depict
the cell’s 3D shape. Reprinted from Ref. [112] as permitted under the CC BY 4.0
license for the original work.

6.3.4 TF-OCM quantifies 3D substrate deformations induced

by time-varying CTFs

Unlike the cell body or Matrigel substrate, the polystyrene beads embedded in

the sample generated very strong scattering signals, and so were readily seg-

mented for the purposes of localization and tracking over time. Figure 6.5 and

Supplementary Movie 2 (of Ref. [112]) depict the resulting measurements of 3D

substrate deformations (in the form of bead displacement data) from three rep-

resentative cells (referred to as cells 1, 2, and 3). These data show that, at the

beginning of each time-lapse experiment, cell force-induced deformations ex-

tended further than 100 µm from the cell body. After the addition of the con-

tractility inhibitor (cytochalasin D) 30 minutes into the experiment, there was a

delayed onset of cell relaxation, consistent with our prior work (Chapter 5)using
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similar force inhibition protocols [110]. Once relaxation began, bead displace-

ments declined until the beads arrived at their reference (i.e., assumed zero de-

formation) positions at the end of the experiment. (Note that although the

final (reference) image in each time-lapse experiment was assumed to corre-

spond to a state when cells were completely relaxed, this was not necessarily

the case for all cells. Details about this possible assumption failure and its con-

sequences can be found in Appendix L.2.3.) Cell 1 and cell 3 (Fig. 6.5(a,c), re-

spectively) demonstrated gradually increasing contractility, until the inhibitor

took effect and caused contractility to decline. Cell 2 (Fig. 6.5(b)), on the other

hand, demonstrated a relatively static level of contractility, which then declined

in response to the inhibitor.

Figure 6.6 summarizes the time-varying deformations observed in the vicin-

ity of each of the 10 cells examined for this study. These data demonstrate a

gradual decline in bead displacement by all cells after introduction of the con-

tractility inhibitor. The variability in contractility observed across these data

may be due to multiple sources, such as variable cell health and behavior (e.g.

migratory, resting, dividing, etc.) or errors in our image reconstruction proce-

dures. Overall, these results show that TF-OCM offers the capability to measure

CTF-induced deformations with minute-scale temporal sampling, enabling the

study of dynamic processes, such as the cell relaxation shown here.

6.3.5 TF-OCM quantifies time-varying, 3D cell traction forces

The results so far have depicted substrate deformation data and cell surface

geometry data obtained by our TF-OCM workflow (Fig. 6.1). After obtaining
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Figure 6.5: Time-varying, 3D substrate deformations measured with TF-OCM.
(a-c) Bead displacement data for three NIH-3T3 fibroblasts. Left panels depict
bead displacements at the time point immediately preceding the addition of
the contractility inhibitor, cytochalasin D. Arrows indicate bead displacements
with respect to their ‘reference’ positions. Arrow lengths are exaggerated for
visualization. Animations over time may be found in Supplementary Movie 2
of Ref. [112]. Right panels depict the mean magnitude of bead displacement as
a function of time and distance from the cell centroid (see Appendix L.1.3 for
details). The bead localization sensitivity along the x, y, and z axes were 37 nm,
32 nm, and 86 nm, respectively (see Section 6.6.6). Reprinted from Ref. [112] as
permitted under the CC BY 4.0 license for the original work.
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Figure 6.6: Average (mean) bead displacement magnitude for beads located
within 50 µm of the cell body, over time. The whiskers, boxes, and circles depict
the full range, interquartile range, and median value of the data (n=10 cells), re-
spectively. The contractility inhibitor (cytochalasin D) was added immediately
after time t = 30 minutes. Reprinted from Ref. [112] as permitted under the
CC BY 4.0 license for the original work.

the mechanical properties of the Matrigel substrate (see Section 6.6.2), time-

varying CTFs were reconstructed using FEM software [44]. Figure 6.7 depicts

CTF reconstructions at a single time point for the three fibroblast cells previ-

ously shown in Fig. 6.5. Animations of these reconstructions are provided in

Supplementary Movie 3 (of Ref. [112]). Note that cell 1 (shown in Fig. 6.7(a))

exhibited the greatest degree of polarization among the three cells shown, with

protrusions extending lengthwise into the surrounding medium. Cell traction

forces can be found concentrated at either end of the cell, consistent with prior

results from other TFM studies [89, 111]. Cells 2 and 3 (shown in Fig. 6.7(b,c))

were more spherical in shape. The reconstructed traction fields seem to reflect
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this relative lack of polarization, since the tractions appear more irregularly

distributed across the cell surface, suggesting that a more non-directional con-

tractile behavior is present. Irregular/fluctuating CTF distributions may also

result from measurement noise and/or numerical instabilities. This is a ma-

jor challenge for most CTF reconstruction methods, especially in 3D settings

[89, 152, 111].

Figure 6.8 summarizes how reconstructed CTFs of cells 1-3 changed over

time. Each data point represents the ‘total force’ exerted by a cell at a given time

point, oriented along its ‘principal axis of stress’ (defined in Appendix L.1.3).

These plots show that the forces exerted by the fibroblast cells tended to increase

until approximately 30 minutes after the addition of the contractility inhibitor,

after which their contractility declined. These curves also resemble the defor-

mation distributions in Fig. 6.5, as would be expected. Similar trends of initial

contractile behavior followed by relaxation are shown in Fig. 6.9, which summa-

rizes the total force reconstructed across all 10 cells examined in this study. The

variability between individual time-points (visible in Supplementary Movie 3

of Ref. [112], Fig. 6.8, and Fig. 6.9) may be due to a combination of factors, in-

cluding actual changes in CTF distribution, noise, and artifacts emerging from

the use of FEM. In particular (as detailed in Appendix L.2.4), the relatively low

bead density used in our samples may have impacted the quality of CTF re-

constructions in this study, and hence reduced the sensitivity of our TF-OCM

system to time-varying CTFs. Overall, these data have demonstrated the ability

of TF-OCM to measure trends in time-varying CTFs exerted by isolated cells

with minute-scale temporal sampling.
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Figure 6.7: CTF reconstructions at a single time point for three NIH-3T3 fibrob-
last cells (shown previously in Fig. 6.5). A time-lapse animation of this figure is
provided in Supplementary Movie 3 of Ref. [112]. Black arrows indicate mea-
sured bead displacements with respect to their reference positions. See text for
details. Reprinted from Ref. [112] as permitted under the CC BY 4.0 license for
the original work.
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Figure 6.8: Total force exerted by three NIH-3T3 fibroblast cells (shown previ-
ously in Figs. 6.5 and 6.7) over time. Black dashed line indicates when the con-
tractility inhibitor (cytochalasin D) was introduced to the samples 30 minutes
into the experiment. See Appendix L.1.3 for a description of the measurement
of ‘total force’ from 3D CTF distributions. Reprinted from Ref. [112] as permit-
ted under the CC BY 4.0 license for the original work.

6.4 Discussion

6.4.1 Computational image formation

TFM relies on the ability to perform accurate quantitative analysis of substrate

deformations. The implementation of TF-OCM in this study relied upon numer-

ous computational operations (in both the space and spatial frequency domains)

to achieve its objectives. These operations (shown in Fig. 6.1) included stan-
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Figure 6.9: Total force exerted by all (n=10) cells examined for this study. ‘Total
force’ is defined as in Fig. 6.8 and Appendix L.1.3. The whiskers, boxes, and
circles depict the full range, interquartile range, and median value of the data,
respectively. The contractility inhibitor (cytochalasin D) was added immedi-
ately after time t = 30 minutes. Reprinted from Ref. [112] as permitted under
the CC BY 4.0 license for the original work.

dard OCM image reconstruction procedures, coherence gate curvature (CGC)

removal, focal plane registration, phase registration, bulk demodulation, CAO,

and motion correction. Each of the steps in our computational image forma-

tion module involved coordinate transformations and/or phase manipulations

which can have dramatic effects on the final image structure, substrate deforma-

tion data, cell tracings, and CTF reconstructions. As a result, these steps offer

several opportunities for errors to emerge before the final image structure is gen-

erated. Optical distortions and the question of image fidelity are problems faced

when using any type of imaging system. Whether formed physically or through

computation, an image can only be a best attempt to represent the true underly-
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ing sample structure in a controlled and consistent manner. It is recommended

for any researchers interested in adopting our methods to carefully study and

understand the theory and implementations outlined in Chapters 4 and 7. You

may yet find more accurate or efficient methods than those developed during

this line of research.

6.4.2 Bead size and density

One potential disadvantage of the experimental methods shown here is the use

of relatively large (1 µm diameter) scattering beads. High concentrations of

beads allow for substrate deformations to be sampled more densely in space,

and therefore can help to mitigate the impact of error/measurement noise

and/or resolve the forces exerted by smaller cellular structures [29, 28]. In gen-

eral, beads used for TFM are typically at least one order of magnitude smaller

than the minimum desired bead spacing [61, 89, 126]. Using 1 µm beads al-

lows for a minimum bead spacing of approximately 10 µm (the actual spacing

in the experiments reported here was approximately 18 µm, thereby limiting

our ability to resolve stress features on the cell surface below this length scale).

We found that our current bead density limited the sensitivity of our system to

CTFs by contributing noise on the order of 18 nN, at the worst-case time point.

However, the median cell forces (as in Fig. 6.9) exceeded this noise contribution

by approximately one order of magnitude at the time points which exhibited

the poorest sensitivity. (A detailed description of these findings is provided in

Appendix L.2.4.) Future experiments with TF-OCM may use smaller beads to

allow for greater bead densities without disrupting substrate mechanics or cell

behavior. However, since a decrease in bead size tends to decrease the strength
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of the scattered signal from a given bead, any reduction in bead size must opti-

mize a trade-off between bead density and SNR of the bead signal with respect

to the imaging noise floor. In addition, the presence of highly scattering particles

may obstruct any co-registered fluorescence imaging which may accompany a

TF-OCM experiment. One solution to this problem may be to abandon scat-

tering beads entirely. TFM has been demonstrated using confocal reflectance

microscopy to track the motion of collagen fibers, instead of embedded beads

[76, 161]. OCT/OCM could similarly be used to image the deformation of fi-

brous extracellular matrix constituents for TF-OCM (see Chapter 7). If the scat-

tering structures (e.g., collagen fibers) are too small to resolve, speckle track-

ing methods (analogous to those used for optical coherence elastography [113]),

may be a possible solution.

6.4.3 Speckle

Speckle is another limitation of TF-OCM. This study required the use of speckle

reduction methods to perform TF-OCM based on automated analysis of time-

lapse OCM image data. Future implementations of TF-OCM based purely upon

OCT/OCM imaging will likely continue to rely on speckle reduction procedures

[32, 95, 92]. Alternatively, TF-OCM could be performed in conjunction with

co-registered fluorescence imaging to capture images of cell geometry with-

out speckle. If the cell shape changes slowly over time, fluorescence imaging

would not have to take place at every time-point, so as not to limit the temporal

sampling provided by the rapid volumetric acquisition of OCT/OCM imaging.

Moreover, fluorescence imaging may be confined solely to the cell/s of inter-

est while OCM is used to capture the full volumetric FOV under study, thereby
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keeping any photobleaching/phototoxicity from fluorescence imaging to a min-

imum during extended experiments.

6.4.4 Assumptions used for force reconstruction

Similar to many existing TFM procedures, the reconstruction of CTFs in this

study relied on several assumptions about the substrate medium (e.g., that the

material is linear elastic, and its mechanical properties are isotropic, homoge-

neous, and time-invariant). In practice, biopolymer substrates often violate

these assumptions. Inappropriate reliance on linear elastic (etc.) models can re-

sult in inaccurate CTF reconstructions and can create significant discrepancies

between experimentally measured substrate deformations and those predicted

by the (inadequate) mechanical model. The TFM field in recent years has seen a

growth in the development and adoption of more advanced mechanical models

to improve the accuracy of CTF reconstructions (see Chapter 2) [111]. Nonlinear

elastic models have been particularly useful in TFM for describing the behav-

iors of biopolymer substrates (such as collagen, fibrin, and Matrigel) [61, 161].

Viscoelastic models have also been shown to offer accuracy benefits over purely

elastic models in some situations [173]. For the Matrigel substrate used in this

study, we found our linear elastic model to be sufficient (additional details and

justification may be found in Appendix L.2.2). However, due to the inherent

modularity of TFM, future studies using TF-OCM could likely benefit from the

adoption of nonlinear and/or viscoelastic models for CTF reconstruction, even

if the image acquisition and image formation protocols developed for this study

remained unchanged. This may be especially important for future applications

of TF-OCM for the analysis of cell behaviors in substrates like collagen, which
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are typically of greater physiological relevance than the Matrigel substrate used

in this study.

6.5 Conclusion

In this study, we implemented quantitative TF-OCM for the first time, enabling

the reconstruction of time-varying 3D cell traction forces with minute-scale tem-

poral sampling. This was achieved by combining rapid OCM image acquisition

with computational image formation methods, applied to an otherwise stan-

dard TFM experimental protocol. As a result, TF-OCM has been demonstrated

to be a viable method for overcoming the limitations of typical TFM methods by

providing millimeter-scale volumetric coverage, high temporal sampling, and

a low risk of photobleaching/phototoxicity. Currently, TF-OCM has only been

applied to single cells. However, due to the ability of OCT/OCM to image over

large volumes in scattering media, TF-OCM may find its most impactful niche

in the study of physiologically-relevant multicellular constructs on spatial scales

ranging from hundreds of micrometers to millimeters, such as cell networks

and spheroids (see Chapter 7). Since OCM is capable of imaging native scat-

tering contrast, future implementations of TF-OCM may also enable the study

of CTFs in systems that do not have fiducial marker beads, a capability that is

currently uncommon in the TFM field. Moreover, TF-OCM is compatible with

optical coherence elastography [113, 87], making OCT imaging systems an at-

tractive platform for mechanobiology research as both techniques continue to

develop. Finally, due to the highly modular nature of the TF-OCM protocol, the

procedures used in this study may be readily improved, modified, or adapted

to a variety of alternative experimental settings, imaging preferences, and me-
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chanical models. Consequently, TF-OCM has significant potential for making

contributions to research in mechanobiology.

6.6 Methods

6.6.1 Sample preparation

Samples consisted of NIH-3T3 fibroblasts embedded in Matrigel containing

scattering polystyrene beads. Cells were maintained in tissue culture flasks

with media consisting of Dulbecco’s Modified Eagle Medium (DMEM), supple-

mented with 10% bovine calf serum, and 1% penicillin-streptomycin. To prepare

samples, the cells were trypsinized, pelleted, and resuspended in chilled (4◦C)

media at a concentration of 3.33 × 104 cells/mL. 1 µm-diameter polystyrene

beads (Spherotech Inc.) were added to the suspension to achieve a concentra-

tion of 5.3 × 108 beads/mL. The cell-bead suspension was added to Matrigel in

a 30:70 ratio, resulting in a final cell concentration of 1 × 104 cells/mL, and final

bead concentration of 1.6 × 108 beads/mL (yielding an average bead spacing of

approximately 18 µm). (The impact of bead density on the level of noise in CTF

reconstructions is explored in Appendix L.2.4.) The resulting mixture was de-

posited in 100 µL aliquots on glass-bottomed petri dishes and left to gel in an

incubator for 20 minutes, before being covered in culture media. Samples were

kept in an incubator overnight (∼12 hours) prior to imaging.
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6.6.2 Bulk rheology

Sample stiffness was characterized using a TA Instruments DHR3 shear

rheometer in a (flat) plate-plate geometry. Cell culture media and Matrigel were

mixed in a 30:70 ratio. For each test, the mixture was loaded and gelled under-

neath a 40 mm diameter plate on a temperature controlled testing stage at 37◦C

for 20 minutes. The sample stage was covered/sealed to mitigate evaporation.

We approximated the Matrigel hydrogel as a nearly incompressible substance,

by assuming a Poisson’s ratio of 0.45. (Note that the treatment of Matrigel as a

nearly/fully incompressible material has precedent in prior literature [26, 64]).

The Young’s modulus was found to be approximately 90 Pa. This value was

used as an input to the Finite Element Method solver used to reconstruct CTFs.

See Appendix L.2.2 for additional information regarding the validity of our lin-

ear elastic model.

6.6.3 Imaging system

All samples were imaged using a spectral domain OCM (SD-OCM) system. Illu-

mination was supplied by a Ti:Sapph laser (Femtolasers, INTEGRAL Element)

with a central wavelength of 800 nm and a bandwidth of 160 nm. Light was split

between the sample and reference arms by a 90:10 fiber coupler, yielding an in-

cident power of ∼5 mW in the sample arm beam. The sample arm was built in a

double-pass configuration with an Olympus XLUMPlanFL 20×/0.95 W∞/0 ob-

jective lens in an inverted configuration (i.e., samples were imaged through the

bottom of the glass-bottomed petri dish). Spectral data was acquired with a Co-

bra 800 spectrometer (Wasatch Photonics) and 2048-pixel line scan camera (e2v,
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Octopus7). The axial and lateral resolutions of the system were approximately

2.4 µm and 1.5 µm, respectively. All data acquisition was performed with a line

scan rate of 65 kHz and an exposure time of 10 µs. Under these conditions, the

system exhibited a sensitivity of ∼90 dB and fall-off of −5 dB/mm. The system

was controlled using custom software built in LabVIEW.

6.6.4 Time-lapse imaging protocol

Samples were held in position by an Okolab UNO-PLUS incubating stage

mounted to a (non-motorized) 3-axis translation stage. This incubating stage

maintained physiological temperature, humidity, and pH levels in the samples

during imaging. Due to the use of a non-motorized stage, only a single embed-

ded fibroblast cell was imaged per time-lapse experiment.8 For each time-lapse,

an isolated cell (i.e., a cell which occupied its own ‘personal’ 500 × 500 × 500 µm3

FOV within the Matrigel substrate) was located. This cell was aligned to the fo-

cal plane of the OCM system and centered within the lateral FOV. Time-lapse

imaging was then begun. Each time-lapse imaging experiment spanned a to-

tal of 3 hours. This 3-hour period was divided into two phases. The first phase

spanned the first 30 minutes of imaging. During this time, the baseline (contrac-

tile) behavior of the cell was monitored. At the end of this phase, a contractility

inhibitor (0.5 mM cytochalasin D dissolved in DMSO) was added to the petri

dish to achieve a final cytochalasin D concentration of 1 µM. The second phase

spanned the remaining time of the experiment (2.5 hours). During this phase,

cell relaxation in response to the contractility inhibitor was observed.

7For the reference of future readers in our lab: this specific spectrometer camera was a pro-
totype model for what is now the Teledyne e2v OctoPlus series of spectrometer cameras.

8We rectified this limitation for the work in Chapter 7.
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Bursts of volumetric images were acquired at five-minute intervals across

both phases of each time-lapse experiment. Each burst captured a single ‘full

FOV’ volume (spanning 2560 × 500 × 500 µm3 with 2048 × 1024 × 1024 voxels)

and eight ‘reduced FOV’ volumes (spanning 2560 × 125 × 125 µm3 with 2048 ×

256 × 256 voxels). This multi-acquisition/multi-FOV scheme was used to aid

in speckle reduction for automated segmentation of cell bodies. Each burst of

images took approximately 1.5 minutes to acquire. The laser shutter was closed

between each burst to limit sample exposure to laser light between acquisitions.

6.6.5 Computational image formation

The reconstruction of volumetric time-lapse images from raw OCM spectral

data consisted of six steps: (1) initial volume reconstruction, (2) coherence gate

curvature removal, (3) focal plane registration, (4) phase registration, (5) bulk

demodulation, and (6) computational adaptive optics. This procedure was de-

signed to provide accurate high resolution volumetric image data that is well-

suited for quantitative TFM applications. For a given time-lapse dataset, our im-

plementation of this procedure processed each time-point in series. However, it

should be noted that this procedure is also amenable to parallelization. All steps

were performed in MATLAB R2014b using CPU-based processing. In addition,

all procedures were automated, requiring no human input except where other-

wise noted in the detailed procedures, which are provided in Appendix L.1.1.

Data processing was performed on a work station equipped with 2 Intel(R)

Zeon(R) CPU E5-2650 v3 @ 2.30 GHz processors and 128 GB of memory. All

image formation and image processing steps (including image segmentation

and bead tracking) were performed at a rate of approximately 20 minutes per
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imaging time-point (including data read time from a remote server).

6.6.6 Measurement of substrate deformations

Substrate deformations were determined from the motion of the scattering

polystyrene beads embedded in the Matrigel substrate. Bead motion was

tracked using a time series consisting of the ‘full FOV’ images (described previ-

ously) in order to capture substrate deformations both near and far away from

the cell surface.

Since the scattering polystyrene beads exhibited a high signal strength well

above the noise floor, bead positions were localized with a simple segmentation

procedure. Volumetric image intensities were first normalized across depth.

This was followed by binarization via single-level thresholding. The binarized

images were then cleaned to remove objects that were too small or too large

to be scattering beads. Objects removed included those smaller than 16 vox-

els (i.e., those too small to be a bead), and those larger than the 99th percentile

of all objects larger than 16 voxels (such as the cell body, bead aggregates, or

protein debris). All remaining objects in the binarized images were assumed to

be beads. The location of each bead, was measured by calculating the intensity-

weighted centroid of each object in the binary image. The sensitivity of this bead

localization procedure was determined by measuring the standard deviation of

apparent (i.e., measured) bead displacements between two sequential images,

acquired in the absence of CTFs. The localization sensitivity was found to be

86 nm, 32 nm, and 37 nm along the vertical, fast, and slow axes of the imaging

system, respectively. (These values correspond to approximately one-fifteenth
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of the voxel size along each dimension.) The impact of this localization sensitiv-

ity on the level of noise in CTF reconstructions is explored in Appendix L.2.4.

Bead motion over time was determined using a feature vector-based point

tracking algorithm [43]. (Details regarding algorithm design and performance

under various conditions may be found in the original publication [43].) In

brief, the algorithm searches for pairs of bead positions (spanning pairs of time-

points) which are most likely to correspond to the same bead. Candidate pairs

of positions are then determined to be a ‘match’ based upon the relative motion

of other nearby beads (i.e., the algorithm assumes the substrate behaves as an

elastic solid with deformations varying on scales longer than the bead spacing).

Using this algorithm, bead positions were tracked across the full temporal span

of each time-lapse dataset.

Once the positions of all individual beads were determined across time, bead

displacements were calculated with respect to the final bead positions (i.e., the

reference positions, as discussed in Section 6.2) at the end of the experiment

(i.e., time t = tmax, or t = 3 hours, in our imaging procedure). Details about

this procedure, as well as motion correction, may be found in Appendix L.1.2.

We assumed both that the fibroblast cells exerted no forces and that the sub-

strate had no internal stresses or strain remaining at the end of each time-lapse

experiment. This is a standard practice in TFM experiments which use chemi-

cal reagents to inhibit cell contractility or induce cell death [111]. We did find

evidence of incomplete cell relaxation, in particular for cells 2, 5, and 6, which

violates this assumption. Details may be found in Appendix L.2.3.
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6.6.7 Image segmentation for the measurement of time-varying

cell geometry

Knowledge of time-varying cell shape and location was required in order to

provide the boundary conditions necessary for CTF reconstruction. The 8 ‘re-

duced FOV’ images (described previously) at each time-point were used to re-

duce speckle, and thereby enable a simple automated image segmentation pro-

cedure to identify the cell body. Due to the motion of intracellular components,

the speckle pattern varied between individual images. At each time-point, the

corresponding set of reduced FOV images was combined via a projection op-

eration. Specifically, the (speckle-reduced) output image was obtained via the

standard deviation of the magnitude of the corresponding reduced FOV images,

taken on a voxel-by-voxel basis.9 This caused regions of high speckle fluctuation

to be emphasized, and regions of static background scattering to be suppressed.

It also had the effect of reducing the speckle contrast within the cell body. K-

means clustering of a given speckle-reduced volumetric image yielded a binary

image from which a volumetric approximation of the cell body was obtained

(see Fig. 6.4).

6.6.8 Mesh generation

For each time-point, the binary image generated by image segmentation

was converted into a discretized 3D triangular surface mesh using the

9That is, assume you have 8 complex-valued ‘reduced FOV’ image signals Si(x, y, z, t) for
i ∈ {1, 2, . . . , 8}. The speckle-reduced image Ssr(x, y, z, t) was obtained via: Ssr(x, y, z, t) =[
(1/7)

∑8
i=1

(
|Si(x, y, z, t)| − S̄ (x, y, z, t)

)2
]1/2

, where S̄ (x, y, z, t) = (1/8)
∑8

i=1 |Si(x, y, z, t)|.
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iso2mesh [42] and ‘Smooth Triangulated Mesh’ [82] packages in MATLAB (see

Appendix L.1.2 for details about motion correction). This surface mesh was then

used to generate a volumetric tetrahedral mesh of the imaged volume in the

open source program, Gmsh [52]. The outer surface of the mesh was a cube de-

fined by the image boundaries, and the inner surface was defined by the cell

surface at that time-point. Finally, this volumetric tetrahedral mesh was con-

verted into a volumetric hexahedral mesh using the open source software pack-

age, tethex [2]. The final output of this procedure was a sequence of volumetric

meshes suitable for use in our CTF reconstruction software.

6.6.9 Reconstruction of time-varying 3D cell traction forces

The substrate mechanical characterization data, bead displacement data, and

3D mesh data produced by all the methods described above were used to recon-

struct time-varying 3D cell traction forces. CTF reconstruction was performed

using a previously reported custom FEM software package [44] based on the

open-source deal.II library [1]. (Details regarding performance using simulated

data may be found in the original publication [44].) In brief, the reconstruction

of cell traction forces is formulated as an inverse problem, which was solved

by minimizing the discrepancy between the measured bead displacements and

those that would be predicted to result from a candidate hypothesized traction

field. The Matrigel substrate was assumed to be linear elastic, homogeneous,

isotropic, and time-invariant. (These are standard, although neither universal

nor mandatory, assumptions used to make the inverse problem posed by trac-

tion force reconstruction tractable) [111]. Since cell motion was quasi-static for

any given time-point, the reconstructed traction field was required to satisfy
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force and moment balance. To optimize the trade-off between accuracy and in-

stability of the numerical solution, Tikhonov regularization was applied (using

a regularization coefficient value of 10−7, which was determined using the L-

curve method) [44]. The mechanical properties used as input were a Young’s

modulus of 90 Pa (measured, as described previously) and Poisson’s ratio of

0.45 (assumed). CTF reconstruction was carried out independently for each

time-point in a given time-lapse experiment. All force reconstructions were

performed on a work station equipped with 2 Intel(R) Zeon(R) CPU E5-2680

v2 @ 2.8 GHz processors and 190 GB of memory. As a result, all 370 time-points

processed for this study were computed in approximately 80 hours.
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CHAPTER 7

LABEL-FREE 4D IMAGING OF COLLECTIVE CELL INVASION IN

COLLAGEN FOR TRACTION FORCE OPTICAL COHERENCE

MICROSCOPY

Content reuse disclosure Figures and passages of this chapter have been

reprinted/adapted from a previously published journal paper of which I was

a contributing (second) author.1 The figures/passages of this chapter which

have been reprinted/adapted will be indicated, as appropriate. To view the full

contents of the original paper, please see Ref. [94].

Notice of intent to publish A majority of the findings, figures, and methods in

this dissertation chapter (i.e., not originating from Ref. [94]) form the contents

of a manuscript which is currently (as of this writing) under preparation for

submission to a scientific journal. Please note that those contents have not yet

(as of this writing) been subjected to independent peer review. The purpose of

the prospective manuscript is to highlight and detail the key TF-OCM methods

which were developed here. These methods provided critical experimental ca-

pabilities which enabled key components of the scientific study in Ref. [94]. The

detailed methods provided here (which are focused on microscope design, sig-

nal processing, and imaging capabilities) are not available in Ref. [94] (a study

on the role of obesity in breast cancer progression).

1Reprinted/adapted with permission from John Wiley & Sons, Inc.: L. Ling, J.A. Mulli-
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7.1 Introduction

In our previous study (Chapter 6, Ref. [112]), we presented the first quantita-

tive implementation of traction force optical coherence microscopy (TF-OCM).

TF-OCM was used to reconstruct the time-varying cell traction forces (CTFs)

exerted by isolated NIH-3T3 fibroblasts embedded within a 3D Matrigel sub-

strate laced with scattering polystyrene beads (which served as fiducial mark-

ers of CTF-induced substrate deformations). Although this study successfully

demonstrated the ability of TF-OCM to serve as a new technique for perform-

ing dynamic 3D TFM of isolated cells, it did not demonstrate the full imaging

capabilities of TF-OCM for the study of dynamic, 3D, collective behavior within

scattering media. Such capabilities are currently lacking in the TFM field and

could be of great value to the mechanobiology research community.

In this study, we refined and adapted our previously developed TF-OCM

imaging methods [112] to enable label-free 4D imaging of collective cell inva-

sion in collagen. Specifically, we used our TF-OCM imaging protocols and im-

age formation routines to perform time-lapse analysis of a tumor spheroid in-

vasion model. Spheroids consisting of monocultures and co-cultures of murine

adipose stromal cells (ASCs) and/or MCF10AT1 cells (a premalignant human

breast cancer model) were embedded in collagen. Invasion of cells into the sur-

rounding 3D substrate were observed for the next 48 hours via optical coherence

microscopy (OCM) with a 40-minute imaging interval. This multi-day invasion

process was associated with substantial changes in spheroid geometry, as well

as degradation and deformation of the collagen substrate. Before going into fur-

ther detail, we will review the underlying motivations for these experiments.
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7.1.1 Background and context

In a 2015 paper [153], the Fischbach Lab at Cornell University presented find-

ings which suggest a link between obesity, altered extracellular matrix (ECM)

mechanics, and altered cell behaviors which together promote the formation of

malignant breast cancer tumors. In brief, obesity alters the phenotype of ASCs,

which exhibit increased proliferation and deposit mechanically stiffer ECMs. In

turn, this promotes an increase in the number of myofibroblasts, which further

modify and stiffen the ECM (and promote further increases in myofibroblast

count via positive feedback). Finally, this (fibrotic) altered tissue promotes pro-

liferation and malignant behavior in mammary epithelial cells. In summary,

obesity alters the behavior of ASCs to induce fibrosis, which promotes malig-

nant cell behavior.

