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Chapters 1-5 concern statistical methods in designing and analyzing data for survival
clinical trials, and predicting trial duration. In Chapter 1, a method is proposed to
calculate additional time to event after being censored at the withdrawal time together
with some imputation strategies to conduct sensitivity analyses for a real trial with
informative censoring. Chapter 2 extends Mehta and Pocock (2010) to provide a
method for deciding sample size increase in adaptive survival trials. Chapter 3 is
inspired by the need from a real trial. A novel method for predicting the timing of
events in clinical trials with survival endpoints is proposed using different parametric
event distributions in the presence and absence of censoring. Chapter 4 investigates
scenarios in planning a comparative group sequential survival clinical trial with
subjects who remain event-free can stay until the study is terminated; Chapter 5 treats
the same issues as in Chapter 4 but for survival trials with subjects who have a fixed
follow-up time after randomization.

Chapters 6-8 concern statistical methods in clinical trials with sequential parallel
designs, which have been proposed for trials with high placebo response rates which
can lead to a higher failure rate in drug development. Chapter 6 introduces the
extended sequential parallel design (ESPD), in which there is re-randomization of not

only placebo non-responders during Period 1 but also of drug responders during



Period 1 into Period 2. Chen et al. [Contemp. Clin. Trials, 32: 592-604 (2011)]
heuristically proved that the covariance of two estimators is zero assuming equal
correlation coefficients. In Chapter 7, this covariance is re-derived without any strong
assumption in equality between two correlation coefficients. Assuming the number of
subjects continuing into Period 2 is a random variable, the covariance is re-confirmed
to be zero for both normal and binomial data. Chapter 8 clarifies a misunderstanding
of a new approach to drug-placebo difference calculation in short term antidepressant-
drug trials, which was proposed by Rihmer at al. (2011).

Chapter 9 proposes optimized asymmetric group sequential designs that consider
constraints on stopping probabilities at stage one (under the null and alternative
hypotheses) in addition to traditional overall type I error and power. Thus validity of a
group sequential design is ensured from the very first stage throughout.

Utilizing Box and Muller (1958), one of the most popular methods of generating
standard normal random variable using two independent uniform (0, 1) deviates, a
new method is proposed in Chapter 10 to combine two p-values from two disjoint

samples for designing a trial with two stages.
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CHAPTERDO

Overview of the Dissertation

Section 0.1: Phase 2 and 3 Clinical Trials in Drug Development

The pharmaceutical history can be roughly viewed as consisting of three periods (i.e.,
mid-1800 to 1945, 1945-1970 and 1970-1980s). Between mid-1800 and 1945,
botanicals such as morphine and quinine were extracted; epinephrine, norepinephrine
were synthesized for treating asthma attacks as well as nasal congestion and
amphetamine synthesized for psychiatric indications; barbiturates were discovered and
developed by Bayer pharmaceuticals for treating attention deficit disorder and
epilepsy; discovery and widespread availability of insulin therapy has changed the
prognosis for diabetics from only having a few months of life expectancy to just being
a chronic disease (Rosenfeld L, 2002); anti-infective researches resulted in many
classes of antibiotics (for example, Salvarsan, Prontosil and Penicillin) and vaccines so
that human beings for the first time in history had a way to substantially reduce death
rate after being disastrously infected by bacteria or viruses. In the post-war years,
1945-1970, there were further advancements in anti-infective research and
development of antihypertensive drug followed with invention of oral contraceptives,
the thalidomide issue and the Kefauver-Harris Amendments. In the years of 1970-
1980s, the discovery and development of statins helped the patients reduce cholesterol
levels so that their chances of dying of a heart attack would be reduced by 40%. Since
1990, drug discovery and development has entered a new era, focusing on

understanding the metabolic pathways related to a disease state or pathogen and
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finding a molecule interfering these pathways. Now large pharmaceutical corporations
participate in the complete range of drug discovery, formulation, development,
manufacturing, quality control, marketing, sales and distribution while smaller
organizations focus on a smaller spectrum of the whole process such as discovery drug
candidates or formulation or clinical development. Drug development consists of the
following phases: 1) Preclinical phase to conduct in vitro and in vivo studies in non-
human subjects for gathering efficacy, toxicity and pharmacokinetic information; 2)
Phase 0 to test on approximately 10 human volunteers to gather pharmacodynamics
and pharmacokinetics information; 3) Phase 1 to test the drug on 20-100 healthy
volunteers for checking dose range; 4) Phase 2 (on 100-300 patients) to determine
whether drug candidate can have any efficacy; 5) Phase 3 (on 1000-2000 patients) to
test and confirm drug’s therapeutic effect, effectiveness and safety; and 6) Phase 4 for
post marketing surveillance and watching drug use in public. In the past decade, the
author of this dissertation has been working on trials from phase 1 to phase 4 but
focusing on phase 3 trials for registration submission to the Food and Drug
Administration (FDA) and other regulatory agencies from the rest of the world.

According to PhARMA’s homepage (http://www.phrma.org/about), America’s

biopharmaceutical industry had more than 550 new medicines approved by FDA,
which performs the lead role in the world. However, among all investigated
compounds for use in humans, only a very small fraction are eventually approved by
FDA in the U.S. or other regulatory agencies outside U.S. Accordingly to FDA’s
website

(http://www.fda.gov/Drugs/DevelopmentApprovalProcess/Druglnnovation/default.ht
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m), the average number of submitted and approved New Molecular Entities (NMESs)
or Biologic License Applications (BLAS) in the U.S. between 2004 and 2013 were 38
and 29 per year with average approval rate of 83.9% in this decade. The inspiring
news is that submitted NMEs/BLAs (41 and 45 in calendar years of 2014 and 2015)
were all approved with medicines resulting from new advancements in science and
technology in the past a couple of decades. On the other hand, the approval comes
from substantial investment in pre-human and clinical trials and post-approval safety
monitoring. According to the Tufts Center for the Study of Drug Development (Tufts

CSDD located at http://csdd.tufts.edu/Research/Milestones.asp) and J.A. DiMasi et al.

2016, the predicted overall clinical success rate is only 11.83%, the majority of the
drug candidates will fail during the development process and will then generate no
revenue in the end. Hence once the cost of failed drugs are taken into account, the
average out-of-pocket cost (not including marketing cost) and capitalized cost
(adjusted for the time value of money as well as the cost of debt) are 1,395 and 2,558
million U.S. dollars respectively in 2013 (DiMasi et al. 2016). Among the estimated
average total capitalized cost per a NME/BLA in 2013, 1,098 million (43%) was used
in the pre-human tests while the rest of 1,460 million (57%) was used for clinical trials
(DiMasi et al. 2016). Over the time, the total capitalized cost per a NME/BLA in the
decade of interest is always more than twice that of the previous decade. They are 179,
413, 1044 and 2,558 million U.S. dollars in 1970s-early 1980s, 1980s-early 1990s,
1990s—mid 2000s and 2000s —mid 2010s respectively (DiMasi et al. 2016).

Due to the fact that substantial time and cost are needed in developing NMEs/BLAS,

innovations and improvements are imperative at every aspect during drug
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development process. To name a few here, novel and more sophisticated measuring
scales; new generation of computers/ workstations with higher computing power;
more complicated Electronic Data Capture (EDC) system for data capture and
Interactive Web Response System (IWRS/IVRS) for patient enroliment,
randomization, medication dispense according to protocol and subject withdrawal;
dynamic and real time communication between EDC system and IWRS/IVRS system
during trial execution; more multi-site and multi-countries trials; more collaborations
among big pharmaceutical organizations, small biotechnology companies and with
Contracted Research Organizations (CROs); and innovative statistical methods to
address unmet needs in drug development including saving time and cost together
with making better use of data information at every step of the drug development. As a
clinical biostatistician, the author is more familiar with phase 2 and 3 trials and will
briefly discuss some advancement in adaptive designs in Section 0.2 below.

Section 0.2: Adaptive Designs in Clinical Trials

Particular motivation for research and implementation of adaptive designs came from
the observation of low transition probability both from phase 2 to phase 3 (36%) and
from phase 3 to New Drug Application/Biologic License Application (NDA/BLA)
submission (62%) (Fig. 1, J.A. DiMasi et al. 2016), where the low rates could possibly
be attributed to reasons such as the inability to demonstrate superiority of an
investigational compound over placebo, suboptimal dose selected at phase 2 and
incorrect patient population investigated, just to name a few here.

There are four major categories of adaptive designs:

1) Adaptive randomization designs including later randomization based on past
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treatment assignment only, or past treatment assignment plus covariate-adaptive, or
plus response-adaptive or plus both covariate-adaptive and response-adaptive;

2) Group sequential designs (GSDs). Dating back to the 1920s, sequential design
started to assess trial data after every observation, while group sequential designs
include a small number of interim analyses as data from groups of subjects become
available. By interim results, a trial could stop for efficacy or futility at interim.
Design parameters are all specified prior to trial start and are not allowed to be
modified during the trial. GSDs have been very popular since 1970 and still popular
now;

3) Sample size re-estimation. In contrast to GSDs, sample size re-estimation allows
one to adjust the sample size of the trial based on cumulative interim data using either
blinded data or un-blinded data. Sample size re-estimation using blinded data is used
to update variability of the data for a normal endpoint, or to update response rate in the
control group when data are binary or to update baseline hazard rate for the combined
group in the trial with survival endpoint. For sample size re-estimation, re-estimated
sample size is based on treatment effect calculated using un-blinded interim data,
which provides an opportunity to adjust the sample size when the treatment effect was
over-estimated a priori;

4) Adaptive dose-response designs occur in phase 1 and 2 trials. This includes
continual reassessment method (CRM) to estimate maximum tolerable dose in phase 1
trials. Estimating minimum effect dose using novel methods and simulations are
currently under-investigation by the PARMA “Adaptive Dose-Ranging Studies”

(ADRS) working group;
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5) Treatment selection designs. Supposing a trial starting with several treatments and a
concurrent control, one (or more) dose (doses) are selected based on interim point
estimates, results of hypothesis testing, external information and expert knowledge.
Selected dose(s) and control groups are continued to stage 2. Data from the two stages
will be combined using a combination test to conduct hypothesis testing in a way that
the overall type | error is controlled at a pre-specified level, thus providing
confirmatory evidence of efficacy to support new drug application or biologic license
application. As a clinical biostatistician, the author herself has worked on many phase
2 and 3 trials in the central nervous system (CNS) for a decade and has participated
three compounds’ U.S. and the rest of the world submissions. In Sections 0.3-0.12, the
abstract of ten manuscripts that were triggered by real trial questions will be presented,
where Sections 0.4, 0.6, 0.7, 0.11 and 0.12 are about adaptive designs, Section 0.3 and
0.5 are about sensitivity analyses and trial monitoring for survival trials, and Sections
0.8, 0.9 and 0.10 are about a novel design of sequential parallel design to deal with the
issue of having high placebo response rate in clinical trials.

Section 0.3: Sensitivity Analyses for Informative Censoring in Survival Data: A
Trial Example

In a controlled clinical trial comparing an experimental drug to a control using time to
event analysis, the logrank test is normally used to test against the equality between
two survival curves when the proportional hazard rate assumption is held, which of
course requires non-informative censoring. The authors used an example from a
randomized, double-blind, parallel group, low-dose active controlled study comparing

the safety and efficacy of two doses (400 mg/day versus 50 mg/day) of study
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medication used as monotherapy for the treatment of newly diagnosed or recurrent
epilepsy. This analysis imputes the event time of subjects considered to have
problematic informative censoring to demonstrate the impact of violations in
necessary assumptions, and assesses robustness of the p-value as calculated from
imputed data as compared with un-imputed data. Assuming a parametric distribution
for time to event, had these subjects resulted in an event in the trial after withdrawal,
the expected additional time to event is formulated and calculated using methods
developed in this paper. Combining the imputed informative censoring subjects with
the remainder of the original data, new p-values are obtained using the log-rank test
and compared to the original p-value. KM plots are also compared.

Section 0.4: Sample Size Increase during a Survival Trial When Interim Results
are Promising

In clinical trials with survival end point, an anticipated log hazard ratio is used to plan
a trial (with either fixed sample design or a design with multiple stages) before trial
begins. Uncertainty of log hazard ratio under alternative hypothesis may create a need
for a sample size increase when interim results are promising and treatment effect has
been underestimated. This paper generalizes Mehta and Pocock (2000) method to
provide a way for adaptive sample size increase in survival trials. Unlike trials with
normal or binary endpoints, subjects who were at risk at the interim analysis
contribute both at interim and at final, resulting in dependent data structure between
interim log-rank test and final log-rank test. A method to create independent increment
in order to obtain a weighted test statistic and search for an adjusted critical value for
final analysis is proposed. Before trial start, given the information time for interim

analysis and the ratio of maximum total sample size after increase to planned sample

26



size before trial start are specified, the sample space is divided by the observed test
statistic at interim into three zones: unfavorable, promising and favorable, the sample
size (required number of events) remains unchanged when interim test statistic is
located in unfavorable or favorable zones, but is increased if it is located in the
promising zone instead. Implementation of sample size increase in survival trials is
described in details. Simulations with scenarios with equally spaced group sequential
designs with/without censoring and with/without adaptation in sample size are
performed. Simulations allowing a 4-fold increase in sample size against 2-fold
increase are compared. Besides equally spaced group sequential designs, interims
occurring at the earlier part (at 20% of anticipated information is used) or the later part
(at 80% of anticipated information is used) are also investigated.

Section 0.5: Prediction of the Timing of Events in Clinical Trials with Survival
Endpoints: A Trial Example

In event-based clinical trials, interim and final analyses at pre-specified event times
are often proposed. In a randomized withdrawal trial with a time-to-event primary
endpoint, the design consists of subjects receiving a test treatment for a specified
period and then being randomized to continue on that treatment or placebo. We
present methodology to predict the time of reaching a required number of events
during the double-blind phase of such a trial. We consider prediction at any time
during the course of this trial: at the beginning of the trial; during the open-label phase
of the trial and also during the double-blind phase of the trial (where some subjects
could still be in the open-label phase). There has been recent work on tackling various
aspects of this problem using parametric, semi-parametric or from a Bayesian

perspective. Starting from Whitehead’s method (2001), we consider four additional
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features: (i) censoring process can be incorporated; (ii) calculating expected number of
events by a future calendar time, t,, for subjects who were in the risk set at t,; (iii)
predicting number of events by a future time point t, for subjects who were
enrolled prior to randomization and will be randomized at a fixed time point before

t,; and (iv) various parametric survival distributions other than exponential (i.e.,
Weibull, Lognormal, Log logistic). We applied our methodology during the conduct
of a recently completed clinical trial to accurately predict the timing of the interim
analysis. This allowed sufficient resources to be deployed leading to timely data
analysis and reporting.

Section 0.6: Planning a Comparative Group Sequential Clinical Trial with Loss
to Follow-up and a Period of Continued Observation

This paper is motivated by Rubinstein, et al., (1981) and Kim and Tsiatis (1990) and
provides a way to design group sequential trials analyzed using logrank test for
comparing survival under two treatments with loss to follow-up and a period of
continued observation. These are frequently encountered in Phase 11/111 clinical trials.
A method is developed to calculate the length of accrual period to assure a desired
power for given control group median time to event, hazard ratio, length of the period
of continued observation, information time of analyses and times of analyses, hazard
rate of time to censoring and significance level. The results show that, similar to
trials with fixed duration (Rubinstein, et al. 1981), introducing a period of continued
observation after the end of patient accrual period reduces the total number of patients
required to detect treatment effect substantially. Assuming both time to event and time

to censoring (loss to follow-up) are exponential, the estimator of log hazard ratio
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(placebo vs. treatment) is used to test the null hypothesis of equality in survival
distributions between treatment and placebo groups. Tables are created in which total
trial durations are calculated for a wide range of cases for O’Brien and Fleming
(1979), Pocock (1977) and Wang and Tsiatis(1987) efficacy upper boundaries,
respectively. For the same accrual rate, three different curves are depicted to show the
impacts of time to censoring and a period of continued observation on accrual time to
ensure power in respective group sequential settings.

Section 0.7: Planning the Duration of a Survival Group Sequential Trial with a
Fixed Follow-up Time for All Subjects

To account for the need of exploring operating characteristics of survival group
sequential trials with a fixed follow-up period for each subject after randomization, the
accrual time and total trial duration to ensure power and type | error rate requirements
are explained. Situations investigated are for hazard ratios ranging from 1.3 to 3.0,
with slow or high accrual rate, and in the presence or absence of censoring. Impacts of
hazard rate, accrual rate and competitive censoring on accrual time and subsequently
on total trial duration are carefully illustrated by well-designed tables and figures. Real
calendar time for interim analyses, needed number of events and recruited number of
subjects at time of interim analyses, are also tabulated so that all operation
characteristics can be assessed prior to the trial start and re-assessed during the trial
after incorporating adjusted accrual rate based on blinded data review. The importance
of having such explorations is illustrated via a motivating example.

Section 0.8: Optimal Weighted Z Test and Linear Combination Test in Extended
Sequential Parallel Designs

Many times in clinical trials using Sequential Parallel Design (SPD) with two
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treatments (placebo and drug), subjects are randomized in Period 1 and placebo non-
responders are re-randomized in period 2 to either continue with placebo or switch to
active drug. The re-randomization of placebo non-responders during Period 1 into
Period 2 helps to overcome the potential imbalance in baseline factors resulting due to
informative withdrawals during Period 1 was discussed by Chen et al. (2011) and Liu
et al. (2012). In this paper, we introduce extended SPD (ESPD) and consider the re-
randomization of not only placebo non-responders during Period 1 but also the re-
randomization of drug responders during Period 1 into Period 2. Statistical methods to
analyze data from an ESPD are discussed. An optimal weighted Z test which combines
three individual test statistics is suggested to test the hypothesis of no drug effect
across periods. It is shown that the ESPD is more efficient compared to SPD.
Simulation results are also presented. Additionally, a linear combination test is
proposed for binary data, which demonstrates good and fair operational characteristics
under both null and alternative hypotheses, respectively.

Section 0.9: Covariance and Variance Evaluations of Two Estimators for Drug-
placebo Difference in a Trial with Sequential Parallel Design

Fava et al., 2003 proposed Sequential Parallel Design (SPD) to test for a drug effect in
the presence of a placebo effect by combining two estimators from first and second
periods of the trial. Here subjects are randomized to receive either placebo or drug in
the first period and only placebo non-responders at the end of the first period are
continued into the second period. Chen et al. (2011) heuristically proved that the
covariance of two estimators is zero assuming the correlation coefficient between the
first and the second period normal responses for subjects who were placebo non-

responders in period 1 and continued to be treated by placebo in period 2 being the
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same as the correlation coefficient between the first and the second period normal
responses for subjects who were placebo non-responders in period 1 and continued to
be treated by testing drug in period 2. However in practice it is often difficult to justify
the equality assumption between two correlation coefficients. In this article, the above
covariance is re-derived without needing any strong assumption in equality between
two correlation coefficients. Assuming number of subjects continuing into period 2
being a random variable, covariance is re-confirmed to be zero not only for normal
data but also for binomial data. Subsequently, the sample size for a SPD trial using
weighted test for hypothesis testing is derived with estimated non-responder rate at the
end of the first period being replaced by its expected value. The efficiency of a SPD
design is evaluated accordingly relative to fixed sample design for both scenarios.
Simulations are also performed to assess type | error rate and power when period 1
and 2 endpoints are correlated.

Section 0.10: Misunderstanding of a New Approach to Drug-Placebo Difference
Calculation in Short Term Antidepressant-Drug Trials

In clinical trials, drug effect is measured by a difference between subjects who are
treated by experimental drug against placebo-treated subjects. In case of binary data,
with observing YES/NO on each subject in certain period of time, it is the proportion
of subjects who respond in treatment group minus the proportion of responders in
placebo group (for example, 50% vs. 30%). However, a greater difference was
proposed by Rihmer et al. (2011) with their supporting arguments, in that
antidepressant response and placebo response had different mechanisms and there
were equal chances for antidepressant responder to be responding to placebo and not

responding to placebo at all. Therefore, the authors proposed 50% - 30% * 50% when
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the response rate in the treatment group and the placebo group are 50% and 30%
respectively, resulting in higher drug-placebo difference than traditional understanding
of 50% - 30%. In this article, we tried to explain why the authors misunderstood the
drug-placebo concept for evaluating drug superiority, their misunderstanding of
assumptions of traditional calculation, as well as their wrong reasoning on their
proposed approach. All in all, we conclude the traditional approach of 50% - 30% is
the correct way of evaluating drug-placebo difference. The possible methods to
control impact of placebo effect are briefly discussed at the end of this article.

Section 0.11: Optimal Group Sequential Designs Constrained on both Overall
and Stage One Error Rates

Optimized group sequential designs proposed in the literature have the aim of
minimizing average sample size (ASN) with respect to a prior distribution of treatment
effect with overall type I and type Il error rates well-controlled. The optimized
asymmetric group sequential designs that we present here additionally consider
constraints on stopping probabilities at stage one: probability of stopping for futility at
stage one when no drug effect exists as well as the probability of rejection when the
maximum effect size is true at stage one so that accountability of group sequential
design is ensured from the very first stage throughout. As well, non-binding efficacy
bounds are used to account for overrunning in common real trials. The shape
parameters for Wang-Tsiatis upper bounds and Kim-DeMets lower bounds are utilized
to find optimized group sequential designs minimizing ASN while maintaining error
and power requirements overall and at stage one. From examples illustrated, the
maximum sample size determined through such optimization is smaller than prior

optimized designs using other optimization criteria.
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Section 0.12: A Two-stage Adaptive Design with a New Combination Test

Inspired by Bauer and Kohne (1994), a method applying Fisher’s combination rule to
form a two-stage adaptive procedure, together with Box and Muller (1958, referred to
as ‘BM’), one of the most popular methods of generating standard normal random
variable using two independent uniform (0, 1) deviates, a new method (denoted as
‘BM combination test’) is proposed here to combine two p-values from two disjoint
samples for designing a trial with two stages. Procedure is defined with carefully
consideration of controlling overall type | error rate under null hypothesis. Operational
characteristics including power and expected sample size under both null and
alternative hypotheses are investigated. Simulations are used to confirm type | error
control. Comparisons of BM combination test with Fisher’s combination test are also

investigated.
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CHAPTER 1
Sensitivity Analyses for Informative Censoring in Survival Data: A
Trial Example

(published in Journal of Biopharmaceutical Statistics -March 2016 -DOI:
10.1080/10543406.2016.1167076)

Abstract: In a controlled clinical trial comparing an experimental drug to a control
using time to event analysis, the logrank test is normally used to test against the
equality between two survival curves when the proportional hazard rate assumption is
held, which of course requires non-informative censoring. The authors used an
example from a randomized, double-blind, parallel group, low-dose active controlled
study comparing the safety and efficacy of two doses (400 mg/day versus 50 mg/day)
of study medication used as monotherapy for the treatment of newly diagnosed or
recurrent epilepsy. This analysis imputes the event time of subjects considered to
have problematic informative censoring to demonstrate the impact of violations in
necessary assumptions, and assesses robustness of the p-value as calculated from
imputed data as compared with un-imputed data. Assuming a parametric distribution
for time to event, had these subjects resulted in an event in the trial after withdrawal,
the expected additional time to event is formulated and calculated using methods
developed in this paper. Combining the imputed informative censoring subjects with
the remainder of the original data, new p-values are obtained using the log-rank test
and compared to the original p-value. KM plots are also compared.

Keywords: Survival data; Informative censoring; Robustness; Sensitivity; Expected
time to event.

Section 1.1: Introduction

After being randomized into the double-blind phase until the end of study, subjects
can have event, or loss to follow-up (due to loss to contact, subject consent or due to
adverse event), or remain event free at the time of study termination. The logrank
statistic is used to compare the survival distribution of two samples when censoring is
non-informative (i.e., the censoring process is independent of the event process). The
test was proposed by Nathan Mantel (1966) and was named as ‘logrank test’ by

Richard Peto and Julian Peto (1972). Logrank test statistic is constructed by
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computing the difference between observed and expected number of events in one of
the two groups at each unique observed event time and then adding these differences
so that a measure for the overall summary across events time points where there is an
event is obtained to evaluate two survival distributions in their entirety.  The
logrank statistic can also be derived as the score test for the Cox proportional hazard
model (Cox, David R, 1972) comparing two groups. Based on efficiency of score test,
it is therefore asymptotically equivalent to the likelihood ratio test statistic if the
proportional hazard model is held, whereas exponential failure time is a special case of
the proportional hazard model.

As noted above, logrank test requires non-informative censoring to ensure
independence between censoring mechanism and time to event process. In case this
assumption is questionable, the validity of this test to measure superiority of one
survival curve over the other will be easily challenged. And therefore robustness of p-
value from logrank test in this case has to be assessed via sensitivity analyses. For
reviewing submitted clinical trial results to support drug label claims, US FDA
published a guidance for pharmaceutical industry titled as “E9 Statistical Principles for
Clinical Trials”, which indicated their current thinking on this topic as they claimed in
the front page. In E9, it is said that “It is important to evaluate the robustness of the
results and primary conclusions of the trial.” Robustness refers to “the sensitivity of
the overall conclusions to various limitations of the data, assumptions, and analytic
approaches to data analysis”. A real trial is introduced in Section 1.2, with which
problematic informative censoring is shown in final data and could possibly invalidate

its p-value interpretation. Section 1.3 describes proposed method following up with
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strategies for sensitivity analyses and subsequent analysis results in Sections 1.4 and
1.5, respectively; and final discussions on method limitations and other methods in
Section 1.6 conclude this paper.

Section 1.2: A Trial Example

The objective of this study was to compare the safety and efficacy of 2 doses of
topiramate (referred to as “TPM”) as monotherapy in pediatric and adult subjects with
newly diagnosed (within 3 months) epilepsy characterized by partial-onset or
generalized seizures, or with recurrent epilepsy while off of antiepileptic drugs. To
ascertain tolerability and to allow for discontinuation of any baseline antiepileptic
drugs therapy, eligible subjects received TPM 25 during a 7-day open treatment phase.
Between screening (up to 14 days before study entry) and randomization, subjects
were to have no more than 1 seizure. Subjects who experienced significant tolerability
relating to safety problems during the open-treatment phase were not eligible for
randomization. At the end of open treatment, eligible subjects were randomly assigned
to either TPM 50 or TPM 400. Antiepileptic drugs therapies, if any, were tapered off
prior to randomization. The double-blind phase comprised 2 periods: titration (up to
42 days) and stabilization (of variable duration); subjects who experienced significant
tolerability relating to safety problems during the first 21 days of the double-blind
phase were withdrawn from the study. Subjects remained in the double-blind phase
until 1) the first partial onset seizures or generalized seizures, ii) double-blind phase
termination (6 months after the last subject was randomized), or iii) withdrawal for
protocol-specified reasons (adverse events, subject choice, or lost to follow-up). The

efficacy assessment was based on between-group difference in time to first seizure
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during the double-blind phase. Subjects or their caregivers recorded the date and type
of each seizure that occurred in their seizure diaries. A seizure required clinical
verification by the investigator. Upon experiencing a seizure, each subject was to
contact the investigator, who then evaluated the event in terms of consistency with
epileptic partial onset or generalized tonic-clonic seizures.

A total of 487 subjects were enrolled; of those, 16 withdrew during the open treatment
phase. Of the 471 subjects randomized, 470 had at least 1 study visit after
randomization and were included in the intent-to-treat analysis. Primary efficacy
analysis was based on a survival analysis of the difference between TPM 400 and
TPM 50 with respect to time to first partial onset seizures or generalized seizures
during the double-blind phase (excluding taper). Kaplan-Meier (referred to as ‘KM”)
estimates were calculated for time to first seizure. Statistical significance of the
treatment effect was tested by the log-rank test.  Trial registration identifier for this
study is NCT00231556 at clinicaltrials.gov and trial results were published at Journal
of Child Neurology (Glauser et al. 2007).

Table 1a lists the completion/withdrawal status along with p-value of efficacy results
for original observed data. The first subject’s randomization occurred at 19NOV1999;
and afterwards eligible patients were continuously randomized until 15AUG2001.
There are 470 subjects (TPM 50=234 and TPM400=236), with 90 (38%) and 49
(21%) events occurred in the TPM 50 and TPM 400, respectively. Comparison of the
KM survival curves of time to first seizure favored TPM 400 over TPM 50 (p=0.0002;
2-sided log-rank test). When the trial ended at 26FEB2002, there were 217 (TPM

50=105, TPM 400=112) remained event-free at the time of study termination, which
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were considered as  being administratively censored since censoring was caused by
trial operation and thus was also considered as non-informative censoring. The
proportions of withdrawals due to lost to follow-up and other reason were almost the
identical between high and low dose levels (that is: non-differential between two
treatment groups), which hinted the claim of non-informative nature for these two
kinds of withdrawals. However, at the time of study termination, in the TPM 50 group,
6% (N=13) of subjects had early withdrawal due to adverse event and 4% (N=9) of
subjects due to subject choice while having 17% (N=40) of withdrawals due to
adverse event and 6% (N=13) of withdrawals due to subject choice in the TPM 400
group. These two types of withdrawals are differential between two treatment
groups. Combining these two types of withdrawals together, dis-proportionality in
early withdrawal rates between two groups (TPM 400=23% vs. TPM 50=10%) makes
people believe that these withdrawals might have informative censoring with being
informative with respect to treatment assignment, resulting in violating of non-
informative censoring assumption in application of logrank test.

To address this issue, one proposal from US FDA (Food and Drug Administration)
reviewer then was to impute informative censoring subjects and treat them as they
have had an event occurred at the time of early withdrawal (Table 1.1b). The number
of events then becomes 112 (48%) in the TPM 50 group and 102 (43%) in the TPM
400 group, resulting in a big decrease in the difference in event proportion between
two groups (5% in difference: TPM 50=48% vs. TPM 400=43%) in this na'we data as
compared with original data (17% in difference: TPM 50=38% vs. TPM 400=21%).

More importantly, p-value of log-rank test from the na'we data becomes 0.3859 (Table
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1.1b), which fails to support the claim of superiority of TPM 400 over TPM 50 in
preventing time to first seizure in the double-blind phase. The na'we data are very
artificial and incorrect because we only know that subjects who were informatively
censored at their withdrawal time but with no knowledge on whether or when event
occurred afterwards. Surely for them, there was no event occurring at their date of

early withdrawal. From this perspective, the na'we data can be viewed as the ‘worst-

case- scenario’ imputation of the original data. One question to ask next is: what else

imputations could possibly depict intermediate scenarios?

Table 1(Tab. 1.1): results from the original data (Table 1.1a) and results from the naive data (Table 1.1b)

Table 1.1: results from the original data (Table 1.1a) and results from the naive

data (Table 1.1b)

Table 1.1a:
category Sub-category TPM 50 TPM 400 Total
N=234 N=236 N=470
n(%) n(%) n(%) p-value
Event seizure 90(38) 49(21) 139(30) =0.0002
Informative Withdrawal due to adverse event 13(6) 40(17) 53(11)
censoring Withdrawal due to subject choice 9(4) 13(6) 22(5)
Non- Administrative censoring 105(45) 112(47) 217(46)
informative Withdrawal due to lost to follow-up 9(4) 10(4) 19(4)
censoring Withdrawal due to other reason 8(3) 12(5) 20(4)
Table 1.1b:
category Sub-category TPM 50 TPM 400 Total
N=234 N=236 N=470
n(%) n(%) n(%) p-value
Event seizure 90(38) 49(21) 139(30) =0.3859
Withdrawal due to adverse event | 13(6) 40(17) 53(11)
Withdrawal due to subject 9(4) 13(6) 22(5)
choice
Non- Administrative censoring 105(45) | 112(47) 217(46)
informative | Withdrawal due to lost to 9(4) 10(4) 19(4)
censoring follow-up
Withdrawal due to other reason | 8(3) 12(5) 20(4)

Section 1.3: Methodology
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From analysis of na'we data, we understand that testing of superiority of higher dose
versus lower dose via logrank statistic will become non-significant once we consider
those informative censoring subjects as event subjects because the test is driven by
events and this action adds 53 events to TPM 400 whilst only 22 events to TPM 50,
resulting in diluting superiority of TPM 400 over TPM 50 on preventing time to
seizure after randomization. To further check sensitivity of p-value in this direction,
we propose a method that still assumes that those informative censoring subjects have
had an event, but on the contrast, admitting of the event time being later than the
withdrawal date, to be consistent with the fact that those subjects didn’t have an event
at their withdrawal time in the observed data. In Figure 1.1, the upper graph depicts
subject’s status in the observed data; and after imputation, informative censoring
subjects will result in an event between respective withdrawal time and the trial end
date 26FEB2002 (see the lower graph in Figure 1.1). The time from randomization to
event for informative censoring subjects is imputed with expected additional time to
event after being informatively censored at t;; plus observed time course in the
double-blind phase (i.e., t;;), had this (ith) subject resulted in first seizure event
between withdrawal time t;; and end date ¢,. In the upper graph of Figure 1.1,
triangle symbol at right end means subjects who had an event in the original data.
Subjects with an across symbol at the right end withdrew early due to non-informative
reasons (loss to follow-up or other reason). Circled subjects are the ones who are
assumed to have informative censoring in the observed data. In the lower graph,
suspicious informative censoring subjects are imputed to have an event before or on

26FEB2002, with the long-dash line in bold after their respective early withdrawal
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time t;; indicating the expected additional time to seizure. Therefore, after
imputation, this cohort of subjects will have time to first seizure as total length from
randomization time to the predicted event time between early withdrawal time t;,
and administrative trial end time 26FEB2002.

Methodology developed below will only apply to informatively censored subjects in

the original data. Let X;; and W;;

ij» )=C for TPM 50 and E for TPM 400, represent the

random variable of time from randomization to first seizure event and from
randomization to the time of being censored, respectively, for the ith subject in the
Jth group who was randomized at time r;; . As explained in the Appendix 1.1, in
order to calculate the expected additional time to event for informative censoring
subjects, we firstly have to obtain the probability of having an eventin (t;,t,] given
that this subject is event-free at t;;. For a specific event distribution, parameters are
estimated from treatment-specific original data with a parametric event distribution

imposed (Tables 1.3a-1.3f).
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Figure 1(Fig. 1.1): Depiction of imputing process

Figure 1.1: Depiction of imputing process, with the triangle symbol indicating
experiencing an event (including events in original data and imputed events in
the lower graph), the circle symbol indicating having an informative censoring at
t;; inthe original data (see in the upper graph), and the across symbol indicating
non-informative censoring in the original data, solid line for observed time course
and long-dashed line in bold for the expected additional time to event prior to or
on the target time t,. The upper graph represents un-imputed data and the
lower graph represents data after imputation.

Based on data from non-informative censoring subjects (i.e., subjects who withdrew
due to loss to follow-up or some other reason in this trial), parameters for time to
censoring is estimated by: make these non-informative censoring subjects as having an
event in the original dataset and the remainder of subjects are all censored. Extract
estimated hazard rate parameter by imposing exponential distribution on these created
‘event’ of time to non-informative censoring. ¢;=0.000267784

and ¢, =0.0003303452 (Tables 1.3b and 1.3d) are the estimated exponential hazard
rates for time to censoring for TPM 400 and TPM 50, respectively.

From Appendix 1.1, it is known that the probability of having an event in (¢;4,t,] for
a subject in TPM 50 group in the presence of exponential censoring process competing
with event process, given that this subject is event-free at t;; can be expressed as:
P(Xic < t; — Tie, Xic < WiclXic > tix — 1ic, Wic > tix —Tic)

_ (t2—Tic dPXicsty—TiclXic>tin—Tic) N exp(=@cxic)
tii—Tic d(tz-7;c) exp[-0Bc¢(tii—Tic)]

dxic
Utilizing independence between event process and exponential censoring process in

(ti1, t,], the above probability can be decomposed to be the product of two

components in the integrand, and then the integration is carried out from lower limit
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.. . dP(Xijcsto—1iclXic>ti -1 .
t;; — 1, toupper limit t, — ryc. The first component 22&ics Z(Z‘CL lC)> 177ic) s the
2= ric

derivative of conditional probability of having an event in (t;q,t,] without
competitive censoring (i.e., P(Xjc < t, — 1i¢c|Xic > ti1 — 1ic) ) With respect to
t, — 1ic; and the second component is the conditional exponential censoring survival

exp(—0@cxic)

function
exp[-Bc(tii—Tic)

K given this subject is censoring-free at withdrawal time t;;.

The expected additional time to event, have this informatively exponential censored
subject had resulted in an event in (t;q,t,] is then:

o PXicsta—TiclXic>tiy—ric)  exp(=9¢xic)
J‘tz—ric i d(ta-Tic) expl-0c(tin—ric)l g,
tis=Tic P(Xic<tz—Tic, Xic<WiclXic>ti—Tic Wic>tin—Tic)  'C

While other censoring distribution can also plays a role here, as in Equation 1.4’

from Appendix 1.1, with Weibull censoring, this expected additional time to event is

then:
o P Xicsta-TiclXic>tin —Tic) weBexic “CT exp(=Bexic ©C)
ty-ric ~i€ d(tz2-7ic) exp(=Bc(ti1—Tic)“c) dx;
tin—Tic P(Xycsta—Tic, Xic<WiclXic>tin—Tic, Wic>tin—Tic) e

with B =0.0134838899 and wg=0.6153282175 (B = 0.0066766023 and

wg =0.6255320211) as parameters estimates for informative Weibull censoring
(Tables 1.3e-1.3f)

When censoring process is not essential in calculating expected additional time to
event for imputed informative censoring subjects, conditional survival function for
censoring process will be dropped from the numerator. And the denominator for
probability of having an event in (t;4, t,], given that this subject is event-free at t;;,
can then be expressed as P(X;c < t, — 1;c|X;c > t;1 — 3¢, ) Without involving the

censoring variable W;.. Therefore, the expected additional time to event for those
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informative censoring subjects is now:

o PP Kicsta—TiclXic>ti ~Tic)
to=ric "€ d(t2-ric)
tin—Tic  P(Xicsta—riclXic>tin—Tic)

dxic

In this section, the algorithm of calculating expected additional time to seizure (bold
long-dash line in the lower graph of Figure 1.1) is provided for either with or without
considering competitive censoring process. As above, every imputed informative
censoring subject will have an event in (t;;,t,] with the length of time to event equal
to sum of time to early withdrawal in the original data (i.e., t;;) and the expected
additional time to event in (t;4, t;], given that this subject was still at risk at t;;.
When calculating this expected additional time to event without considering censoring
process competing with event process, the integrand part is different from the case
with considering it in both denominator and nominator and hence resulting in different
expected additional time to eventin (t;4, t;].

Section 1.4: Strategies for Sensitivity Analyses

To make explanations easier, the event distribution and informative censoring
distribution (if needed) are both exponential for purpose of illustrating strategies for a
series of sensitivity analyses. Figure 1.2 graphically depicts the proposed sensitivity
analyses as well as original analysis and nawe analysis proposed by US FDA. In
original analysis (referred to as ‘O’ in Figure 1.2) contains old seizure events data
(TPM 50=90 and TPM 400=49 in Table 1.1a), informative censoring subjects whose
censoring are probably related to treatment and non-informative censoring subjects
whose censoring are considered to be random and independent of treatment

assignment. Hazard rates A, and Ay are estimated from original data after
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imposing a parametric distribution on event time  whilst hazard rates of censoring
¢c and ¢y are estimated using the method mentioned above by ‘inverting’ original
data with non-informative censoring data as ‘event’ and all the remainders as
censoring subjects. Sensitivity strategy S1 in Figure 1.2 denotes the one proposed by
US FDA to have all informative censoring subjects have a seizure event at their
withdrawal time. Sensitivity analysis strategies S2 and S3 are newly proposed from
this paper, in which all or half of the informative censoring subjects will have a
seizure event at the predicted time point after withdrawal. Conditional on the fact
that informative censoring subjects were still at risk at withdrawal time t;,, the
expected time to seizure prior to t, is calculated for each informative censoring
subject and then the newly created data for this cohort will be added back to the

remainder of original data so that p-value and KM plot can be regenerated. As 50%
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Figure 2(Fig. 1.2): Sensitivity analyses strategies
Figure 1.2: Sensitivity analyses strategies. IC and NC denote informative censoring and non-informative censoring subjects,
respectively.
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of the informative censoring subjects imputed is because withdrawals due to adverse
event or subject choice are generally independent of treatment assignment in normal
clinical trials. Therefore, we can’t always assume all informative censoring subjects in
this cohort had informative censoring. Of note, regardless of with or without
considering censoring, full imputation will have all informative censoring subjects
result in an eventin (t;q,t,] and 50% imputing will have half of informative
censoring subjects result in an event in (t;4, t,], while as shown in Section 1.3 and the
Appendix 1.1, absence of censoring will change value of integrand when doing
integration and thus will result in different expected additional time to event as
compared with the case in the presence of censoring.

Section 1.5: Analysis Results

After extracting parameters from original data, for each informative censoring subject,
probability of having an event before t, is calculated, which is then to be put in the
denominator of the integrand in order to obtain the expected additional time to event,
had this subject have an event in (¢;q,t,]. After imputing those informative censoring
subjects, they are put back together with the remainder of original data to do
hypothesis testing. Now event/censoring status for intent-to-treat subjects are as
represented as in Table 1.2a. From p-value of 0.0002 from original data to 0.3859 with
na'we data, it seems more events added-in, the less significant p-value the test will end
up with. To test this speculation, we’ve tried 50% imputation (Table 1.2b). For each
informative censoring subject (N=22 in TPM 50, N=53 in TPM 400), one uniform
random variable in a range of [0, 1] is generated. This subject will be imputed to have

event at his/her expected time before ¢, if this uniform random variable is great
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than or equal to 0.5, otherwise this subject will still be censored at his/her withdrawal
time and no imputation will be conducted. After this manipulation, we created a
population with nearly 50% of informative censoring subjects imputed. Results from
data with 50% imputation are displayed in Table 1.2b. Of those, 12 out of 22
informative censoring subjects in the TPM 50 group are imputed and 25 out of 53

informative censoring subjects in the TPM 400 are imputed.

Table 2(Tab. 1.2): results from fully imputed data (Table 1.2a) and results from data with 50% imputation
(Table 1.2b)

Table 1.2: Results from fully imputed data (Table 1.2a) and results from data
with 50% imputation (Table 1.2b)

Table 1. 2a:
category Sub-category TPM 50 TPM 400 | Total
N=234 N=236 N=470
n(%) n(%) n(%)
Event seizure 90(38) 49(21) 139(30)
Withdrawal due to adverse event (fully imputed) 13(6) 40(17) 53(11)
Withdrawal due to subject choice (fully imputed) 9(4) 13(6) 22(5)
Non- Administrative censoring 105(45) 112(47) 217(46)
informative Withdrawal due to lost to follow-up 9(4) 10(4) 19(4)
censoring Withdrawal due to other reason 8(3) 12(5) 20(4)
Table 1.2b:
category Sub-category TPM 50 TPM 400 | Total
N=234 N=236 N=470
n(%) n(%) n(%)
Event seizure 90(38) 49(21) 139(30)
Withdrawal due to adverse event (imputed) 6(3) 15(6) 21(4)
Withdrawal due to subject choice (imputed) 6(3) 10(4) 16(3)
Non- Withdrawal due to adverse event 73) 25(11) 32(7)
informative Withdrawal due to subject choice 3(1) 3(1) 6(1)
censoring Administrative censoring 105(45) 112(47) | 217(46)
Withdrawal due to lost to follow-up 9(4) 10(4) 19(4)
Withdrawal due to other reason 8(3) 12(5) 20(4)

To understand how informative censoring subjects could potentially impact final

summary measure of p-value from logrank test due to violation of independent

censoring assumption in the original data, we investigate imputations under the

scenarios:
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censoring, fully imputed or only with 50% imputation, and with or without treatment-
specific parameters reverted:

1) p-values from logrank tests with data imputation for informative censoring
subjects without considering of censoring process competing with the event
process (Table 1.3a),

i) the same as 1) but with considering exponential censoring in calculating
expected addition time to event (Table 1.3b),

iii) The same as i) but with treatment-specific parameters swapped (Table
1.3c),

iv) Without considering censoring and with treatment-specific parameters

swapped (Table 1.3d),

where, as noted in Section 1.4, parameters swap/reverted refers to switch the set of
estimated parameters for time to event by arm, plus switch those for time to
informative dropout by arm.

Tables 1.3a-1.3d have shown p-values of imputations with intermediate states in-
between the original and the na'we data. New methods are developed to address
informative censoring issue while making use of the fact that those subjects were not
yet having had an event at their withdrawal time. When all these 77 subjects are
imputed (Row 3 in Tables 1.3a-1.3d), p-values become at 0.1 level regardless of event
distribution type, ranging from 0.1165 to 0.1687. The extent of p-values is consistent
among different parametric event distributions. Calculation of the expected
additional time to seizure makes use of group information by extracting treatment-

specific parameters as well as subject-level information by having subject specific
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conditional density conditional upon the fact of being at risk at withdrawal time. p-
values at 0.1 level for full imputation show that original p-value of 0.0002 is quite
robust because events added to TPM400 group from imputation is more than two
times higher than that of TPM50 group (e.g., 53 vs. 21) so that imputation in this case
indeed introduced a great extent of dilution to the overall effect on preventing from
time to seizure between high and low dose groups.

To see the variants for this worst case scenario (‘worse’ means resulting in a decrease
in treatment effect after imputation), imputation to calculate expected additional time
to event is also conducted while considering censoring process accompanying with the
event process (Table 1.3b), it is good to see that the p-values are still at 0.1 level. The
impact of competing censoring process has little impact on conditional probability of
having an event prior to the trial end date and hence has little impact on the expected
length of having an event in (t;;, t;], given that this subject is event-free at t;;.

To check the worse situation of each of the above imputed strategies, we inverted two
sets of parameters when calculating the expected additional time to event for chosen
informative censoring, making the estimated parameters from TPM 50 group (or TPM
400) to do imputation for TPM 400 (or TPM 50) IC subjects so that we can further
dilute treatment difference between TPM 400 and TPM 50, because, for this cohort of
imputed informative censoring subjects, treatment effect is in the opposite direction of
the overall effect in the whole intent-to-treat analysis set. Results are shown in Tables
1.3c and 1.3d, which are uniformly worse than (as expected) their counterparts in
Tables 1.3a-1.3b, but in a small extent. This, per our opinion, further supports our

conclusion that impacts from this set of informative censoring subjects on original p-
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value are not substantial. All cases with treatment-specific parameters reverted has a
larger p-value than that of its counterpart without purposely inverting in Tables 1.3a
and 1.3b, but the excess level is 0.02 or less for fully imputed cases and only 0.002
level or less for 50% imputed cases.

Tables 3e and 3f are added per reviewer’s suggestion to assess impact of different
distribution of censoring on robustness of p-values after imputation. Comparing with
exponential censoring, Weibull censoring results in a little bigger p-value for every
parametric event distribution without/with parameter swap (Table 1.3e vs. Table 1.3b
and Table 1.3f vs. Table 1.3d), whereas general conclusions above regarding
robustness of p-value after imputation with/out censoring and with/out parameters
swap remain the same.

Figure 1.3 graphically depicts all p-values in Tables 1.3a-1.3f into one graph to
illustrate the whole picture of our imputation strategy, with left-most as p-value from
the original data, right-most as p-value from the na'we data, 50% as well as full
imputation as intermediate imputations proposed in this paper. Significance decreases
from left for being most significant, still significant for all 50% imputations
irrespective to with or without competitive censoring process and parameter swap
between to comparing groups, non-significant for full imputations, and the most non-
significant case for p-value is computed from the na'we data.

Figures 1.4 contains Kaplan-Meier plots for some proposed cases of imputation
against both KM plot from original data as well as the nawe data, because KM plot is
an alternative way to show the differences among different imputations. The biggest

separation between two groups occurs in original data (the upper left in Figure 1.4)
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and no separation is shown in nawe data (the upper right in Figure 1.4). Separations
between two groups are bigger in the plots with 50% imputation than those with full
imputation, regardless of distribution assumption and whether the parameter set being
swapped or not. Note that the same set of KM plots for other parametric distributions

are done but not shown in this paper due to space limitation.
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Table 3(Tab. 1.3): p-values from logrank tests

Table 1.3: p-values from logrank tests with imputations for informative
censoring subjects (fully imputed or with 50% imputation) when calculation of
the expected additional time to event is in the absence of censoring (1.3a),
exponential censoring is present in (1.3b), in the absence of censoring together
with parameter swap (1.3c), in the presence of exponential censoring together
with parameter swap (1.3d), in the presence of Weibull censoring (1.3e) and in
the presence of Weibull censoring together with parameter swap (1.3f)

Table 1.3a: in the absence of censoring

Exponential

Weibull

Log normal

Log logistic

Parameters

4¢=0.0013703428
A£=0.0007085123

a. = 0.0100808764
¥e = 0.6609148602
ag =0.0047444152
ve= 0.6791830664

11,=6.4815452017
0,=2.2883766324
1p=7.7589738974
05=2.5726080137

a. = 0.007403468
Ye = 0.7639210804
ag = 0.0039600968
ve= 0.7365174685

p-value(full) 0.1165 0.1367 0.1441 0.1362
p-value(50% imputation) 0.0106 0.0117 0.0119 0.0115
Table 1.3b: in the presence of exponential censoring

Exponential Weibull Log normal Log logistic

Parameters As in Table 1.3a As in Table 1.3a As in Table 1.3a As in Table 1.3a
$c=0.000267784, ¢g =0.0003303452
p-value(full imputation) | 0.1207 0.1383 0.1496 0.1420
p-value(50% imputation) 0.0109 0.0116 0.0121 0.0118
Table 1.3c: in the absence of censoring and with parameter swap
Exponential Weibull Log normal Log logistic

Parameters

A£=0.0013703428
4¢=0.0007085123

ag = 0.0100808764
Ve = 0.6609148602
ac =0.0047444152
Ye=0.6791830664

11;=6.4815452017
05=2.2883766324
1c=7.7589738974
0,=2.5726080137

az = 0.007403468
Ve = 0.7639210804
ac = 0.0039600968
Ye=0.7365174685

p-value(full imputation) 0.1394 0.1565 0.1663 0.1658
p-value(50% imputation) 0.0123 0.0126 0.0129 0.0129
Table 1.3d: in the presence of exponential censoring and with parameter swap

Exponential Weibull Log normal Log logistic

Parameters As in Table 1.3c As in Table 1.3c As in Table 1.3c As in Table 1.3c
¢£=0.000267784, ¢, =0.0003303452
p-value(full imputation) 0.1429 0.1584 0.1687 0.1652
p-value(50% imputation) 0.0120 0.0125 0.0130 0.0129
Table 1.3e: in the presence of Weibull censoring
Exponential Weibull Log normal Log logistic
Parameters As in Table 1.3a As in Table 1.3a As in Table 1.3a As in Table 1.3a
Br = 0.0066766023, wg =0.6255320211 and B =0.0134838899, wr=0.6153282175
p-value(full imputation) 0.144 0.1589 0.1638 0.1575
p-value(50% imputation) 0.0119 0.0125 0.0125 0.0123
Table 1.3f: in the presence of Weibull censoring and with parameter swap
Exponential Weibull Log normal Log logistic
Parameters As in Table 1.3¢ As in Table 1.3c As in Table 1.3¢ As in Table 1.3c
Br =0.0134838899, wg=0.6153282175 and . = 0.0066766023, w,=0.6255320211
p-value(full imputation) 0.187 0.2005 0.2082 0.2074
p-value(50% imputation) 0.0139 0.144 0.0147 0.0147
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Figure 3(Fig. 1.3): P-value summary for sensitivity analyses

Figure 1.3: P-value summary for sensitivity analyses in Tables 1.3a-1.3f. From
left to right, left triangle indicates p-value from original data, following up four
vertical bars at 0.01 level and four circles between 0.1 and 0.21 represent p-
values obtained from exponential, Weibull, log normal and log logistic event
distribution, and the right triangle indicates p-value from the nawe data.
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Figure 4(Fig. 1.4): KM plots

Figure 1.4: KM plots for: original data (upper left), nawe data (upper right),
informative censoring subjects exponentially distributed without considering
exponential censoring in calculating expected additional time to event (with only
50% imputation: lower left; fully imputed: lower right).
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Section 1.6: Discussion

Starting from a real example for a clinical trial with survival endpoints accompanying
with obvious informative censoring, authors develop methods to do sensitivity
analyses to demonstrate the robustness of p-value from logrank test. It is to estimate
treatment-specific parameters for each group after imposing a particular parametric
distribution; then calculate subject specific probability of having an eventin (t;4, t;],
given that this subject is event-free at t;; with or without considering censoring
process competing with event process. Proposed imputations using expected time to
event plus original time course as the event time for imputed informative-censoring
subjects resulted in p-values at 0.01+ or 0.1+ level for exponential censoring and a
little higher for Weibull censoring, regardless of parametric event distribution, with or
without considering censoring, even additionally with treatment-specific parameters
swapped between groups.

To think of these imputations from a different angle (also see in Figure 1.3), the
original data resulted in a strong claim in significance regarding treatment effect for
comparing high dose with the lower dose on time to seizure. Results from partial
imputations (50% imputation conducted here) are deemed to be the most reasonable
ones among all methods mentioned in this paper. The reasoning should be as the
following. As noted in the primary paper for this study (Glauser et al., 2007), “The
most common adverse events, excluding typical childhood illnesses, were headache,
appetite decrease, weight loss, somnolence, dizziness, concentration/attention
difficulty, and paresthesia.”. Fifty-three subjects who withdrew early due to adverse

events, although with differential dropout rates between groups, shouldn’t be all
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considered as informative censoring and relating to study medication due to the nature
of these events. This supports the usage of 50% imputation rather than full imputation.
Therefore, p-values with 50% imputation are around 0.01 for both exponential and
Weibull censoring, as compared with p-value 0.3859 from the naive data, further
corroborating the significance claim from the original data.

Parameter swap can further dilute treatment effect as treatment effect within this small
group of imputed informative-censoring subjects is intentionally reversed and is in the
opposite direction of the overall effect. However, p-values only increase by 0.002 or
less (Table 1.3a vs. Table 1.3c and Table 1.3b vs. Table 1.3d) as compared with 50%
imputation without parameter swap, irrespective of parametric distributions and
irrespective of being in the presence or in the absence of censoring. Along this road,
all doubtful withdrawals due to adverse events or subject choice are imputed (i.e.,
fully imputed) assuming all subjects in these two categories being informatively
censored and they are all assumed to have had an event in (t;4, t,], which is of course
an extremely strong assumption as in this case none of the adverse events and subject-
choice withdrawals is assumed not to be related to treatment assignment. p-values now
become 0.11 - 0.2082, non-significant but still much less than 0.3859, the one from the
nawe data. For now, we take back what we said early in Section 1.1 about that the
imputation done in the naive data is the ‘worst-case scenario’ imputation for this trial
data. To our opinion, p-values with full imputation, instead of the p-value from the
na'we data, should serve as the worst-case scenario among all proper imputations for
this trial data, because in the na'we data all informative-censoring subjects are assumed

to have had an event occurring right at their withdrawal time point and this is
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something definitely not true. Therefore, p-values with proposed full imputation, 0.11-
0.2082, rather than 0.3859 (i.e., the one from the na'we data) should serve as the upper
bound for p-values from sensitivity analyses after taking account of the variability
introduced by violating independent censoring assumption.