In a new study [94], the Fischbach Lab wished to investigate whether

obesity-associated ASCs could promote the invasion of tumor cells into sur-

rounding tissue (in addition to their previously described role in promoting ma-

lignancy by modifying ECM architecture). It was shown that MCF10A-derived

tumor cell lines (when embedded as a multicellular spheroid in collagen) in-

vade insignificantly on their own. However, direct contact with ASCs from ei-

ther lean (wildtype, WT) or obese (ob/ob) mice enabled the collective migration

of tumor cells into the surrounding substrate, with obese ASCs promoting inva-

sion more effectively than their lean counterparts. In order to better understand

the mechanisms by which obesity-associated ASCs promote invasion, we ex-

plored the role of ECM degradation (via matrix metalloproteinases) versus ECM

deformation (via cellular traction forces, CTFs).

My role, as an imaging scientist, was to develop new imaging capabilities
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that would provide access to critical data for new experiments, and thus allow

this investigation to take place.

7.1.2 Adaptation to required imaging capabilities

Carrying out the aforementioned investigation imposed various condi-

tions/restrictions which differ substantially from our previously reported TF-

OCM scenarios and methods [110, 112]:

1. Since we wished to observe the progression of collective cell invasion,

spheroids were monitored for 48 hours (with a 40-minute interval between

time-points), which is much longer than the 3-hour experiments that we

previously reported.2 Nevertheless, due to the label-free nature and low

incident power of OCM, we anticipated no significant hurdles here be-

yond the large quantities (∼50 TB) of raw data that would be acquired.

Due to the length of these experiments, we also automated our imaging

system, and enabled parallel imaging of at least 2-3 spheroids at a time.

2. Furthermore, since we wished to observe both degradation and deforma-

tion of collagen (which can occur simultaneously), we could no longer

rely upon the chemically-induced CTF inhibition protocols that TFM stud-

ies typically rely on. This is because the inhibition of CTFs is meant to

allow the substrate medium to relax back to an unstressed and unde-

formed state. Images from other time-points (i.e., when the substrate is

2Note that the 40-minute imaging interval was not chosen due to limits on image acquisi-
tion speed. Rather (due to the large quantities of raw data required), the interval was chosen
to balance the quantity of data which we acquired, the speed at which spheroid morphology
evolved over time, and the rate at which data could be transferred to remote storage during
active imaging experiments.
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stressed/deformed by CTFs) are compared to this state in order to mea-

sure substrate deformations. However, since we allowed sufficient time

for collagen degradation to take place, we could not determine the amount

of irreversible plastic deformations/residual stresses that accumulated

prior to CTF inhibition without additional a priori information. Therefore,

imaging began immediately after spheroid embedding so that the collagen

substrate could be imaged in its unstressed/undeformed state before the

spheroid had sufficient time to act upon it. As a result, we eliminated

the need to perform CTF inhibition. This had the additional benefit of al-

lowing us to continuously monitor the behavior of individual spheroids

for long periods of time (since CTF inhibitors would disrupt normal cell

behavior and physiological conditions at all subsequent time-points).

3. The collagen substrate generates strong scattering signals in OCM images.

This poses a challenge for distinguishing and segmenting cell bodies from

the surrounding medium using only native scattering contrast. Previ-

ously, we had only used optically clear Matrigel substrates for TF-OCM

[110, 112]. However, as will be shown, our previously developed meth-

ods for speckle reduction [112] adapted remarkably well to providing a

solution to this problem.

4. TFM methods typically rely on the addition of fluorescent/scattering fidu-

cial marker beads to measure substrate deformations. However, concerns

were raised that the addition of scattering beads to the substrate (as in our

prior studies [110, 112]) could influence/alter cell behavior. Therefore, we

decided to use the scattering contrast of OCM to measure the displace-

ment of collagen fibers directly (in similar fashion to a previous TFM study

using confocal reflectance microscopy [76]).
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5. Finally, the sheer size of our spheroids (hundreds of micrometers) neces-

sitated a lateral imaging FOV of at least 1 × 1 mm2. At these scales, non-

idealities in the imaging system can start to have substantial effects on

the fidelity of volumetric image data (e.g., by inducing image distortions).

This is detrimental to the quantitative measurement and analysis of CTF-

induced substrate displacements. In order to address this challenge, we

refined our previously reported computational image formation module

[112] and modified our optical hardware (see Fig. 7.7 and Appendix I).

7.2 Results

7.2.1 Temporal speckle contrast enables label-free, 4D visual-

ization of spheroid invasion behavior in collagen

One challenge of using label-free imaging (as in OCM/TF-OCM) is to iden-

tify the boundary between cells and the surrounding collagen substrate. In

order to address this challenge, we leveraged a ‘burst’ imaging protocol sim-

ilar to our previously reported TF-OCM methods [112]. For each time-point in a

given time-lapse experiment, a ‘burst’ of nine volumetric images was acquired

in rapid succession. Due to the short time period (∼12-15 seconds) between

individual acquisitions in a given ‘burst’, the observed speckle pattern from

(quasi-) static collagen fibers remained practically constant. In contrast, the ob-

served speckle pattern from cells exhibited significant changes over time, due to

the rapid motion of sub-resolution intracellular components between images.
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In order to take advantage of this temporal speckle contrast, the images of

a given ‘burst’ were combined into a single volumetric image via a ‘standard

deviation projection’ operation, which is defined in Eqn. 7.2. The resulting

image exhibited strong/enhanced contrast in regions with temporally unsta-

ble speckle patterns, and weak/suppressed contrast in regions with temporally

stable speckle patterns, consistent with similar existing methods [112, 191, 114].

This enabled the generation of two synthetic ‘channels’ from otherwise label-

free OCM image data: 1) A ‘cell’ channel which strongly correlates to live/active

cells and 2) a ‘collagen’ channel which strongly correlates to nonliving/static

collagen. (Quotes are used here to signify that the correspondence of a given

signal to actual cells and/or collagen lacks the direct specificity of fluorescent

labeling agents.)

The results of this process are depicted in Figs. 7.1 and 7.2. Row 1 (structural

OCT) contains standard label-free OCM images, corresponding to en face planes

which intersect the center (i.e., the ‘equator’) of the given spheroid. Although

it may be easy to distinguish the spheroid from the surrounding collagen at

time t = 0, the distinction between cells and collagen becomes less clear as time

progresses, especially in Fig. 7.1.3 However, in row 2 (cell channel overlay), we

obtain a clear picture of invasion activity by ‘labeling’ regions of high temporal

speckle contrast. We can further gain a sense of the 3D structure of the invading

spheroids by looking exclusively at the synthetic ‘cell’ channel (rows 3-5). Row 3

depicts a top-down view of this ‘cell’ channel, wherein each depth in the image

is assigned a different color based on its distance from the plane shown in rows

1 and 2, and the final image is obtained via a maximum intensity projection of

3This may be due to the initial formation of a smooth and distinct boundary between the
spheroid and collagen upon initial embedding, which becomes ‘rough’ and degrades as cells
invade the surrounding substrate.
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each color channel along the depth axis. Rows 4 and 5 depict 3D renderings

of the ‘cell channel’, where row 4 shows the surface of the spheroid from an

isometric viewing angle, and row 5 shows a ‘cutaway’ which reveals the interior

structure of the spheroid. The wild-type (WT, lean) ASC monoculture spheroid

in Fig. 7.1 exhibits a solid/confluent internal structure over time, whereas the

WT ASC + MCF10AT1 co-culture spheroid in Fig. 7.2 exhibits a central ‘core’

of cells which detached from the exterior ‘shell’ and migrated along the depth

axis until it was no longer visible to the imaging system. The presence of these

distinct structures in the co-culture spheroid is consistent with histology, such

as that shown in Fig. S1 of Ref. [94].

7.2.2 Label-free scattering contrast provides visualization of

collagen degradation

In addition to the ‘cell’ and ‘collagen’ channels discussed above, we also ob-

served a third feature: ‘voids’. These regions of low scattering signal corre-

spond to one of two features: 1) areas which cells initially occupied but vacated

over time, leaving behind fluid-filled spaces and cavities, or 2) areas in the col-

lagen substrate which have been degraded by invading cells (and are not cur-

rently occupied by cells). Both of these features are depicted in Fig. 7.3, with

Fig. 7.3(c) highlighting regions with degraded collagen, in particular. The abil-

ity to identify these ECM modifications is useful for understanding the mech-

anisms underlying the invasion process [94]. Unfortunately, these regions are

also prohibitive to conducting quantitative CTF reconstructions with TFM/TF-

OCM due to the complicated and heterogeneous mechanical environment and
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Figure 7.1: Invasion of WT ASC monoculture spheroid into collagen substrate
revealed via label-free OCM imaging and temporal speckle contrast. Traditional
OCM imaging (top row) records scattering signals of cells and collagen alike.
Temporal speckle contrast enables segmentation of volumetric data into syn-
thetic ‘cell’ and ‘collagen’ channels (rows 2-5). Scale bars = 200 µm. See text for
details.
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Figure 7.2: Invasion of WT ASC + MCF10AT1 co-culture spheroid into collagen
substrate revealed via label-free OCM imaging and temporal speckle contrast.
Traditional OCM imaging (top row) records scattering signals of cells and col-
lagen alike. Temporal speckle contrast enables segmentation of volumetric data
into synthetic ‘cell’ and ‘collagen’ channels (rows 2-5). Scale bars = 200 µm. See
text for details.
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boundary conditions that they present.

7.2.3 Elastic image registration reveals space- and time-varying

collagen displacements

Time-varying deformations of the collagen substrate were observed in conjunc-

tion with the previously described changes in spheroid morphology and colla-

gen degradation/remodeling. Unlike standard TFM methods which track the

motion of embedded fiducial marker beads, here, the motion of collagen fibers

was tracked directly (analogous to a previously reported TFM method based on

confocal reflectance microscopy [76]). Elastic image registration (via the built-in

MATLAB function imregdemons) was employed to estimate the time-varying

3D displacement field which would map the original collagen substrate at time

t = 0 hours to the deformed collagen substrate observed at any given time-

point during the first 24 hours of imaging. As a result, the time-varying colla-

gen displacement field could be quantified and visualized, as in Fig. 7.4. These

data revealed contraction of the collagen toward the spheroid body, with the

strength of contraction varying as a function of position. Regions of collagen

with stronger displacements likely indicate areas where the spheroid may be

exerting stronger contractile forces, although a quantitative reconstruction of

CTFs would be required to verify this hypothesis. However, even in the ab-

sence of CTF reconstructions, this deformation data alone can provide valuable

information for learning about cell/spheroid behavior [94, 162].
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Figure 7.3: Time-lapse OCM imaging reveals collagen degradation by invasive
strands. (a) En face plane intersecting the center (i.e., the ‘equator’) of a WT
ASC monoculture spheroid, acquired at time t = 0 hr. The spheroid (green,
highlighted via temporal speckle contrast) is recently embedded, and has not
yet invaded the surrounding collagen (white). (b) The same en face plane as in
(a), acquired at time t = 48 hr. Invasive protrusions are abundant. Large dark
regions surrounding the spheroid and invasive strands correspond to ‘voids’
with low/weak scattering signals, suggesting a lack of either cells or collagen.
(c) Time-lapse view of insets 1-3 from (a,b). Red arrows at time t = 48 hr in-
dicate newly formed ‘void’ regions where only collagen was initially present.
These new ‘voids’ are likely due to degradation of the collagen matrix by
invasive strands with matrix metalloproteinase activity. Panels (a,b) span a
750 × 750 µm2 lateral FOV.
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Figure 7.4: Visualization of 3D collagen displacements in the vicinity of an obese
(ob/ob) ASC + MCF10AT1 co-culture spheroid at time t = 24 hr. (a) Top-down
view of the spheroid, using the same depth-to-color projection as in row 3 of
Figs. 7.1 and 7.2. (b) Top-down rendering of the spheroid (shown in gray) ac-
companied by colored arrows which indicate displacement of the collagen ma-
trix as measured with respect to its initial configuration at time t = 0 hr. Arrow
lengths have been exaggerated for visualization purposes. (c) Re-rendering of
panel (b) from an isometric viewing angle. The flat surface of the spheroid cor-
responds to a region where the spheroid comes into contact with the coverslip
bottom of the petri dish.
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7.2.4 ASC-mediated tumor cell invasion correlates with matrix

metalloproteinase-independent collagen contraction

Given the substantial presence of collagen degradation in these experiments,

quantitative CTF reconstructions could not be performed at this time. However,

our TF-OCM imaging methods, and the resulting data, could still be used to

assess cell invasion behavior.

Elastic image registration was used to track displacements of the collagen

matrix over time. Representative displacements are depicted in the false-color

images and line plots of Fig. 7.5. These data show that MCF10AT1 cells in-

duce negligible deformations in the surrounding collagen. In contrast, both

lean and obese ASCs generate strong local deformations. Co-cultures of obese

ASCs with MCF10AT1 cells exhibited substantially greater collagen deforma-

tions than their lean co-culture counterparts. This suggests that force-based

mechanisms may play an important role in enabling invasion by obese ASCs.

To investigate this further, ob/ob ASC + MCF10AT1 co-culture spheroids were

treated with 10 µM batimastat, a broad spectrum inhibitor of matrix metallopro-

teinases (MMPs). (That is, batimastat inhibits the ability of cells to degrade the

collagen substrate.) Control and batimastat-treated co-culture spheroids (ob/ob

ASC + MCF10AT1) are depicted in Fig. 7.6. These data show that, although

batimastat-treated spheroids exhibited significant global reduction in invasion

(Fig. 7.6(a)), local regions of invasion were still present. These local invasive

regions were associated with collagen displacements that were comparable to

those of control spheroids. This demonstrates that the inhibition of collagen

degradation via MMP inhibitors is insufficient to halt invasion by obese ASCs,
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Figure 7.5: Collagen displacement for monoculture and co-culture spheroids.
(a) Schematic for quantification of collagen displacement. The line plots in (b,c)
were computed from the median radial displacement of collagen fibers, as mea-
sured across the gray surface (described in Section 7.5.9). The right-hand panel
depicts collagen fibers at t = 0 hr (green) and t = 24 hr (purple). Displacements
were tracked via elastic image registration. (b) Representative images of local
collagen displacement near monoculture spheroids at t = 24 hr. Median radial
displacements depict the full range of the data obtained from all spheroids of
the given type (MCF10AT1: n=2, WT ASC: n=3, and ob/ob ASC: n=3). (c) Rep-
resentative images of local collagen displacement near co-culture spheroids at
t = 24 hr, with plots of median radial displacement on the right (WT ASC +
MCF10AT1: n=3 and ob/ob ASC + MCF10AT1: n=2). Adapted with permission
from Ref. [94] c© WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2020)
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since these cells retain invasion competency via force-based mechanisms. In-

deed, it was shown in follow-up experiments (with confocal fluorescence mi-

croscopy) that invasion was significantly reduced by a co-inhibition of both col-

lagen degradation and cell forces [94].

7.3 Discussion

7.3.1 Image segmentation based on temporal speckle contrast

Although temporal speckle contrast proved remarkably useful for distinguish-

ing invading cells from the surrounding (quasi-static) collagen substrate, this

method does have weaknesses. In particular, in our previous study [113], we

showed that fine cellular protrusions (e.g., filipodia) can exhibit relatively static

speckle patterns over the time-scales of our ‘burst’ imaging protocol (i.e., fluc-

tuations on the order of 0.1 Hz observed for approximately 1.5-2 minutes). We

expect similar limitations to be present in this study. As a result, fine/static

structures may exhibit weak contrast after performing our ‘standard deviation

projection’ operation, and thus be incorrectly placed within the ‘collagen’ chan-

nel of our data. Future work with co-registered OCM and confocal fluorescence

microscopy images will be required to quantify the severity of this effect. Our

use of temporal speckle contrast also increases the amount of raw data that must

be acquired by nearly an order of magnitude. However, the ability to generate

synthetic imaging channels from label-free, long-term OCM image data may

outweigh this cost. Nevertheless, future work which seeks to reduce the amount

of data that must be acquired would be of great value. If large quantities of data
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Figure 7.6: (a) (Top) Representative images of local collagen displacement
near ob/ob ASC co-culture spheroids at t = 24 hr, under control and batimastat-
treatment conditions. Plots of median radial displacement were computed us-
ing the same method as Fig. 7.5(b,c) (control: n=2 and batimastat: n=3). (Bot-
tom) Corresponding morphology of the spheroids shown above. Color encodes
depth over a range of ±100 µm with respect to the spheroid equator. (b) Ex-
panded view of the inset regions shown in (a). The green and red insets (top)
depict regions with greater local invasion than the regions corresponding to
the blue and yellow insets (bottom). Median radial displacements computed
within these local regions are shown at the right. All color bars are in units of
micrometers. All scale bars = 200 µm. Adapted with permission from Ref. [94]
c© WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2020)
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are acceptable, and high-speed OCT/OCM imaging is available, the utility of

temporal speckle contrast may be further enhanced by enabling the generation

of multiple synthetic channels which correspond to different structures and/or

levels of metabolic activity [114].

7.3.2 Displacement tracking in collagen

Although we were able to quantify the displacement of collagen fibers via

elastic image registration (using the MATLAB function imregdemons), these

measurements cannot be expected to be reliable very close to the cell-collagen

boundary. This is because imregdemons uses Thirion’s ‘Demons algorithm’

[125, 178], which performs image registration via an iterative optimization pro-

cedure inspired by the optical flow equations. This is an ill-posed problem

which is often regularized via a diffusion (blurring/smoothing) process over

the computed displacement field and/or by imposing other constraints (such as

requiring that the computed displacement field correspond to a diffeomorphic

transformation) [125, 178]. Unfortunately, since invading cells can degrade and

migrate through the collagen substrate, a displacement field which ‘perfectly’

registers collagen fibers over time may exhibit jump discontinuities and/or be

non-invertible. The typical regularization schemes of the Demons algorithm

(i.e., isotropic and homogeneous spatial averaging) cannot accommodate these

types of features. Algorithms based on local cross-correlation/matching would

be simiarly vulnerable [76, 10], due to the spatial averaging inherent to cross-

correlation windows. In the event that migrating cells deposit new collagen

substrate, a valid displacement field may not even exist at all locations within

the collagen substrate at a given time-point. In order to obtain reliable collagen
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displacement data near the cell-collagen boundary (when such a measurement

is possible), alternative algorithms must be found or devised which account for

the complex boundary conditions which occur over long-term multicellular in-

vasion processes.

For example, regularization of the Demons algorithm via a spatial averag-

ing scheme which ignores cell-occupied regions (via spatially-varying averag-

ing kernels) may be a viable option. If such a solution cannot be found, the

incorporation and tracking of scattering fiducial marker beads within the colla-

gen substrate may be a suitable alternative so long as the presence of beads does

not appreciably alter cellular behavior. One advantage of the label-free contrast

leveraged by TF-OCM is that, unlike fluorescence-based TFM techniques for

which marker beads are typically required, our results here demonstrate that

marker beads are merely optional for TF-OCM.

7.3.3 Quantifying cellular traction forces

The reconstruction of CTFs exerted by large multicellular constructs embedded

in collagen over long time-scales is a problem that has yet to be addressed by

the TFM field. In addition to the challenges of image segmentation and dis-

placement tracking (described above), force reconstruction within collagen is

a challenging problem. In particular, collagen is mechanically nonlinear and

often exhibits heterogeneity across spatial scales. Moreover, cells can remodel

the collagen matrix, altering its mechanical properties over time. This makes

collagen supremely difficult to characterize and model to the degree necessary

for numerical CTF-reconstruction schemes. Although TFM researchers have be-
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gun to make forays into addressing this challenge [111] (see Chapter 2.4) much

work remains to be done to enable CTF reconstructions in complex multicel-

lular settings. In the meantime, our technique provides data that is useful

to mechanobiology research (spheroid/cell morphology and collagen displace-

ment data) even in the absence of quantitative CTF reconstructions. By making

such data more readily available for studies of multicellular systems embed-

ded in scattering media, our TF-OCM imaging methods may help provide the

data necessary to aid future research in quantitative CTF reconstructions. Other

OCM-based techniques, such as optical coherence elastography, may also be

used alongside our TF-OCM imaging methods to aid the characterization of lo-

cal, dynamic mechanical properties within biopolymer substrates [112, 87].

7.4 Conclusion

In this study, we adapted our previously reported TF-OCM imaging methods

[112] to enable the study of collective cell invasion within scattering media. We

demonstrated label-free 4D imaging capabilities, which used temporal speckle

contrast to reveal the evolving 3D morphology of invasive tumor spheroids em-

bedded in a collagen substrate. Using our methods, we were further able to

identify collagen degradation by invading cells and quantify deformations in

the collagen substrate surrounding the spheroid. These deformation data in

particular contributed critical data and results to a broader biological investiga-

tion on the role of obesity in promoting breast cancer invasion [94]. Although

much work remains to be done in order to enable quantitative TF-OCM in such

mechanically complex settings, our results demonstrate that our TF-OCM imag-

ing methods provide a promising and useful tool for enabling new studies of
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dynamic, 3D, and collective behavior within optically scattering media.

7.5 Methods

The following sections of the Methods below have been reprinted/adapted with

permission from Ref. [94] c© WILEY-VCH Verlag GmbH & Co. KGaA, Wein-

heim (2020):

1. Section 7.5.1 (Animal use)

2. Section 7.5.2 (Cell culture)

3. Section 7.5.3 (Spheroid/sample preparation)

4. Section 7.5.9 (Collagen displacement tracking)

7.5.1 Animal use

All experiments (described below) using cells isolated from animals were ap-

proved by the Cornell University Institutional Animal Care and Use Committee

(IACUC) under protocol number 2009-0117.

7.5.2 Cell culture

Adipose stromal cells (ASCs) were isolated from inguinal fat of 10-week-old

B6.Cg-Lepob/J (ob/ob) mice and their age-matched C57BL/6J wild-type (WT)

controls (Jackson Laboratories) according to previously published protocols
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[153]. MCF10AT1 cells were obtained from the Barbara Ann Karmanos Can-

cer Institute. (For the purposes of the broader study performed in Ref. [94])

MCF10AT1 cells were transfected with a commercially available turbo-green

fluorescent protein (GFP) vector (Thermo). Successfully transfected GFP+ cells

were sorted on a BD FACS Aria cytometer.

ASCs were cultured in DMEM/F12 media supplemented with 10% fe-

tal bovine serum and 100 U/mL penicillin-streptomycin. MCF10AT1 cells

were cultured in enriched DMEM/F12 media supplemented with 5% horse

serum, 10 µg/mL insulin, 0.5 µg/mL hydrocortisone, 100 ng/mL cholera toxin,

20 ng/mL EGF, and 100 U/mL penicillin-streptomycin. All cell lines were

maintained in incubators at 37◦C and 5% CO2, with media changes every two

days. For co-culture experiments, a 1:1 ratio of the respective media for each cell

type was used. Batimastat-treated spheroids used modified media containing

10 µM batimastat.

7.5.3 Spheroid/sample preparation

96-well tissue culture plates were coated with 50 µL/well of 1.5% agarose di-

luted in DMEM/F12. This coating solidified to form a non-adherent surface

(which promotes the coalescence of cells into spheroids). MCF10AT1 cells,

ASCs, or co-cultures of the two (in a 1:1 ratio) were seeded into each well of

the agarose-coated plate and placed on a rotating shaker (60 rpm) overnight to

form multicellular spheroids.

Glass-bottomed petri dishes (Matsunami, 35 mm diameter well) were di-

vided into three distinct wells/sectors via the addition of a handcrafted divider.
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This divider was made from a 1.5 mm thick sheet of PDMS with three equal-

sized compartments cut out, and was covalently bonded to the glass-bottomed

petri dishes following plasma treatment.

High concentration rat tail collagen I (Corning) was reconstituted and neu-

tralized with sodium hydroxide (NaOH) and 10×DMEM/F12 to a final concen-

tration of 6 mg/mL. Collagen and spheroids were deposited on the prepared

3-well dishes (1 spheroid/well). In order to promote the formation of thick col-

lagen fibers, the dishes were held at 4◦C for 15 min, 20◦C for 15 min, and finally

37◦C for 15 min. Each gel was then immersed with media and transported to

the incubating bio-chamber (described below).

7.5.4 Imaging system

All images were acquired using a custom-built spectral domain OCM imaging

system (depicted in Fig. 7.7) which was developed based upon our previously

reported system (Chapter 6, Ref. [112]) with minor modifications. Light was

supplied by a Ti:Sapph laser (Femtolasers, INTEGRAL Element, central wave-

length = 800 nm, bandwidth = 160 nm) and distributed within the microscope

by a fiber coupler (Thorlabs TW805R2A2, 90% to the reference arm, 10% the to

sample arm). (The power incident upon biological samples was approximately

4-5 mW.) Polarization in each arm was controlled and matched via manual fiber

polarization controllers (Thorlabs FPC560). Custom-length fiber patch cords

were added to reduce the total dispersion mismatch between the two arms (see

Appendix D).

In the sample arm, light exiting the optical fiber was collimated using a

223



Figure 7.7: Diagram of our custom-built OCM imaging system for perform-
ing high-resolution, wide-FOV, low-distortion imaging. Comp: computer. BLS:
broadband laser source. Spec: spectrometer + line-scan camera. FC: fiber cou-
pler (90% to reference arm, 10% to sample arm). FPC: fiber polarization con-
troller. DCF: dispersion compensating fiber (each arm contains different lengths
of fiber). A: aperture. M: mirror/retro-reflector. GM: galvanometer mirror (x,y
denote the axis along which each mirror tilts). (Note: Only the position of the
galvanometer mirrors along the optical path is depicted here.) d: galvanome-
ter mirror separation (13.69 mm, imposed by housing). L1: Collimating lens
( fL1 = 19 mm). L2: Telescope lens ( fL2 = 100 mm). Cyl: Cylindrical lens ( fx = ∞,
fy = +700 mm, which helps to compensate for coherence gate curvature result-
ing from the physical separation between the x and y galvanometers along the
optical axis). L3: Objective lens (idealized). IBC: incubating bio-chamber.

(Thorlabs AC127-019-B) lens. Beam angle was scanned using a pre-mounted

galvanometer mirror pair (Cambridge Technologies, ProSeries 1, 10 mm aper-

ture, 10 V analog communication, S4 coating). The separation of the two gal-

vanometer mirrors along the optical axis (as determined by their housing) was

d=13.69 mm. The two galvanometer mirrors were (approximately) imaged to

the back focal plane of the objective lens (Olympus LCPlan N 20×/0.45 IR,

air immersion) via a custom-built 1:1 magnification 4F telescope. The tele-

scope consisted of three lenses: two f =100 mm lenses (Thorlabs AC508-100-B)

at the front and back, and one fx = ∞, fy = +700 mm cylindrical lens (Thor-
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labs LJ1836L1-B) at the center. The cylindrical lens was used to compensate

for coherence gate curvature (CGC) [55, 112], which emerges due to the sepa-

ration (d) of the galvanometer mirrors along the optical axis (see Appendix H).

A theoretical model and validation experiment for this system is detailed in

Appendix I. As shown in that analysis, the ‘optimal’ focal length of the cylindri-

cal lens was predicted to be approximately (100 mm)2/(13.69 mm)≈ +730 mm.

The +700 mm lens that was used here was the nearest readily available ‘off-

the-shelf’ part. With this design, our system reduced CGC to at most 6% (and

may be capable of reducing CGC to as little as 1.5%) of its original severity (i.e.,

compared to the case when no CGC-compensating cylindrical lens is used).

In the reference arm, light was collimated as in the sample arm and then

reflected via a retro-reflector (Thorlabs PS975M-B) mounted to a single-axis mi-

crometer stage (Newport 9064-X, for fine position adjustment), which was fur-

ther mounted to a rail (for coarse position adjustment). The amount of returning

light was controlled via a manual tunable aperture.

The objective lens was mounted so as to image samples in an inverted con-

figuration (i.e., from underneath). Samples were held above the objective lens

in an incubating bio-chamber (Okolab UNO-PLUS), which was used to main-

tain physiological temperature, humidity, and pH throughout time-lapse exper-

iments. The bio-chamber was mounted to a 3-axis micrometer stage (Newport

9064-XYZ-R). Linear stepper motors (Thorlabs ZST225B motor, KST101 con-

troller, and KCH601 controller hub/power supply) were used to control the

position of all 4 micrometer stages in the system (3 axes to control the posi-

tion of the bio-chamber in the sample arm, and 1 axis to control the distance

to the retro-reflector in the reference arm). These motors were controlled via
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commands issued in MATLAB R2017a.

Raw image data were acquired using a spectrometer (Wasatch Photonics,

Cobra 800) with a 2048-pixel line scan camera (Teledyne e2v OctoPlus). Gal-

vanometer mirror scanning and data acquisition were controlled via custom

software built in LabVIEW. Data was acquired using a line-scan rate of 55 kHz

and an exposure time of 10 µs. The system exhibited a sensitivity of ∼90 dB and

a fall-off of −5 dB/mm. The axial and lateral resolutions of the system were

approximately 2.4 µm and 1.5 µm, respectively. In order to perform automated

multi-day time-lapse imaging, the data acquisition software, motors, laser, and

computer-to-server data transfers were orchestrated via a master control pro-

gram implemented in MATLAB R2017a.

7.5.5 Time-lapse imaging protocol

Immediately after spheroid embedding, the sample dish (containing 2-3

spheroids) was placed within the bio-chamber. Manual adjustment of the 4 lin-

ear motors was used to establish a set of control points for each spheroid. These

control points defined a fixed position for each motor to hold when acquiring

images of the corresponding spheroid. The control points for a given spheroid

were selected such that: (1) the spheroid was centered within the lateral FOV

of the system (sample arm x/y control points), (2) the ‘equator’ of the spheroid

was roughly aligned to the focal plane (sample arm z control point), and (3)

the spheroid and coverslip surface (at the base of the dish) appeared within an

acceptable range of locations within the axial FOV of the imaging system (refer-

ence arm z control point). Establishing control points for all of the spheroids in
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a given dish required approximately 10-15 minutes, in total.

Prior to beginning time-lapse imaging, a ‘calibration image’ was acquired

for each spheroid. For a given spheroid, the motors were commanded to move

to their corresponding control points. Then, one of the lateral (x/y) motors was

adjusted such that the FOV was centered at a point 1-1.25 mm to the side of the

spheroid. This resulted in the spheroid being removed from the FOV, such that

only ‘empty’ collagen substrate remained. An image of this region was then

acquired for use during OCT image reconstruction. (The use of this calibration

image is detailed in Section 7.6.3.) This process (which was performed manually

for each spheroid in the dish) required approximately 5-10 minutes, in total.

Once the above procedures were completed, time-lapse imaging was begun.

Images of each spheroid in the dish were acquired at 40-minute time inter-

vals for a total of 48 hours. (In between rounds of imaging, the laser shutter

was closed to avoid optical heating of the sample.) For a given spheroid and

time-point, nine volumetric images were acquired in rapid succession, simi-

lar to the ‘burst protocol’ used in our previous study (Chapter 6, Ref. [112]).

The nine images consisted of 1 ‘full FOV’ volume (spanning a lateral FOV of

1.25 × 1.25 mm2 for larger co-culture spheroids, or 1 × 1 mm2 for smaller mono-

culture spheroids, using 1024×1024 lateral pixels) and 8 ‘reduced FOV’ volumes

(spanning a lateral FOV of 937.5 × 937.5 µm2 for larger co-culture spheroids, or

750 × 750 µm2 for smaller mono-culture spheroids, using 768×768 lateral pixels).

Each such ‘burst’ of volumetric data generated approximately 24 GB of raw data

(resulting in each time-series experiment generating approximately 1.75 TB of

raw data per spheroid). Each burst required ∼2 minutes to acquire. Imaging of

3 spheroids in a single dish (including sample repositioning between spheroids)
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required approximately 8-10 minutes per time-point. This left approximately 30

minutes of ‘down time’ between each (40-minute interval) time-point for raw

data to be transferred to a remote high-capacity server.

7.5.6 OCT image reconstruction (summary)

Volumetric OCT images were reconstructed from raw image data using a cus-

tom procedure similar to that described in our previous study (Chapter 6)

[112]. In brief, this procedure was designed to minimize both spatial distortions

within individual OCT volumes and relative spatial distortions between OCT

images in a single time-series. The procedure consisted of 6 key components:

(1) (depth-selective) OCT volume reconstruction, (2) coherence gate curvature

removal, (3) phase registration, (4) focal plane curvature mitigation, (5) bulk

demodulation, and (6) computational adaptive optics. (Evidence and discus-

sions regarding the need/reasoning for these procedures may be found in our

previous publication [112].) Since the implementation of these procedures has

been modified since our previous study, flow charts and equations detailing

these updated procedures have been provided in Section 7.6. All OCT image

reconstruction and subsequent image processing was performed in MATLAB

R2018a.

7.5.7 Drift correction

Despite the use of precision motors for sample positioning, small amounts of

bulk drift (along x, y, and/or z) were present between time-points. Our OCT
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image reconstruction procedures (Section 7.6) automatically corrected for drift

along the z-axis. Drift along the lateral dimensions was measured and corrected

separately after OCT image reconstruction.

In order to measure the lateral drift at each time-point, first, an average OCT

image was computed via a ‘mean projection’ of the 8 reduced FOV images ob-

tained for a given time-point. That is, denoting the N = 8 reduced FOV images

by Si(x, y, z, t) for i ∈ {1, 2, . . . ,N}, the average OCT image S̄ (x, y, z, t) was obtained

via:

S̄ (x, y, z, t) =
1
N

N∑
i=1

|Si(x, y, z, t)| (7.1)

For a given time-point, 4 sub-volumes were extracted from this average OCT

image, corresponding to regions along each of the 4 sides of the lateral FOV. The

lateral dimensions of these sub-volumes were selected to be as large as possible

while still excluding the spheroid body and glass surface (which appeared at

the center of the FOV) and thus only contained signals from the surrounding

collagen substrate. (For a visual representation, these regions of interest are

analogous to the four sides of the region depicted in Fig. 7.14.) The drift of each

sub-volume with respect to the corresponding sub-volume of the previous time-

point was computed to sub-pixel precision via 3D cross-correlation. The total

lateral drift of a given time-point with respect to the previous time-point was

taken to be the median value of the individual drift values reported across all 4

sub-volumes. Total drift with respect to the first time-point was then computed

via cumulative summation from time t = 0 up to the given time-point. This

lateral drift was removed from all OCT images which were used for subsequent

processing.
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7.5.8 Cell and collagen channel synthesis

Reconstructed OCT images were split into two synthetic ‘channels’ correspond-

ing to cells and collagen/background medium, respectively. To achieve this, the

8 reduced FOV images acquired for a given spheroid and time-point were com-

bined via a ‘standard deviation projection’. That is, denoting the N = 8 reduced

FOV images by Si(x, y, z, t) for i ∈ {1, 2, . . . ,N}, the output image Sσ(x, y, z, t) was

obtained via:

Sσ(x, y, z, t) =

√√
1

N − 1

N∑
i=1

(
|Si(x, y, z, t)| − S̄ (x, y, z, t)

)2
(7.2)

where S̄ (x, y, z, t) is defined as in Eqn. (7.1). Similar to our previously reported

method [112], this technique leverages temporal speckle contrast to distinguish

rapidly changing structures (primarily cells) from static background structures

(primarily collagen), resulting in a synthetic ‘cell’ channel. ‘Cell’ channel im-

ages were down-sampled by a factor of 768:400 via the MATLAB function

imresize3 in order to perform smoothing and reduce computational load.

These images exhibited a depth-dependent additive ‘background’. This depth-

dependent background profile was estimated by computing the median depth-

dependent intensity profile from a volumetric region along the periphery of the

lateral FOV of the ‘cell’ channel image (analogous to the previously described

region of interest used to perform lateral drift correction). This background pro-

file was then subtracted from the original image, yielding the completed ‘cell’

channel image.

Preliminary binary images were generated from each (down-sampled) ‘cell’

channel image by applying a 5 × 5 × 5 voxel median filter followed by thresh-

olding via Otsu’s method. Noise and non-cell structures in these preliminary

binary images were mitigated/removed via 4D region growing. Specifically, at
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the first time-point, only the spheroid (the largest connected structure) was re-

tained from the preliminary binary image. The resulting ‘clean’ binary image

then served as the ‘seed’ image for the second time-point. The only structures

retained from the preliminary binary image of the second time-point were those

which exhibited partial or complete spatial overlap with the structure present

in the seed image. This resulted in a clean binary image for the second time-

point, which then served as a seed image for the third time-point, and so on.

(Note that this algorithm is vulnerable to ‘losing’ cells which break away from

the spheroid body and migrate away fast enough as to exhibit no spatial overlap

with cells in the image of the previous time-point. However, we did not observe

substantial instances of this phenomenon with our 40-minute imaging interval.

Decreasing this interval could be used to mitigate this problem in the future.)

In order to generate the ‘collagen’ channel, first, S̄ (x, y, z, t) was computed

from the 8 reduced FOV images for each time-point. Similar to the ‘cell’ channel

images, these volumes were down-sampled by a factor of 768:400. The values of

any voxels corresponding to ‘cells’ (as determined by the cleaned binary images

described above) were set to 0, yielding the complete ‘collagen’ channel image.

7.5.9 Collagen displacement tracking

Collagen deformations were measured across the first 24 hours of images us-

ing elastic image registration via the built-in MATLAB function imregdemons

(which uses Thirion’s ‘Demons Algorithm’, an iterative, large-deformation ex-

tension to optical flow techniques) [125, 178]. Specifically, this function was

used to compute the 3D displacement field required to register the ‘collagen’
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channel image of the first time-point to the ‘collagen’ channel image of any

given time-point acquired during the first 24 hours of imaging. Displace-

ments were not computed for later time-points beyond the 24 hour mark be-

cause the progression of invasive protrusions (and associated collagen diges-

tion/degradation and deformation) became substantial, and so the assumptions

underlying the Demons Algorithm (and most other standard elastic image reg-

istration algorithms) break down [125]. As detailed in Section 7.3, further work

with more advanced image registration algorithms will be required to enable

reliable quantitative reconstruction of cell traction forces. However, the meth-

ods used here have been assumed to be sufficiently accurate to demonstrate the

value of our imaging methods/capabilities for TF-OCM and mechanobiology

research.

For a given time-point, the resulting output displacement field u was given

in Cartesian coordinates: u(r) =
〈
ux(x, y, z), uy(x, y, z), uz(x, y, z)

〉
. Radial compo-

nents of the measured displacement field were computed from these data via

the relation:

ur(r; r0) = u(r) ·
r − r0

|r − r0|
(7.3)

where r0 = 〈x0, y0, z0〉 is defined as the center of the spheroid body at time t = 0.

z0 was determined by the depth (z) for which the initial spheroid body displayed

the greatest lateral area (i.e., z0 = arg max Asph(z)). x0 and y0 were obtained from

the lateral center of mass of the spheroid body.

The line plots in Figs. 7.5(b,c) and 7.6(a) depict the median radial displace-

ment of collagen fibers across a fixed set of positions (the gray surface in

Fig. 7.5(a)). This surface was located 150 µm from the surface of the initial

spheroid body (at time t = 0) and spanned ±15◦ with respect to the spheroid
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‘equator’. More precisely, assume the initial spheroid body is approximately

spherical with center r0 and radius R0 (computed as R0 =
√

Asph(z0)/π). The

median radial displacement was then obtained via:

ûr,Ω = median [{ur(r; r0) : r ∈ Ω}] (7.4)

where

Ω =

{
r : |r − r0| = R0 + 150 µm ∧

|(r − r0) · 〈x − x0, y − y0, 0〉|
(|(r − r0)|) (|〈x − x0, y − y0, 0〉|)

≥ cos(15◦)
}

(7.5)

7.6 OCT image reconstruction procedure

In this section, we provide detailed flow charts and equations for the OCT image

reconstruction procedure that we developed and used in this study. Note that

more detailed explanations/justifications underlying many of the operations

below may be found in Ref. [112] and/or Chapters 3 and 4.

7.6.1 Depth-selective OCT volume reconstruction

OCT images were reconstructed from spectral data by applying the standard

operations of background subtraction, spectrum resampling, dispersion com-

pensation, and the Fourier transform. In order to enable the reconstruction of

small/specific depth ranges (as opposed to the full depth range of the avail-

able axial FOV), a matrix multiplication-based method analogous to previ-

ously reported algorithms [27, 97, 140] was employed. Specifically, for a (post-

background subtraction) A-scan of spectral data v(kb, x, y) for b ∈ {1, 2, . . . , 2048},

the OCT image signal s(za, x, y) at a given integer depth index a was computed
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via:

s(za, x, y) =

2048∑
b=1

v(kb, x, y) exp
(
− j

(
2kbza + α2

(
kb − k̄

)2
+ α3

(
kb − k̄

)3
))

(7.6a)

=

2048∑
b=1

Θabv(kb, x, y) (7.6b)

where a is constrained to the set of integers a ∈ {1, 2, . . . , 2048}, j =
√
−1, kb

denotes the wavenumber of the bth spectrometer pixel (determined by man-

ufacturer generated data sheets), k̄ = 0.5(k1 + k2048), za = ∆z(a − 1025) for

∆z = (2047/2048)(π/|k2048 − k1|), and (α2, α3) denote (manually calibrated) dis-

persion compensation parameters. Note that ∆z corresponds to the height of

each voxel in terms of optical path length (OPL). The physical height of a given

voxel is ∆z/n, where n is the local refractive index of the imaged medium (taken

to be n = 1.34 within the collagen medium).

There were two regions of interest within the imaged volumes. The first is a

narrow range of depths za ∈ Zcoverslip which contain the coverslip surface (i.e., the

base of the glass-bottomed sample dish) across all time-points. The second is a

larger range of depths za ∈ Zspheroid which contain the spheroid and surrounding

regions across all time-points. Examples of these regions are depicted in Fig. 7.8.

7.6.2 Coherence gate curvature removal and phase registration

As detailed in Chapter 4 and Appendices H and I, coherence gate cur-

vature (CGC) is a consequence of non-idealities in imaging system de-

sign/implementation and/or sample positioning which distort OCT images. A

flat surface may appear to be tilted and/or curved in OCT images acquired by a

system corrupted by CGC. Unlike our previously described methods (Chapter 6
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Figure 7.8: Depth-selective OCT image reconstruction and regions of interest.
See text for details.

and Ref. [112]), which used a single computational procedure for mitigating

CGC, here we employed a three-pronged hybrid approach to obtain more ro-

bust results. The majority of CGC was removed via the cylindrical lens in-

corporated into our updated imaging system (discussed in Section 7.5.4 and

Appendix I). Residual CGC was removed computationally in two steps, here-

after called coarse and fine CGC removal. The latter step simultaneously per-

forms phase registration (another key operation for OCT image reconstruction).

CGC calibration and removal were performed independently for each image

and time-point (except where otherwise noted).

Calibration

The first step is a calibration stage (depicted in Fig. 7.9), which performs cal-

ibrations for both coarse and fine CGC removal (and phase registration). An

OCT image of the Zcoverslip region is reconstructed according to Eqn. (7.6a). The
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Figure 7.9: Calibration procedure for both ‘coarse’ (left column) and ‘fine’ (right
column) coherence gate curvature removal (and phase registration). See text for
details.

laterally varying axial position of the coverslip surface (in units of single-pass

OPL) is then approximated by the function:

zc(x, y) = cxxx2 + cxyxy + cyyy2 + cxx + cyy + c0 (7.7)

This completes the calibration stage for coarse CGC removal. Next, the Zcoverslip

region is reconstructed again while applying coarse CGC removal via:

Ŝ (za, x, y) =

2048∑
b=1

Θabv(kb, x, y) exp (− j2kb (zc(x, y) − z0)) (7.8)

where z0 is defined as the value c0 obtained for the first time-point in the time-

lapse data set. In the resulting 3D image, the coverslip will appear nearly flat

and level, and will be centered at the OPL position z = z0. Note that by using

the same value of z0 for all time-points, all reconstructed images in a given time-

series will be automatically registered/aligned along the z-axis. The coarsely-

corrected image is next cropped along the z-axis such that only ∼11–21 voxels
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remain along the z-axis centered around the position z = z0. This cropped vol-

ume will be referred to as Sextract(z, x, y). This completes the calibration stage for

fine CGC removal and phase registration.

Execution

The cropped volume Sextract(z, x, y) is used to perform both fine CGC removal

and phase registration. Note that although this volume was extracted from the

Zcoverslip region of the sample, it may be used for the reconstruction of any sub-

region from the full OCT data set (e.g., the Zspheroid region). In order to perform

fine CGC removal and phase registration to a volume P(z, x, y), Sextract(z, x, y) is

first zero-padded along the z-axis until it is of the same size as P(z, x, y). Then,

the following operation is performed:

Pr(z, x, y) = F −1
z→qz

[
Fz→qz

[
P(z, x, y)

]
exp

(
− j arg

(
Fz→qz

[
Sextract(z, x, y)

]))]
(7.9)

where Fz→qz and F −1
z→qz

denote the forward and inverse Fourier transform along

the z-axis, respectively, and Pr(z, x, y) denotes the output volume (which lacks

CGC and is phase-registered). This procedure is depicted in Fig. 7.10.

7.6.3 Focal plane curvature removal

Focal plane curvature (FPC) is another consequence of non-optimal system de-

sign and/or sample positioning. This results in the focal ‘plane’ appearing tilted

and/or curved, even after CGC removal has been performed (i.e., the curvature

of the focal plane does not necessarily match that of the ‘coherence gate’). This

results in OCT images which exhibit a laterally-varying point spread function
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Figure 7.10: Fine coherence gate curvature removal and phase registration. See
text for details.

(PSF), which conventional refocusing algorithms (such as the computational

adaptive optics (CAO) procedure used in this study) do not accommodate, due

to the assumption of a laterally-invariant PSF. Alternative formulations of CAO

which account for lateral variation do exist [84, 83]. However, such procedures

can be computationally expensive and complicated to calibrate and perform. In

our previous study [112], we demonstrated an alternative procedure for FPC

mitigation which enables the use of computationally efficient CAO algorithms

that leverage lateral invariance assumptions.

Calibration

Unlike our previous study (which measured/calibrated FPC from images of

the sample directly), here we used a separate calibration data set (which is de-

scribed in the Section 7.5.5). This calibration data set was used to obtain a mea-
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Figure 7.11: Calibration procedure for focal plane curvature removal. Note that
the focal plane appears curved even though the coverslip surface appears flat
and level. See text for details.

surement of FPC, which was subsequently applied to all images in the corre-

sponding time-series. The reason for this change in procedure is a consequence

of the new experimental settings encountered in this study. In our previous

study, we imaged isolated cells which occupied a miniscule fraction of the total

volumetric FOV. Therefore, FPC was readily measured from images of the sam-

ple. However, the spheroids imaged in this study occupied a large fraction of

the volumetric FOV, and substantially obstructed the focal plane across much

of the FOV. This prevented automated measurements of FPC using only images

of the spheroid(s). The calibration data sets used in this study contained no

spheroid (but were instead acquired near the corresponding spheroid). This pro-

vided a clear and unobstructed view of the geometry of the focal plane across

the entire FOV. The FPC measured from this data set was assumed to be a suit-

able proxy for the otherwise infeasible FPC calibration of the spheroid images.

FPC calibration was performed as depicted in Fig. 7.11. First, CGC calibra-
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tion is performed on the calibration data set. Then, the ‘focal plane region’

of the sample (which is analogous to the Zspheroid region, but with no spheroid

present, given the nature of the calibration data set) is reconstructed while ap-

plying coarse CGC removal, fine CGC removal, and phase registration. The

laterally varying position of the focal ‘plane’ (in units of single-pass OPL) is

approximated via:

z f (x, y) = fxxx2 + fxyxy + fyyy2 + fxx + fyy + f0 (7.10)

This completes the calibration stage for FPC removal.

Execution

In order to apply FPC removal (as depicted in Fig. 7.12), the Zspheroid region of

the spheroid image is first reconstructed via:

Ŝ (za, x, y) =

2048∑
b=1

Θabv(kb, x, y) exp (− j2kb (zc(x, y) − z0)) exp
(
− j2kb

(
z f (x, y) − z̄ f

))
(7.11)

where z̄ f is defined as the mean value of z f (x, y) across the lateral FOV. Note

that this formula is nearly identical to that for coarse CGC removal (Eqn. (7.8)),

with an extra phase term added for performing FPC removal as well. Follow-

ing this reconstruction, fine CGC removal and phase registration are performed

via Eqn. (7.9) to obtain a phase registered image in which the focal plane ap-

pears flat and level (although the coverslip surface appears curved, due to the

mismatch between CGC and FPC). This volume, which we will call Sr(z, x, y), is

compatible with digital refocusing procedures which assume a laterally invari-

ant PSF.
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Figure 7.12: Procedure for joint application of coarse CGC removal, fine CGC
removal, phase registration, and FPC removal. Note that this results in an image
where the focal plane is flat and level, but the coverslip surface is not. See text
for details.

7.6.4 Bulk demodulation

Optical misalignments and/or sample tilt can result in the OCT image signal

undergoing a bulk phase modulation across the lateral dimensions. Failing to

account for this modulation can result in depth-dependent shearing artifacts

which emerge after applying CAO (see Chapter 4.4).

Calibration

Calibration/measurement of the bulk modulation in the system was performed

as depicted in Fig. 7.13. First the ‘full FOV image’ (defined in the Section 7.5.5)

from the first time-point in a given time-series is reconstructed using the CGC

and FPC removal procedures detailed previously. Next, any depths contain-

ing a glass surface are windowed out from the volume or set to 0 (since the
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signal from such reflective surfaces can overwhelm/corrupt the calibration pro-

cedure). The remaining volume then undergoes the following operation:

M(qx, qy) =

∫ ∣∣∣F(x,y,z)→(qx,qy,qz)
[
Sr(z, x, y)

]∣∣∣ dqz (7.12)

where F(x,y,z)→(qx,qy,qz) denotes the 3D Fourier transform operation. The resulting

real-valued function M(qx, qy), which is displayed in the upper-right panel of

Fig. 7.13, approximates the lateral spatial frequency content of the image signal.

Given the use of Gaussian beams in our system, M(qx, qy) has an approximately

Gaussian profile and is off-centered with respect to the origin (qx = 0, qy = 0) due

to the bulk phase modulation of the image signal (which we wish to measure

and remove). Performing peak-finding along the qx- and qy- axes results in a

measurement of the bulk modulation coefficients: (qx,0, qy,0).

Execution

Once this calibration was performed, all volumes in the time-lapse data set were

demodulated according to:

Sd(z, x, y) = Sr(z, x, y) exp
(
− j

(
qx,0x + qy,0y

))
(7.13)

In doing so, it was assumed that the bulk modulation was constant across the

entire time-lapse data set.

7.6.5 Computational adaptive optics

Computational adaptive optics (CAO) [3] was used to compensate for depth-

dependent degradation of the lateral resolution of the OCT system. Here, we as-

sumed that this degradation was due entirely to defocus (and not higher-order
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Figure 7.13: Calibration procedure for bulk demodulation. See text for details.
The red boxed region in the upper-left panel shows the region that is used to
perform the calibration (note that it excludes the glass surface which appears
near the top of the image). M(qx, qy) (defined in the text) is shown in the upper-
right panel. The intersection of the two red lines denotes the origin of the lateral
spatial frequency domain.

optical aberrations). In order to perform CAO, first the depth of the focal plane

must be calibrated.

Calibration

For a given time-point, the ‘full FOV’ image was reconstructed using the pro-

cedures described above (CGC removal, FPC removal, phase registration, and
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Figure 7.14: 3D region of interest for axial localization of the focal plane. The
image shown in the right-hand panel intersects the origin of the lateral FOV. See
text for details.

bulk demodulation). Next the average axial intensity profile was computed

from the 3D region of interest depicted in Fig. 7.14. (Note that this region ex-

cludes both the spheroid body as well as any glass surfaces which appear in

the image.) Curve-fitting was performed in order to find the peak of this axial

intensity profile and thus obtain the depth zfocus of the focal plane (in terms of

physical distance). This zfocus position was used for performing CAO across all

images of the spheroid acquired for the given time-point.

Execution

Next, CAO/defocus-compensation was performed via:

Sf (z, x, y) = F −1
(x,y)→(qx,qy)

F(x,y)→(qx,qy)
[
Sd(z, x, y)

]
exp

− j(z − zfocus)

√(
2nk̄

)2
− q2

x − q2
y


(7.14)

where F(x,y)→(qx,qy) and F −1
(x,y)→(qx,qy) denote the forward and inverse 2D Fourier

transform across the lateral dimensions, respectively, n denotes the refractive
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Figure 7.15: Procedure for defocus compensation with computational adaptive
optics. See text for details. Panels at the right depict en face planes before and
after CAO at the depths indicated by the three colored lines spanning the top-
middle panel. Red/top: 225 µm above the focal plane. Green/middle: 112.5 µm
above the focal plane. Blue/bottom: Focal plane. Scale bars = 200 µm.

index of the sample (here, n = 1.34 was used), and k̄ is defined as before (and

corresponds to the central wavenumber measured by the spectrometer of the

imaging system). Following this operation, the magnitude of the (complex-

valued) image signal was normalized with respect to depth z. (Note that the

normalized image remains complex-valued!) The results of this procedure are

depicted in Fig. 7.15.

7.6.6 Focal plane curvature restoration

In this study, we applied the same ‘ideal coordinate system’ heuristic es-

tablished in our previous study [112] (and defined in Chapter 4.4). That is,

the ideal/final coordinate system for our reconstructed OCT images was as-

sumed/defined as the one in which the coverslip surface appears both flat and
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Figure 7.16: Focal plane curvature restoration. The CAO-processed image (left)
is transformed to a final output image (right) wherein the coverslip surface ap-
pears both flat and level. See text for details.

level. However, CAO could only be performed while the focal plane was flat and

level. Therefore, the final step in OCT image reconstruction is to restore the focal

plane curvature to its original curved state, which returns the coverslip surface

to its ‘ideal’ flat and level state.

For a reconstructed OCT volume with N ≤ 2048 pixels along the axial di-

mension (recall that our spectrometer camera had 2048 pixels), a frequency-axis

vector qz ∈ R
N×1 is defined such that:

qz,i =
2π
∆z

(
i − 1

N

)
, for i ∈ {1, 2, . . . ,N} (7.15)

where ∆z is defined as before. Then, FPC restoration is performed via:

F −1
z→qz

[
Fz→qz

[
Sf (z, x, y)

]
exp

(
− jqz

(
z f (x, y) − z̄ f

))]
(7.16)

The final reconstructed image that results from this procedure is depicted in

Fig. 7.16. Note that this volumetric image signal is a complex-valued function.

All subsequent image processing (detailed in Section 7.5), were performed on

the magnitude of this image signal.
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CHAPTER 8

CONCLUSION

8.1 Scientific contributions

The scientific contributions of this dissertation and its associated research pro-

gram are two-fold. First, Chapters 2-4 have provided a strong educational foun-

dation which can help new researchers to understand and (hopefully) continue

the work outlined in the remainder of this dissertation. Second, Chapters 5-7

have presented key methods and findings which enabled the development of

TF-OCM as a new experimental technique to study the dynamic mechanical

behavior of cells and multicellular collectives within scattering media.

TF-OCM was demonstrated to enable the quantitative reconstruction of dy-

namic 3D cell forces exerted by isolated cells within a 3D hydrogel medium

[110, 112]. This was enabled by the development of image formation routines

which mitigate numerous system non-idealities, and have since proven useful

to other research pursuits in the OCT/OCM field [95, 189]. Finally, these TF-

OCM imaging methods were adapted to enable the study of multicellular in-

vasion within scattering collagen substrates over multi-day time-lapse experi-

ments. These experiments would not have been feasible without TF-OCM. The

resulting image data (although not suitable for quantitative cell traction force re-

construction due to the limitations of image processing methods and available

mechanical characterization/modeling capabilities) provided valuable insights

and key findings in a collaborative study led by mechanobiology researchers

investigating the role of obesity in breast cancer metastasis [94].
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These achievements demonstrate the utility of the TF-OCM methods devel-

oped here to enable and promote research into the dynamic, 3D, and collec-

tive behavior of cells within optically scattering media. Moreover, the capabil-

ities provided by TF-OCM have been shown to offer an unprecedented range

of spatiotemporal imaging capabilities compared to current standard imaging

methods in TFM (i.e., confocal microscopy). With a millimeter-scale volumetric

FOV, micrometer-scale resolution, second-to-minute-scale volume acquisition

rates, compatibility with long-term time-lapse experiments, label-free contrast

suitable for possible future in vivo applications, and deep imaging penetration

depths up to the millimeter-scale in optically scattering bio-polymers, TF-OCM

provides a truly unparalleled capacity to adapt and thrive in the demanding

settings of modern research into the biophysical interactions of cells with their

surrounding environments. Since no other TFM imaging platforms have been

demonstrated to provide such capabilities to date, these methods currently hold

a unique position for contributing to the field of mechanobiology. These contri-

butions could be substantial, especially if TF-OCM finds widespread adoption

across the OCT research community, which has close ties to both fundamental

science and clinical research settings.

8.2 Future work

Many possibilities remain to further adapt and improve the methods outlined

in this dissertation.
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8.2.1 OCT image formation

The methods that were developed here for the mitigation of imaging system

non-idealities (Chapter 4.4) were based on simplified models and heuristics

which enable the use of simple, efficient, and consistent algorithms. More ad-

vanced models and algorithms may further enhance the quality of reconstructed

images. One question which remains unanswered is whether various system

non-idealities (such as CGC, FPC, and bulk modulation) can be coupled to-

gether with a single model. A model that connects these phenomena could be

used to address the inherent ambiguity that is present in current mitigation pro-

cedures. For example, it is currently difficult to distinguish true sample tilt from

tilt which emerges due to coherence gate curvature. However, perhaps bulk de-

modulation or other features could be used to infer the relative contributions of

true tilt and CGC to the total apparent tilt of an imaged sample. Likewise, per-

haps knowledge of true sample tilt and measured CGC could be used to predict

the shape of FPC, and thus eliminate the need for the extra ‘calibration images’

that were required for the spheroid imaging experiments in Chapter 7.

8.2.2 Image segmentation

Temporal speckle contrast has proved to be immensely useful for enabling

speckle reduction and image segmentation within both clear and highly scat-

tering media. As a result, otherwise label-free OCT images reveal detailed

structures that would not be readily visible with typical ‘monochrome’ OCT

imaging. Of course, work remains to be done to further validate and charac-

terize the ability of temporal speckle contrast to capture fine cellular features
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against a background of scattering media. Co-registered confocal fluorescence

imaging would be a useful feature to incorporate into an OCT/OCM imaging

system, especially since so much of biological research relies upon fluorescent

labeling. The fluorescence microscope could provide critical labeling informa-

tion at sparse moments in time, while the OCT system provides rapid volumet-

ric imaging for time-resolved observation of dynamic cell behavior. Of course,

generating temporal speckle contrast is extremely costly in terms of data load,

and so any methods that might be used to reduce the amount of data required

to generate sufficient contrast would be extremely valuable to both rapid and

long-term imaging experiments.

On the other end of the spectrum, if a large data load is acceptable, temporal

speckle contrast may be used to generate a more detailed picture of biological

activity on cellular and sub-cellular scales [114, 191]. Perhaps differences in the

spectral profile of temporal speckle contrast (i.e., across a wide range of rates of

speckle evolution) could be used to distinguish different cell types, or identify

the response of cells to stimuli. In this manner, novel information may be ac-

cessed without ever needing to resort to fluorescent labels. Although this may

be a somewhat fanciful notion for many in vitro applications where labels are

already ubiquitous, in vivo or clinical applications may make deeper investiga-

tions into temporal speckle contrast a valuable endeavor.