The whole set of exercises have done two things here: 1) provide a method for
sensitivity analysis, and 2) confirm the robustness of p-value of log-rank test for the
original data. In order to think of how these sensitivity analyses corroborate p-value
from original data, we can imagine other hypothetical results with a different p-value
profile: for example, if p-values from 50% imputation already reach out to a non-
significance level of 0.05, then the robustness of original p-value under this case will
be fiercely challenged comparing with what have been observed in Tables 1.3a-1.3f
and Figure 1.3. Anyway, statistical methods proposed in this paper together with
proposed analysis strategies could possibly help trial statisticians conduct sensitivity
analyses in facing trials with a similar issue.

There is a rich literature on publications of sensitivity analyses for informative
censoring in survival trials. Among them, the method of inverse probability-of-
censoring weights (referred to as ‘IPCW”) (Robins and Finkelstein 2000) has been
considered as the most popular one for now, whilst at the same time being criticized
by its limitations (Howe et.al. 2011). Our method is a supplement to available ones,
which is much easier to digest by clinical statisticians as not being associated with
behind scene martingale theories and it is very easy to implement. Due to limited time,
IPCW method hasn’t been investigated by the author yet but comparison of methods

will be the next thing to investigate.
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Statistical Appendix 1.1:

Notations used are re-stated here to ensure completeness of this appendix and
methodology is described using the control group as an example. To impute

informative censoring subjects, let X;; and W,

j = C,E, represent random
variables of time to event and time to censoring for ith subject treated with control
(C or TPM 50) and treatment (E or TPM 400) medications, respectively. All
calculations in treatment group will be defined similarly. For the ith subject in the
control group TPM 50, ;- and t;; are the randomization date and the date of
informative censoring (e.g., withdrawal due to adverse event or subject choice in this
trial), respectively.  Let t;, be the time of administrative trial end date 26Feb2002,
which is date that the last patient had end-of-study visit performed. As t;, is the same
for all subjects across two groups, we denote t;, as t, in this paper. Subscript i
however can’t be omitted in r;-, r;z and t;;, as they are subject-level randomization
dates and subject-level informative censoring date. It is known that the event time for
subject i will be at least t;; — r;c due to early withdrawal at time t;;. Assumed that
this subject had resulted in an event between t;; and t,, the first quantity to be
calculated is the probability of having an event in (t;4, t,], given that this subject is
event-free at t;;. Next, we return to our objective of calculating: Had this subject
resulted in an event prior to t,, what would it be for the expected additional time of
having this event after t;; and prior to t,? Before calculating the expected additional
time to event for each imputed informative censoring subject, let’s calculate

probability of having an event in(t;,, t,], given that subject is event-free at  t;,,

which is needed for calculation of expected additional time to event in Step 2) below.
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Step 1): For these informative censoring subjects, probability of having an event in
(ti1,tz] when there is an independent censoring process competes with event
process is:

P(Xic < t; — i, Xic < WiclXic > tix — Tie, Wie > iy — Tic)

= Ex,. U(Xic <tz —1ic|Xic > tiy — 1ic)P(xic < WiclWie >ty —13¢) 1 (1.1)

_F dP(Xicsty—TiclXic>tii—Tic)  exp(=Pcxic) 1.2
- "Xic —r. _ . ( . )
d(tz-ric) exp[-@c(tis—7ic)]
_ (t2—Tic dPXicsty—TiclXic>tin—Tic) exp(=@cxic)
= * ic (1.3)
ti1—Tic d(tz-ric) exp[-@c(ti1—Tic)]

Equation 1 is based on independence of time to censoring (i.e., W;) and event

process (i.e., X;c). Equation 1.2 makes use of time to non-informative censoring,

exp(—@cxic)

xpl-octn-ro] ' e

which is exponentially distributed with hazard rate 9.

conditional exponential survival function for time to censoring, given that subject still
in the risk set at time t;;. P(X;c < t; — ric|Xic > tix — 1ic) IS the probability of
having an event in (t;q,t,] in the absence of censoring, given that the subject is still
in the risk set at time t;;. In order to calculate conditional probability of having an
event in the presence of censoring, one component in the integral is taking derivative

of conditional probability in the absence of censoring with respect to t, — ;. That is

AP (Xic<ta—TiclXic>tin—Tic)
d(tZ_riC)

and the second component is the conditional exponential

survival function of the censoring variable (See in Equation 1.3).
Step 2): The expected time to event, had this informative censoring subject resulted in

aneventin (t;1,t,] Iis:
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xyo + P Kicst2riclXic>tin ~ric), exp(=0cxic)
ftZ_TiC L d(tz—‘l‘ic) eXp[—(ac(til—Tic)] dx (1 4)
tin—Tic P(Xjcstz—Tic.Xic<WiclXic>tii—TicWic>tin—Tic) i

where the probability calculated in Equation 1.3 is now the denominator of the
integrand in Equation 1.4 . To understand the above formulation, one way is to think
of P(A|B)=P(AB)/P(B). P(B) is the conditional probability of have an eventin (t;;,t,]
for informative censoring subjects in the presence of censoring. For different

parametric time to event distributions, density of event time (i.e., fx,.(t), row 1in

Table 1.4), is used to obtain conditional probability of having an event in (t;1,t,],
whichis P(X;c < t, — 1;c|lXic > tiy — 1ic ) (row 2 of Table 1.4). Subsequently, after
taking derivative with respect to the random variable t, — r;c (row 3 in Table 1.4),
conditional probability of having an event in (t;1,t,], in the presence of censoring
as in Equation 1.3 or row 4 of Table 1.4 will be calculated for different parametric
event distributions. Finally, the expected time to event in (t;;,t,] can be calculated,
had this informative censoring subject resulted in an event before or on t,.

In case of non-exponential censoring, other conditional survival density of time to
censoring, which is the component of ( P(x;c < W;c|W;c > t;; — 1) in Equation
1.1, will be plugged in Equations 1.2, 1.3 and 1.4 in order to calculate the expected
time to event in (t;;,t,] for imputed subject i. For example, in case time to
censoring having Weibull distribution with parameters of . and w,, time to
censoring density function then becomes w f.x;c ©~ 1 exp(—B.x;c “¢) and survival
function at time t;; —ric IS exp(—pB.(tix — 1ic)“c), resulting in conditional

wcBexic ™ exp(—=Bexic ©C)

survival density being P(x;c < Wic|Wic > tiy — 1i¢) = g eR—T
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Therefore Equations 1.2, 1.3, 1.4 will become Equations 1.2°, 1.3",1.4" respectively

as follows.

E dP(Xicstr—TiclXic>tii—Tic) | WeBexic Y€t exp(—Bexic ©©) 1.2/
X'C * w ( " )
i d(t2-7ic) exp(=Pc(tin—Tic)?c)

ta=ric APXicsty—TiclXic>tin—Tic) | WcBeXic “" exp(=BeXic °) dx: (1.3")

tir=Tic d(ta=Tic) exp(=Be(tir—Tic)“c) i '

LAP(Xjcstz—TiclXic>tii—Tic) @cBexic P exp(=Bexic ©€)

ftz ~Tic d(ta-Tic) exp(=Bc(tis —Tic)“°) dx: (1.4")
ti1—Tic P(Xijcsta—1ic, Xic<WiclXic>tin—Tic, Wic>tin—Tic) i

Xic

And the rest for calculating expected additional time for imputed subjects remains the
same as case of exponential time to censoring illustrated in Steps 1 and 2.

Calculation will be much simplified if there is no censoring process in competition
with event process. Without considering censoring, the expected length time of
being an event in (t;4,t,] for this informative censoring subject is then degenerated

to:

dP(Xicsta—TiclXic>ti —Tic)
ftz ~Tic d(tz2-ric)
tii—Tic  P(Xicsta-TiclXic>ti1—Tic)

Xic *

dxic (1.5)

The numerator of integrand is x;; times quantity from row 3 in Table 1.4 for
respective parametric event distribution and the denominator is the conditional
probability calculated in row 2 of Table 1.4. Table 1.4 contains necessary ingredients
for computation, in which rows 3 is used in the numerator of integrand for both cases
with or without considering censoring and row 2 and row 4 are used in the
denominator part of the integrand for the case in the absence of censoring and the case

in the presence of censoring, respectively.
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Table 4(Tab. 1.4): Ingredients for calculation of the expected additional time to event

Table 1.4: Ingredients for calculation of the expected additional time to event
after withdrawal when parametric event distributions are exponential, Weibull,
log normal and log logistic, respectively. Row 1, 2 and 3 display density of event
distribution, conditional probability of having an event in (t,,,t;] in the absence
of censoring and conditional density of having an eventin (t,,,t;] in the absence
of censoring, respectively. Row 3 is the first integrand component in calculating
Row 4, which is the conditional probability of having an eventin (t,,t;] in the
presence of exponential censoring. Row 5 is in the counterpart of Row 4 but with
Weibull censoring.

Event Distribution exponential Weibull
Row 1 e @ Acexp(— Act) Yeact" ' exp(—a,t?e) where o, =1/y, and a, =
exp(—pc/0c)
ROW 2 P(Xic < t; = 1iclXic > tiy — 1) _ exp[— Ac(t; —7i0) ] _ expl—a.(t, — 1) |
exp[— Ac(ti — 1] expl—a,(ti; —1ic)* |
Row 3 dP(Xic <t — TiclXic > tu — 1ic) Acexp[— Ac(t, = 1ic) ] a (t, = i) expl—a,(t; = 1ic)"e ]
d(t, —1ic) exp[— A (tiy = 1id)] expl—a.(t; =) ]
Row 4 P(Xic < t; = Tic, Xic < WiclXic > tin = Tic, Wic >t — Tic) J’zz_r‘c Acexpl=Ac(t, =10 | . 27Tc (b — 1) expl—a (6, — 1) | .
in the presence of exponential ta-re P Acltu = 7ic)] expl=ac(ti = ric)’]
. . exp(=Pcxic) exp(=PBcxic)
time to censoring PPt — ] e =0 (s — ri)] P
Row 5 P(Xic < t; = Tic, Xic < WiclXic > tin = Tic, Wic >t — Tic) J’zz_r‘c Acexpl—Ac(t, =10 | . ftz_r‘ﬂ a.(t; — i) expl—a.(t, — 1) | .
in the presence of Weibull time e expl- ic(;l - zc))] T eip[gac(fn)— ie)e]
. We Cxijc_ exp(— Cxijc WepeXic e exp(— CxiL'wc
to censoring exp (Pt —r)*) exp(holty —r)*)
Event Distribution log normal Log logistic
Row 1 frie® 1 eXp(,l(l‘)g(t) —He ) nli"t:c_]z where ¥, = 1/0, and a, =
J2na.t 2 Oc (ractyo
exp(—#c/0c)
ROW 2 P(Xic <ty — 1iclXic >t —1ic) 1- q)(lOg(tz _Uric) - l‘c) _ 1+a.(ty — rxc):c
l—ﬁ 1+ ac(t, —r)re
1_®(°g i1 o_ic Mc)
Row 3 dP(Kic <t — TiclXic > tn — Tic) _(log(t, = 1) — e : N [1+ ac(tiy — 1)) * yeac(t; — i)™
FICR=r) i s DU CORY L1 [+ (6, = ) P
1—o (109(% —Tie) = Mc) 0. =Ty
[
Row 4 P(Xic <t — Tie, Xic < WiclXic > tiy — 1ie, Wie > ti — 1) _ (log(xic)—uc)z J’tz’”c [14 a.(ty — 1ie)"] * veacxic et .
in the presence of exponential wre e — [(1 ; acxi)ﬂc]z
: : *Na —x * exp(—DcXic
time to censoring le,-rm 1 Lp(lug(tii = i) —,ut)(ac t —rw) P (e — ] e
exp(=Pcxic) dx
exp[=@.(t; =)l
Row 5 P(Xic < tp — Tig, Xic < WiclXic > tiy = 1ie, Wi > iy — Tic) _ (lOg(xtr,)—ﬂc)Z ftz_nc [1+a(ty — i)l * yeacxic o™ B
in the presence of Weibull time e e ——Toe— e i+ a(cxgn]z )
: T —x * WcBeXic " exp(=Bcxic
to censoring er Y TICRT ~k) (UC 6 —nc) ey s
wcfexic et exp(=Bexic ) dr.
exp (=B (tiu = 1ic)°) ‘E
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CHAPTER 2

Sample Size Increase during a Survival Trial When Interim Results are
Promising

(published at Communication in Statistics: theory and method DOI:
10.1080/03610926.2015.1137596 )

Abstract: This paper is to extend Mehta and Pocock (2010) to provide a way in doing sample
size increase in survival trials. Sample space is divided by observed test statistic at interim into
three zones: unfavorable, promising and favorable, within which sample size (required number
of events) has a proper increase if falling into the promising zone and otherwise remains
unchanged. Simulations with scenarios in the presence/absence of censoring, with/without
adaptation, and allowing 4 folds vs. 2-folds of increase in sample size are compared.

Keyword: Survival Trials; Promising Zone; Sample Size Re-estimation; Group Sequential
Design.

Section 2.1: Introduction

Clinical trials to fulfil the requirements of new drug application need to show both efficacy in a
disease indication and safety for patients who have been exposed to investigational drug for a
long enough time period. Comparing time to event for experimental drug against the control
group, log-rank test is normally used to test against the equality between two survival curves
when proportional hazard assumption is held. An anticipated log hazard ratio (control vs.
experimental) is assumed prior to trial start in order to design a trial ensuring desired power to
detect treatment difference when a certain amount of relative superiority indeed exists. However,
design adaptations (i.e., with respect to either increase in sample size, drop treatment arms/doses,
change entry criteria, change randomization ratio, even change endpoint or other areas) are
imperative especially when the trial is in an underexplored territory regarding unmet medical
needs. Inaseminar talk held in 2010
(http://catalyst.harvard.edu/docs/biostatsseminar/Pocock 04 March_2010.pdf), some trial

examples were mentioned on how trial adaptations could possibly rescue a failure trial in drug

development history in several disease areas. Here is one related to survival analysis. The
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Cardiac Insufficiency Bisoprolol Study (CIBIS) began at 1989 to answer the question “Does
bisoprolol reduce mortality in heart failure”. With an underpowered design, 641 subjects with
chronic heart failure of various etiologies and a left ventricular ejection fraction <40% entered
into the double-blind phase (bisoprolol=320 and placebo=321). Mean duration in the double-
blind phase was 1.9 years. Equivalent withdrawal rates in the double-blind phase occurred
between two groups (82 on placebo and 75 on bisoprolol). P-value of 0.22 from log-rank test
failed to show the superiority of bisoprolol over placebo in reducing the mortality in heart failure
(hazard ratio: 0.80; 95% confidence interval: 0.56 to 1.15); and 67 patients died on placebo and
53 on bisoprolol (CIBS, 1994). CIBS-II trial was conducted to re-check the effect of decreasing
all-cause mortality in chronic heart failure. Results were published in The Lancet (CIBS-II,
1999), with which 2647 symptomatic patients from Europe were enrolled and randomly assigned
to 1.25 mg bisporolol (N=1327) and placebo (N=1320) daily. CIBIS-11 was stopped early after
the second interim analysis because bisoprolol showed a significant benefit in all-cause mortality
over placebo (P-value<0.0001; hazard ratio=0.66; and 95% confidence interval 0.54-0.81). There
was significantly less all-cause mortality among patients on bisoprolol than those on placebo
(156 [11.8%] vs 228[17.3%]). The estimated annual mortality rate from CIBS-11 was 8.8% in the
bisoprolol group and 13.2% in the placebo group. It took almost ten years from failing an under-
powered study CIBS-I to a successful re-testing of the same hypothesis in CIBS-1I. And
eventually drug approval was obtained in 1999. Have sample size adaptation had been
implemented in CIBS-I trial, would CIBS-II trial be no longer needed? This will be answered in
Section 2.4 as an illustration example for the proposed method. Because modifying ongoing
phase Il trial designs seems a contradictory action against its confirmatory nature and any

adaptation during the trial could potentially jeopardize trial’s integrity and inflate false positive
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rate of the trial, the PhARMA Adaptive Working Group published a White Paper concerning
operational issues (PhRMA, 2007), while the FDA more conservatively adopted an attitude to
wait for more experience on sample size re-estimation based on unblinded treatment information
(FDA, 2010).

Among many methodological articles on sample size re-estimation, a focus has been on how to
preserve the overall type | error rate. A circular conditional error was proposed and an adjusted
critical value for final analysis based on power requirement while preserving type | error rate for
normal data was proposed by Proschan and Hunsberger (1995). Cui, Hung and Wang (1999)
proposed combining the Wald statistic from two stages using pre-specified weights, in which
weighted Wald statistic under null hypothesis is normally distributed with mean zero and
variance of one resulting from independence from statistic before and after interim analysis.
Bauer and Kohne (1994) proposed using Fisher's combination test to combine two p-values from
stage one and two in order to control type I error rate. Another way proposed by Lehmacher and
Wassmer (1999) is to use inverse normal function. Above methods to combine independent test
statistic or p-values from independent cohorts of subjects are easily applied for normal data and
binary data since subjects to be included prior to or after the interim are naturally in different
cohorts and inherently independent in terms of endpoint measuring clinical benefits. Survival
data are different in which subjects who are ongoing at the time of interim analysis (i.e.,
administratively censored) will definitely contribute to the final analysis in a way either being
censored or experiencing an event upon final analysis. In controlling type | error rate in
adaptive designs, Muller and Schafer (2001) generalized methods for controlling overall type |
error rate and showed that the overall type | error rate can be preserved unconditionally for any

possible adaptation, provided that the conditional error based interim test statistic would have
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been obtained had there been no adaptation is preserved.

All adaptive methods discussed above are to use non-standard final test statistic in which
subjects enrolled before or after the interim analysis are treated (or weighted) differently. This
stimulated a hot discussion on the appropriateness of assigning different weights to subjects
enrolled before or after interim adaptation. A seemly more attractive way is to stick on
conventional statistic without a weighting strategy while using accumulative data upon study
termination and unadjusted critical value for final decision with which it then seems violation of
“one patient one vote” principle introduced by unequal weights is avoided. Chen, Demets and
Lan (2004) took an initial step in this direction and showed that type | error rate won’t get
inflated using conventional final analysis and unadjusted critical value if the interim results are
located in a “promising zone”. Next, Gao, Ware and Mehta (2008) worked out the statistical
rational for Chen, Demets and Lan (2004) and further expanded the range of the promising zone
based on conditional power using treatment effect observed at interim analysis. Mehta and
Pocock (2010) extended Chen, Demets and Lan (2004) a bit in a more practical manner by
tabulating explicit cutoff value for the promising zone determined by pre-specified information
vector, ratio of maximum sample size relative to pre-planned sample size, and observed test
statistic at interim.

This paper starts with historical clinical trials of CIBS-I and CIBS-I1 in Section 2.1 to address the
importance of having sample size increase for clinical trials with survival data. Section 2.2
describes trial hypothesis in testing equality of two survival curves using conventional log-rank
test and weighted log-rank test after sample size increase at interim. Section 2.3 extends the
method proposed by Mehta and Pocock (2010) to survival data, emphasizing on obtaining

sample space based on interim test statistic divided as unfavorable, promising and favorable
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zones before trial starts. Section 2.4 revisits two CIBS trials and calculates the required sample
size for stage two after interim analysis, had proposed sample size re-estimation algorithm been
implemented in CIBS-I trial. Section 2.5 includes extensive simulations on exponential survival
data: 1) in the presence or absence of censoring; 2) sample size increase occurred in the middle
of the trial, in the early part or in the later part of the trial; and 3) ratio of total maximum sample
size after adaptation relative to the planned total sample size being large (i.e., dmax/d=4) or
moderate (i.e., dmax/d=2). Section 2.6 summarizes all the findings and discusses possible
refinements in future research.

Section 2.2: Log-rank and Weighted Log-rank

Assuming time to failure for control subjects is exponentially distributed with a constant hazard

of A, the median time of M. =In(2)/A,, to test against null hypothesis of equal survival
curves, i.e., In(A) =0 ,where A = j—c Ag being the hazard rate for experimental group
E

subjects, one wishes to have a pre-specified power in testing one-sided alternative of

In(A) > 0 (or A > 1)against In(A) = 0. During the double-blind phase, time to failure is
independently and identically distributed ( i.e., i.i.d.) within a treatment group and independent
of subject’s entry time as well as independent of time to censoring, where time to censoring are
i.i.d.s with expo(¢), with the same hazard rate of time to censoring for subjects in two
comparative groups. Let A be the estimator of A. The reason to use In(A) instead of A is
because In(A) is less skewed and has a more accurate asymptotic approximation. With
exponential distribution, hazard function is constant, which is actually not necessary for logrank
statistic. Logrank statistic can also be derived as the score test for the Cox Proportional Hazard
model (Cox, David R, 1972) comparing two groups only requiring proportional hazard (i.e.,

constant hazard ratio instead of constant hazard rate). Based on efficiency of the score test, it is
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therefore asymptotically equivalent to the likelihood ratio test statistic if the proportional hazard
model holds, whereas exponential failure time is a special case of it. For a fixed sample design,
to test Hy:In(A) = 0vs. Hy:In(A) > 0 at one-sided significance level of a/2 and power of

1 — B under alternative hypothesis, one needs to link log hazard ratio with type I and 11 error
requirements using asymptotical properties of logrank statistic; and then calculate the required
number of evens to ensure testing power when alternative hypothesis is true. For a group
sequential design, a coefficient is to be multiplied with the requirement number of events
calculated for corresponding fixed sample design to account for multiple testing over stages
(Jennison and Turnbull, 2000).

Without loss of generality, one considers a two-stage group sequential design with upper efficacy

boundary vector {b;, b} and the number of events vector {d,, d} with subscript 1 indicating
analysis at interim. The corresponding information vector is {t,, 1} with t; = %. Without

adaptation, interim will occur when d; events are accumulated and final analysis will occur
when d events are accumulated with corresponding log-rank test statistic Z; for interimand Z
for final using accumulative data up to analysis time. Null hypothesis of equal hazard rates (or
hazard ratio being 1 under proportional hazard) between groups will be rejected if z; being
greater or equal to critical value by; or if not, after adaptation, study continues to accumulate d;
number of events. Note that if there is no adaptation when null is not rejected at interim analysis,
trial continues to accumulate additional d, (i.e.,d — d,) events before final analysis.

Again, when there is a need for sample size adaptation, as in the CIBS I trial, d, might be
increased to d5. Then simply comparing conventional test statistic Z*(conducting logrank test
using accumulative data) based on d* (d* = d; + d5) with the unadjusted final critical value b

to do hypothesis testing at final analysis might inflate type | error. At the time of interim
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analysis, accumulative data are put together for log-rank test, including subjects who have had an
event or experienced censoring prior to interim cutoff date and subjects who are still ongoing
will be administratively censored at time of cutoff date. As those administratively censored
subjects at interim analysis could either have an event or to be censored at time of final analysis,
there is no way to simply use subjects enrolled after interim to do analysis for the independent
increment as what we generally do for both normal and binary data. Inspired by Equations 2.3-
2.6 in Proschan, Lan, Wittes (2006), we propose using imaginary independent increment X, to
obtain weighted log-rank test Z*. As defined in Proschan, Lan, Wittes (2006), let B(t;) =
Vt1Z, and B(1) = Z for our two-stage group sequential design. Z is log-rank test statistic
with no adaptation in sample size, a function of d,.

B(1) = B(t;) + B(1) — B(t1)
Z =+\t;Z; + /1 — t; X, because independent increment B(1) — B(t;) =1 —t,; X,
After sample size increase, t; becomes t; = %. Similarly, we will have

= \/t_{Zl + /1 —t; X5, where Z* is log-rank test statistic after sample size adaptation, a

function of dj.

After adaptation, we now get imaginary independent increment X; = Z\/l_“ Putting X,

back into equation for Z, we then have

Zigw =VtZy + mxz =VtiZ1 + 1_t1ZJ1—\/:121

Because Z;pyy, 1S atest type similar to the one for normal/binary data in Cui, Hung and Wang
(1999), we use subscript ‘CHW’ to indicate it. As noted above, Zgy,, under null hypothesis
shares the same distributional assumptions with Z in absence of adaptation and thus decision

rule of Z;y = b can be used for final analysis without jeopardizing controlling of type I error
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rate. However, Z;y, = b is not used in this paper and we indeed try to find a way of using
Z* = b even after sample size adaptation.

In summary, in Z =t;Z, + \/Tthg‘ , weight of t; is pre-specified, independent of
observed Z; and independent of imaginary increment X3. Plugging X, (obtained from
Ziyw =+Jt;Z1 + /1 —t; X3) into Z helps creating a weighted log-rank test statistic Zy,
which is a function of t; and hence a function of d; aswell, but having the same
distributional property as Z to control type I error rate.

Another component in need is the conditional power assuming current trend being carried

towards the end of the trial. That is:

Pya(Z* = b|Z; = 21,0 = In(R)), where In(A) = 2 and assumes the trend observed at interim

Jd__l
4
is carried forward to the final analysis. Equation Z* then becomes \/t_{zl + /1 —t] X; after

observing Z; = z;. We now have conditional power as:

d1+d§ dq d; d; =~ d1+d§ dq d; d; S

Z 4 1% 2 4*9>b 4 21\ 2 4*9

A \/? - \/d_*
-2 2

4 4

d1+d5 d’ d’ dq+d5 d’ d’
i g o R
d1 d1
=P 4 > 4
Ha E Iz
4 4 /

=1-¢ k \/:T; 2 ) o
4

because left-hand side of equation becomes standard normal variable with mean 0 and variance

Py

of 1 asymptotically. Obviously, conditional power with current trend is a function of d;
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additional number of events. After iterative search, we can find d5 to ensure conditional power
of 1-B that is to have the conditional power the same as the overall power of the trial. When
there is no sample size change, d; = d,, then the conditional power carrying current trend

becomes:
d]_ +d2 dl dz dz Zq
[+ [
1-® 2
d2
\ E

Alternatively, there is a closed form for d3 to ensure power of 1-8 asymptotically, which is

(2.2)

actually used for the calculations and simulations in this article. Detailed derivations on this
closed form can be obtained upon request from the correspondence author. And the closed form

of d; toensure asymptotic conditional power is as follows:

2
% _ dl b\/a - Zl dl
dy =5 {———+2 4 (2.3)
Zl 1/ dz

Equation (2.3) is actually the same as Equation 3.11 in Wassmer, G. (2006), provided that there
is no stratification plus having 1:1 randomization ratio between treatment and placebo.

Section 2.3: Sample Space of the First-stage Statistic: Unfavorable, Promising and
Favorable Zones

Without sample size adaptation, decision using Z > b  will ensure type | error rate control.
With sample adaptation, Z;yy,, = b can ensure type | error rate as explained in Section 2.2. In
the meanwhile, there are two more ways to control type | error rate: Z* > b* and Z* > b,
where the latter is to use both conventional test statistic (but based on d* after adaptation) and
unadjusted critical value b to avoid violating ‘one person one vote’ concern as mentioned
before and it is also what this paper is dedicated to, while with specific interests in applications
in survival data. Actually, Z* > b*, as described below, can also control type I error rate. And

strategies used in method for using Z* > b* also plays an important role in developing
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strategies for the method for using Z* > b.
Without futility bound at interim (i.e. no stopping for futility), the unconditional type | error
spent at stage two without and with adaptation, respectively, is as follows:
S0 Pro(Z 2 b1 2, = 2,) 8(z1) dzy and [2 Pyo(Z* 2 b1 Zy = 21) B(21) dz,
Obviously, in order to control overall type | error rate, we have to have
Pyo(Z=2b|Zy = 2z1) = Pyo(Z* =2 b*| Z; = z;) forall z; € (—o0,b;)
Thatis Pyo(Z = b| Z,) = Pyo(Z* = b*| Z;) unconditionally.
Similar to computing conditional power, getting conditional error is under null effect of hazard

ratio being one rather than carrying observed effect towards the end of the trial, therefore, the

p [fatdz_, Jdi
left-hand side becomes LHS =1 — q>(4—1\/j)

dz
4

dq+d; dq
N 77)
E
4

Equating both, we have b* as the function of b. That is:

b*
and the right-hand side is RHS =1 — &(

b* = ﬁ[( Z—( bJd, +d, - zl\/d_1)> + zlx/d_ll (2.4)

So after adaptation type | error rate will be well-controlled when Z* > b* is used as the final
rejection rule. Above derivation is an implementation of Gao, Ware and Mehta (2008) to survival
data. Now, let’s go back to the question asked in Section 2.1, is it possible to stick to decision
rule using both conventional test after adaptation (i.e., Z*) and original critical value b while
still not inflating type | error rate even with a sample size increase after interim? So the goal here
is: instead of controlling type I error rate using Z > b without adaptation or Z* > b* after

adaptation, when is it applicable to use Z* > b, the conventional test Z* after adaptation but
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still with original critical value b? In doing that, weighting strategy which violates of “one
patient one vote” is not used at final analyses, which therefore makes communications between
statisticians and clinical people much easier. Since b* (also defined as b*(z;,d5)) is a function
of d; whereby d; is linked to conditional power, one can only do adaptation in a sample space
of z; where conditional power based on z; and d; leadsto b*(z;,d;) <b. See below
for picking up d3 in Steps i)-ii).

For these cases of z; inaregion resulting in b*(z;,d3) < b, it can be proved that Py,(Z* =

b*| Zy) = Pyo(Z* = b| Z,). Specifically, because b3 is chosen so that fbtw Pyo(Z* =

b*|Z, =z1)0(z,)dz; = a,, with a, being alpha level spent at stage two after interim, the
usage of Z* > b at the final analysis only when z, is in the region resulting in b*(z,d3) < b
will always result in a type | error rate  at stage 2 being less than or equal to the pre-allocated
alpha for stage 2. Mathematically, = a; + a, =
O(by) + [, Puo(Z° 2 b°|Zy = 2)0(z1)dzy 2 (by) + [, Puo(Z° 2 blZy = 21)8(z1)dz,
because during the sample size adaptation d; given z; is chosen in aregion with b*(z;,d3) <
b.
Following Mehta and Pocock (2010), here are the steps to do sample size increase during a
survival trial when interim results are promising:

i) Foreach Z; = z, find corresponding d} so that conditional power carrying current

trend till the study end being 1 — .

i) d; = min(d}, d2 max = dmax — d1) 1o account for budget limit.

iii) For a pair of (z4,d3), calculate adjusted critical value b*(z,,d5) using Equation (2.4).

iv) Forapair of (z,d5), calculate new conditional power CPg (z;,d5) based on adjusted

additional d events after interim using Equation (2.1).
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v) For this particular z;, calculate original conditional power CPg (z,,d,) based on
planned additional d, events after interim using Equation (2.3).

vi) lterative Steps i)-v) for z; € [0.01,4.00] by increment of 0.01.

Using all values obtained from above in Steps i)-vi), a promising zone is created as follows:

vii) Plotting b*(zy,d3) versus z,.

viii)Plotting the curve of preplanned critical value line b for final analysis which is a
horizontal line.

ix) Plotting the curve of conditional power CPg (z1,d,) against pair of z; and pre-planned
d,.

x) Promising zone is defined as: p = {CPg4(z;,d;): b*(z1,d5) < b} and the minimal
conditional power is:  CPg ,,,;,=iNf{CP5 (21,d;): b*(24,d3) < b}.

Xi) CPgmax={CPg (21,d3): CPg(z1,d;) =1 — B}

xii) The sample space of z, is then divided into three regions:
The unfavorable zone CPg (z4,d;) € [0, CPg nin)
The promising zone CPg (z1,d5) € [CPg pmin, 1 — B]
The favorable zone CPg(zy,d;) € (1 —,1]

xiii)Set d3 = d, when z; is located in both unfavorable and favorable zones.

xiv) Plotting the curve of conditional power CPg(z;,d5) against z; based on the adapted
d; to check conditional power change after boosting sample size from d, to d; in

this promising zone.
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Figure 5(Fig. 2.1): Promising zone, adjusted critical value and conditional power

Figure 2.1: Promising zone, adjusted critical value and conditional power curves for a two
stage design with WT boundaries with shape parameter of 0.15, t;=0.5, a = 0.025,8 =
0.1, d,,.x/d=2 and no early stopping for futility.

2.1a: adjusted final critical value b*(zy,d3), conditional power based on d, and d;

respectively versus z;.

2.1b: Adjusted d; versus z; inthe promising zone.
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Figure 2.1a graphically represents how optimal zone is chosen based on Steps 1)-xiv). A two-
stage group sequential design using Wang-Tsiatis (1987) (WT) upper boundaries with shape
parameter of 0.15, t;=0.5, a = 0.025,8 = 0.1, d,,,x/d=2, hazard ratio A = 2 and no early
stopping for futility. Then one obtains b vector = (2.556876, 2.006084), required events d,; =
45, d, = 45,d=90, dpax = 180 and d;ax = 135. Foreach z; in the sample space, di
is sought out to ensure conditional power CPg (z;,d5) being 0.9 using Equation (2.1) with
assuming observed effect size at interim being carried towards the end of the trial; then the
adapted sample size for stage two is  dj = min(d}, d;max = dmax — d; = 135) with
truncation from above due to budget limit. Figure 2.1a has the second x-axis below the main x-
axis z; to show the corresponding d; associated with each sample point of z;. Adjusted
b*(z,,d3) per Equation (2.3) is the final adjusted critical value to control type | error rate when
using decision rule Z* > b*(z,,d3), where Z* is the conventional log-rank test statistic based
on accumulative data upon study termination without weighting strategy. Next, using Z* > b =
2.006084 as the rejection rule whenever z, is residing in the zone with b*(z,,d3) < b will
control the type | error rate at 0.025 level because probability of conventional test statistic being
greater than or equal to b*(z;,d5) under null hypothesis is exactly 0.025 and hence resulting in
type | error less than or equal to 0.025 when test statistic is compared with b in the promising
zone with b*(zy,d3) < b. Black Long-dash line decreases first and then increases in z; with an
interval being less than equal to the horizontal line of original critical value b, the grey long-
dash line in Figure 2.1a. So the point when these two curves cross at left side corresponds to the
smallest z; in this promising zone, within which the conditional power at this point is the

minimal conditional power CPg,,;,. This correspondsto z; = 1.24 and CPg,,;, = 0.3605 in

80



Figure 2.1a. The upper bound of promising zone is the point when conditional power based on
planned d, equals 0.9, which correspondsto z; = 2.06 and CPg(z;,d;) = 0.9. The black
dotted and back medium-dash curves are the conditional powers based on original d, and
adjusted d3 respectively; and both are against right y-axis in a scale ranging from 0 to 1 and
coincide with each other outside the promising zone because d, is still used in these two zones.
Conditional power based on adjusted d is boosted up in the range of z; € [1.24,1.51]

because the maximum allowable sample size d; = 135 is used in the region due to the required
number of events to gain power of 0.9 being larger than the maximum allowable limit; and be the
constant of 0.9 for z; between 1.52 and 2.06. Figure 2.1b shows corresponding d3 with

respect to z; inthe promising zone.
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Figure 6(Fig. 2.2): Percent increase in Sample size

Figure 2.2: Percent increase in Sample size versus z;for {t; = 0.5,1}: Upper left for

% = 1.5; upper right for Upper left for % = 2; lower left for % = 3; and lower
right for dmax _ 4

R

This promising zone is set up prior to trial start for a given set including «, 8, {t1, 1}, dmax/d
and a certain type of group sequential upper boundaries. «, 5, {t;,1} and type of group
sequential test defines {b;, b} and {d,,d,} upfront. After conducting the trial to collect d,
number of events, interim logrank test statistic z, will be calculated. If the conditional power
CPg (z1,d,) is located in the promising zone and null hypothesis is not rejected at interim, we
continue into stage two to collect additional d; (Figure 2.1) number of events such that

CPg (z1,d3)=1- [ if required number of events is below maximum allowable number or the
same as the maximum allowable number when the required number exceeds it. When interim
test statistic z, falls either the unfavorable zone or the favorable zone, the trial will continue to
collect d, events with no adaptation.

Figure 2.2 shows the sample space division for z; when there is an equally spaced two-stage

design with different ratios of maximum sample size after adaptation relative to pre-planned

dma

sample size. When T" = 1.5, allowing maximum of 50% in total sample size increase, the

promising zone starts from conditional power of 0.4063 to 0.9, corresponding to z; from 1.31 to

2.06. For % = 2, % =3 and % = 4, the lower limit of promising zone is respectively

with conditional power of 0.3605, 0.3026 and 0.2752. The lower bound of promising zone
decreases as ratio of d,,,,/d increases.

Section 2.4: CIBS | and II: Revisit

In old bad days, it took ten years from a failed, underpowered trial to a success trial conducted
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with enough power to detect alternative hypothesis. The estimated annual mortality rate from
CIBS-I1 is 8.8% in the bisoprolol group and 13.2% in the placebo group. So the hazard ratio is
estimated to be 1.5 (i.e., 0.132/0.088). Based on hazard ratio 1.5, for a two-stage group
sequential trial with one-sided error of 0.025 and information vector of t = (0.5, 1) using WT
boundary with shape parameter 0.15, the upper boundary vector is b;= 2.554 and b=2.006. Total
number of events required to detect hazard ratio 1.5 with above two-stage WT group sequential
design is 261 (note that CIBS-11 had 384 events in total in the end and CIBS-I only accumulated
120 events in total) when @ = 0.025and 1 — 8 =0.9.If d,,.,/d is 3, apromising zone for
CIBS-I can be constructed accordingly per steps in Section 2.3. Now let one take a look and see
what would have been obtained had there been a sample increase implemented in CIBS-I while
back to 1989? The minimal conditional power is then 0.3023 with optimal zone located within
(0.3023, 0.9). From CIBS-I publication, interim log-rank test statistic was only 1.23 with low
conditional power of 0.3531. Implementing optimal zone algorithm for survival data, additional
80 or more events are in need to be accumulated, rather than stopped the trial at the time when
only 120 events were accumulated to disclaim the ‘failure’ of the trial. Had optimal zone method
have been implemented, drug development time for bisoprolol would have been shorten up to
maybe only 4-5 years instead of ten-year long plus huge economic cost for initiating one more
trial.

Section 2.5: Simulation Results

Extensive simulations for proposed method are done with survival data in the presence or
absence of censoring. As in Section 2.4, a one-sided two-stage group sequential design (GSD) is
set up with WT boundaries with a shape parameter of 0.15 so that the upper bounds are defined
accordingly: b=(2.554, 2.006) for equally spaced design with t = (0.5,1), b = (3.422, 1.963) for a

design with early interim analysis (i.e., t = (0.2,1) ); and b = (2.209, 2.043) with late interim
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analysis (i.e., t = (0.8,1) ). Power requirement of 0.9 (8 = 0.1) is used to search for total number

of events to ensure enough power of detecting alternative hypothesis of hazard ratio of 2 (i.e.,

A

A= A—C = 2). Subsequently, 90 total events is required for both equally spaced and late interim
E

analysis, while only 88 is required for design with early interim analysis of t=(0.2,1). Only
exponential censoring with @, = @ = 0.5A, is covered. Thatis: hazard rates of censoring in
both treatment and placebo groups are the same and is 50% of the event hazard rate for placebo
group subjects. Of course, censoring is assumed to be independent of both the time to event
process and the accrual process. No futility boundaries are defined for simplicity but can be
easily added if necessary. GSD is converted into adaptive GSD (A-GSD) by inserting an option
of sample size increase in the situation when the interim result falls into the promising zone. To

assess how an underpowered GSD performs under A-GSD, simulations are done with hazard
ratio being 1.2, 1.4, 1.6, 1.8, and 2, in combination of different information vectors and %

ratios. In the meantime, the impacts of censoring on trial operating characteristics are shown as
side results in both GSD and A-GSD.

Tables 2.1 — 2.4 list simulate operating characteristics with summaries of conditional results
(Columns 5-7) and unconditional results (Columns 8-9) with Columns 5-7 being subset into two
small columns with GSD and A-GSD side-by-side to illustrate resulting differences in between.
Column 3 is the frequency distribution of three zones accompanied by Column 4 with probability
of rejecting null hypothesis at interim given interim results, from which no rejection is present in
both unfavorable and promising zones and only a portion of z; resulting in the right tail of the
favorable zone have null hypothesis rejected at interim analysis. Columns 5 and 6 contain the
conditional probability of rejecting null at final analysis and the combined conditional

probability of rejecting null either at interim or final, respectively, conditional upon interim
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outcome. From Columns 5 and 6, it is shown that there is an obvious boost in conditional power
after sample size adaptation when interim test statistic falling into the promising zone.
Subsequently, Column 7 presents conditional average sample size per zone. Column 8, on the
other hand, illustrates overall probabilities of rejection null at interim/final/interim or final and
the expected average sample number irrespective of interim zone, following by the last column
to show expected sample number for both GSD and A-GSD. As pointed out by a reviewer,
conditional power is as important as overall power as the decision on any adaptation is taken at
the time of the interim analysis and is therefore driven by the gain in conditional power and

subsequently leading to increase in overall power.
Tables 2.1- 2.2 show the operating characteristics of both GSD and A-GSD for % = 2 with

interim performed in the middle of the trial in the absence of censoring (Table 2.1) and in the
presence of censoring (Table 2.2). In Table 2.1, the overall probability of rejecting null
hypothesis under hazard ratio of 2 is 89.1% for GSD and increases to 92.0% with insertion of
sample size increase in the promising zone. The increase in overall power from GSD to A-GSD
is the largest when hazard ratio being 1.4 and 1.6. For example, it is 4.9% for A = 1.4 (from
34.1% to 39.0%), 6.6% for A = 1.6 (from 58.2% to 64.8%), 4.6% for A = 1.8 (from 77.4% to
82.0%), and 2.9% for A = 2.0 (from 89.1% to 92.0%). The increase of overall power using A-
GSD is due to increase in conditional power when interim log-rank test statistic belongs to the
promising zone. For instance, it is 17.5% for A = 1.4 (from 45.5% to 63.0%) and 20.3% for

A = 1.6 (from 62.4% to 82.7%) and 15.1% for A = 1.8 (from 77.9% to 93.0%). The designed
parameters are calibrated at alternative hypothesis with hazard ratio of 2.0 and trial will be
under-powered when the true hazard ratio is below 2.0. In this case, one can see that the

proposed procedure rescued under-powered study to achieve a reasonable power (>=64.8%) as
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long as true hazard ratio is above 1.6. The increase in overall power is due to a considerable
amount of patients falling in the promising zone (18.2%, 28.0%, 32.8%, 30.2% and 27.0% for
A=1.2,1.4,1.6, 1.8 and 2.0 respectively). Table 2.1 has the same design as the one in Figure 2.1
as well as the one in the upper right corner in Figure 2.2.  As depicted in Figure 2.1a, promising
zone is an interval with z; ranging from 1.24 to 2.06, among which the maximum conditional
power is 0.9 while first half (i.e., z; € [1.24,1.51]) being less than 0.9. A boost in conditional
power in the promising zone results in a boost in overall power, while the extent of increase
decreases when true hazard ratio approaches the designed value of 2 because original group
sequential design without sample size re-estimation already has large enough overall power. The
average sample number (ASN) in Table 2.1 is consistently around 110 for A-GSD when the true
hazard ratio is between 1.4 and 2.0, with 20+% increases from that of GSD.

From Table 2.2, there are no signs that inserting competing process of censoring will lower down
overall power in either GSD or A-GSD as compared with cases in the absence of censoring. It
seems that, uniformly for cases of A = 1.4, 1.6, 1.8 and 2.0, powers in the presence of censoring
are similar to their counterparts in Table 2.1. For hazard ratio 1.6, the overall powers are 58.4%
and 64.9% for GSD and A-GSD respectively in the presence of censoring in Table 2.2 as
compared with 58.2% and 64.8% in Table 2.1. Similarly, when true hazard ratio is 2, they are
89.1% and 92.0% in overall power for GSD and A-GSD respectively for cases in the absence of
censoring in Table 2.1 as compared with 89.4% (for GSD) and 92.3% (for A-GSD) in the
presence of censoring in Table 2.2.

Tables 2.3 — 2.4 investigate how the operating characteristics change if allowable increase ratio

(i.e.,dT) is changed from 2 to 4 in the absence of censoring (Table 2.3) and in the presence of

censoring (Table 2.4) can rescue the underpowered trials better? And in what magnitude as
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compared with its respective cases in Tables 2.1 — 2.2? From Tables 2.3 - 2.4, increase in
allowable sample size limit can increase overall power but in a small extent (from 92.0% to
92.4% in the absence of censoring in Tables 2.1 and 2.3 and from 92.3% to 93.0% in the

presence of censoring in Tables 2.2 and 2.4 for A = 2.0), but with expense of 13% percent in
increase of expected sample size (113/127 to 111/126). Change in % from 2 to 4 does not

impact operation characteristics in all aspects except for impacts on expected sample size, which
bring a question on the necessity of gaining that extra little power but at the expense of 13% of
increase in sample size. Similarly for conditional power, for interim test statistic falling in the
promising zone, which is the zone one wants to conduct rescue, conditional power increases up
t0 97.2% (vs. 96.6%) and 97.6% (vs. 97.0%) in the absence of censoring and in the presence of
censoring respectively under d"c‘il =4 (vs. d"c‘il =2)at A= 2.0.

Comparing with Tables 2.1 — 2.4, with which interims are done in the middle of the trial per pre-
planned information level, t=(0.8,1) andt=(0.2,1) show the properties of A-GSD when the
interim analysis performs in the later part and close to the end of the trial and at the early part of
the trial, respectively. Power simulations to check impacts of timing design operation
characteristics are not shown here. t; = 0.2 results in much less subjects falling in the
promising zone while t; = 0.8 on the contrary results in more than half of first stage log-rank
test statistic falling in the promising zone.

To assess rejecting probability under null hypothesis (i.e.,A = 1), Table 2.5 presents operational
characteristics of four scenarios in Tables 2.1 — 2.4. With no surprise, under null hypothesis the

majority of subjects ended up in the unfavorable zone during simulations: 88.4% and 87.8% in

the absence and presence of censoring respectively when % =2 (vs.89.4% and 87.3%
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dmax

when = 4). All simulations are done in 10000 simulation runs, type I error rates are all

well-controlled as: 2.6%-2.9% for GSD with no sample size adaptation and 2.5%-2.7% for A-

GSD with sample size increase when interim statistic falls in the optimal zone (Table 2.5).
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Table 5(Tab. 2.1): Simulated Operating Characteristics of Adaptive or Non-adaptive Group Sequential Design without censoring

Table 2.1: Simulated Operating Characteristics of Adaptive or Non-adaptive Group Sequential Design without censoring
while with t=(0.5,1), dmax/d=2, WT boundaries with shape parameter of 0.15, A=2.0,a = 0.025 and # =0.1.

Hazard Interim P(interim | P(Rejecti | P(Rejection at final | Rejection Probability E(d Overall E(d)
Ratio for outcome outcome) | on at interim outcome) (interim or final) [Interim Outcome) Rejection Probability
simulation interim | Conditional on Interim
interim Outcome
outcome) | GSD A-GSD GSD A-GSD GSD A-GSD GSD A-GSD GS A-
(interim/final/either) (interim/final/either) D GSD
1.2 Unfavorable | 74.4% 0% 4.0% 4.0% 4.0% 4.0% 90 90 2.8%/9.9%/12.7% 2.8%/11.2%/14.1% 90 101
Promising 18.2% 0% 25.1% 32.3% 25.1% 32.3% 90 150
Favorable 7.4% 37.9% 32.5% 32.5% 70.4% 70.4% 90 90
1.4 Unfavorable | 55.0% 0% 13.0% 13.0% 13.0% 13.0% 90 90 7.3%/26.8%/34.1% 7.3%/31.7%/39.0% 90 107
Promising 28.0% 0% 45.5% 63.0% 45.5% 63.0% 90 148
Favorable 17.0% 43.0% 40.6% 40.6% 83.6% 83.6% 90 90
1.6 Unfavorable | 37.2% 0% 26.8% 26.8% 26.8% 26.8% 90 90 15.7%/42.5%/58.2% 15.7%/49.2%/64.8% | 90 111
Promising 32.8% 0% 62.4% 82.7% 62.4% 82.7% 90
Favorable 30.0% 52.2% 40.3% 40.3% 92.5% 92.5% 90 90
1.8 Unfavorable | 24.1% 0% 41.3% 41.3% 41.3% 41.3% 90 90 27.2%/50.2%/77.4% | 27.2%/54.8%/82.0% | 90 112
Promising 30.2% 0% 77.9% 93.0% 77.9% 93.0% 90 142
Favorable 45.7% 59.6% 36.6% 36.6% 96.2% 96.2% 90 90
2.0 Unfavorable | 15.4% 0% 58.9% 58.9% 58.9% 58.9% 90 90 38.6%/50.5%/89.1% | 38.6%/53.4%/92.0% | 90 113
Promising 27.0% 0% 86.0% 96.6% 86.0% 96.6% 90 139
Favorable 57.6% 67.0% 31.7% 31.7% 98.7% 98.7% 90 90
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Table 6(Tab. 2.2): Simulated Operating Characteristics of Adaptive or Non-adaptive Group Sequential Design in the presence of censoring

Table 2.2: Simulated Operating Characteristics of Adaptive or Non-adaptive Group Sequential Design in the presence of
censoring while with t=(0.5,1),dmax/d=2, WT boundaries with shape parameter of 0.15, A=2.0,a = 0.025 and = 0.1.

Hazard Interim P(interim | P(Rejecti | P(Rejection at final | Rejection Probability E(d Overall E(d)
Ratio for outcome outcome) | onat interim outcome) (interim or final) [Interim Outcome) Rejection Probability
simulation interim | Conditional on Interim
interim Outcome
outcome) | GSD A-GSD GSD A-GSD GSD A-GSD GSD A-GSD GS A-
(interim/final/either) (interim/final/either) D GSD
1.2 Unfavorable | 73.9% 0% 3.9% 3.9% 3.9% 3.9% 90 90 2.5%/10.2%/12.6% 2.5%/11.8%/14.3% 90 102
Promising 18.9% 0% 26.0% 34.9% 26.0% 34.9% 90 150
Favorable 7.3% 34.3% 32.6% 32.6% 66.9% 66.9% 90 90
1.4 Unfavorable | 55.5% 0% 12.9% 12.9% 12.9% 12.9% 90 90 7.3%/26.7%/34.0% 7.3%/32.2%/39.5% 90 107
Promising 27.5% 0% 46.1% 66.0% 46.1% 66.0% 90 147
Favorable 16.9% 42.8% 40.6% 40.6% 83.4% 83.4% 90 90
1.6 Unfavorable | 37.6% 0% 27.0% 27.0% 27.0% 27.0% 90 90 15.6%/42.9%/58.4% 15.6%/49.3%/64.9% | 90 111
Promising 32.0% 0% 64.0% 84.0% 64.0% 84.0% 90 144
Favorable 30.4% 51.3% 40.2% 40.2% 91.5% 91.5% 90 90
1.8 Unfavorable | 23.6% 0% 41.4% 41.4% 41.4% 41.4% 90 90 26.2%/51.5%/77.7% | 26.2%/56.3%/82.6% | 90 112
Promising 31.7% 0% 77.8% 93.1% 77.8% 93.1% 90 141
Favorable 44.8% 58.5% 38.3% 38.3% 96.8% 96.8% 90 90
2.0 Unfavorable | 14.5% 0% 58.0% 58.0% 58.0% 58.0% 90 90 38.5%/50.9%/89.4% | 38.5%/53.8%/92.3% | 90 111
Promising 27.5% 0% 86.4% 97.0% 86.4% 97.0% 90 138
Favorable 58.0% 66.3% 32.3% 32.3% 98.6% 98.6% 90 90
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Table 7(Tab. 2.3): Simulated Operating Characteristics of Adaptive or Non-adaptive Group Sequential Design without censoring

Table 2.3: Simulated Operating Characteristics of Adaptive or Non-adaptive Group Sequential Design without censoring
while with t=(0.5,1), dmax/d=4, WT boundaries with shape parameter of 0.15, A= 2.0, = 0.025 and # = 0.1.

Hazard Interim P(interim | P(Rejecti | P(Rejection at final | Rejection Probability E(d Overall E(d)
Ratio for outcome outcome) | onat interim outcome) (interim or final) [Interim Outcome) Rejection Probability
simulation interim | Conditional on Interim
interim Outcome
outcome) | GSD A-GSD GSD A-GSD GSD A-GSD GSD A-GSD GS A-
(interim/final/either) (interim/final/either) D GSD
1.2 Unfavorable | 69.0% 0% 3.5% 3.5% 3.5% 3.5% 90 90 2.9%/10.6%/13.4% 2.9%/13.9%/16.8% 90 116
Promising 23.2% 0% 23.5% 38.0% 23.5% 38.0% 90 197
Favorable 7.8% 36.9% 34.1% 34.1% 70.9% 70.9% 90 90
1.4 Unfavorable | 50.3% 0% 11.5% 11.5% 11.5% 11.5% 90 90 7.6%/26.9%/34.5% 7.6%/35.5%/43.1% 90 124
Promising 32.3% 0% 44.3% 71.0% 44.3% 71.0% 90 187
Favorable 17.4% 43.5% 38.9% 38.9% 82.4% 82.4% 90 90
1.6 Unfavorable | 32.6% 0% 24.0% 24.0% 24.0% 24.0% 90 90 16.1%/42.2%/58.3% 16.1%/52.2%/68.2% | 90 129
Promising 36.6% 0% 60.0% 87.1% 60.0% 87.1% 90 180
Favorable 30.9% 52.0% 40.5% 40.5% 92.4% 92.4% 90 90
1.8 Unfavorable | 21.2% 0% 40.5% 40.5% 40.5% 40.5% 90 90 26.7%/51.0%/77.7% | 26.7%/57.4%/84.1% | 90 127
Promising 34.2% 0% 75.9% 94.6% 75.9% 94.6% 90
Favorable 44.7% 59.7% 37.0% 37.0% 96.7% 96.7% 90 90
2.0 Unfavorable | 12.3% 0% 52.2% 52.2% 52.2% 52.2% 90 90 38.3%/50.4%/88.7% | 38.3%/54.1%/92.4% | 90 127
Promising 29.3% 0% 84.6% 97.2% 84.6% 97.2% 90 169
Favorable 58.4% 65.5% 32.9% 32.9% 98.4% 98.4% 90 90

91




Table 8(Tab. 2.4): Simulated Operating Characteristics of Adaptive or Non-adaptive Group Sequential Design in the presence of censoring

Table 2.4: Simulated Operating Characteristics of Adaptive or Non-adaptive Group Sequential Design in the presence of
censoring while with t=(0.5,1),dmax/d=4, WT boundaries with shape parameter of 0.15, A=2.0,a = 0.025 and  =0.1.