8.2.3 Image processing

As discussed in Chapter 7, current standard image registration routines are ill-

suited to the tracking of collagen deformations in the near vicinity of invasive

250



cellular protrusions. Collagen degradation and cell migration create jump dis-

continuities and non-invertible transformations which standard algorithms are

not designed to accommodate. Algorithms which enable the independent track-

ing of cell motion and collagen motion (without blurring the displacement field

across their mutual boundary) would likely be helpful in resolving this prob-

lem. If all else fails, scattering fiducial marker beads may be incorporated. Scat-

tering beads typically exhibit strong signals that are easy to track. However,

these beads may alter cell behavior and may not be able to ‘sample’ the collagen

displacement field as densely as ‘direct’ tracking methods.

8.2.4 Quantitative force reconstruction

As detailed in Appendix L, numerous tests are required to validate even simple

TFM experiments involving isolated cells in mechanically linear media. Future

experiments with quantitative TF-OCM will likely require equivalent or similar

validation experiments in the future, as well as investigations of sources of noise

and other errors.

One interesting experiment to perform would be to acquire two distinct ‘ref-

erence’ states in a TFM experiment. The first would be a ‘natural’ reference state

(as in the time t = 0 images of the experiments in Chapter 7, which recorded

a collagen substrate in an undeformed and unstressed state immediately after

spheroid embedding). The second would be a ‘synthetic’ reference state (as

in the final time-point of the experiments in Chapter 6, which recorded a Ma-

trigel substrate after cells were exposed to a contractility inhibiting reagent).

Discrepancies between the ‘natural’ and ‘synthetic’ reference states would pro-
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vide a potential means to quantify plastic deformations due to residual stresses

and/or remodeling of the substrate medium. I am not currently aware of any

TFM methods which do this.

Quantitative force reconstructions in viscoelastic and/or nonlinear media

will require a combination of high-quality displacement tracking, mechani-

cal characterization, and numerical solving routines. Since attaining these ca-

pabilities requires diverse teams, and potentially a lot of time and funding,

TFM/TF-OCM researchers may need to step back and evaluate how their meth-

ods can have the greatest research impact, if not the greatest accuracy. As in

Chapter 7/Ref. [94], if quantitative forces are not explicitly required to test a

given hypothesis, then seeking other forms of data may be of greater benefit to

advancing research. Displacement/deformation/strain data may prove equally

valuable for quantifying the mechanical behavior of biological systems [162].

In fact, if we think forward to clinical settings, deformation data may be the

most viable/valuable option, assuming wide-scale mechanical characterization

and modeling of tissues will remain difficult for at least the next decade or so.

Even if micro-scale deformations at the cell level prove infeasible to measure

in patients, large-scale deformations during tumor development/suppression,

wound healing, etc. may provide valuable insights into biological processes,

even if quantitative force reconstructions are never achieved in these settings.

8.2.5 An OCT/OCM-based platform for mechanobiology

Finally, as has been stated numerous times elsewhere in this dissertation, op-

tical coherence elastography (OCE) [113] provides a potential means to quan-
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tify spatially and temporally heterogeneous mechanical properties in biological

media. OCE is much like TF-OCM. Whereas TF-OCM uses mechanical charac-

terizations and substrate displacement data to infer cellular forces, OCE uses

artifically applied forces and measurements of substrate displacement data to

infer mechanical properties. This presents a natural potential synergy between

the two techniques (OCE for mechanical characterization and TF-OCM for the

analysis of cell forces and behavior, while sharing microscope hardware). A

platform which unites these two techniques could provide valuable label-free

imaging capabilities for probing tissue and cell mechanics in both laboratory

and clinical settings. This has begun to appear all the more feasible with the

emergence of OCE methods with strongly localized probing capabilities [87].
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8.3 So many questions, so little time

I would hate to end this dissertation simply trailing off into silence while I muse

about the possible future of my research field. However, I do not have much

choice, do I? If you have already read through most of this work (you poor

soul), then you already know I have said enough to merit an end to my writing

(and release you too from my prison)! If you have simply found your way here

without reading substantial portions of the rest of this dissertation, then I must

question your motives! Are you trying to get ideas from me without doing the

derivations that I asked you to learn?! No matter. If you are managing to move

science forward, then I will leave you to your methods! I hope that I have been

of help to you along your journey.

So with that, I will say...thank you for reading!

Take care,

Jeffrey
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APPENDIX A

SELF-INTERFERENCE ARTIFACTS

If the sample contains a strongly reflective interface (e.g., a glass-air interface),

that interface can act as a ‘local reference mirror’, meaning that the sample arm

effectively contains a secondary common-path interferometer nested within the

primary double-path interferometer of the OCT microscope. The image artifacts

resulting from such a scenario can closely resemble the ‘true’ OCT image, but

will be shifted along z, since the common-path interferometer is performing

a TOF measurement with respect to the strongly reflective interface, which is

likely to be located at a different OPL than the reference arm mirror. This im-

age is typically weaker than the desired OCT image generated by the primary

interferometer, but can still significantly corrupt the desired image signal.

A.1 A common mistake

On several occasions, I have observed researchers in the lab making a common

mistake related to self-interference artifacts. I will narrate the scenario with the

(understandably) confused perspective of the researcher.

Often, a researcher is imaging a sample with a glass-air interface at the sur-

face. They adjust the axial position of the sample, and suddenly, their OCT

image appears. That is well and good. However, something is wrong. The im-

age signal appears weaker than they would expect. It also behaves strangely.

The glass-air interface appears ‘stuck’ at the ‘top’ (i.e., z = 0) position of the

OCT image. That is, when they physically move the sample up and down along
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z, the reconstructed image of the sample does not move at all. Interestingly, the

focal plane can be seen moving up and down within the static image. Similarly,

adjusting the axial position of the reference arm mirror (which would likewise

be expected to result in the reconstructed image moving up and down) results

in no change. In fact, blocking the light of the reference arm (e.g., with an in-

dex card) does not cause the reconstructed image to vanish. As we learned in

Chapter 3, however, the reference arm is a necessary contributor to the OCT sig-

nal. How can an image exist without the reference arm?!

Well, the answer is that:

1. The glass-air interface at the surface of the sample is acting as a ‘local ref-

erence mirror’. Since the surface is so clean and well-behaved, the self-

interference artifacts that result look just like a regular OCT image. We

will call this phenomenon a ‘self-interference image’.

2. The (self-interference) image signal is weak because the ‘local reference

mirror’ is a poorer reflector than the ‘real’ reference mirror, and so the

strength of the interference patterns that encode the self-interference im-

age are weaker than those that encode a typical OCT image.

3. Since z = 0 is defined as the position at which the sample arm OPL matches

the OPL of the ‘reference surface’ (be it the reference arm mirror or the

‘local reference mirror’), the glass-air interface is automatically mapped to

the z = 0 position in the self-interference image.

4. Since moving the sample up and down also moves the glass-air interface,

the OCT image remains stationary, since the difference in OPL between the

‘local reference mirror’ and other parts of the sample never changes.
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5. However, since the sample is still moving (along depth) with respect to

the fixed focal plane of the imaging beam, the focal plane is observed to

move up and down within the static self-interference image.

6. No change is observed when the ‘real’ reference mirror is moved because

1) the reference arm plays no part in the generation of a self-interference

image and 2) the reference arm is misaligned. That is, the reference mir-

ror likely needs significant axial repositioning and/or has failed to reflect

light back into the detector. As a result, there is no ‘true’ OCT image that

would otherwise appear superimposed over the self-interference image.

This is also why blocking the reference arm does not cause any structures

to vanish.

Once the researcher has realigned the reference arm, the self-interference

image remains as a strong artifact superimposed over the desired OCT im-

age. Therefore, additional strategies must be employed to mitigate the self-

interference artifacts.

A.2 Mitigation strategies

There are several strategies to mitigate ‘self-interference images/artifacts’. A

few examples are listed below (in order of increasing effectiveness and diffi-

culty). They may be used individually or combined.

• Increase the reference arm reflectivity coefficient R (but do not saturate the

spectrometer camera). The desired image signal will scale proportionally
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to
√

R while the self-interference signal remains unchanged (see the dis-

cussion of S (k) in Chapter 3).

• Adjust the axial position of the sample to increase the distance between

the reflective surface and the focal plane of the imaging beam. This will

reduce (but not eliminate) artifacts by reducing the amount of light that is

collected from the reflective surface.

• Adjust the axial position of the reference arm mirror so that the image of

the region-of-interest in the sample does not spatially overlap with self-

interference artifacts. This might allow avoidance of artifacts, but will re-

duce the available axial FOV.

• Tilt the sample so that less light reflects from the surface of the sample into

the detector. This will reduce (but not eliminate) artifacts.

• Incorporate an index matching fluid (typically paired with an appropri-

ate immersion objective lens) into the sample arm to reduce the reflectiv-

ity/scattering potential of the sample surface. This will reduce (but not

eliminate) artifacts.

• Incorporate additional components into the microscope to enable the use

of a phase-shifting holography technique to eliminate the self-interference

term from the OCT spectral signal in post-processing. This will increase

the complexity of the microscope, increase the amount of image data re-

quired to reconstruct images, and decrease imaging speed. Note that this

method can also be used to mitigate the conjugate image spectrum.

• If the above options are not feasible, and self-interference artifacts are se-

vere, then imaging with a double-path interferometer may not be viable.

Consider intentionally using the ‘accidental’ common-path interferometer
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for imaging. Block the reference arm (set R = 0) and increase the illu-

mination power incident on the sample (and/or increase the camera ex-

posure time) to improve signal-to-noise ratio. This will not be effective

if strong reflections/scattering signals emerge from many depths in the

sample. The reflective surface must be clean to ensure good image quality.
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APPENDIX B

BACKGROUND SPECTRUM CHARACTERIZATION

The background spectrum occupies a substantial fraction of the total energy of

the raw OCT spectral signal and must be removed in order to reconstruct the

OCT image signal. However, the value of the background spectrum in a given

A-scan cannot be known precisely, since it is always measured while super-

imposed with the self-interference spectrum, OCT image spectrum, conjugate

image spectrum, and noise. Subtracting the background spectrum from the raw

OCT spectral signal therefore requires a characterization procedure which pro-

vides a decent estimate of the background spectrum for any given A-scan in the

image. The utility of a given characterization procedure will primarily depend

upon the stability of the output spectrum of the light source. In my own re-

search, I have used the following procedures:

Calibration data set If the light source has a very stable spectrum, the back-

ground spectrum can be characterized by acquiring a separate calibration data

set. To do so, block the sample arm optical path such that no light can enter

or return from the sample. Inserting a (scattering/non-reflective) paper index

card will usually suffice. Place the card as close to the sample as is feasible with-

out disturbing the sample or getting close to a focal plane of the probing beam.

Then, acquire an image with at least a few thousand A-scans. Since none of the

collected light will be from the sample itself, spectral contributions related to

the sample will be absent from the calibration data. The calibration data set will

only contain information about light reflected by the reference mirror (and any

other reflecting surfaces in the system). Compute the average spectrum from the

calibration data set (using a mean or median operation). The resulting estimate
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of the background spectrum can be used during the reconstruction of previ-

ously/subsequently acquired images of the sample. How long this calibration

‘lasts’ depends on instability or long-term drift in the light source.

Volume averaging If the light source is unstable enough that calibration data

sets must be frequently re-acquired, the background spectrum can be estimated

from the raw OCT spectral signal itself.1 Assuming volumetric acquisition2, the

spectral terms contributed by the sample will tend to fluctuate in a pseudo-

random fashion. By computing the average A-scan from all of the available

A-scans, a decent estimate of the background spectrum can be obtained. Since

the presence of bright scatterers or reflective surfaces in the sample can bias

the estimate of the background spectrum, a median operation is recommended

in favor of a mean operation. Large lateral features (e.g., large bright or dark

regions across the FOV) may also contribute bias, even with robust estimators.

Frame-by-frame averaging If the light source exhibits instability/drift on time

scales shorter than the volume acquisition time, the background estimate may

need to be ‘updated’ as a function of position within the image. For 2D raster

scanning of the imaging beam, a volumetric data set may be separated into

‘frames’. Each frame consists of a collection of A-scans acquired while scan-

ning along the ‘fast axis’ (and while the ‘slow axis’ remains stationary). The

background spectrum of a given frame may be computed via averaging of all

the A-scans in a given frame (or collection of frames that were acquired at sim-

ilar times). This method will be even more prone to bias, but may be the only

option available when using a source with an unstable spectrum.

1This method can also be used if you simply do not wish to acquire calibration data sets.
2This method will not work if the imaging beam stays ‘parked’ at one location.
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If the background spectrum is unstable on even shorter time scales than the

frame acquisition time, you must either use a more advanced background es-

timation method (which might require modifications to the optical system), or

should consider an alternative light source.
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APPENDIX C

PHASE AND OCT IMAGE FORMATION

Fourier analysis is a key component of every introductory signals and systems

course. Students often work extensively on practice problems which teach them

how to interpret and manipulate the magnitude of the Fourier transform of a sig-

nal. However, exercises related to the phase of these functions are often woefully

neglected, in comparison. One might consider this only natural. The phase of

the Fourier transform of a signal can be incredibly complicated and difficult or

impossible to intuitively interpret. However, this complexity is a telltale sign

of how important phase is to the analysis and manipulation of signals and sys-

tems. Understanding this importance is critical to gaining a deep understanding

of imaging science, including OCT image formation.

C.1 The role of phase

Consider the Dirac delta function: δ(t). The delta function has two extremely

useful properties for the purposes of Fourier analysis, its ‘sampling property’:∫ ∞

−∞

f (t)δ(t − T ) dt = f (T ) (C.1)

and its direct consequence for convolution:

f (t) ? δ(t − T ) =

∫ ∞

−∞

f (τ)δ((t − τ) − T ) dτ = f (t − T ) (C.2)

This makes the delta function a vital tool for understanding the behavior of

linear systems. Inputting a delta function into such a system yields the Green’s

function of the system (also known as the impulse response, or the point spread
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function, for imaging systems). In the context of imaging, these functions can

describe phase shifts, signal delays and translation, blurring, distortion, and so

on. Fortunately (although fortune has nothing to do with it), we can also use

the delta function to better understand the role of phase in Fourier analysis, and

by extension, OCT image formation.

We begin with the Fourier transform of a shifted delta function, f (t) = δ(t−T ):

f̃ (ω) = F [ f (t)] = F [δ(t − T )] =

∫ ∞

−∞

δ(t − T )e− jωt dt = e− jωT (C.3)

Like any good student of signals and systems, we examine the magnitude and

phase of this function:

1.
∣∣∣ f̃ (ω)

∣∣∣ =
∣∣∣e− jωT

∣∣∣ = 1

2. ∠ f̃ (ω) = ∠e− jωT = −Tω

Note that only the phase contains any information about the location of the delta

function (at t = T ). Specifically, the slope of the phase in the frequency domain

encodes the location of the signal in the time domain. I have used this simple

example many times to teach my own students the role of magnitude and phase

in Fourier analysis, namely:

1. The magnitude of the Fourier transform of a signal tells you what frequen-

cies are present and how much each frequency contributes to the signal.

2. The phase of the Fourier transform of a signal tells you how those waves

are positioned in time/space/etc. in order to assemble the signal from the

available frequencies/waves.

3. In simpler terms, the magnitude is like an inventory of supplies, and the

phase is like a blueprint for how to use those supplies to build a signal.
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Thus, the phase of the Fourier transform of a signal can be incredibly compli-

cated simply because the phase is where most of the information about the sig-

nal is stored. This richness of information can make phase and its interpretation

something of a bogeyman for students of signals and systems. However, with

the right systems to analyze, we can learn to make phase our friend by wielding

it as a useful tool.

It stands to reason that, since phase dictates how a signal is assembled from

its constiuent waves, manipulating the phase can drastically alter how a signal

is built. This is of fundamental importance to the use of numerical refocusing

algorithms in OCT, including dispersion compensation and defocus/aberration

correction. To understand this, we must examine phase profiles beyond what

our delta function example provides.

C.2 Phase profiles with curvature

As we saw above, the Fourier transform of a delta function has a linear phase

profile, the slope of which determines where the impulse appears in space/time.

Why does this relationship exist? Consider how it is possible to create a pulse

(with an infinitely narrow width) from a collection of waves (which are infinitely

wide). The impulse itself is located at a site of perfect constructive interference

across the (infinite) bandwidth of waves that make up the delta function. Ev-

ery other location experiences perfect (net) destructive interference, and so no

signal energy can exist at those locations in space/time. As long as the phase

profile remains linear, there will be only one location of perfect constructive in-

terference among all the constituent waves (as determined by the slope), while
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every other location experiences perfect destructive interference. For the sake of

brevity, understanding this fundamental concept will be left as an exercise for

you to explore. Once given this simple principle, we can infer what will happen

when the phase profile deviates from a line–and acquires curvature.

Say we replaced our original linear phase profile with a quadratic profile:

g̃(ω) = e jaω2
(C.4)

What would g(t) = F −1[g̃(ω)] look like? Rather than solving this problem di-

rectly, we can take a more qualitative approach. If we define the phase pro-

file φ(ω) = aω2, then the local slope of this phase profile is ∂φ(ω)/∂ω = 2aω.

This means that, for a wave of frequency ω, the waves of its local neighbor-

hood (in the frequency domain) have a point of maximal constructive interfer-

ence at approximately t = −2aω. However, since every frequency has a differ-

ent local slope, each wave is ‘trying’ to ‘focus’ at a different location, and no

single point in the time domain ever experiences a state of perfect construc-

tive/destructive interference. As a result, the function is ‘blurred’ across time.

Although the function possesses the same infinite bandwidth as a delta function

(
∣∣∣ f̃ (ω)

∣∣∣ = |g̃(ω)| = 1), the phase of g̃(ω) does not allow the waves to assemble into

a delta function. (Recall the analogy that the magnitude of g̃(ω) is like an in-

ventory of supplies while the phase dictates how those supplies are assembled

to make a signal in time.) It is then clear that, although a broad bandwidth is

necessary to form a narrow pulse, it is not sufficient. The phase profile will dictate

whether the final assembled function is narrow or not.

Figure C.1 depicts the effect of various phase profiles upon a Gaussian pulse.

The original pulse (shown in black) is centered about time t = 0. When a linear

phase profile is applied, the pulse (shown in red) shifts to a new time. With a
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Figure C.1: Magnitude profiles of time-domain pulses defined by hi(t) =

F −1
[
H(ω)e jαωi

]
, where H(ω) = e−ω

2 and α = 3.

quadratic phase profile, curvature is introduced to the phase profile, degrad-

ing the constructive interference between differing frequency components and

blurring the pulse (shown in green) across time. Note that the blurring is sym-

metric (like the quadratic phase profile itself). With a cubic phase profile, the

pulse (shown in blue) is likewise blurred, but the blurring is no longer sym-

metric (analogous to the cubic phase profile itself). Higher-order phase profiles

follow similar trends. Phase profiles consisting of a summation of polynomials

compound the individual effects of each contributing term.

C.3 Phase and OCT image formation

Imaging systems are a tangible manifestation of the concepts of Fourier anal-

ysis. Optical fields are a superposition of waves of varying spatial frequency

(defined by a vectorial wavenumber k). Since the 3D OCT image signal S (r)

records a backscattered optical field, the Fourier transform of an OCT image

S̃ (q) (very nearly) corresponds to a decomposition of the optical field into a

collection of plane waves with differing spatial periods and directions of prop-
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agation. As a result, computational manipulation of the magnitude and phase

of S̃ (q) is closely analogous to manipulating waves and fields with a real op-

tical system. Magnitude operations act like elements which manipulate field

strength (masks, apertures, pinholes, etc.), while phase operations act like ele-

ments which manipulate the optical phase (lenses, aberrating layers, mirrors,

gratings, dispersive materials, etc.).

Non-ideal (i.e., curved) phase profiles contribute to three major sources of

resolution degradation in OCT images: dispersion, defocus, and optical aberra-

tions. When these phenomena are sufficiently weak, their effects can be miti-

gated by manipulating the phase of the Fourier transform of the image signal.

That is, if the Fourier transform of the ideal image signal (given by S̃ (q)) is cor-

rupted by a perturbing phase profile φ(q) via:

ˆ̃S (q) = S̃ (q)e jφ(q) (C.5)

then the ‘ideal’ function S̃ (q) can be restored by multiplying ˆ̃S (q) by e− jφ(q). This

is the core principle underlying dispersion compensation and computational

adaptive optics. (Note that defocus correction and/or mitigation of highly dis-

persive media requires depth-dependent phase corrections.1 However, the main

idea holds.) By applying a phase profile that cancels out the corrupting phase

profile, optimal spatial resolution can be restored.

As implied by our prior discussions, the ability to manipulate the phase

of an optical field is a powerful tool for image formation. It allows us to use

post-processing techniques which act as virtual optical systems. These systems,

being purely numerical, can defy conventional optical limitations and enable

the formation of images which exhibit enhanced resolution and depth-of-field.

1See Chapter 4 or Appendix E, respectively.
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Such powerful capabilities are not available to conventional intensity-based mi-

croscopes, since these systems fail to record the phase of optical fields.2 For

OCT, however, phase measurements are inherent to the image acquisition pro-

cess. So for any OCT researchers who may be reading, I cannot recommend

highly enough that you make phase your friend! It will serve you well.

2Although we can take a Fourier transform of a standard intensity-based image and manip-
ulate its magnitude and phase, these functions do not have a correspondence to the physical
propagating waves within the original optical system.
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APPENDIX D

TUTORIAL ON HARDWARE-BASED DISPERSION-MATCHING

As discussed in Chapter 3.5.3, a net mismatch in the dispersive properties of the

sample and reference arms of an OCT imaging system will result in a residual

dispersion effect which acts upon the axial point spread function (PSF). This in-

duces axial blurring and concomitant degradation of axial resolution. For small

amounts of dispersion mismatch, a simple numerical manipulation of the phase

of the OCT spectral signal is sufficient to mitigate this mismatch and restore the

ideal axial PSF. However, large amounts of residual dispersion can result in ir-

reparable degradation of the OCT signal (via the ‘roll-off’ effect and/or aliasing

of the spectral signal). In such scenarios, it is best to remove as much residual

dispersion as possible via hardware-based mechanisms.

When an OCT system uses only one type of dispersive material (e.g., a single

type of glass), the solution to achieving hardware-based dispersion-matching is

relatively simple. One must merely ensure that there is an equal length of glass in

the sample and reference arms of the microscope. However, OCT systems must

often have different types of optics/glass in the sample and reference arms.1 In

that case, how can one determine the length of additional glass required in one

arm or the other? More generally, if one arm contains a block of some exotic

dispersive material that cannot be duplicated within the other arm of the mi-

croscope, is there a way to compensate the resulting residual dispersion using a

block of different material(s) in the other arm?

Here we will review some simple methods that I used to address these ques-

1Unless you have extra grant money to spend on duplicate microscope objectives! (Do not
do that! The methods outlined here are much cheaper and practically just as effective.)
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tions. The procedures below were vital for fine-tuning the design(s) and perfor-

mance of multiple systems in our lab.

D.1 Inferred dispersion-matching

This method involves measuring/inferring residual dispersion based on OCT

image data. Once the residual dispersion is inferred, refractive index data for

compensating materials (such as N-BK7 glass windows or fused silica optical

fibers) are used to determine an optimal (or nearly so) length of additional glass

(and possibly air) to incorporate into one arm of the OCT microscope. Note that

although this method works well for large amounts of dispersion, very large

amounts of dispersion (which cause significant signal loss and blurring of the

axial PSF to lengths larger than the axial FOV of the system) may require predic-

tive dispersion-matching (see Section D.2) and/or other methods.

D.1.1 Derivation

When performing OCT image reconstruction, numerical dispersion compensa-

tion can be a key step for obtaining an optimal axial resolution. Assume that

OCT images were acquired with an existing (dispersive) OCT system and nu-

merical dispersion compensation was performed via the operation: S̃out [ki] =

S̃in [ki] exp (− jφα [ki])), where S̃in is the (dispersed) input spectral signal, S̃out is

the optimized output spectral signal, and φα [ki] is a phase function which de-

scribes the residual phase profile that the numerical dispersion compensation

routine removes. Typically, φα is defined using a minimal, truncated Taylor se-
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ries φα [ki] = α2(ki − kc)2 + α3(ki − kc)3, where ki is the uniformly spaced (i.e.,

post-spectrum resampling) set of wavenumbers which make up the support of

the OCT spectral signal, and kc is the central wavenumber of the set of all ki. α2

and α3 capture/describe symmetric and asymmetric blurring of the axial PSF,

respectively. Alternatively, φα may be obtained from the phase of an isolated

spectral signal obtained from a strongly-scattering and axially-thin object (such

as a glass-air interface) in the sample.

Assume that adding some length of glass and air to the reference arm of

the microscope will allow dispersion to be automatically canceled out in subse-

quently acquired raw spectral data. For this to occur, one could seek to satisfy

the following relation:

xkinglass[ki] + ykinair[ki] = φα[ki], for i ∈ {0, 1, . . . ,N − 1} (D.1)

where x and y are the amount of glass and air to add, respectively, nglass and

nair are the wavenumber-dependent refractive indices of the compensating glass

and air, respectively, and N is the number of pixels/entries in the spectral data.

One way to think about this equation is that the left-hand side describes new

phase/dispersion which is being added to the reference arm, whereas the right-

hand side describes the measured excess phase/dispersion of the sample arm.

If the two sides are equal, then they will cancel out during the interferometric

OCT imaging process and no net residual dispersion will be present in the raw

OCT data. Perfect cancellation would mean that numerical dispersion compen-

sation would no longer be necessary! However, it is often impossible to satisfy

Eqn. (D.1) for all relevant wavenumbers simultaneously. Therefore, there will

almost always be residual dispersion which numerical dispersion compensation
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must be used to remove. Define a residual phase function by:

f (x, y)[ki] = xkinglass[ki] + ykinair[ki] − φα[ki] (D.2)

Now, we must simply determine values of x and y which will yield the best pos-

sible realization of f (x, y)[ki]. However, we must also define what we mean by

‘best’. One obvious choice could be to find x and y such that f (x, y)[ki] ≈ 0, for

i ∈ {0, 1, . . . ,N − 1} (i.e., to achieve near-perfect cancellation of the phase differ-

ence between the sample and reference arms). However, and perhaps counter

to intuition, this does not necessarily yield the ‘best’ values of x and y that will

minimize the dispersion-induced axial blurring of the PSF/OCT image.

As discussed in Appendix C, the shape of the residual phase profile deter-

mines the effect that the phase profile will have on the axial PSF and recon-

structed OCT image. If the residual phase profile f (x, y)[ki] is approximated

with a Taylor series, then each term of the series will have the following effects:

• 0th-order/constant: Bulk phase shift; no effect on image structure

• 1st-order/linear: Axial translation of the OCT image

• 2nd-order/quadratic: Symmetric axial blurring of the OCT image

• 3rd-order/cubic: Asymmetric axial blurring of the OCT image

• Higher-order: Higher-order axial blurring of the OCT image

Therefore, in order to minimize axial blurring due to residual dispersion (and

thereby optimize axial resolution) we need only ensure that f (x, y)[ki] is a linear

function. Thus, we need to find values of x and y such that f (x, y)[ki] ≈ pki + q,

for p and q a slope and constant offset, respectively. However, a non-zero value

of p could potentially result in a large amount of axial translation of the OCT
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image (e.g., such that the focal plane of the OCT system lies far outside the axial

FOV of the imaging system). Therefore, we apply an additional constraint and

require that p = 0. This means that we only need to find values of x and y such

that f (x, y)[ki] ≈ q, for q an arbitrary constant. We can minimize the non-constant

components of f (x, y)[ki] by minimizing the variance of f (x, y)[ki] about its mean.

First, we convert the function-based notation of Eqn. (D.2) to vector-based

notation (since we are working with only a finite set of N values of f (x, y)[ki], ki,

nglass[ki], nair[ki], and φα[ki]):

F(x, y) = xk ◦ nglass + yk ◦ nair − φα (D.3)

where ‘◦’ denotes the Hadamard product (element-wise multiplication). To sim-

plify our equations, we define:

A = k ◦ nglass (D.4a)

B = k ◦ nair (D.4b)

C = φα (D.4c)

We then rewrite Eqn. (D.3) as:

F(x, y) = xA + yB − C (D.5)

We next define a set of ‘mean vectors’:

a =

 1
N

N−1∑
i=0

Ai

 1N×1 (D.6a)

b =

 1
N

N−1∑
i=0

Bi

 1N×1 (D.6b)

c =

 1
N

N−1∑
i=0

Ci

 1N×1 (D.6c)

f =

 1
N

N−1∑
i=0

Fi

 1N×1 = xa + yb − c (D.6d)
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where 1N×1 denotes an N × 1 vector with all entries equal to 1. Finding the

values of x and y that minimize the variance of f (x, y)[ki] over our finite set of

wavenumbers/values is achieved by solving:

(x, y) = arg min
[
g(x, y)

]
, for g(x, y) = ‖F − f‖22 (D.7)

Note that g(x, y) is merely N times the variance of the entries of F(x, y). In or-

der to solve this problem, we will adopt the strategy of finding (x, y) such that

〈∂g(x, y)/∂x, ∂g(x, y)/∂y〉 = 0. First, we expand our expression for g(x, y):

g(x, y) = ‖F − f‖22 (D.8a)

= ‖(xA + yB − C) − (xa + yb − c)‖22 (D.8b)

= (C · C − (C · c + c · C) + c · c) + . . .

(A · C − (A · c + a · C) + a · c)(−2x) + . . .

(B · C − (B · c + b · C) + b · c)(−2y) + . . .

(A · B − (A · b + a · B) + a · b)(2xy) + . . .

(A · A − (A · a + a · A) + a · a)(x2) + . . .

(B · B − (B · b + b · B) + b · b)(y2)

(D.8c)

This is a little unwieldy. However, we can leverage a useful relation that

275



emerges from the definitions of our vectors:

A · B − (A · b + a · B) + a · b =

N−1∑
i=0

AiBi −

N−1∑
i=0

Aibi −

N−1∑
i=0

aiBi +

N−1∑
i=0

aibi (D.9a)

=

N−1∑
i=0

AiBi −

N−1∑
i=0

Ai

 1
N

N−1∑
j=0

B j

 − N−1∑
i=0

 1
N

N−1∑
j=0

A j

 Bi + . . .

N−1∑
i=0

 1
N

N−1∑
j=0

A j


 1

N

N−1∑
j=0

B j


(D.9b)

=

N−1∑
i=0

Ai −

 1
N

N−1∑
j=0

A j



Bi −

 1
N

N−1∑
j=0

B j


 (D.9c)

= NσA,B (D.9d)

where σA,B denotes the covariance of the entries of A and B. Thus, we obtain:

g(x, y) = N
(
σC,C − 2σA,C x − 2σB,Cy + 2σA,Bxy + σA,Ax2 + σB,By2

)
(D.10)

Finally, we have arrived at some reasonable notation!2 We continue with our

objective to minimize g(x, y):

0 = ∂g(x, y)/∂x = 2N
(
−σA,C + σA,Ax + σA,By

)
(D.11a)

0 = ∂g(x, y)/∂y = 2N
(
−σB,C + σA,Bx + σB,By

)
(D.11b)

Finally, we obtain our values of x and y via:x

y

 =

σA,A σA,B

σA,B σB,B


−1 σA,C

σB,C

 (D.12)

D.1.2 Procedure

In order to make use of Eqn. (D.12), perform the following:
2I have always preferred to work with vectors before resorting to summations. I apologize

for any confusion you may have experienced until this step.
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1. Using your existing dispersive OCT system, acquire an image of a sample

which exhibits sparsity along the axial/depth dimension (e.g., a glass slide

or a 3D phantom containing embedded nano/microparticles).

2. Perform OCT image reconstruction as usual, including numerical disper-

sion compensation to optimize axial resolution. Your numerical disper-

sion compensation procedure should result in your defining a dispersion

correction phase function φα[ki]. Be sure to avoid phase wrapping!

3. Select your dispersion-compensating material (e.g., N-BK7 glass, fused sil-

ica, etc.). Find a data sheet which will allow you to determine the refrac-

tive index n[ki] of the compensating material for each wavenumber ki.

4. Use Eqn. (D.12) to compute the values of x and y, which correspond to the

length of additional glass and air, respectively, which you should install in

order to compensate the current residual dispersion of your system.

Here are a few points to keep in mind:

• Note that positive values of x or y indicate the total length of the material(s)

that should be installed into the reference arm and/or removed from the

sample arm. For example, if x=50 cm, you should do one of the following:

1) install 50 cm of the selected type of glass into the reference arm, 2) re-

move 50 cm of the selected type of glass from the sample arm, or 3) install

Lr of the selected type of glass into the reference arm and remove Ls of the

selected type of glass from the sample arm such that Lr + Ls=50 cm. Nega-

tive values of x or y reverse the relationship of where materials should be

installed/removed.

• It is always a good idea to confirm in simulation that your hardware-based

dispersion compensation will perform in a desirable fashion. (I have not
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yet encountered a scenario where this procedure does not work, but it

cannot hurt to check before you invest in time and materials!)

• Sometimes, you only need to install a small amount of material. For ex-

ample, say you need to install only 4 cm of additional optical fiber into the

reference arm. This may be an impractically small length of fiber to obtain.

Instead consider installing two fibers: one in the sample arm of length L,

and one in the reference arm of length L+4 cm. Alternatively, cleave 4 cm

off of an existing fiber in the sample arm.

• Always acquire a new image to ensure that dispersion in your system has

been mitigated. If the dispersion increased, check that you did not install

your compensating materials into the wrong arm(s) of the microscope.3 If

this does not resolve the problem, then something else has gone wrong.4

D.2 Predictive dispersion-matching

This method involves using glass and air to compensate for the dispersion in-

troduced by a newly installed material with known properties and length. It is

very similar to the inferred dispersion-matching method described previously.

The set-up is just a little different. We will use an instructive example from my

own prior work to help explain the differences.

3Depending on the design of your OCT image reconstruction procedure, you may have had
a sign error in your initial definition of φα[ki]. This is an easy problem to fix! Just try installing
your compensating materials into the opposite arm(s) than what your model suggested. This
should resolve any sign errors.

4Check your theoretical model. Did you miss a factor of 2 somewhere? (Recall the double-
pass geometry of standard SD-OCT imaging systems.) If that is not the problem, I am afraid I
cannot help you here. :(
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D.2.1 Example

A few years back (as of this writing), we were working on a system which in-

corporated an electro-optical modulator (EOM) into the reference arm of an ex-

isting OCT system. We wished to use the EOM to apply known/controlled

phase shifts within the reference arm so that we could employ a phase-shifting

holography technique that would eliminate our conjugate image signal and self-

interference artifacts (and thereby increase our usable axial FOV).

The EOM contained a 40 mm crystal of lithium niobate (LiNbO3), a material

whose refractive index and dispersion profile differ substantially from that of

glass. Suffice it to say that this crystal absolutely demolished our axial resolu-

tion. Numerical dispersion compensation was insufficient. I eventually came

up with the following solution:5

1. Define a dispersion-matching condition (as in Eqn. (D.1)):

xkinglass[ki] + ykinair[ki] = LLiNbO3kinLiNbO3[ki] (D.13)

Here, the left-hand side of the equation indicates materials to be installed

in the sample arm, whereas the right-hand side indicates the new material

installed in the reference arm (i.e., LLiNbO3=40 mm of LiNbO3). This left-

right relationship is reversed compared to the dispersion-matching condi-

tion defined in Eqn. (D.1). (If you mix up this type of relationship in the

future, you will get a sign error in your final results.)

2. Define a residual phase function (as in Eqn. (D.2)):

f (x, y)[ki] = xkinglass[ki] + ykinair[ki] − LLiNbO3kinLiNbO3[ki] (D.14)
5Note that this scenario was the first time I had ever done any kind of hardware-based dis-

persion compensation.
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3. Define the following vectors (analogous to the definitions in Section D.1):

A = k ◦ nglass (D.15a)

B = k ◦ nair (D.15b)

C = LLiNbO3k ◦ nLiNbO3 (D.15c)

4. Solve for the required lengths of glass and air (x and y, respectively) to be

installed in the sample arm via Eqn. (D.12).

In my case, I was concerned with the 700 nm–900 nm wavelength range. I

chose to use fused silica (optical fiber) as my compensation material. The refrac-

tive indices for LiNbO3
6 and fused silica7 in the relevant wavelength range are:

nLiNbO3[ki] =

[
1 +

2.6734λ2
i

λ2
i − 0.01764

+
1.2290λ2

i

λ2
i − 0.05914

+
12.614λ2

i

λ2
i − 474.60

]0.5

(D.16a)

nglass[ki] = nsilica[ki] =

[
1 +

0.6961663λ2
i

λ2
i − 0.06840432

+
0.4079426λ2

i

λ2
i − 0.11624142

+
0.8974794λ2

i

λ2
i − 9.8961612

]0.5

(D.16b)

where λi = 2π/ki in units of micrometers. Using the procedure above, I com-

puted x=+475.63 mm and y=-603.48 mm. This means that in order to compen-

sate for the dispersion introduced by the LiNbO3 crystal, 475.63 mm of addi-

tional optical fiber should be installed into the sample arm and 603.48 mm of

air should be removed from the sample arm. In practice, removing air from the

sample arm was not possible, so 603.48 mm was added to the reference arm in-

stead. If these installations were done perfectly, the dispersion introduced by

the LiNbO3 crystal would be expected to cancel out down to sub-wavelength
6Obtained from https://refractiveindex.info/?shelf=main&book=LiNbO3&

page=Zelmon-o
7Obtained from https://refractiveindex.info/?shelf=glass&book=fused_

silica&page=Malitson

280

https://refractiveindex.info/?shelf=main&book=LiNbO3&page=Zelmon-o
https://refractiveindex.info/?shelf=main&book=LiNbO3&page=Zelmon-o
https://refractiveindex.info/?shelf=glass&book=fused_silica&page=Malitson
https://refractiveindex.info/?shelf=glass&book=fused_silica&page=Malitson


precision. In practice, we could only obtain an approximately correct length

of optical fiber. However, numerical dispersion compensation readily removed

any residual dispersion.

Note that this procedure (or ones like it) may be performed in parallel to

the inferred dispersion-matching discussed previously. You may either set up

a combined set of equations and solve, or solve both problems independently

and combine their results to yield the total length of compensating materials to

install in each arm of your microscope.
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APPENDIX E

NUMERICAL COMPENSATION OF DEPTH-DEPENDENT DISPERSION

ARTIFACTS

In Chapter 3.5.3, we derived an expression (Eqn. (3.32a)) for the OCT spectral

signal acquired by an OCT system constructed with dispersive optical elements:

S̃ (k′) = h̃(k′)e j∆φ(k′)
∫ ∞

−∞

η(zs)e− jk′nzs dzs (E.1)

Please refer to the text of Chapter 3.5.3 for a full explanation of this equa-

tion. In brief, the integral term encodes the Fourier transform of the scatter-

ing potential η(z) of the sample with respect to the family of basis functions:

exp( jk′nz) = exp(− j2knz), where n was defined as the space- and wavenumber-

invariant refractive index of the bulk medium of the sample. Assuming a re-

construction procedure which is ‘blind’ to the value of n, the reconstructed OCT

image will appear axially ‘stretched’ by a factor of n, due to the fact that OCT

microscopes measure the optical path length (not the physical distance) traveled

by light. ∆φ(k′) encodes residual phase due to unmatched dispersion in the OCT

imaging system. Expressing ∆φ(k′) as a Taylor series:

∆φ(k′) = α0 + α1(k′ − k′c) + α2(k′ − k′c)
2 + α3(k′ − k′c)

3 + O
(
(k′ − k′c)

4
)

(E.2)

we concluded that axial blurring of the OCT image would take place if αi , 0,

for i ≥ 2. When this ‘dispersive blur’ is very large, the hardware of the optical

system must be modified in order to cancel out the second- and higher-order

terms of ∆φ(k′) (see Appendix D). However, as discussed in Chapter 3.5.3, small

amounts of dispersive blur can be compensated numerically via the operation:

S̃α(k′) = S̃ (k′)e− j(α2(k′−k′c)2+α3(k′−k′c)3+... ) (E.3)
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Since dispersive blur can be corrected via multiplication in the spectral domain,

it follows that the axial PSF of the imaging system is space-invariant. Every

depth in the reconstructed OCT image has a spatially uniform axial resolution

(with respect to OPL) both before and after numerical compensation of disper-

sive blur. However, this model breaks down when we realize that the bulk

medium of biological samples (i.e., water) is itself dispersive.

E.1 Depth-dependent dispersion

If the bulk medium of the sample is dispersive, then the refractive index is given

by n(k). This requires that we modify our expression for the OCT spectral signal:

S̃ (k′) = h̃(k′)e j∆φ(k′)
∫ ∞

−∞

η(zs)e− jk′n(k)zs dzs (E.4)

For this analysis, it will be easier to work with the variable k, as opposed to the

variable k′ = −2k which we defined in Chapter 3. Thus, we rewrite the above

expression as:

S̃ (k) = h̃(k)e j∆φ(k)
∫ ∞

−∞

η(zs)e j2kn(k)zs dzs (E.5)

where

∆φ(k) = a0 + a1(k − kc) + a2(k − kc)2 + a3(k − kc)3 + O
(
(k − kc)4

)
(E.6)

for kc the central wavenumber collected by the OCT system. In order to analyze

the axial PSF, we assume a scattering potential of η(z) = η(zs)δ(z − zs) in order to

obtain the spectral signal of an isolated scatterer:

S̃ (k; zs) = η(zs)h̃(k)e j∆φ(k)e j2kn(k)zs (E.7)

If we perform a Taylor series expansion of n(k) about kc:

n(k) = n0 + n1(k − kc) + n2(k − kc)2 + n3(k − kc)2 + O
(
(k − kc)4

)
(E.8)
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then we obtain:

S̃ (k; zs) = η(zs)h̃(k)e j∆φ(k)e j2kn0zse j2k(n1(k−kc)+n2(k−kc)2+n3(k−kc)2+O((k−kc)4))zs (E.9)

The last term of this expression is a new addition to our previous model,1 which

we will refer to as the ‘depth-dependent dispersion’ term. Note that the phase

of the depth-dependent dispersion term is nonlinear with respect to k (i.e., the

phase contains quadratic and higher-order functions of k). This curved phase

profile will induce axial blurring in the reconstructed OCT image, analogous to

the second- and higher-order components of ∆φ(k). However, unlike ∆φ(k), the

phase of the depth-dependent dispersion term scales with the axial position zs

of the scatterer. That is, the axial blurring due to this term increases with depth in

the dispersive sample medium.

This depth-dependent blurring (depicted in Fig. E.1) cannot be fixed with a

simple multiplication operation like that shown in Eqn. (E.3). However, other

numerical compensation methods are available which can be readily integrated

into standard OCT image reconstruction paradigms.

E.2 Numerical compensation methods

E.2.1 Resampling

We have encountered depth-dependent blurring before. Specifically, we saw

this phenomenon emerge as a consequence of failing to properly account for

non-uniform discrete sampling of the OCT spectral signal (with respect to

1That is, without this term, Eqn. (E.9) would be consistent with the model in Eqn. (E.1), sub-
stituting n = n0.
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Figure E.1: Simulated axial point spread function (PSF) of an OCT system imag-
ing in water. This simulated system has the same spectral profile as the Ti:Sapph
laser in our lab (central wavelength = 790 nm, full-width-at-half-maximum
bandwidth = 136 nm). There are two notable features: 1) As the system images
deeper into the medium, the axial PSF broadens as the dispersive properties of
the medium cause nonlinear phase profiles to accumulate. 2) As the system im-
ages deeper into the medium, the reconstructed axial PSF shifts to an apparent
depth which is deeper than the true physical depth within the sample. (This
axial shift is depicted along the horizontal axis of the plots above.) That is, if we
use an OCT image reconstruction routine which assumes a constant refractive
index, we will overestimate the depth from which a scattering signal emerged.
The severity of this error will increase as we go deeper into the sample.

wavenumber) by the spectrometer camera (see Chapter 3.5.5). Just as spectrum

resampling compensates for depth-dependent blurring due to non-uniformly

sampled spectral data, so too can a resampling operation be used to compen-

sate for depth-dependent dispersion. This method is particularly useful for

FFT-based OCT image reconstruction routines.

Assume that we have an OCT spectral signal which has already undergone

spectrum resampling. That is, we have a spectral signal S̃ [ki] sampled along

a uniformly spaced set of wavenumbers ki = k0 + i∆k for i ∈ {0, 1, . . . ,N − 1}.

Define κ̂i = n(ki)ki, for n(k) the wavenumber-dependent refractive index of the
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sample medium. κ̂i corresponds to the set of effective wavenumbers of the light

within the medium. Next, define κi = n(kc)ki for i ∈ {0, 1, . . . ,N − 1} and kc =

(k0 +kN−1)/2. κi corresponds to a uniformly spaced set of effective wavenumbers.

Depth-dependent dispersion compensation is then achieved by resampling the

spectral signal (defined for each value of κ̂i) at each of the query points κi. In

MATLAB, this operation could be performed via:

S_out = interp1(kappa_hat,S_in,kappa,’spline’);

or a related operation. Note that the ‘bulk dispersion’ of the system (i.e., that

encoded by ∆φ(k)) will still need to be corrected using a separate dispersion

compensation step (Eqn. E.3). Note that for the purposes of subsequent image

reconstruction routines and/or image analysis, the imaged medium will now

have an effective (constant) refractive index of n(kc).

Of course, using multiple resampling operations (spectrum resampling fol-

lowed by depth-dependent dispersion compensation) increases computation

time and may introduce unnecessary numerical errors. To mitigate these con-

cerns, we can combine spectrum resampling and depth-dependent dispersion

compensation into a single resampling operation! Assume that the spectral sig-

nal S̃ [k̂i] is sampled along a non-uniformly spaced set of wavenumbers k̂i for

i ∈ {0, 1, . . . ,N − 1}. Analogous to the above procedure, define κ̂i = n(k̂i)k̂i. Next,

define κi = κ0 + i∆κ, for i ∈ {0, 1, . . . ,N−1}, κ0 = n(kc)k̂0, ∆κ = n(kc)(k̂N−1− k̂0)/(N−1),

and kc = (k̂0+k̂N−1)/2. Finally resample the spectral signal (defined for each value

of κ̂i) at each of the query points κi.
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E.2.2 Depth-dependent phase correction

Alternatively, we may multiply our spectral signal by a dispersion-canceling

phase function which changes for each depth that we wish to reconstruct. This

is an attractive option for OCT image reconstruction methods which use matrix

multiplication. For example, using the phase-only matched filter convention

from Chapter 3.7.4, we define an expected spectral signal vector Ψm ∈ CN×1:

Ψm
i = exp

(
j
(
2

n(k̂i)
n(kc)

k̂im∆z + φ[k̂i]
))

(E.10a)

∆z =
π

N∆k
=

π(N − 1)

N(k̂N−1 − k̂0)
(E.10b)

φ[k̂i] = α2(k̂i − kc)2 + α3(k̂i − kc)3 (E.10c)

kc = (k̂0 + k̂N−1)/2 (E.10d)

for i ∈ {0, 1, . . . ,N − 1}. In order to reconstruct an (origin-centered, length N) set

of depths m∆z for m ∈ {−bN/2c, . . . , dN/2e − 1}, we assemble a ‘signal prediction

matrix’:

Ψ ∈ CN×N =

[
Ψm=−bN/2c . . . Ψm=0 . . . Ψm=dN/2e−1

]
(E.11)

We can now reconstruct OCT images via multiplication of our (post-background

subtration) OCT spectral data via:

Ψ†s̃ (E.12)

where ‘†’ denotes the Hermitian (conjugate transpose) operator, and s̃ denotes a

vector of spectral data (which has only undergone background subtraction). As

before, the medium will now exhibit an effective (constant) refractive index of

n(kc) (i.e., the physical height of each voxel within the medium is ∆z/n(kc)).
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E.2.3 Caveats

The methods defined above rely on a few assumptions:

1. The sample has a flat surface. Increasing amounts of tilt in the sample

surface will result in a laterally-varying axial blurring artifact which these

methods do not compensate for.

2. The region of interest in your sample consists of a single homogeneous

medium. If imaging in a stratified sample, these methods will not work

as intended. Note that having a thin glass coverslip/slide on the surface

of your sample is fine. However, if in subsequent processing you perform

phase registration via ‘phase registration method 2’ in Chapter 4.4 (or an

analogous method), there may be a residual bulk dispersion artifact within

your region of interest beneath the glass. This would be due to the mis-

match between the refractive index profile of the glass layer versus that of

your sample medium. In practice, however, this is likely to have only a

small effect on your reconstructed image and may be acceptable to ignore.

E.3 Analogy to defocus mitigation methods

I want to take a moment to point out an interesting analogy/relationship.

The two methods outlined above for depth-dependent dispersion compensa-

tion (resampling and depth-dependent phase correction) are analogous to the

two classes of methods used to mitigate depth-dependent beam defocus (see

Chapter 4). Interferometric synthetic aperture microscopy (ISAM) performs a

1D resampling operation, whereas computational adaptive optics performs a
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depth-dependent phase correction. In general, resampling methods distort ex-

isting data (and corresponding phase profiles), whereas phase correction meth-

ods directly alter the phase ‘in place’. Although this may make phase correction

methods ‘more exact’, they are typically much more computationally expensive

to perform than resampling operations.
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APPENDIX F

TUTORIAL ON CUBIC SPLINE INTERPOLATION

F.1 A tale from the lab

During my program, our lab’s OCT image acquisition software used a GPU-

based image reconstruction routine [171] which enabled the visualization of

cross-sectional (zx-) OCT image frames in real time/at video rates. In order

to perform the critical step of spectrum resampling (see Chapter 3.5.5), this rou-

tine made use of a ‘black box’ spline-based interpolation scheme. The code for

this scheme had been ‘inherited’ from a coworker of my advisor (Prof. Steven

Adie, Cornell University) during his postdoctoral program (in the lab of Prof.

Stephen Boppart, UIUC). Lacking comments from its original author beyond a

link to a Wikipedia page, the interpolator was incorporated into our GPU-based

reconstruction routine without any of us really understanding how it worked. It

was not until later on in my program (when I was revamping my own OCT im-

age reconstruction routines) that I finally learned about how these interpolators

can be built. However, since I never worked on either the GPU codebase or the

image acquisition software, the ‘black box’ interpolator remains present within

our acquisition software to this day (as of this writing). The moral of the story

is: Be careful when you share your code with others! For better or for worse,

they may end up using it for a very long time!

This appendix has been included for those who might be interested in walk-

ing through the derivations/math behind a common interpolation scheme (cu-

bic spline interpolation) as it pertains to OCT image reconstruction. If my own

take on the subject provides any useful insights, then I will have achieved all
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that I set out to do here. Please note that the math and code that follow are not

meant to provide efficient representations/implementations of interpolators (I

defer to computer scientists for that!). The materials here are merely meant as a

learning exercise.

F.2 Derivation of the cubic spline interpolator

F.2.1 Preliminary definitions

Let S̃ (k) denote a spectral signal measured by the spectrometer camera of an

SD-OCT system. Let the spectrometer camera perform discrete sampling of this

continuous signal at N sampling points k̂n for n ∈ {0, 1, . . . ,N − 1}1 such that

the sequence k̂0, k̂1, . . . , k̂N−1 is strictly increasing.2 Let s̃ denote an N × 1 vector

whose entries are s̃n = S̃ (k̂n). As discussed in Chapter 3.5.5, if the set/sequence

of sampling points k̂n is non-uniformly spaced (i.e, k̂n+1 − k̂n is not constant for

all n ∈ {0, 1, . . . ,N − 2}), then we must perform spectrum resampling in order

to estimate the value of S̃ (k) over a set/sequence of M uniformly spaced query

points km for m ∈ {0, 1, . . . ,M − 1}.3

We define km such that km = k̂0 + m∆k for m ∈ {0, 1, . . . ,M − 1} and ∆k =

(k̂N−1 − k̂0)/(M − 1). Let s̄ denote an M × 1 vector whose entries are s̄m = S̄ (km),

where S̄ (k) is a function which approximates S̃ (k). Specifically, S̄ (k) ≈ S̃ (k) for k̂0 ≤

1Elsewhere in this dissertation, I typically use ‘i’ as my indexing variable of choice, and
reserve ‘n’ to denote refractive index. However, I will be doing otherwise here. I tried not to do
this, but there are so many conventions and only so many letters.

2See the MATLAB code at the end of this appendix for the handling of a decreasing set.
3Note that for typical OCT image reconstruction procedures, M = N. However, for instruc-

tional purposes, we will continue to treat both M and N as independent values.
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k ≤ k̂N−1. In many common interpolation schemes, each entry of s̄ is obtained

via a weighted sum of the entries of s̃, which we can describe by the operation:

s̄ = Ws̃ (F.1)

where W (which we will call a ‘resampling matrix’) is an M × N matrix of ‘re-

sampling weights’. The entries of W are determined by the set of all sampling

points k̂n, the set of all query points km, and the interpolation scheme. Here, we

will use cubic (3rd-order) spline interpolation.

F.2.2 The cubic spline function

To perform cubic spline interpolation, first, we define S̄ (k) as:

S̄ (k) =


fn(k), k̂n ≤ k < k̂n+1, n ∈ {0, 1, . . . ,N − 3}

fn(k), k̂n ≤ k ≤ k̂n+1, n = N − 2

(F.2)

where

fn(k) = an + bn(k − k̂n) + cn(k − k̂n)2 + dn(k − k̂n)3 (F.3)

That is, S̄ (k) is a piecewise function, divided into N − 1 distinct segments (which

span the domains [k̂0, k̂1), [k̂1, k̂2),. . . , [k̂N−3, k̂N−2),[k̂N−2, k̂N−1], respectively). Each

segment is defined by its own function fn(k), which is a cubic polynomial with

coefficients {an, bn, cn, dn}. We will refer to these as our ‘spline coefficents’. In

order to determine the values of our spline coefficients from s̃ , we must pre-

cisely define what we meant when we said that S̄ (k) ≈ S̃ (k). Since 4N − 4 spline

coefficients are required, we must define 4N − 4 constraints.
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F.2.3 Constraints

Left-hand equality constraint Naturally, given that we know the value of S̃ (k)

for each k̂n, we wish enforce that S̄ (k̂n) = S̃ (k̂n) for n ∈ {0, 1, . . . ,N − 1}. From this,

we first obtain N − 1 constraints of the form:

S̃ (k̂n) = fn(k̂n) (F.4a)

S̃ (k̂n) = an + bn(k̂n − k̂n) + cn(k̂n − k̂n)2 + dn(k̂n − k̂n)3 (F.4b)

S̃ (k̂n) = an (F.4c)

for n ∈ {0, 1, . . . ,N − 2}.

Right-hand equality constraint/0th-order continuity constraint Since our real

spectral signal S̃ (k) is expected to take the form of a continuous function, we

also wish to make S̄ (k) continuous. From this, we obtain an additional N − 1

constraints of the form:

S̃ (k̂n+1) = fn(k̂n+1) (F.5a)

S̃ (k̂n+1) = an + bn(k̂n+1 − k̂n) + cn(k̂n+1 − k̂n)2 + dn(k̂n+1 − k̂n)3 (F.5b)

S̃ (k̂n+1) = an + bn∆k̂n + cn∆k̂2
n + dn∆k̂3

n (F.5c)

for n ∈ {0, 1, . . . ,N − 2} and ∆k̂n = k̂n+1 − k̂n.

1st-order continuity constraint It is also reasonable to expect S̃ (k) (and by ex-

tension, S̄ (k)) to be smooth/differentiable. Assuming that the first derivative of
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S̄ (k) is continuous, we obtain N − 2 constraints of the form:

∂ fn+1

∂k
(k̂n+1) =

∂ fn

∂k
(k̂n+1) (F.6a)

bn+1 + 2cn+1(k̂n+1 − k̂n+1) + 3dn+1(k̂n+1 − k̂n+1)2 = bn + 2cn(k̂n+1 − k̂n) + 3dn(k̂n+1 − k̂n)2

(F.6b)

bn+1 = bn + 2cn∆k̂n + 3dn∆k̂2
n (F.6c)

for n ∈ {0, 1, . . . ,N − 3}.

2nd-order continuity constraint Using the same reasoning as above, assuming

that the second derivative of S̄ (k) is continuous, we obtain N − 2 constraints of

the form:

∂2 fn+1

∂k2 (k̂n+1) =
∂2 fn

∂k2 (k̂n+1) (F.7a)

2cn+1 + 6dn+1(k̂n+1 − k̂n+1) = 2cn + 6dn(k̂n+1 − k̂n) (F.7b)

cn+1 = cn + 3dn∆k̂n (F.7c)

for n ∈ {0, 1, . . . ,N − 3}.

Boundary conditions In total, we have amassed 4N−6 constraints. We require

two additional constraints in order to obtain a total of 4N − 4. These constraints

take the form of boundary conditions on the first and/or second derivative of

S̄ (k). Here, we will assume that:

∂2S̄
∂k2 (k̂0) =

∂2S̄
∂k2 (k̂N−1) = 0 (F.8)
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This yields two distinct constraints of the form:

0 =
∂2 f0

∂k2 (k̂0) (F.9a)

0 = 2c0 + 6d0(k̂0 − k̂0) (F.9b)

0 = c0 (F.9c)

and

0 =
∂2 fN−2

∂k2 (k̂N−1) (F.10a)

0 = 2cN−2 + 6dN−2(k̂N−1 − k̂N−2) (F.10b)

0 = cN−2 + 3dN−2∆k̂N−2 (F.10c)

F.2.4 Combined system of equations

Finally, we have all of the constraints that we need in order to define our 4N − 4

spline coefficients. To recapitulate, our combined constraints are:

s̃n = an for n ∈ {0, 1, . . . ,N − 2} (F.11a)

s̃n+1 = an + bn∆k̂n + cn∆k̂2
n + dn∆k̂3

n for n ∈ {0, 1, . . . ,N − 2} (F.11b)

0 = bn + 2cn∆k̂n + 3dn∆k̂2
n − bn+1 for n ∈ {0, 1, . . . ,N − 3} (F.11c)

0 = cn + 3dn∆k̂n − cn+1 for n ∈ {0, 1, . . . ,N − 3} (F.11d)

0 = c0 (F.11e)

0 = cN−2 + 3dN−2∆k̂N−2 (F.11f)

We merge these constraints into a single system of linear equations, which

we express in matrix-vector form as:

XLs̃ = XRa (F.12)
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where XL and XR are our ‘condition matrices’ (of size (4N − 4)×N and (4N − 4)×

(4N − 4), respectively) and a is a (4N − 4)× 1 vector which concatenates all of our

spline coefficients:

a = 〈a0, b0, c0, d0, a1, b1, c1, d1, . . . aN−2, bN−2, cN−2, dN−2〉
T (F.13)

Equation (F.12) encodes a large and sparse system of equations (which do

not fit well on paper). For example, if N = 3, then Eqn. (F.12) would be:

1 0 0

0 1 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0




s̃0

s̃1

s̃2


=



1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

1 ∆k̂0 ∆k̂2
0 ∆k̂3

0 0 0 0 0

0 0 0 0 1 ∆k̂1 ∆k̂2
1 ∆k̂3

1

0 1 2∆k̂0 3∆k̂2
0 0 −1 0 0

0 0 1 3∆k̂0 0 0 −1 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 3∆k̂1





a0

b0

c0

d0

a1

b1

c1

d1



(F.14)

Generating compact expressions for XL and XR given an arbitrary value of

N is a little more challenging. The expressions below are in a form which was

convenient for the MATLAB example provided at the end of this appendix. Us-

ing our five types of constraints detailed previously, we define XL as the vertical
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concatenation of five constraint matrices: XL,1, XL,2, . . . , XL,5 of the form:

XL,1 =
[
IN−1 0(N−1)×1

]
(F.15a)

XL,2 =
[
0(N−1)×1 IN−1

]
(F.15b)

XL,3 = 0(N−2)×N (F.15c)

XL,4 = 0(N−2)×N (F.15d)

XL,5 = 02×N (F.15e)

where IN−1 denotes the (N − 1)× (N − 1) identity matrix and 0P×Q denotes a P×Q

matrix of zeroes. Analogously, we define XR as the vertical concatenation of five

constraint matrices: XR,1, XR,2, . . . , XR,5 of the form:

XR,1 = (IN−1 ⊗ [1 0 0 0]) (F.16a)

XR,2 = (IN−1 ⊗ [1 1 1 1]) ◦
(
1(N−1)×1∆0

)
(F.16b)

XR,3 =
(([

IN−2 0(N−2)×1
]
⊗ [0 1 2 3]

)
+

([
0(N−2)×1 IN−2

]
⊗ [0 − 1 0 0]

))
◦
(
1(N−2)×1∆1

)
(F.16c)

XR,4 =
(([

IN−2 0(N−2)×1
]
⊗ [0 0 1 3]

)
+

([
0(N−2)×1 IN−2

]
⊗ [0 0 − 1 0]

))
◦
(
1(N−2)×1∆2

)
(F.16d)

XR,5 =


0 0 1 0

0 0 0 0

 02×(4N−12)

0 0 0 0

0 0 1 3∆k̂N−2


 (F.16e)

where ‘⊗’ denotes the Kronecker product, ‘◦’ denotes the Hadamard product,

1P×Q denotes a P × Q matrix of ones, and ∆0, ∆1, and ∆2 are 1 × (4N − 4) row

vectors given by:

∆0 = 〈1,∆k̂0,∆k̂2
0,∆k̂3

0, 1,∆k̂1,∆k̂2
1,∆k̂3

1, . . . , 1,∆k̂N−2,∆k̂2
N−2,∆k̂3

N−2〉 (F.17a)

∆1 = 〈0, 1,∆k̂0,∆k̂2
0, 0, 1,∆k̂1,∆k̂2

1, . . . , 0, 1,∆k̂N−2,∆k̂2
N−2〉 (F.17b)

∆2 = 〈0, 0, 1,∆k̂0, 0, 0, 1,∆k̂1, . . . , 0, 0, 1,∆k̂N−2〉 (F.17c)
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We can obtain the values of our 4N − 4 spline coefficients via:

a = X−1
R XLs̃ (F.18)

Since the system of equations defined in Eqn. (F.12) is sparse, Eqn. (F.18) above

is not how interpolation routines solve for a, in practice. Instead, other efficient

solving routines are typically available which do not require explicitly creating

the matrices XL and XR. However, we will not concern ourselves with computa-

tional efficiency here, since this is merely a learning exercise. It is time to move

on to the next step!