Hazard Interim P(interim | P(Rejecti | P(Rejection at final | Rejection Probability E(d Overall E(d)
Ratio for outcome outcome) | on at interim outcome) (interim or final) [Interim Outcome) Rejection Probability
simulation interim | Conditional on Interim
interim Outcome
outcome) | GSD A-GSD GSD A-GSD GSD A-GSD GSD A-GSD GS A-
(interim/final/either) (interim/final/either) D GSD
1.2 Unfavorable | 69.9% 0% 3.4% 3.4% 3.4% 3.4% 90 90 2.5%/10.2%/12.6% 2.5%/13.6%/16.1% 90 115
Promising 22.9% 0% 23.7% 38.9% 23.7% 38.9% 90 196
Favorable 7.3% 34.3% 32.6% 32.6% 66.9% 66.9% 90 90
1.4 Unfavorable | 50.8% 0% 11.2% 11.2% 11.2% 11.2% 90 90 7.3%/26.7%/34.0% 7.3%/35.5%/42.7% 90 123
Promising 32.3% 0% 43.8% 70.9% 43.8% 70.9% 90 186
Favorable 16.9% 42.8% 40.6% 40.6% 83.4% 83.4% 90 90
1.6 Unfavorable | 32.9% 0% 24.0% 24.0% 24.0% 24.0% 90 90 15.6%/42.9%/58.4% 15.6%/52.5%/68.0% | 90 130
Promising 36.8% 0% 61.8% 88.0% 61.8% 88.0% 90 181
Favorable 30.4% 51.3% 40.2% 40.2% 91.5% 91.5% 90 90
1.8 Unfavorable | 20.0% 0% 38.3% 38.3% 38.3% 38.3% 90 90 26.2%/51.5%/77.7% | 26.2%/58.1%/84.3% | 90 129
Promising 352% 0% 75.8% 94.4% 75.8% 94.4% 90 173
Favorable 44.8% 58.5% 38.3% 38.3% 96.8% 96.8% 90 90
2.0 Unfavorable | 12.0% 0% 54.5% 54.5% 54.5% 54.5% 90 90 38.5%/50.9%/89.4% | 38.5%/54.5%/93.0% | 90 126
Promising 29.9% 0% 85.5% 97.6% 85.5% 97.6% 90 165
Favorable 58.0% 66.3% 32.3% 32.3% 98.6% 98.6% 90 90
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Table 9(Tab. 2.5): Simulated Type I error for eight different designs

Table 2.5: Simulated Type I error for eight different designs which have WT
boundaries with shape parameter of 0.15, A= 2.0,a = 0.025 and = 0.1.

Interim P(interim Opverall Rejection Probability E(d)
outcome outcome) GSD A_GSD GS A
(interim/final/either) (interim/final/either) D GSD
A= 1.0 (simulation), ¢ = 0, Unfavorable | 88.4% 0.7%/2.2%/2.9% 0.7%/2.0%2.7% 90 96
t =(051). d d=2 Promising 9.2%
( )» dmax/ Favorable 2.4%
A= 1.0 (simulation),p = 0.51,, | Unfavorable | 89.4% 0.5%/2.1%/2.6% 0.5%/2.0%/2.5% 90 96
t = (05,1), dypgy/d =2 Promising 8.7%
Favorable 1.9%
A= 1.0 (simulation), ¢ =0, Unfavorable | 87.8% 0.6%/2.2%/2.8% 0.6%/2.0%/2.6% 90 102
t = (051), dypgy/d =4 Promising 10.4%
Favorable 2.3%
A= 1.0 (simulation),p = 0.51,, | Unfavorable | 87.3% 0.5%/2.1%/2.6% 0.5%/2.0%/2.5% 90 102
t = (05,1), dppgy/d = 4 Promising 10.8%
Favorable 1.9%

Section 2.6: Discussion

This paper extends Mehta and Pocock (2010) to survival trials with a real example
from a historical drug development example, together with extensive simulations on
various scenarios in the presence or absence of censoring, large or moderate allowable
limit in sample size increase, interim analysis occurring at an earlier or later time
point. It can be seen that this method is very easy to implement for survival data and
can be presented to non-statisticians easier than other methods as conventional test
statistic and original critical value will be used for final analysis, which hence avoids
the hotly-debated issue of violating “one patient one vote” with weighted test for final
analysis. Due to the fact that no real clinical trials are lack of censoring, which can be
caused by early withdrawal due to adverse event, lack of efficacy, loss to follow-up
and subject consent as well as administratively censoring at analysis time point,
simulation results for cases in the presence of censoring will assure its practicability in
survival group sequential trials. Adaptation method proposed here performs well when

timing of interim is not so early. Doing adaptation too early should not be considered
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in general as estimate of drug effect is not stable at the early stage, thus downgrading
the capability of rescuing an underpowered trial by sample size increase in the
promising zone. Results also show that after a certain level, further increase of
allowable sample size limit will barely help in terms of conditional and overall powers

but at a big expense of expected sample size, therefore economically not efficient for

dmax

having y

too large.

In the past two decades, numerous publications on sample size re-estimation and
adaptive designs are mainly from two aspects: 1)use weighted test to construct a final
test statistic comparing with original critical value, with which weighted test has the
same distributional property under null hypothesis as the planned test statistic so that
the type | error rate is controlled; 2) use conventional test even after adaptation but
adjust critical value so that the overall type I error rate is controlled when decision is
based on using conventional test statistic to be compared with adjusted critical value.
Sample size increase in the promising zone provided the third way to control type |
error rate. That is to define promising zone upfront based on type | error, power,
budget limit, data type and test statistic to be used for both interim and final analyses
together with adaptation rules in the promising zone as in Figures 2.1a and 2.1b. In
this promising zone, sample size can be increased and conventional test without
weighting strategy will be used to compare with the original critical value without any
adjustment. Although being quite novel, this is a method not well-evaluated yet. As
being criticized by Emerson, Levin and Emerson (2011), the efficiency of this method
under-investigated. Therefore, how to improve the efficiency of this method in terms

of minimizing average sample size with respect to parameters of interests is the
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direction for future research. All in all, the promising zone is defined as the region of
z, (or equivalently the region of conditional power under the initial design)
whereb*(z,,d3) < b. The motivation for defining the promising zone in this way is
that one can use the regular test Z* > b for the final analysis without scarifying type |
error rate control. However, as pointed out by the reviewer and agreed by the authors,
that this is by no means the only way to specify the promising zone. In general, the
promising zone could simply be perceived as a region of z; within which the
sponsor is willing to increase the sample size in exchange for a substantial gain in
conditional power. It may be convenient to confine it to a region within which the
conventional test Z* > b is valid, but this is not necessary. If the promising zone
contains a region in which b*(z,,d;) > b, one would control the type I error rate with
the CHW test Z;yy, = b. The choice of promising zone and the method for

controlling the type I error is not necessarily linked.
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CHAPTER 3

Prediction of the Timing of Events in Clinical Trials with Survival
Endpoints: A Trial Example

(Being Reviewed by Journal of Biopharmaceutical Statistics)
Abstract: In event-based clinical trials, interim and final analyses at pre-specified
event times are often proposed. In a randomized withdrawal trial with time-to-event
primary endpoint, the design consists of subjects receiving a test treatment for a
specified period and then being randomized to continue on that treatment or placebo.
We present methodology to predict the time of reaching a required number of events
during the double-blind phase of such a trial. We consider prediction at any time
during the course of this trial: at the beginning of the trial; during the open-label phase
of the trial and also during the double-blind phase of the trial (where some subjects
could still be in the open-label phase). There has been recent work on tackling various
aspects of this problem using parametric, semi-parametric or from a Bayesian
perspective. Starting from Whitehead’s method (2001), we consider four additional
features: (i) censoring process can be incorporated; (ii) calculating expected number of
events by a future calendar time, t,, for subjects who were in the risk set at t,; (iii)
predicting number of events by a future time point t, for subjects who were
enrolled prior to randomization and will be randomized at a fixed time point before
t,; and (iv) various parametric survival distributions other than exponential (i.e.,
Weibull, Lognormal, Log logistic). We applied our methodology during the conduct
of a recently completed clinical trial to accurately predict the timing of the interim
analysis. This allowed sufficient resources to be deployed leading to timely data
analysis and reporting.
Keywords: Time-to-event outcomes; trial duration prediction; interim analysis;
survival endpoint.

Section 3.1: Introduction

In clinical trials designed to compare survival curves under two treatments, it is often
desirable to model and predict the timing to a pre-specified number of events since
this has important implications on resource allocation, study budget and planning. In a
randomized withdrawal trial with time-to-event primary endpoint, the design consist
of subjects receiving a test treatment for a specified period of time (herein referred to
as open-label phase) and then being randomly assigned to continue on that treatment

or placebo (herein referred to as double-blind phase). During the recruitment period,
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subjects who meet inclusion and exclusion criteria are screened, enter the trial at a
certain rate for a specified period of time, and if meeting certain stability requirements,
are randomized to one of the two treatment groups. After randomization process ends,
there is a period called “continuation period”, during which patient follow-up
continues (on treatment or placebo). Aside from having events during the trial, some
event times (e.g., death or relapse times) are typically not observed and are said to be
right-censored, as death times are only known to be greater or equal to the censoring
time. Two types of censorship exist: 1) Subjects withdraw early due to adverse events,
withdrawal of consent or loss to contact. These censorings are generally called “loss to
follow-up”; 2) Subjects remain event-free at time of study termination, and are said to
be “administratively censored”. Both censorships are not related to individual death
times; hence it seems reasonable to assume independence between event and
censoring time in prediction and statistical analysis. The log-rank statistic (Mantel,
1966) has been widely accepted and used to compare survival curves in the presence
of such censorships. Simulations (Lee, Desu and Gehan, 1975) show that the Mantel
statistic (logrank) has acceptable power against other types of alternatives as well as
proportional hazards, in which one hazard is a constant multiple of the other.

In the literature, some authors have considered the dual problem of planning the size
(i.e., the required number of patients) and the required duration of the trial when death
times are assumed to be exponentially distributed. Pasternack and Gilbert (1971)
converted fixed sample size determination into equivalent “person-years at risk”.
When patients were accrued by cohorts, they derived required duration and number of

events to ensure enough power to detect a certain percentage increase in the median
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survival of subjects in treatment group over the control group.  Similar to Pasternack
and Gilbert (1971), George and Desu (1974) also assumed exponential death times in
the situation with lack of censoring during the trial. Instead of accrual by cohorts,
accumulated number of patient-year in the time interval to obtain required number of
events is now modeled as a filtered Poisson process. George and Desu (1974) showed
that the required duration can be found by solving a non-linear equation using iterative
techniques and proved that the minimal (optimal) required duration of study requires
no continuation period after accrual period. Rubinstein, Gail and Santner (1981)
extended the trial length calculations of Pasternack and Gilbert (1971) and George and
Desu (1974) to cover experiments with Poisson accrual, loss to follow-up and a
continuation period. In the case of no loss to follow-up and no continuation period,
Rubinstein, Gail and Santner’s (1981) calculations differ very little from Table 2 of
George and Desu (1974). All these length calculations are based on the assumption
that the death times are exponential and the comparison was made via the maximum-
likelihood-estimation (MLE) of the death hazard rates. Simulations in Rubinstein, Gail
and Santner (1981) showed that trial length calculations using MLE yield accurate
power for Logrank test for exponential death times and approximately valid even for
Weibull death times.  Although we use death times and survival time
interchangeably, survival endpoints have actually become more broadly used,
including not only time to death endpoint, but also time to other events. In a
randomized withdrawal study design, subjects receiving a test treatment (i.e., open-
label) for a fixed-period of time are randomly assigned to continue on test drug or

switch to placebo (i.e., withdrawal of active therapy) in the double-blind phase. Any
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difference that appears between the group continuing on test drug and the group
randomized to placebo would demonstrate the effect of the active treatment. For
example, in randomized withdrawal trials, time from randomization to relapse in the
double-blind phase is the key efficacy variable (measuring persistence of
effectiveness) used to compare treatments in the double-blind phase after subjects
being stabilized for disease symptoms in the open-label phase. See more details on
randomized withdrawal trials on Pages 17-19 of FDA guidance document
“Enrichment Strategies for Clinical Trials to Support Approval of Human Drugs and
Biological Products”. Interim analyses are a common feature of clinical trials,
especially for large trials or trials for rare disease with a low accrual rate. Whitehead
(2001) described predicting final sample size and total duration of a sequential
survival study with exponential death times and examined the pay-off between speed
of accrual rate and length of continuation period, however, competing process of time
to follow-up (censoring) was not considered. All prediction methods first estimate
number of events required to test null hypothesis with certain power and size level,
and then length of trial is estimated using accrual rate, rate of time to event, rate of
loss to follow-up, accrual time, and length of the continuation period. In this paper,
we extend Whitehead (2001) to include censoring process in prediction prior to trial
start and then provide methods to carry out prediction during the trial prior to interim
analysis.

In addition to parametric and semi-parametric approaches, others have considered
prediction algorithms using Bayesian methods. Posterior parameters can be sampled

using Markov Chain Monte Carlo (MCMC) with help from priors, observed likelihood

100



at time of prediction assuming parametric exponential survival times (Bagiella and
Heitjan, 2001) or Weibull survival times (Ying and Heitjian, 2008). The predictive
probability distribution of calendar time to obtain certain number of events can be
completed by simulation based on posterior parameters for subjects not yet having an
event at prediction time or to be recruited with a homogenous accrual process.
Cumulative events at future time t, consist of events occurring prior to and after
prediction time. When randomization is blinded, estimating of posterior probability of
being in one particular treatment can be incorporated in the middle of sampling
algorithm (Donovan, Elliott and Heitjan, 2006); and similar research was done in the
situation when randomization is not only masked but also blocked (Donovan, Elliott
and Heitjan, 2007). Additional variation includes prediction when there is a delay in
reporting events during the trial with some withdrawals recorded in database possibly
having had an event occurred prior to withdrawal but without reporting (Wang et al.,
2012). All of these predictions assumed homogeneous accrual process together with
either exponential or Weibull event times. Non-homogenous accrual combined with
Bayesian prediction have also been explored in order to take into account different
accrual rates across regions that normally occur in multi-regional clinical trials (Zhang
and Long, 2010, 2012a). Additionally, Zhang and Long (2012b) published a
systematic review paper on modeling and prediction of subject accrual and event times
in clinical trials using Bayesian methods.

Although extensive research has been done for various situations from Bayesian
perspective, the choice of prior distribution, extensive sampling for each posterior

parameter and creating complete sample based on posterior parameters somehow
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prevent this set of methods from being widely used in clinical trials because of their
computational and methodological complexities. Commercial software developers are
now beginning to fill that need.

In this paper, we develop methodologies to carry out prediction during the trial with or
without censoring using different parametric death time distributions. Use of
accumulated trial data can be incorporated without unmasking study treatment.

Section 3.2:  Statistical Methods: Set Up
To compare two treatments based on survival response, hypothesis testing could be

Ag(t)

, forall
Ac(t)

constructed on a summary measure of the log hazard ratio, 8 = —log

t > 0, where Ag(t) and A.(t) denote hazard at time t for experimental and control
group respectively, when there is exponential death time or the more general case of
constant hazard ratio over time. The null hypothesisis Hy: 8 = 0 against Hy: 0 =
Oz, Where 65 is the clinically meaningful difference that the experimental group
holds over the control group. Alternatively, this referential difference can be
characterized in terms of survival functions Sz (t) and Sc(t) on E (experimental
group) and C (control group): 6 = —log[—log[Sg(t) 1]+ log[—log[Sc(t)]], for all
t > 0. After finding survivor probability for control group Sq(t,) at t,, a specified
Sg(ty) can be estimated. If the probability of rejecting (required power) null
hypothesis against alternative is 1 — 8 at two-sided significance level «, utilizing
asymptotical normality properties of Logrank statistic, the required number of events

(Z1-a j2 +21-p)?

IS e= 5
Ry

, Where z;_, ,, isthe 1 —a /2 quartile value of standard

normal random variable. This is deduced from the fact that, when @ is small, the
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logrank statistic Z is approximately normal and distributed with mean 6V and
variance V,and V = e/4 (Section 9.2.1 of Collett, 1994), e is expected number of
events at the end of the trial. Asymptotical normal approximation is very accurate for
0z < 1; and acceptable for 1 < 6z < 2. We only make use of relative reference of
0z, a and . The rate of randomization accrual, randomization accrual time, length of
continuation period, and rate of loss to follow-up haven’t played a role in trial design
at this stage.  Starting from required number of events, number of patients to be
randomized in time T and then to be followed in time 7 can be deduced in Sections
below. We specifically consider prediction based on a clinical trial with a randomized
withdrawal design. We illustrate predicting number of patients to recruit (or trial
duration to achieve required number of events) by two different scenarios: 1)
Predicting before trial start. In this case, we can integrate with respect to distribution
of times from entry to end of trial (Figure 3.1a, Appendix 3.1). 2) Predicting during
the trial before interim or final analysis (Figure 3.1b, Appendices 3.2 and 3.3).
During the trial, specifically at time t,, the expected cumulative number of events up
to a future time t, includes events that have occurred prior to and on t; plus events
yet to occur between t; and t,. For trials which have fixed-length phases prior to
randomization into the double-blind phase, at time t;, some subjects may be ongoing
during the phases prior to randomization and will be randomized at a known time
between t; and t,, this cohort will contribute to the total number of events up to a
future time t,. Subjects who were randomized but remained event free in the double-
blind phase of the trial at t;, who are in the at-risk set at predicting time t;, will also

contribute to future events between t; and t,. Figure 3.1a depicts the prediction prior
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to trial start and Figure 3.1b depicts prediction during the trial.  Appendix 3.1 shows
prediction algorithm in the presence of censoring prior to trial start. Appendix 3.2
describes prediction algorithm for subjects to be randomized at a known time between
t; and t, with or without censoring with death times of exponential, Weibull, Log-
logistic and Lognormal respectively and exponential censoring when it is present.
Appendix 3.3 provides the prediction method for subjects who are in the risk set at
prediction time t;.

To do prediction prior to trial start, as depicted in Figure 3.1a, subjects are uniformly
randomized in time interval [0, T] months. After randomization period, subjects
remained in the trial are continued to be followed for additional T months. Time to
event or time to loss to follow-up can occur at any time during period [0, T + t].
Subjects who are still remained event-free at time T + t are administratively
censored. Appendix 3.1 describes calculation of expected number of events by time
T + 7, provided that both survival and censoring times are exponentially distributed
and there is an uniform randomization period. From Figure 3.1a, where there is
approximate uniform randomization accrual in [0, T] and subjects who have
remained in the trial at time T are all followed for additional ¢ months. From Figure
3.1a, we have 9 events and 4 censoring by time T + t, including one with

administrative censoring.
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Figure 7(Fig. 3.1): Depiction of prediction prior to and during trial start

Figure 3.1: Depiction of prediction prior to and during trial start.

Figure 3.1a: Depiction of prediction prior to trial start with hypothetical subjects.
Vertical bar “|” on the left hand of time line denotes the timing of performing
randomization procedure and then subjects entered into the double-blind phase.
Circle on the right hand indicates survival event occurred on this subject during
the double-blind phase while cross symbol denotes censoring.
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Figure 3.1b: Depiction of prediction during the trial. Upper graph: hypothetical
subjects status before prediction at t;. Lower graph: subjects status by time t,.
Vertical bar and circle symbols are defined in the same way as in Figure 3.1a.
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Prediction is not a one-time thing and it is not just required prior to trial start. In
normal practice, data can be blindly reviewed in order to obtain more information
about what is going on in the trial while still not unblinding treatment information in
order to maintain trial validity.
Different from Figure 3.1a, subjects in Figure 3.1b start the trial with a fixed-length
period prior to randomization. For example, in a randomized withdrawal trial, subjects
will be treated in an open-label period with study medication to stabilize acute
symptoms before being randomized to continue on the study drug or being switched to
placebo. Time from randomization to first documentation of relapse in the double-
blind phase is primary endpoint to be observed so that the superiority of study drug
over placebo in terms of delaying time to relapse can be assessed.
As illustrated in the upper half of Figure 3.1b, there were three subjects who withdrew
early in the phases prior to randomization (Subjects A, B and C). At time t;, one
subject already had an event and one was censored; and four subjects who remained in
the trial at time t,, within which two out of four will be randomized between t; and
t,, the other two were randomized prior to t; and are considered to be in the at risk
set and might have events in (t4, t,]. As illustrated in lower half of Figure 3.1b, by
time t,, the accumulated number of events in the double-blind phase can come from
three different resources:

e events occurred priortooron t;

e from subjects who are in the phases prior to double-blind phase and will be

randomized between t;and t,, who could have events by time t,
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e from subjects who are in the risk set at t;, who may have events by time ¢,

Starting from cases well-known in the literature, Section 3.3 first extends Whitehead
(2001) to predict trial duration for newly randomized subjects in the presence of
censoring, assuming time to censoring non-related to death time in the trial. Besides
working out predicting trial duration prior to trial start in the presence of censoring
while Whitehead (2001) only has the case without censoring (i.e. ¢, = ¢ = 0), our
main contributions are mainly in Sections 3.4 and 3.5 for prediction during the trial in
the absence or presence of censoring. As depicted in Figure 3.1b, subjects who are
ongoing at prediction time t, consist with two cohorts: “To-Be-Randomized”
subjects who are still ongoing in the phases prior to the double-blind phase and “At-
Risk” subjects who are ongoing without events in the double-blind phase at time of
prediction. Section 3.4 is about prediction for “To-be-randomized” subjects who will
be randomized at a known time between t; and t,, starting with the case with
censoring (Section 3.4.1) to the case without censoring, and from exponential death
times to non-exponential death times (Section 3.4.3). Section 3.5 describes
prediction of expected number of events for “at-risk” subjects. Section 3.5.1 starts
with the simpler case of no censoring present in the trial under exponential death time.
Section 3.5.2 is for exponential death time in the presence of exponential censoring.

Section 3.5.3 explores other death times in the presence of exponential censoring.

Section 3.3: Prediction Prior to Trial Start in the Presence of Censoring

In case that time to censoring competes with the time to event process in the double-

blind phase, subjects can be censored prior to a particular calendar time. If censoring
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is indeed present in the trial, ignoring its existence will result in overestimating
number of events at a given time and consequently underestimate the required trial
duration needed to obtain certain number of events for analysis.

Now let’s consider the prediction of trial duration prior to trial start. The steps to
implement prediction for number of events prior to trial start or for newly randomized
subjects are depicted in Appendix 3.1. Subjects are uniformly randomized at a rate of
a for T months, resulting in aT subjects randomized over time interval [0, T]. Since

randomization ratio is A: 1 for treatment group over control group, the expected

. . A 1
number randomized into treatment and control group are maT and maT,

respectively. Because subjects are uniformly randomized into the double-blind phase
over [0, T], the times from being randomized to end-of-study (EOS) are also

independent and identically distributed ( i.i.d) uniform over [z, T+ 7] with density
%(where T is the follow-up time). Given a time interval u from entry onto control

group to end-of-study, the probability that this entry will result in an event is

Ac
Ac+ éc

[1—exp[—(A¢c + ¢dc)ul] given that time to event is i.i.d. exponential ( A¢),

time to censoring is i.i.d. exponential ( ¢.); and the two processes are independent of
each other. Based on uniform distribution of u (i.e. the times from entry to end-of-
study (EOS)) and given n. subjects being randomized into the control group, the

expected number of events achieved by time T+ t in the control group is:

Acnc

E(eclnC) = T(AC"‘ ¢C)

[ T + exp[—(Ac+ ¢c)(T+1)]—exp[—(Ac+ pc)T] ]

Act ¢c
Replacing n. with E(n;), we get the expected number of events in the control group

for newly randomized subjects by time T+ 7 as follows:
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a lc
(A+1) (Ac+ ¢¢)

exp[—(Ac+ ¢c)(T+1)]|—exp[—(Ac+ po)Tl ]

[T+ Ac+ pc

E(e) =
The process of conditioning and un-conditioning are repeatedly used in above
formulation and the conditional independence between death times and censoring
times do play a key role in finding the probability of resulting in an event rather than
being censored by a particular time. Treatment group follows the same procedure as
the control group. Adding up events in both groups leads to the predicted number of
events by T+ t for newly randomized subjects in the presence of censoring. That is:
E(e) = E(ec) + E(eg) =

aTl A¢ aATAg a Ac [exp[-(Ac+ @) (T+D)]-expl[-(Ac+ ¢c)Tl]
(A+1) (Ac+ ¢c)  (A+1) (Ap+ Pp) (A+1) (Ac+ ¢c)?

+

aA Aglexp[-(Ag+ ¢p)(T+1)]-exp[-(Ag+ ¢E)T]]
(A+1) (Ag+ ¢Ep)? '

For a given number of events to be required for an interim or final analysis, trial

duration T+ t can be derived using the same equation by tilting values of T and/or 7.

Section 3.4: Prediction for the To-be-randomized Subjects

As depicted in Figure 3.1b, to predict number of events during the trial, there is a
cohort of subjects who were not yet randomized at t; and will be randomized at a
known time in (t4,t,] who can contribute to events in (t;,t,] referred to as “e,ey”,
representing events from newly randomized subjects. Since the randomization time for
a control subject is known as r;c with t; < r;c < t,, probability of resulting in an
event in interval (t;,t,] can be calculated directly and the outer integration with
respect to distribution of accrual process as shown in Appendix 3.1 is no longer

needed. This approach is very different from prediction prior to trial start where
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randomization is a stochastic process and is modeled as uniformly distributed. Time to
be randomized is now determined at r; for control subject in this cohort and time
from randomization to t, is t, — r;c. For each To-Be-Randomized subject,
probability of resulting in an event can be directly calculated. Thereafter summing
over each subject in this cohort from both control and treatment groups will lead to the
expected number of events in (t,, t,]. After To-Be-Randomized subjects will be
considered to be at risk once they are successfully randomized into the comparative
double-blind phase after all protocol scheduled visits prior to it.
Appendix 3.2 describes the prediction method for this cohort of subjects during the
trial. Since without censoring is a special case of with censoring, prediction with
exponential censoring is derived first in Section 3.4.1 and then goes to prediction
without censoring together with different parametric type of death times.

Section 3.4.1: Prediction in the Presence of Censoring
Let u; be the time interval from randomization to end-of-study (i.e. u; = t, — ry¢),
for each subject in the control group. Thus, the probability of having an event for
control subject i is P[Y, < W,, Y. < u;] inthe presence of censoring. Event of
(Y, < W,, Y. < u;) indicates event process occurred before the censoring process in
(t1,t;] and resulted in an event prior to t,.
From Appendix 3.2, conditional on censoring variable, indicator variable I(Y, < u;)
can be pulled out from expectation because of independence between death time and
time to censoring, which is a reasonable assumption in survival trials. Thus probability

of having an event for control subject i is

PlY,. < W, Y.< uy] = f;”fyc (t)Sw.(t)dt, where Y, and W, are death time
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variable and censoring variable respectively, u; is the time from randomization to t,,
fro(t) is the density of death times and Sy, .(t) (i.e. exp(— ¢t) for exponential
censoring) is the survivor function for time to censoring random variable. After
plugging in death time density and exponential survivor function, integrate this
product with respect to time t resulting in the required probability. In case of
exponential death time, fy.(t) =Acexp(—Act) and
PlY, < W, Y.< ul-]=f0ui Acexp(— Act) exp(— pct) dt
As noted above, summing over all subjects in this cohort leads to the contribution on
number of events from them in time (t,t,]. Thatis: ey, = E(e;) + E(eg)
=20 PIYe < W, Yo < wil + 37, P[Yp < Wy, Yp < u]
Section 3.4.2: Prediction without Censoring
With no censoring existing in the trial, Sy, .(t) isignored in calculating predicted
probability. Hence, P[Y. < W, Y. < u;] degeneratesto P[Y. < u;], which is
basically the cumulative density function for death times. See Appendix 2 for
corresponding cumulative density function (CDF) for different parametric death time
distributions. e, = E(e.) + E(eg) =205, P[ Y. < w] + XE P Ve < wl
Section 3.4.3 When Death Time is Weibull or Another Type
Similarly, for death time other than exponential, right density of  fy. is used with
exponential censoring survival function Sy, .(t) and then integration with respect to
time from 0 to wu; can result in the probability of having an event in time (t,,t,] for
subject i in this cohort.

Not every To-Be-Randomized subject would withdraw early before being randomized
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into the double-blind phase, only a fraction of the subjects who are ongoing in the
phases prior to the double-blind phase can finish required period and then continue to
be randomized into the double-blind phase at ;- (with t; < r;c < t,) so that they
can contribute to the event count in (t,,t,]. Because we only have loss to follow-up
and administrative censorship in controlled clinical trial, there is no basis to assume
non-constant hazard rate for time to censoring and thus only exponential censoring
time is used in predicting methods in this paper throughout. However, in case having
other censoring process present in the trial, other parametric censoring other than
exponential can be incorporated as well. Similarly, hazard rate of death time could
change over time in the trial. For example, cholesterol lowering therapies may take a
year before physiologic changes are sufficient to reduce the hazard (Lipid Research
Clinical Program, 1979). In this regards, parametric death times other than exponential
could also be used in prediction algorithm.

Section 3.5: Prediction for the At-Risk Subjects

As illustrated in Figure 3.1b, predicting during the trial not only need to consider To-
Be-Randomized subjects, but also need to determine the probability of having an event
in (t;,t,] for subjects who remained event-free right in the double-blind phase at
time t;. These subjects are considered to be in the risk set at t; because they
potentially can have an event at any time after t,. For these At-Risk subjects, Sections
3.5.1 and 3.5.2 illustrate the prediction algorithm in the presence of censoring and
without censoring respectively. Section 3.5.3 explores prediction with Weibull death
times as an example. Appendix 3.3 includes all the elements for prediction with or

without censoring, and considers different parametric death times such as exponential,
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Weibull, Log-logistic and Log-normal.

Section 3.5.1: Prediction in the Presence of Censoring
The same considerations made in the prediction described in Sections 3.3 and 3.4 are
noted here. Let random variable of time to censoring for subject i in the control
group be exponentially distributed with hazard rate @.
To calculate probability of having an event in the presence of censoring by t, given
subject is in the risk set at time t;, two machineries are needed (Appendix 3.3). First
machinery is the conditional density of having an event prior to or on t, conditioning
on subject being in the risk set at t,. That is, to take derivative of P(X;c <t, —
Tic|Xic >ty — r;c) with respect to variable of t, —r; when ¢, isvarying from
t; to positive infinity. The second machinery is the truncated survival function of time
to censoring given time to censoring is greater than t; — r;-. Excerpted from
Appendix 3.3, the probability of having an event for At-Risk subject i in the control
group in the presence of censoring is:
P(Xic < t; — Tie, Xic < WiclXic >t — 1i¢, Wic > t1 — 1ic)

= Ex,. [{(Xic < t; —1ic|Xic > t1 — 1ic) P(xic < Wie|Wic >t —13¢) ]

_ (t2—TicdPXicsty—TiclXic>t1—Tic)  exp(=PBcXic)
=)t _r — — — Xic
1~ Tic d(t2—1ic) exp[-@c(t1—7ic)]

The probability of having an event before t, in the presence of censoring for At-Risk

subjects is the event of X;c < t, — 1, and X;c < W;c givenboth X;- > t; —ri¢
and W;. > t; — rjc, where X;. and W;. are exponential random variable for time to
event and time to censoring for control subject i respectively. Note that although time
to death are i.i.d exponential with hazard rate A, and time to censoring are i.i.d.
exponential with hazard rate @., we put a subscript i to represent each subject in the

formulation because conditional density and probabilities differ from each other due to
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the difference in t; — r; resulting from different randomization time from subject to
subject. Probability of event of X;- <t, —r;c and X;c < Wjc given both

Xic > t; — 1y and Wi > t; — 1, as in Appendix 3.3, can be expressed as the
expected value of an indicator function. Conditioning on random variable of time to
censoring W, eventof X;r < t, — 1ic|Xic > t; — ;¢ Can be separated out. Then
two machineries mentioned above can be multiplied together as the integrand to be
integrated in the range of (t; — rj¢, t, — 1ic] to get the required probability for each
subject in the risk set.

For subject i in the risk set at t;, the conditional probability accompanying with

.. Aclexp[=(Ac+0c)(t1-1ic)]—exp[—(Ac+Dc) (t2-Tic)] ] _

censoring is . When =0, the case
g (Ac+0c)exp[—(Ac+0c) (t1-Tic)] Dc

exp[— Ac(t2—-7ic)]

with no censoring, this pr ili ner 1-— :
th no censoring, this probability degenerates to Py ro—

Section 3.5.2: Prediction for Subjects in the Risk Set in Case There is No

Censoring
Unlike the prediction carried out prior to trial start in Section 3.3, each subject in the
risk set has unique randomization date, hence has varying length of time from
randomization to prediction time t; and we do not make use of randomization
accrual rate similar to what we did in predicting number of events prior to trial start.
Deriving conditional probability directly for each individual and then summing all
probabilities to get predicted number of events by t, are what we propose (Appendix
3.3).  Without considering censoring, the conditional probability for subject i to
have an event before t, givenbeingatriskat t; is P(Xjc <t, —1ic|Xic > t; —

Sc(ta—1ic)

Tie) =1- Sc(ti-ric)’
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This probability degenerates to be 1 — Sq(t, —1;¢c) when t; = rjc. In this case,
this subject is no longer present in the risk set at t;, but could be considered as being
randomized right at t;. The probability of having an event before t, should be
exactly one minus the survivor probability. When plugging in exponential death time,
P(Xic <ty — 1ic|Xic > ty — 1ic) becomes 1 — exp[— A¢(t, — t1)], which shows the
memory-less property of exponential distribution, with which the probability is only
function of t, — t;and the time staying in the trial prior to t,is fully ignored as there
IS no memory on it at all.

Section 3.5.3 When Death Time is Weibull or Another Type
There is no reason to assume non-constant hazard for time to censoring in clinical trial
where withdrawals are non-informative with regard to death time process, but death
times themselves could have non-constant hazard overtime. In case of other death time
distribution, P(X;c < t, — 1i¢c|Xic > t; — i) Will no longer have memory-less
property for exponential death times; and
P(Xic < t; —1ic, Xic < WiclXic >ty — 1ic, Wie > t; — 1;¢) in the presence of
censoring will be even harder to calculate. For other parametric death times, it is not
easy or even possible to find the closed form for probability of having an event before
t, for subjects in the risk set with or without censoring. However, numerical
integration can easily help with calculating this probability measure. For example,
consider the two-parameter Weibull distribution with hazard function A(t) =
AY(A)Y~1, Y,A > 0. The hazard is monotone decreasing for Y < 1, increasing for
Y > 1, and reduces to the constant hazard if Y = 1. The probability for At-Risk

subject i to result in an event before t, is
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E(e;) = ftz—ric dP(Xicsta—TiclXic>t1-Tic) _ exp(=BcXic) ,
e t1-Tic d(tz-7ic) exp[-Bc(ti-ric)]  ©

t2=Tic AcYc[AcXic]C " exp[~[Acxic] 'C _Bcexp(—Bcxic) .

t-ric  exp[-e(tmio]'C exp[-@e(ti-rig)] ¢

When censoring process is ignored, it degenerates to

_ (t2—Tic dPXicsta—1iclXic>t1—Tic)
E(eic) - f s dxiC
t1-Tic d(t2-7ic)

ftz_ric AcYc[Acxic] Y exp[—[Acxic] € dx:
ti=Tic exp[—[Ac(t1-Ti0)] € e

Prediction for At-Risk subjects with death times in Log-logistic or Lognormal
distribution with or without censoring is also explored in Appendix 3.3. Different from
prediction for To-Be-Randomized subjects, all At-Risk subjects at t; should be
evaluated to contribute to the effective number of events accumulated in (¢4, t,]. The
number of events from this cohort is referred as “eypisr”, Which is

E(e.) + E(ep)=215 PXic <ty — Tie, Xic < WiclXic > & — e, Wie >t — 1i¢) +
Z?fl P(Xip < t; — 1ig, Xic < WiglXig > t; — 1ip, Wig > t1 — 1ig)

or

E(e.) + E(ep)= X5 PXic <ty —1iclXic >t —1ie) +

YiE P(Xip < t; — 1iglXip > t; —1ig,)  for cases with censoring or without

censoring respectively.

Section 3.6: Clinical Trial Example

During the conduct of a recently completed clinical trial (Berwaerts et al, 2015), the
proposed methodology was implemented to yield accurate prediction of events.
Briefly, this study evaluated the efficacy of an investigational compound compared to

placebo in delay of the time to first occurrence of relapse. The study consists of 4

116



phases: a screening Phase (up to 3 weeks); a 17-week flexible dose open-label
transition phase; a 12-week fixed dose open-label maintenance phase; and a
randomized, double-blind, fixed dose, placebo-controlled relapse prevention phase of
variable duration. Subjects remained in the study for as long as they were clinically
stable or until the Sponsor stopped the trial.

As part of study design, it was assumed that the 12-month relapse rates for treatment
and placebo will be 20% and 40%, respectively, resulting in a hazard ratio of 0.44.
Approximately 196 subjects were expected to be randomized in the double-blind
phase in a 1:1 ratio to either treatment or placebo in order to obtain 70 relapse events
to show that treatment is significantly different from placebo at the 2-sided
significance level of 0.05, with 90% power to detect a hazard ratio of 0.44. A 2-stage
group-sequential design with one interim analysis was proposed to allow for early
stopping if there was significant evidence of efficacy based upon the interim analysis
after 60% of the projected relapse events (i.e., 42 relapse events) have occurred. It was
assumed that at least 50% of subjects who enter the transition phase would discontinue
the study or not meet the criteria for randomization in the double-blind Phase. To meet
the expected number of 196 subjects (98 per treatment group) to be randomized in the
double-blind phase, a total of 392 subjects were to be enrolled. The total number of
subjects enrolled depended on the time that it would take to obtain 70 relapse events.
The actual total number of subjects enrolled was 506.

Several predictions were carried out during the course of trial to help with trial
monitoring. One such prediction based on data from November 29, 2013 is used for

the illustration below (Figure 3.2). The study begun on April 26, 2012, first subject

117



was randomized on November 26, 2012 and first event has occurred at December 10,

2012. Figure 3.2 illustrates the states of affairs on November 29, 2013.

506 subjectzenralledin
thetransition Phase

e 187 withdrew early

& SBongoingat £y (assumed
63% of 58 subjects will be
randomized after & (Epg)

A4

261 randomizedintothe
double-Blind phase

* 28 eventsas of &y (Epee)

o 13 early withdrawals

* 220 ONZ0INZ (Egrrige)

Figure 8(Fig. 3.2): Study Completion and Withdrawal

Figure 3.2: Study Completion and Withdrawal Information at Predicting Time
t; of November 29, 2013.

By November 29, 2013, enrollment of subjects into the transition phase has been
completed, the subjects who were still in the transition/maintenance phases were the
only eligible cohort to be randomized after November 29, 2013 to have event and
subjects who were ongoing on November 29, 2013 could have event later on. Since
187 (37%) of the 506 enrolled subjects had withdrawn early from the
transition/maintenance phase, we assume that 63% of other remaining subjects (n=58)
in the transition/maintenance subjects would be randomized after t;. Thus, a uniform
random variable is generated for each of the 58 subjects and a subject will be
randomized after t, if the uniform random variable is greater than or equal to 0.37.
Therefore, among 58 subjects who were on-going in the combined
transition/maintenance phases at prediction time, only 31 of them will be randomized

later.
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As shown in Figure 3.2, we then predict the time to achieve required number of events
t, (with t, > t;) based on data as of November 29, 2013 (t;):
e 28 events occurred in the double-blind before November 29, 2013 (i.e.
€occ=28);
e Subjects (N=220) who were event-free in the double-blind phase on November
29, 2013. The predicted number of events before t, in this group is denoted
as eatrisk;
e 63% of the subjects (n=31) who were ongoing during the
transition/maintenance phases at November 29, 2013 and will be randomized

after t;. The predicted number of events in this cohort is denoted as e, -

Section 3.6.1: Plotted Survival Curves at Time t4
Before implementing prediction algorithm on cutoff date of November 29, 2014, we
derive the parametric death time distribution for prediction using exponential,
Weibull, Log-logistic and Lognormal distributions. Parameters were extracted after
fitting data with a parametric death time distribution of interest and were then used to
create parametric survivor curve over time to compare with non-parametric Kaplan-
Meier (i.e. KM) curve. The parametric distribution closest to non-parametric KM plot
would be considered appropriate. In order to maintain treatment information blinded,
one combined group is used to extract parameters for death times instead of having
treatment specific parameters. Figure 3.3 shows the KM plot along with fitted
parametric death curves of exponential, Lognormal, Weibull and Log-logistic

separately.
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Figure 9(Fig. 3.3): KM plot and estimated parametric survivor curves at November 29

Figure 3.3: KM plot and estimated parametric survivor curves at time t; of
November 29, 2013 for the combined group in the DB phase
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In addition to the plot, we calculated the distance between a particular parametric
curve and KM plot at each death time point. Suppose there are | distinct death time
points in the combined group in above KM plot (multiple events can occur at the same
time point), s;xwm Is the survivor probability for KM plot at ith time point while s; ,
is for a particular parametric survival curve. The sum of squared differences over all ]
distinct time points is summarized for death times of Exponential, Weibull, Log-

logistic and Lognormal against KM plot respectively in Table 3.1.

Table 10(Tab. 3.1): Sum of squared difference between survivor curve of a parametric distribution and the
KM plot

Table 3.1: Sum of squared difference between survivor curve of a parametric
distribution and the KM plot

Exponential | Weibull | Log-logistic | Lognormal

Sum of squared differences 0.066 0.119 0.099 0.050

J
= Z(si,p - Si,KM)Z
i=1

From Figure 3.4 and Table 3.1, it is difficult to choose the best parametric death time
distribution to use for prediction, so all are used for prediction. This allows the
prediction to yield a range of dates that could be used for trial monitoring and
operational planning.

In the Section 3.6.2 details on using data from November 29, 2013 to predict the
calendar time, by which 42 relapses (including 28 relapses that had occurred prior to
or on November 29, 2013) can be accumulated in the double-blind phase. Parameters
for each parametric death times based on the combined data were already extracted in
order to do plots in Figure 3.1. The hazard parameter for exponential censoring in the

double-blind phase can be obtained using the same data but by considering time to
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withdrawals prior to the 1st relapse and prior to November 29, 2013 as events while
with the rest being censored at their relapse dates or at the cutoff date November 29,
2013. There is a reason why only early withdrawals are used as censoring events. As
the main goal in this paper is to calculate probability of subject having an event prior
to or on a future time and censoring process that could possibly impact this prediction
is concerned. But most probably only the non-administrative censoring (i.e., early
withdrawals) would have such impacts while administrative censoring won’t have.
Section 3.6.2: Prediction Calendar Time to Achieve 42 Events for Interim
Analysis
The prediction is carried out as follows:

e Estimate parameters for death time: on November 29, 2013 there were 28
relapses that had occurred. For subjects who were randomized but with no
record of relapse are censored at either date of withdrawal or at the cutoff date.
This data is used to fit exponential, Weibull, Lognormal and Log-logistic
distributions, and parameters for the corresponding death time distributions can
be extracted for prediction.

e Estimate exponential hazard rate for censoring: In order to estimate hazard rate
for exponential censoring process, the 13 early withdrawal subjects (Figure 3.2)
in the DB phase are considered as the events and others as censored. This data
is fitted using an exponential distribution to get hazard rate for exponential
censoring parameter @ in the combined group.

e Preparations for obtaining e,.,, in (t,t;]: Using the subset data set (N=31)

from those yet to-be-randomized subjects in the transition / maintenance
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phases at time of November 29, 2013, we derive their randomization dates. For
example, if one subject was at Week 28 visit at November 29, 2013 who will
be eligible for randomization, this subject will be randomized a week later (i.e.,
December 6, 2013).

e Preparations for obtaining eyqisk IN(ty, t2]: For the 220 subjects who are
already in the double-blind phase on November 29, 2013, we save their

randomization dates which have occurred prior to the cutoff date for prediction.

There are 8 scenarios of predictions: Table 3.2 includes prediction results with death
times of exponential, Weibull, Log-logistic, Lognormal respectively when censoring is
not present; and Table 3 includes prediction results from the same set of parametric
death time distributions but in the presence of censoring.

For each scenario, in order to predict t,, the earliest time to accumulate 42 events in
the double-blind phase, a date after t; is chosen for initial prediction. For example,
we choose January 01, 2014. e,,,, and ey ;s at t,=January 01, 2014 are then
calculated using algorithms in Sections 4-5 and Appendixes 2-3. If the total number of
events (i.e. e = eyec + €new T €atrisk) 1S €SS than 42, we then increase the date and
redo calculation until the earliest date to accumulate 42 events for interim analysis is

achieved.
Table 11(Tab. 3.2): Prediction of the earliest date to obtain 42 events assuming no censoring

Table 3.2: Prediction of the earliest date to obtain 42 events assuming no

censoring
Exponential Weibull Log-logistic Log-normal
€occ 28 28 28 28
€atrisk | tz =Jan20,2014 | 13.2 | Jan10,2014 | 13.71 | Jan11,2014 | 13.86 | Jan12,2014 | 13.60
€new 0.85 0.44 0.439 0.46
e by 42.05 42.14 42.29 42.06
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Table 12(Tab. 3): Prediction of the earliest date to obtain 42 events in the presence of censoring

Table 3: Prediction of the earliest date to obtain 42 events in the presence of

censoring
Exponential Weibull Log-logistic Log-normal
€occ 28 28 28 28
earisk | t2=Feb 6,2014 | 12.83 | Jan10,2014 13.88 | Janl11,2014 | 13.69 | Jan 13.74
€new 1.22 0.45 043 | 13,2014 0.46
eby t, 42.05 42.33 42.12 42.20

Results of the prediction ranged from Jan 10, 2014 (using Weibull death times

with/without censoring) to Feb 6, 2014 (exponential death time in the presence of

censoring). For each death time, predicted date of t, for the case with censoring is

later than or the same as the date using the same death time distribution but without

censoring. This is understandable, because with time to censoring competing with

process of time to event, the time to get required events will be delayed. In our data,

we actually only have 13 early withdrawals out of total 261 randomized subjects. So

the time to censoring barely impacted the prediction dates.

In our example, prediction based on exponential model differs from predictions using

other models, while exponential is easiest one among all prediction and wildly used in

design and monitoring survival trials. This suggests that one cannot rely on one

particular parametric model. In the actual study, the required 42 events needed for

interim analysis was observed on January 24. Based on the prediction, the study team

was able to plan appropriately and external Statistical Support Group (supporting the

Independent Data Monitoring Committee) was ready to go as soon the requisite time

point was reached. Figure 3.4 below depicts predicted total number of events from the

124




prediction carried out on November 29 2013 in the absence or presence of censoring
until the 42 events needed for interim analysis are achieved, compared with the actual
curve for total number of events the trial ended up with (solid line). The upper and
lower plots include depict predictions in the absence and in the presence of censoring
respectively.

An earlier prediction with data cutoff of October 16, 2013 (when only 20 events had
been observed) actually resulted in predicted date range from December 24, 2013 to
January 20, 2014 (Figure 3.5), which was less accurate than predictions done one

month later on November 29, 2013 (Figure 3.4).
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Figure 10(Fig. 3.4): Total number of events over time from prediction time November 2013

Figure 3.4: Total number of events over time from prediction time t;=29
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November 2013 until reaching 42 events. The upper and lower plots include
predictions in the absence and in the presence of censoring respectively.
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Figure 11(Fig. 3.5): Total number of events over time from prediction time October 2013

Figure 3.5: Total number of events over time from prediction time t;=16
October 2013 until reaching 42 events. The upper and lower plots include
predictions in the absence and in the presence of censoring respectively.
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Section 3.7: Discussion

This paper extends Whitehead (2001) to include prediction in the presence of
censoring prior to trial start. Inspired by the need to know when a certain number of
events would be observed during the trial, we develop methodologies to carry out
prediction during the trial with or without censoring using different parametric death
time distributions. Technical details (Appendix 3.1-3.3) are inspired by statistical
appendix in Rubinstein, Gail and Santner (1981). The key is that in the presence of
censoring, the integrand part of this probability can be separated into two parts
because of the independence between death time and time to censoring.  For
subjects who will be randomized at a given date in (t;,t,], one part is the
unconditional density of death time and the other is the unconditional survivor
function for censoring time; for subjects who are already randomized and in the at-risk
set at prediction time t;, one part is the conditional density of death time and the other
is the conditional survivor function of censoring time given both death time and censor
time are greater than t; — r;c. For prediction during the trial, given t,, integration
range (the time interval in which this subject will result in an event) for each
individual is known and thus the probability of resulting in an event can be obtained
directly. Summing up probability over all subjects in corresponding cohort will obtain
the expected number of events in the interval of interest because expectation of an
indicator function equals its probability and expectation of sum equals the sum of
expectations. For prediction prior to trial start, an additional integration with respect to

randomization accrual variable is needed to obtain the expected number of events
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(Appendix 3.1) prior to calendar time T + .

Methods derived here are both easy to understand and easy to implement. Knowing
the possible calendar time for interim analysis ahead of time makes trial planning
much easier, and needed resources can be deployed in a timely manner such as getting
database ready to be locked for final analysis. Successful prediction during the course
of an actual trial in Section 6 corroborated this claim. Before study start, the prediction
had been based on exponential distribution and study start assumptions suggesting
some time during the third quarter of 2014. The prediction work at later times allowed
the team to adjust timelines based on actual trial data. A more accurate prediction is
needed for trial management, especially for a globally-managed trial involving many
patients, personnel, and functions. The resulting prediction suggested a first quarter
interim analysis.

The prediction algorithm used combined treatment information so there was no need
to unblind the treatment arms. Assumption about treatment group differences have to
be made and this may affect the precision of the prediction. But our trial experience
showed that prediction based on a combined group is good enough for trial
management. Initial trial prediction is based on the same assumptions made for sample
size calculation, and can be enhanced with actual accumulated data. Our methods of
using a series of parametric distributions for single predicted time contrasts with other
methods based on simulating empirical distribution of predicted target time t, based
on posterior sampled parameters as illustrated in Bayesian methods. Although the
latter method has also been used to obtain an interval around the prediction time, extra

sampling/prediction errors will be added for an algorithm which already includes
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uncertainty from prior and MCMC sampling for incomplete data and posteriors.
Nonparametric prediction using Kaplan-Meier estimator to extrapolate the survival
probability into the future together with Bayesian bootstrapped prediction intervals has
also been proposed by Ying, Heitjan and Chen (2004); but was shown to less accurate
than predictions using Bayesian parametric prediction by the same group of authors
(Ying and Heitjan, 2008). Detailed comparisons between these various Bayesian
methods using parametric or non-parametric event times with our method can be the

subject of future research.
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Appendix 3.1: Prediction prior to trial start with exponential death time and
exponential censoring

Assuming that patients are uniformly randomized into an interval [0, T] in unit of
month, the total number of subjects entering the DB phase N=n; +n, will be aT in
total with recruitment rate of a per month over the T month accrual. With
randomization ratio A:1 of treatment group (ng) to control group (n.), then the
expected recruitment in T months for treatment and control groups respectively are:
E[ng] = ﬁ aT and E[n.] = ﬁ aT. Given N, the patient’s entry times will be
independently and identically distributed (i.i.d.) uniformly over [0, T]. Therefore, with
follow-up time T, the times from randomization to end-of-study (EOS) will be i.i.d.
uniform over [z, T+ t] (Figure 1a).

Given atime interval u from randomization onto control group end-of-study, the
probability that this entry will result in an event is:

PIY, < W, Yo < ul =E[IY; < W,, Y. <w] =E[ E[I(Y; < W,, Y. < W|W]]
=E[ I(Y, < u) E[I(Y,< W)|W.]] because of independence
between W, and Y,

=E[I(Y, < w) Sy, (w)]

~ [ fre @sw 0t
0

Sw(w) is the survivor function of time to censoring variable while W, is
exponentially distributed with constant hazard ¢, thatis Sy, .(t) = exp(— ¢ct).
fr. s the probability density function of time to event in the control group, which
has constant hazard A, with density function f,. = Acexp(4¢). Plugging the
density and survivor functions in, we obtain,

PlY, < W, Y.< u] = fou Acexp(— Act) exp(— ¢ot) dt =

o [1 = expl-(Ac + bo)ul]

Similar definitions hold for the treatment group, we have

PlYg < Wg, Vg < u] = f; Agexp(— Agt) exp(— ¢pgt) dt =

[ 1—expl—(As + ¢pe)ul ]

During the T+ ¢ months of trial duration, given n,. subjects randomized into the
control group, the expected number of events in this group is as follows:
E(e.|Inc) = ncP(eventon contro)=ncE[E[I(Y. < W, Y. < w)|u]]

ne fTT+T P(event on control|time from randomization to EOS being u)g(u)du

where g(u) isthe density of u

_ T+t Ac _ _ l

—nch lc+¢c[1 exp[—(4¢c + ¢c)ul I -du

_ _nch [T+ exp[-(Ac+ ¢c)(T+1)]—exp[-(Ac+ pc)T] 1
T (Ac+ ¢¢) Act ¢c

So E(ec) = E[ E(eclnc) ]

_ E(nc) Ac [ T + exp[—(Ac+ ¢pc)(T+1)]—exp[—(Ac+ Pl ]
T (Ac+ o¢) Act+ ¢c
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_ aic [ T + exp[—(Ac+ ¢c)(T+1)]—exp[—(Ac+ po)Tl ]
(A+1) (Ac+ ¢¢) Act ¢c
And
_ _ aA Ag exp[—(Ag+ ¢pp)(T+1)]—exp[-(Ag+ Pp)7]
E(eg) = E[ E(exlng) 1 = i [T+ . ]
Thus,
E(e) = E(ec) + E(egp) =
aT A¢ aATAg a Ac[exp[—(Ac+ @) (T+1)]—exp[-(Ac+ po)tl] +
(A+1) (Ac+ o) (A+1) (Ag+ ¢p) (A+1) (Ac+ ¢c)?

aA Aglexp[—(Ag+ ¢p)(T+1)]—exp[-(Ag+ Ppp)tl]
(A+1) (Ap+ ¢E)? ’

¢c = ¢ = 0, the expected number of new randomized subjects degenerates to:
aAT a[exp[— A¢(T+7)]—exp[— A¢ T]] n aAlexp[— Ag(T+7)]—exp[- Ag 7]]

aT
E(e) = (A+1) + (A+1) + (A+1) A¢ (A+1) Ag

whenever there is no censoring,
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Appendix 3.2: Prediction for To-Be-Randomized subjects who will be
randomized at a known time between t; and t,

At time t;, we are interested in calculating the probability of resulting in an event prior
to oron t, forthose subjects who will be randomized between t; and ¢, (t; <
Tic < ty. Since the randomization time for a control subject is known as 7, with
t; < ric < t,, probability of resulting in an event in interval (¢;,t,] can be
calculated directly and the outer integration as in Appendix 3.1 with respect to
distribution of accrual process is no longer needed.

u; Is the time interval from randomization onto control group end-of-study (i.e.,

u; = t, — 1;¢), and the probability that this subject will result in an event is:

PlY, < W, Y.< w] =E[I(Y. < W, Y, <u)|=E[ E[I(Y, < W, Y, <

u) W] ]

=E[ I(Y, < w;) E[I(Y., < W)IW.]] because of independence
between W, and Y,

=E[I(Y. < w) Sy, ()]

= Iy fre OSwe(OAE=[77 fre (OSwe(©)de

Exponential censoring is used in prediction with survivor function Sy, .(t) =

exp(— ¢¢t). For exponential death times, density of fy.(t) is already given above
in Appendix 3.1. The following are the death time densities when death times are
distributed with Weibull, log-normal or log-logistic function respectively.