F.2.5 Constructing the cubic spline interpolator

Now that we have our vector of spline coefficients a, we must construct an in-

terpolator which we can use to generate s̄. Define an indicator matrix:

I ∈ RM×(N−1) : Im,n =



1, k̂n ≤ km < k̂n+1, m ∈ {0, 1, . . . ,M − 1}, n ∈ {0, 1, . . . ,N − 3}

1, k̂n ≤ km ≤ k̂n+1, m ∈ {0, 1, . . . ,M − 1}, n = N − 2

0, otherwise
(F.19)

The indicator matrix I contains a ‘1’ wherever a given query point km lies within

a given segment (of the N − 1 total segments) of our piecewise expression for

S̄ (k) (i.e., Eqn. (F.2)), and a ‘0’ everywhere else. In other words, this function

defines which of the N−1 polynomial functions fn(k) should be used to evaluate

S̄ (km) ≈ S̃ (km) for a given value of km. We may now obtain s̄ via:

s̄ = KIa (F.20)
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where

KI = (I ⊗ [1 1 1 1]) ◦K (F.21)

and K is a block matrix of the form:

K =



k0,0 k0,1 . . . k0,N−2

k1,0 k1,1 . . . k1,N−2

...
...

. . .
...

kM−1,0 kM−1,1 . . . kM−1,N−2


(F.22)

where km,n =
[
1 ∆km,n ∆k2

m,n ∆k3
m,n

]
and ∆km,n = km − k̂n.

Combining Eqns. (F.1), (F.18), and (F.20), we obtain:

s̄ = Ws̃ = KIX−1
R XLs̃ (F.23)

That is, we do not even need to directly compute our spline coefficients in order

to obtain our interpolated/resampled signal s̄. We can merely combine all of

our prior steps into a single matrix multiplication step (i.e., multiplication of

the input data vector s̃ by W, an M × N matrix of ‘resampling weights’). Since

the set of sampling points k̂n and query points km are unlikely to (and perhaps

never) change for a given OCT system, we need only compute the entries of W

once, after which the values can be ‘recycled’ during subsequent rounds of OCT

image reconstruction.

Since W is a sparse matrix, we can approximate/sparsify W by, for example,

only recording the values and indices of the L largest (in magnitude) elements

along each row of W. This allows for the construction of a look-up table (LUT)

which enables simple and efficient resampling of large quantities of OCT spec-

tral data. A similar procedure can be performed for any other interpolation

scheme which can be expressed via Eqn. (F.1) (e.g., sinc-weighted interpolation,
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up-sampling followed by linear interpolation, etc.). Therefore, I will almost al-

ways recommend constructing a pre-built LUT4 rather than spending time opti-

mizing the speed of some interpolation routine. In fact, most ‘good’ high-order

interpolators used for OCT image reconstruction will yield similar resampling

matrices and/or LUTs, since they are (approximately) performing the same final

task (i.e., approximating values of a function via local weighted sums).

F.3 Example implementation

%% SET UP ------------------------------------- %%
clear all, close all, clc
% Spectrometer parameters
c = [ 7.08048E2 ...

9.91928E-2 ...
-3.96682E-6 ...
-3.84179E-10]; % Spectrometer coeffs

N = 2048; % Number of pixels

% Non-uniformly spaced sampling points
p = (1:N)’;
lambda = 1E-3*(c(1)+c(2)*p+c(3)*p.ˆ2+c(4)*p.ˆ3);
khat = 2*pi./lambda;

% Handle ascending vs. descending order of khat
if (khat(2)-khat(1))>0

flip = ’false’;
else

flip = ’true’;
khat = flipud(khat);

end

% Uniformly spaced query points
M = N; % Number of query points
km = linspace(khat(1),khat(end),M)’;

%% SPLINE CONSTRUCTION (INEFFICIENT) ---------- %%
% Left condition matrix
XL1 = [eye(N-1) zeros(N-1,1)];
XL2 = [zeros(N-1,1) eye(N-1)];
XL3 = zeros(N-2,N);
XL4 = zeros(N-2,N);

4Or perhaps an OCT reconstruction matrix. See Chapter 3.7.
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XL5 = zeros(2,N);
XL = cat(1,XL1,XL2,XL3,XL4,XL5);

% Right condition matrix
Delta_khat = khat(2:end) - khat(1:end-1);
Delta_0 = kron(Delta_khat’,[1 1 1 1]).ˆ...

repmat([0 1 2 3],[1 N-1]);
Delta_1 = kron(Delta_khat’,[0 1 1 1]).ˆ...

repmat([1 0 1 2],[1 N-1]);
Delta_2 = kron(Delta_khat’,[0 0 1 1]).ˆ...

repmat([1 1 0 1],[1 N-1]);

XR1 = kron(eye(N-1),[1 0 0 0]);
XR2 = kron(eye(N-1),[1 1 1 1]).*...

(ones(N-1,1)*Delta_0);
XR3 = (kron([eye(N-2) zeros(N-2,1)],[0 1 2 3]) +...

kron([zeros(N-2,1) eye(N-2)],[0 -1 0 0])).*...
(ones(N-2,1)*Delta_1);

XR4 = (kron([eye(N-2) zeros(N-2,1)],[0 0 1 3]) +...
kron([zeros(N-2,1) eye(N-2)],[0 0 -1 0])).*...
(ones(N-2,1)*Delta_2);

XR5 = zeros(2,4*N-4);
XR5(1,3)=1; XR5(2,end-1:end)=[1 3*Delta_khat(end)];
XR = cat(1,XR1,XR2,XR3,XR4,XR5);

%% INTERPOLATOR CONSTRUCTION ------------------ %%
% Indicator function
I = (km >= khat(1:N-1)’) & ...

[(km < khat(2:N-1)’) (km <= khat(N))];

% Interpolation matrix
K = kron(km-khat(1:N-1)’,[1 1 1 1]).ˆ...

repmat([0 1 2 3],[M (N-1)]);
K_I = kron(I,[1 1 1 1]).*K;

%% RESAMPLING MATRIX (INEFFICIENT) ------------ %%
W = K_I*(inv(XR)*XL);
if (flip), W = flipud(fliplr(W)); end

%% EXAMPLE RESULTS ---------------------------- %%
% Example signal to resample/interpolate
z = 50; % Example observed OPL (um)
s_true = cos(z*km); % ’True’ signal
s_tilde = cos(z*khat); % Raw data (Non-uniform)

% Handle acending/descending order
if (flip)

s_tilde = flipud(s_tilde);
s_true = flipud(s_true);

end

s_bar = W*s_tilde; % Interpolated signal
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figure(1);
plot(p,s_true ,’b-’,’LineWidth’,5); hold on
plot(p,s_tilde,’r-’,’LineWidth’,2);
plot(p,s_bar ,’g-’,’LineWidth’,2); hold off
xlim([1 N]), ylim(1.5*[-1 1]); grid on
legend(’True signal’,’Non-uniform sampling’,’Resampled’);

%% SPARSIFICATION (LUT) ----------------------- %%
L = 4; % # of weighting coeffs to preserve per row
[dummy,index] = sort(abs(W),2,’descend’);
index = index(:,1:L); % Resampling indices
extract = sub2ind(size(W),repmat((1:N)’,[1 L]),index);
weight = W(extract); % Resampling weights

% Look-up table consists of ’index’ and ’weight’
s_bar_LUT = sum(weight.*s_tilde(index),2);

figure(2);
plot(p,s_bar ,’b-’,’LineWidth’,5); hold on
plot(p,s_bar_LUT,’r-’,’LineWidth’,2); hold off
xlim([1 N]), ylim(1.5*[-1 1]); grid on
legend(’Resampled’,’Resampled with LUT’);
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APPENDIX G

USEFUL FOURIER TRANSFORMS

For instructional purposes, this appendix derives useful Fourier transform rela-

tionships that appear throughout this dissertation.

G.1 The Fourier transform

Fourier analysis is used to decompose a given function into a weighted sum of

parametrized basis functions. For 1D signals, these basis functions are of the

form: e jωt = cos(ωt) + j sin(ωt), where j =
√
−1, and ω is the angular frequency.

(For higher-dimensional functions, the ωt term is generalized to a dot product

of ‘frequency’ and ‘time/space’ vectors ω · t.) The Fourier transform computes

the weight of each basis function via an inner product/projection operation:

f̃ (ω) = Ft→ω
[
f (t)

]
=

∫ ∞

−∞

f (t)e− jωt dt (G.1)

In contrast, the inverse Fourier transform ‘rebuilds’ a function by performing a

weighted sum of basis functions:

f (t) = F −1
t→ω

[
f̃ (ω)

]
=

∫ ∞

−∞

f̃ (ω)e jωt dω (G.2)

These transforms are often normalized to ensure that performing F
[
F −1 [

f (t)
]]

returns exactly f (t) and not some proportionally scaled version of the function.

However, in this dissertation, normalization coefficients will be ignored, since

they do not have bearing on the final structure that appears in image signals.
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G.2 Dirac delta function

The delta function frequently arises in the analysis of linear systems. For a delta

function centered at t = T , the ‘sampling property’ of the delta function yields:

F [δ(t − T )] =

∫ ∞

−∞

δ(t − T )e− jωt dt (G.3a)

= e− jωT (G.3b)

Likewise, the inverse Fourier transform of a delta function in the frequency do-

main δ(ω−ωm) will be e jωmt. These functions have interesting implications, some

of which are discussed in Appendix C.

G.3 Shifting/Modulation

A function f (t) may be converted to the shifted function f (t − T ) by using the

sampling property of the delta function:

f (t − T ) =

∫ ∞

−∞

f (τ)δ((t − T ) − τ) dτ (G.4)

We may now derive the Fourier transform of f (t − T ) as:

F
[
f (t − T )

]
=

∫ ∞

−∞

(∫ ∞

−∞

f (τ)δ((t − T ) − τ) dτ
)

e− jωt dt (G.5a)

=

∫ ∞

−∞

f (τ)
(∫ ∞

−∞

δ((t − T ) − τ)e− jωt dt
)

dτ (G.5b)

=

∫ ∞

−∞

f (τ)e− jω(T+τ) dτ (G.5c)

=

∫ ∞

−∞

f (τ)e− jωτ dτ e− jωT (G.5d)

= f̃ (ω)e− jωT (G.5e)

Likewise, the inverse Fourier transform of a shifted function in the frequency

domain f̃ (ω − ωm) will be f (t)e jωmt.
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G.4 Convolution/Multiplication

The convolution product of two functions f (t) and g(t) is given by:

f (t) ? g(t) =

∫ ∞

−∞

f (τ)g(t − τ) dτ (G.6)

The Fourier transform of this operation yields:

F
[
f (t) ? g(t)

]
=

∫ ∞

−∞

(∫ ∞

−∞

f (τ)g(t − τ) dτ
)

e− jωt dt (G.7a)

=

∫ ∞

−∞

f (τ)
(∫ ∞

−∞

g(t − τ)e− jωt dt
)

dτ (G.7b)

=

∫ ∞

−∞

f (τ)
(
g̃(ω)e− jωτ

)
dτ (G.7c)

=

∫ ∞

−∞

f (τ)e− jωτ dτ g̃(ω) (G.7d)

= f̃ (ω)g̃(ω) (G.7e)

Likewise, the inverse Fourier transform of the convolution product in the fre-

quency domain f̃ (ω) ? g̃(ω) will be f (t)g(t). This makes Fourier transforms ex-

tremely useful for calculating convolution products (by converting them into

simple multiplication operations).
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G.5 Differentiation

Fourier transforms are often used in solving differential equations. The Fourier

transform of the derivative of f (t) is given by:

F

[
∂

∂t
f (t)

]
=

∫ ∞

−∞

∂

∂t
[
f (t)

]
e− jωt dt (G.8a)

=

∫ ∞

−∞

∂

∂t

[∫ ∞

−∞

f̃ (ω)e jωt dω
]

e− jωt dt (G.8b)

=

∫ ∞

−∞

∫ ∞

−∞

( jω) f̃ (ω)e jωt dω e− jωt dt (G.8c)

= F
[
F −1

[
( jω) f̃ (ω)

]]
(G.8d)

= ( jω) f̃ (ω) (G.8e)

Likewise, the inverse Fourier transform of ∂
∂ω

f̃ (ω) will be (− jt) f (t).

G.6 Gaussian function

Gaussian beams are commonly used in beam-scanning optical systems. Let f (t)

be a Gaussian function of the form f (t) = e−at2 , for a ∈ C. The Fourier transform
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of f (t) can be derived via the following procedure:

f (t) = e−at2 (G.9a)

∂

∂t
f (t) = (−2at)e−at2 (G.9b)

∂

∂t
f (t) = (2a/ j)(− jt) f (t) (G.9c)

( jω) f̃ (ω) = (2a/ j)
∂

∂ω
f̃ (ω) (G.9d)

∂ f̃ (ω)/∂ω
f̃ (ω)

= −
ω

2a
(G.9e)

ln
(

f̃ (ω)
)

= −
ω2

4a
+ c0 (G.9f)

f̃ (ω) = f̃ (0)e−ω
2/4a (G.9g)

The scalar coefficient f̃ (0) will be given by
∫ ∞
−∞

f (t) dt. Rather than solve the

1D case, we will instead move on and solve the 2D case, since the analysis of

Gaussian beams relies on 2D Gaussian functions. Let f (x, y) = e−a(x2+y2). The

Fourier transform of f (x, y) is given by:

f̃ (qx, qy) = F(x,y)→(qx,qy)

[
e−a(x2+y2)

]
(G.10a)

=

∫ ∞

−∞

∫ ∞

−∞

e−a(x2+y2)e− j(qx x+qyy) dx dy (G.10b)

=

∫ ∞

−∞

e−ax2
e− jqx x dx

∫ ∞

−∞

e−ay2
e− jqyy dy (G.10c)

= Fx→qx

[
e−ax2]

Fy→qy

[
e−ay2]

(G.10d)

= f̃ (0, 0)e−q2
x/4ae−q2

y/4a (G.10e)

= f̃ (0, 0)e−(q2
x+q2

y )/4a (G.10f)
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where f̃ (0, 0) is given by:

f̃ (0, 0) =

∫ ∞

−∞

∫ ∞

−∞

e−a(x2+y2) dx dy (G.11a)

=

∫ 2π

0

∫ ∞

0
e−ar2

r dr dθ , r =
√

x2 + y2 (G.11b)

=

∫ 2π

0

∫ ∞

0
re−ar2

dr dθ (G.11c)

=

∫ 2π

0

[
−

1
2a

e−ar2

]∞
r=0

dθ (G.11d)

=

∫ 2π

0

1
2a

dθ , R[a] > 0 (G.11e)

=
π

a
(G.11f)

Likewise, the inverse Fourier transform of f̃ (qx, qy) = e−b(q2
x+q2

y ) will be

π
b e−(x2+y2)/4b. Note that given these derivations, we find that F −1

[
F

[
e−a(x2+y2)

]]
=

(2π)2e−a(x2+y2). The extra factor of (2π)2 is a consequence of our unnormalized

(2D) Fourier transform. So if you are performing math where such factors mat-

ter, make sure to use normalized transforms instead of the ones used here!
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APPENDIX H

ORIGIN AND CONSEQUENCES OF COHERENCE GATE CURVATURE

In the derivations of Chapters 3-4, we assumed that 3D SD-OCT data is collected

along the dimensions (x, y, k), where (x, y) is the lateral position of the scanning

beam and k is a spectral axis which can be directly converted to depth z through

a Fourier transform relation. Although it would be nice to assume that our final

OCT image data exists on some rectangular (Cartesian) grid1 of points in (x, y, z),

this will not necessarily be what actually happens.

Coherence gate curvature (CGC) is a phenomenon which emerges from non-

ideal designs and/or implementations of the sample arm optics. Specifically,

CGC manifests as set of image distortions which can warp the image across all

three spatial dimensions. In order to gain a basic understanding of the origin

and consequences of CGC, we will need to model the position, angle, and opti-

cal path length of light rays which traverse the sample arm optics.

H.1 Ray transfer matrix analysis model

Assume a beam-scanning SD-OCT imaging system with a double-pass config-

uration. For simplicity, we will only concern ourselves with scanning along a

single lateral dimension x. We begin with a collimated beam that is co-localized

and parallel to the optical axis of our sample arm (i.e., the position-angle vector

which describes the ‘chief ray’ (i.e., the central ray) of the beam is {r, θ} = {0, 0}).

The beam immediately strikes a pivoting galvanometer mirror, which modifies

1This is essential if you want to make use of the FFT to perform Fourier transforms along the
x, y, and/or z dimensions of your data.
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the angle of the collimated beam with respect to the optical axis. After reflecting

off of the mirror, the beam propagates a distance L and then passes through a

thin lens (the objective lens) with focal length f . Since the beam is no longer

collimated, the beam diameter now evolves as a function of the propagation

distance z from the lens. There are three types of optical elements to describe in

this system:

1. Reflection from an angled mirror. Assume that the pivot of the gal-

vanometer mirror is aligned to the optical axis. Rotation of this mirror

modifies the angle at which the reflected beam propagates into the rest

of the system. Specifically, we will define this operation such that some

initial ray in our collimated beam {r, 0}will be transformed to: {r, θ}

2. Propagation. For propagation over a distance L, this operation is given by

the matrix: {[1, L], [0, 1]}

3. Focusing through a thin lens. For a thin lens with focal length f , this

operation is given by the matrix: {[1, 0], [−1/ f , 1]}

We can now predict the output position and angle of a ray from our input beam

with respect to the optical axis via:rout

θout

 =

1 z

0 1


 1 0

−1/ f 1


1 L

0 1


rθ

 (H.1a)

=

1 z

0 1


 1 L

−1/ f 1 − L/ f


rθ

 (H.1b)

=

1 − z/ f L + z − Lz/ f

−1/ f 1 − L/ f


rθ

 (H.1c)
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H.2 Optical path length of chief ray

We next need to determine the optical path length traversed by the rays from

our model above. For the chief ray, we have:

1. Reflection from an angled mirror. Given the previously described co-

alignment of the optical axis, galvanometer pivot, and chief ray, there is

no effect on OPL.

2. Propagation. For propagation over an axial distance L at an angle θ, the

total distance traveled by the ray is L sec θ ≈ L(1 + (θ2/2)).

3. Focusing through a thin lens. For a ray incident upon a thin lens (of focal

length f ) at a lateral position r, the optical path length incurred (up to an

additive constant) is approximately −r2/(2 f ).

All together, following the chief ray from our model above (given by {r = 0, θ}

immediately after reflection off of the galvanometer mirror), the OCT system

will measure a double-pass OPL (up to an additive constant) of:

OPL(θ, L, z) = 2
(
L
(
1 +

θ2

2

)
+ −

(Lθ)2

2 f
+ z

(
1 +

((1 − L/ f )θ)2

2

))
(H.2a)

= 2 (L + z) + L(1 − L/ f )θ2 + z(1 − L/ f )2θ2 (H.2b)

where the factor of 2 emerges from the double-pass configuration of the system.

H.3 Ideal system parameters

For an ‘ideal’ OCT system, the pivot of the galvanometer mirror is located at the

back focal plane of the objective lens. This condition is satisfied in our model
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when L = f , yielding the ray transfer matrix:rout

θout

 =

1 − z/ f f + z − f z/ f

−1/ f 1 − f / f


rθ

 (H.3a)

=

1 − z/ f f

−1/ f 0


rθ

 (H.3b)

Under these conditions, the chief ray is given by { f θ, 0} after passing through

the objective lens. This means that the lateral position of the imaging beam with

respect to the optical axis is rout = f θ, and that the beam propagates parallel to

the optical axis (θout = 0). The optical path length measured for the chief ray

when L = f is given by:

OPL(θ, L = f , z) = 2 ( f + z) + f (1 − f / f )θ2 + z(1 − f / f )2θ2 (H.4a)

= 2 ( f + z) (H.4b)

These results correspond to the ideal behavior for an OCT image system.

Let’s explore why this is the case.

H.4 Ideal mapping from acquisition coordinates to physical co-

ordinates

If we control lateral beam position via rotation of the galvanometer mirror, then

we only have direct control over the input angle θ of our collimated beam (or

rather, input angles (θx, θy) for 3D image acquisition). Furthermore, our spectral

data can only provide direct measurements of OPL (which, as we will see, does

not necessarily correspond to distance along the z dimension). Whether or not
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our ‘acquisition coordinates’ (θx, θy,OPL) map to a Cartesian grid in the ‘physical

coordinate’ space of (x, y, z) is entirely up to the combination of our scanning

procedure and the optical design of the sample arm.

For our ‘ideal’ imaging system above (in which L = f ), obtaining a rectan-

gular grid of (x, y, z) points is trivial. Since the lateral beam position is given

by our chief ray position rout = f θ, we know that our lateral scanning position

x is directly proportional to the input angle θ of our collimated beam. There-

fore, if we devise a scanning procedure wherein A-scans are acquired using uni-

form sampling along θ, we will obtain data which is uniformly sampled along

x. Likewise, since the chief ray propagates parallel to the optical axis (and the

measured OPL traversed by the chief ray scales linearly with propagation dis-

tance along the optical axis), we know that our OPL ‘axis’ will correspond to

depth within the sample. As a result, obtaining a Cartesian grid of image data

in (x, y, z) requires very little effort.

A non-ideal system results in a very different story.

H.5 Non-ideal system parameters

If the galvanometer mirror is not placed at the back focal plane of the objective

lens (i.e., L = f + d), we obtain:rout

θout

 =

1 − z/ f ( f + d) + z − ( f + d)z/ f

−1/ f 1 − ( f + d)/ f


rθ

 (H.5a)

=

1 − z/ f ( f + d) − (d/ f )z

−1/ f −d/ f


rθ

 (H.5b)
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Under these conditions, the chief ray is given by {(( f +d)−(d/ f )z)θ, (−d/ f )θ} after

passing through the objective lens. The beam no longer propagates parallel

to the optical axis, and the lateral position of the imaging beam changes with

respect to the propagation distance z. The OPL measured for the chief ray when

L = f + d is given (up to an additive constant) by:

OPL(θ, L = f + d, z) = 2 (( f + d) + z) + ( f + d)(1 − ( f + d)/ f )θ2 + z(1 − ( f + d)/ f )2θ2

(H.6a)

= 2( f + d + z) + ( f + d)(−d/ f )θ2 + z(−d/ f )2θ2 (H.6b)

= 2( f + d + z) +

(
−d −

d2

f
+

d2

f 2 z
)
θ2 (H.6c)

(H.6d)

These conditions will clearly give us trouble.

H.6 Non-ideal mapping from acquisition coordinates to physi-

cal coordinates

First, we return to ray transfer results. For the chief ray:rout

θout

 =

(( f + d) − (d/ f )z)θ

−(d/ f )θ

 =

( f − (d/ f )(z − f )) θ

−(d/ f )θ

 (H.7)

Note that our lateral beam position is still proportional to θ. Therefore, a beam-

scanning procedure which performs uniform sampling along input beam angle

θ will still acquire data with uniform sampling along spatial position rout = x.

However, due to the constant of proportionality f − (d/ f )(z− f ), the lateral sam-

pling period is a function of depth z within the sample. This has the effect of
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introducing non-telecentricity (i.e., a depth-dependent lateral magnification) to

the OCT image. The lateral magnification matches the ideal case at the focal

plane (z = f ), but deviates asymmetrically with increasing distance from the

focal plane. Specifically, lateral magnification increases with depth for positive

values of d and decreases with depth for negative values of d.

The laterally varying output beam angle −(d/ f )θ results in a laterally vary-

ing signal modulation (since the chief ray marks the center of the angular band-

width of the beam). This could contribute to space-varying image distortions

following a naive CAO procedure. I have never analyzed this problem in detail

(specifically, whether the post-CAO distortions resulting from this signal mod-

ulation would ‘cancel out’ the depth-dependent lateral magnification or exacer-

bate it). This may be worth exploring further.

Next, we examine the optical path length measurements from the chief ray:

OPL = 2( f + d + z) +

(
−d −

d2

f
+

d2

f 2 z
)
θ2 (H.8)

First, we consider how OPL evolves with respect to depth z in the sample. Ig-

noring factors that are constant with respect to z, OPL varies with depth as:2 +

(
d
f
θ

)2 z (H.9)

This means that our mapping between z and OPL varies as a function of scan-

ning angle. However, for a sufficiently small FOV (small values of θ) and/or a

sufficiently small misalignment of the galvanometer mirror from the back focal

plane of the objective lens (small values of d/ f ), the assumption that the z-axis

and OPL-axis of our data are interchangeable may be an acceptable approxima-

tion. Assuming that this is the case, we next consider the remaining non-constant
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terms which govern how OPL varies with θ:

−

(
d +

d2

f

)
θ2 (H.10)

This means that the measured OPL exhibits a laterally varying offset whose

magnitude increases with increasing scan angle. Because this term is quadratic

in θ, this will cause the image signal to ‘shift’ along the OPL axis such that pla-

nar surfaces appear curved (hence the name, coherence gate curvature). For ex-

ample, suppose we were to image a level planar surface (such as a flat sheet of

glass which is perpendicular to the optical axis). For positive values of d (i.e.,

the galvanometer mirror is too far away from the objective lens), the surface will

appear to curve ‘upward’ (closer to the objective lens) toward its edges. Like-

wise, for negative values of d (i.e., the galvanometer mirror is too close to the

objective lens), the surface will appear to curve ‘downward’ (farther from the

objective lens) toward its edges.

It is this curvature which my various computational CGC mitigation proce-

dures seek to remove. Depth-dependent lateral magnification, scanning angle-

dependent axial sampling, and laterally-varying beam modulation effects were

assumed to be negligible. It may be worthwhile to explore the impact of these

neglected effects in both theory and experiment. By extension, developing

more advanced computational mitigation techniques may help to generate bet-

ter OCT images with reduced distortion artifacts. As always, it is recommended

that you build your system such that CGC is minimized naturally via optical

hardware (e.g., see Appendix I). However, this may not always be possible

(e.g., due aberrations within the scanning field of the imaging system). There-

fore, computational CGC mitigation methods will likely remain as an important

contributing step for minimizing the distortions in OCT images.
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APPENDIX I

HARDWARE-BASED MITIGATION OF COHERENCE GATE CURVATURE

IN PAIRED GALVANOMETER SYSTEMS

Notice of intent to publish The methods and results detailed in this appendix

are components of a manuscript which is currently (as of this writing) under

preparation for submission to a scientific journal. See the beginning of Chapter 7

for details.

As mentioned in Appendix H, computational mitigation of coherence gate

curvature (CGC) is necessary because it is rarely feasible to construct an ideal

optical system. However, with good design practices, we can significantly re-

duce CGC. Unfortunately, beam-scanning OCT microscopes are often plagued

by CGC artifacts due to a rampant ‘bad habit’ in system design. Here, I will de-

tail this issue and present a post hoc solution which I have implemented in my

own OCT system.

I.1 A bad habit

As discussed previously, a beam-scanning double-pass OCT system will exhibit

little to no CGC when the pivot of the scanning galvanometer mirror is placed

at the back focal plane of the objective lens. However, a single galvanometer

mirror only enables beam scanning along a single lateral dimension. Thus, two

galvanometer mirrors are required in order to scan along both lateral dimen-

sions. Common sense tells us that it is not physically possible to place both

mirrors at a single location.
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Of course, we do not need to physically place our galvanometers at the back

focal plane of the objective lens. Simply placing an image of the mirrors at the

back focal plane of the objective lens will suffice. Therefore, we can use a tele-

scope relay to image the first galvanometer onto the second, and then we can

place the second galvanometer (or an image of it, via another telescope relay)

at the back focal plane of the objective lens. Of course, this design requires two

distinct galvanometer mirrors that can be moved with respect to each other and

complicates system design. However, the benefits typically outweigh the costs.

As a result, this telescope relay method is a standard practice across the field

of microscopy. However, many OCT systems employ a different design. Instead

of using a telescope relay, both mirrors are placed very close to each other along

the optical axis (with only a few millimeters of separation). Then, the mirror

pair is placed such that either: 1) one mirror lies at the back focal plane of the

objective lens while the other does not, or 2) neither mirror lies at the back focal

plane (i.e., one lies in front while the other lies behind). The former method

results in a single scanning axis which exhibits CGC, while the latter method

results in both scanning axes exhibiting CGC (but with lesser magnitude along

each axis than the single axis of the former method).

This design does have benefits. Since the galvanometers are placed very

close together, they can be integrated into a single unit (i.e., a 2-axis galvanome-

ter device). In turn, this can make the OCT system more compact, cheaper

and easier to build, and less vulnerable to mechanical disturbances. The reduc-

tion/elimination of telescope relay optics in paired-galvanometer setups also re-

duces potential sources of aberration/distortion/signal loss in the microscope.

All of these traits are especially important for clinical applications. In addition
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to these obvious practical benefits, consider the fact that up until recently, OCT

systems have a history of usage in ‘lower resolution’ applications (with reso-

lutions on the order of 10 µm or larger). Such systems do not require carefully

designed, multi-component microscope objectives. Instead, single-component,

wide entrance pupil, long focal length lenses would suffice. Since CGC severity

is inversely proportional to the objective lens focal length (recall the d/ f term

which appeared in Appendix H), CGC would not be a significant problem, so

long as the galvanometer separation and FOV remained sufficiently small.

However, as time has gone on, laser source technologies have improved and

demand for high-resolution, large FOV, volumetric imaging has increased.1 It

has become commonplace for more modern OCT systems to pursue higher res-

olution designs (e.g., with resolutions of 1-2 µm or smaller). I propose that as

OCT systems move toward high resolution designs, the historical precendent

of using paired galvanometer mirrors without some form of compensating op-

tics/telescope relays has become a ‘bad habit’ that makes OCT systems more

vulnerable to otherwise avoidable problems like CGC.

Personally, I worked with a ‘bad habit’ OCT system for the first few years of

my PhD. Once my project specialized toward in vitro traction force microscopy

experiments, I began using commercial microscope objective lenses. Due to the

short back focal lengths of these lenses, it was not possible to place the gal-

vanometers near enough to the back focal plane without causing a collision. I

therefore installed a 1:1 magnification 4F telescope after my paired galvanome-

ter mirrors and placed the back focal plane of my objective lens at the midpoint

between the images of my mirrors. However, since the images of the mirrors

1My own personal speculation: increasing laser source bandwidths led to better axial reso-
lutions, thus making OCT systems with better lateral resolution (to match the improved axial
resolution) more practical and desirable.
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Figure I.1: Sample arm optical setup which provides a compact post hoc solu-
tion to coherence gate curvature (CGC) which arises from the use of paired gal-
vanometer mirrors. A collimated beam strikes a pair of pivoting galvanometer
mirrors which tilt the beam within the xz- and yz-planes (GMx and GMy, re-
spectively). These mirrors are separated by a short distance d along the optical
axis. After reflection, the beam enters a modified 4F telescope, consisting of a
pair of lenses with focal length f and a thin cylindrical lens with focal lengths
fx and fy (within the xz- and yz-planes, respectively) at its center. Assuming fx

and fy are chosen properly, the two galvanometer planes are imaged to the back
focal plane (denoted by ‘∗’) of the objective lens (with focal length fo), thereby
enabling 2D lateral beam scanning with minimal CGC artifacts.

existed at different planes along the optical axis, CGC remained a persistent

problem. It was only toward the end of my program that I decided to kick the

‘bad habit’ and try out a new design that would minimize CGC. However, as

an engineer, I wanted to achieve my goal with as little work and expenditure as

possible. This motivated the solution detailed in the next section.

I.2 A post hoc solution to paired galvanometers

Consider the sample arm optical set up depicted in Fig. I.1. Using ray transfer

matrix analysis (similar to that performed in Appendix H), we can describe the

behavior of the chief ray of the input beam within the xz- and yz-planes, respec-

tively. First, beginning at GMx, we analyze the chief ray within the xz-plane
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(while assuming θy = 0) to obtain: xout

θx,out

 =


1
fo

(z − fo) − fo +
f 2

fo fx
(z − fo)

1
fo

f 2

fo fx


 0

θx

 (I.1a)

where z denotes the propagation distance following the objective lens. Assum-

ing that the thin cylindrical lens is flat within the xz-plane, then fx = ∞ and:

 xout

θx,out

 =


1
fo

(z − fo) − fo

1
fo

0


 0

θx

 =

− foθx

0

 (I.2a)

This corresponds to ideal beam-scanning behavior, since the lateral position of

the output ray is directly proportional to the input scanning angle, and the out-

put ray always propagates parallel to the optical axis. The OPL traversed by the

chief ray through the system (in a double-pass imaging configuration) will be:

OPL(z, θx; θy = 0) = 2(4 f + fo + z) + constant (I.3)

This likewise corresponds to ideal behavior, since the OPL measured by the

microscope increases linearly with z and has no dependence on θx. As a result,

the imaging system will exhibit no CGC along the x-axis (within the limits of

this idealized model).

Next, beginning at GMy, we analyze the chief ray within the yz-plane (while

assuming θx = 0) to obtain: yout

θy,out

 =


1
fo

(z − fo) − fo +
f 2− fyd

fo fy
(z − fo)

1
fo

f 2− fyd
fo fy


0

θy

 (I.4a)

=

− foθy + α(z − fo)θy

αθy

 , for α =
f 2 − fyd

fo fy
(I.4b)
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Thus, although the lateral position of the output ray remains proportional to θy,

since the ray no longer scans parallel to the optical axis, the system will exhibit a

depth-dependent lateral magnification (i.e., non-telecentricity), which is one of

the hallmarks of CGC. The OPL traversed by the chief ray through the system

(in a double-pass imaging configuration, starting at GMx) will likewise be:

OPL(z, θy; θx = 0) = 2(4 f + fo + z) + (−α fo + α2(z − fo))θ2
y + constant (I.5)

Here, we observe that OPL varies quadratically as a function of θy. This re-

sults in the namesake ‘curvature’ of CGC, as discussed in Appendix H. That is,

physically flat surfaces will appear curved in the OCT image due to the fact that

OCT microscopes use OPL measurements as a proxy for ‘depth’ along the z-axis

(even when an exact correspondence does not necessarily hold).

Given this analysis, we can see that the parameter α describes the severity of

CGC within the yz-plane.2 I therefore hypothesized that choosing a value of fy

such that α = 0 would remove all CGC artifacts from the imaging system. Such

a scenario is realized when fy = f 2/d. Given the system described in Chapter 7

(for which f = +100 mm and d = +13.69 mm), the optimal value of fy was pre-

dicted to be fy = (100 mm)2/(13.69 mm) ≈ +730 mm. However, a non-optimal

cylindrical lens with focal length fy = +700 mm was used, since this was the

nearest readily available component from vendors. Thus, my imaging system

was not expected to completely eliminate CGC. However, compared to the case

of applying no correction (i.e., when fy = ∞), this system was predicted to reduce

CGC to approximately α+700 mm/α∞ ≈ 5% of its original severity.

2α is analogous to the d/ f term which appeared in the analyses of Appendix H.
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Figure I.2: Visualization of coherence gate curvature (CGC) before (left) and af-
ter (right) hardware-based compensation. The top panels depict the OCT image
of a (physically flat) glass-air interface in the xz- (green) and yz- (red) planes in-
tersecting the origin of the lateral FOV. Any observed curvature of the surface
in these panels is a consequence of CGC distortions. The bottom panels de-
pict the observed apparent depth (i.e., the optical path length) of the surface as
a function of lateral position. In the original system, CGC causes image distor-
tions which result in the (physically flat) glass surface appearing as a hyperbolic
paraboloid surface. In the corrected system, the glass surface appears nearly flat
(with a residual weak paraboloid shape due to non-optimal alignment). See text
for details.
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I.3 Experimental validation

In order to assess the performance of the proposed CGC-compensating system,

I acquired images of a flat glass surface near the focal of the system, with and

without the CGC-compensating cylindrical lens, and spanning a 1×1 mm2 lat-

eral FOV. The resulting images (and apparent curvature of the glass surface) are

depicted in Fig. I.2. Each surface (hereafter denoted by indices i = 1 and i = 2,

respectively) were fit with a quadratic polynomial:

zi(x, y) = aix2 + bixy + ciy2 + dix + eiy + fi (I.6)

The terms ai, bi, and ci record the apparent curvature of the glass surface and

thus measure the severity of CGC. The terms di and ei record the apparent tilt of

the glass surface, which results from a combination of true sample tilt and/or

non-ideal beam alignment within the sample arm optics (the latter of which can

be compensated with an adjustable periscope placed prior to the galvanome-

ters). The term fi encodes the axial offset of the glass surface in the image.

The curvature terms for the imaged glass surfaces were found to have values

(in units of µm−1) of a1 = 4.585 × 10−5, b1 = 0.015 × 10−5, and c1 = −4.280 × 10−5

for the uncorrected system, and a2 = −1.454 × 10−6, b2 = 0.856 × 10−6, and c2 =

−2.415 × 10−6 for the CGC-compensated system. In order to assess the total

amount of CGC, a rotation of the lateral coordinate system was performed in

order to make the cross-term bi = 0. Specifically, defining:x

y

 =

 cos θi sin θi

− sin θi cos θi


x′

y′

 (I.7)
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the transformed curvature terms (Ai, Bi, and Ci) were obtained via:
Ai

Bi

Ci


=


cos2 θi cos θi sin θi sin2 θi

sin 2θi cos 2θi − sin 2θi

sin2 θi cos θi sin θi cos2 θi




ai

bi

ci


(I.8)

where θi = 0.5 arctan (bi/(ci − ai)), yielding A1 = 4.585 × 10−5, B1 = 0, and C1 =

−4.280 × 10−5 for the uncorrected system, and A2 = −1.291 × 10−6, B2 = 0, and

C2 = −2.578 × 10−6 for the CGC-compensated system. The opposite signs of

A1 and C1 indicate positive CGC along one axis and negative CGC along the

orthogonal axis, respectively. This corresponds to the scenario where the back

focal plane of the objective lens is imaged by the telescope to a location that lies

between the two galvanometer mirrors. In contrast, the matching negative signs

of A2 and C2 indicate that the alignment of the CGC-compensated system was

not optimal (i.e., the objective lens was placed too close to the telescope relay

by a small margin). Despite this non-optimal alignment, the system managed

to reduce CGC to at most:

max (|A2| , |C2|)
min (|A1| , |C1|)

≈ 6% (I.9)

of its original severity, which is close to the predicted value of 5%. However,

under optimal alignment conditions, we would expect to achieve the condition

Ai = −Ci for both systems (i.e., the back focal plane of the objective lens is imaged

to a plane that lies at the midpoint between the galvanometer mirrors). Thus,

defining the ‘total’ CGC of the system as:

|Ci − Ai| = |2Ai| = |2Ci| (I.10)

under optimal alignment conditions, we can estimate that the system is capable

of reducing CGC to approximately:

|C2 − A2|

|C1 − A1|
≈ 1.5% (I.11)
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of its original severity. This exceeds the predicted improvement and could be

attributable to spherical aberration of the telescope lenses causing their effective

focal lengths to decrease at large scanning angles (i.e., the effective value of f

decreases for large values of θy, thus bringing the value of α+700 mm closer to 0

than would otherwise be expected, given the installed cylindrical lens).

Given these results, we can conclude that the modified OCT imaging system

described here provides both a simple and effective method to mitigate CGC

artifacts which emerge from the use of paired galvanometer mirrors. As a re-

sult, this system substantially reduces a potential source of distortions which

would otherwise corrupt deformation data that is essential to traction force op-

tical coherence microscopy. Since it remains difficult to realize an ideal system,

computational methods should still be employed to mitigate small residual dis-

tortions. Such methods are detailed in Chapters 4 and 7.
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APPENDIX J

A SIMPLE MECHANISM FOR GENERATING FOCAL PLANE

CURVATURE

Focal plane curvature (FPC) is a phenomenon wherein the focal plane appears

neither flat nor level in a reconstructed OCT image. This results in a PSF which

varies with respect to the lateral variables (x, y) of the image data. As a conse-

quence, standard defocus mitigation techniques (which assume a laterally in-

variant PSF) cannot restore optimal focal plane resolution across the entire FOV.

FPC mitigation (detailed in Chp. 4.4) is an approximate method developed to

mitigate this effect and improve resolution throughout large volumetric images.

Here, we will review a simple mechanism which can induce FPC. Although this

is not the only mechanism which can induce FPC, it is simple and instructive to

model with ray transfer matrix analysis.

Consider a collimated beam (with rays described by {x, 0}) which strikes a

thin lens of focal length f . The focused beam then propagates a distance f − d

(where 0 ≤ d ≤ f ) before entering a sample with refractive index n via a flat and

level surface. The beam finally converges (i.e., the position component of all

rays converges to zero) after propagation by a distance z into the sample. This

scenario may be approximated by: 0

θout

 =

1 z

0 1


1 0

0 1/n


1 f − d

0 1


 1 0

−1/ f 1


x

0

 (J.1)

This yields the relation:

0 =

(
d −

z
n

) x
f
, ∀x (J.2a)

z = nd (J.2b)
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This means that the focal plane will be located at a depth of z = nd below the

sample surface. For a (slightly!) tilted sample surface (located at a position

zc(x) = f − (d + ax) with respect to the objective lens), the focal plane will now be

tilted (with respect to the objective lens), as given by z f (x) = f + (n − 1)(d + ax).

That is, (for n > 1) the focal plane tilts in opposition to the sample surface tilt.

As a consequence, when we apply the coherence gate curvature (CGC) mit-

igation heuristics and procedures described in Chp. 4.4, although we obtain an

image wherein the sample surface appears flat and level (i.e., z′c(x) = f − d), the

focal plane will still appear tilted (i.e., z′f (x) = f + (n − 1)d + nax). In fact, the

CGC mitigation procedure makes the tilt of the focal plane even worse than in

the original image. This is why a separate procedure is required in order to ‘flat-

ten’ the focal plane and restore a laterally invariant PSF such that standard (and

efficient) defocus mitigation algorithms may be applied.

In practice, I have observed that the focal plane tends to exhibit very little

curvature, and instead primarily exhibits tilt. This suggests that beam misalign-

ment and/or sample tilt may be major contributing factors toward the genera-

tion of FPC. Perhaps measured values of focal plane tilt could be used to infer

both the amount of actual (as opposed to apparent) sample tilt and/or bulk mod-

ulation (see Chapter 4.4)? If such a relationship could be established, perhaps it

could be used to refine the coordinate system heuristics used for CGC mitiga-

tion and/or eliminate the need to perform a separate calibration step for bulk

modulation (or conversely, bulk modulation calibration could be used to infer

focal plane tilt)? I will leave such questions to you, dear reader, whoever you

might be!
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APPENDIX K

TUTORIAL ON LEAST-SQUARES POLYNOMIAL REGRESSION AND

PEAK-FINDING

Least-squares polynomial regression and peak-finding were essential tools for

the research of this dissertation. The equations and methods that were em-

ployed are as follows.

K.1 Least-squares polynomial regression

Assuming a function f (x, y, z) can be described by a quadratic polynomial via:

f (x, y, z; a) = a0 + a1x + a2y + a3z + a4xy + a5yz + a6xz + a7x2 + a8y2 + a9z2 (K.1)

then N samples of the function ( fi = f (xi, yi, zi) for i ∈ {0, 1, . . . ,N − 1}) will obey:

f = Xa (K.2)

where f = 〈 f0, . . . , fN−1〉
T , a = 〈a0, . . . , a9〉

T , and X is a Vandermonde matrix:

X =


1 x0 y0 z0 x0y0 y0z0 x0z0 x2

0 y2
0 z2

0

...
...

...
...

...
...

...
...

...
...

1 xN−1 yN−1 zN−1 xN−1yN−1 yN−1zN−1 xN−1zN−1 x2
N−1 y2

N−1 z2
N−1


(K.3)

In order to perform quadratic regression/approximation of (noisy) data, a can

be estimated from the data vector f and Vandermonde matrix X. The least-

squares solution to this problem is â = X†f, where ‘†’ denotes the left pseudo-

inverse, such that X† =
(
XT X

)−1
XT . Ensure that N � length(a) = 10.
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K.2 Peak-finding

Given a quadratic function f (x, y, z; a), the locations of local extrema and saddle

points may be found where ∇ f (x, y, z) = 0, i.e., where:

0 =
∂ f
∂x

= a1 + 2a7x + a4y + a6z (K.4a)

0 =
∂ f
∂x

= a2 + a4x + 2a8y + a5z (K.4b)

0 =
∂ f
∂x

= a3 + a6x + a5y + 2a9z (K.4c)

Therefore, the location of a local extremum or saddle point (xp, yp, zp) (if such a

location exists) can be found by solving:
0

0

0


=


a1

a2

a3


+


2a7 a4 a6

a4 2a8 a5

a6 a5 2a9




xp

yp

zp


(K.5)

K.3 Example implementation

Assume that we wish to locate the global maximum of a 3D grid of data. So long

as the peak is not located near an ‘edge’ of the data set, we can use the following

procedure in MATLAB:

%%----------------------------------------------%%
% VARIABLES ASSUMED TO EXIST %
% f : 3D Grid of data with peak far from ’edge’ %
%%----------------------------------------------%%

%% PRELIMINARY PEAK FINDING---------------------%%
[X1,X2,X3] = size(f);
prelim = find(f==max(f(:)));
[x1pre,x2pre,x3pre] = ind2sub([X1 X2 X3],prelim);
% The peak is localized to an integer index!

%% LOCAL REGRESSION-----------------------------%%
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SIZE = 2; % Tune to adjust local neighborhood
range = (-SIZE:SIZE)’;
extract = f(x1pre+range,x2pre+range,x3pre+range);

[x1,x2,x3] = ndgrid(range,range,range);
x1 = x1(:); x2 = x2(:); x3 = x3(:);
X = [ones(size(x1)) ...

x1 x2 x3 ...
x1.*x2 x2.*x3 x1.*x3 ...
x1.ˆ2 x2.ˆ2 x3.ˆ2 ]; % Vandermonde mtx

a = X\extract(:);

%% PEAK REFINEMENT -----------------------------%%
mtx = [2*a(8) a(5) a(7) ;...

a(5) 2*a(9) a(6) ;...
a(7) a(6) 2*a(10)];

finetune = inv(mtx)*[-a(2); -a(3); -a(4)];

x1p = x1pre + finetune(1);
x2p = x2pre + finetune(2);
x3p = x3pre + finetune(3);
% The peak is localized to subpixel precision!
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APPENDIX L

SUPPLEMENT TO CHAPTER 6

Content reuse disclosure The contents (text, figures, etc.) of this appendix

have been reprinted/adapted from a previously published journal paper of

which I was the first author.1 Specifically, the contents of this appendix orig-

inate in the Supplementary Information document for Ref. [112], and serve as

a corresponding collection of supplementary information for Chapter 6 of this

dissertation. Some sections/passages of the original work have been removed

or reduced in order to avoid redundancy with other sections of this dissertation.

To view the full contents of the original paper (and the associated Supplemen-

tary Information) document, please see Ref. [112].

Author contributions statement Please see the ‘Author contributions state-

ment’ provided at the beginning of Chapter 6 for an appropriate summary of

author contributions.
1Reprinted/adapted as permitted under the Creative Commons Attribution 4.0 Interna-

tional License http://creativecommons.org/licenses/by/4.0/: J.A. Mulligan, X.
Feng, S.G. Adie. Quantitative reconstruction of time-varying 3D cell forces with traction
force optical coherence microscopy. Sci Rep 9, 4086 (2019). https://doi.org/10.1038/
s41598-019-40608-4
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L.1 Methods

L.1.1 Computational image formation module

As of the writing of this dissertation, I consider this method for image recon-

struction/formation to be outdated. I instead recommend using the (similar)

procedure which is detailed in Chapter 7.6. However, I have included this pro-

cedure here, in reduced form, for completeness.

The procedures below detail the implementation of our computational im-

age formation module (see Fig. 6.1). All image signal functions (denoted with

an ‘S ’) are complex-valued. For each time-point in a given time-lapse experi-

ment, we will refer to time using an integer designation. That is, ti will refer to

the time of the ith time-point in an experiment with five-minute temporal sam-

pling. For example, t0 refers to zero minutes, t1 refers to five minutes, and so on.

All equations were designed for processing OCM data acquired with a Gaussian

beam in a double-pass imaging configuration. All procedures were automated,

except where indicated otherwise.

Initial volume reconstruction

Initial volumetric OCM images were reconstructed from raw spectral data via

the standard operations of background subtraction, spectrum resampling, dis-

persion compensation, and the Fourier transform (see Chapter 3.7). The func-

tion Sinit(x, y, z, ti) will refer to the image signal produced by this initial recon-

struction. The full axial (z) range spanned by Sinit contained two regions of in-

terest, which were identified manually. The first was a 50-voxel thick region
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centered on the coverslip surface of the glass-bottomed petri dish. This set of

depths will be referred to as Zcoverslip. The second was a 400-voxel (500 µm) thick

region centered on the imaged cell (and consequently, the focal plane, which

was aligned to the cell as described in Chapter 6.6.4). This set of depths will be

referred to as Zcell.

Coherece gate curvature removal

Coherence gate curvature (CGC) was removed via ‘CGC mitigation method 2’,

which is described in Chapter 4.4. CGC was measured/approximated by fitting

a quadratic curve (zc(x, y) from Eqn. (4.46)) to the coverslip surface of the petri

dish, as it appeared in the Zcoverslip region of the ‘full FOV’ images. A different

realization of zc(x, y) was obtained for each time-point ti, which we will denote

by zc(x, y, ti). Likewise, we will denote each realization of the coefficient a0 from

Eqn. (4.46) by a0(ti). CGC was then removed using a procedure analogous to

Eqn. (4.47), specifically:

Sflat(x, y, z, ti) = F −1
z→qz

[
Fz→qz

[
Sinit(x, y, z, ti)

]
e jqz(zc(x,y,t0)+zc,0(ti))

]
(L.1)

where zc,0(ti) = a0(ti) − 2a0(t0). Note that this implementation assumes that the

curvature and tilt terms of CGC do not change over time.2 This removal procedure

was applied to all ‘full FOV’ and ‘reduced FOV’ images for a given time-point.

2The procedures in Chapter 7.6 do not rely on such assumptions and are therefore more
robust than the method used here.
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Phase registration

Following CGC removal, the coverslip surface appeared flat and level in the

image signal.3 Phase registration was then performed via ‘phase registration

method 1’, defined in Eqn. (4.41), where φc(x, y) was uniquely calibrated for

every individual image. We will denote the phase registered image signal by

Spr(x, y, z, ti).

Focal plane curvature removal

Focal plane curvature (FPC) removal followed next. FPC was mea-

sured/approximated by fitting a quadratic curve (z f (x, y) from Eqn. (4.48)) to

the focal ‘plane’ (in reality, a curved surface) as it appeared in the Zcell region

of the ‘full FOV’ image from time t0 (i.e., Spr(x, y, z, t0)). FPC was then removed

using a procedure analogous to Eqn. (4.49), specifically:

Sf (x, y, z, ti) = F −1
z→qz

[
Fz→qz

[
Spr(x, y, z, ti)

]
e jqz(z f (x,y)−z f ,0)

]
(L.2)

where z f ,0 was taken to be the constant term b0 from Eqn. (4.48). Note that this

implementation assumes that the curvature and tilt terms of FPC do not change

over time.4 This removal procedure was applied to all ‘full FOV’ and ‘reduced

FOV’ images.

3Rather, it appeared nearly flat and level, in the event of time-varying artifacts that the CGC
removal methods used here did not accommodate for.

4I still retain this assumption in my current methods. Sometimes, it is simply not possible to
calibrate FPC at each time-point. I also speculate that uncertainty in the FPC calibration stage
likely exceeds any real changes in FPC that you would ever encounter when using a mechani-
cally stable microscope set-up.
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Bulk demodulation

Bulk demodulation followed next (see Chapter 4.4). First, modulation coeffi-

cients (q′x(ti), q′y(ti)) were measured from the ‘full FOV’ images at each time-point.

Then, bulk demodulation was performed via:

Sdemod(x, y, z, ti) = Sf (x, y, z, ti) exp
(
− j

(
q′x(ti)x + q′y(ti)y

))
(L.3)

This bulk demodulation procedure was applied to all ‘full FOV’ and ‘reduced

FOV’ images for a given time-point.5

Computational adaptive optics

Depth-dependent defocus was then removed via computational adaptive optics

(CAO). First, each ‘full FOV’ image was used to measure the time-varying focal

plane depth zfocus(ti). CAO was then performed via:

S (x, y, z, ti) = F −1
(x,y)→(qx,qy)

[
F(x,y)→(qx,qy)

[
Sdemod(x, y, z, ti)

]
e− j(z−zfocus(ti))

√
(2nkc)2−q2

x−q2
y

]
(L.4)

where kc is the central wavenumber of the raw spectral data, and n = 1.34 is

the refractive index of the hydrogel medium. This refocusing procedure was

applied to all ‘full FOV’ and ‘reduced FOV’ images for a given time-point. The

resulting image signal S (x, y, z, ti) was the image used for all subsequent process-

ing of the TFM module (e.g., bead localization and tracking, speckle reduction,

segmentation, cell mesh generation, etc.).
5In practice, I found that (q′x(ti), q′y(ti)) did not vary substantially over time. In my most re-

cent methods (Chapter 7.6), I have assumed that these coefficients do not vary in time (i.e.,
(q′x(ti), q′y(ti)) have been replaced with (q′x, q

′
y)). I speculate that this may indeed be the correct

model, and that the slight variability observed over time is likely due to uncertainty in the cal-
ibration procedure. Such time-varying ‘noise’ in the calibration stage could be detrimental to
image formation (by leading to time-varying bulk shearing artifacts). Thus, I have adopted the
‘constant bulk demodulation parameters’ approach.
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Note that this image exhibits a flat focal plane, but still exhibits CGC (as a

consequence of the FPC removal procedure).6 This can be remedied by ‘restor-

ing’ FPC to its original state in the image data (which simultaneously restores

the ‘zero CGC’ state). However, that was not done in this study. FPC restora-

tion was instead applied to bead displacement data and cell mesh data in later

processing steps.

L.1.2 Traction force microscopy module

Pre-processing of bead position data

Time-varying bead positions were measured and tracked from OCM image data

as described in Chapter 6.6.6. Let M denote the total number of tracked beads.

The position of each bead m ∈ {1, 2, . . . ,M} at time ti is given by a column vector:

rraw,m(ti) =
〈
xraw,m(ti), yraw,m(ti), zraw,m(ti)

〉
(L.5)

Note that this position data is defined in a warped coordinate system (where the

focal plane, as opposed to the coverslip surface, appears flat and level), as estab-

lished by Eqn. (L.2). Bead positions in the ‘correct’ (i.e., zero CGC) coordinate

system were therefore obtained via:

rm(ti) = rraw,m(ti) +
〈
0, 0, z f

(
xraw,m(ti), yraw,m(ti)

)
− z f ,0

〉
(L.6)

where z f (x, y) and z f ,0 are as defined as in Eqn. (L.2).

6Recall that CGC and FPC often do not match.
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Motion correction for bead displacement data

The position data obtained from Eqn. (L.6) contained residual bulk motion ar-

tifacts.7 Zero-order artifacts corresponded to a translational shift of the bead

positions between time-points, and likely originated from drift of the sample or

sample stage. First-order artifacts corresponded to small linear distortions of

the entire volume spanned by the bead position data. Such artifacts could have

resulted from assumption/calibration errors in our image formation routines

and/or from swelling, shearing, and/or small rotational drift of the hydrogel

medium (e.g., due to non-uniform temperatures). Motion-corrected bead posi-

tion data rcorr,m(ti) were computed via:

rcorr,m(ti) = rm(ti) − u0(ti) − A(ti)rm(ti) (L.7)

where u0(ti) is a time-varying vector which describes zero-order motion arti-

facts, and A(ti) is a time-varying 3 × 3 tensor which describes first-order motion

artifacts. Both motion correction parameters, u0(ti) and A(ti), where estimated

from the bead position data rm(ti). Specifically, both u0(ti) and A(ti) were com-

puted simultaneously via a linear least-squares procedure, achieved by solving

the system of equations:

R(ti) − R(tmax) = RV(ti) [u0(ti) A(ti)]T (L.8)

where R(ti) denotes a M×3 matrix of concatenated bead position data, given by:

R(ti) =


r1(ti)T

...

rM(ti)T


(L.9)

7This might be due to the use of time-varying (as opposed to constant) bulk demodulation
parameters. See Section L.1.1.
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and RV(ti) is a Vandermonde matrix, given by

RV(ti) =
[
1M×1 R(ti)

]
(L.10)

where 1M×1 denotes a M×1 column vector with every entry equal to 1. Note that

tmax=t36= 3 hours corresponds to the last time-point in our time-lapse experiment

protocol, which we used to define the reference position of each bead.

Equation (L.8) relies on the assumption that the effects of CTF-induced sub-

strate deformations were negligible across a large fraction of the beads tracked

in the 500 × 500 × 500 µm3 FOV of our images, such that the output parameters

of the fitting operations were not severely affected. (Further details are provided

in Section L.2.1.) Bead displacement data was finally computed as:

um(rcorr,m(tmax), ti) = rcorr,m(ti) − rcorr,m(tmax) (L.11)

This data was used as input for out CTF reconstruction procedure.