Weibull: fy (t) = y.act¥ exp(—a t’s) where o, = 1/y, and a, = exp(—p./
oc)

Log-logistic: fy.(t) =

Log-normal: fy .(t) =

acyctyet
m where y, = 1/0, and a, = exp(—u./o.)

1 1
J2moct exp(— 5
Therefore, P[Y, < W,, Y. < ;] (i.e.,E[I(Y. < W,, Y. <u;)]) for death times of
exponential, Weibull, Log-logistic and Log-normal are respectively:

Exponential: [ Acexp(— Act) exp(— ¢ct) dt
Weibull: [%ycact¥e~t exp(— ¢ct) dt
Log-logistic: [, oty exp(— ¢ct) dt
i 1 1,1 t—uc
Log-normal: [ T XP(—5 1980t y2y oyr(— et) dt

Oc

( 108(;)6—#0 )2)

U acyctYe !

In case of no censoring, f;” fre @®)Sw,(t)dt degenerates to fou" fre (©Ddt =

S(u;), the cumulative density function of respective death time distribution. These are:
Exponential: [* Acexp(— Act) dt = exp(— Acw;)

Weibull: f;”ycactyfl dt = exp(—a. u;¥c)

. - U agyctYeTt 1
Log-logistic: [, —(11;4%)2 dt = —
LW 1 1 log()—pc 2 log(u;)—pc
Log-normal: fo JTacteXp(_E(a—c) Ydt =1-— d)(a—c)

In the case of no censoring, the probability of having an event in interval (t,t,] after
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randomization equals the CDF function with time length w;, where wu; varies and
depends on when this subject will be randomized in (t;, t,]. Closed form for
individual CDF is provided as above. In the case where censoring is present, this
probability can be obtained by numerical integration with formulas provided.

Cnew — E(ec) + E(eE) :2?;1P[Yc < M/C' YC < ui] + Z?£1P[YE < WE! YE < ui]
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Appendix 3.3: Prediction for At-Risk subjects

We first work on the conditional probability of a subject having an event before ¢, in
the DB phase, given that the subject was still in the risk set at time t;.

P(Xic <ty —1ic, Xic < Wil Xic > t1 —1i¢, Wie > t1 — 1i¢)

= E[ I((Xi¢c <t — Tic, Xic < WiclXic > t1 — 1ic, Wic > t1 —7i¢)) |

=E[E[ I((Xic < t; —1ic, Xic < WiclXic > t1 —1i¢, Wic >t — Tic)l Wic 1]

= Ex,. [ Ew, [ 1Xic < t; —1i¢c|Xic > t1 = 1ic) I (Xic < WiclWie >t —130)] |

= Ex,. [I(Xic < t; —1iclXic > t1 — 7ic) Ew, [ I(Xic < WiclWic > t; —1ic) ]

= Ex,. [I(Xic < t; — 1iclXic > t1 —1ic) P(xic < Wic|Wic >t —13¢) ]

Note that P (x;c < Wic|Wic > t; — 1i¢) = Sw, (xic|Wic > t; —1¢) is indeed the
conditional survivor function for censoring random variable, which can be calculated
by integrating of conditional density function over constrained interval [t; —

T;c, +90). The conditional density function is: f(w;c|Wic > t; — 1ic) = W) :
Swe(t1=Tic)
where g(w;.) isthe same as unconditional density function for random variable
Wic, thatis  f(wic) = Ocexp(—Dq.w;c), but restricted on the set of (t; — ric, ).
For exponential censoring, this becomes:

Yy — (©_9Wie) o Bcexp(=BcWic) o
P(WLC|WLC >t rlC) - fxic SWC(tl_riC) fxic exp[—0Bc(t1—Tic)] dWlC
exp(=Bcxic) : o
R a—" Wlth -xlc € (tl- Tic) +0<f). | -
Plugging in the conditional survivor function for exponential censoring,
Ex, [1(Xic < t; —1iclXic > t1 = 1ic) P(xic < Wic|Wie >t —713¢) |
exp(=@cXic)
Ex,. [1(Xic < t; — 1iclXic > t1 — Tic) exp[—@c(tl—ric)]]
_ (t2~Tic APXicsta—TiclXic>t1-Tic) _ exp(=PcXic)

T d(t2=Tic) exp[-0c(t1-7ic)]
In order to calculate conditional probability of having an event before t, for subjects
who are still at risk at time t;, we have to get the derivative of the conditional CDF of
death time with respect to t, — ;- provided that subject is at risk set at ¢, i.e.,

dP(X"CStZEt”C'rX“;Nl_r"C), which can be obtained by taking derivative of ~conditional
2—ric
probability of P(X;c < t, — 1;c|X;c > t; — 1) With respect to time length from
randomization to t,, thatis t, —r;.. We calculate P(X;c < t, — 1ic|Xic > t1 —
r;c) for each parametric death times first.
e LY. o\ — P@i-TicsXic<ta-Tic) _ Sc(t1—-1ic)=Sc(tz—7ic)

P(Xic <ty —1ic|Xic > t1 —1ic) = PXyootyri) Se(ti—ri0)

Sc(tz—ric)

Sc Ty’ where Sq(t; — ric) and S;(t, — r;¢) are unconditional survivor
c\t1—ric

function at time t; — r;c and t, — r;c respectively.
Exponential: P(X;c < t, —1iclXic > t1 —1ic) =1

dxic

=1-

_exp[—Ac(t2—Tic) ]
exp[— Ac(t1-T1ic)

ibull: - N — q _ explac(ta-rig)¥e ]
Weibull: P(Xic < t; = 1iclXic > ty = Tic) =1 exp[-ac(t;—ric)Ye]

LOg-IOgiStiC: P(XiC <t,— riC|XiC >t — riC) =

138



1

1— 1+ac(ta-ric)’ ¢ 1— 1+ac(t1—ric)Ye
;},C 1+ac(t,—ric)Ye
1+ac(t1—ric)

log(t2—ric)—Hc
1_q>(a—clc

)
1_¢(log(t1;ric)—uc)

Taking derivative with respect to t, — r;¢, provided that t; — ;¢ is a fixed value for

subjects still at risk at time t;.
dP(X"CStZ;tr"C'rX‘T“_r"C) for death times of exponential, Weibull, log-logistic and
2= lic
lognormal are then respectively calculated as the follows:
AP Xicsta—TiclXic>t1—Tic) _ Acexpl— Ac(t2—7ic) |

Lognormal: P(X;c < t, —ric|Xic >t —1ic) =1 —

Exponential: d(tz-1i0) = Texpl- Ac(ti-Ti0)
Weibull: dP(Xicsta—TiclXic>t1—Tic) _ Fc(ta=Tic)"e " expl-ac(tz—1ic)¥¢ |
d(t2-Tic) exp[-ac(t;-ric)¥e]
LOg-IOngth dP(XiCStZ_riC|XiC>t1_riC) — [1+ac(t1—ric)7’¢]*ycac(t2—rl-c)yf_l
d(tz-ric) [1+ac(f2—?;ic)yc]2
log(t2—-1ic)—

Lognormal dP(XiCStZ_TiCIXiC>t1_riC) — eXp(_( g( ZG-CLC) “’C) )/(2*\/%) l 1 )

d(tz—ric) 1—d>(710g(t1:cw)_”c) gc =Ty

Combining conditional death time density and conditional survivor function for
censoring, we have the following form of conditional probability for subjects in the
risk setat t; toresultinaneventininterval (t,t,]:
For exponential:
Ex,. [I(Xic < t; — TiclXic > t1 = 1ic) P(xic < Wic|Wic >t —13¢) ]

_ o (t — )] ) 2R exic) g
- t1—Tic Acexp( /1C [xlC (tl rlc)] )eXP[—¢C(t1—TiC)] ic
When t; —r;c = 0, i.e., asubjectisrandomized at time t,, this integration
degenerates to the unconditional case as in Appendix 1. That is:

fotz_r"c Acexp(— Acxic) exp(—@cx;c ) dx;c , which is consistent with what we
derived in Appendix 1. This further confirms the correctness of our derivation.

For Weibull, log-logistic and lognormal death times, there is no closed form for this
complicated integration.

Weibull:

Ex,. [1(Xic < t; — TiclXic > t1 = 1ic) P(xic < Wic|Wic >t —13¢) ]

_ rt2-Tic

_ tz-TicacxicYe rexp[-acxicY¢] exp(=@cxic) d
- t1—-1; — —1:)YC - —7 xlc
ic exp[—ac(t;—ric)¥c]  exp[-Bc(t;—T1ic)]
ta=Tic [1+ac(t1—ric)Yclxycacxic Y™ exp(-@cxic)

Log-logistic: .
0g-log stic ftl_TiC [1+acxicYc]? exp[-0c(t1—7ic)] Xic
log(xjc )-#c 2
Lognormal: ftz—ric exp(—( zlrc ) )/(22m) (i o —1 ) exp(—@cxic) .
. t1—Tic 1_q)<log(t1—ric)—ﬂc) oc ty-Tic eXp[_Q)C(H_Ti(;)] ic
gc

In the case of no censoring, there is no need to go through the above process of taking
derivative, times conditional survivor function for censoring variable, and then
integrating the product integrand back from t; — ;. to t, — 1y, simply P(X;c <
t, — ric|Xic > t; —1;c) is already the correct probability of resulting in an event in
interval (ty,t,] forsubjects atriskat ¢;.
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E(e.) = E[ E(e;;|subject i treated with control and in the risk set)]]
And €at risk = E(e) = 2?;1 E(eic) + 2?51 E(eiE)
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Chapter 4

Planning a Comparative Group Sequential Clinical Trial with Loss to Follow-
up and a Period of Continued Observation

(being reviewed by Statistics in Biopharmaceutical Research)
Abstract: This paper is motivated by Rubinstein, et al., (1981) and Kim and Tsiatis (1990) to
provide a way in designing group sequential trials analyzed using logrank test for comparing
survival under two treatments with loss to follow-up and a period of continued observation,
which are frequently encountered in Phase II/111 clinical trials. A method is developed to
calculate the length of accrual period to assure a desired power for given control group median
time to event, hazard ratio, length of the period of continued observation, information time of
analyses and times of analyses, hazard rate of time to censoring and significance level. The
results show that, similar to trials with fixed duration (Rubinstein, et al. 1981), introducing a
period of continued observation after the end of patient accrual period reduces the total number
of patients required to detect treatment effect substantially. Assuming both time to event and
time to censoring (loss to follow-up) are exponential, the estimator of log hazard ratio (placebo
vs. treatment) is used to test the null hypothesis of equality in survival distributions between
treatment and placebo groups. Tables are created in which total trial duration are calculated for a
wide range of cases for O’Brien and Fleming (1979), Pocock (1977) and Wang and Tsiatis
(1987) efficacy upper boundaries, respectively. For the same accrual rate, three different curves
are depicted to show the impacts of time to censoring and a period of continued observation on
accrual time to ensure power in respective group sequential settings.
Key Words: Survival Trials; A period of Continued Observation; Group Sequential Design.

Section 4.1: Introduction

In clinical trials with survival data, patients are accrued in an accrual period, during which
patients are screened if the inclusion and exclusion criteria are met, may or may not be required
to go through a phase or a couple of phases before randomization, then all patients who meet
randomization criteria can be randomized to either treatment or control group in a ratio of A:1
(treatment versus placebo). The accrual period in this article starts from the first subject being
randomized until the last subject is randomized, and the rate of accrual is assumed to be uniform.
The accrual period is followed by a period of “continued observation”, in which all subjects in
the trial are still exposed to study medication (i.e., treatment or placebo). After being randomized
into the randomization phase until the end of the study (i.e., including both the accrual period

and the continuation period), subjects can have failure, or loss to follow-up (due to loss to
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contact, subject consent, due to adverse event or other reasons), or remain event-free at the time
of study termination. Except for subjects who have failed, all other subjects are considered to be
censored in the randomization phase. The logrank statistic, also viewed as a time stratified
Cochran-Mantel-Haenszel test, is the hypothesis test to compare the survival distribution of two
groups, which is non-parametric and appropriate to use when the data are right-censored and the
censoring is independent of the failure process. The test was proposed by Nathan Mantel (1966)
and was named by Richard and Julian Peto (1972). Logrank test statistic is constructed by
computing the difference between the observed and expected numbers of events in one of the
two groups at each unique observed event time and then summing this difference over event time
points so that a measure for the overall summary across event time points is obtained to evaluate
two survival distributions in their entirety. The logrank statistic can also be derived as the score
test for the Cox Proportional Hazard model (Cox, David R, 1972) comparing two groups. Based
on efficiency of the score test, it is therefore asymptotically equivalent to the likelihood ratio test
statistic if the proportional hazard model holds, whereas exponential failure time is a special case
of the proportional hazard model. George and Desu (1974) proved that the total duration is
minimized when we continue to randomize subjects into the randomization phase until the end of
the trial (i.e., no period of continued observation after accrual period). Rubinstein, Gail and
Santer (1981) explored the impact of a period of continued observation on the number of patients
to be accrued to ensure a required statistical power and found that although total duration of the
trial is increased a little as compared with that of the case with no continued observation period,
accrual time could be reduced substantially as high as 50% or more after introducing a period of
continued observation. Besides substantial cost saving because of reducing the required number

of patients to be randomized, regulatory agencies normally challenge survival trials without a
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reasonable period of continued observation especially when a large cohort of patients get
randomized right close to study termination. This is because this cohort of patients had not been
exposed to the study medication long enough to differentiate the treatment-placebo difference
before trial termination and, hence, how this cohort contributes to overall drug effect is
questionable. Of note, both George and Desu (1974) and Rubinstein, Gail and Santer (1981) only
focused on fixed sample design and similar investigations under group sequential setting are not
yet done.

As trials get larger and longer in the past two decades, numerous group sequential designs have
been developed to ensure overall type | and power requirements. Among them, Pocock (1977),
O’Brien and Fleming (1979) and Wang and Tsiatis (1987) are three of the well-known ones.
Non-binding upper efficacy boundaries, by definition, are defined without considering stopping
for futility lower boundaries, which allow analysis of overrunning data when efficacy boundary
was already crossed and efficacy was claimed in previous stage. Hence one-sided asymmetric
group sequential designs with non-binding upper efficacy boundaries are considered in this
paper. Group sequential trials for, to plan the duration of group sequential trials for survival
response, Kim and Tsiatis (1990) provided algorithm to calculate the required length of the
period for continued observation in the group sequential setting when the accrual period length is
fixed under the scenario that there is no censoring process competing with time to failure.
Different from Kim and Tsiatis (1990), we allow to have time to censoring process; and we
search for the length of accrual period instead of searching for the length of the period of
continued observation as we deem that, in real clinical practice, randomized subjects should have
to expose to the study medication for a period long enough to evaluate drug effect and, hence,

length of accrual is calculated according to a fixed length of the period of the continued
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observation. A required period of continued observation for every subject in the trial allows
biological systems to respond to the investigational drug so that the trial results on treatment
effect are more clinically interpretable.

Section 4.2 lays out the notations and other preliminaries for fixed sample design with survival
response and then for group sequential designs. Section 4.3 describes the calculation of accrual
period length, accumulated number of patients and real times for group sequential analyses with
a period of continued observation after accrual. Section 4.4 lays out the overall characteristics for
such group sequential designs for a wild range of cases. Section 4.5 discusses results and
potential usage of proposed method in practice as compared with common survival clinical trials
without a period of continued observation.

Section 4.2: Preliminaries

There is an accrual period of s, years, during which patients are uniformly randomized into
either the treatment group or the placebo group with ratio of A: 1. After all qualified patients are
randomized, there is a period called continued observation, during which all subjects remain
treated in the randomization phase for another s, years. Time to failure for control subjects is

exponentially distributed with constant hazard rate A., hence with median time M, = In(2)/
Ac. To test against the null hypothesis of equal survival, i.e.,In(A) = 0, where A = ;—C Ap being
E

the hazard rate for experimental group subjects, we wish to have a pre-specified power against
one-sided alternative of In(A) > 0, or A > 1. During the randomization phase, time to failure
are independently and identically distributed (referred to as ‘i.i.d.”) within groups and
independent of entry time as well as being independent of time to censoring process, where time
to censoring are i.i.d.s with exp (¢), with the same hazard rate ¢ in both groups. The reason to

use In(A) instead of A is because In(A) is less skewed and has a more accurate asymptotic
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approximation, where A is the estimated hazard ratio.

For a fixed sample design, to test H,:In(A) = 0 vs. H4: In(A) > 0 at one-sided significance level
of a/2 and power of 1 — B under alternative hypothesis, we need to link log hazard ratio with
the overall type | and Il error requirements using asymptotic properties of the logrank statistic;
and then calculate accrual period length to ensure required number of events, which is closely
associated with testing power. In Appendix of Rubinstein, Gail and Santer (1981) proved that
In(A) is asymptotically normally distributed with mean In(A) and variance 2 = [E(e.)]™! +
[E(ez)]™1, where E(e.) and E(eg) are expected number of events accumulated at the end of
the trial for control and experimental groups respectively and the total trial duration is s, + s.
Of note, symbol A in the following equations is the randomization ratio of treatment group
relative to placebo group, where A = 1 is used for all examples in this paper to indicate equal
randomization in the randomization phase.

From Appendix 1B’ at end of this paper, when accrual rate is m per year, we have:

_ m ¢ _ exp[—(Ac+@)sr|—exp[-(Ac+P)(sa+sf)]
Eec(s) = Gy tagre |5 Py and

_ mAAg _ exp[-(Ag+¢)sy|-exp[-(Ag+@)(sa+sy)]
Eex(5)) = Gy v [ a A+

Because In(A) = 0 under the null hypothesis, the asymptotic one-sided size a/2 test of
H, vs.H, rejecting null for ln(Z) > 6 Zi_q/2, Where Z;_,/, isthe standard normal (1 — a/
2) quantile and Z is the standard normal random variable. To have power 1 — 8, we then have

to have Py, (In(A) > 6 Z;_,,)=1 — . Using normal distribution property, we obtain

In(a)
(Z1-a\2tZ1-p)

[E(e)]™ + [E(ex)]™ =] 12 (4.1

Moving the right-hand side of Equation 1 to its left side, a function equal to zero (i.e., f(s;)=0) is

created. Utilizing Newton-Raphson method, we can reversely find accrual time of s, for the
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-1 -1
fixed sample design. Derivative of f(s,) contains two components: % and %,
which are derived in Appendix 4.1B’.

dfix
2 )

Additionally, if under null hypothesis, when E(e.) = E(eg) = with dg;, being the total

number of events accumulated at the end of the trial for a fixed sample design, variance of log

4

hazard ratio afzix = [E(e)] '+ [E(ep)] L = - The standardized test statistic based on

fix

estimate of log hazard ratio is asymptotically equal to logrank statistic. That is In(2) Z .

(o3

We now explore the relationship between In(A) and the logrank test statistic in a group

. . . . . .. -~ 1
sequential setting. Since the sequential version of Logrank test statistic T(s) = ln(A) *=

=17, where T (s) has asymptotical normal distribution of (s) ~ N(In(A) V(s), V(s)) , V(s)

8
is the reciprocal of the variance of In(A) attime s (or called as the Fisher’s information for
ln(Z) attime s, with s € (0, s, + s¢)), which is approximately ?, or precisely V(s) =

1
[E(ec(s)] ™ +[E(ep(s)]™?

,when s = s, + s¢. Z, as before, is the standard normal random variable.

Normal approximation of the sequential Logrank was first proposed by Armitage (1975),
verified via simulation by Gail, DeMets, and Slud (1981), refined by Jennison and Turnbull
(1984), and finally proved by Tsiatis (1982), Sellke and Siegmund (1983), and Slud (1984).

To implement a particular group sequential test, Fisher’s information for a group sequential trial
is obtained by multiplying the Fisher’s information of fixed sample design by a factor (denoted
as 1/R4sq) to ensure power of testing the null against the alternative in the group sequential
setting (Jennison and Turnbull, 2002). Therefore, the variance of sequential test at time ¢t; is the

time fraction multiplying R4, and then multiplying variance of the corresponding fixed sample

design. Suppose analysis time s becomess;,i =1, ..., K, where t; is the information fraction
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used at s;, and K analyses are performed for a group sequential design, variance at s;

ti*Rgsa*dfix (4.2)

V(si) = t; * Rgsd * O-fzix = 2

Alternatively, we can calculate variance of In(A) attime s; as

V(s) = E(e.(s))]™ + [E(ex(s))]™ (4.3)
Equating Equation 4.2 with Equation 4.3, we can easily find a way to search real time for
interim analysis at time s; (see Appendices 4.1A and 4.1B), as all numbers in the right hand of
Equation 4.2 are given by design parameters and s can be searched using Newton-Raphson
algorithm. Given a function f defined over s;, and its derivative f', we begin with a first guess

sio for aroot of the function f. Provided the function satisfies all the assumptions made in the

f(si,0)

derivation of the formula, a better approximation s;; is sj; = sjo — P,
1,0

The process is

s,
repeated as s; ;41 = Sin S Gn)

T e until a sufficiently accurate value s; is reached.
in

That is, target function f is as follows:

i — [E(ec(s))]7t + [E(eg(s;))]™t = 0. Based on Appendix 4.1A, when s; < s,

ti*Rgsa*dfix

E(ec(s)) = Grpong [~ et 2] and

E(eg(s)) = %[ i~ 1_exp[;:j;+¢)si]] :

When s;> s, . E(eu(s;)) = (AHZ'ET;W[ . exp[—(Ac+¢)(si—lscai{;exp[—(Ac+¢)si]] and
E(es(s))) = (A+1T;lz4::‘+¢)[ o\ exp[—(AE+¢)(5i_;:i]d:exp[—(AE+¢)5i]] .

Searching for s using Newton-Raphson needs f'(s;), which involves dB(ec(s)) ! and

dE(ep(s) "

. Both are provided in Appendices 4.1A and 4.1B for s; <s, and s; > s,
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respectively.

Section 4.3: Design of Group Sequential Trials with a Period of Continued Observation

For a group sequential design, to test Hy:In(A) = 0 vs. Hy:In(A) > 0 with i = 1,2,...K, we
have to satisfy both type I and Il error requirements under group sequential settings. Considering
a group sequential trial with K planned analyses, let 6 be the parameter of interest, a measure
of placebo-drug difference and assume it can be estimated from trial data. The distribution of
statistics Z; ,Z, , ..., Zx are derived from cumulative data up to stages from 1,2 ...K, and it
follows a canonical joint form (Chapter 3, Jennison and Turnbull, 2000) of multivariate normal
distribution with E(Z;) =6./t; and Cov(Z;, Z;)=\/t;/t; ,1<i <j <K and {ty, ..., ti} are
information levels for parameter 8, whith final t, = 1.

Startng with notations in Section 4.2, where time s is on continuous scale ranging from 0 to end
of study time s, + s¢, analysis times in group sequential design are discretized at K time points.
Now, analysis time s becomes s;,i = 1,...,K, where sx = s, + s¢. Accordingly, to
accommodate group sequential notations, we denote, on the discretized time points instead, e ;
is the accumulative number of events at Stage i, which is the same as e.(s) in Section 4.2, with
s = s;. Simliarly, eg; d;,V;i=1,..,K, arediscretized versions of eg(s),d(s) and V(s)
respectively with s = s;.

Because of asymptoticl normality of T(s) (with s = t;) mentioned in Section 4.2, standardized
logrank statistic at (Chapter 13.2, Jennison and Turnbull),

5@ _

o

Z obtained at Stage i aproximately has the canonical joint distribution,

withstandardized information level of

ti= 5t = (E(eca)]™ + [E(es) 1™/ (E (eci)] ™ + [Eesi)]™) = (/G
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For a group sequential test, upper efficacy boundaries (Equation 4.4) are made to preserve type |
error under null hypothesis. Non-binding upper boundaries {u,, ..., ux} are used as their
calculations do not depend on lower bounds of {l;, ..., lx}. Fisher’s information vector, which is
Rgsa * {t1, ..., tx} and a multiple of standardized information vector, together with Kim-DeMets
(1987), s used to search for the lower boundaries to maintain per-specified power under

alternative hypothesis (Equation 4.5).

a
PHO{Zl = u;UZ; 2 u,U - UZg Zuk}zi (4.4)

PudZi 2w} + Py {lhi<Zy<w,Zo2ud+ -+ Py (i <2y Suyp Iy 2y <
Ug_1, Zg = ug}=1—p (4.5)
Tables and Figures in this paper are created using O’Brien and Fleming (1979), Pocock (1977)
and Wang and Tsiatis (1987) with shape parameter of 0.15 as efficacy upper boundaries
respectively. For lower bounds {l;, ..., lx}, power spending is used with shape parameter of 0.8.
Thatis: f(t;,8) = B *t)®,i =1,2,...,K. For aequally-spaced three-stage group sequential
design (i.e., t® = (0.33,0.67,1)), the cumulative type Il error when overall g = 0.2 is
f(t,B) = (0.082,0.145,0.2).
Here are the steps to calculate design parameters for group sequential trials for survival response:
1) Use a,B and log hazard ratio under alternative hypothesis to calculate required number
of events for fixed sample design dy;y.
2) Use Equations 4.4 and 4.5 to calculate {ly,..., lg}, {uq,...,ux}, and Rygq,.
3) Given sy and tx = 1, search for s, for a group sequential design to ensure power of
group sequential test by obtaining dg;, * Rysq. And the second derivatives of target

function f used in Newton-Raphson search are provided in Appendix 4.1B°.
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4) For the ith interim analysis, inverse search of real time s;i =1, ...,K — 1, forthe ith
interim analysis is performed using Newton-Raphson algorithm as explained in Section
4.2 with the second derivative of target function f provided in Appendices 4.1A and
4.1B for s; < s, and s; > s,, respectively. Of note, the searching process can start from
initial real time vector s;o = (sq + sf) * t;.

5) Number of patients recruited at stage i,i =1, ...,K, is N; = ms; if s; <s, , otherwise

N; = ms, if s; > s,.

Section 4.4: Examples

With all examples with one-sided type | error of 0.025 and power of 0.8, K=3 three-stage
group sequential designs, median time of failure for the control group =1 year, three different
information times are chosen: t( = (0.33,0.67,1),t® = (0.5,0.75,1), and t® =
(0.2,0.8,1) to represent equal increment of time fraction, interims occurring in the later part of
the study and first interim occurred in the early part and later ones in the later part for ¢, t(®
and t®), respectively. Hazard rate of A./Ag is ranging from 1.3 to 3 in Figures 4.1-4.2. Lower
rate of accrual with m = 50 per year is used to compare with brisk accrual of m = 240 per
year which is 20 patients per month. O’Brien and Fleming (referred to as ‘OBF’), Pocock and
Wang and Tsiatis(referred to as “WT’) are plotted in red, blue and green respectively in Figures
4.1- 4.2. ‘Fixed’ denotes cases for fixed sample design.

For Figures 4.1- 4.2 as well as Tables 4.4 - 4.6, there are three types of design features in terms
of with/without censoring and with/without a period of continued observation. Types A, B and C
are depicted using solid line, dotted line and dashed line respectively in Figures 4.1- 4.2.

Type A: With censoring (¢ = A./2) and no continued observation (s, = 0)

Type B: No censoring(¢ = 0) and no continued observation (s; = 0)
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Type C: No censoring(¢ = 0) and continued observation for s, =1 year

Comparing Type B with Type A shows the impact of competitive censoring on enlarging
necessary accrual time and trial duration and comparing Type C against Type B gives the effect
of adding a continued observation period on shortening accrual time but enlarging total trial
duration. Varying hazard ratios and slow accrual versus quick enrolment rate on the extent of the
above are assessed by evaluating Types A, B and C under a certain combination of hazard ratio
and accrual rate.

Table 4.1 shows that eliminating censoring decreases required accrual time more for low accrual
rate than that of high accrual rate: under t™, by 4.57 years for OBF with rate of 50 per year
and hazard ratio of 1.3 (from 15.18 to 10.61), while only 0.67 years (from 3.98 to 3.31) for rate
of 240 per year at the same low hazard ratio 1.3; similarly but to a much lesser extent for high
hazard ratio of 3: by 2.10 years (from 2.39 to 2.10) for m=50 per year as compared with by 0.05
year (from 0.98 to 0.93) for m=240 per year. Similar trends exist in all three group sequential
designs and all three time information vectors. This confirms that the power of detecting
treatment difference for survival trials only depends on number of events. When accrual rate is
low and/or hazard ratio is small, more time is needed to accumulate events to ensure power.
Therefore, the impact of competing from censoring will enlarge the accrual time more for either
lower accrual rate and/or lower hazard ratio as events will take longer time to occur in the
treatment group. Table 4.1 also shows that including one year of continued observation always
shortens required accrual years: from 10.61 to 9.86 years, from 2.10 to 1.36 years, from 3.31 to
2.59 years and from 0.93 to 0.38 years for OBF tests performed at t( information times with
m=50 per year and A = 1.3, m=50 per year and A = 3.0, m=240and A = 1.3 and m=240

per year and A = 3.0 respectively, where the saving for the last case with both high accrual rate
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and high hazard ratio is more than 50%!

Table 13(Tab. 4.1): Accrual time for group sequential designs for low or high hazard ratio

Table 4.1: Accrual time for group sequential designs for low or high hazard ratio (1.3 vs.
3.0) and slow or brisk accrual rate (50 per year vs. 240 per year), a/2=0.025, =0.2,
¢ =2,/2 for Type Aand sy =1 years for Type C.

Fixed OBF Pocock WT

A B C A B C A B C A B C

a=50 | t® | 1542 | 10.78 | 10.03 | 15.18 | 10.61 | 9.86 | 16.77 | 11.62 | 10.87 | 18.72 | 12.85 | 12.10

t® 15.33 | 10.70 | 9.95 | 16.18 | 11.24 | 10.49 | 18.89 | 12.96 | 12.21

t® 15.18 | 10.61 | 9.86 | 16.90 | 11.70 | 10.95 | 18.65 | 12.81 | 12.06

a=50 |t | 216 1.93 1.23 2.39 2.10 | 1.36 | 2.55 2.23 1.48 2.75 2.38 1.62

t@ 240 | 211 | 137 | 249 | 218 | 1.43 | 2.77 | 2.40 | 1.63

t® 2.38 2.10 | 1.36 | 2.57 2.24 1.48 2.75 2.38 1.61

a=240 | t® | 4.02 3.34 2.62 3.98 331 | 259 | 432 3.55 2.82 4.73 3.84 3.11
A=13

t® 4.01 333 | 2.61 | 419 3.46 2.74 4.77 | 3.86 3.13

t® 3.98 331 2.59 | 4.35 3.57 2.84 4.72 3.83 3.10

a=240 | t® | 087 0.83 0.33 0.98 093 | 0.38 | 1.04 0.98 0.41 1.11 1.04 0.46
A=3.0

t® 0.98 0.93 0.38 | 1.02 0.96 0.40 1.11 1.05 0.46

t® 098 | 093 | 038|104 |098 |042 | 111 | 1.04 | 046

Figures 4.1- 4.2 are the counterparts of Figure 1 in Rubinstein, et al., (1981), but expanded to
include group sequential designs. Accrual time s, required to conduct a test against

Hy: In(A) = 0 is plotted on the x- axis with size a/2 = 0.025 and power of 0.8 (8 = 0.2) to
detect the alternative A on the y-axis. For all curves in Figures 4.1- 4.2, median time to failure
for control group subjects is always 1 year. Figure 4.1 plots the curves for long duration trials

with slow accrual (m=50 per year) while Figure 4.2 plots short duration with a brisk accrual
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(m=240 per year). Within each set (one particular design with a certain information time vector),
consisting of three types, the upper curve represents Type A, the case with censoring present

(¢ = A./2 and sy = 0); the middle curve represents Type B, the case with no censoring and no
continued observation period (¢ = 0 and s, = 0); and the lower curve represents Type C, the
case with one-year of continued observation period after accrual ends (¢ = 0 and s = 1).
Figures 4.1 - 4.2 and Tables 4.2 - 4.4 show that, similar to fixed sample designs, in group
sequential designs, eliminating one-year of continued observation only reduces 1/4 year in
total trial duration ( from 14.25 years to 14 years for OBF, t™), A = 1.25,m = 50 per year),
that is to say, accrual time increases for 3/4 years. This is kind of counter-intuitive but quite
inspiring: there are indeed two ways to collect events for a survival trial, recruiting more patients
or following patients in the trial for a longer time. An ideal way needs to be identified, on one
hand, to account for disease characteristics for enough exposure so that treatment effect can take
place; and on the other hand to shorten time length and meet economic cost limitations. Half of a
year saving in time or fifty less subjects to be recruited matters a lot in today’s drug development
process in face of harsh competition and high cost in conducting clinical trials. Eliminating one-
year of continued observation reduces very little for a short duration trial with a rapid accrual,
i.e., m =240 per year, from 4.35 years to 4.07 year for OBF, t(), A = 1.25; in other words,
only increases in accrual time by 0.72 years. Subsequently, this elimination will result in accrual

of a large chunk of patients to compensate for lacking a continued observation period.
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Figure 12(Fig. 4.1): Required accrual time (slow) vs. hazard ratio

Figure 4.1: Required accrual time vs. hazard ratio (from 1.3 to 3.0) for accrual rate of 50

per year, a/2=0.025, and f=0.2 (color figure available online).
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Figure 13(Fig. 4.2): Required accrual time (fast) vs. hazard ratio

Figure 4.2: Required accrual time vs. hazard ratio (from 1.3 to 3.0) for accrual rate of 240
per year, a/2=0.025, and B=0.2 (color figure available online).
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Tables 4.2 - 4.4 furthermore show that, in contrast to a long trial with slow accrual (m = 50 per
year), for short trial with rapid accrual rate (i.e., m = 240 per year), adding censoring process
will increase accrual time, subsequently in total trial time to a less extent. Let’s take OBF, t(1,
A = 1.25,m = 240 per year s;=0 as an example, censoring (@ = 0.5A.) adds 1 years in total
trial duration (from 4.07 years to 5.07 years) while for 6.4 years (from 14 years to 20.40 years)
when with a shorter trial associated with low accrual time of m =50. Actually, from Figures
4.1- 4.2, we can also see adding censoring changes little in accrual time for long trials with brisk
accrual unless hazard ratio is less than 2. On the other hand, this reminds us that accounting for
censoring in designing group sequential survival trials are important when we have a long trial
associated with slow accrual and/or alternative hazard ratio is small. In such cases, ignoring
censoring will result in underestimated trial accrual time and total trial duration, which leads to
inadequate design preparation. Unfortunately, ignoring censoring widely exists in designing

clinical trials with survival endpoint from practices nowadays.

Table 14(Tab. 4.2): Total trial duration for OBF group sequential trials

Table 4.2: Total trial duration for OBF group sequential trials when information vector is
t(, m =50 per year or 240 per year, s¢=0, 0.5, 1, or 2 years, %: 0.025, and B =0.2.

A | @=0 $=0.25A. | §=0.5A. B=A.

50 240 | 50 240 | 50 240 | 50 240

s¢=0 1.25|14.00 | 4.07 | 17.12 | 4.54 | 20.40 | 5.07 | 27.13 | 6.26
15 |549 201|632 |213|7.26 |2.26|9.35 | 2.56
2 296 | 122|322 |1.27 (353 |132|4.25 |1.42
3 210 | 093|223 |095(239 |0.98|274 |1.04

s¢=0.5|1.25|14.06 | 4.15 | 17.21 | 4.63 | 20.50 | 5.17 | 27.27 | 6.39
1.5 | 556 |210|6.40 |2.23|735 |237]9.48 |2.69
2 3.03 |134|3.30 |[1.39|3.62 |144|4.36 |1.56
3 217 |1.06]231 |1.09]|247 |112|2.84 |1.19

se=1 1.25|14.25|4.35|17.43 | 4.86 | 20.75 | 5.43 | 27.57 | 6.70
15 |573 233|661 |248|7.59 |2.64|9.77 |3.00
2 321 163|350 169|384 |1.75|4.64 |1.89
3 236 | 138|251 |141)269 |1.45|3.10 |1.53

Sg=2 1.25|14.84 | 498 | 18.12 | 5.55 | 21.51 | 6.18 | 28.42 | 7.55
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1.5 |6.31 [3.05|7.26 |3.23|8.32 |3.42|10.60|3.84
2 3.81 |243|4.15 |251 (454 |258|5.44 |2.75
3 299 |223|3.17 |2.27 (338 |232|3.87 |241

Table 15(Tab. 4.3): Total trial duration for Pocock group sequential

Table 4.3: Total trial duration for Pocock group sequential trials when information vector
is tM, m =50 or 240 per year, s =0, 0.5, 1, or 2 years, %: 0.025,and B =0.2.

A 9=0 ?=0.25A,  |#=0.5A, D=A.

50 240 |50 240 |50 240 |50 240
si=0 [1.25 15.38 4.39 [18.91 4.92 22.57 |5.53 [30.10 |6.88
1.5 593 [2.14 16.88 (2.27 [7.95 .42 (10.31 2.77
2 3.16 |1.30 [3.46 (1.35 3.81 [1.40 4.63 [1.52
3 2.23 |0.98 [2.38 |1.01 2.55 |1.04 2.96 |1.10
s¢=0.5|1.25 1545 4.46 |19.00 5.01 [22.67 5.63 [30.23 |7.01
1.5 6.00 [2.23 16.96 [2.37 8.04 [2.53 (10.44 [2.90
2 3.22 |1.41 (3.54 (146 (3.89 [1.53 4.75 |1.66
3 2.29 |1.11 (245 [1.14 [2.63 [1.17 [3.06 |[1.25
si=1[1.25 [15.64 4.66 [19.21 |5.24 |22.93 |5.88 [30.54 [7.32
1.5 6.17 246 |7.17 [2.62 8.28 [2.80 (10.73 [3.20
2 340 [1.69 (3.73 [1.75 4.12 [1.82 5.02 (1.98
3 2.48 |1.41 [2.65 [1.45 [2.84 [1.49 [3.31 |[1.58
sF2 (1.25  [16.23 |5.28 [19.90 [5.93 [23.68 6.64 [31.38 [8.17
1.5 6.74 |3.16 [7.82 [3.35 [9.01 [3.57 [11.56 4.04
2 399 248 4.37 256 481 [2.64 5.82 [2.84
3 3.09 [2.26 [3.29 [2.30 3.52 [2.35 4.07 [2.46

Table 16(Tab. 4.4): Total trial duration for Wang-Tsiatis (shape = 0.15) group sequential trials

Table 4.4: Total trial duration for Wang-Tsiatis (shape = 0.15) group sequential trials when
information vector is t(), m =50 per year or 240 per year, s¢=0, 0.5, 1, or 2 years, %:
0.025,and B=0.2.

A | 9=0 $=0.25A, $=0.5, D=2,

50 240 | 50 240 |50 240 |50 240

s,.=0 | 1.25]17.09 | 4.77 | 21.10 | 5.39 | 25.24 | 6.09 | 33.74 | 7.64
1.5 | 647 |229]757 [245]|880 |262|11.49 |3.03
2 340 |138[3.75 [144 /415 |150]510 |1.64
3 238 104|256 [1.07 275 |111]322 [1.18

s,=0.5|1.25]17.16 | 4.84 | 21.18 | 5.48 | 25.35 | 6.19 | 33.87 | 7.77
1.5 |654 [238|7.65 [254|889 |273]|11.62]3.15
2 346 149|382 |[155|423 |1.62|522 [1.77
3 244 116|262 |1.20]2.83 |1.24 332 |1.32

si=1 1.25|17.34 | 5.03 | 21.40 | 5.70 | 25.60 | 6.44 | 34.18 | 8.08
1.5 |671 (260|785 [2.78]9.13 |299 1191 | 3.45
2 363 |1.764.01 [1.83445 |191]549 |2.09
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3 262 146281 |[150)3.03 |1.55]3.57 |1.65

s,=2 | 1.25]17.94 | 5.65 | 22.09 | 6.39 | 26.35 | 7.20 | 35.03 | 8.93
1.5 | 727 [3.29]850 [3.51)986 |3.75]12.74|4.29
2 420 [254 /464 |262 514 |272]628 |294
3 321 1229(343 [234|3.69 |239]431 |252

Based on the required number of events for a group sequential design, accrual time and total trial
duration for this group sequential trial can be derived. Impacts from adding censoring and
eliminating observation period are addressed above in Tables 4.1- 4.4 and Figures 4.1- 4.2. There
are other aspects of group sequential design that need to be explored prior to trial start as interim
analyses allowing for early stopping using accumulating data needed to conducted in contrast to
fixed duration fixed sample design. These parameters are: 1) real time at interim and final
analyses; 2) required number of events at each analysis; and 3) accrued number of patients at
each analysis. As described in Sections 4.2 and 4.3, inverse searching using Newton-Raphson is
implemented to first find real time, then accumulated number of patients is calculated to ensure
required number of events at each analysis so that overall power to detect treatment effect is
reached.

One moderate hazard ratio, A = 2, is picked up to tabulate operation characteristics for OBF,
Pocock and Wang-Tsiatis group sequential trials, respectively. Tables 4.5 — 4.7 list design
specifics which re-emphasize the impact of censoring and continued observation on trial design.
Besides new features like number of patients and real time at interim, other group sequential
parameters like upper and lower bounds are also tabulated. Probability and expected information
under null or alternative can be obtained easily, but not included in Tables 4.5 — 4.7 due to space
limitation. From a design with equal-spaced information time for OBF, as an example, we can
see eliminating one-year of continued observation has bigger impact on reducing required

number of patients for a long trial with brisk accrual than that of a short trial associated with
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slow accrual. For m = 50 per year, the required total number of patients with s;=1is 110
patients while requiring 148 for s; = 0 for design of OBF with ¢, But adding one year of
continued observation will end up saving 51% patients of subjects (from n =294 to n = 150) for
brisk accrual while only adding 0.41 years in total duration (from 1.22 years to 1.63 years). From
Table 4.5 — 4.7, for m=240 per year, all group sequential designs with t® and t® finish
required accrual prior to first interim analysis, whereas the rest of the designs finish accrual at

either prior to the second analysis or at or prior to the final analysis.
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Table 17(Tab. 4.5): Operation Characteristics of group sequential designs

Table 4.5: Operation Characteristics of group sequential design with OBF upper bounds and beta-spending lower bounds with
shape parameter of 0.8, a/ 2 =0.025, f = 0.2, hazard ratio = 2.

#of Information | bounds Real time (year) Number of Patients Accrual time / follow-up time (year)
events | time
Accrual rate=50 Accrual rate=240 Accrual rate=50 Accrual Accrual rate=50 Accrual rate=240
rate=240

a b A B C A B C A B C A B C A B C A B C
22 0.33 0.204386 | 2.976604 | 1.70 | 1.55 | 1.54 | 0.70 | 0.68 | 0.67 | 85 | 78 77 | 169 | 162 | 150 | 3.53/0 | 2.96/0 | 2.21/1 | 1.32/0 | 1.22/0 | 0.63/1
45 0.67 1.020234 | 2.08901 | 2.68 | 2.33 | 2.31 | 1.04 | 0.99 | 1.10 | 133 | 116 | 110 | 251 | 237 | 150
67 1.0 1.709928 | 1.709928 | 3.53 | 2.96 | 3.21 | 1.32 | 1.22 | 1.63 | 176 | 148 | 110 | 316 | 294 | 150
34 0.5 0.770656 | 2.45016 | 2.22 1.97 | 1.96 | 0.89 | 0.85 | 0.88 | 111 | 99 98 | 214 | 203 | 152 | 3.55/0 | 2.98/0 | 2.23/1 | 1.32/0 | 1.23/0 | 0.63/1
51 0.75 1.194913 | 2.000547 | 2.91 250 | 252 | 1.12 | 1.05 | 1.22 | 145 | 125 | 111 | 269 | 253 | 152
68 1.0 1.732525 | 1.732525 | 3.55 | 2.978 | 3.23 | 1.32 | 1.23 | 1.63 | 178 | 149 | 111 | 318 | 296 | 152
13 0.2 -0.35608 | 3.84717 | 1.26 | 1.18 | 1.17 | 0.54 | 0.52 | 0.51 | 63 59 58 | 129 | 125 | 124 | 3.53/0 | 2.96/0 | 2.21/1 | 1.32/0 | 1.22/0 | 0.63/1
54 0.8 1.390059 | 1.923585 | 3.02 | 2.58 | 2.63 | 1.16 | 1.08 | 1.29 | 151 | 129 | 110. | 278 | 260 | 150
67 1.0 1.720506 | 1.720506 | 3.53 | 2.96 | 3.21 | 1.32 | 1.22 | 1.63 | 176 | 148 | 110 | 316 | 294 | 150
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Table 18(Tab. 4.6): Operation Characteristics of group sequential designs

Table 4.6: Operation Characteristics of group sequential design with Pocock upper bounds and beta-spending lower bounds
with shape parameter of 0.8, a/2 = 0.025, $=0.2, hazard ratio = 2.

#of Information | bounds Real time (year) Number of Patients Accrual time / follow-up time (year)
events | time
Accrual rate=50 Accrual rate=240 Accrual rate=50 | Accrual Accrual rate=50 Accrual rate=240
rate=240

a b A B C A B C A B C A B C A B C A B C
25 0.33 0.291524 | 1.992737 | 1.82 | 1.65 | 1.64 | 0.75 | 0.72 | 0.71 | 91 82 82 | 179 | 172 | 165 | 3.81/0 | 3.16/0 | 2.40/1 | 1.40/0 | 1.30/0 | 0.69/1
50 0.67 1.161621 | 1.992735 | 2.88 | 2.48 | 2.46 | 1.11 | 1.04 | 1.15 | 144 | 124 | 120 | 266 | 250 | 165
75 1.0 1.992734 | 1.992734 | 3.81 | 3.16 | 3.40 | 1.40 | 1.30 | 1.69 | 190 | 158 | 120 | 337 | 312 | 165
36 0.5 0.82858 | 1.947182 | 2.31 | 2.04 | 2.03 | 0.92 | 0.87 | 0.90 | 115 | 102 | 102 | 221 | 210 | 160 | 3.70/0 | 3.09/0 | 2.33/1 | 1.37/0 | 1.27/0 | 0.66/1
54 0.75 1.285168 | 1.947182 | 3.03 | 2.59 | 2.60 | 1.16 | 1.09 | 1.25 | 151 | 130 | 116 | 278 | 261 | 160
72 1.0 1.947181 | 1.947181 | 3.70 | 3.09 | 3.33 | 1.37 | 1.27 | 1.66 | 185 | 154 | 116 | 329 | 205 | 160
15 0.2 -0.28265 | 2.002045 | 1.35 | 1.25 | 1.25 | 0.57 | 0.55 | 0.55 | 68 | 63 62 | 137 | 133 | 131 | 3.83/0 | 3.18/0 | 2.42/1 | 1.41/0 | 1.30/0 | 0.69/1
60 0.8 1.572608 | 2.002045 | 3.27 | 2.77 | 2.80 | 1.24 | 1.15 | 1.35 | 163 | 138 | 121 | 297 | 277 | 166
76 1.0 2.002039 | 2.002039 | 3.83 | 3.18 | 3.42 | 1.41 | 1.30 | 1.69 | 191 | 159 | 121 | 338 | 313 | 166
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Table 19(Tab. 4.7): Operation Characteristics of group sequential designs

Table 4.7: Operation Characteristics of group sequential design with WT upper bounds (shape = 0.15) and beta-spending

lower bounds with shape parameter of 0.8, a/2 = 0.025, f = 0.2, hazard ratio = 2.

#of Information | bounds Real time (year) Number of Patients Accrual time / follow-up time (year)
events | time
Accrual rate=50 Accrual rate=240 Accrual rate=50 | Accrual Accrual rate=50 Accrual rate=240
rate=240

a b A B C A B C A B C A B C A B C A B C
28 0.33 0.392837 | 3.009054 | 1.96 | 1.76 | 1.75 | 0.80 | 0.76 | 0.75 | 99 | 88 | 87 | 191 | 183 | 181 | 4.15/0 | 3.40/0 | 2.63/1 | 1.50/0 | 1.38/0 | 0.76/1
56 0.67 1.288984 | 2.348463 | 3.12 | 2.66 | 2.64 | 1.19 | 1.11 | 1.20 | 156 | 133 | 132 | 285 | 267 | 182
84 1.0 2.041314 | 2.041314 | 4.15 | 3.40 | 3.63 | 1.50 | 1.38 | 1.76 | 207 | 170 | 132 | 361 | 332 | 182
43 0.5 1.002881 | 2.631239 | 2.57 | 2.25 | 2.23 | 1.01 | 0.95 | 0.97 | 129 | 112 | 112 | 242 | 229 | 183 | 4.18/0 | 3.42/0 | 2.65/1 | 1.51/0 | 1.39/0 | 0.76/1
64 0.75 1.479783 | 2.283118 | 3.39 | 2.86 | 2.86 | 1.28 | 1.19 | 1.33 | 170 | 143 | 133 | 306 | 285 | 183
85 1.0 2.064428 | 2.064428 | 4.18 | 3.42 | 3.65 | 1.51 | 1.39 | 1.76 | 209 | 171 | 133 | 363 | 334 | 183
17 0.2 -0.21179 | 3.59089 | 1.44 | 1.33 | 1.32 | 0.60 | 0.58 | 0.58 | 72 66 | 66 | 145 | 140 | 139 | 4.13/0 | 3.39/0 | 2.62/1 | 1.50/0 | 1.38/0 | 0.76/1
67 0.8 1.678852 | 2.210452 | 3.52 | 2.95 | 2.97 | 1.31 | 1.22 | 1.40 | 176 | 148 | 131 | 315 | 293 | 181
84 1.0 2.044384 | 2.044384 | 4.13 | 3.40 | 3.63 | 1.50 | 1.38 | 1.76 | 207 | 169 | 131 | 360 | 332 | 181
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Section 4.5: Discussion

Competitive censoring is normally not considered at the stage of designing a survival trial prior
to trial start. Normal practice is that: a required number of events is firstly calculated to ensure
control of type I error when null hypothesis is true and enough power to detect the alternative
hypothesis when investigational compound is effective; and then a rough number of required
number to be recruited is reversely calculated assuming an overall probability of a subject
resulting in an event in the randomization phase irrespective of treatment groups. During the
trial, accrual process stops when the required number to be recruited is achieved, whereas trial
may still be ongoing until we observe at least certain number of events to ensure power of
detecting the treatment difference. So there is no specification of continued observation in the
trial.

As shown from tables and figures in this paper, current trial practice has many shortcomings in
not accounting for factors of accrual time, continued observation time and censoring process in
calculating real time and required number of patients in a group sequential trial. The minimal
length of continued observation period should come from clinical perspective and depends on
disease characteristics, which is a necessary period for drug to be differentiated from comparator
in the trial. Constrained on this minimum length, real length of continued observation time to be
used in the trial could be chosen based on balance of required number of patients and total trial
length. This paper provides a method of designing a group sequential trial with fixed length of
continued observation in the presence of censoring with a trial without censoring as a special
case of it. A way to search for real time of interim analysis with which searching formulas
depending on if the real time is less or greater than trial accrual time. Figures and tables vividly
display the impact of having censoring process and having continued observation on trial accrual

time and total trial during under different scenarios with a particular combination of hazard ratio

163



and accrual rate. Results from this paper also show the necessity of doing trial design in
proposed way; as such impact could be substantial in certain situations. For example, only 0.25
years increase in total trial duration can reduce the required number of patients to be 50% or
more, which is really worth serious consideration in face of harsh competition in today’s world.
Instead of adding a required continued observation after stopping of recruitment process which
means last randomized subject will be followed up to a maximum time length in the
randomization phase if the survival event has not occurred prior to it and then the trial will be
ended, all subjects might only be allowed to stay in the randomization phase until a maximum
length in the trial or having an event. This is often a concern for trials investigating treatment of
a life-threatening disease and with subjects randomized into the placebo group in the
randomization phase which poses a question on long term exposure of placebo on patients in the
trial. Even for subjects who are randomized into the treatment group in the randomization phase,
it is ethical not allowing them to be followed too long, as it is just an investigational drug with
profile of efficacy and safety not well-investigated. Research on this topic is being worked on
currently, but Appendix 2 shows mathematics as the basis for numerical calculations with the
difference in using grid-search instead of Newton-Raphson search for s;i =1,...,K — 1,K as
being discretized in the presence of a cap for each subject’s follow-up time after accrual.
Although Software ADDPLAN® and Software EAST® has implemented group sequential
design for survival data and SAS® has SEQDESIGN and SEQTEST procedures to deal with
designs and analyses, there hasn’t been any publication substantively assessing the impacts of a
period of continued observation on operation characteristics of a particular design. This paper
serves this purpose and the authors would like to share our R codes with audience upon request.

Per authors’ over ten years of experience of being a trial statistician, direct explorations using
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automated codes on a variety of scenarios considering trial-specific requirements prior to trial
start are much more efficient than obtaining one set of design parameters only for one scenario
after entering parameters in a step-by-step fashion into software windows and then repeat the
whole process for every scenario, let alone software development normally lags behind practical
needs and some applications are not yet implemented to fit current trial-specific issues. Even
software already has all ingredients for trial design (normally not true at all), it is hard to be
utilized for finding an optimal design regarding a specific cost function to be used in a survival
trial; for example, an optimal design considering efficiency in terms of both time and detecting
power. All concerns listed above led us writing up this paper to share with all trial statisticians;

and optimal survival trials are being investigated by us.
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Appendix 4.1: No Cap for Follow-up Time on Each Subject

Appendix 1A: s < s,

Let’s set time to randomize first subject in the trial as anchor time 0 and assume time to
censoring is present in the trial and independent of process of time to event. For a subject in the
control group who was randomized at time u, at real time s, the time from randomization to
evaluation time point is s — u, and thus the probability of this entry will result in an event is:

PlY,. < W, Y.< s—u] = .[-S—u Ac exp(— Act) exp(—¢t) dt
0
= 51— exp[~(Ac +$)(s —w]]
E(e.(s)|nc) = ncP(eventon control)=n-E[E[ (Y, < W, Y, <s—u)|u]]

=nc¢ [ OS P(event on control|time from randomization to evaluation time being u) g(u)du

g(w) isthe density of u. Based on uniform accrual in interval [0, s], g(u) = %
E(ec(s)Ine) = ne J3 7251 exp[—(Ac + ¢)(s —w)] | S du

Ac
Act+o

_ Ac 1 1—exp[-(Ac+¢)s]
o lc+¢ [nc B nC ; lc+¢ ]
With n, = ﬂ and ng = ZLTA;
Blers) = i s - ol
A 1—exp[-(Ag+¢)s]
E —_ M o p
@r () = G Gera LS e
dE(ec(s))™ _ exp[-(Ac+¢)s]-1
ds - mic s 1—exp[-(Ac+)s] 12
A+1)(Ac+®) Ac+o
dE(ep(s)™" _ exp[-(Ag+@)s]-1
- mAA - 1—exp[-(Ag+¢)s]
as (A+1)(/1:+¢)l5 pAE+£ 12

Appendix 1B: s> sa

1
E(ec(s)Inc) = ncf ot ¢ [1—exp[—(Ac + ¢)(s —w)] ];du
A p, -2 exp|— (Ac+¢)(s—sa)]—exp[—(Ac+¢>)s]]

Ac+o Sa Acto
_ mic _exp[=(Ac+¢)(s—sa)]—exp[-(Ac+P)s]
_ mAlE _ exp[-(Ag+¢)(s—sa)l—exp[-(Ap+@)s]
ECer()) = Ganagrp LS Py ]
dE(ec(s)™t exp[—(Ac+@)s]—exp[-(Ac+P)(s—sqa)]
as | __mic o ealUcrd)esal-es[-Uerdil
(A+1)(Ac+d)' "% Ac+d
dE(eg(s))”™* _ exp[—(Ag+@)s]—exp[-(Ag+¢)(s=54)]
ds - mAAR (s exp[—(Ag+)(s—sq)]|—exp[- (AE+¢)S]
A+D(Ag+)t 72 Ap+d

Appendix 1B’: when s = s, + ¢, i.€. at the end of the trial, we will have:

_ mlc _ exp[—(Ac+¢)sg]—exp[—(Ac+P)(sa+sy)]
Elec() = Gmytaers | Ac+o

_ m Ag _ exp[—(Ag+¢)ss]—exp[-(Ap+d)(sq+5p)]
Eler () = Gy Gero [ 25+9

Taking derivative with respect to s,, we then have:
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dE(ec(s) ™! _ exp[—-(Ac+p)(sa+sp)]-1

dsq mic . exp[—(lc+¢)5f]—exp[—( /1C+¢)(sa+5f)]
@A+1)(Actd) @ pys

_ exp[—(/lE+¢)(sa+sf)]—1

dE(eg(s) ™"

]2

dsq maig  exp|-(Ap+e)s|-exp|-(Ag+)sa+sp)]

@ArD(Ag+e) @ Ap+o
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Appendix 4.2: With A Cap for Follow-up Time (t) on Each Subject

Under Case 2A: s< s,:

For a subject in the control group who was randomized at time wu, at real time s, the time from
randomization to evaluation time point is s — u, and thus the probability of this entry to result in
an event is when every subject can stay in the trial for maximum time t:

min(s—u, T)
PlY,. < W, Y. <s—u VY.< 1] = f Ac exp(— Act) exp(—ot) dt
0

_ }\c}fcb [1—exp[—(Ac + &) min(s —u, T)]]

E(ec(s)Inc) = ncP(event on control)=ncE[E[ (Y. < W, Y. <s—u, Y. < T)|u]]

ne fos P(event on control|time from randomization to evaluation time being u)g(u)du

g(u) isthe density of u. Based on uniform accrual in interval [0, s], g(u) = é Plugging in
density of u,
E(e.(s)|n¢) = n¢ fosi P[Y, < W, Y.< s—u, Y. < t]du

A .
= osi )\Ci¢[1—exp[—(?\c+ ¢¢c) min(s —u, 1)]]du
A .
~ E(e)= ﬁms ;E Acib [1—exp[—(Ac+ ¢) min(s —u, T)] ]du (4.1A)
Similarly, E(eg)= A Salo s g [1—exp[—(Ag + ) min(s—u, T)]]du (4.24)

Under Case 2B: s> s,:
E(e.(s)Inc) = n¢ fosasi PIlY., < W, Y.< s—u, Y. < T]du

=~ E(e)= ﬁmsa1 Osai %[ 1 —exp[—(Ac + ¢) min(s —u, 1)] ]du (4.1B)
E(ep)= Aiﬂmsa Osai ngq) [1—exp[—(Ag + &) min(s —u, T)]]du (4.2B)
Under Case 2B’, where real time s =s, + 1,

E(eo)= A%lmsa Osai % [1—exp[—(A¢c + ¢) min(s, + T—u, T)]|du (4.1B)
E(egp)= Aiﬂmsa fosai #ib [1—exp[—(Ag + ¢) min(s, + T—u, 1)]]du (4.2B")
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Chapter 5

Planning the Duration of a Survival Group Sequential Trial with a Fixed
Follow-up Time for All Subjects

(accepted for publication in Jan 2016 by Communication in Statistics: theory and method)
Abstract: To explore the operation characteristics of survival group sequential trials with a fixed
follow-up period, the accrual time and total trial duration to ensure power and type | error rate
requirements are explained and investigated for hazard ratios ranging from 1.3 to 3.0, with slow
or high accrual rate, and in the presence or absence of censoring. Impacts of hazard rate, accrual
rate and competitive censoring on accrual time and subsequently on total trial duration are
carefully illustrated. Real time for interim analyses, needed number of events and recruited
number of subjects at time of interim analyses are also tabulated.

Key Words: Survival endpoint; Group sequential trial; a fixed follow-up period; Operation
characteristics.

Section 5.1: Introduction and A Motivating Example

For time to event analysis, the logrank statistic was proposed by Nathan Mantel (1966) and was
named by Richard and Julian Peto (1972).The logrank statistic can also be derived as the score
test for the Cox Proportional Hazard model (Cox, David R, 1972) comparing survival curves
between two groups. In terms of planning a survival trial, George and Desu (1974) proved that
the total duration is minimized when we continue to randomize subjects into the double-blind
phase until the end of the trial (i.e., no period of continued observation after accrual period).
Rubinstein, Gail and Santer (1981) explored the impact of a period of continued observation on
number of patients to be accrued to ensure a required statistical power and found: although total
duration of the trial is increased a little as compared with that of the case with no continued
observation period, accrual time could be reduced substantially as high as 50% or more after
introducing a period of continued observation. Of note, both George and Desu (1974) and
Rubinstein, Gail and Santer (1981) only focused on fixed sample designs.

As trials get larger and longer in the past two decades, trials are analyzed using accumulating
data periodically to allow stopping early if treatment effect is shown to be large enough and/or if

there is no hope to show treatment effect even when the trial lasts to the end. Numerous group
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sequential designs have been developed to ensure overall type | error rate and power
requirements. Among them, Pocock (1977), O’Brien and Fleming (1979) and Wang and Tsiatis
(1987) are three of the well-known ones. Normal approximation of the sequential logrank was
first proposed by Armitage (1975), verified via simulation by Gail, Demets, and Slud(1981),
refined by Jennison and Turnbull (1984), and finally proved by Tsiatis (1982), Sellke and
Siegmund (1983), and Slud (1984). In group sequential trials with survival endpoints, to plan
the duration of group sequential trials for survival response, Kim and Tsiatis (1990) searched
required length of the period for continued observation in group sequential setting when accrual
period length is fixed under the scenario that there is in the absence of censoring process
competing with time to failure. Group sequential survival trials with each subject followed-up
with a fixed period of time is not yet explored but frequently encountered in drug development
practice as the motivating example below indicates.

Section 5.1.1: A Motivating Example
Drug A with a 1-month injection interval and has been approved by FDA. A new formulation
with a 3-month administration interval (referred to as ‘Drug B’) is being studied for the
maintenance treatment effect in subjects with recent onset of schizophrenia who have been
treated for four or more months of Drug A. The primary objective of a clinical trial study is to
compare the efficacy of Drug B in delaying time to first treatment failure with approved active
comparator Drug A, in subjects with recent onset of schizophrenia. A randomized withdrawal
trial is planned and all enrolled subjects will have an open-label phase treated with Drug A to
stabilize disease status before being randomized into either Drug A group or Drug B group. Time
to relapse is defined in multiple dimensions as time to first occurrence in the double-blind phase

of: Psychiatric hospitalization; or suicide, deliberate self-injury or clinically significant suicidal
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thoughts or behavior as determined by the investigator; or change in PANSS total score or in
some PANSS items (details are not described here due to non-relating to design details
investigated in this paper), which, from different perspectives, shows deterioration in symptom
of schizophrenia after randomization. Due to the fact that subjects in both groups will be treated
with active treatments, relapse rates for subjects in either group won’t be high and thus it is not
easy to accumulate relapse events in the double-blind phase. Assuming relapse rate over a year
for Drug A being 30%, the primary hypothesis is to determine superiority of Drug B over Dug A
on maintenance effect for having 15% less in yearly relapse rate (i.e., Drug A = 30% and Drug B
= 15%). A large number of events are required to ensure 80% power to establish superiority of
Drug B over Drug A. A question is now raised up: Should we conduct an event-driven trial,
within which all relapse-free subjects should remain in the trial till trial termination after
collecting enough number of events? By doing this, many subjects will have to stay in the trial
for a very long period of time due to low event rate in both groups as well as the fact that a large
number of events is required for the trial due to having relatively small treatment-placebo
difference by using an active comparator. Therefore, it is hard to get consented from the patients
to participate in this trial because they might end up staying in the trial for too long. Hence,
together with other considerations, a reasonable follow-up period, 48 weeks, was proposed by
the study team to cap the duration of each subject in the double-blind phase. It is that all subjects
in the double-blind phase will be followed-up until either experiencing a relapse, or early
withdrawal or up to 48 weeks, whichever date comes the earliest. A side gain from this operation
is: due to the majority of subjects will be administratively censored by this fixed follow-up time
(i.e., remained event-free over 48 weeks in the double-blind phase), safety parameters and

secondary efficacy variables can now be reasonably assessed, because, otherwise, between-group
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comparisons for incidence rates of safety parameters and effects overtime of secondary endpoints
make no sense when the majority of subjects have a variable length in the double-blind and one
group could stay substantially longer than the other. Capping the follow-up time by 48 weeks
enables the administratively censored subjects, i.e., the largest cohort among all randomized
subjects, censored at 48 weeks in the double-blind phase and resulting in a comparable length of
exposure in the double-blind phase within this cohort regardless of treatment groups. On the
other hand, comparing a trial without any requirement on a minimum length of follow-up time
could result in an un-acceptable short period for a subject to expose to the study medication upon
study termination, even to the shortest of only one day. This, in some sense, violates the intent-
to-treat principle because there will have a big chunk of subjects being censored at study
termination right after randomization without any contribution to evaluation of between-group
difference in survival curves.
Section 5.2 illustrates the trial diagram for survival trials in the absence and presence of a fixed
follow-up period for each subject in Figure 5.1a and 5.1b, respectively. Rational for designing a
group sequential survival trial with a fixed follow-up period for each subject is discussed in
Section 5.3, together with calculating design operation characteristics. Section 5.4 shows
examples explored about how adding a fixed follow-up for each subject could impact clinical
trial designs. In the end, Section 5.5 includes discussions and then concludes this paper.
Section 5.2: Trial Diagram

Section 5.2.1 Survival Trials without A Fixed Follow-up Time
Figure 5.1a shows survival trials without a fixed follow-up time, which is normally done in
clinical trial practice. From Figure 5.1a, we can see approximate uniform randomization

accrual in [0,s,] and subjects who have remained in the trial at time s, are all followed for
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additional s; months to accumulate enough events in the trial. Vertical bar “|” on the left hand
of time line denotes the timing of performing randomization procedure and then the subject enter
into the double-blind phase. Circle on the right hand indicates a survival event occurred on this
subject during the double-blind phase while cross symbol denotes censoring prior to study
termination and triangle symbol indicates administrative censoring at trial termination. From
Figure 5.1a, we have 9 events and 4 censorings by time s, + s, including one with
administrative censoring because this subject was ongoing at the time of study termination.
Censorings other than administrative ones could be due to withdrawal of consent, adverse events,
lost to follow-up or other reasons.

Section 5.2.2 Survival Trials with A Fixed Follow-up Time
Figure 5.1b shows the trial of interest in this paper. After being randomized into the double-blind
phase, each subject will be followed-up up to a fixed length of period, for example s = 0.92
years (i.e., 48 weeks) as in the motivating example. Subjects could finish end-of —study visit due
to event or censoring prior to 0.92 years follow-up time. As in Figure 5.1a, vertical bar “|” on the
left hand of time line denotes date of randomization and circle indicates event times.
Administrative censorings (triangle symbol) will occur due to time truncation. Note that time to
administrative censoring in Figure 5.1b is fixed as of s, years for every subject while it could
be a variable number in (0, s, + s¢] in Figure 5.1a. Besides, time to event in Figure 5.1b is also
truncated by s, while being in the range of 0 to s, + s, in trials without a follow-up time
constrain as in Figure 5.1a. In Figure 5.1b, there were 5 events, 2 non-administrative censorings
due to early withdrawal prior to truncation time and 6 administrative censorings due to time
truncation. Time from randomization to event and censoring are both bounded by the maximum

follow-up time s. Although it appears that the total trial duration is s, + s¢ for both designs,
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sy s defined differently in two scenarios, which is the length of the continued observation
period after closure of the accrual process while being the maximum follow-up time for all
subjects in Figure 5.1b. When s, is pre-defined, s, will differ a lot in two scenarios when to
detest the same alternative hypothesis and under the same conditions for accrual rate, type | error

rate and power requirements.

Figure 14(Fig. 5.1): Trial diagram without/with a fixed follow-up period

Figure 5.1: Trial diagram without/with a fixed follow-up period.

Figure 5.1a: Trial diagram without a fixed follow-up period. Symbol “|”denotes the timing
of randomization; circle symbol indicates an event; and cross and triangle symbols denote
censoring. s, is the accrual time for the trial and sy is the continued observation period

of the trial after accrual is closed.

——a Ll o

J——l—ﬁx—o
— v
Sa 5

Figure 5.1b: Trial diagram with a maximum follow-up period imposed on all subjects. Symbol
“I”denotes the timing of performing randomization; circle symbol indicates an event; and cross
and triangle symbols denote censoring. s, is the accrual time for the trial and s is the
maximum follow-up time imposed on each subject .

Section 5.3: Preliminaries
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Section 5.3.1: Expected Number of Events at Real Time s for Survival Trials with
A Fixed Follow-up Period for All Subjects
Since patients are uniformly randomized into an interval [0, s,] in unit of year, the total number
of subjects entering the double-blind phase N = ng +n¢ will be ms, in total with recruitment
rate of m per year over the s, years of accrual. With randomization ratio A: 1 of treatment

group (ng) to control group (n¢), then expected recruitment in s, years for treatment and

. A .
control groups, respectively, are: E[ng] = 27 MSa and E[n¢] = ﬁmsa. Let’s set time to

randomize first subject in the trial as anchor time 0 and assume time to censoring is present in the
trial and independent of process of time to event and accrual process. Any real time s in the trial
could be either: Case A: s<'s, or Case B:s > s,. Case B’:s = s, + sy, a special case of Case B,
denotes the real time when the whole trial is terminated and the time of performing the last visit
of the last patient (referred to as ‘LPLV’). Assuming survival rate for treatment and control
groups and censoring rate regardless of treatment assignment are exponential with rates of

Ag, Ac and o, respectively. These three exponential random variables are mutually independent
and also independent of the uniform accrual process. Let Y; and W;, i = C, E, represent
random variables of time to event and time to censoring for subjects treated with control (C) and
treatment (E) medications, respectively. E(e.) and E(eg) are expected number of events from
subjects treated with control and treatment medications, respectively, accumulated up to study

end, conditional upon that all subjects are followed-up up to a fixed period of s, in the double-

blind phase; and n, and ng are the number of subjects accrued in the control and treatment

groups, respectively. Hazard ratio A = //11_(; with Ay being the hazard rate for experimental group
E

subjects and A, being the hazard rate for control-treated subjects. A is the estimated hazard

ratio.
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Under Case A: s< s,:
For a subject in the control group who was randomized at time wu, at real time s, the time from
randomization to evaluation time point is s — u, and thus the probability of this entry to result in

an event is:

min(s—u, sf)
P[YC <W,Y.<s—u VY. < sf] = f Ac exp(— Act) exp(—¢t) dt
0

= +¢[1—exp[ (Ac +¢) min(s —u, sf)]]

E(e.(s)|nc) = ncP(event on control)=nE[E[I(Y, < W, Y, <s—u)|u]]

ne fOS P(event on control|time from randomization to evaluation time being u)g(u)du
g(w) isthe density of u. Based on uniform accrual in interval [0, s], g(u) = % Plugging in
density of u,

E(e.(s)|nc) —ncf P[Y < W, Y, <s—u Y. < sf]du

=nc ;= = +¢[1—exp[ (Ac + ¢¢) min(s —w, s7)]]du

- E(e)=—ms Osi o[ 1 - exp[~(Ac + ¢) min(s —u, s7)] |du (5.14)
Similarly,

E(eg)=—ms, [, — [ 1~ exp[~(A5 + ¢) min(s ~u, s7)] Jdu (5.24)

Under Case B: s> s,;:
E(e.(s)|nc) = nc fosasi PlY,< W, Y, <s—-u Y.< sf]du

E(ec)— —5MSa OSaS - +¢ [ 1- exp[ (Ac+ @) mm(s —u, Sf)] ]du (5.1B)
4 Sa 1 [
A+1 S 0 Sa AE+¢

E(eE)— 1 —exp[—(Ag + ¢) min(s —u, sf)] |au (5.2B)
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Under Case B’, where real time s = s, + s,

E(e.)= ﬁms el L[ 1 — exp[—(A¢ + ¢) min(s, + Sf— U, sf)] |du (5.1B")

a’o Sa Act¢

E(ep)= ﬁmsa Osaé %[ 1 —exp[—(2g + ¢) min(s, +sf—u, s7)]|du  (5.2B")

The reason that we spent so much on deriving E(e.) and E(eg) is because: for a fixed sample
design, to test Hy:In(A) = 0 vs. Ha:In(A) > 0, Appendix Al of Rubinstein, Gail and Santer
(1981) proved that In(A) is asymptotically normally distributed with mean In(A) and variance
o2 = [E(e.)]™! + [E(eg)] ™%, where the total trial duration is s, + s¢. Thatis: o = V(s, +
sp) = [E(e)]! + [E(eg)] ™, where asymptotically being  4/dgy, With dg, = E(e.)+E(eg),
the total number of events accumulated at time s, + s¢. Notethat E(eg), E(e.), V,d areall
function of time son (0, s, + s¢], which can also be interchangeably represented as E(eg(s)),
E(ec(s)), V(s) and d(s).

Section 5.3.2: Survival Group Sequential Designs
For a group sequential design to test Hy:In(A) = 0 vs. Hy:In(A) > 0 with i =1,2,...K, we
have to satisfy both type I and Il error requirements under a group sequential setting.
Considering a group sequential trial with K planned analyses, let 8 be the parameter of
interest, a measure of placebo-drug difference and assume it can be estimated from trial data.
The distribution of statistics Z; ,Z, , ..., Zx are derived from cumulative data up to stages
from 1,2 ..., K, and it follows a canonical joint form (Chapter 3, Jennison and Turnbull, 2000)
of multivariate normal distribution with E(Z;) = 6,/t; and Cov(Z;,Z)) = \[t;/t; ,1<i<j<K
and {t,, ..., tx } are standard information levels for parameter 8, whith final t;, = 1.
Startng with notations in Section 5.2, where time s is on a continuous scale ranging from 0 to

end of study time s, + sf, analysis times in group sequential design are discretized into K time
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points. Accordingly, to accommodate group sequential notations, we denote, on the discretized
time points instead, e.; as the accumulative number of events at Stage i, which is the same as
ec(t;) inSection 5.3.1. Similarly, eg;, d;, V;i =1,...,K, are discretized versions of
ep(t;),d(t;) and V(t;), respectively, with s = t;.

Because of asymptotic normality of standardized log-rank statistic (Chapter 13.2, Jennison and

In(A)
V52

Turnbull), 8 = obtained at stage i aproximately has the canonical joint distribution.

The standardized information level t; also equals the ratio of variance accumulated at  s;

relative to that of at the end of the trial (s, + s;). That is:

ti =y = (E(ec)l™ + [E(er)I™)/(E (eci)l™ + [E(er i)™ = (5:3)

SEEIE

where observed information and required information (per group sequential theory) at time s;

!

are on the left and right sides of “approximately equal sign”(i.e., ' = ' ), respectively.

For a group sequential test, upper efficacy boundaries {u;, ..., ux} (see Equation 5.4 below) are
made to preserve type | error under null hypothesis. Non-binding boundaries {u, ..., ux} are
used in this paper as their calculations don’t depend on lower bounds {l;, ..., [x}. Fisher’s
information vector for a group sequential trial is searched to maintain per-specified power under

alternative hypothesis (Equation 5.5); and in the end would equal to R4 * {ti, ..., tx} (Jennison

and Turnbull, 2000).

a
PHO{Zl = ulUZZ > uZU UZK = uK} = E (54)

PHA{ZI 2 l1}+PHA{l1 S Zl S ul,Zz 2 u2}+ "'+PHA{l1 SZI S ul,...,lK_l S ZK—l S

uK_l’ ZK 2 uK}=1 - ﬁ (55)

Tables and Figures in this paper are created using Wang and Tsiatis (1987) (referred to as “WT”)
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with shape parameter of 0.15 for efficacy upper boundaries. Besides, for lower bounds
{l;,..., g}, power spending is used with shape parameter of 0.8 (Kim and DeMets, 1987,
referred to as ‘Kim-DeMets’). Thatis: f(t;, 5) = B = t®,i = 1,2, ..., K. For a equally spaced
three-stage group sequential design (ie, t = (0.33,0.67,1)), the cumulative type Il error when
overall B =0.2 is f(t,8) = (0.082,0.145,0.2).
Section 5.3.3: Operation Characteristics for Survival Group Sequential Trials with a
Fixed Follow-up Period
Equation 5.6 below is the key equation to obtain real time of a survival group sequential trial
with fixed follow-up time on every subject in the trial. To implement a particular group
sequential test, Fisher’s information for a group sequential trial is obtained by multiplying the
Fisher’s information of the fixed sample design by a factor to ensure power requirement
(Jennison and Turnbull, 2002). Therefore, the variance of sequential test at time t; is the time
fraction multiplying Rgsq, and then multiplying variance of the corresponding fixed sample

design. Suppose analysis time s becomess;, = 1, ..., K, variance at s; is:

ti*Rgsd*dfix

V(s) = t; * Rgsd * 0-%ix = 4

On the other hand, because variance of In(A) attime s is

V(s) = E(ec(s))]™* + [E(eg(s))] 72, resulting in information at real time s being

1
E(ec(s))] 1 +[E(eg(s))] 1

. Equating information collected in the trial at time of analysis and required

information per group sequential theory, we have the following the key equation for calibrating

operation characteristics for a survival trial with a fixed follow-up period:

1 _ 1
E(ec(s))]_1+[E(eE (S))]_l_ i« (%)*dfix* Rgsd

(5.6)

Here are the steps to calculate design parameters for a group sequential trial for survival
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endpoints with a fixed follow-up period:

1)

2)

3)

4)

5)

6)

Use a,f and log hazard ratio under alternative hypothesis to calculate the required
number of events d;, for a fixed sample design.

With design parameters «a, 8, {t,, ..., tx}, upper efficacy boundaries (i.e., non-blinding
WT with shape parameter of 0.15) together with Kim-DeMets (1987) lower boundaries
with shape parameter of 0.8 , Equations 5.4 and 5.5 are utilized to calculate {l4,..., [},
{uq,...,ug}, and Ry

The required number of events at interim and final are  then dg;, * Rysq * {ty, ..., ti}.
Given s; (i.e., length of the fixed follow-up time), calculate needed accrual time s, for
a group sequential design to ensure power of group sequential test. This can be achieved
by accumulating dgyx * Rgsq NUmber of events at the end of the trial (i.e., at time of

s, +s¢). Thatis: Set t; =1 in Equation 5.6 and utilizes Equations 5.1B’ and 5.2B’ to
obtain  E(e.(s)) and E(eg(s)), respectively. Based on Equation 5.6 and making use
of inverse-grid search, accrual time s, for this group sequential trial is obtained.

For a range of accrual time s € [0.01, s,], with increment of 0.01 years, corresponding
E(ec(s)) and E(eg(s)) can be calculated where Equations 5.1A and 5.2A are used when
s<'s, and Equations 5.1B and 5.2B are used when s > s,. Real trial times, s;, for
interim analysis are then obtained using inverse search to ensure information at interim
analysis i,i = 1,...,K—1 via Equation 6. Note that for the final analysis K, real time
sk=s, + s¢ is already obtained in Step 4) above.

Number of patients to recruit at Stage i,i =1,...,K, is N; =ms; if s; <s, ,

otherwise N; =ms, if s; > s,.
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In summary, the required maximum number of events is calculated based on group sequential
theory to ensure enough power of detecting a hazard ratio of interest under alternative hypothesis
while well-controlling of overall false positive rate. The accrual time for the whole group
sequential trial s, is calculated via obtaining enough information to achieve maximum
information at the final analysis K. For interim analysis, at a real time after first-patient-in,
events occurred up to it will be calculated via the pair of Equations 5.1A and 5.A, (or the pair of
5.1B and 5.2B, or the pair of 5.1B” and 5.2B”) conditional upon the fact that event/censoring
times are truncated above by s, in the trial. And the real time for interim analysis can be
reversely calculated by equating observed information so far with information needed at interim
per group sequential asymptotic theory. Number of recruited patients at interim can thus be
calculated with the help of accrual rate and real time at interim analysis (see Step 6 above).

Section 5.4: Examples

All examples use one-sided type | error of 0.025, power of 0.8, K = 3, and with median time of
failure for the control group to be 1 year. Three different information times are chosen, as
follows: t( = (0.33,0.67,1), t®® = (0.5,0.75,1), and t©® = (0.2,0.8,1) to represent equal
increment of time fraction, interims occurring in the later part of the study, and first interim
occurred in the early part and later ones in the later part, respectively.

Hazard ratio A./Ag isranging from 1.3 to 3 in Figures 5.2 and 5.3. Lower rate of accrual with
m = 50 per year is used to compare with brisk accrual of m = 200 per year (i.e., 17 patients
per month). Three-stage group sequential WT designs together with fixed sample design(denoted
as ‘Fixed’) are carefully investigated for the required accural time or total trial duration in the
Tables 5.1 - 5.4 and Figures 5.2 - 5.3 regarding the following four categories:

Type A: with no censoring (¢ = 0) and short period of follow-up (s = 0.5 years)
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Type B: With censoring(¢ = 4./2) and short period of follow-up (s = 0.5 years)

Type C: with no censoring (¢ = 0) and long period of follow-up (s; = 1 years)

Type D: With censoring(¢ = A./2) and long period of follow-up (s = 1 years)

In Figures 5.2 — 5.3, Types A, B, C and D are depicted using solid, medium dash, dash-dot and
dotted line, respectively. Interestingly, they visually top each other in the order of B-A-D-C from
upper- and right- most to lower- and left- most in the graphs. Comparing Type B with Type A, as
well as Type D vs. Type C, shows the impact of competitive censoring on enlarging necessary
accrual time and trial duration. The long length of follow-up period on shortening accrual time is
shown via comparing designs having s, = 1 years with those having s = 0.5 years. The
impacts of varying hazard ratios and slow accrual versus quick enrolment rate on trial planning
are assessed by evaluating Types A, B, C and D under a certain combination of hazard ratio and
accrual rate.

Table 5.1 shows that eliminating censoring decreases required accrual time more for low accrual
rate than for high accrual rate: under t™, by 3.68 years for WT with rate of 50 per year and
hazard ratio of 1.3 (from 47.21 years to 43.53 years), while only 0.92 years (from 11.79 years to
10.87 years) for rate of 200 per year at the same low hazard ratio of 1.3; similarly but in a much
less extent for high hazard ratio of 3: by 0.44 years (from 5.51 years to 5.07 years) for m =
50 per year as compared with by 0.11 years (from 1.36 years to 1.25 years) for m = 200 per
year. Similar trends exist in all group sequential trials with three time information vectors as
well as in fixed sample design.

When accrual rate is low and hazard ratio is small, much longer time is needed to accumulate
events to ensure power, with which sometimes is unreasonably long and seems not feasible as a

real trial that could possibly be conducted by humankind. Fortunately, either reasonable increase
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in accrual rate or increase in hazard ratio can shorten it up. For example, accrual time for WT
designs with ™ information time, in the presence of censoring ¢ = 0.5A¢, and every subject
will be followed for one year is 29.01 years for m = 50 per year and A = 1.3; 3.09 years for
m = 50 peryearand A = 3;7.24 years for m = 200 peryearand A = 1.3 and only 0.77
(i.e., the shortest) years for m = 200 per year and A = 3.0. Given operational feasibility of
multi-national (regional) trials in current practice, accrual 200 patients world-wide in a year is
achievable. And due to large span of required accrual times for different combinations of accrual
time, hazard ratio and follow-up time from our exercises, feasibility explorations should be
carefully done at the stage of designing a trial prior to recruiting first patient, rather than starting
a trial with whatever accrual rate at hand and passively waiting for events to occur. In the later
case, the study team might have to wait forever to collect the targeted number of events, which
was actually happening in one of the bipolar trials the author has worked at.

Table 5.1 shows that including one year of follow-up has shortened the required accrual years as
compared with short follow-up period of 0.5 years for all subjects: from 43.53 to 24.93 years,
from 5.07 to 2.62 years, from 10.87 to 6.21 years and from 1.25 to 0.65 years for WT tests
performed at t( information times in the absence of censoring with m=50 per year and

A = 1.3, m=50 per year and A = 3.0, m=200 per year and A = 1.3 and m=200 per year and
A = 3.0, respectively, where the saving in the last case with both high accrual rate and high
hazard ratio is 48%!! Similar observations are also noticed in corresponding cases when
censoring is indeed present.

As for designs under different information vectors, WT designs with t®) generally have the
shortest accrual times as compared with those both under ¢t and t® because stopping at the

first interim, which is only 0.2 of the total information time (i.e., ), shortens the overall
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accrual time. And all three information vectors tend to have accrual times in a magnitude close to
each other when both accrual rate and hazard ratio are high (i.e., m=200 per year and A = 3.0)
because the required number of events can be accumulated quick enough, in rates almost non-
differentiable. WT designs with ¢, accordingly to Table 5.1, always have the largest accrual
period among all cases (Table 5.1).

In the past two decades, whenever group sequential trials are mentioned, it is said that they apply
for trials with slow accrual. However, due to rapid change in information technology and
improvement in trial conducts, data cleaning and analysis can be accurately executed within 4-6
weeks in pharmaceutical companies and thus expand the use of group sequential designs in drug
development for trials with a quick accrual. Further, adding a fixed follow-up period for all

subjects in group sequential survival trials will subsequently increase accrual time comparing

with fixed sample designs, regardless of the accrual rate, which eases operational requirement in

time a little.

Table 20(Tab. 5.1): Accrual time for group sequential designs

Table 5.1: Accrual time for group sequential designs under different combinations of

hazard ratio (low 1.3 vs. high 3.0) and accrual rate (slow 50 per year vs. brisk 200 per year)

when WT boundary is used for upper efficacy with shape parameter of 0.15 and lower
boundary of Kim-Demets for futility with shape parameter of 0.8, « = 0.025 and

B =0.2.
Fixed WT
b=0 ¢ = 0.5 =0 | ¢=0.5A ¢=0 ¢ = 0.5 ¢=0 ¢ = 0.5A
sf=0.5 sf=0.5 sf=1 sf=1 sf=0.5 sf=0.5 sf=1 sf=1
Aa: i03 t(D | 35.06 38.02 20.15 | 23.44 43.53 47.21 24.93 2001
@ 4394 | 47.66| 25.16 29.28
t® 4336 | 47.03| 24.83 28.90
Aa—_35(:) t@ | 3.27 3.55 1.77 2.08 507 55] 2.62 3.09
O] 5.12 5.56 2.65 3.12
t® 5.05 5.49 2.61 3.08
aZ200 |t | 876 9.51 503 | 5.86 1087 | 11.79 6.21 7.24
1@ 10.98 | 11.91 6.27 7.31
t® 10.83 11.75 6.19 7.21
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a =200 t(M | 0.81 0.88 0.44 0.52 1.25 1.36 0.65 0.77
t@ 1.26 1.37 0.65 0.78
t® 1.25 1.35 0.64 0.77

In Figures 5.2 -5.3, accrual time s, required to conduct a test against Hy: In(A) = 0 is plotted
on the x- axis with size « = 0.025 and power of 0.8 (8 = 0.2) to detect the alternative A on
the y-axis. Median time to failure for control group subjects is always 1 year. Figure 5.2 plots the
curves for long duration trials with slow accrual (m = 50 per year) while Figure 5.3 plots short
duration with a brisk accrual (m = 200 per year). Within each set (one particular design with a
certain information time vector), consisting with four types, the uppermost curve represents Type
B, the case with moderate censoring present and short follow-up period (¢ = A./2 and sy = 0.5
years); the second upper curve represents Type A, the case with no censoring and short follow-
up period (¢ = 0 and sy = 0.5 years), the second to the lowest curve represents Type D, the
case with moderate censoring and one-year follow-up period for all subjects (¢ = 4./2 and

s = 1 years); and the lowermost curve represents Type C, the case with no censoring and 1-
year follow-up (¢ =0 and sy =1 years). For any hazard ratio, the required accrual length to
detect treatment difference will have a order of Type C<Type D<Type A<Type B, showing the
need of more accrual time resulted from censoring process while on the contrary shortening
accrual period when the accrual rate increases. And the separation between the pair A and B and
the pair C and D shows that the impact on the accrual time from accrual rate change is more
dramatic as compared with that of introducing competitive censoring process. In Figures 5.2 —
5.3, the upper left, upper right, lower left and lower right graphs are for fixed sample design, WT
under t™, t@) and t®), respectively. Figures 5.2 — 5.3 are the complete version of Table 5.1

with regard to the varying hazard ratio, which in all scenarios show a decrease function of the
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required length of accrual time of the trial in the increase of hazard ratio (i.e., from 1.3 to 3.0). A
much longer accrual time is required when a small hazard ratio is in need to detect treatment
difference, which further emphasizes how important it is to explore design characteristics prior to
trial start as well as during the trial for necessary sample size re-estimation in the middle of a
trial if the design parameter is over-estimated beforehand to avoid a underpowered study.
Comparing Figure 5.3 with Figure 5.2, accrual time for both fixed sample design and group
sequential design with brisk accrual is much shortened up; and the impact of adding competition
from censoring on accrual time tends to diminish but not disappear in Figure 5.3 when having a

much higher accrual rate of m = 200 per year.
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Figure 15(Fig. 5.2): Required accrual time (slow) vs. hazard ratio

Figure 5.2: Required accrual time vs. hazard ratio (from 1.3 to 3.0) for accrual rate of 50
per year, alpha=0.025, and beta=0.2
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Hazard rate

Hazard rate

Figure 16(Fig. 5.3): Required accrual time (fast) vs. hazard ratio
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Figure 5.3: Required accrual time vs. hazard ratio (from 1.3 to 3.0) for accrual rate of 200

per year, alpha=0.025, and beta=0.2

Besides accrual time length, total trial duration, which is the accrual time plus the follow-up

time, is also investigated. In Tables 5.2 — 5.4, under t™, t@) and t® are, respectively,

examined for four censoring rates of @ = 0, 0.25A., 0.5A.and 2., four follow-up times of s;=

0.5, 1, 1.5 and 2 years; and slow and brisk accrual rates of 50 per year and 200 per year as

before, aiming at showing the magnitude of impact on total trial duration for a survival trial with

different combinations of follow-up time, accrual rate and tested relative difference between
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placebo and treatment using WT upper boundary and Kim-DeMets lower boundary. For
example, under t™® and A =2 and sg=1 year (shaded row in Table 5.2), a case embroils a real
testing in drug development, the required total trial duration is 5.65, 6.03, 6.43 and 7.31 years for
@ = 0,0.252., 0.5A. and A, respectively, with slow accrual of 50 patients per year while being
2.15, 2.25, 2.35 and 2.57 years correspondingly for fast accrual rate of 200 per year. There are
indeed two ways to collect events quicker in a survival trial, recruiting more patients and
following patients in the trial for a longer time. When comparing long follow-up time (i.e., s¢=
1 year) versus short follow-up time (i.e., s¢= 0.5 years), eliminating 0.5 years of follow-up
length increases very little (i.e., 0.46 years) in total trial duration for a short duration trial with a
rapid accrual, i.e., m = 200 per year, from 2.15 years to 2.61 years for t®, A = 2.0 and

@ = 0; but the recruited number of subjects will change from 178 patients (i.e., (2.15-1)*200 =
230) for s; =1 to 340 patients for s¢=0.5 (i.e., (2.61-0.5)*200 = 422). In other words 0.5 years
shortening-up of follow-up time will result in accrual of an additional large chunk of patients
(i.e., 92 more patients) and a longer trial (i.e., 0.46 years) to compensate for the shortened-up
follow-up time 0.5 years.

Tables 5.2 — 5.4 furthermore show that, in contrast to long trial with slow accrual (m=50 per
year), for short trials with rapid accrual rate (i.e., m =200 per year), adding censoring process
will increase accrual time, subsequently in total time to a less extent. Let’s take t, A =
2.0,m = 200 per year, s¢=1.0 years as an example, censoring (@ = 0.51.) adds 0.20 years in
accrual time (from 2.15 years to 2.35 years) while for 0.78 years (from 5.56 years to 6.43 years)
when with a shorter trial associated with low accrual time of m =50 per year. Actually, from
Figures 5.2 — 5.3, we can also see adding censoring changes little in accrual time for long trials

with brick accrual unless hazard ratio is less than 2. On the other hand, this reminds us that
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accounting for censoring in design group sequential survival trials are important when we have a
long trial associated with slow accrual and/or hazard ratio is small. In such cases, ignoring
censoring will result in underestimated trial accrual time and total trial duration, which leads to

inadequate design preparations.

Table 21(Tab. 5.2): Total trial duration for WT (shape = 0.15) group sequential trials

Table 5.2: Total trial duration for WT (shape = 0.15) group sequential trials when
information vector is t(1, plus alpha=0.025, and beta = 0.2.

A | @=0 @=0.25A, P@=0.5), P=A,

50 200 50 200 50 200 50 200

s;=0.5 | 125 | 5049 | 15.20| 50.49| 15.81 | 50.50 | 16.44 50.50 17.74
1.5 20.44 547 | 21.28 5.68 | 22.13 5.90 23.91 6.35
2 9.01 2.61 9.37 2.71 9.74 2.80 10.51 3.00
3 5.57 1.76 5.79 1.81 6.01 1.86 6.48 1.99

s;=1.0 | 125 | 34.82 945 | 37.53 | 10.13| 40.34 | 10.82 46.33 12.33
1.5 12.25 3.80 | 13.16 4.04 | 14.11 4.26 16.14 4.78

2 5.65 2.15 6.03 2.25 6.43 2.35 7.31 2.57
3 3.62 1.64 3.86 1.70 4.10 1.77 4.61 1.90
sg=15 | 125 | 27.25 7.93 | 30.19 8.67 | 33.29 9.43 39.94 11.10
1.5 9.93 3.60 | 10.92 3.85| 11.95 4.11 14.21 4.67
2 4.88 2.33 5.29 244 5.74 2.55 6.69 2.79
3 3.33 1.94 3.56 2.00 3.82 2.07 4.38 2.21

s;=2.0 | 125 | 23.90 747 27.05 8.26 | 30.40 9.09 37.61 10.89
1.5 9.07 3.76 | 10.13 4.03 | 11.25 4.30 13.69 4.91
2 4.77 2.68 5.20 2.80 5.68 291 6.70 3.16
3 3.44 2.34 3.69 241 3.95 247 4.55 2.63

Table 22(Tab. 5.3): Total trial duration for WT (shape = 0.15) group sequential trials

Table 5.3: Total trial duration for WT (shape = 0.15) group sequential trials when
information vector is ¢, plus alpha = 0.025, and beta = 0.2.

A [@=0 @=0.25A, P=05A D=2,
50 200 50 200 50 200 50 200
s=0. | 125 5049 | 15.34| 5049 15.95| 50.50 | 16.59| 50.50 | 17.91
5 15 20.63 | 5.52| 2147 5.73| 2234| 595| 24.13| 640
2 9.09| 2.63| 945| 273| 983| 2.82| 1060| 3.0
3 562| 1.77| 584 182 606 1.87| 653| 201
Se=1. | 1.25 35.14| 953 | 37.88| 1022 40.71| 1092 46.76| 1243
0 15 1236 | 3.83| 13.28| 4.06| 1424| 429| 1628| 481
2 5696 | 2.16] 6.08| 226| 649| 236| 737| 2.8
3 3.652| 1.65| 3.89| 1.71| 4.13| 1.78]| 4.65| 190
s=1. | 125 2750 | 7.99| 30.46| 8.74| 33.59| 9.51| 4030| 11.19
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5 1.5 10.01 362 | 11.01 | 3.87| 12.05| 4.14| 14.33 4.70
2 4.91 2.34 532 | 245 5.78 | 2.56 6.74 2.80
3 3.35 1.95 3.58 | 2.01 3.85] 2.08 4.40 2.22
sg=2. | 1.25 24.11 7.52 | 2729 832 30.67| 9.16 | 37.95 10.98
0 1.5 9.14 378 1021 ] 4.05| 11.34| 4.32| 13.780 4.94
2 4.80 2.69 523 2.80 5711 292 6.74 3.17
3 3.45 235 37701 | 241 397 2.48 4.58 2.63

Table 23(Tab. 5.4): Total trial duration for WT (shape = 0.15) group sequential trials

Table 5.4: Total trial duration for WT (shape = 0.15) group sequential trials when
information vector is t®, plus alpha = 0.025, and beta = 0.2.

A @=0 0=0.25A, ?=0.5A, D=A,
50 200 50 200 50 200 50 200
sg=0. | 1.25 5049 | 15.15| 5049 | 15.75| 50.50 | 16.38 | 50.50 17.68
5 1.5 20.36 545 21.20| 5.66 | 22.05 5.88 | 23.82 6.32
2 8.98 2.60 934 | 2.70| 9.70 279 | 1047 2.99
3 5.55 1.75 5.77 1.80 | 5.99 1.85 6.45 1.99
sg=1. | 1.25 34.70 9.42 |1 37.39| 10.09 | 40.19 | 10.79 | 46.16 12.28
0 1.5 12.21 379 | 13.12| 4.02 | 14.06 425 | 16.08 4.76
2 5.63 2.14 6.02 | 224| 6.41 2.34 7.28 2.56
3 3.61 1.64 3.85 1.70 | 4.09 1.77 4.60 1.89
sg=1. | 1.25 27.16 791 | 30.08 | 8.64| 33.17 9.40 | 39.79 11.06
5 1.5 9.89 359 1088 | 3.84| 11.92 4.11 14.16 4.66
2 4.86 2.33 527 243 | 5.72 2.55 6.67 2.78
3 3.32 1.94 355 2.00| 3.81 2.07 4.37 2.21
sg=2. | 1.25 23.82 7451 2696 | 8.23 ] 30.29 9.06 | 37.48 10.86
0 1.5 9.04 376 | 10.10 | 4.02 | 11.21 429 | 13.64 4.90
2 4.76 2.68 519 279 | 5.66 2.91 6.68 3.16
3 3.43 2.34 3.68| 2.41 3.95 2.47 4.55 2.62

Based on required number of events for a group sequential design, accrual time and total trial

duration for survival group sequential trial with fixed follow-up time can be derived. Impacts

from censoring and different follow-up periods are addressed above in Tables 5.1 — 5.4 and

Figures 5.2 — 5.3. There are three other aspects of group sequential designs that needed to be
explored prior to trial start, as interim analyses allowing for early stopping using results from
accumulating data up to analysis stage in contrast to fixed duration fixed sample design. These

parameters are as follows:
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1) Real time at interim and final analyses;

il) Required number of events at each analysis including interim and final,

iii) Accrued number of patients at each analysis including interim and final.

As described above, inverse searching utilizing numerical integration is implemented to find the
real time for each analysis; then accumulated number of patients at time is calculated to
accumulate required number of events at each analysis so that overall power of detecting
treatment effect is ensured. One moderate hazard ratio, i.e., A = 2, is picked up to tabulate the
operation characteristics group sequential trials with WT upper boundary and Kim-DeMets
lower boundary. Tables 5.5 — 5.6 list design specifics which re-emphasize the impact of
censoring and length of follow-up period on trial designs. Besides new features like number of
patients and real time at interim, other group sequential parameters like upper and lower bounds
are also tabulated. Probability and expected information under null or alternative are not included
due to space limitation.

Tables 5.5 and 5.6 depict operation characteristics for designs with follow-up time of 0.5 or 1
years, and under t(, t@) or t®). In each table, there are four cases in combination of
censoring status and an accrual rate (50 per year or 200 per year):

Case l: ¢ =0 and m =50 per year;

Case ll: ¢ = 0.5A. and m =50 per year;

Case lll: ¢ = 0 and m = 200 per year;

Case IV: ¢ = 0.5A, and m = 200 per year.

Using asymmetric three-stage group sequential design, under equally-spaced ¢, the upper WT
boundaries with shape parameter of 0.15is u = (3.009054, 2.348463,2.041314) and Kim-

Demets lower boundaries with shape parameter of 0.8 is [ = (0.392837,1.288984,2.041314).
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The trial will stop for efficacy if log-rank test statistic is greater than or equal to 3.009054 at first
stage or greater than or equal to 2.348463 at the second stage, stop for futility if less than
0.392837 at Stage One or less than 1.288984 at Stage Two; and at the final stage will reject null
if logrank test statistic is greater than or equal to 2.041314 and accept otherwise. The required
number of events to conduct analysis is 28, 56 and 88 at Stage One, Stage Two and the final
stage, respectively. From Table 5, for fixed follow-up of 0.5 years for each subject and in the
absence of censoring, the first interim analysis will occur at 3 years after date of first-patient-in
(denoted as ‘FPI’) with 150 patients accrued in the trial for accrual rate of 50 per year (i.e., Case
| under t( in Table 5.5) while around 0.9 years after FP1 with 180 patients accumulated for
accrual rate of 200 per year (i.e., Case I1l under t™ in Table 5.5); the second interim will
occur at 5.90 years with 295 patients accumulated in the trial and 1.65 years with 330 patients
accrued for accrual rate of 50 per year and 200 per year, respectively. Subsequently, the final
analysis will occur at 9.01 years with 425 patients accrued in total and 2.63 years with the same
amount of subjects accumulated, under which the accrual time for slow and fast accruals
respectively has to recruit subjects for 8.51 years and 2.13 years. In the presence of censoring,
accordingly Case Il and 1V in Table 5.5, accrual time, subsequently total trial duration and
recruited number of patients will all increase in order to accumulate the same number of events
comparing trial that in the absence of censoring for detecting the same alternative hypothesis of
A= 2.

Comparing operation characteristics for short follow-up time with long follow-up time (Table
5.5 vs. Table 5.6), under t(M, in Case | of slow accrual in the absence of censoring, adding 0.5
years of follow-up for each subjects resulted in saving of 3.86 years (45%) in accrual time (from

8.51 years to 4.65 years), saving of 3.46 (38%) in total trial length (from 9.01 years to 5.65
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years) and saving of 193 (45%) in accrued number of patients (from 425 to 232) to test against
equality of hazard rate when trial is powered at hazard ratio of 2. Additionally, for fast accrual
and long follow-up trials, i.e., Case Il and IV in Table 5.6, there is no need to recruit patients
after Interim Two as enough patients have been recruited at time of Interim Two; and the trial
team can stop enrollment and wait patiently for more events to occur for the final stage and then
terminate the trial. Therefore, without exploration of trial operation characteristics, the study
team has no way be aware of when to stop enrollment of patients and when to get preparations
done upon the right timing for interim and final analyses in group sequential survival trials with
fixed length of follow-up time; and neither do they know how to adjust these parameters when
accrual rate changes during the trial and the extent of censoring is different from what they

thought prior to trial start.
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Table 24(Tab. 5.5): Group sequential designs

Table 5.5: Group sequential design with WT upper bounds (shape=0.15) and Kim-Demets beta-spending lower bounds with
shape parameter of 0.8, alpha=0.025, beta=0.2, hazard ratio=2 and s; = 0.5 while Case I: ¢ = 0 and m=50 per year; Case
II: ¢ = 0.5A, and m=50 per year; Case III: ¢ = 0 and m=200 per year; and Case IV: ¢ = 0.5A. and m=200 per year.

Inform | bounds Real time (year) Number of Patients Accrual time / follow-up time (year)
# of ation
events time l u Case Case Case Case Case 1 Casell | Caselll | CaselIV Case ] Case I CaseIII | CaselV
I 11 111 v
t® 28 0.33 0.392837 | 3.009054 3.00 3.25 0.9 0.95 150 162 180 190 8.51/0.5 | 9.24/0.5 | 2.13/0.5 | 2.30/0.5
56 0.67 1.288984 | 2.348463 5.90 6.40 1.65 1.75 295 320 330 350
88 1.0 2.041314 | 2.041314 9.01 9.74 2.63 2.80 425 462 425 461
t® 44 0.5 1.002881 | 2.631239 4.50 4.85 1.30 1.35 225 243 260 270 8.59/0.5 | 9.33/0.5 | 2.15/0.5 | 2.32/0.5
66 0.75 1.479783 | 2.283118 6.65 7.20 1.80 1.95 333 360 360 390
89 1.0 2.064428 | 2.064428 9.09 9.83 2.65 2.82 429 466 429 465
t® 17 0.2 -0.21179 3.59089 1.90 2.05 0.65 0.65 95 103 130 130 8.48/0.5 | 9.20/0.5 | 2.12/0.5 | 2.29/0.5
70 0.8 1.678852 | 2.210452 7.00 7.60 1.90 2..05 350 380 380 410
87 1.0 2.044384 | 2.044384 | 8.98 9.70 2.62 2.79 424 460 423 459

Table 25(Tab. 5.6): Group sequential designs

Table 5.6: Group sequential design with WT upper bounds (shape=0.15) and Kim-Demets beta-spending lower bounds with
shape parameter of 0.8, alpha=0.025, beta=0.2, hazard ratio=2 and s; = 1.0 while Case I: ¢ = 0 and m=50 per year; Case
I1: ¢ = 0.5A, and m=50 per year; Case Ill: ¢ = 0 and m=200 per year; and Case IV: ¢ = 0.54,. and m=200 per year.

Inform | bounds Real time (year) Number of Patients Accrual time / follow-up time (year)
# of ation
events time l u Case | Casell Case Case Case | Case 11 Case 111 Case Case | Case 11 Case II1 Case IV
1 11T v I\
t® 28 0.33 0.392837 | 3.009054 1.95 2.20 0.80 0.85 98 110 160 170 4.65/1.0 | 5.44/1.0 | 1.16/1.0 | 1.35/1.0
58 0.67 1.288984 | 2.348463 3.55 4.05 1.20 1.30 178 203 231 260
86 1.0 2.041314 | 2.041314 5.65 6.44 2.16 2.35 232 272 231 270
t@ 43 0.5 1.002881 | 2.631239 2.80 3.15 1.00 1.10 140 158 200 220 5.69/1.0 | 5.49/1.0 | 1.17/1.0 1.36/1.0
65 0.75 1.479783 | 2.283118 3.95 4.50 1.35 1.45 198 225 233 272
87 1.0 2.064428 | 2.064428 5.69 6.49 2.17 2.36 234 274 233 272
t® 17 0.2 -0.21179 3.59089 1.35 1.50 0.60 0.65 68 75 120 130 4.63/1.0 | 541/1.0 | 1.16/1.0 1.34/1.0
68 0.8 1.678852 | 2.210452 4.15 4.75 1.40 1.50 208 238 231 268
86 1.0 2.044384 | 2.044384 | 5.63 6.41 2.16 2.34 231 270 231 268
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Section 5.5: Discussion

Randomized clinical trials have been widely used in clinical trial submissions to assess
maintenance effect of investigational compound relative to placebo in the double-blind phase on
patients who have been stabilized for symptoms after a period of open-label treatment phase. For
a trial design without a fixed follow-up period for each subject as in Figure 5.1a, randomized
subjects are followed-up until event occurring, or early withdrawal, or until trial termination,
whichever date comes the earliest. There are issues observed from drug development practice in
trials without a fixed follow-up length imposed on all subjects as follows: safety parameters can’t
be interpreted properly due to variable duration in the double-blind phase; some overtime effects
measured by scales using repeated measures can’t be evaluated properly because missing is not
at random; and long exposure to the investigation medication of those patients remaining until
study termination is also questionable. Adding a fixed-length of follow-up time for all subjects
can alleviate above issues in certain extent as discussed in our motivation example (Section 5.1).
Especially, for trials comparing investigational drug against active comparator when relapse rates
are low in both groups so that most of subjects in the double-blind phase will be administratively
censored at the end of the follow-up time with time to censoring s, safety and secondary
efficacy endpoints in this case can, in some extent, be assessed properly by having the same trial
length among these subjects. In the meantime, primary efficacy endpoint can be addressed in a
better way as compared with a trial without a fixed follow-up period, because in the intent-to-
treat analysis, there can’t exist a large chunk of subjects being administratively censored at the
study termination with a minimum exposure up to one day to the study medication so that
resulting in no attribution to evaluation of the overall treatment effect between two survival

curves.
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Careful explorations of accrual time requirement are needed prior to trial start, Table 5.1 shows
that some trials are desperately long with slow accrual rate when to test small hazard ratio, which
is often occurred in non-inferiority randomized withdrawal trials, as our motivation example,
statistical exploration of trial feasibility is a must to predict large enough accrual rate to finish
trial earlier especially in face of nowadays’ fierce competition in drug development. Impacts of
censoring can also be explored a priori as non-administrative censoring is determined to exist in
every trial but in a different extent, which, by Tables 5.1 - 5.6 and Figures 5.2 — 5.3, is a factor to
determine trial length and required number of patients. By our explorations, the length of follow-
up time has substantial impacts on trial accrual time as well on total trial duration and recruited
patients’ number. The minimum exposure length is normally chosen to account for the
requirement of both safety and tolerability of study drug in balance with the need of long enough
exposure to detect placebo-treat difference in efficacy. Within a range of fixed follow-up lengths,
which are all longer than the minimum exposure requirement and under which subjects are well-
tolerated, a longer follow-up length can substantially save time and budget and can gather a
better safety profile as compared with that of a short follow-up time. Additionally, real time for
interim gives trial team in good preparation in time and is operationally highly appreciated
because this prediction can avoid allocate resources too early or too late. Lastly, Newton-
Rapshon search as used in Kim and Tsiatis (1990) is not working here, as we have a minimum
function in the integrand part of the integration. Brutal force grid-search is proposed in the trial,
but can be done very quickly even with a personal laptop. Of note, although our motivating
example is a double-blind randomized withdrawal trial, methods established in this paper apply
to any survival group sequential trials with a fixed follow-up period imposed on all subjects

irrespectively of blind or open-label, maintenance study or direct confirmative study on drug
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efficacy in acute patients. It is also of note that subjects can still withdraw early from the trial
prior to the maximum follow-up time if it is deemed necessary, because as pointed out by the
reviewer that it may be equally unethical to force subjects to be studied by the same length if a
subject changes the informed consent or encounters an unexpected adverse event.