Pre-processing and motion correction for cell surface mesh data

In order to ensure that the bead displacement data (Eqn. (L.11)) and cell sur-

face mesh data (acquired as described in Chapter 6.6.8) are defined in the same

coordinate system, all position corrections applied to the bead position data

(detailed in the previous sections) must also be applied to each node of the cell

surface mesh data. Let Q denote the total number of nodes in the cell surface

mesh at time ti. For each node q ∈ {1, 2, . . . ,Q}, with raw positions denoted

by the column vector rraw,q(ti), the effects of focal plane registration were first

removed (as in Eqn. (L.6)) via:

rq(ti) = rraw,q(ti) +
〈
0, 0, z f

(
xraw,q(ti), yraw,q(ti)

)
− z f ,0

〉
(L.12)
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This was followed by bulk motion correction (as in Eqn. (L.7)) via:

rcorr,q(ti) = rq(ti) − u0(ti) − A(ti)rq(ti) (L.13)

where u0(ti) and A(ti) use the same values/coefficients as those obtained from

Eqn. (L.8).

L.1.3 Figure generation

Impact of focal plane registration (Figs. 6.3(b,c)) Two different volumetric

images were generated from the same raw image data, using our computational

image formation procedure. The volumetric image used to produce Fig. 6.3(b)

was generated without using focal plane registration8, whereas the volumetric

image used to produce Fig. 6.3(c) was generated with focal plane registration.

To assess the impact of focal plane registration, both volumetric images were

analyzed using the same procedure:

1. A 50 µm thick region, centered 50 µm above the focal plane, was extracted

from the full volumetric image.

2. A 2D image was generated via a maximum intensity projection of this

sub-volume, taken along the z-axis.

3. This 2D image was subjected to single-level thresholding, with the thresh-

old set as the 99th percentile of the image histogram. This resulted in a

binary image, where regions with a value of ‘1’ corresponded to regions

with strong scattering signals in the original image.

8Note that in this study, I used ‘focal plane registration’ to refer to ‘focal plane curvature
removal’. The two phrases are interchangeable.
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4. The centroid of each ‘object’ (i.e., a region of connected pixels with a value

of ‘1’) in the binary image was computed and recorded. Each object was

assumed to represent at least one scattering bead.

5. For each centroid computed in Step 4, the following was performed:

(a) Extract an 11 × 11 pixel region (centered on the centroid) within the

image from Step 2.

(b) Up-sample the extracted region by a factor of 100 (using MATLAB’s

imresize function)

(c) Threshold this up-sampled region at one-half its maximum value, to

generate a binary image.

(d) Compute the area and perimeter (A and P) of the largest object in this

binary image.

(e) Compute the ‘circularity’ C = P2/(4πA). If C < 2, the object is assumed

to be approximately circular, and therefore corresponds to a single

bead, whose full-width-at-half-maximum (FWHM) diameter is taken

to be D = 2
√

A/π. Otherwise, the object is discarded and ignored

(since it may contain overlapping beads or have an insufficient SNR).

6. Each 11 × 11 region from Step 5 which was determined to contain a single

bead was assigned a color value (see the color bar in Fig. 6.3) based on

the FWHM bead diameter D computed for that region. This region was

inserted at its appropriate location in a synthetic image, corresponding to

the images in Figs. 6.3(b,c).

Average displacement with respect to distance from the cell centroid

(Fig. 6.5, right panels) ‘Average deformation magnitude’ (shown in the
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right panels of Fig. 6.5) was computed using the procedure below. All

mesh/position/deformation data refer exclusively to the data of a given cell

(1, 2, or 3) and time-point (in the range ti = t0, . . . , tmax).

1. Compute the centroid of each element of the cell surface mesh.

2. Compute the centroid of the cell body via the mean position of these ele-

ment centroids.

3. Compute the distance of each bead to the cell centroid.

4. For each distance d depicted in the right panels of Fig. 6.5

(a) Identify all beads whose position is within the range d ± 20 µm from

the cell centroid.

(b) Compute the mean of the magnitude of the deformation vectors for

this set of beads.

Measurement of ‘total force’ (Figs. 6.8 and 6.9) The time-varying ‘total

force’ (depicted in Figs. 6.8 and 6.9) was computed as described below. All

mesh/position/traction data refer exclusively to the data of a given cell (1-10)

and time-point (in the range ti = t0, . . . , tmax).

As described in Chapter 6.6.9, the reconstructed CTF distribution must

satisfy force and moment balance (as is required by the quasi-static/non-

accelerating state of the cell). Therefore, calculation of the ‘total force’ exerted

by the cell cannot be performed via a summation of the traction forces exerted

by each element in the cell surface mesh (as the result would trivially be zero

for any cell at any time). Instead, we measured the ‘total force’ by (1) measur-

ing the direction along which cell forces are maximally oriented, followed by
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(2) ‘slicing’ the cell with a plane perpendicular to this direction, such that the

force exerted by each ‘half’ of the cell (in the direction normal to the plane) is

maximal, and (3) taking this maximal force to be the ‘total force’. The equations

below give precise definitions for this process.

Let n̂ be a 3D normal vector (in column format) whose direction is described

by a pair of angular coordinates (θ, φ) such that is components in x, y, and z are

given by:

n̂(θ, φ) = 〈cos θ sin φ, sin θ sin φ, cos φ〉 (L.14)

Let the ‘principal axis of stress’ be defined as a normal vector which is maxi-

mally aligned with the stress distribution exerted by the cell. That is, let the

principal axis of stress be defined as n̂p(θp, φp), where the principal angles (θp, φp)

are computed via:

(θp, φp) = arg max
(θ,φ)

N∑
l=1

|(altl) · n̂(θ, φ)| (L.15)

where N is the number of elements in the cell surface mesh, al and tl denote

the area and reconstructed traction stress of element l of the cell surface mesh,

respectively, and ‘·’ denotes the vector dot-product operator. Once the principal

axis of stress is identified, the cell can be ‘sliced’ perpendicular to the principal

axis with a plane: (
〈x, y, z〉 − βn̂p

)
· n̂p = 0 (L.16)

where β denotes the ‘offset position’ of the plane with respect to the origin. To

determine whether or not a given element of the cell surface mesh is on one side

or the other of this plane, we define an indicator function:

χβ
(
cl, n̂p

)
= H

[(
cl − βn̂p

)
· n̂p

]
(L.17)

where cl denotes the centroid of element l of the cell surface mesh, and H de-

notes the Heaviside step function. The total force exerted by the cell was then
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approximated as:

Ftotal = max
β

∣∣∣∣∣∣∣
N∑

l=1

χβ
(
cl, n̂p

) (
(altl) · n̂p

)∣∣∣∣∣∣∣ (L.18)

The maximization with respect to β finds the location of the ‘slicing’ plane that

yields the largest measurement of total force. Note that Eqn. (L.18) performs a

summation of the CTF components parallel to the principal axis of stress.

L.2 Discussion

L.2.1 Motion correction

The motion correction procedure (which was applied only to bead displacement

data and cell surface mesh data, and not to OCM images) attempted to remove

any residual motion artifacts that were not corrected by previous data process-

ing procedures. As described in Section L.1.2, the zero- and first-order terms

used to perform this correction were determined by linear least-squares fitting,

using the assumption that CTF-induced bead displacements would have a neg-

ligible impact on the results of the fit. This method of fitting is vulnerable to out-

liers and does risk erroneously incorporating cell-induced displacements into

the correction functions, u0(ti) and A(ti). To better avoid this risk in the future,

we recommend measuring deformations over a larger volumetric FOV, reduc-

ing the weighting of bead displacements measured near the cell body, and/or

using alternative robust regression models (such as nonlinear metric functions,

mixture models, etc.). In general, motion correction may be thought of as a

type of high-pass filter (in the space-domain), applied to remove deformations

spanning volumes too large to be caused by the cell. Any alternative filtering
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schemes should be optimized with this objective in mind. Note that low-pass

filtering (to remove deformation fluctuations spanning volumes too small to be

caused by the cell) was not directly performed in this study. Instead, low-pass

filtering took place implicitly via the Tikhonov regularization used by our CTF

reconstruction procedure [44].

L.2.2 Validity of linear elastic mechanical model

In order to reconstruct time-varying CTFs, our FEM solver employed a stan-

dard linear elastic model under the infinitesimal strain approximation. Any

deviations of the Matrigel substrate’s true behavior from this model could in-

troduce errors to the reconstructed CTFs. The linear elastic model can be a poor

model for many biopolymers (such as collagen), which tend to exhibit nonlinear

elastic and/or viscoelastic behaviors. Moreover, if cells induce very large defor-

mations in the surrounding substrate, infinitesimal strain theory may no longer

be sufficient to describe substrate deformations, requiring a generalization to

finite strain theory. In order to assess the validity of our linear elastic model,

we tested our Matrigel substrate for both nonlinear and viscoelastic behaviors,

and quantified discrepancies between the infinitesimal and finite strain tensors

computed from our experimentally measured bead displacement data.

Bulk rheology testing for nonlinearity and viscoelasticity

Concerns regarding nonlinear and/or viscoelastic effects were raised during the

peer review process for this study. At that time, our original batch of Matrigel

had been exhausted, and a new batch was used for additional testing. Using
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Figure L.1: Strain sweep test of Matrigel. The Matrigel samples exhibited ap-
proximately linear behavior, as indicated by an approximately constant stiffness
over a strain range of 2-20%. Reprinted from Ref. [112] as permitted under the
CC BY 4.0 license for the original work.

the procedure outlined in Chapter 6.6.2, the Young’s modulus of the Matrigel

substrates prepared from the new batch was found to be approximately 104 Pa.

This is ∼15% stiffer than the Young’s modulus (90 Pa) measured from the orig-

inal Matrigel batch used for our time-lapse experiments and CTF reconstruc-

tions. We assumed that despite this difference, any tests performed with the

new Matrigel batch should provide a reasonable approximation of the mechan-

ical properties of the original batch. Three distinct samples were tested for non-

linear behavior via an oscillating (0.1 Hz) strain sweep test over a strain range

of 2-20% (Fig. L.1). For each sample, the Young’s modulus deviated from the

mean for that sample by less than ±3%, suggesting that our Matrigel samples

exhibit approximately linear behavior for strains up to at least 20%.

The same three samples used for the strain sweep test were also subjected

to a stress relaxation test (under an applied strain of 2%) to test the potential
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impact of viscous effects. The stress relaxation curves (Fig. L.2) were fit to the

function σ(t) = c1 + c2 exp(−t/τ) via the MATLAB function lsqcurvefit to

obtain the values of (c1, c2, τ). The output fitting parameters for each sample

were (0.28 Pa, 0.56 Pa, 97.6 s), (0.18 Pa, 0.52 Pa, 122.5 s), and (0.24 Pa, 0.37 Pa,

117.5 s), respectively, with residual norms of 0.0157, 0.0424, and 0.0138, respec-

tively. The stress relaxation constants τ are consistent with previously published

characterizations of Matrigel [115], and do imply that Matrigel exhibits a degree

of viscoelastic behavior. We can use the viscoelastic mechanical framework by

Toyjanova et al. [173] to estimate the impact of neglecting viscous effects during

CTF reconstruction. Given the applied strain (2%) of our stress relaxation test,

the equilibrium shear modulus µ and non-equilibrium shear modulus µneq can

be obtained by the relations µ = c1/0.02 and µ = c2/0.02. The ratio µneq/µ then

takes a mean value of approximately 2.14. Using this ratio, a mean relaxation

time of τ̄ = 112.5 seconds, and Fig. 6 of Ref. [173], we estimate that applying a

purely elastic model to analyze our samples will underestimate CTFs by < 5%,

compared to the viscoelastic FEM solver described in that study [173]. This

suggests that, for this study, viscous effects may be reasonably neglected. Com-

bined with the nonlinearity test above, our mechanical characterization data

suggest that a linear elastic model is likely to provide sufficiently accurate CTF

reconstructions for this study. However, it is important to note that the future

application of TF-OCM in other, less ideal materials (such as collagen) may ben-

efit from the incorporation of nonlinear and/or viscoelastic models to obtain

more accurate CTF reconstructions.
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Figure L.2: Stress relaxation test of Matrigel. Parameters obtained from curve-
fitting to these data were used to show that neglecting viscous effects is not ex-
pected to severely impact CTF reconstruction accuracy for this study. Reprinted
from Ref. [112] as permitted under the CC BY 4.0 license for the original work.

Testing validity of the infinitesimal strain approximation

(Note that some of the variables/notation used in the equations below overload

the variables/notation defined previously in this document. This has been done

in order to maintain consistency between the equations below and Ref. [63].)

Validation: Strain estimations using moving least-squares method Consider

a test scalar function g(x, y, z) = sin(x) + z2 sin(y) defined on a unit cube [0, 1]3. We

use the moving least-squares (MLS) method [63] to estimate the value of the

function as well as its (spatial) derivatives, given a set of n point measurements

of the function. Details can be found in Ref. [63]. Briefly, here we adopt a cubic
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polynomial basis and the following exponentially decaying weight function:

f (x − bi) =


exp(1−(d/dm)2)−1

e−1 d ≤ dm

0 d > dm

, d = |x − bi| (L.19)

where x is the point of interest, bi is the position of the ith measurement point (i ∈

{1, 2, . . . , n}), and dm is a cut-off distance which we choose to be three times the

mean separation distance of the measurement points. Different from Eqn. (7a)

in Ref. [63], we define:

A = rI +

n∑
i=1

f (x − bi)P(bi)PT(bi) (L.20)

where r is a regularization coefficient. In general, r reduces the condition num-

ber of the matrix A and improves the numerical stability of the MLS method.

Figure L.3 shows a typical profile of the approximated value of the test function

g and its derivatives at a random point in the unit cube as r varies. As r de-

creases, the MLS approximations (solid lines, black: g , red: ∂g/∂x, green: ∂g/∂y,

blue:∂g/∂z) approach the true values (dotted lines) with less than 5% relative

error. In the calculation, 50 measurements points were randomly sampled in

the unit cube with a mean distance of approximately 0.177. Among them, the

MLS weights of twenty measurement points are greater than 0.05 at the point of

interest. We note that when the point of interest is close to the boundary of the

unit cube, some estimated derivatives could yield significant numerical error

(see Figure L.4). For this reason, in the next section, we only applied the MLS

method near the center of the imaging domain where the cell-induced displace-

ment is maximal.

Results from experimental data We use the above approach to validate that

the cell-induced deformations in our experiment are approximately linear over
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Figure L.3: MLS approximation of the test function (black) and its derivatives
(red: x-derivative, green: y-derivative, blue: z-derivative) at the point of interest
[0.5063, 0.4856, 0.6585] as the regularization coefficient r varies. As r decreases
(from left to right), the MLS approximations approach the true values (dotted
lines). Reprinted from Ref. [112] as permitted under the CC BY 4.0 license for
the original work.

time (i.e., that the infinitesimal strain tensor is a good approximation of the

more general finite strain tensor). To this end, we estimate the displace-

ment gradient ∇u at multiple locations where the cell-induced bead displace-

ment is maximal by applying the MLS method on each component of the

displacement. This allows us to calculate the finite Green’s deformation ten-

sor E = 0.5
(
∇u + ∇Tu + ∇Tu∇u

)
as well as the infinitesimal strain tensor e =

0.5
(
∇u + ∇Tu

)
.

To quantify how well linear elasticity theory (i.e., using the infinitesimal

strain approximation) approximates finite elasticity theory, we define ξ to be

the relative error between E and e, i.e., ξ = ‖E − e‖F/‖E‖F where ‖•‖F is the

Frobenius norm of a tensor. The time variation of ξ at multiple locations around
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Figure L.4: MLS approximation of the test function (black) and its derivatives
(red: x-derivative, green: y-derivative, blue: z-derivative) at the point of interest
[0.0467, 0.9232, 0.4254] as the regularization coefficient r varies. As r decreases
(from left to right), some approximated derivatives have significant error from
the true values (dotted lines), e.g., for the blue and green curves, due to the fact
that the point of interest is near the boundary of the domain. Reprinted from
Ref. [112] as permitted under the CC BY 4.0 license for the original work.

cell 1, cell 2, and cell 3 is shown in the upper left panels of Figs. L.5-L.7, respec-

tively, with measurement locations indicated by the red circles in the other three

panels of each figure. For these cells, we found that ξ is below 3% and gradu-

ally decreases over time, indicating that the cell-induced deformations in our

experiment can be reasonably approximated by the infinitesimal strain approx-

imation, and hence linear elasticity theory. In applying the MLS method, values

of dm ≈ 35 µm and r = 10−10 were used.
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Figure L.5: Top left: the relative error between the finite strain tensor and in-
finitesimal strain tensor over time at multiple locations around cell 1. The
specific locations are indicated in the top right (XY-plane), bottom left (XZ-
plane) and bottom right (YZ-plane) panels in which the arrows indicate the
cell-induced displacement. Reprinted from Ref. [112] as permitted under the
CC BY 4.0 license for the original work.

L.2.3 Possible underestimation of CTFs due to residual stresses

Substrate deformations were obtained by relying on the assumption that the

last time-point in our time-lapse experiment corresponded to a ‘proper’ refer-

ence state, in which cell forces were completely relaxed. However, this assump-

tion may fail due to the presence of residual stresses. Such stresses may either

be active (i.e., due to incomplete cell relaxation) or passive (e.g., due to cell-

induced substrate remodeling). TFM methods which generate a reference state
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Figure L.6: Top left: the relative error between the finite strain tensor and in-
finitesimal strain tensor over time at multiple locations around cell 2. The
specific locations are indicated in the top right (XY-plane), bottom left (XZ-
plane) and bottom right (YZ-plane) panels in which the arrows indicate the
cell-induced displacement. Reprinted from Ref. [112] as permitted under the
CC BY 4.0 license for the original work.

via chemically-induced CTF inhibition cannot eliminate the possibility of resid-

ual passive stresses without additional a priori information about the sample

structure prior to cellular activity (or alternatively, probing the substrate to de-

tect changes in the local mechanical properties). Since the experimental protocol

used for this study did not acquire any such data, our CTF reconstructions are

vulnerable to inaccuracies resulting from the presence of passive stresses. Fu-

ture TF-OCM protocols may be fortified against this vulnerability by acquiring

a ‘true’ reference state immediately after sample preparation, which may act as
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Figure L.7: Top left: the relative error between the finite strain tensor and in-
finitesimal strain tensor over time at multiple locations around cell 3. The
specific locations are indicated in the top right (XY-plane), bottom left (XZ-
plane) and bottom right (YZ-plane) panels in which the arrows indicate the
cell-induced displacement. Reprinted from Ref. [112] as permitted under the
CC BY 4.0 license for the original work.

a supplement or replacement for a chemically-induced reference state.

A loss of active stresses (in the case of nonlethal CTF inhibitors) may most

readily be identified by the observation of a halt in mechanical activity. Upon

closer inspection of our experimental data, we found reason to suspect that the

cells shown in this study may not have completely relaxed by the reference time-

point (defined at t36 = 3 hours). Specifically, we recomputed CTFs redefining

both times t34 and t35 as reference points, and found that the total force curves

(as in Fig. 6.8) displayed an average downward shift, indicating that the treated
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NIH-3T3 cells may not have completely relaxed by time t36 (not shown). Un-

der a linear elastic model, incomplete cell relaxation at the reference time-point

may have caused the CTF curves in Figs. 6.8 and 6.9 to be underestimated by an

additive constant.

To estimate the constant factor by which CTFs may have been underesti-

mated, we first extracted the ‘force decay phase’ of the curves in Fig. 6.9. The

first time-point in this phase was taken to be the time tpeak of the force peak af-

ter the application of cytochalasin D (i.e., any time after time t6 = 30 minutes).

All remaining time points (up to t36) were included as part of the ‘force decay

phase’ data. The extracted curves were fit to an exponential decay model of

the form F(t) = f0 + f1 exp(−t/τ) via the MATLAB function lsqcurvefit. If t36

corresponded to a ‘true’ reference state, the coefficient f0 would be expected to

be zero. On the other hand, if residual active stresses were present during the

reference state, f0 would be expected to take a negative value. Using the value

of f0 obtained from the curve fit, we found that the total forces exerted by cells

1-10 may have been underestimated by approximately 6 nN, 56 nN, 4 nN, 1 nN,

28 nN, 11 nN, 5 nN, 1 nN, 0 nN, and 0 nN, respectively. As a percentage of the

force measured at time t = tpeak for each cell, these values correspond to an error

of approximately 3%, 75%, 2%, 1%, 9%, 9%, 2%, 1%, 0%, and 0%, respectively.

The degree of potential error for cells 2, 5, and 6 in particular, suggests that fu-

ture experiments using cytochalasin D may require longer imaging times. This

problem also highlights the need to develop real-time TF-OCM data processing

so that researchers may reliably identify when it is appropriate to end a given

time-lapse experiment. Future applications of TF-OCM to biological studies will

require more thorough confirmation of effective CTF inhibition.
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L.2.4 Factors reducing the sensitivity of CTF reconstructions

The sensitivity of TF-OCM to CTFs can be reduced by any effect which con-

tributes noise or errors to the final reconstructed CTF data. The experiments de-

tailed below were performed in order to better understand the impact of both lo-

calization sensitivity and bead density on the noise level of CTF reconstructions

(and hence, the sensitivity of our TF-OCM system to CTFs). These experiments

made use of artificially modified bead displacement data. That is, experimen-

tal data were altered (e.g., by adding noise or removing data points) to obtain

multiple realizations of modified displacement data. By comparing the CTF

reconstructions resulting from these modified data sets with the original CTF

reconstructions, the impact of localization sensitivity and bead density could be

studied in a controlled manner. It is important to note that the performance of

our TF-OCM method emerges as a net consequence of the entire experimental

system (including sample preparation, the imaging system, algorithms, etc.). As

a consequence, these results are intended to demonstrate the limitations of only

this first iteration of TF-OCM, and not the theoretical limitations of TF-OCM as

a whole.

Impact of localization sensitivity

Modified bead displacement data were generated by adding Gaussian noise to

experimental bead displacement data. The standard deviations of this Gaus-

sian noise along the x, y, and z axes were given by the experimentally measured

localization sensitivities defined in Chapter 6.6.6 (37 nm, 32 nm, and 86 nm, re-

spectively). To prevent the addition of unrealistic/excessive noise, any noise

realization with a magnitude greater than three standard deviations (along any
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Figure L.8: Contribution of bead localization sensitivity to noise in recon-
structed total force data. Original total force data (line plots, equivalent to
data shown in Fig. 6.8) have been superimposed with total force data from the
CTF reconstructions described in the text (box plots, obtained using bead dis-
placement data modified with Gaussian noise). The whiskers, boxes, and cir-
cles depict the full range, interquartile range, and median value of the data,
respectively. Note that most of the boxes exhibit so little deviation about the
median data point that they effectively ‘vanish’ in the plot above. Reprinted
from Ref. [112] as permitted under the CC BY 4.0 license for the original work.

axis) was discarded and replaced with another sample drawn from the Gaussian

distribution. Ten independent realizations of this noise process were generated

for each bead at each time-point in the data sets of cells 1, 2, and 3 (yielding

a total of 1110 modified bead displacement data sets). CTF reconstruction was

performed using each of these data sets (requiring approximately 10 days of

computing time on our work station). Total force curves (as in Figs. 6.8 and 6.9)

were generated from these reconstructions, and are displayed in Fig. L.8.

The standard deviation of these new total force curves with respect to the
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original (unmodified) total force curves is 2.6 nN, which we interpret here as

the approximate contribution of bead localization sensitivity to noise in the data

shown in Figs. 6.8 and 6.9. These results suggest that the noise contributed by

our bead localization sensitivity is so small as to be negligible in comparison to

noise originating from other sources (such as low bead density, as detailed in

the next section). It is important to note that, although the addition of Gaussian

noise in this experiment had little impact on the measurement of total force,

there are a few time-points at which large deviations in total force can be seen

(e.g., cell 3 at time t = 60 minutes). Such large deviations may result from mul-

tiple factors, such as failure of the FEM solver to converge and/or a low bead

density contributing to numerical instability of the inverse problem posed by

CTF reconstruction. This latter factor is explored by the experiment below.

Impact of bead density

Modified bead displacement data were generated via sub-sampling of experi-

mental bead displacement data obtained from cell 1. Specifically, each bead was

discarded from the data set with a probability of 50%, resulting in bead displace-

ment data which had an effective bead density approximately half that of the

original experimental data. This process was repeated to obtain 10 realizations

of sub-sampled data for each time-point. CTF reconstruction was performed

using each of these data sets (requiring approximately 80 hours of computing

time on our work station). Total force data (as in Figs. 6.8 and 6.9) were gen-

erated from these reconstructions, and are displayed in Fig. L.9. We note that

these results do not demonstrate the impact of bead density at the true bead

density used in our samples. However, we assume that the features demon-
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Figure L.9: Contribution of bead density to noise in reconstructed total force
data (for cell 1). Box plots depict total force data from the CTF reconstructions
described in the text (obtained using randomly sub-sampled realizations of the
original bead displacement data). The whiskers, boxes, and circles depict the
full range, interquartile range, and median value of the data, respectively. The
median total force curve corresponds to the median values reported in the box
plots. The original total force curve corresponds to the total force data from the
CTF reconstructions obtained using the original experimental data. Reprinted
from Ref. [112] as permitted under the CC BY 4.0 license for the original work.

strated by these ‘half-density’ data sets may serve as a sufficient proxy. Under

the assumption that higher bead density reduces noise in CTF reconstructions,

the noise measured using these ‘half-density’ datasets may serve as an approxi-

mate upper-bound on the noise contribution of the true bead density present in

the original experimental data.

There are several features worth discussing in these results. First, due to

the relatively smooth contraction/relaxation of the cell (as in panel (b) of Sup-

plementary Movie 1 of Ref. [112]), we might have expected the original total
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force curve of cell 1 (the red curve in Fig. L.9) to vary smoothly across time.

However, the curve appears ‘jagged’, possessing noisy/rapid fluctuations in

the computed total force. We note that the peaks and troughs of this jagged

curve are on the order of the variations in the total force obtained from the ‘half-

density’ reconstructions shown in the box plots of Fig. L.9, which suggests that

the fluctuations seen in the original cell 1 curve may be due to the impact of

low bead density, and not ‘true’ fluctuations in CTFs. We also note that the

curve traced by the median of the ‘half-density’ reconstructions appears rela-

tively smooth, and therefore more closely resembles the type of time series that

would have been expected, based on the image data. It must be emphasized that

this information is not sufficient to determine whether this curve is closer to the

‘true’ cell force. However, if future experiments demonstrate such a finding, it

could suggest that the effects of low bead density can be mitigated by adding

stochastic elements (such as the random sub-sampling used here) to force re-

construction procedures.

The variation of total force in Fig. L.9 is not uniform over time. In particu-

lar, the standard deviation of the total force obtained from the ‘half-density’ re-

constructions increases with increasing time between the ‘deformed state’ and

‘reference state’ (shown in Fig. L.10). If we consider this time-varying standard

deviation to represent the noise in our TF-OCM system, we see that noise in-

creased at a rate of approximately 0.1 nN/min of temporal separation between

the ‘deformed’ and ‘reference’ states. This implies that our TF-OCM system

exhibited its worst sensitivity at time t = 0, with a sensitivity/noise floor of

approximately 18 nN (which is approximately one-tenth the median cell force

measured at time t = 0, as shown in Fig. 6.9). Note that this noise floor ap-

proximates the contribution of our (relatively) low bead density. As stated in

360



Chapter 6.6.1, our 1 µm diameter beads had an average separation of 18 µm,

but standard TFM conventions would allow for a separation as small as 10 µm,

corresponding to a bead density almost 6 times larger than that used in this

study. It is currently unknown whether the noise floor calculated/inferred from

the ‘half-density’ CTF reconstructions shown here captures the majority of the

noise observed in our experimental measurements of total force. Future exper-

iments using higher bead densities will be likely to add clarity to this question.

The interpretation of such experiments will also require further analysis of the

factors detailed in the paragraphs below. At minimum, the noise measured

in this experiment may be considered as an approximate lower-bound on the

reconstruction noise in our TF-OCM system (e.g., at the time of ‘worst perfor-

mance’, time t = 0, our method could not reliably measure total forces smaller

than approximately 20 nN).

There are multiple possible explanations for a time-varying sensitivity to

CTFs. The fact that the noise floor changes approximately linearly in time de-

spite the introduction of a contractility inhibitor at time t = 30 minutes suggests

that strain/deformation dependent effects are unlikely to be the primary cul-

prit. If such effects were at fault, we would expect the data in Fig. L.10 to show

a change in behavior before versus after the addition of cytochalasin D. A reli-

able test of this hypothesis would likely require experiments with an extended

observation time prior to the addition of cytochalasin D, beyond the 30 minutes

used in this study.

Imaging and data processing effects may be more likely causes of time-

varying sensitivity to CTFs. Errors in bead tracking may increase with increas-

ing time from the ‘reference’ time-point. Alternatively (or in addition), sample
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Figure L.10: Standard deviation of the total force data shown in the box plots
of Fig. L.9. These results appear to indicate that the sensitivity of our TF-OCM
method to CTFs decreases as the time between the ‘deformed’ and ‘reference’
states increases. See text for details. Reprinted from Ref. [112] as permitted
under the CC BY 4.0 license for the original work.

drift may play a significant role. Although bead displacement data were cor-

rected for bulk (zero-order) and linear (first-order) drift, a sufficiently large drift

of the sample may cause the assumptions underlying our computational image

formation module to fail, inducing higher-order image deformations which our

algorithms do not currently accommodate. Coherence gate curvature correction

and focal plane registration are likely candidates to suffer from such an effect.

The surprisingly small standard deviation in the ‘half-density’ reconstruction

in the latter half of the time-lapse suggest that such time-varying image distor-

tions may be of greater concern than bead density. (That is, although a low bead

density is not desirable, its impact may be amplified by the presence of image

distortions.) Therefore, these results suggest that future iterations of TF-OCM
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may benefit from further exploration and refinement of our computational im-

age formation procedures.
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