Although Software ADDPLAN® and Software EAST® has implemented group sequential
design for survival data and SAS® has SEQDESIGN and SEQTEST procedures to deal with
designs and analyses, there hasn’t been any publication substantively assessing the impacts of
imposing a maximum follow-up period for each subject on operation characteristics of a
particular design. This paper serves this purpose and furthermore, optimality feature could be
assessed using automated written codes but hard to achieve using available software.

Programming codes were done in R and available for distribution from the author upon request.
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Chapter 6

Optimal Weighted Z Test and Linear Combination Test in Extended
Sequential Parallel Designs

(Being reviewed by Communication in Statistics: theory and method)

Abstract: Many times in clinical trials using Sequential Parallel Design (SPD) with two
treatments subjects are randomized in Period 1 and placebo non-responders are re-randomized in
period 2 to either continue with placebo or switch to drug. In this paper, we introduce extended
SPD (ESPD) and consider the re-randomization of not only placebo non-responders during
Period 1 but also the re-randomization of drug responders during Period 1 into Period 2.
Statistical methods to analyze data from an ESPD have been discussed. An optimal weighted Z
test for normal data and a linear combination test for binary data are proposed and investigated.
Keywords: Weighted Z Test; Parallel Sequential Design; Double Randomization; Placebo
Effect; Linear Combination Test.

Section 6.1: Introduction

To maintain the balance among baseline factors between treatment groups, randomization of
subjects in different treatment groups is commonly used in randomized trials. After meeting
inclusion/exclusion criteria, subjects are randomized onto either drug or placebo to assess drug
effect. Given that baseline factors have been evenly balanced between comparing groups,
observed drug-placebo difference can then be considered as a measure of drug effect on patient
population. Although majority of clinical trials only have one randomization, there are occasions
when subjects enter from first period to second period depending upon some success criteria and
re-randomization is needed prior to subjects enter the Period 2. For instance, to investigate
maintenance effect after having been stabilized on drug, the second randomization could
eliminate the bias resulted from differential early withdrawals between groups. There is a rich
history of published trials employing the double randomization in different therapeutic areas
(Mills et al. 2007; Heyn et al. 1974; Habermann et al. 2006).

Strong placebo response has been problematic in central nervous system (CNS) clinical trials,

leading to a reduced drug effect and thus resulting in decrease in probability of finding an
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effective drug (Khin et al. 2011). The ideal situation is to have comparative data collected only
from subjects who are placebo non-responders. Stringent trial procedures together with
enrichment of placebo non-responders are some of the ways to decrease placebo response in
clinical trials. Fava et al. (2003) proposed a SPD where subjects are only randomized during
Period 1. Accordingly, some placebo non-responders in Period 1 continue on placebo in Period 2
and others switch to drug in Period 2; and subjects who are treated with drug in Period 1 would
continue to receive drug in Period 2. Treatment sequences for all subjects are all pre-specified
prior to trial start; and data from Period 2 for subjects who are on drug in both periods are for
safety evaluations only. An estimator is proposed to assess drug effect in each period, and a
combined estimator is also proposed to test superiority of investigational drug over placebo
across periods. Tamura & Huang (2007) suggest seemingly unrelated regression analysis (SUR)
to obtain individual estimator from each period to analyze data from a SPD trial. To adjust for
the bias caused by possible unbalanced dropouts among placebo non-responders in Period 1,
both Fava et al. (2003) and Chen et al. (2011) propose re-randomizing Period 1 placebo non-
responders into Period 2. They showed that when certain conditions are met the covariance
between two estimators to be zero. Re-randomization of Period 1 placebo non-responders into
Period 2 is also suggested by Liu et al. (2012) where they suggested a weighted Z test to increase
efficiency of hypothesis test. This paper in addition to re-randomization of placebo non-
responders in Period 1 also considers re-randomization of Period 1 drug responders into Period 2
after washing off the residual effects. Section 6.2 describes the design schematic, Section 6.3
introduces an optimal weighted Z test for normal data in an extended SPD trial and Section 6.4
proposes a linear combination test for binary data. Discussions and further research directions are

provided in Section 6.5.
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Section 6.2: Design Schematic
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Figure 17(Fig. 6.1): Design schematic

Figure 6.1: Design schematic
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Subjects with endpoint value of a period greater than or equal to a threshold value are defined as
a responders during the period (or on the contrary, being less than or equal to a threshold value).
The design consists of two periods. At the beginning of Period 1, eligible subjects are
randomized to receive either placebo or drug, and subjects can withdraw early for lack-of-
efficacy, adverse event, or other safety issues. At the end of Period 1, placebo patients are
classified as responder or non-responder based on endpoint value. Placebo non-responders are
re-randomized to receive either drug or placebo in Period 2. Similarly, subjects in drug group are
also classified as responders or non-responders. A proper washout period is used to eliminate
residue effects obtained from Period 1 and then drug responders are re-randomized to receive
either placebo or continue on drug in Period 2. To maintain balance of baseline factors between
comparing groups in Period 2, randomization ratio in Period 2 is set as 1:1 for both placebo non-
responders and drug responders. Period 1 randomization ratio of 1:1 is not required but it should
be 1:1 in Period 2 within each randomization group.

Section 6.3: Normal Data

Section 6.3.1: General Theory of Design
Let 6, be Period 1 drug effect with standard error v;. Pairs 6,; and v,; are similarly defined
for drug effect in Period 2 obtained from re-randomized Period 1 placebo non-responders, so do
6,, and v,, obtained from re-randomized Period 1 drug responders. Let r; denote the
randomization ratio of subjects receiving placebo versus drug in Period 1. Let r,; and r,,
denote re-randomization ratio for placebo versus drug in Period 2 for Period 1 placebo non-
responders and for Period 1 drug responders, respectively. Therefore, the number of subjects for
drug and placebo in Period 1 are respectively n; and n, * r;. Note that the sample sizes for both

Period 1 placebo non-responders and drug responders are random and depend on the attrition rate
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in Period 1 as well as the probability of being a responder at the end of Period 1. n3, and

n3, * ry; are the expected number of Period 1 placebo non-responders who switch to receive
drug in Period 2 and remain on placebo in Period 2, respectively. Similarly, n3, and

n;, * r,, are defined as the expected number of drug responders who remain on drug in Period 2
and switch to receive placebo in Period 2, respectively.

We are interested in testing the following global null hypothesis:

Hy:6;, <0 and 6,; <0 and 6,, <0 in favor of the alternative hypothesis

Hy:0,>0 or 6,;>00r 6,,>0

For 6;, 6,; and 6,,, the test statistics for testing-the individual null hypothesis H,,: 68, < 0,
Hyy1: 051 <0 and Hy,,: 05, <0 are Z;, Z,; and Z,,, respectively, with each test statistic
defined as an estimate divided by its standard error. They are standard normal variables with
mean zero and variance of one under null hypotheses and with a positive mean and variance of
one under alternative hypothesis. Note that the individual statistics here are different from widely
cited weighted Z statistic from two stages (Cui et al. 1999) resulting from a design with one
randomization only. Here Z,, and Z,, are obtained from Period 2 after re-randomization. The
relationships among Z;, Z,; and Z,, are essential to understand asymptotical distribution of
the combined test statistic under both null and alternative hypotheses. Since Period 1 placebo
non-responders contribute to both Z; and Z,; and Period 1 drug responders contribute to both
Z, and Z,,, correlation coefficient between them (i.e., Z, versus Z,, or Z,,) must be
evaluated in order to test the hypothesis when using combined test statistic against the global null
hypothesis. Let p; denote the correlation coefficient between outcomes at Period 1 and Period 2
for subjects who are placebo non-responders in Period 1 and then treated with placebo in Period

2 and p, is defined similarly but for subjects who are placebo non-responders in Period 1 and
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treated with drug in Period 2. Assuming equal correlation coefficients (i.e., p; = p, ) asin
Chen et al. (2011), it is proved that covariance between Z, and Z,, is zero (that is cov (Z;,
Z41) =0). Similarly, cov (Z,, Z,,) =0. Also Z,; and Z,, are independent of each other as
coming from different cohorts of subjects in Period 2, which says cov (Z,;, Z2,)=0.

To establish the efficacy of the drug, one combines Z,, Z,;and Z,, via

Z:\//l_lzl + \//1_2221 + V1-4 —AZy

Due to mutual independence, Var(Z) = 1 under both null or alternative hypotheses—

anh Rk -

Tk
1+71g

E(2)= \//1—1\/ n;R.16; + \//1_2\/ Ny1R21821 + \/1 - A - 12\/n§2R22522

This expectation is zero under null because having zero 6’s under null. Furthermore, assuming

0k = %,for k = 1,21 or 22, one obtains
k Uk

positive §’s, maximizing the power of the test Z > z, _a« is equivalent to maximize the
2

expectation of Z under alternative. Taking derivative of expectation function with respectto A,
and A, separately, setting derivative function equal to zero and solving equations

simultaneously, one can get optimal weights A, and A, as:

1 = n1R187n3,R2263,
1 (myR1624n5,Ry262,)(nb1Rp1 62, 4155 Rp262, )—N1R18% b, Ryq 62
(n1R161+Nn3,R2263, )(N31R21651+N55R2285, )—N1R167 N5 1 R2165,

2 2
* n51R21631M3,R2285,
5 =
(M1R1 83 413,R226%, )(n51R21851 +13,R2263, )~M1R1 87 51 R21 83,

* . _ n3,R2285,M52R2268%;
1- Al - AZ - 2. % 2 ¥ 2 ¥ 2 2 % 2
(n1R163415,R2263, )(n51R2185, 415, R2285, )—N1R1 8% n31 Rp16%;

It can be seen that weights are obtained from splitting variance of 1 into three components, with
each being less than 1 and greater than 0, and each coefficient of Z,, k = 1,21 or 22 is the
square root of corresponding weight. This is indeed very similar to variance spending method

which dispenses variance into three independent test statistics. Let m,,; be the rate of
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attrition/exclusion for placebo responders in Period 1 and m,, be the rate of attrition/exclusion

of drug non-responders in Period 1. Thus, the expected sample size n3; and n3, in Period 2 can

*

be represented as a function of randomization ratio together with 7's. Thatis: n3; =

n1T1(1—T[21) _ - 2 62 2 62
——== and n3,=n;(1 — Ry) (1 —myy). With 15, = -2, 13, = 6%2,

1473, 52" for given two-sided

2
)

6%RB !

type | error a and type Il error S, the required sample size for n, is: n; =

Rz1R1(1-Ry1)(1-m31) o

where Rg = Ry + — 72, + (1 — Ryy)R,, (1 — m,,)72,. Enrichment of placebo
—A1

non-responders alone (Liu et al. 2012) is a special case of the proposed method here. That is:

. N . . R,62
without re-randomization of drug responders into Period 2, one now has 1] = L L R
n1R167+N51R2165,
< 2
Zl‘ﬁ+z1—5> . Ry1(1—Rp1)(1-
and n; = ——2~ with R, =1+ 221 Rz ) "21)151. Because Rz = R4+ (1 —
8%R Ry 1-Rp1

Ry2)R,,(1 — my,)73, > R4, sample size for enrichment of both Period 1 placebo non-responders
and Period 1 drug responders can further decrease sample size and hence increase efficiency of
the design compared to a SPD design with only re-randomizing Period 1 placebo non-responders
into Period 2.

Section 6.3.2: Sample Size and Optimal Weight(s) Calculations
Optimal weight(s) and sample size are calculated for enrichment of placebo non-responders
alone (Table 6.1) and for enrichment of both placebo non-responders and drug responders (Table
6.2) under a variety of scenarios.
Table 1 contains the results for enrichment of placebo non-responders alone, r; = 2
corresponding to 2:1 randomization ratio in Period 1, which is also proposed in various papers

with SPD design to ensure that enough subjects can enter into Period 2. A special case of
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r; = 2 shows that increase in sample size leads to higher power of the trial. Total sample size
for Period 1 is 114 for power 0.8 while power is equal to 0.9 for sample size of 152 when

&, = 6,1 = 0.5. With power of 0.8, sample size for total number of subjects in Period 1
decreases from 114 to 104 when having 20% increase in effect size (6,,=0.6) in Period 2 from
Period 1 (6,=0.5), as compared with the case with no change after enrichment (i.e., §; = §,; =
0.5 ). Similar trends also occur with other values of r;. Considering varying value of r;, one
notices that weight 4, ,,,, decreasesas r; increases. And the optimal weights for the listed

scenarios are ranging from 0.6 to 0.8, consistent with published numbers in the literature.

Table 26(Tab. 6.1): Optimal rates and sample sizes for SPD

Table 6.1: For a SPD trial with enrichment of placebo non-responder, calculation of
optimal 4,,, and sample size when a/2 = 0.025, B =0.10r0.2, §; = 0.5,

5, =0.50r0.6,and r; =1.5,1.7,2.0,2.2 or 2.5.

1-p Ty 64 621 €21 n /11,opt ny Ny =n; +ny *rl
1.5 0.76 42 105
1.7 0.75 40 108
0.8 0.5 0.5 0.5 1.0 2.0 0.73 38 114
2.2 0.71 37 117
2.5 0.70 36 124
1.5 0.69 39 97
1.7 0.67 37 99
0.8 0.5 0.5 0.6 1.2 2.0 0.65 35 104
2.2 0.63 34 107
2.5 0.61 33 114
1.5 0.76 57 141
1.7 0.75 54 145
0.9 0.5 0.5 0.5 1.0 2.0 0.73 51 152
2.2 0.71 49 156
2.5 0.70 48 165
1.5 0.69 52 129
1.7 0.67 50 133
0.9 0.5 0.5 0.6 1.2 2.0 0.65 47 140
2.2 0.63 45 144
2.5 0.61 44 152

Table 6.2 repeats the calculations in Table 6.1 but with enrichment of both Period 1 placebo non-

responders and Period 1 drug responders. Comparing with enrichment of placebo non-responders
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alone (Table 6.1), in ESPD trials, total sample size decreases by 15%-20% as compared with
cases in Table 6.1, resulting in more efficient designs. For r; = 2, all cases result in
substantially saving in sample size as compared with respective cases in Table 6.1. Since both
Period 1 placebo non-responders and Period 1 drug responders continue into Period 2 in ESPD
trials, balanced randomization in Period 1 is more desirable and hence one could have r; around
1 rather than a number bigger than 1 as in Table 6.1. Note that in the proposed ESPDs, when

r; = 1, equal effect size (i.e. §; = 8,; = §,, = 0.5) and power 0.8, the required total sample
size in Period 1 is 84; and as expected, sample size decreases to 79 when enrichment works and
the effect size increases to 0.6 in Period 2 from being 0.5 in Period 1. From Table 6.2, it is also
clear that optimal A, is between 0.4 and 0.7, while A, being a positive number less than 0.3.
Compared to a simple parallel design, trials with SPD will save 30% in sample size (Liu et al.
2012) and further saving about 15%-20% in sample size can be achieved by ESPD compared to

SPD trial.

Table 27(Tab. 6.2): Optimal rates and sample sizes for ESPD

Table 6.2: For an ESPD with both enrichment of placebo non-responders and drug
responders, calculation of optimal = 44 5, , 420p¢ and sample size when a/2 = 0.025,
ﬁ =0.10r0.2, 81 = 0.5, TTy1 =Ty = 0.5,821 =0.5, 622 =0.50r0.6, and
r1=0.50.7,1.0,1.2,1.5,1.7,2.2 or 2.5.

1-p 1 T2 8y 621 827 21 | &22 n /11,0171: lz,opt ny N;
0.5 0.640 0.120 61 91

0.7 0.660 0.140 51 86

1.0 0.667 0.167 42 84

1.2 0.665 0.182 39 85

0.8 0.5 0.5 0.5 0.5 0.5 1 1 1.5 0.658 0.206 35 87
1.7 0.651 0.220 33 88

2 0.640 0.240 31 91

2.2 0.632 0.253 29 93

2.5 0.620 0.271 28 96

0.5 0.402 0.075 55 82

0.7 0.421 0.089 47 79

1.0 0.431 0.108 40 79

0.8 0.5 0.5 0.5 0.6 0.6 1.2 | 1.2 1.2 0.433 0.119 36 79
1.5 0.431 0.135 33 82

1.7 0.428 0.144 31 83

2 0.422 0.158 29 86
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2.2 0.418 0.167 28 88
2.5 0.411 0.180 27 91
0.5 0.640 0.120 81 122
0.7 0.660 0.140 68 115
1.0 0.667 0.167 57 113
1.2 0.665 0.183 52 113
0.9 0.5 0.5 05 | 05 ] 05 1 1 1.5 0.658 0.205 47 116
1.7 0.651 0.220 44 118
2 0.640 0.240 41 122
2.2 0.632 0.253 39 124
2.5 0.620 0.271 37 128
0.5 0.402 0.075 73 110
0.7 0.421 0.089 62 106
1.0 0.431 0.108 53 105
1.2 0.433 0.119 49 106
0.9 0.5 0.5 05 | 06 | 0.6 1.2 | 1.2 1.5 0.431 0.135 44 109
1.7 0.428 0.144 42 112
2 0.422 0.158 39 115
2.2 0.418 0.167 37 118
2.5 0.411 0.180 35 122

Section 6.4: Linear Combination Test in An Extended SPD with Binomial Data

Section 6.4.1: Preliminaries
For binary data collected from both periods, as shown in Table 6.3, there are four groups of
patients across two periods: 1) patients who receive placebo in Period 1, are non-responders and
re-randomized to receive placebo in Period 2 (PP), 2) patients who receive placebo in Period 1,
are non-responders and re-randomized to receive drug in Period 2 (PD), 3) patients who receive
drug in Period 1, are responders and then re-randomized to receive placebo in Period 2 (DP), and
4) patients who receive drug in Period 1, are responder and re-randomized to receive drug in
Period 2 (DD).
Define p, = P(drug response in Period 1), q; = P(placebo response in Period 1),
p21 = P(drug response in Period 2|placebo non — responder in Period 1), q,; =
P(placebo response in Period 2|placebo non — responder in Period 1),
P22 = P(drug response in Period 2|drug responder in Period 1),

q22 = P(placebo response in Period 2|drug responder in Period 1).
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Here, p,1,q21 P22, and q,, are all conditional probabilities. Among PP subjects, n,; denotes
the observed number of responders in Period 2; n,, denotes the observed number of subjects
who are non-responders in both periods; n,4 is the observed number of subjects who are placebo
responders in Period 1; n, is the total number of PP subjects and therefore n; = n;; + ny, +
nq4. Vector (ny4, ny2,nq,4) is multinomially distributed with (n,, (1 — q1)q21, (1-91)(1-921), q41)-
n,, is, of the PD subjects, the observed number of subjects who are non-responders in Period 1
and responders in Period 2; n,, is, of the PD subjects, the observed number of subjects who
are non-responders in both periods; n,4 is, of the PD subjects, the observed number of subjects
who are placebo responders in Period 1; n, is the total number of PD subjects and n, = n,; +
Ny, + Nyy. VECtor (nyq, gy, nyy) is multinomially distributed as (n,, (1 — q1)p21, (1-q41)(1-
P21): q1)- nsp 1S, of the DP subjects, the observed number of subjects who are drug non-
responders in Period 1; ns5 is, of the DP subjects, the observed number of subjects who are
responders in both periods; ns, is, of the DP subjects, the observed number of subjects who are
responders in Period 1 and non-responders in Period 2. n; = ngg + ng3 + ng,. Vector

(n3p, N33, n34) is multinomially distributed as (ngz, (1 — p), 1422, P1(1 — q22)). nup is, of the
DD subjects, the observed number of subjects who are drug non-responders in Period 1; n,s is,
of the DD subjects, the observed number of subjects who are responders in both periods; n,, is,
of the DD subjects, the observed number of subjects who are responders in Period 1 and non-
responders in Period 2. n, = nyp + ny3 + nyy. VECLOr (nyg, nys3, nyy) is multinomially
distributed as (ny, (1 — p1), P1P22, P1 (1 — p)). The total sample size of the trial is n and n=

ny +n, + ng + n,. For sample size estimation and simulation of rejection probabilities, for the
purpose of convenience, it is set to have n, = n, = ny = n, = n/4. Table 6.3 depicts the

distribution of count data described above.
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Table 28(Tab. 6.3): Extended sequential parallel design with binary data

Table 6.3: Extended sequential parallel design with binary data.

Treatment Response
Period 1 Period 2 Period 1 Period 2 Count
Probability
Placebo Placebo | No Yes nyq (1-91) q21
(ny) No No N2 (1-g1)(1-q24)
Yes X Ny q1
Placebo Drug No Yes Nyq (1-91) p21
(ny) No No Ny, (1-g1)(1-py1)
Yes X Noa qq
Drug Placebo | No X Nip (1-py)
N3 Yes Yes N33 P1922
Yes No N3y p1(1 —q32)
Drug Drug No X Nyup (1-py)
(nyg) Yes Yes Ny3 D1P22
Yes No Mgy p1(1 —py)

Section 6.4.2: Linear Combination Test
To test potential drug effect across two periods of the trial, we propose using maximum
likelihood estimators from two periods; and then obtaining the linear combination of the two
estimators, say h. Because estimated  after plugging in maximum estimators is a function of
all count vectors which have four different multinomial distributions, utilizing asymptotical
normality of multinomial counts, delta method can be used to derive asymptotical variance of h.
The joint likelihood for observed data is defined as
L:p1n33+n34+n43+n44(1 _ pl)n43+n33q1n1A+n2A(1 _ ql)n11+1’l12+1’l21+1’l22p21n21(1 _
P21)"%2q21" 1 (1 — q21)™2P22" 3 (1 — P22) "4 q22"™23 (1 — q22) "4
logL=(n33 + N34 + ny3 + n4y) log(py) + (ngp + n3p) log(1 — py) + (g4 + nz4) log(qy) +
(nyq + 0y + np1 + n35) log(1 — qq) + nyylog(pz1) +ny;log(1 — pay) + 0y log(gzy) +
Ny, 10g((1 — q21) + nuslog(pzz)+ naslog(l — py2) + ng3log(qz,) + naslog(l — qz;)
h=w;(p; — 1) +wa(Pz1—821) + (1 —wy —wy)(P2a — G2z ), Where wy and w, are

pre-specified weights.  Under the situation of zero drug-placebo difference, p; = q1,p,1 =
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421, P22 = q22, hthen equals 0. More effective a drug is, a bigger value h will become. The

maximum likelihood estimate (MLE) can be solved by setting the first derivative of logL to 0.

A N33+MN34+MN43+N44 A ni14+tN24 A Npp ~
b1 = 41 = v P21 = v Q21 =
N33+N34+N43+tN44+Nypt+N3pE N11+N12+N21+N224N1 41124 N1+N22
n ~ n ~ n . - ~ . .
2 Dy = —— , G,y = ———, The maximum likelihood of h, h,,, g, is obtained by
N11+Ng2 N43+N44 N33+N34

substituting the MLEs into h function and the variance of h,,,; can be estimated using delta

o0h oh Oh oOh Oh Oh oOh OhR Oh Oh AR Oh
Ongy’ Ongy’ Ongg’ Ongy’ Ongy’ Ongy ' Onzp’ Ongs’ Ongys Ongp’ Ongs’ Ong,

method. Define DT=[ and

define V=cov([ny; Ny Nya Naq Moy Npa Nap Naz Nag NapNas Nag]’). Then asymptotic
Var(hy,;)=DVDT". Since ny n, ny and n, are multinomially distributed and resulting from
four count vectors of (ny1,n15,M14), (N21,M22,M24), (N3p,N33,N34), ANA (Nyp,Ny3,M4y)
respectively. For instance, Var(n,;)=n,;(1-(1-q;) 9,1) (1-91) g1 and Cov(n,;,n;,)=
Cov(nyy,ny1)=-n:(1-q91) 921(1-q1)(1-q21). Similarly, all other variances and covariance can be
easily derived. Thus, V=cov([n,; Ny, Nys Npg Moy Ny N3p N33 Nag NapNaz Nag] '), @ 12X12
block diagonal matrix.

h

hypothesis. This shows that this linear combination test is a Wald test under null hypothesis of

The resulting statistic is T, = which converges to standard normal under null

h=0.
Section 6.4.2: Sample Size Requirement and Simulated Rejecting Probabilities
Based on asymptotic normal of T;., sample size can be derived. Plugging in expected values of

N11,M12 N4, N21, M2 N2, N3, N33 N34, Nap,Na3 Ngg INO DVDT andlet h = wy(p; — q1) +
. h .
w — +(1-w;—w — , expected value of T;. iIs —=. To achieve two-
2(P21 — P21) + ( 1 2) (P22 — G22 ), €XP RN

sided type | error of a and type Il error of B, E(Tic)|n,=21-a/2+21-p, Where z;_,, isthe
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(1 - %) th quintiles of the standard normal variable. Figure 2 shows the expected value of T,

under alternative for different n. The horizontal dot-dashed line shows the value of
Zi—q/2%Z1-p When a = 0.05and g = 0.1. At the point that the horizontal dot-dashed line

intercepts, one draws a vertical line to intercept with the x-axis. The value at x-axis corresponds
to the required sample size for a trial. For instance, the solid line is for drug-placebo difference
being 0.1 for both periods and the required sample size to achieve power 0.9 is 620. The dashed
line is for drug effect of 0.1 and 0.2 in Period 1 and Period 2 respectively and it requires n to be
252. When drug-placebo difference is 0.2 for both periods, it requires 113 for total n (dotted
line in Figure 6.2). Comparing dashed line with dotted line, one can see clearly that sample size

saves substantially when enrichment works in Period 2 (i.e., n = 620 versus n = 252).

Figure 18(Fig. 6.2): Graphic method for determining sample size

Figure 6.2: Graphic method for determining sample size. Expected value of T,. under
alternative hypothesis for different sample size at the beginning of Period 1 for w; =
0.5and w, = 0.2. The solid lineisfor p; =0.7,q; =0.6,p21 = 0.7, 21 = 0.6,p3; =
0.7,q22 = 0.6; The dashed line is for p1=0.7,9q, =0.6,p1 =0.7,q21 = 0. 5, P22 =
0. 7, (22 = 0. 5, the dotted line is for P1 = 0. 7, q1 = 0. 5, P21 = 0. 7, q21 = 0. 5,p22 =
0.7,q,2 = 0.5; and the horizontal dot-dashed line is the required expected mean under
alternative hypothesis when 2-sided alpha is 0.05 and beta is 0.1.

IS

Expected Mean under atternaitve hypothes
4
|

I I I I I I I
100 200 300 400 500 500 700

Sample size
Table 6.4 shows the rejection error rates under null hypothesis for four scenarios of parameter

profiles. Five cases of weight combinations are used. Based on explorations carried on bellow,
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optimal weights for extended SPDs are for w; from 0.5-0.7 and w; from 0.15-0.25. 10000
simulation runs are used for all simulation experiments. It is clear that type I error rate is well
controlled for all chosen parameters and weight combinations when sample size ranging from 50

to 1000. Note that the empirical type I error rates here are all subject to simulation errors.
Table 29(Tab. 6.4): Empirical one-sided type I error (X100)

Table 6.4: Empirical one-sided type | error (X100).

n wy; =05 w; = 0.5 w; = 0.6 w; = 0.6 wy; = 0.7
w, = 0.2 w, = 0.3 w, = 0.15 w, = 0.20 w, = 0.15

50 291 3.42 3.3 3.5 3.20
100 [3.23 3.40 3.66 3.44 2.95
150 [3.13 3.20 3.05 2.87 2.94
g = 0.6 200 | 3.06 3.21 2.97 3.37 2.85
Gr1 = 0.4 300 [3.27 341 2.92 2.87 2.68
R 200 | 2.85 2.86 2.90 2.90 2.85
500 | 2.99 291 3.0 2.58 3.20
800 | 2.55 2.98 2.71 2.74 3.05
1000 | 2.67 2.85 2.64 2.82 2.69
50 3.06 337 3.16 3.00 3.24
100 | 3.57 3.67 3.23 3.60 2.87
~ 150 [3.19 3.13 3.36 3.3 2.74
@ =05 200 | 3.20 3.54 3.15 2.92 2.77
Gz1 ~ 07 300 [3.10 2.90 3.02 2.87 2.90
722 = 0. 200 | 3.07 3.35 2.77 2.90 2.56
500 | 2.81 3.3 2.97 2.90 2.67
800 | 3.07 242 2.87 2.68 2.53
1000 | 2.75 291 2.96 243 2.49
50 3.61 347 3.39 321 3.05
100|337 3.30 3.28 2.95 2.64
150 | 3.45 2.93 3.46 3.04 2.78
o= 0 200 | 3.30 3.06 3.0 3.34 2.65
Gz1 ~ 0.2 300 | 3.28 2.90 3.05 3.00 2.67
922 = 0- 200 | 2.83 3.03 3.12 2.79 2.68
500 | 2.68 3.10 2.76 2.84 2.67
800 | 3.02 2.83 272 2.74 2.69
1000 | 2.75 3.01 2.99 2.82 271

Table 6.5 contains calculation of the required sample size based on the method described in
Figure 6.2 for various parameter-weight combinations. After obtaining sample sizes, simulations
are conducted with 10000 simulation runs for each scenario. There are 3 sets of simulations.
Case A: drug-placebo difference (p, — q,-), where index r =1, 21, or 22 all being 0.1 in both

periods, which includes three subtypes with the probability of being a placebo responder being
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0.6, 0.5 and 0.4 respectively. Case B: drug-placebo difference being 0.1 and 0.2 for Period 1 and
Period 2, respectively, which includes three subtypes with q; = 0.6 and g,; = q,, = 0.5;

q. = 0.5and g,; =¢q,, =0.4 and q; = 0.4and q,; = q,, = 0.3, respectively. Case C: drug-
placebo difference being 0.2 in both periods, which contains three subtypes with g, =
0.5,0.4,0.3,r = 1,21,22, respectively.

If drug effect is 0.1 in both periods (Case A), 0.1 in Period 1 and 0.2 in Period 2 (Case B) and
drug effect is 0.2 in both periods (Case C), it is clear that the required sample size decreases from
Case A to Case C (Table 6.5). It confirms that it is easier to detect drug superiority when either
enrichment works (Case B versus Case A) and/or drug effect size increases (Case C versus Case
B).

In all cases of simulations, empirical powers are always smaller than the target power of 0.9 used
for calculating sample size. However, the extent of power decrease shows interesting patterns. In
Case A, when drug-placebo is equal to 0.1, the required sample size is high, but the simulated
power is only 3-4% less than the design value 90%; in Case B, when drug-placebo difference
increases from 0.1 in Period 1 to 0.2 in Period 2, the simulated power was 5-8% less than the
design value 90%; in Case C, when drug-placebo difference is 0.2 for both periods, the required
sample size is only a little more than 100, but the simulated power is 15-18% less than the design
value 90%. This is an alert to us because we normally use calculated sample size directly to plan
a trial, or just increase sample size by 10% to ensure power. But our examinations on empirical
powers in extended SPD trials tell us that 10% increase from the calculated sample size based on
asymptotic normality as suggested in Liu et al. (2012) can’t always guarantee enough power in
real practices. And the required sample size in real practices may depend on the particular

parameter profile of interest and may require extensive simulation explorations prior to trial start
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rather than lazily using the calculated sample size based on asymptotic normality.

The results of the simulations show the impacts of pre-specified weights on trial powers. For
instance, among five scenarios with p; = 0.7,q, = 0.6, p,; = 0.7,q,; = 0.6,p,, = 0.7, gy, =
0.6, the highest sample size is 721 occurring at w; = 0.5 and w, = 0.3 while the lowest is 157
(a decrease of 564 from 721) occurring when w; = 0.6 and w, = 0.15. However, no specific
rules can be summarized here. One also notices that sample size has a small variation among the
explored scenarios in Case C when having a relatively large drug-effect of 0.2 in both periods.
Tables 6.4 — 6.5 show that sample sizes calculated using asymptotic properties of linear
combination test are good enough for conducting clinical trials. However, it would be better to
conduct extensive simulations for various parameter profiles of interest prior to trial start since
there is a difference in extent of power deduction probably caused by insufficiency in asymptotic

normality.
Table 30(Tab. 6.5): Required sample size and empirical power(X100) simulation

Table 6.5: Required sample size and empirical power(X100) simulation.

w; =05 w; = 0.5 w; = 0.6 w; = 0.6 w; = 0.7
W, = 0.2 W, = 03 W, = 015 W, = 0.20 W, = 015
n power | n power | n power | n power | n power

Case | p1 =0.7,q; = 0.6
A p21 =0.7,9,1 = 0.6 620 85.7 721 86.2 564 84.9 588 85.8 580 85.9
P22 =0.7,93, = 0.6

p1 =0.6,q; = 0.5
p21 = 0.6,q,; = 0.5 681 | 86.3 716 | 86.4 628 | 86.4 625 | 85.9 625 | 87.1
P22 = 0.6,42; = 0.5

p1 =059, =04
p21 = 0.5,9,; = 0.4 716 85.8 681 86.1 657 86.0 625 85.8 628 86.6
p22 = 05,95, =04

Case | p1 =0.7,q; = 0.6
B p21 = 0.7,q21 = 0.5 252 80.3 297 81.8 268 81.7 281 81.5 324 83.3
P22 =0.7,95, = 0.5

p1 =0.6,q; = 0.5
p21 = 0.6,q,; = 0.4 273 | 81.8 284 | 81.2 292 | 824 292 | 82.3 384 | 84.5
P22 =0.6,q5, =04

p1 =059, =04
p21 = 0.5,9,1 = 0.3 276 81.5 265 81.6 300 81.9 284 82.9 345 84.7
P22 = 0.5,4, = 0.3

Case | p; =0.7,q; =05
C p21 =0.7,q2; = 0.5 113 72.6 124 | 729 100 71.2 105 72.2 105 72.7
P22 = 0.7,42, = 0.5
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p1 =0.6,q; =04
p21 = 0.6,q2; = 0.4 124 73.2 124 74.4 113 72.5 108 72.6 113 74.5
P22 =0.6,95, = 04

p1 =05,q;, =0.3
p21 = 0.5,q3; = 0.3 124 72.7 113 72.2 113 72.2 105 72.4 105 72.7
P22 = 05,95, =0.3

Section 6.5: Discussions

In this article, we introduce an ESPD. In this design, placebo responders and drug non-
responders during period 1 are re-randomized to receive placebo or drug during period 2 of the
trial. The proposed statistics to test superiority of drug against placebo is the optimal weight Z
test for normal data, which requires deriving optimal weight upfront. After evaluating clinical
outcomes from two periods, weight Z test with optimal weights will be used to combine
information from three cohorts, one from Period 1 and two from Period 2. This is different from
the design suggested by Fava et al. (2003) which does not have the second randomization. It is
also different from design considered by Chen et al. (2011) and Liu et al. (2012) where only
placebo non-responders during Period 1 are re-randomized prior to period 2. Since we extend
Liu et al. (2012) to further include Period 1 drug responders into Period 2, other related
discussions in Liu et al. (2012) such as controlling baseline variables, multiplicity issue, using
trend test in certain contexts and so on can also be utilized here. For binary data, linear
combination test for ESPD trials is proposed in Section 4. Sample size can be planned using a
graphic method. Simulations are done to evaluate type I error rate controlling and power
achievement in ESPD and it is suggested that it is very important to conduct extensive

simulations prior to trial start in order to extensively exam trial operational characteristics.
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Chapter 7

Covariance and Variance Evaluations of Two Estimators for Drug-placebo
Difference in a Trial with Sequential Parallel Design

(accepted for publication in Jun 2016 by Communication in Statistics: theory and method)

Abstract: Chen et al. [Contemp. Clin. Trials, 32: 592-604 (2011)] heuristically proved that the
covariance of two estimators is zero assuming equal correlation coefficients. In this article,
above covariance is re-derived without any strong assumption in equality between two
correlation coefficients. Under rigorous analytic derivations plus assuming number of subjects
continuing into Period 2 is a random variable, covariance is re-confirmed to be zero for both
normal and binomial data.

Keywords: Placebo Effect; Sequential Parallel Design; Drug-placebo Difference; Seemly
Unrelated Regression.

Section 7.1: Introduction

In randomized double-blind clinical trials, subjects are randomized to receive either drug or
placebo where the assigned treatment is unknown to both patients and investigators. By doing
this, the drug-placebo difference on the endpoint will demonstrate the drug effect on patients if
there is no placebo effect, since randomization has balanced out baseline covariates between
drug and placebo groups and blinding can hopefully eliminate positive expectancy towards study
drug during the trial. However, if the placebo response is relatively high in the trial, this drug-
placebo difference decreases, which may result in the failure of detecting treatment effect.
Adding a placebo lead-in period prior to randomization is the most conventional method to
reduce placebo response. After the lead-in period, only placebo non-responders (based on
predefined criteria/criterion) are randomized into the double-blind period where the drug-placebo
difference is measured. Among 86 major depressive disorder (MDD) trials, least-squared mean
change from baseline to endpoint for the Hamilton Rating Scale for Depression (HAMD) for
placebo-treated subjects in thirty trials without the placebo lead-in period was -9.24 (SD=1.87),
while for the two other types (differentiated by criterion for placebo responder) of trials with a

placebo lead-in period it was -7.88 (SD=2.12) and -7.56 (SD=1.80) (Walsh et al. 2002).
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The conventional parallel group has only one treatment period, whereas, Fava’s sequential
parallel design (Fava et al. 2003) has two treatment periods with Period 2 consisting of only
placebo non-responders from Period 1. In Period 2, subjects either continue on placebo or
receive treatment. At the end of the trial, inference on the drug-placebo difference for all subjects
randomized in Period 1 (8,) and inference on the drug-placebo difference in Period 2 (5,) for
Period 1 placebo non-responders is combined. The null hypothesis is Hy: §,=8,=0, the
alternative hypothesisis Hy:8, >0 or §, > 0 and the combined estimator is w&; +

(1 —w)8, . The sequential parallel design (SPD) is more efficient than the traditional parallel
group design (1): 8, is estimated from Period 1 placebo non-responders, which is normally
bigger than &, and (2): Period 1 placebo non-responders contribute twice in testing §; and
8,, resulting in a larger ‘effective’ sample size than that of utilizing data collected from Period 1
only, and hence increases power.

To implement a SPD trial with continuous endpoints, Tamura and Huang (2007) proposed
seemly unrelated regression (SUR). By stacking continuous data from two periods together, SUR
simultaneously estimate the variance-covariance matrix and parameters of interests, and then
constructs a test statistic based on the combined estimator and its variance. That is:

w2Var(8;) + 2w(1 — w)cov(8,,8,) + (1 — w)?Var(8,), or w28, + 2w(1 —w)3y, +

(1 — w)?36,,. The data from two periods can be expressed via a linear relationship: Y; =

K;6; + €, 1=1,2, where Y; is a vector of a continuous endpoint from the ith period, and Z; is
the design matrix of the ith period, assuming there is only one independent variable (i.e.,
treatment arm) in linear equation. K; is either 1 for drug and O for placebo. The coefficient for
K, is &; and the coefficient for K, is &,. The size of Y; is the number of subjects in Period

1, and size of Y, is the number of placebo non-responders from Period 1 who continue into
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Period 2. €, is error term for the 1% regression and independently distributed with mean 0 and
variance of @2 for every subject in Period 1; €, is error term for the 2" regression and
independently distributed with mean 0 and variance of ¢, for every subject in Period 2; and the
covariance o,,(or o,;) for endpoints at Period 1 and Period 2 only for subjects who are
placebo non-responders at the end of Period 1 and continue into Period 2. To estimate both

8, and §&,, two linear equations are stacked to become a single linear model form of:

Y1 Kl 0 81 E1 . . . . . .
[Yz] [ 0 K1] [82] + [Ez]and the within patient residual vector has a variance covariance

011

(0} .
12]. In the stacked linear model, there are three parameters of
021 O22

matrix of; X = [

011,022 and 04,(0,1) in X to be estimated from the data using ordinary least squares residuals,
- 8 . . : :
and then the coefficient vector of [81] will be obtained once the response vector, design matrix
2

and X are known. When the sample size for both periods are large enough, £ will be
consistent.

At the beginning of Period 2 of an SPD trial, placebo non-responders can be re-randomized. For
an SPD trial, the estimate for each period is used to evaluate drug-placebo difference. There are
several methods to combine the evidences from two periods. When the Wald-test is used, the
variance of the weighted estimators which is the key for hypothesis testing consists of calculating
the intra-variability between the endpoints from two periods (i.e., covariance) and the variance of
two estimators separately, with the latter being much easier to derive. If the covariance equal to
zero, the complexity of the test in an SPD trial will be much reduced. In Chen et al. (2011),
covariance of §;and &, was further investigated and was shown to be zero for normal data. In
their derivation, the sample size for Period 2 is a fixed number. This is a questionable assumption

because being a placebo responder or a non-responder is a random variable and hence the
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number of placebo non-responders to enter Period 2 will also be a random variable. Furthermore,
the equality assumption in the two correlation coefficients is also questionable.

To relax the limitations in the derivation of covariance, we derive the covariance between the
two estimators for the scenario with normal endpoints in both Period 1 and Period 2 (i.e.,
normal-normal) and binomial-binomial in Sections 7.2 and 7.3, respectively. Section 7.2.1 lays
out the proof structure for the normal-normal case; Section 7.2.2 revisits the sample size
derivation under the assumption of the covariance being zero plus the assumption that the
number of subjects continuing into Period 2 is a random variable; Section 7.2.3 performs
simulation exercises assessing type | error rate and power under the conditional independence
assumption; and Section 7.2.4 examines possible violations of the proposed independence
assumption in Section 7.2.3. Section 7.3 repeats steps in Sections 7.2.1 — 7.2.3 but for binomial-
binomial data, without conducting simulations under dependence structure because we lack a
clear understanding on how binomial endpoints from the two periods are correlated in practice.
In the end, Section 7.4 concludes this paper with discussions and further research directions

hinted by research results here.

222



Section 7.2: Normal

-Normal Data

Section 7.2.1: Covariance for 6; and &,, Re-examination

MR

MR

Hyac for normal data

(¥1;=0 for binomial data)

=L, My

Hyeocfor normal data

i(#y;=1 for binomial data)
I=nptl, ., 0

¥y=c for normal data

(y;=0 for binomial data)

=L, Ml

¥yec for normal data

|: 1i=0 for binomial data)

.;_

=m,+1, ., m

Figure 19(Fig. 7.1): A SPD trial

Figure 7.1: A SPD trial. NR and R denotes non-responders (X3; < ¢ for normal data X,; =0 for binomial data) and responders (X3;> ¢ for normal data Xy;

=1 for binomial data | = n, +1, ..., n). Similar definitions are defined for subjects in the treatment group. T and P denote treatment and placebo group

respectively in both periods.

1"l".zi"-r:

i= Emn+1.l vy MMy
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Suppose there are n subjects to be treated in Period1 by study drug and the corresponding
endpoint, X;;, i=1,..., n, is normally distributed with mean p. and variance o3, attheend
of Period 1, resulting in n, non-responders with X3; < c while n- n, responders with endpoint
realized with a value greater than the threshold value c. In the meantime, there are m subjects
to be treated in Period 1 by placebo and corresponding endpoint, Y,;, i=1,..., m, is normally
distributed with mean p,,, and variance o3, resulting in m, non-responders with Y3;<c while
m- mp responders with Y3; > c. Unlike subjects in the treatment group, the placebo non-

responders are enrolled in Period 2 for further assessment of the drug-placebo difference. Period

1 placebo non-responders who are on study drug in Period 2 will have

endpoint, Y5'| Yii<c, i=1,..., &émy, normally distributed with mean u o and variance 62, With
¢ as the proportion of Period 1 non-responders being treated with study drug in Period 2.
Similarly, non-responders treated with placebo in Period 2 will have endpoint, Y3 | Yli<c, ,
Emy*1, ..., my,, normally distributed with mean p_,, and variance o’p.

Thatis:  Xj; ~ Normal (uTl, 6%1), i=1,...,n; Y;; ~Normal (upl, op), i=1,..,m

Y5 | Yli<c~Normal (u_p, 6Zr),i=1,...,Em,; Y5 |Yli<c~Normal (i ,, o%),i= &m,
+1,..., my,

So the estimators of drug-placebo difference at Period 1and Period 2 respectively, are as follows:
61 =y — fipy = %Z?ﬂ Xy —% =1 Y1

A . . 1 N 1 N
62 = UnT — Upp = anZfinl Y121;r - (1-&)my Z?;fmn+1YgF

COU(SI; 82) = cov(fir; — fipy, fint — finp)
= cov(firy, fint) — cov(firy, flnp) — cov(fpy, Anr) + cov(flpy, flnp)

=0 per proof in Appendix 7.1.
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Appendix 7.1 proves zero covariance for the normal-normal case. The covariance of Period 1
treatment-placebo difference of &, and Period 2 treatment-placebo difference of §, can be
decomposed into four parts, in which cov({iy;, i,r) and cov(fir, fi,p) are both equal to zero
because two estimators are drawn from different cohorts of subjects. Non-zero terms

cov(fip;, fi,r) and cov(fip;, fi,p) are then calculated using the ‘law of total covariance’ so that
the covariance is equal to sum of the expected covariance and the covariance of expectations,
where the variable to be conditioned upon is the random variable of placebo non-responders (i.e.,
I(Yi>c¢),i=1,..,m) attheend of Period 1. For instance, after conditioning upon (Y ;> c¢),
cov(fip, fi,r) calculation becomes the expectation of conditional covariance plus the covariance
of two conditional variables. That is: cov(fipy, inp) = E[cov(fp;, fip|I(Y1i>¢),i=

1L .,m)] + cov( E(fp|I(Yii>¢),i=1,..,m),E(fp|[(Yii>c),i=1,..,m)) =A+B.
Similarly, cov(fipy, Anr) = A’ + B'. Hence cov(8y,8;) = cov(fpy, fnp) — cov(fpi, flur)
=A+B-{ A +B }

A = E[cov(fipy, fnp|I(Y1i>¢),i = 1,...,m)] and the inner part under its expectation is the
covariance of two conditional random variables, where cov(fp;, dp|I(Y1i>c¢),i=1,...,m)
can be further decomposed into four expectations of the product of two quantities, which is
either a conditional random variable or an expectation of a conditional random variable.
Therefore, one has cov({ipy, fiyp|I(Y1li>c),i=1,..,m) =A—-B—-C+D with A

= E(A) —E(B) —E(C) + E(D) (Appendix 7.1). Terms A, B, C and D are then respectively
calculated for A and A’ and simplified with help of the quantities of the mean and the
variance of truncated normal random variables of Y;;| Y;; < cand Yy Yli>ci=1,..,m.
When all terms are combined together, A — A’ is shown to be zero and with the help of

the ‘law of total expectation’, which states that the expected value of the conditional expected
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value of R given S isthe same as the expected value of R. Besides, both B and B’ are
shown to be zero per calculation. In summary, cov($;,8,) is proved to be zero in an SPD
trial with normal-normal data.

To simplify the understanding of this tedious proof in Appendix 7.1, a schematic is shown
in [llustration 7.1 in Appendix 7.1, in which Step I makes use of the ‘law of total covariance’
and Step II utilizes the ‘law of total expectation’ when calculating E(H), E(G), E(I) and
E(]). As pointed out by the reviewer, some people are not familiar with the term
“conditional random variable” because a random variable is just a random variable and
conditioning is for the purpose of calculating distribution property such as conditional
expectations. We totally agree with these comments and also agree that the purpose of
using conditional random variable in this paper is to help with the proof as what was done
in deriving variance decomposition formula (or law of total variance) in probability theory.
Next, let’s return to the proof of zero covariance between &; and &, by Chen and et al.
(2011) and see how it differs from the proposed method here. From Chen and et al. (2011), the

proof is re-written using notations in this paper as follows:

& & _ 1 1 $mp T 1 n p
Cov(51, 52) = cov (; Xll :nlyllyf Zln; lell - (1-&)mp Zm Ygl)

_ 1 fmn 1 1 Mn P

= cov (;Zn X1i» Z Y3; ) — Ccov (;Z?=1X1i 'mzl fmn+1Y1211)
1 1 e

—cov (; 1Y, T ng“Y ) + cov (E uis

my P
i=1 Y1i 'mzi=gmn+1 Y3 )

1 N 1 1 N
= 00— cov (=30, iz ng Y51 ) + cov (;Z?% Yli'mz?lfmn+lYgF)

_ 1 1 nT
- _; * fmy * fmn * p(yli'YZi ) * Opy * Oyt

1

_ 1 nT 1 nP -
Opp = — % p(Y1:, Y5 ) * opy * Opr o p(Y15, Y5 ) * Opy * 0,p=0

226



The above derivation assumes p(Yy;, Y5 ) = p(Y1;, Y5 ) aswell as o,1 = o,p, and also treats
m,, as a constant. These questionable assumptions are no longer required in the proposed
method here. However, it might be worthwhile to explain why zero covariance can be obtained
when equal correlation (i.e., p(Yy;, Y5 ) = p(Y15, Y3 ) ) is removed heuristically besides using
lengthy mathematical calculations. From our perspective, the most reasonable answer for this
may be the stipulation of conditional independence between endpoints between two periods.

That is, given normally distributed with mean p_.. and variance o2 for Y5 | Yli <c (or Hop

and variance o2, for Y5 |Yy;<c), itis said that the Period 1 endpoint is independent of the Y;;
because the Period 2 endpoint is not a function of the realization of the Period 1 variable. The
impact of this assumption on proposed method will be assessed below in Section 7.2.4.

Section 7.2.2: Sample Size Derivation and A Hypothetical Trial Example
After evaluating and re-confirming the zero covariance in Section 7.2.1 when the endpoints in
Period 1 and Period 2 are both normal, re-examination of the variance of the weighted test
statistic for an SPD trial will be done in this section. In Chen et al. (2011), the estimated rate of
being a placebo non-responder at the end of Period 1 is used in the variance equation. However,
with a pre-defined distribution for Period 1 data, the expected rate of being a placebo non-

responder at end of Period 1 can be calculated and used for sample size calculation. For normal

data, the probability of being a placebo non-responder, that is Y;;<c, is & (C;ﬁ) with cas
P1

the cutoff point for being a responder. In the case of a binomial endpoint, the probability of being
a placebo non-responder is 1 — Pp(r;). The allocation ratio for placebo and treatment is

b: (1 — b) in Period 1 and then equal allocation between two groups (i.e., 0.5:0.5) in Period 2.

b = 0.66 is used for the sample size calculation in order to ensure more subjects to be

randomized into the placebo group in Period 1.
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With Z as a standard normal random variable and standardized weighted-z test of

T_ W81+(1—W)82
JWZVar(§1)+(1—w)2Var(gz)

, the probability of rejecting null (§; = 6, = 0) when alternative

hypothesis is true (64,8, > 0) is:

Pua (T > Zl_g) = Pys (T < —Zl_g) = Pyp Wf1+(1—w)52 <, .
2 2 JWZVar(81)+(1—W)2Var(82) 2
=Pya w1 +(1-w)8;— (W81 +(1-w)83) < _Zl_% _ wé1+(1-w)8, =Py | Z < —Zl_% _

\/WZ Var(8,)+(1-w)2Var(3,) JWZVar(51)+(1—w)2Var(52)

W81+(1—W)82 W81+(1—W)82

— ,  Where a is the type |
JWZVar(31)+(1—w)2Var(32)

= -7,

o
2

\/WZVar(Sl)+(1—w)2Var(§2)

error rate for this two-sided hypothesis test.

2y gtz a=— w1 t(1-w)s; ,where B is type Il error to ensure probability of

=2 JWZVar(31)+(1-w)ZVar(sz)

rejecting null when alternative hypothesis is true.

W61+(1—W)52

ThUS, WZVaT.(Sl) + (1 — W)ZVQT(SZ) = ( Zl—B+Zl_g )2

2

~ 2 2 2
For normal data, Var(8;) = % + % = % + %

&\ _ Oar Oap _ _ 0T omp 1 ﬁ Tap N _ 2 2
and Var(52) = {mn + (1—E)mn = f‘f'Nb + (1—f)f'Nb = q)(c_”Pl)( 5 + (1_5)) - d)(c—ppl)Nb (UnT +

op1

op1

g2p) because the probability of being a placebo non-responder in the placebo group at the end of

Period1, #, is & (m) and we have b = % for a balanced re-randomization at the

op1

beginning of Period 2.

All'in all, for an SPD trial, due to zero covariance proved above, the test statistic for H, against
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wé1+(1-w)s,

H, is: Z=

\/WZVar(Sl)+(1—W)2Var(32)l

If Nyy isdefined as the required sample size for an SPD trial when Period 1 and Period 2
endpoints are normal-normal data, the required sample size should be:

(21—B+Z1—a/2)2

V) 2 2(opr+on
(w1 Wz((‘l’jtl))+%>+(1—w)z %)
op1

Ny =

After collecting data from a trial with an SPD, weighted-z test could be used to assess treatment
effect. Lack of data from real trials, a hypothetical trial and its data are used here to illustrate the
proposed testing procedure. Assuming there was a phase 2a trial designed to evaluate efficacy,
safety and tolerability of experimental drug as an adjunctive treatment for major depressive
disorder with significant anxiety symptoms. The weights used for analysis were determined as
per the method outlined in Liu et al. (2012) and were 0.846 for Period 1 and 0.154 for Period 2.
Based on mixed effect model repeat measurement (MMRM) with treatment(placebo, drug), time
and pooled center as factors, time-by-treatment interaction and baseline Hamilton Depression
Rating Scale (HDRS17) total score (for respective period) as a covariate, least-square mean
differences (SE) in change from baseline to endpoint in HDRS17 from Period 1 and Period 2 for
Placebo subjects (Period 1 N=58 and Period 2 N=11) were respectively -9.0 (0.72) and -7.0
(1.62) and for drug group (Period 1 N=61 and Period 2 N=11) were -9.4 (0.72) and -9.8 (1.60)
resulting respective Wald test for Period 1 and 2 being -0.5 and -1.2.

- w8 +(1-w)8, _ 0.846*(—9.4—(—9.0))+(1—0-846)*(_9-8_(_7'0))2 = —0.8274754
\/WZVar(Sl)+(1—w)2var(32) 1/0.8462x(0.722+0.722)+ (1—0.846)%*(1.62%+1.602)

P-value = 0.2. Therefore, based on change from baseline to end point in HDRS17 total score,
experimental drug can’t be declared to be superior to Placebo as an adjunctive therapy for major

depressive disorder with significant anxiety symptoms.
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Section 7.2.3 Simulation Results under Assumed Conditional Independence
In the normal-normal case, with 0.8 for power 1- 3, 0.6 for weight w and 10 for the mean
difference between treatment groups for both periods, the sample size for the SPD is 107 (Table
7.1) while sample size for traditional parallel group design is 126. When mean difference in
Period 2 increases to 12, SPD can be more efficient having sample size of only 92, which is a
27% savings relative to parallel group design. Increase of the mean difference from placebo at
Period 2 is a reasonable assumption as only placebo non-responders are randomized to Period 2
in SPD. Eliminating placebo responders could possibly increase drug-placebo difference in
Period 2. Similar patterns are also observed when w equals to 0.8 or when the power increases
to be 0.9.
Although the covariance of §; and &, is zero in both Chen et al. (2011) and this research,
sample size differs little between each. The estimate of probability of being a placebo non-

responder in the placebo group at the end of Period 1, T, is used in Chen et al. (2011) while the

c—

expected value of # (i.e., @ (%)) is used here. For binomial-binomial data, E(#)= 1-
P1

Pp(ry).

Simulations are done to assess type | error rate and power under the null and alternative
hypothesis, respectively, using the sample size calculated in Section 7.2.2. In Column 4 of Table
7.1, the simulated type | error rate and power are displayed next to the sample size N after 10000

runs. For simplicity, type | error rates are simulated under p, = p = Wp, = 15 forall

p1 = M
cases in Table 7.1 while power is simulated under specifications in Columns 3 and 4. Per
simulation results, type I error rate has been maintained at one-sided 0.025 level in the presence

of simulation error and the designed power of 0.8 (upper half) and 0.9 (lower half) have been

achieved in all scenarios. Note that simulations in this section are under assumption of
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conditional independence because both mean and variance of random variable (Y5 and Y5
respectively) in Period 2 are not a function of the realization of Period 1 endpoint Y;; , even

though both endpoints have occurred on the same set of subjects.
Table 31(Tab. 7.1): Sample size (N) for SPDs

Table 7.1: Ssample size (N) for SPDs when Period 1 and Period 2 data are all normally distributed with
Xii ~N0rmal(p.T1, 63 = 202), X1i~N0rmal(pT1, 63 = 202), Y53 Yy SC~Normal(unT, ol = 202),
Y| Yii< e~Normal(p ,, o2 = 20%),a = 0.025, 8 =0.1(upper half) or 0.2 (lower half) ¢=7, w=10.6 or
0.8, the probability of being a placebo non-responder at Period 1 being E(f) = 0.54, and N,q denoting
corresponding sample size for traditional parallel design.

Nepg With b=0.50
N/simulated type | error |—®4
Power w | 8iCkra, fpr) | 8 Cttur, e ratefpower i 1 Ty,
06 | 10(155) | 10(15,5) 107/0.0312/0.7906
06 | 10(155 | 12(15,3) 92/0.0271/0.7814 10(15,5) | 1,6
1-8=08 1-8 =08
0.8 | 10(155) | 10(15,5) 104/0.0262/0.7970
08 | 10(155) | 12(155) 96/0.0237/0.7918
06 | 10(155) | 10(15,5) 143/0.0251/0.8878
10 (15, 5)
1-p=09 | 06 | 10(155) 12 (15, 5) 123/0.0250/0.8887 | 1 _p =0.9 | 169
0.8 | 10(155 | 10(15,5) 139/0.0284/0.8938
08 | 10(15,5 | 12(15,5) 129/0.0274/0.8971

Section 7.2.4: Simulation Results Under Correlated Endpoints Between Two Periods
Statistical methods illustrated in Section 7.2.3 as well as Chen et al. (2011) and Liu et al. (2012)
don’t assume dependence structure between endpoints from two periods even though they occur
on the same set of subjects. This definitely casts some doubts as in practice we can’t rule out
dependence when two random variables occur on the same subject. Also, even if the covariance
between two phases’ estimates is in fact zero, sample covariance may not be zero when the size
of the study is small. To address these questions, simulations are conducted for scenarios listed
in Table 7.1, while on the contrary conditional dependence is built up accordingly using the

properties of the bivariate normal distribution. Given pp being the correlation between Y;

and Y5 for subjects who are placebo non-responder in Period 1 and continue to be treated with
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placebo in Period 2, after observing Yi; = yy;,, Y5 will be normally distributed with mean

Wnp — Pp * (Z"T’l’ *(y1i — Mp1) and variance ozp*(1-p2). Similarly, pr and conditional

distribution of Y5 are defined for subjects who are placebo non-responder in Period 1

and then treated with investigational drug in Period 2. As in Table 7.1, scenarios under null

hypothesis are also simulated with p, = p,, = g, = pp, = 15, but with the conditional

mean based on the realized value y,. atthe end of Period 1. Using calculated sample size in

Table 7.1, type I error rate and power for each scenario are re-simulated using the conditional

bivariate normal distribution instead (Table 7.2).

power under equal correlations as in Chen et al. (2011), but somehow expose

Results re-assure maintenance of target

disadvantages of this method under unequal correlations. Simulated power achieves the

designed level only for Row 1 with pp = ppr = 0 and Row 2 with pp = pp = 0.5, but lower

than designed level in Rows 3-5 when unequal correlation coefficients are pp = 0.75 and pr =

0.5, pp = 0.75and pr = 0.25,and pp = 0.50 and pr = 0.25, respectively, among which

simulated power decreases as the difference between pp and pr increases. Extensive

simulations have been done for other situations but not listed here due to space limitation.

Table 32(Tab. 7.2): Simulated rejection probabilities

Table 7.2: Simulated rejection probability under null and alternative hypotheses

respectively when Period 2 endpoint is conditional upon Period 1 realization.

P /p w = 0.6 w=0.6 w=20.8 w=20.8 w=0.6 w=10.6 w =108 w =108
P/FT | 1_p=08 |1-p=08 1-5=08 1-p=08 1-=09 |1-8=09 1-=09 |1-8=09
8, Cltry, tpr) 8, Cltry, tpr) 8 (Ui, Bp1) 81y, Up1) 81y, Up1) 8 (e, tp1) 8 Clris Bp1) 8 Clres Bp1)
=10(15,5) =10(15,5) =10(15,5) =10(15,5) =10(15,5) =10(15,5) =10(15,5) =10(15,5)
82 Cllurs Hnp) 82 Cltars Hnp) 82 Cttnrs Hnp) 8 Clars Hnp) 8 Ctars Hnp) 82 Cttnr) Hnp) 8 Ctars Hnp) 8 Ctars Hnp)
=10(15,5) =12(15,3) =10(15,5) =12(15,3) =10(15,5) =12(15,3) =10(15,5) =12(15,3)
N=107 N=92 N=104 N=96 N=143 N=123 N=139 N=129
Simulated Simulated Simulated Simulated Simulated Simulated Simulated Simulated
Type I error Type I error Type I error Type I error Type I error Type I error Type I error Type I error
rate / power rate / power rate / power rate / power rate / power rate / power rate / power rate / power
0.00/0.00 | 0.0293/0.7905 0.03/0.7893 0.0279/0.7894 | 0.0275/0.7883 0.0267/0.8877 0.0264/0.893 0.0253/0.8986 | 0.024/0.8891
0.50/0.50 | 0.0237/0.8147 0.0271/0.814 0.0246/0.7977 | 0.0271/0.8015 0.0259/0.9111 0.028/0.9114 0.0244/0.9001 | 0.0229/0.8992
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0.75/0.50 | 0.0053/0.719 0.0064/0.731 0.0125/0.7457 0.0131/0.7398 0.0046/0.8279 0.0057/0.8397 0.0106/0.8566 | 0.0116/0.8632
0.75/0.25 | 0.0001/0.5517 0.0012/0.5762 0.005/0.6703 0.006/0.6669 0.0004/0.6671 0.0005/0.6998 0.004/0.7929 0.0038/0.7946
0.50/0.25 | 0.0077/0.6808 0.0075/0.6966 0.0108/0.7365 | 0.0127/0.7391 0.0053/0.799 0.0042/0.811 0.0116/0.8523 | 0.0119/0.8455

Section 7.3: Binomial-Binomial Data

Section 7.3.1: Covariance for 8; and &,, Re-examination
X,; ~Bernoulli(1, Py (ry) ),i=1,...,n; Y; ~Bernoulli(1, Pp(ry)),i =1,...,m;
Y5 NR ~ Bernoulli (1, P,p(rpnry)),i=1, ..., ém, and NR denotes non-responder.
Y5 NR ~ Bernoulli (1, Pyp(ry[nry)),i = émy, + 1, ..., m,, with Pr(r;) as the probability of
being a responder for drug-treated subjects in Period 1, Pp(r;) as the probability of being a
responder for placebo-treated subjects in Period 1, P,,(r;|nry) as the probability of being a
responder at end of Period 2 when a Period 1 placebo non-responder was treated with placebo in

Period 2, and P, (r,|nr;) as the probability of being a responder at end of Period 2 when a

Period 1 placebo non-responder was treated with placebo in Period 2.

~ 1 ~ 1
PT(T1):; ?=1X1i ) PP(rl):EZ?;I Yii

m
vl

~ 1 —~ 1 n
Por(rynry) = aziﬂ Pup(rpnry) = mﬂigmn“ YSF

COV(SLSZ) = cov (pT(TH) —  Pp(r)), P (rpnry) — pnp(r2|nr1))

=cov (Pp(r1), Pup(rainry) )-cov(Pp(ry), Pur(rzinry) )
=0 per proof in Appendix 7.2.
Section 7.3.2 Sample Size Derivation and Evaluation

Pr(r1)(1-PT(11)) +
n m

Pp(r1)(1-Pp(r1)) — Pr(r1)(1-P1(r1)) , Pp(r1)(1-P7p(11))

For binomial data, Var(4,) = N(1-D) ~b

With the probability of being a non-responder in the placebo group at the end of Period 1 being
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1-Pp (ry), that is E(7)= 1-Pp(ry), Var(SZ): Pnr(r2 \HT1)$(71r;:’nT(Tz In7y)) + Pnp(r2 |n8)_(;)::f (12 Inry))

— Pnr(rz n11)(1- Pnr (12 [071)) + Ppp (12 Inr)(1- Pnp (72 |n11))
E#ND (1-&)7Nb

— 1 ( Py (12 In74)(1- P (12 InT7)) Pyp(r2 InT1)(1- Pup(T; \ﬂrl)))
(1-Pp(r1))Nb 3 (1-9

- 2
“(1-Pp(r))Nb

. 1
( Prr (1 In1y)(1- Ppr (1 Inry)) + Prp(72 [n77)(1- Pyp (72 In1y)) , with b = >

. . Z1_B+Z1—q/2)? . . . .
The sample size for normal-normal data is % whereas for binomial-binomial data
ZE
(1-b) b

2 - -
the Sample Size iS(Zl—B + ZI_E) /[82/ (PT(rl)(l Pr(rq1)) Pp(rqy)(1 PP(rl))) ]
2

(1-b) b
If Ngg is defined as the required sample size for an SPD when Period 1 and Period 2 endpoints

are binomial-binomial, it should be:

2
— 2 2 (Pr(r)(-Pr(r1)) | Pp(r)(1-Pp(r1))
Nos = (21 g +2,.5) /IW8, + (1= w)s)?/(w? (it | BrCuCieCu))

1 — w)? 2( Pur(rz In71)(1- Py (2 [071))+ Prp (1 [n71)(1- Prp (72 In71)) )
1 =w) (1-Pp(r))b ]

Table 7.3 exhibits sample size for a SPD trial when data are binomially distributed in both
periods. Let’s take power of 0.8 as an example. Surprisingly, there is no much saving relative to
fixed sample design (155 vs. 157) when the rate difference, that is 0.2, is the same in both
periods and weight w is 0.6. However, in the case where enrichment is functioning and the rate
difference increases from 0.2 in Period 1 to 0.3 in Period 2, the sample size becomes 109, 31%
reduction in sample size relative to the corresponding parallel group design. When the rate
difference is 0.2 for both periods while weight w is 0.8 with more weight allocated to Period 1
data, sample size decreases to 129. Among four scenarios for power of 0.8, the smallest SPD
sample size of 107, is achieved when 6; = 0.2, 6, = 0.3 and w = 0.8. In summary, different

from normal-normal cases, there is almost no sample size saving relative to the traditional
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parallel group design with 6, = 0.2, §, = 0.2 and w = 0.6. Simulations under dependence
structure are not done because we lack of clear guides on how binomial endpoints from two

periods are correlated in practice.

Table 33(Tab. 7.3): Sample sizes

Table 7.3: Sample size when Period 1 and Period 2 data are normally distributed with

X,;~Bernoulli(P7 (1) ), Y ;;~Bernoulli(Pp (1)), Y3 | NR~Bernoulli (P,p(13nr1)),Y5 | NR~ Bernoulli ( P,,;(13nry)), & =
0.025,8=0.101r0.2, w=0.6 or 0.8, E(¥) = 0.4,and N,q denoting corresponding sample size for

tranditional parallel design.

Power w | 8;(Pr(ry), &5 ( Ppr (1, Inmy), N Nipg With b=0.50
Pp (1)) Ppp (1, In1y)) /simulated type |
error rate/power 8( Pr (1), Pp(r1)) | Nipa
1-p8
1—-8=08 | 06 | 02(0806) 0.2 (0.8,0.6) 155 0.2 (0.8,0.6) 157
/0.1130/0.9363 1-8=08
06 | 02(0.80.6) 0.3(0.8,0.5) 109
10.1099/0.9323
08 | 02(0.80.6) 0.2 (0.8, 0.6) 129
/0.0419/0.8342
08 | 0.2(0.80.6) 0.3 (0.8, 0.5) 107
/0.0418/0.8295
1-B=09 06 | 0.2(0.80.6) 0.2 (0.8, 0.6) 207 0.2 (0.8,0.6) 211
/0.1091/0.9756 1-8=09
06 | 02(0.80.6) 0.3(0.8,0.5) 146
/0.1118/0.9698
08 | 02(0.806) 0.2 (0.8, 0.6) 173
/0.0385/0.9207
08 | 0.2(0.80.6) 0.3 (0.8, 0.5) 143
/0.0403/0.9145

Section 7.4: Discussion

Different from Chen et al. (2011), the covariance of &, and &, is evaluated to be zero in this
paper under rigorous distributional assumptions while without assuming equal correlation
coefficients. In derivation, we iteratively used the following formulations: 1) Covariance of two
random variables is equal to expectation of conditional covariance plus covariance of conditional
expectation. That is, cov(A,B)=E[cov(A|C)]+cov(E(A|C),E(B|C)) where A and B are variables of
interest and C is the random variable that A and B to be conditioning upon. 2) Covariance of two
random variables is the expectation of the product of expectation of each variable minus its

expectation. That is: cov(A, B)=E[(A-E(A|C) ) *( B|C-E(B|C) )]. Additionally, different from
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Chen et al. (2011), the estimated probability of being a placebo non-responder in Period 1 in
sample size formula is replaced by its expected value for a better sample size calculation. Zero
covariance reduces calculation of variance of the weighted estimator from three components to
two components and the power of proposed method is confirmed in Table 7.1 under the
conditional independence assumption. However, further simulations in Table 7.2 under
conditional dependence show the limitation of this proposed method but point out the direction
of future research. Rigorous formulation is in need for correlated endpoints from the two periods
in a SPD trial. Besides normal-normal data, binomial-binomial data have also been explored in
Section 7.3. Substantial saving of sample size, more than 30%, is achieved in normal-normal
data but not in binomial-binomial data. We also observed that further savings is achieved when
the weight increased from 0.6 to 0.8 and more weights is placed on Period 1 for normal-normal
data. Impacts from weight change/weight optimization and normal-binomial data and binomial-
normal data have also been investigated by authors but not shown due to space limitation. All in
all, this paper provides another view of combination test in an SPD trial and rigorously
formulates covariance calculation without equal correlation coefficients. Most importantly it
investigates the performance of the proposed method under unequal correlation coefficients in
addition to independence assumption, which haven’t been done by either Chen et al. (2011) or

Liu et al. (2012).
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Appendix 7.1 : covariance for Normal-Normal Case

cov(8,,8,)
Step I: =A+B-—{A+B}
=A-A+{B- B}

/

Step I1:-A = E(4) — E(B) — E(C) + E(D) A'=E(A) —E(B")— E(C") +

1
f1—Em

1

A—A = Hi-Dim

E[ miE(H) - miE(Gj]+ E[ miE(f)— miE(,r)] o Nt | Yu=c) + m(1l — @)E(¥y,| Vi) ]

A—cA' =0 B=0 B'=0

= cov(8,,8,)=A—A"+{B— B }=0

Illustration 7.1: A schematic of the proof of zero covariance in normal-normal case.

COV(SL 82) = cov(fity — fipy, fint — finp)
= cov(fir1, fAnt) — coV(fit1, finp) — coV(fpy, fint) + cov(fipy, finp)

= cov(fp1, dup) — coV(fdpy, Ayr),  With cov(firy, Anr) and cov(fry, finp) being zero as they
are on different subjects

= E[cov(fipy, fipp|I(Y1i>€),i =1, ..., m)] +
cov( E(ip1|I(Y1i>c),i =1, ...,m), E(f,p|I(Y1i>c),i = 1, ...,m)) —
{ E[cov(fpq, Apr|I(Y1i>c), i=1,..,m)] +
cov( E(@p1[I(Y1i>c), i=1,..,m), E(fyr|I(Y1>c), i=1,..,m)) }
=A+B-{A+B }
Let A = E[cov(fipy, fAnp|I(Y1i>c),i = 1,...,m)], then the inner part of this expectation is as
follows:
cov(fpq, fpp|I(Y1i>c),i =1, ...,m)
= cov( (fp1|I(Y1i>c),i =1, ...,m), (d,p|[(Y1i>c),i=1,..,m))
= E[ ((@p1|I(Y1i>c),i =1,...,m) — E(fdp;|I(Y1i>c),i =1,...,m)) =
( GuplI(Y1i>c),i=1,...,m) — E(@,pll(Y1i>c),i=1,..,m)) ]
=E[ (dp1lI(Y1i>c),i=1,.., m)(f,pll(Yii>c),i=1,..,m)—
(fp1lI(Y1i>c),i =1, ..., m)E(f,plI(Y1i>c),i=1,..,m) —
E(dp[I(Y1i>c),i =1, ..., m) (A p|I(Y1i>c),i=1,..,m) +
E(dpi[I(Y1i>c),i =1, ..., m)E(dp|l(Y1i>c),i=1,..,m) ]
=E[ (dp[I(Y1i>c),i=1, .., m)(fd,plI(Y1i>c),i=1,..,m) |-
E[ (fp1lI(Y1i>c),i=1,.., m)E(dp|lI(Y1i>c),i=1,..,m) |-
E[ E(fip1[I(Y1i>c),i=1,...,m)(fi,plI(Y1i>c),i=1,..,m) ]+
E[ E(dp1|I(Y1i>c),i =1, ..., m)E(@,pll(Y1i>c),i=1,..,m) ]
=A-B-C+D
So A =E(A)—E(B)—E(C)+E(D)
A= E[ (dp|I(Y1i>c),i=1,.., m)(f,plI(Y1i>c),i=1,..,m) ]
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=E[ — (Z Ylll Yisc+ Zl =mp+1 Y| Y1i>c)(

(1- f) (Zl Emp+1 Y5F| Yi<c)) ]

(1 E)mm (Z Y11|Y11<C*Zl =&my, +1Y21P| Yi<c+Y[Z =mp+1 Y11|Y11>C*Zl Emp+1 nlpl Yii<c)]
B = E[ (fp11I(Y1i>c),i =1, ..., m)E(f,p|l(Y1i>c),i=1,..,m) ]

= E[ (B Yol Yuc+ X2, 41 Vil Y>©) i ]

= 8 (om B Yy Vi <€)+ (m — ma)E(Hy | Ya > ©)
Based on property of truncated normal distribution,

o= up1 o (STHPL
E(Yy;| Y1i <€) = Wp1 - Op1 —=mr; (c le) yE(Y14] Y1i > ¢) = ppy + 0 plﬁ , with @ as the
Jp1 ap1

standard normal density and & as the CDF of standard normal. 1 — & (%) = Pp(ry),
P1

probability of being a placebo repsonder at the end of Period 1. For simplicity, let’s use
@ denote (Z)(C;ﬁ) and @ denote db(:ﬂ) in all subsequent equations instead.
P1 P1
C = E[E(Ap1|I(Y1i>c),i=1,...,m)(f,p|I(Y1i>c),i=1,..,m) ]
1 A .
= E[E(mnE(Yld Y1 < ©) + (m — mp)E(Yy| Y1i > ©))* (fppll (Y1:>€),i = 1, ..., m) ]
= LE(m,E(Yy| Yai < ©) + (m — m)E(Yy| Yii > ) )E[(op 1 (Y1>0),i = 1, .., m)]
u“"( 2E (Y1) Yii < ©) 4+ (m — mp)E(Yy| Y1 > ©))
= E[ E(fip1|I(Y1i>¢),i =1, ..., m)E(d,p|I(Y1i>¢),i=1,..,m) ]
u“"( 2E (Y1) Yii < ©) 4+ (m — mp)E(Yy| Y1 > ©))
- «/l = E[cov(fipy, finp|I(Y1i>0),i = 1, ..., m)]
= E(A) - E(B) —E(C)+ E(D)
= GoomE [ o CEIE Yl Yusc B, L Y] Yusc] +
E[ X Yl Yu>c* BT, L Y5 | Yusc] ) ]
—M * [ mPE(Yy;] Yi<c) + m(1 — dD)E(Yh| Yii>c) ], with @ defined as above.
Similarly, c/l = E[cov(fip1, fpt|I(Y1i>C),i =1, ..., m)]
cov(fpy, finr|I(Y1i>0),i = 1,...,m)
=E[(dp1|I(Y1i>c),i =1, ...,m)(f,r|I(Y1i>c),i=1,..,m) |-
E[ (dp1lI(Y1i>c),i=1, .., m)E(d,r|I(Y1i>c),i=1,..,m) |-
E[ E(dpy[I(Y1i>c),i = 1, ..., m)(fpr[I(Y1i>c),i=1,..,m) ] +
E[ E(dpq|I(Y1i>c),i =1, ..., m)E(d,r|I(Y1i>c),i=1,...,m) ]
= A — B’ C’+D’
A =

<Y Yue+ X o Vil Yi>c* X VAT | Yasc)]
E(B) = % * [mCDE(Ylll Yii<c) + m(1 — ®)E(Yy;| Yii>c) |

E(C) = B« [mOE(Y;| Yusc) + m(1 — ®)E(Yy| Y>0) ]

E(D) = L0 [maB(ry| Yiso) + m(1 — ®)E(Hy| Yii>0) ]

r_ 1
cA=A= o
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E
[ (E[ZM™ Yyl Yusc* X™ Y| Yusc] +
mn i=1

i=Emy+1

E[ ﬁmn+1y1i|Y11>C*Z:r:}mn+1Y§ip|YliSC])] }

1 1 n n n
b [ (BIN Yool Yarse? {0 VAT Vo] + B[S0 Ve Yii>er S0 VAT | Viise]) )

+—(““T;lunp) * [ mOE(Yy;] Yiisc) + m(1 — ®)E(Yy;| Yii>c) |

1 n n
E [ (B[S Yail Yuse* BT, 4 V3P| Yaisc] —
(1-6) B[ Yy Yu<c* T Yol | Yu<c]) | +
1 n
E [-(SE[ e Yail Yu>c* X2 V3| Yisc] -

i=Emy+1

(1-€) E[ 1, 41 Yail Yi>c* T VAT Yuce]) 1+

_ 1
T Ea-OHm

1
§(1-8m

—(”“T;lunp) * [ mPE(Yy;| Yiisc) + m(1 — ®)E(Yy;| Yii>0) |
1 1 mn mnp P
riom & Lo C E G 2 Yl Yuse ™ Xy, 4o Vi | Yusc +

§ T Yuil Yuse * BT ¥AT Yuse)) = B[S Yoyl Yuse * B3 ¥ Yuse] 1+
oo E Lo CE(E X Yail Yi>e * B0, 4 V3P| Yusc +
EE[IM o1 Yail Yi>c* X VAT Yi<c])) —
min E[ S, 41 Yail Yi>c* 5 v8T| Yo<c ] ] +
(MnT — Wap) .

[ MPE(Yy;] Yu<c) + m(1 — ®)E(Yy;| Y1i>c) |

1 1 1 1 1 1

(IvlnT — Hap) N
m

[ MPE(Yy;] Yu<c) + m(1 — ®)E(Yy;| Yu>c) |
E(H) = & E[ X% Yy Yusc* (B, o YO Yase +2 Vi) Ya<o) |

E[ X7 Vol Yus et (E0n, oo Y3PI Yuse +577 YET| Yugo)| YalYnsc] ]

i=my+1
S Yyl YU E(Z, o Y| Yase + X807 YAT| Yaigc) |
= FE[ (X Yyl Yuso)*((1-E)myitop+Emuyr) |
= f( (l'g)annP'l'fannT) mnE(Ylil Y11SC)
E(G) = B[Z™ Yyl Yusc* T vaT| Yai<c]
= E[E [Z™ Yy;| Yusc* X7 AT | Yasc| YuilYu<c ] ]
= E[X/ Yyl Yusc* EC 3 vaT| Yusc ) ]
= {mupyrmy E(Yy;] Yiisc)
E() = EE[ X041 Yail Yi>c* (I, YEP| Yuc + BET0 YAT| Yaic)]

= ¢E[E[ ﬁmn+1Y1i|Y1i>c*(2ﬁ’§mn+1Y§f|Y1iSC+Zf;n1"Y§iT|Y1iSC)|Y1iIY1iSc]]
= EE

T sr Yail YuSCE[(ZI L YEP| Yai<e + e YAT| Yoo ) [ YalYn<c]]
= EE

= SE[
= SE[

i=Emp+1

[
[ Zﬁmn+1 Yiil Yu>c*((1-§)my ipp+$my pnt) |
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= f((l g)mnunp-l'fmnunT) (m - mn) E(Ylil Y11>C)
E(N) = E[ X1, 41 Yail Yi>c* T YAT| Yaic ]

= E[ E[X, +1 Yail Yi>c* X0 VAT | Yu<clYulYu<c] ]
= E[X7 41 Yail Yi>c * E(ZEm YAT| Yiige) |

= E[(Xi%m, +1 Vil Y1i>0) Emppnr]

= fmnunT(m mn) E(Y1i|Y11>C)

. _oar 1 1 _ 1 1 _ 1
cA—A = m_f)mE[ —E(H) mnE(G)] o E)mE[ —E(D) E(/)]+
(unT — Hnp)

* [ mPE(Yy;] Yi<sc) + m(1 — ®)E(Yy;| Yii>c) ]

1 1
= E( E) [ 5((1 E)annP'i'fmnunT)mnE(Ylll Y11<C) -

m_ngmnunTmnE(Ylil YllSC) ] +
1
E[ Eg((l'f)annP'i"fannT)(m —my) E(Yy;] Yii>c) —
1
m_nfmnp-nT(m —my) E(Yy;| Yii>c) ] +

_r
§1-Hm

(ot = Hop) | [ mMPE(Yy;] Yu<c) + m(1 — @)E(Yy;| Yii>c) |

1
= W E (Y| Yu<c)E[((1-)unp + pnr — Hnr)Mp] —

(1- f) E (Y11|Y11>C)E[( (1 f)unP + fIJnT unT)(m - mn)]+
(unT Hnp)

* [ mOE(Yy;] Yi<s<c) + m(1 — ®)E(Yy;| Yi>c0) |
= E (YlilYliSC)( Hnp — I-J-nT) ( 1- Pp(rl) )+ E(Y1i|Y1i>C)( Hnp — UnT) Pp (Tl) +

w x [m (1 - pp(rl)) E(Yy;| Yusc) + mP, (r)E(Yy;| Yi>c) ]

= E (Y |Y1=c)(tap — Mar) (1 — By (1)) + E(Y1;|Y1i>C)(pnp — HnT)Pp (1y) +

(Mt = Bap) * [ (1 = By (r))E(Yy| Yiisc) + P, (r)E(Yy| Yi>c) | =0

B = cov( E(@p1|I(Y1i>0),i = 1,...,m), E(fpp|I(Y1i>¢),i = 1, ..., m))

=E [(E (Apr |1 (Y1i>€),i =1, ..., m) = E(fp1)) (E (nplI (Y1:>0), P=1..,m) - E(finp)) |
=E [( (X0 E(Yul Yu<o)+ Zl =mp+1 EQil Yu>0)-wpr ) (- f)m Y, +1 EQV | Y1i<0)
—E(fp) ) ]=E [( (X2 E(Yail YiSO)+ X2, 41 EQuil Yi>0)- Hp1 ) (Hnp—Hnp ) 1=0
B’ = cov( E(,upl|I(Y11>c),1 =1, ...,m), E(flpp|[(Y1>C),i = 1,...,m))

=E [(E (Ap1 |1 (Y1i>€),i = 1, ..., m) = E(fp1)) (E (AurlT (Y1i>0), i=1.,m) - E(ftar)) |
=E[ (—(Z 7 E(Yy| Yisco)+ Zl =mp+1 EQl Yu>0))-p1 ) (5 E)m Y em, 1 ECE | Yii<o)
~E(@yr) ) 1= E[( (X E (Yl YusO+ X2 11 EQul Yi>0)- tp1 ) (Hor— Mot ) 10
Thus cov(51,62) A+ B— (A +B') =A — A'=0 for Normal-Normal scenario.
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Appendix 7.2: covariance for Binomial-Binomial Case

COV(SLSZ) = cov (pT(rl) — Po (1), Por (rz|nry) — ﬁnp(r2|nr1))
= cov( ﬁp(ﬁ)» Pnp(rz|m”1)) —cov( PP(H): PnT(Tz|n7”1))
=E [cov( Po(1y), Pop (ra|nr) |I(Y1i=1),i = 1, ...,m)] +
cov ( E(Pp(r)I(Y1i=1),i = 1,...,m), E(Pyp (ry|nr) [I(Y1i=1),i = 1, ...,m)) -
{ E[cov( Pp(ry), Pur(ryInr)|I(Yui=1),i = 1,..,m)| +
cov ( E( Bo(rplI(Y1i=1),i = 1, .., m), E(Por (ro Inry) I (Yi=1),i = 1,...,m)) }
= A+B—- (A +B)
A = E [cov( Pp(1y), Pop(1z|n1y))| I(Y1i=1),1 = 1, ..., m)], the inner part of the expectation is
as follows:
cov( Po(1y), Pop () | I(Y1i=1),i = 1, ...,m)
= cov( (Pp(r)|I(Yui=1),i = 1, ..., m), (Ppp (rp|nr) [I(Y1i=1),i = 1, ..., m))
=E[ ((Pp(r)|I(Yu=1),i=1,..,m) —E( Pp(r)|I(Yu=1),i=1,..,m) ) =
( (Pup(rynr)|I(Y1i=1),i = 1, ..., m) — E(Ppp (ry|nry)|I(Y1i=1),i = 1,...,m))
=E[ (Pr(m)|I(Yu=1),i=1,...,m)(Pyp(rp|nr)|I(Yu=1),i=1,..,m) —
(Pp(r)|I(Y1i=1),i = 1,..., m)E(Ppp(rp|nr)|I(Ysi=1),i=1,..,m) —
E(Pp(r)|I(Yu=1),i = 1, .., m)(Ppp(rp|nr) |[I(Y1i=1),i=1,..,m) +
E(Po(r)|I(Yu=1),i =1, .., m)E(Pyp(rp|nr)|[I(Y1i=1),i = 1,..,m)
=E[ (Pp(r)|I(Ysi=1),i = 1, ..., m)(Pp (ryInry)|I(Yi=1),i = 1, ...,m) |-
E[ (Pp(r)|[I(Yu=1),i =1, ... m)E(Pup(ry|nr) [I(Yu=1),i=1,...,m) ] -
E[ E(Pp(r)|I(Y1i=1),i = 1, ..., m)(Ppp (ry|nr)|I(Y1i=1),i = 1,...,m) ]+
E[ E( Pp(r)|I(Y1i=1),i = 1, .., m)E(Ppp (ry|nr)|I(Y1i=1),i = 1,...,m) ]
A—B—-C+D

A = E(A)—E(B)—-E(C)+E(D)
A=E| (Pp(rl)ll(Yn:l) i=1,.. m)(PnP(r2|nr1)|I(Yli_1) i=1, ...,m) |
= E

B = E[ (Pp(r1)|I(Y1i=O) i= ,...,m)E(PnP(rz|nr1)|I(Y1i=0),1 =1, ...,m) ]
—E[ (Z Y1l Yi=0+ Y52, 1 Vil Yu=1)*Ppp(rp|nry) |
nP(T2|m"1)

= ————F 0 — 1
2L g+ 0 4 (m = my) 1]

= Ppp(rz|nry) Pp(ry)

C=D= Py (rz|nry) Pp(r1)

Similarly,

A" = E[cov( Pp(ry), Ppr(ry|nry))| I(Y1i=1),i = 1, ..., m)]

cov( Pp(ry), Por (rp|nr)| I(Yui=1),i = 1,...,m)

= cov( (Pp(r)|I(Yu=1),i = 1, ..., m), (Pur(rp|nr)|[I(Y1i=1),i =1, ...,m))
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=E[ ((Po(r)|I(Ysi=1),i=1,..,m) — E( Pp(r)|I(Yui=1),i = 1,...,m) )
( (P (o) |I(Yu=1),i = 1,..,m) — E(Pyr (rp|nr)|I(Yui=1),i=1,..,m)) ]
=E[ (Pp(r)|I(Yu=1),i=1, ... m)(Ppr(ry|nr)|[I(Yu=1),i=1,..,m) —
(Po(r)|1(Y1i=1),i = 1, .., m)E(Ppr (rp|nr)|I(Y1i=1),i = 1,...,m) —
E(Pp(r)|I(Y1i=1),i =1, .., m)(Por (rp|nr)|I(Y1i=1),i = 1,...,m) +
E(Po(r)|I(Y1i=1),i =1, ..., m)E(Ppr(rp|nr)|I(Yui=1),i =1, ...,m) ]
=E[ (Pp(r)|I(Ys=1),i =1, .., m)(Ppr(rynr)|I(Yu=1),i =1, ..,m) |-
E[ (Po(m)|I(Yui=1),i =1, ..., m)E(Pyr(rp|nr)|[I(Yu=1),i=1,..,m) ] -
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Chapter 8

Misunderstanding of a New Approach to Drug-Placebo Difference
Calculation in Short Term Antidepressant-Drug Trials

(Liu, Y. (2015) Misunderstanding of a New Approach to Drug-Placebo Difference Calculation in Short
Term Antidepressant-Drug Trials. Open Journal of Statistics, 5, 113-119.
doi: 10.4236/0js.2015.52014.)

Abstract: In clinical trials, drug effect is measured by a difference between subjects who are
treated by experimental drug against placebo-treated subjects. In case of binary data, with
observing YES/NO on each subject in certain period of time, it is the proportion of subjects who
respond in treatment group minus the proportion of responders in placebo group (for example,
50% vs. 30%). However, a greater difference was proposed by Rihmer et al. (2011) with their
supporting arguments, in that antidepressant response and placebo response had different
mechanisms and there were equal chances for antidepressant responder to be responding to
placebo and not responding to placebo at all. Therefore, the authors proposed 50% - 30% * 50%
when the response rate in the treatment group and the placebo group are 50% and 30%
respectively, resulting in higher drug-placebo difference than traditional understanding of 50% -
30%. In this article, we tried to explain why the authors misunderstood the drug-placebo concept
for evaluating drug superiority, their misunderstanding of assumptions of traditional calculation,
as well as their wrong reasoning on their proposed approach. All in all, we conclude the
traditional approach of 50% - 30% is the right way of evaluating drug-placebo difference and the
possible methods to control impact of placebo effect are briefly discussed at the end of this
article.

Keywords: Antidepressant; Placebo Effect; Short-Term Antidepressant Effect; Unipolar Major
Depression.

Section 8.1 Introduction

In clinical trials, patients are not only taking a testing drug on rigorous schedules, but also under
a specific healthcare environment. Routine checks, clinical visiting and lots of psychological
interviews might create a misconception to patients and clinicians and result in placebo effect.
Placebo effect blunts the ability to detect drug-placebo difference in a well-controlled trail,
resulting in trial failures, longer time and more resource in developing promising drugs for
unmet medical needs. To deduce this trial background effects, randomization is normally
applied. Subjects are randomized into either placebo or treatment group with equal probability
and baseline characteristics got balanced out. With the help of randomization, only post-

randomization factors and drug-placebo difference can contribute to different effects between
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drug and placebo groups. However, if investigators and patients have known what is given and
what is taken in the trial, psychological effects will impact clinical rating scales, self-evaluation
scores, compliance and patient’s willingness of coordination with trial personnel. Hence blinding
is essential to get rid of above impacts on evaluating drug-placebo effect. Double- blinding is a
way to exclude some of those post-randomization factors. Use of placebo is to evaluate the
background effect of trial procedure on patients. Placebo is sometimes better than not treated,
which is seen in most psychiatry trials depending on different disease characteristics. Placebo
effect is well-known in antidepressant trials. How placebo works, how placebo effect is different
from drug effect, whether there are interactions between them or not, and how these issues get
accounted in statistical comparison all become interesting to the academic community. And the
newly proposed method on how to calculate drug-placebo difference was one particular effort to
answer one aspect of these questions. What makes anti-depressant special is that general
antidepressant clinical trials, especially in short-term trials, have relatively larger placebo effect
than those of other drug-testing clinical trials. Section 8.2 describes complexity of placebo and
antidepressant mechanisms in depressive patients. Section 8.3 evaluates drug-placebo difference
under various interaction types between placebo and antidepressant responses. Section 8.4
explains all the misunderstanding of drug-placebo difference and logic errors in Rihmer et al.
2011, similar errors were also made in other two articles (Rihmer, 2007; Rihmer and Gonda
2008). Section 8.5 discusses operational management and novel designs to cope with placebo
effect in antidepressant clinical trials.

Section 8.2: Mechanism of Placebo and Antidepressant Effects

Most widely used antidepressants include two classes: SSRI (selective serotonin reuptake
inhibitors) and serotonin norepinephrine reuptake inhibitors. Namely, these two classes work

mostly on central serotonin and norepinephrine systems (Johnson et al. 1993); Carpenter et al.,
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2003) respectively. That is: the AD (antidepressant) response relies on specific underlying
biological pathway in relation to biological state/illness characteristics. Moreover, due to
biochemical heterogeneity, depression symptomatic improvement only occurs in certain
subpopulation of individuals affected by depression. Interestingly, PL (placebo) response
behaves very differently, especially from perspective of its biomarker profile. When the
biomarker of change in brain glucose metabolism, a measure of positron emission tomography
was monitored, PL response was shown to be associated with regional metabolic increases in the
prefrontal and anterior cingulate cortices, while fluoxetine (one kind of antidepressant) response
was associated with additional changes in additional changes in brainstem, striatum, and
hippocampal activity (Mayberg et al., 2002). At subject level, PL (placebo) responders showed a
significance increase in prefrontal cortex activity, whereas no such increase occurred in none of
the rest of the population consisting of PL non-responders, AD (i.e., fluoxetine or venlafaxine)
responders, and AD non-res- ponders (Leuchter et al. 2002). Moreover, most recent studies
showed endogenous opiod and dopaminergic neurotransmission mediated nocebo effects, while
central opioid and dopaminergic activation mediated on PL response (Enck et al. 2008); Scott et
al. 2008). Then next question is how the central opoid and dopaminergic activation differs from
endogenous opiod and dopaminergic neurotransmission; recent research argued that the former
could mediate optimistic personality features (Sharot et al., 2007). Now the connection appears
explainable, as placebo response, not with specific drug molecule, shows general response to the
overall environment. For instance, some reward expectations on clinical improvement in both
patients and clinicians after placebo administration, subsequently result in change in systems that
mediate optimistic personality feature. So far, we can summarize that AD response and PL

response work differently and could overlap in certain ways. Not everyone responds to placebo,
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neither does to antidepressants. From each subject, as Rihmer et al. (2011) noted patients could
be divided into four different categories: (P1) AD responder and PL responder (++); (P2) AD
responder and PL non-responder (+—); (P3) AD non-responder and PL responder (—+); and (P4)
AD non- responder and PL non-responder (—). All types of P1 - P4 exist in real trial results.

Section 8.3: Drug-Placebo Difference Evaluation

In this section, we would like to explore the appropriate statistical evaluation for drug-placebo
difference under the circumstance of placebo response in antidepressant trials. To be more
complete, let’s put aside all founding in Section 8.2 first and explore all the scenarios, because
some of these scenarios trigger Rihmer and co-authors (Rihmer et al. 2011) to pick up the new
method over the traditional one. Therefore, it is necessary to explore all of them in detail first.

Put AD and PL response in 2X2 contingency table, then the difference between drug and placebo
can be viewed marginally and jointly. Marginally means whenever we consider AD response
rate, we only concentrate on AD response (response = YES and response = NO corresponding to
AD = 1 and AD = 0 respectively) without considering PL mechanism. Similarly, whenever
looking at PL response rate, we ignore how AD works. From Figure 8.1(a), we can clearly see
that rate of response in AD group minus rate of response in PL group is first column of down
diagonal minus first row of up diagonal, that is Pr(AD = 1) — Pr(PL = 1) = 0.5 — 0.3. However, if
we would like to look the rates jointly in terms of both AD and PL responding, then it is low left
corner of down diagonal minus upper right corner of up diagonal, that is Pr(AD = 1 and PL = 0)
— Pr(AD = 0 and PL = 1). Comparing to subtraction of marginal in method one in Figure 8.1(a),
future specifications are needed to obtain these two joint probabilities of Pr(AD =1 and PL = 0)
— Pr (AD = 0 and PL = 1). Comparing method 1 of subtraction of marginal probabilities with
subtraction of joint probabilities, we can find that they coincide with each other, since the only

part in common, probability of being AD responder and PL responder, is eliminated from
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because residing both before the minus sign and after the minus sign. That is: Pr(AD = 1) —
Pr(PL =1) = [Pr(AD =1 and PL = 0) + Pr(AD =1 and PL = 1)] — [Pr(AD =0 and PL=1) +
Pr(AD =1 and PL=1)] =Pr(AD =1 and PL = 0) — Pr(AD = 0 and PL = 1). Note that, in Figure
8.2, we graphically denote divided probabilistic distribution of this joint AD and PL variables.

Assuming two difference systems mediate PL response and AD response separately, then these
two systems could: (D) totally dependent; (IND) totally independent; and (Other) some
dependence in between. For totally dependence, we can further divide them into 4 subcategories
(Figure 8.3): (D1) all placebo responders are AD responders; (D2) all placebo responders are AD
non-responders; (D3) all AD responders are placebo responders; (D4) all AD responders are

placebo non-responders.

AD=1 AD=0 AD =1 AD=0

PL=1 |8 0.3 PL= 1 0.3

PL=0 0.7 PL=0 0.7

0.5 0.5 0.5 0.5
(a) (b)

Figure 20(Fig. 8.1): Drug-placebo difference graphic representation

Figure 8.1: Drug-placebo difference graphic representation. (a) Looking at it marginally,
drug-placebo difference is shaded lower diagonal minus shaded upper diagonal. (b)
Looking at it jointly, drug-placebo difference is still shaded lower diagonal minus shaded
upper diagonal with trellised cell deleted as compared to (a).

Pr(AD =1 and PL = 1) Pr(AD=0and PL=1)
\ AD=1 AD=0 /
Lot | -
PL=0
// ‘\
Pr(AD = 1 and PL = 0) Pr(AD =0 and PL = 0)
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Figure 21(Fig. 8.2): Probabilistic distribution of AD/PL responses

Figure 8.2: Probabilistic distribution of AD/PL responses.
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Figure 22(Fig. 8.3): Drug-placebo difference under four mutually exclusive and exhaustive scenarios

Figure 8.3: Drug-placebo difference under four mutually exclusive and exhaustive
scenarios. D1: All PL responders are AD responders; D2: All PL responders are AD non-
responders; D3: All AD responders are PL responders; D4: All AD responders are PL non-
responders.
Section 8.3.1: Various Dependent Structures
(D1): Dependence scenario 1. Since all PL responders are AD responders, Pr(AD = 1|PL = 1) = 1.
Circled cell Pr(AD =1 and PL = 1) = Pr(AD = 1|PL = 1) * Pr(PL = 1) =1 * 0.3 = 0.3; and then
drug-placebo difference = Pr(AD =1 and PL=0) = Pr(AD =0and PL=1)=02-0=0.2 =
Pr(AD=1)—-Pr(PL=1)=0.5—-10.3.
(D2): Dependence scenario 2. Since all PL responders are AD non-responders, Pr(AD = 0|PL = 1)
= 1. Circled cell Pr(AD =0 and PL=1) =Pr(AD =0PL=1) *Pr(PL=1)=1*0.3=0.3 and
drug-placebo difference = Pr(AD = 1 and PL=0) - Pr(AD =0 and PL=1)=0.5 - 0.3 = Pr(AD =

1)~ Pr(PL=1)=0.5 - 0.3.
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(D3): Dependence scenario 3. Intuitively, this can’t exist because: if all AD responders are PL
responders, PL responder rate will be greater or equal to AD responder rate, which contradicts
our assumption of probability of AD equal to 1 being 0.5 and PL equal to 1 being 0.3
respectively. Had we have PL responder rate exceeded AD responder rate; this would be a wrong
target drug to develop since its effect is numerically inferior to placebo. Mathematically, if we
have all AD responders are PL responders, conditionally probability of Pr(PL = 1|AD = 1) = 1.
Therefore, Pr(AD =1and PL=1) =Pr(PL=1AD=1) *Pr(AD =1)=1*05>Pr(PL=1) =
0.3. This violates probability axiom, as Pr(PL = 1) = Pr(AD =1 and PL = 1) + Pr(AD = 0 and PL
= 1) and should not be less than Pr(AD = 1 and PL = 1) alone. This calculation proves our
intuitive interpretation: under the condition of all AD responders are PL responders, existing of
AD non-responders being PL responders will lead to greater PL response rate than AD response
rate, in which is against the goal of drug development.

(D4): Dependence scenario 4. Since all AD responders are PL non-responders, Pr(PL = O|PL = 1)
= 1. Circled cell Pr(PL = 0 and AD = 1) = Pr(PL = 0JAD =1) * Pr(AD =1) =1 * 0.5 = 0.5 and
drug-placebo difference = Pr(AD =1 and PL =0) — Pr(AD =0and PL=0)=0.5-03=0.2 =
Pr(AD = 1) — Pr(PL = 1) = 0.5 — 0.3. Graphically, dependence scenario 2 equals dependence
scenario 4. Let’s try to prove it mathematically.

Claim: D2 dependence structure is the same as D4 dependence structure.

Proof: D2 = >D4

Pr(AD =1and PL =1) + Pr(AD =1 and PL =0) + Pr(AD =0 and PL = 1) + Pr(AD =0 and PL
=0)=1

= Pr(AD =1 and PL = 1) + Pr(PL = 0JAD = 1) * Pr(AD = 1) + Pr(AD = O|PL = 1) * Pr(PL = 1)

+Pr(AD=0andPL=0)=1
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Because Pr(AD = 0|PL = 1) = 1, then Pr(PL=0AD =1) * Pr(AD=1)=1—-1*Pr(PL=1) —
Pr(AD =1 and PL = 1) — Pr(AD =0 and PL = 0) = Pr(PL = 0) — Pr(AD = 1 and PL = 1) — Pr(AD
=0and PL=0)

=Pr(AD=1and PL=0) - Pr(AD =1 and PL=1)

=Pr(AD=1) * Pr(PL=0/AD=1) - Pr(AD=1) * Pr(PL=1|AD =1)

After Canceling Pr(AD = 1) from both sides, we have Pr(PL = 0|AD = 1) =Pr(PL=0/AD=1) —

Pr(PL = 1JAD = 1)

=~ Pr(PL=1|AD=1)=0

Pr(PL =1and AD =1)
= =0
Pr(AD =1)

~Pr(PL=1and AD=1)=0

Together with Pr(PL=0and AD=1) + Pr(PL=1and AD =1) =Pr(AD =1)
= Pr(PL =0 and AD = 1) = Pr(AD = 1)

= Pr(PL = 0JAD = 1) * Pr(AD = 1) = Pr(AD = 1)

= Pr(PL = 0|JAD =1) = 1, because Pr(AD = 1) is a positive number.

Pr(PL = 0JAD =1) = 1 is for D4 structure. All AD responders are PL non-responders. u
Similarly, we can show D4 => D2.

In summary, under all reasonable dependence scenarios (i.e., D1 - D4 excluding D3), 4 cell
probabilities are fixed and drug-placebo difference using joint probabilities is available.
However, as discussed in Section 8.2, this drug-placebo difference is always 0.5 — 0.3, the same

as that of being obtained by marginal probabilities. The other reason to have detailed discussion
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about above mutually exclusive and exhaustive scenarios is for later discussion about the method
proposed by Rihmer et al. (2011).
Section 8.3.2: Independent Structure
If the mechanism of placebo response is independent of that of antidepressant response, placebo
responders can randomly either to be AD responder or to be AD non-responder. Similarly, AD
responders have an equal chance to either be PL responder or be PL non-responder. Being a
placebo responder is independent of being an AD responder. Then, under this scenario, what
about drug-placebo difference? In Figure 8.4, we see that since Pr(AD = 1|PL = 1) = 0.5, we
have Pr(AD =1 and PL = 1) = Pr(AD = 1|PL = 1) * Pr(PL = 1) = 0.5 * 0.3 = 0.15. Then drug-
placebo difference using joint probability is 0.35 — 0.15 = 0.2, numerically exactly the same as
Pr(AD =1) — Pr(PL =1) = 0.5 — 0.3 = 0.2 using marginal probabilities.
Section 8.3.3: Structures between Totally Dependent and Totally Independent

If neither definite dependence nor independence presents, some other structures in between play
a role for mechanisms of placebo and AD responding. As in the 2X2 contingency table (Figure
8.2), once one cell probability is fixed, all other cells are known as well. For instance, probability
of both AD and PL (i.e., Pr(AD = 1 and PL = 1)) responding is known. In example 1, with
Pr(AD =1 and PL = 1) = 0.25 known (bigger than the probability under independence in Figure
8.4), drug-placebo difference can be calculated as Pr(AD =1 and PL =0) = Pr(AD =0 and PL =
1) =0.25 - 0.05=0.2, the same as Pr(AD = 1) — Pr(PL=1)=0.5 — 0.3 = 0.2. In example 2, with
Pr(AD =1 and PL = 1) = 0.1 known (smaller than its probability under independence scenario),
drug-placebo difference can be calculated as Pr(AD =1 and PL=0)=Pr(AD=0and PL=1) =
0.4 — 0.2 =0.2. As shown in Figure 8.5, Pr(AD = 1 and PL = 1) can be either greater than that of

independence scenario in example 1, or less than that of example 2. No matter it is higher or
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lower than that of independence structure, once joint probabilities are known, drug-placebo
difference can easily derived, which again is the same as the marginal probability difference. The
advantage of using marginal probability is that joint probabilities are normally unknown due to
unobservable property and can’t be used to derived drug-placebo difference. On the contrary,
marginal probabilities are always observable and hence can easily be used for evaluating drug
superiority.

In clinical trials, we measure response on each subject, and group them into treatment versus
placebo to find a measure so that superiority of drug vs. placebo can be evaluated and tested.
Each joint probability is actually unobservable in the trial except under wholly independence or
dependence structures. It may be possible to use another trial to test independence assumption,
but normally we can just reject or fail to reject independence hypothesis. Still, we can’t prove it
is indeed independent. For dependence structure, even with an external trial specifically for
evaluating dependence structure, it is really hard to prove which dependence structure it is. Also,
from Section 8.2, the presence of AD non-responder and PL responders excludes the possibility
of having dependence scenario 1, which is all PL responders are AD responders; similarly, the
presence of AD responders and PL responders excludes dependence scenarios 2 and 4, which are
all PL responders are AD non-responders and all AD responders are PL non-responders
respectively.

From general discussion in Section 8.2 and each specific example in Section 8.3, we all show
that drug-placebo difference can be evaluated by marginal probability difference.

Section 8.4: Discussion of Misunderstanding Leading to a Wrong New Approach

After stating and proving the right way of evaluating drug-placebo difference, we now have to
discuss why the proposed method by Rihmer et al. (2011) is wrong and where the logic flaws

resided in their article. There are several steps for Rihmer et al. (2011) to propose 0.5 — 0.3 *
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50% and reason against the traditional method of 0.5 — 0.3. First of all, they thought that old
method of 0.5 — 0.3 depends on the assumption of all PL responders being AD responders (i.e.,
Pr(AD = 1|PL = 1) = 1), which corresponds to dependence structure 1 in Figure 8.3. This is
indeed wrong. Under dependence structure 1, Then the authors had a wrong perspective that
drug-placebo difference is Pr(AD =1 and PL=0) =Pr(AD=1) —Pr(AD=1and PL=1) =0.5
— 0.3 using joint probabilities in Figure 8.3 Dependence 1 table. This is actually using a wrong
rational but to end up with a correct number of 0.2. Later they thought that more consideration
should be put into Pr(AD =1 and PL = 1) to account for the fact that not all PL responders can
be AD responders. Under independence structure, there is equal probability for a PL responder to
be an AD responder or not to be an AD responder. Hence they went to independence structure in
Figure 8.4. As joint probabilities in Figure 8.4 show, Pr(AD =1 and PL=0) =Pr(AD =1) —
Pr(AD =1 and PL=1)= 0.5 — 0.15 = 0.35. We think that Rihmer and co-authors [1] started with
wrong assumptions for drug-placebo difference; used wrong measure for it; had a wrong
interpretation for this measure; and subsequently proposed a wrong approach. Now, let explain
further about why probability of being an AD responder but not a PL responder (i.e., Pr(AD = 1
and PL = 0)) is not a right measure of drug-placebo difference. This measure is measuring the
chance for each individual to be AD responder and PL non-responder simultaneously; or is
measuring relative frequency of subjects who are AD responder but not PL responder in the
whole population. Either interpretation has nothing to do with the drug-placebo difference, which
is the relative frequency of AD responders over PL responders in antidepressant patient
population. And this joint probability is normally unobservable in the clinical trials, where
patients are randomly assigned to PL or AD to obtain efficacy measure to assess AD relative

superiority. On the contrary, each patient is a unit to be treated by either placebo or AD;
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responder rate in AD-treated group minus the responder rate in the PL-treated group provide an
objective measure for drug-placebo difference after all baseline factors being balanced out by
randomization and the only factor contributing to drug-placebo difference is what they have
received in the trial. This, as shown in Section 8.3, is irrespective of what kind of joint
mechanism between drug and placebo responses. Besides, calculation from marginal rate
difference is the same as calculating difference from joint probabilities, whereas the latter is

normally unobservable and can’t be obtained from this randomized clinical trial.

AD=1 AD=0
/’('].IS 0.15
PL=1 ( 0.3
N
s —
PL=0 | 0.35 0.35 0.7
0.5 0.5

Figure 23(Fig. 8.4): Drug-placebo difference under independent structure

Figure 8.4: Drug-placebo difference under independent structure

Examplel AD=1 AD=0 Example2 AD=1 AD=0
0.25 0.05 0.1 0.2
PL=1 0.3 PL=1 0.3
PL=0 | 0.25 0.45 0.7 PL=0 | 0.4 0.3 0.7
0.5 0.5 0.5 0.5

Figure 24(Fig. 8.5): Two examples of drug-placebo difference under structures between totally dependent and
independent

Figure 8.5: Two examples of drug-placebo difference under structures between totally
dependent and independent. Example 1: probability of being AD and PL responders is
greater than that of independence structure; Example 2: probability of being AD and PL
responders is lower than that of independence structure.

Section 8.5: Discussion of Operational Management and Novel Designs to Cope with
Placebo Effect in Antidepressant Clinical Trials

After the discussion of the right way of understanding and evaluating drug-placebo difference
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and pointing out all the flaws in Rihmer and co-authors’ wrong proposal, it seems that we are
going back to the original place to favor traditional method of Pr(AD = 1) — Pr(PL = 1). Then
what should we do to avoid jeopardizing a trial because of placebo effect? And should we just let
it go unchecked? Of course, the answer is no. This is actually a very interesting but complicated
area and not intended to be covered in this article. Here, we can briefly point out some related
perspectives. To avoid failure trial due to placebo effect, we can put more efforts on innovated
design and manage it more appropriate in operation. The main challenge is to lower the
optimistic expectation from both patient and clinician. Since higher placebo response was found
in mild-moderate depression, excluding these patients in the trial should be considered. And
more scientific scoring system, more self-scoring scale, help from biomarker markers, and/or
central rating could be combined to narrow the possibility of overstated expectation.

Mathematically, novel designs as sequential parallel designs are also available in the literature.
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Chapter 9

Optimal Group Sequential Designs Constrained on both Overall and Stage
One Error Rates

(to be submitted)
Abstract: Optimized group sequential designs proposed in the literature have designs
minimizing average sample size (ASN) with respect to a prior distribution of treatment effect
with overall type | and type Il error rates well-controlled. The optimized asymmetric group
sequential designs that we present here additionally consider constrains on stopping probabilities
at stage one: probability of stopping for futility at stage one when no drug effect exists as well as
the probability of rejection when the maximum effect size is true at stage one so that
accountability of group sequential design is ensured from the very first stage throughout.
Besides, non-binding efficacy bounds are used to account for often-occurred overrunning in real
trials, and the shape parameters for Wang-Tsiatis upper bounds and Kim-DeMets lower bounds
are utilized to find optimized group sequential designs minimizing ASN while maintaining error
and power requirements overall and at stage one. From examples illustrated, the maximum
sample size determined through optimization turns out to be smaller than prior optimized designs
using other ways of optimization.
Keywords: Group sequential design; Optimization; Asymmetric; Non-binding; Overrunning.
Section 9.1:  Introduction
After publication of computational work by Armitage, McPherson and Rowe (1969), research on
group sequential tests have been proposed including those of Haybittle (1971), Peto et al.,
(1976), Pocock (1977), O’Brien and Fleming (1979), Harrington and O’Brien (1984) and Wang
and Tsiatis (1987). “Error spending function” introduced by Lan and DeMets (1983) allows more
flexibility in group sequential designs when the number of stages is unpredictable at trial start or
interim analysis is delayed past the planned timing of analyses as a trial proceeds so that
boundaries need to be adjusted during the course of a trial. Jennison (1987) derived optimal one-
sided group sequential tests concerning the mean of a normal distribution with known variance,
which are optimal in that expected sample size is minimized under given values of the mean or
averaged over several values of the mean subject to constraints on the overall type I and type 11
error probabilities. Using backward algorithm, Eales and Jennison (1992) and Eales (1995)

derived optimal group sequential tests for one-sided and two-sided scenarios, respectively.
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Backward algorithm, though being one-dimensional, is quite complicated to implement.
Anderson (2007) made use of shape parameters of overall type I and Il error spending functions
to derive optimized group sequential tests that minimize expected sample size or expected
squared sample size , which lessens computational load compared with the backward algorithm
proposed by Eales and Jennison (1992) and Eales (1995). Previous optimized group sequential
tests are all subject to constraints on overall type | and type Il error probabilities only. The
method we present in this article additionally considers stopping probabilities at the first interim
analysis when the maximum effect size is true or to stop for futility at stage one when the null
hypothesis is true. Controlling probability at stage one is essential when the rejection/acceptance
conclusion can be drawn at stage one, which is unfortunately ignored in many published optimal
group sequential procedures. Section 9.2 builds up the basics (i.e., notation and other
preliminaries). Section 9.3 illustrates how optimization is done. Section 9.4 shows the results for
optimized asymmetric group sequential tests with respect to desired prior distribution of the
parameter of interest. Section 9.5 discusses features of proposed optimized designs compared

with prior optimized designs. For example, the one proposed by Anderson (2007).

Section 9.2: Notations

Section 9.2.1: A Motivating Example
For a trial with survival end point of time to relapse/death/failure, an event such as a
relapse/death/failure in the randomization phase is defined as meeting one of the criteria for the
first time after randomization. The objective of the trial is to test the superiority of drug against
placebo in delaying time to relapse as an example from now on in the randomization phase after
randomization with efficacy summarized by effect size §, log hazard ratio divided by its

variance. Detailed information is summarized in Table 9.1. There is a 50% of chance to have an
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effect size (standardized log hazard ratio of placebo relative to drug) equal to zero (i.e., under
null hypothesis). There is a 50% of chance to have an effective drug (i.e., under alternative
hypothesis); the conditional probability of having the optimal effect size is 20% (standardized
log hazard ratio equal to 0.755 and relapse rate being 35% and 60% for drug and placebo,
respectively); the conditional probability of having the expected effect size is 20% (standardized
log hazard ratio (placebo vs. drug) = 0.617 and relapse rate being 35% and 55% for drug and
placebo, respectively); and the conditional probability of having minimal effect size of interest is
50% (standardized log hazard ratio being 0.476 and relapse rate being 35% and 50% for drug
and placebo, respectively). A design is preferred to incorporate all information regarding the
prior information on effect 8. Hence an optimized group sequential design for minimizing
average sample number while subject to a set of constrains needs to be developed. In order to
ensure power and that the false positive rate to be well-controlled not only in the overall sense
but also for every single interim analysis, we have to control error probabilities at stage one.
Since tests in group sequential designs use cumulative data up to the testing stage, controlling
error probabilities at stage one can guarantee validity of tests at subsequent stages. Inspired by
design specifications i) and ii) on Page 141 of Liu and Chi (2001) and controlling of probability
of continuing to later stages when the null hypothesis is true at stage one in Liu et al (2012), our
optimized group sequential designs are constructed to ensure sufficient power to reject the null
under &,,.x (the maximum effect size) even at stage one and a proper probability for stopping
for futility at Stage One if null is true; and the overall power is calculated under the minimal
effect size 6,,;, instead of expected effect size to avoid resulting in an underpowered study
when true effect size is in between §,,;, and the expected effect size and the whole trial was

prospectively powered under the expected effect size. More specifically, the optimized design
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has the following operational properties:

1) the power of rejecting the null hypothesis H, based on data from stage one is at least 1- f3,
say 0.8 or 0.9, if the true effect size is &, (i.€., 5.15 in our example);

2) the overall power to reject the null hypothesis H,, is at least 1- (3, if the true effect size is
Smin (i-€., 3.24 in our example);

3) the overall type I error rate (one-sided) to reject null H, is a, say 0.025;

4) if H, is true, the probability of continuing to stage two while not stopping for futility at stage

one is at most ag, say 0.3 or 0.2; and

5) non-binding upper efficacy boundaries are employed to account for overrunning data.

Table 34(Tab. 9.1): Knowledge of relative effectiveness of drug and placebo prior to trial start

Table 9.1: Knowledge of relative effectiveness of drug and placebo prior to trial start, with ‘logHR’ means log
of hazard ratio.

Hypothesis | Conditional | Difference in | Relapse rate | # of events
(Probability) | probability | relapse rates needed ( Effect size= Log(Hazard
(Placebo- drug | placebo fixed ratio(Placebo/drug))/
drug) sample \(4/# of events)
design)
H, (50%) 20% 25% 35% | 60% 74 logHR=0.755,
(optimal or Bopt=0max=5.15
maximum)
30% 20% 35% | 55% 111 logHR=0.617, é'exp=4.21
(expected)
50% 15% 35% | 50% 186 logHR=0.476, &,,,=3.24
(minimal)
H, (50%) 100% 0% NA NA NA logHR=0, Effect size=0

Section 9.2.2 Group Sequential Setting

Considering a group sequential trial with K planned analyses, let § be the parameter of interest,
a measure of placebo-drug difference and assume it can be estimated from trial data. The
distribution of statistics Z; ,Z, , ..., Zx are derived from cumulative data up to stages from 1,

2 ..., K, and follows a canonical joint form (Chapter 3, Jennison and Turnbull (2000)) of
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multivariate normal distribution with E(Z;) :8\/1_1 and Cov(Z;, Zj):\/li_/l' ,1<i<j<K and
{1, ..., Ix} are information levels for parameter 6. For the motivating example described
above, the standardized log-rank statistic (Chapter 13.2, Jennison and Turnbull) approximately
has the canonical joint distribution, given information level I; proportional to the number of
events at the ith interim analysis.

Section 9.2.3 Non-binding Efficacy Upper Boundaries
When a group sequential test is proposed t to test the null hypothesis Hy, = 0 against Hy = 6
for fixed & > 0 with overall probability of rejecting null at most «, say 0.025 for one-sided test
when null hypothesis is true, and overall probability of rejecting null with power of 1- 8 when
the alternative hypothesis is true and the drug is effective, the null hypothesis will be rejected
at stage i when the observed statistic Z; > u; or trial is stopped early for futility if Z; < ;,
where 1; and u; are, respectively, the stage i lower futility and upper efficacy boundaries.
During the trial, it takes time to close a site and then re-open it, or initiate new sites. At the time
of interim analysis, without knowing the trial results and not knowing if the trial should be
stopped or not, sites normally continue recruiting new subjects or subjects remained event-free
are kept being treated during the period of conducting interim analysis. If the stopping for trial
for efficacy or for futility can be claimed by interim data, overrunning data occurred succeeding
interim cutoff date is inevitably accumulated. Based on the intent-to-treat principle, all
randomized subjects should be included in the analysis because randomization is supposed to
balance out impact of baseline characteristics on treatment effect and the final analysis including
complete data should be conducted and included in the submission document per regulatory
requirement. This practical issue poses some requirements on choosing a proper group sequential

design as explained below.
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Binding upper efficacy bounds namely indicate that upper bounds are derived under the
consideration of lower bounds while otherwise not being considered for non-binding efficacy
bounds. If the interim analysis suggests stopping for efficacy at interim, conducting final analysis
including overrunning data will not inflate type | error rate regardless of whether upper efficacy
boundaries are binding or not binding with lower bounds because the drug has been shown to be
effective at interim and one more rejection on the same hypothesis won’t impact type I error rate;
however, if the interim analysis shows stopping for futility, binding upper efficacy boundaries
might inflate overall type | error rate because rejecting null at final analysis with futility bound
crossed earlier on is not considered at all originally. In this case, non-binding efficacy boundaries
can solve this dilemma, in which lower bounds are ignored when deriving upper efficacy
boundaries and the null hypothesis may be rejected at final analysis, even though the trial has
had futility criterion Z; <1; met at interim.
Section 9.2.4 Wang-Tsiatis Family as Upper Boundaries and Kim-Demets Family as
Lower Boundaries
Group sequential tests allow stopping the trial and rejecting the null hypothesis at stage i when
the observed statistic Z; > u; or stopping and accepting the null and stopping for futility if
Z; < 1;. Wang and Tsiatis (1987) proposed a family of boundary function of the form
u; = (k/K)P~1/2C (9.1)
where the shape parameter p € (—o,4+»), k=1, 2,...,K,and C isa constant. It is known that

this family gives a Pocock boundary when p = % and an O’Brien-Fleming boundary when

p = 0. Liu and Anderson (2008a, 2008b) proposed using sequential p-value to obtain inference
after group sequential test considering the totality of data; and they argued that sequential p-

value with help from the Wang-Tsiatis boundary function, compared with other boundary
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functions, has special inferential meaning because it connects to the maximum likelihood
estimate of §, directed likelihood statistic and score statistic when p equals 1, %2 and 0,
respectively (Section 3.1, Liu and Anderson (2008b)). The special inferential meaning carried by
Wang-Tsiatis (referred to as “WT’) also made us use it as the upper boundary function to search
for optimized tests, in which Wang-Tsiatis’ shape parameter plays an important role in
optimization.

Once upper bounaries are defined, Kim and DeMets (1987) (referred to as ‘KD”) 8 —spending
function can be used to find lower boundaries which ensure a certain power to be achieved under

the alternative hypothesis. For i = 1,2 ..., K, the type Il error spent at stage i is denoted as

Bi(Bmin) = Ps, {{Zi S 1} 0iZ {1 <7 < u}} (9.2)
and then summing over stages, B(Omin) = ,K=1 B;(6min) results in the overall type Il errror,
which is the desired probability of crossing lower boundary at any analysis when  &§,,;, is the
true value for parameter of interest, 6.

We wish to set lower boundary 1; to obtain B( Omin)= Z =1 Bj(min), Where on the other
hand accumulating type 1l error up to stage i B( ,Omin) 1S determined by B(—)V using

Kim-DeMets function. That is: the Kim-DeMets function of B(Il—i)V determines the cumulative
K

type Il error up to Stage i, and then we use Equation 9.2 to back calculate lower bounds

{l;, ...1x} and information level vectors {1, ... Iy} to achieve the required overall power.
Section 9.2.5: Operational Characteristics of Proposed Optimized Group Sequential
Design

Shape parameters p and y mentioned above in Section 9.2.4 play a very important role in

finding optimized group sequential designs to accommodate Criterion 1-5 in Section 9.2.1,
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whereby these 5 requirements can mathematically be formulated as follows:
PO{ZI 211U Z2 ZUZ U,"', UZKZUK}za (93)

P8maX{Zl >u}=1-8 (9:4)
PSmin{Zl < u1} + Psmin{ll < Zl < ul,ZZ = uZ} + -+ Psmin{ll < Zl < uq, ""lK—l < ZK—l <

ug-_q Zg = uK}:B (9.5)

Po{Z; =211} = aF (9.6)

The requirement for overall type | error control with non-binding upper bounds is described in
Equation 9.3; overall type 1l error (or power) requirement is depicted in Equation 9.5; first stage
requirement for power to stop for efficacy when the maximum effect size is true is in Equation
9.4; and the stop for futility at stage one when there is no effect at all is clearly stated in Equation
9.6. The way how error rates in stage one are controlled is illustrated in the optimization steps
below (Section 9.3.2). Appendix 9.1 shows that we can always find information time pint t; to
ensure large enough probability of rejecting for efficacy under maximum effect size in our
proposed algorithm.

On the contrary, Anderson (2007) and other publications on optimized group sequential designs
only considered overall type | (Equation 9.3) and type Il error rate (Equation 9.5) without
considering stage one probabilities (Equations 9.4 and 9.6). Additional considerations on stage
one error rates in Equations 9.4 and 9.6 further ensure proper design features starting from stage
one and throughout. Furthermore, the whole trial is powered at the minimal effect size &,,;, in
our consideration to be more conservative and to avoid an underpowered study in case the true
effect size is in between §,,;, and the expected effect size while the whole trial was erroneously
powered under the expected effect size.

Section 9.3: Optimization
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Section 9.3.1: Objective Function for Optimization

After finding 3K parameters of a particular group sequential design, {uy, ...ux}, {l;, ... I} and
{1, ... I}, expected sample number, denoted as Eg(n), at a particular alternative can be
computed (P237, Jennison and Turnbull (2000)). From Table 9.1, we know the prior distribution
of & is: 50% chance of being 0, 10% chance of being maximum/optimum effect size of

8max = 5.15, 15% chance of being at expected effect size of 8., = 4.21 and 25% chance of
being minimum effect size &,,;, = 3.24. Our objective function to minimize is average of Eg(n)
with respect to prior distribution of 8. That is ASN = Y scm Es(n)P(8), where M is the range of

& and we have four options for & in our motivating example.

Section 9.3.2: Optimization Strategy And Numerical Calculation
When the shape parameter for Wang-Tiastis family function, p, is given, ASN increases as ag
decreases. In order to minimize ASN, null probability of failure to stop at stage one is chosen,
say ap=0.3. That is: when there is no effect for testing drug, the probability of stopping for
futility at stage one is 0.7 (i.e., 1 minus 0.3). Figure 9.1 illustrates some points of the proposed
optimization strategy.
Step 1: For a given standardized information vector t (with first stage information fraction t,
together with equally spaced remaining stages), type | error a and a shape parameter p for
Wang-Tiastis function, upper bounds {u;, ..., ux} are then obtained.
Step 2: Given aof , for example 0.3, together with t vector, «, B and p, Kim-DeMets
shape parameter vy is chosen so that overall power under 8,,;, is1- B and the the probability
of continuing to stage two is 1-ag. In this step, lower boundaries {1, ... 1x} and information

vector {lj, ..., Ix} are determined. Now vy isa function of o, ap, B and p, denoted as

Y(t1,0(, aF'p,B)'
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Step 3: Check if Ps__ {Z; = u;} =1 —  (Equation 9.4) is met. If not, increase information
level spent at stage one (i.e., t;) and then redefine tvector with new t, and equally spaced
remaining stages, repeat Steps 1 and 2 until Equation 9.4 is met (Appendix 9.1).

Step 4: Repeat Steps 1-3 for a range of values of p, for example p;, p,, ps, ..., and find the p*
which gives minimal value of ASN with respect to prior distribution of & while comforming to
Criteria 1-5 in Section 9.2.1.

Step 5: After finding p*, pick Up Yt «, of, p~,g) Which is the lower shape parameter to make the
design meet Criteria 1-5 and based on p*.

Step 6: For a given set of o, ap, B, t; and searched pair of optimal shape parameters

(P%) Y(ty, ap,p,8))» OUtpUt Optimized design with 3K parameters of {1, ... I}, {uy, ..., ug},

{1, ..., Ix} and corresponding operational characteristics based on chosen optimal shape

parameters.
R T R LTy
Bz = T(fv @ A5
Pi’pbs .ﬁhr---: {I[i_...._.l[x} . .
(et P B Y i meeppin ) = LMy Mgt = AN, | =20 min {ASN, )
[Ty I)

Figure 25(Fig. 9.1): Graphic illustration

Figure 9.1: Graphic illustration of optimization using shape parameter p and vy.

Seen from Figure 9.1 and optimization steps, upper bounds can be determined by overall type |

error, standard information vector t and a WT shape parameter p. Subsequently, upper bounds
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together with overall type Il error and stage one futility error ap to make sure probability of
continuing into stage two under null being 1-ag, lower KD shape parameter y can be searched
to fullfil given requirements. Now a specific group sequential design is defined, and probability
of rejection at stage one under maximum effect size is then checked to make sure this probability
isalso 1- B (Equation 9.4). If not, standard information vector can be re-defined to have a larger
t1 (Appendix 9.1) along with equally spaced subsequent stages and then re-do all previous steps
to set corresponding lower shape parameter y together with upper/ lower bounds. Finally, in the
space of shape parameter of p, a spectrum of group sequential designs can be defined so that p*
that minimizes ASN with regards to the prior distribution of effect size can be explicitly sought
out. In the end, we have optimal upper shape parameter p*, corresponding ¢, aazpg) andall
other operation characterisitics for this optimal design. In all our examples below, we start with
t; = 0.5, which already meets the criterion of stopping for efficacy under maximum effect size
with probability greater than 1 — 8 (Equation 9.4). Therefore, no further increase of t, is
needed.

One question that still remains unclear is: how would we iteratively find the information vector
{I,, ..., Ix} in Step 2? The trick is to set the a standardized information vector {t,, ..., tg} with
tg=1 first (for example: K=10, we have t={0.5, 0.55,0.61,0.67,0.78,0.83, 0.89,0.94,1}, whereby

first stage use half of the maximum informaiton and subsequential stages are equally spaced);
then use this t vector to find non-binding WT upper bounds {u,, ..., ux} by substiting {I%}

in Equation 9.1 by t vector; then use it to to find error spent by

B(Il—i, Smin)= B(ti, Smin)= B(t;)Y; then utilizing Equation 9.2 together with known upper bounds,
K

we can get lower bound vector {14, ...1x}; then we can search for a coefficient R(K, o, B)

(Chapter 2, Jennison and Turnbull, 2000), which is the maximum information Iy divided by
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information needed for fixed sample desgin I, and hence get {1, ..., Ix}. Thisis
because: R(K, a, B) =Ix/Is, , and {I‘—ll‘—z ...,i—K}:{tl, o, e} SO
K IK K

{l, ..., Ix}= R(K, o, B)*{t4, ..., tx}- When upper, lower bounds and {t, ..., tx} are given,
{13, ..., Ix} is obtained by searching for R(K, a, B) to ensure power while also letting 1x = ug at
final stage K to ensure only either rejecting or accepting null hypothesis at the final stage.

Section 4: Results

Based on the motivating example, we transform the trial objective of proving superiority of study
drug relative to placebo to testing H, = 0 against Hy = &, = 3.24. The required sample size
for fixed design with a =0.025(one-sided) and 3=0.1 is to accumulate 186 events. After
obtaining the optimal shape parameters of p for Wang- Tsiatis upper bounds and y for Kim-
DeMets lower bounds satisfying all of 5 criteria for error rates overall and at stage one while
minimizing ASN with respect to prior beliefs of & (see Section 9.2.1 and 9.2.5 and Section
9.3), 3K parameters of upper, lower bounds and information vector can then be derived for this
optimized group sequential design using optimal p and y.

Group sequential tests allow stopping for efficacy and futility as early as stage one and then
claim conclusion for hypothesis testing if bounds crossed at interim or otherwise continue up to
the final stage. However, small numbers of patients accumulated at interims leave much to
chance and greater uncertainty about the inferences. To avoid this not-large-enough sample size
at interims causing more uncertainty issue, we coin our example with first interim occurred at the
time when at least half of maximum information is used (i.e., t;= I,/Ix = 0.5). Furthermore, for
simplicity, the remaining stages are equally spaced. For example, for K=10, we use standard
information vector t°={0.5, 0.55,0.61,0.67,0.78,0.83, 0.89,0.94,1} as the start point. t; can be

increased to t] to satisfy the power requirement of rejecting null under maximum effect size
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(Equation 9.4), whereby the existence of t] is proved in Appendix 9.1.

After obtaining 3K parameters of {1, ... Ix}, {uy, ..., ug}, {l4, ..., Ix} for the optimized design
sought-out by proposed algorithm (Figure 9.1), probability of stopping at stage i (i.e.,

Prg (T = i)) can be calculated using sub-density at stage i (Pages 171-174, Jennison and
Turnbull, 2000) and subsequently expected final information level, defined as Eg{I} =

>X I = Pro(T = i) summing over different stages can be obtained to evaluate efficiency of the
proposed optimized design, where 6 is at the scale of § in a range that cover &,,inand 6mqx-
In Figure 9.2, Eq{I}/If;,, expected final information level divided by Ig, given 6 (with x-axis
ranging from -0.5*8,,,;,, t0 2*8,,;,) is plotted against ratio of 6 to &,,;, for ar = 0.2 (solid
line) and ap =0.3 (dotted line) and for K=2,...,10, respectively. For an optimized group
sequential design with K=2 and the probability of continuing to Stage Two under null being 0.2,
when the parameter 6 is the same as the minmial effect size (i.e. 6/6,,;,=1), the expected final
information level relative to that of fixed-sample design for the proposed optimized design is
0.786 (Figure 9.2a), which also means the expected number of events is 0.786*N;,=0.786*186;
and similarly for a=0.3, the expected information Eg{I}/I;;,=0.775. There is little interest for
investigating 6 less than &,,;,, as we are not pursuing any investigational drug less than
minimal effect size. Thus for 6 ranging from &,,;, t0 1.5*6,,;, is much of our interests.
When we look at the effect size which is 1.5 times the minimal requirement (i.e., 6/8,;,=1.5),
the expected final information level relative to that of fixed-sample design is 0.632 and 0.606 for
ar=0.2 and ag=0.3, respectively (Figure 9.2a). This shows that designs with the same K, bigger
effect size saves more resources; and for a given effect size, bigger o spent at first stage leads
to smaller expected final information level.

One intuition is that designs with more interim analyses could result in smaller expected final
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information level Eg{I}. Surprisingly, we found this perception is only partially true. Table 9.2
lists Eg{I}/I;;,for effect size from as low as 8, up to 1.5 times of minimal effect size by
increment of 0.05 in the ratio of 6/6,,;,. Let’s take the extreme cases K=2 vs. K=10 in Table 2
to illustrate our points. Comparing K = 2 with K = 10 for az = 0.2, optimized group sequential
tests with K = 10 consistently have lower expected final information level for 6/6,,;, ranging
from 1 to 1.35 (Table 9.2) than those of K = 2; however, the trend is reversed for ratios ranging
from 1.40 to 2.0 (Note that data for ratios between 1.50 and 2.0 are not shown in Table 9.2). The
same phenomenon is also observed for ar = 0.3. All in all, when ratio 6/8,,;, is 1.50 and up,
K = 10 has bigger expected final information level as compared with K = 2 while being smaller
between ratios of 1.0 and 1.45 (shaded cells in Table 9.2). This actually shows that for a certain
ag, increasing the number of analyses can not save resources when the effect size is too big.
Additionaly, the saving in sample size is very limited when K is greater or equal to 3 irrespective

of effect size.
Table 35(Tab. 9.2): Efficiencies for optimal asymmetric optimal group designs

Table 9.2: Eg{l}/If;; for oy =0.2 or 0.3 when 0/8,,;, ranging from 1.0 to 1.5 with
increments of (.05

0/0min = 1.0 1.05 1.1 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
@F= | K=2 | 0.786 | 0.766 | 0.745 | 0.726 | 0.707 | 0.690 | 0.675 | 0.662 | 0.650 | 0.640 | 0.632
0.2 K=3 | 0.754 | 0.737 | 0.720 | 0.704 | 0.690 | 0.677 | 0.666 | 0.656 | 0.648 | 0.641 | 0.635

K=4 | 0.745 | 0.729 | 0.713 | 0.699 | 0.686 | 0.674 | 0.664 | 0.656 | 0.648 | 0.642 | 0.637
K=5 | 0.743 | 0.728 | 0.714 | 0.701 | 0.690 | 0.680 | 0.671 | 0.664 | 0.658 | 0.653 | 0.650
K=6 | 0.738 | 0.723 | 0.709 | 0.696 | 0.684 | 0.674 | 0.665 | 0.657 | 0.651 | 0.646 | 0.642
K=7 | 0.736 | 0.722 | 0.708 | 0.695 | 0.684 | 0.674 | 0.665 | 0.657 | 0.651 | 0.646 | 0.642
K=8 | 0.736 | 0.722 | 0.709 | 0.697 | 0.686 | 0.677 | 0.669 | 0.662 | 0.657 | 0.653 | 0.649
K=9 | 0.740 | 0.727 | 0.714 | 0.703 | 0.693 | 0.685 | 0.677 | 0.671 | 0.666 | 0.663 | 0.660
K=10 | 0.734 | 0.719 | 0.706 | 0.694 | 0.683 | 0.673 | 0.665 | 0.658 | 0.652 | 0.647 | 0.643
ag= | K=2 | 0.775 | 0.753 | 0.731 | 0.710 | 0.690 | 0.672 | 0.655 | 0.640 | 0.627 | 0.615 | 0.606
0.3 K=3 | 0.739 | 0.720 | 0.701 | 0.684 | 0.668 | 0.654 | 0.641 | 0.629 | 0.620 | 0.611 | 0.605
K=4 | 0.728 | 0.711 | 0.694 | 0.678 | 0.663 | 0.650 | 0.639 | 0.629 | 0.620 | 0.613 | 0.608
K=5 | 0.723 | 0.707 | 0.690 | 0.675 | 0.661 | 0.649 | 0.638 | 0.629 | 0.622 | 0.615 | 0.610
K=6 | 0.721 | 0.704 | 0.688 | 0.674 | 0.660 | 0.649 | 0.638 | 0.629 | 0.622 | 0.616 | 0.611
K=7 | 0.719 | 0.703 | 0.687 | 0.672 | 0.659 | 0.647 | 0.637 | 0.628 | 0.621 | 0.615 | 0.610
K=8 | 0.718 | 0.702 | 0.686 | 0.672 | 0.659 | 0.647 | 0.637 | 0.628 | 0.621 | 0.615 | 0.610
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K=9 | 0.717 | 0.701 | 0.686 | 0.671 | 0.658 | 0.647 | 0.637 | 0.629 | 0.621 | 0.615 | 0.611
K=10 | 0.716 | 0.700 | 0.685 | 0.671 | 0.658 | 0.647 | 0.637 | 0.629 | 0.622 | 0.616 | 0.616

Back to Figure 9.2, which plots all scenarios on expected final information level relative to
information of fixed-sample design for K =2 up to 10 and o =0.2 or 0.3, except for 6/8,in
ranging from -0.5 to 0.7 in K = 2, the remainder of the design scenarios are uniformly most cost-
effective (i.e., having smaller expected final information level) for ag = 0.3 than those of ap =
0.2. Looking at the shape of the curve in Figure 9.2 a-i, for each o, shapes of K > 3 are all
similar to each other and different from that of K = 2. So there are cost savings in terms of
Eo{l} from K =2 to K = 3 for a given ag, but there is no further savings in having a larger K
when

K = 3. The range of Eg{I}/If;, for ap = 0.2 is all smaller than that of ar = 0.3 showing a
smaller variability in expected final information level when ap = 0.2. Irrespective of the value
of o and K, maximum of Eg{I}/Is;, occurswhen 0/8,;, = 0.6. Except for K =2, all
maximum of Eg{I}/I;;, isa little smaller for az = 0.3 than that of az = 0.2. Our examples
confirmed that it is worthwhile to have K = 3 in order to reduce expected sample size but it
seems not worthwhile to further increase it to K = 4, and similar phenomenon was also noticed in

Anderson (2007).
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Figure 26(Fig. 9.2): Efficiencies of optimized asymmetric group sequential designs

Figure 9.2: Eg{I}/Ifix vs. 0/8,i, for optimized asymmetric group sequential designs
minimizing ASN when a =0.025(one-sided), oy = 0.2(solid line), 0.3(dotted line), =0.1,
K=2,3,4,5,6,7,8,9,10, and I,/Ix = 0.5 and the remaining stages equally spaced. Note: a:

K=2, b: K=3, ¢: K=4, d: K=5, e: K=6, f: K=7, g: K=8, h: K=9, i: K=10.

Operating characteristics for scenarios in Figure 9.2 and Table 9.2 are depicted in detail in
Tables 9.3 and 9.4 accompanying with 3K parameters of lower boundaries, upper boundaries and
information vector, and probability of rejecting null under maximum effect size at Stage One to

control probability of continuing to stage two when null hypothesis is true (ag= 0.3, 0.2).

ag= 0.3, a more lenient probability of continuing to stage two under the null, was advocated by
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Liu, et, al (2012), we start our discussion with az= 0.3 (Tables 9.3). With continuing probability
at stage one when null is true controlled at 0.3 level and overall power equal to 0.9, maximum
information relative to fixed-sample design, I,.«/lsx » IS 1.135, 1.153, 1.174 and 1.183 for

K =2,3,4,5, respectively in our method while Anderson (2007) had 1.106, 1.180, 1.218, and
1.237. Our method only has a slightly bigger I,,.x/lsix than that of Anderson (2007) at K =2
while the remaining Ks being smaller than Anderson (2007), showing advantage of our
optimized group sequential tests in terms of reducing maximum information level with respect to
prior beliefs of effect size. The real problem for Anderson (2007) is their lower information level
at stage one, only with 0.553, 0.393, 0.305 and 0.247 for 1; /I, for K =2, 3,4 and 5,
respectively, while we have at 0.567 for K = 2 and this value increases to 0.595 when K = 10.
Decisions made only using 0.247 percent of total information for fixed sample design will leave
any decision on this in doubt, especially significance in efficacy, more to chance rather than real
drug effect; and this shortcoming for Anderson (2007) is the primary propulsion for us to
develop a better optimized design here. The maximum information, even not fixed in advance,
turns out to be well-controlled using our searching method for optimal shapes for p and y
(Figure 9.1). For example, it is only 1.19 even for K = 10 and power = 0.9 (Table 9.3).

Due to implementing of non-binding upper boundary, overall type | error, as expected, is a little
less than pre-specified 0.025 level irrespective of power =0.8 or 0.9 and ar = 0.3 or 0.2 (Tables
9.3 and 9.4). Comparing with ag= 0.3, ag= 0.2 has bigger I,,.x for any combination of K and
power (I,ax/Irix =1.204, 1.264 for K = 2 and 10, respectively). The first stage lower bound, 1,
is higher in ap = 0.2 than that of o= 0.3 to limit the chance of going to stage two under null
(1;=0.842 for ag =0.2and 1,=0.524 for ap=0.3). As expected, the maximum information is

lower in power of 0.8 than that of power = 0.9. One surprising finding in Tables 9.3 and 9.4 is
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for power equal t0 0.8: all I,.«/lsix are less than 1 for all combinations of K and o.
Table 36(Tab. 9.3): Optimized asymmetric groups sequential designs minimizing ASN

Table 9.3: Optimized asymmetric groups sequential designs minimizing ASN with o =
0.025(one-sided), g = 0.1, or 0.2, k=2,3,4,5,6,7,8,9, 10, powered at §8,,;,=3.24 and
t;=0.5 and the remaining stages are equally spaced.

B =0.1 (Power=0.9) B =0.2 (Power=0.8)
K=2 p =0.5047, y = 1.862, a=0.3, p = 04516, y = 1.805, az=0.3,
P,gmax(Zl > b1)=0.956 and §ppq,=5.147 Pamax(zl > by)=0.869 and §,,q,=5.147
a; 1-6 | I U; Ii/Ifix a; 1-8 | U i/ Ipix
1 0.0148 0.606 0.524 2.175 0.567 0.0133 0.454 0.524 2.217 0.420
2 0.0244 0.900 2.182 2.182 1.135 0.0243 0.800 2.144 2.144 0.841
K=3 | p = 04391, y = 1.945, a;=03, p = 04116, y = 1.889, ap=03,
Ps. (Zy = by)=0.947 and 8y;q,=5.147 Psyo. (Z1 = by)=0.854 and 8,q,=5.147
a; 1-8 |k u; Li/lfix a; 1-8 | u; LifIpix
1 0.0107 0.566 0.524 2.301 0.579 0.0100 0.423 0.524 2.327 0.432
2 0.0183 0.799 1.359 2.245 0.868 0.0178 0.665 1.338 2.245 0.648
3 0.0238 0.900 2.206 2.206 1.158 0.0237 0.800 2.188 2.188 0.864
K=2 | p = 04346, y = 2.003, a;=03, p = 03959, y = 1.926, a;=0.3,
P, (Zy = b;)=0.945and 8jqy=5.147 Ps. (Z1 = by)=0.846 and 8,y =5.147
a; 1-6 |l U 1i/Irix a; 1-8 | U 1i/Irix
1 0.0095 0.556 0.524 2.346 0.587 0.0086 0.406 0.524 2.382 0.437
2 0.0154 0.737 1.063 2.302 0.783 0.0145 0.591 1.046 2.312 0.583
3 0.0203 0.847 1.613 2.268 0.979 0.0198 0.724 1.585 2.259 0.729
4 0.0236 0.900 2.242 2.242 1.174 0.0236 0.800 2.216 2.216 0.874
K=5 | p = 0.4343, y = 2.036, ap=0.3, » = 03910, y = 1.949, ap=0.3,
P, (Zy = b;)=0.944and 6y,0,=5.147 Ps. (Z1 = by)=0.842 and 8yqy=5.147
a; 1-6 |l U 1i/Irix a; 1-8 | U i/ Irix
1 0.0088 0.549 0.524 2.372 0.592 0.0079 0.397 0.524 2.414 0.440
2 0.0137 0.699 0.905 2.338 0.740 0.0127 0.547 0.891 2.356 0.550
3 0.0178 0.801 1.325 2.310 0.888 0.0170 0.664 1.300 2.309 0.660
4 0.0213 0.866 1.746 2.286 1.036 0.0208 0.750 1.713 2.271 0.770
5 0.0236 0.900 2.267 2.267 1.183 0.0235 0.800 2.238 2.238 0.880
K=6 p = 04247, y = 2.049, ap=0.3, p = 0.3860, y = 1.962, ap=0.3,
Ps, (Z1 = by)=0.941and 8y,=5.147 P (Z1 = by)=0.837and 8pq,=5.147
a; 1-8 |k u; Li/Ifix a; 1-8 | u; Li/Ifix
1 0.0082 0.539 0.524 2.400 0.594 0.0074 0.389 0.524 2.438 0.442
2 0.0123 0.670 0.805 2.367 0.712 0.0115 0.517 0.795 2.388 0.530
3 0.0159 0.763 1.144 2.340 0.831 0.0151 0.620 1.124 2.346 0.619
4 0.0191 0.830 1.478 2.317 0.950 0.0185 0.702 1.452 2.311 0.707
5 0.0217 0.876 1.824 2.296 1.069 0.0214 0.763 1.793 2.280 0.796
6 0.0235 0.900 2.278 2.278 1.187 0.0234 0.800 2.253 2.253 0.884
K=7 p =0.3896, y = 2.040, a=0.3, p = 0.3828, y = 1.971, ap=0.3,
P, (Zy = b;)=0.941and 8y,0,=5.147 P (Z1 = by)=0.834and 8,0,=5.147
a; 1-8 |k b; Li/Ifix a; 1-8 |k b; Li/Ifix
1 0.0072 0.519 0.524 2.449 0.592 0.0070 0.384 0.524 2.456 0.443
2 0.0107 0.638 0.734 2.408 0.691 0.0106 0.496 0.729 2.412 0.517
3 0.0139 0.727 1.015 2.372 0.790 0.0138 0.587 1.004 2.374 0.591
4 0.0168 0.796 1.295 2.342 0.888 0.0167 0.663 1.278 2.342 0.665
5 0.0195 0.846 1.573 2.315 0.987 0.0194 0.725 1.554 2.313 0.739
6 0.0218 0.881 1.867 2.290 1.086 0.0218 0.772 1.850 2.287 0.813
7 0.0234 0.900 2.269 2.269 1.185 0.0234 0.800 2.264 2.264 0.887
K=8 | p = 0.3856, y = 2.048, @z=03, p = 03800, y = 1.9773, ap=03,
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Ps. o (Z1 = b1)=0.933 and §pyq5=5.147

Ps. wc(Z1 = b1)=0.831and §iq5=5.147

a; 1-p |k U Li/Irix a; 1-B |k U Li/Ipix
1 0.0069 0.513 0.524 2.465 0.593 0.0067 0.379 0.524 2.470 0.444
2 0.0100 0.621 0.685 2.427 0.678 0.0099 0.479 0.681 2.431 0.508
3 0.0129 0.703 0.925 2.395 0.763 0.0127 0.561 0.915 2.397 0.571
4 0.0155 0.768 1.167 2.366 0.848 0.0154 0.632 1.152 2.367 0.635
5 0.0179 0.819 1.405 2.341 0.933 0.0178 0.691 1.388 2.340 0.698
6 0.0202 0.858 1.647 2.317 1.017 0.0201 0.740 1.628 2.316 0.761
7 0.0221 0.885 1.909 2.296 1.102 0.0221 0.777 1.892 2.294 0.825
8 0.0234 0.900 2.277 2.277 1.187 0.0234 0.800 2.273 2.273 0.888
K=9 | p = 03833, y = 2.054, @p=023, p = 03768, y = 1.9816, ay=03,

P, (Zy = b;)=0.932and 8yqy=5.147 Ps. (Z1 = b1)=0.829and 8,y =5.147

a; 1-6 |l u; i/ Ipix a; 1-8 | u; 1i/Irix
1 0.0066 0.509 0.524 2.477 0.594 0.0065 0.374 0.524 2.483 0.445
2 0.0095 0.608 0.648 2.443 0.669 0.0094 0.465 0.646 2.448 0.500
3 0.0121 0.683 0.856 2.413 0.743 0.0119 0.541 0.848 2.416 0.556
4 0.0144 0.745 1.069 2.386 0.817 0.0143 0.606 1.056 2.388 0.612
5 0.0167 0.795 1.279 2.362 0.892 0.0165 0.662 1.263 2.362 0.667
6 0.0188 0.835 1.489 2.340 0.966 0.0187 0.711 1.470 2.339 0.723
7 0.0207 0.866 1.704 2.320 1.040 0.0206 0.750 1.685 2.318 0.778
8 0.0223 0.888 1.941 2.302 1.114 0.0223 0.781 1.925 2.298 0.834
9 0.0233 0.900 2.284 2.284 1.189 0.0234 0.800 2.280 2.280 0.890
K=10 p =0.3814, y = 2.059, ar=0.3, p = 03741, y = 1.9849, ar=0.3,

P, (Zy = b;)=0.931and 8y=5.147 Ps. (Zy = by)= 0.826and §pq,=5.147

a; 1-8 |l U i/ Ipix a; 1-8 | U i/ Irix
1 0.0064 0.506 0.524 2.487 0.595 0.0063 0.371 0.524 2.494 0.445
2 0.0091 0.597 0.620 2.456 0.661 0.0089 0.454 0.618 2.462 0.495
3 0.0114 0.667 0.802 2.428 0.727 0.0113 0.524 0.795 2.432 0.544
4 0.0136 0.725 0.992 2.404 0.793 0.0134 0.584 0.980 2.406 0.594
5 0.0156 0.774 1.180 2.381 0.860 0.0155 0.638 1.164 2.382 0.643
6 0.0176 0.814 1.366 2.360 0.926 0.0174 0.685 1.348 2.360 0.693
7 0.0194 0.846 1.554 2.341 0.992 0.0193 0.725 1.535 2.339 0.742
8 0.0210 0.871 1.749 2.323 1.058 0.0210 0.758 1.730 2.320 0.792
9 0.0224 0.890 1.968 2.306 1.124 0.0224 0.784 1.951 2.303 0.841
10 0.0233 0.900 2.291 2.291 1.190 0.0234 0.800 2.286 2.286 0.890

Table 37(Tab. 9.4): Optimized asymmetric groups sequential designs minimizing ASN

Table 9.4: Optimized asymmetric groups sequential designs minimizing ASN with a =
0.025(one-sided), g = 0.1, 0or 0.2, k=2,3,4,5,6,7,8,9, 10, powered at §,,;,=3.24 and

t1=0.5 and the remaining stages are equally spaced.

B = 0.1 (Power=0.9)

B = 0.2 (Power=0.8)

K=2 p =0.5546, y = 1.091, az=0.2, p = 04881, y =1.099, ar=0.2,
Ps, (7 = b;)=0.968 and 8,,0,=5.147 Ps. (Z = b,)=0.893and Spax=
a; 1-6 |1 U Ii/Irix a; 1-6 | q u; I/ Irix
1 0.0162 0.647 0.842 2.140 0.602 0.0144 0.490 0.842 2.187 0.444
2 0.0238 0.900 2.222 2.222 1.204 0.0235 0.800 2.169 2.169 0.889
K=3 p =,0.4909 y = 1.1752, a=0.2, p = 0.4709, y = 1.1953, ay=0.2,
Ps,  (Zy = b;)=0.963 and §pyq,=5.147 Ps. (Z1 = b;)=0.888 and 8pq,=5.147
a; 1-6 | U i/ Irix a; 1-8 | U i/ Irix
1 0.0120 0.613 0.842 2.257 0.616 0.0115 0.470 0.842 2.274 0.460
2 0.0190 0.822 1.494 2.249 0.923 0.0187 0.694 1.481 2.247 0.689
3 0.0231 0.900 2.243 2.243 1.231 0.0230 0.800 2.228 2.228 0.919
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K=4 | p= 04627, y = 1.211, ap=02, p= 04377, y = 1219, ap=02,
Ps. (Zy = by)=0.959 and 8,=5.147 Ps. . (Z1 = b)=0.877 and 8q,=5.147
a; 1-8 |k U; i/ Ifix a; 1-8 | U i/ Irix
1 0.0102 0.593 0.842 2.320 0.621 0.0096 0.446 0.842 2.343 0.463
2 0.0159 0.766 1.230 2.296 0.828 0.0154 0.625 1.223 2.301 0.618
3 0.0203 0.860 1.697 2.277 1.035 0.0199 0.742 1.678 2.269 0.772
4 0.0228 0.900 2.261 2.261 1.242 0.0227 0.800 2.244 2.244 0.927
K=5 p = 0.5835, y = 1.3193, az=0.2, p = 04553, y = 1.249, ap=0.2,
Ps. (Zy = by)=0.969 and 8,,=5.147 Ps. (Z1 = by)=0.879and 8yqy=5.147
a; 1-8 |k U; i/ Ifix a; 1-8 | U i/ Irix
1 0.0122 0.634 0.842 2.250 0.638 0.0093 0.447 0.842 2.353 0.468
2 0.0169 0.756 1.115 2.293 0.798 0.0141 0.590 1.093 2.330 0.585
3 0.0201 0.833 1.480 2.328 0.958 0.0180 0.694 1.432 2.311 0.702
4 0.0223 0.878 1.871 2.358 1.117 0.0210 0.764 1.795 2.295 0.819
5 0.0234 0.900 2.384 2.384 1.277 0.0228 0.800 2.281 2.281 0.936
K=6 | p = 04660, y = 12579, ap=02, p= 04278, y = 1.249, ap=02,
Ps, (Zy = b1)=0.957 and 8pqx=5.147 Ps, (Z1 = b;)=0.870and 8,qy=5.147
a; 1-8 | U i/ Ipix a; 1-8 | U i/ Irix
1 0.0091 0.583 0.842 2.362 0.629 0.0083 0.429 0.842 2.397 0.468
2 0.0133 0.706 1.011 2.348 0.754 0.0124 0.555 1.008 2.366 0.562
3 0.0167 0.791 1.287 2.336 0.880 0.0159 0.652 1.275 2.340 0.656
4 0.0194 0.848 1.574 2.325 1.006 0.0189 0.724 1.552 2.317 0.749
5 0.0215 0.883 1.884 2.316 1.132 0.0212 0.774 1.855 2.298 0.843
6 0.0228 0.900 2.307 2.307 1.257 0.0226 0.800 2.280 2.280 0.937
K=7 p =0.4609, y =1.267, ap=0.2, p= 04237, y = 1.256, ap=0.2,
P (Zy = b;)=0.956and 8,,0,=5.147 Ps (Zy = b;)=0.867 band 6yqy=5.147
a; 1-6 | U 1i/Irix a; 1-8 | u; 1i/Irix
1 0.0086 0.577 0.842 2.381 0.630 0.0079 0.423 0.842 2.416 0.469
2 0.0123 0.687 0.954 2.367 0.735 0.0115 0.534 0.953 2.387 0.548
3 0.0154 0.765 1.180 2.355 0.840 0.0146 0.621 1.171 2.363 0.626
4 0.0180 0.822 1.417 2.344 0.945 0.0173 0.690 1.400 2.342 0.704
5 0.0201 0.862 1.663 2.334 1.050 0.0196 0.743 1.638 2.323 0.782
6 0.0218 0.887 1.934 2.326 1.155 0.0214 0.780 1.903 2.306 0.861
7 0.0228 0.900 2.318 2.318 1.260 0.0226 0.800 2.291 2.291 0.939
K=8 p = 0.5405, y = 1.323, az=0.2, p = 0.6103, y = 1.359, ar=0.2,
Ps, (Zy = b1)=0.963 and 6pqx=5.147 Ps. (Z1 =b1)=0.905 and 8,q,=5.147
a; 1-8 |k U; i/ Ipix a; 1-8 |k u; LifIrix
1 0.0100 0.605 0.842 2.326 0.639 0.0115 0.495 0.842 2.274 0.486
2 0.0135 0.696 0.922 2.339 0.730 0.0151 0.580 0.931 2.308 0.555
3 0.0162 0.761 1.117 2.350 0.822 0.0176 0.643 1.125 2.338 0.625
4 0.0184 0.810 1.325 2.360 0.913 0.0196 0.693 1.333 2.365 0.694
5 0.0201 0.846 1.539 2.369 1.004 0.0211 0.733 1.550 2.390 0.764
6 0.0215 0.873 1.765 2.377 1.095 0.0222 0.764 1.783 2.414 0.833
7 0.0226 0.891 2.020 2.385 1.187 0.0231 0.786 2.051 2.435 0.902
8 0.0232 0.900 2.392 2.392 1.278 0.0236 0.800 2.455 2.455 0.971
K=9 p = 0.6386, y =1.4012, ap=0.2, p= 04442, y = 1.276, ap=0.2,
Ps.  (Zy = b;)=0.971and 8,0, =5.147 Ps, . (Z > b;)=0.869 and 8,q,=5.147
a; 1-8 |k u; Li/Ifix a; 1-8 |k u; Li/Ifix
1 0.0118 0.638 0.842 2.264 0.651 0.0078 0.425 0.842 2.418 0.473
2 0.0152 0.713 0.902 2.301 0.733 0.0109 0.514 0.887 2.402 0.532
3 0.0175 0.766 1.075 2.335 0.814 0.0134 0.585 1.043 2.388 0.591
4 0.0193 0.806 1.263 2.366 0.896 0.0157 0.644 1.213 2.375 0.650
5 0.0207 0.838 1.456 2.395 0.977 0.0176 0.693 1.388 2.364 0.709
6 0.0219 0.862 1.658 2.422 1.058 0.0194 0.733 1.568 2.353 0.768
7 0.0227 0.880 1.874 2.447 1.140 0.0208 0.765 1.761 2.343 0.827
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8 0.0233 0.893 2.123 2.470 1.221 0.0220 0.787 1.984 2.334 0.886
9 0.0237 0.900 2.492 2.492 1.303 0.0227 0.800 2.326 2.326 0.945
K=10 p = 04456, y = 1.278, az=0.2, p = 04305, y = 1.274, ap=0.2,
P, (Zy = b1)=0.952and 8yyqx=5.147 Ps. (Z1 = by)=0.864 and 8,y =5.147
a; 1-8 |k U; i/ Ifix a; 1-8 | U i/ Irix

1 0.0077 0.561 0.842 2.424 0.632 0.0074 0.417 0.842 2.439 0.472
2 0.0105 0.646 0.859 2.411 0.702 0.0102 0.499 0.863 2.421 0.525
3 0.0129 0.710 0.998 2.398 0.772 0.0125 0.566 0.997 2.405 0.577
4 0.0149 0.762 1.152 2.387 0.843 0.0146 0.622 1.147 2.390 0.630
5 0.0168 0.803 1.310 2.376 0.913 0.0165 0.670 1.300 2.377 0.682
6 0.0185 0.836 1.472 2.367 0.983 0.0182 0.711 1.458 2.365 0.735
7 0.0199 0.862 1.638 2.358 1.053 0.0197 0.744 1.621 2.354 0.787
8 0.0211 0.880 1.816 2.350 1.123 0.0210 0.770 1.797 2.343 0.839
9 0.0221 0.893 2.022 2.342 1.194 0.0220 0.789 2.002 2.333 0.892
10 0.0227 0.900 2.335 2.335 1.264 0.0226 0.800 2.324 2.324 0.944

Section 9.5: Discussion

Maximum sample size in our method is not fixed as Barber and Jennison (2002), Jennison
(1987), Eales and Jennison (1992) and Jennison and Turnbull (2004) have done. And the
maximum sample size is determined by optimization with help of shape parameters after
implementing the iterative algorithm in Figure 9.1, which turns out to be better than Anderson
(2007) (Tables 9.3 and 9.4) in terms of reducing resources in addition to more constraints on
stage one probabilities. Wang and Tsiatis (1987) and Kim and DeMets (1987) are used here and
there does not appear to be a need in using a more complex spending function family as in
Jennison (1987). There are better features in our method as compared with previous ones
mentioned above (Barber and Jennison (2002), Jennison (1987), Jennison (1992), Jennison and
Turnbull (2004) and Anderson (2007)): power of rejecting at stage one is ensured when
maximum effect size is true; error of continuing the trial when no drug effect exists is well-
controlled at stage one; and non-binding efficacy boundaries are used to account for overrunning
data that normally occur in every real trial. In evaluating the number of analyses to perform,
there is a benefit to increase analyses from two stages to three stages and perhaps little benefit in

having more than 3 stages in most cases, while Anderson’s method (2007) shows no benefit in
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having more than 4 stages. Fewer interim analyses should save a lot of on human resources and
needed-time in conducting additional interim data cleaning and analysis. However, we have not
done any example with unequal spacing between Stage 2 and the maximum stage. Though it is
very easy to find optimized group sequential design using our method if unequal spacing is
desirable for some operational reasons, Barber and Jennison (2002) noted that optimal designs
allowing unequal spacing provide minimal advantage over equal spacing. R codes are available

for the first author per your requests.
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Appendix 9.1

Claim 3 t}, tY <t; <1, such that Ps .. (Z1=u)=1-

Let’s prove one preliminary result first: Given 8yax > 8min >0, Ps_ (Z; = uy)> Ps . (Z, =
uy)

Proof: this is because Z1~N(\/I_18, 1) , whichresultsin Ps__ (Z; = uy)=1-®(u; — Smax\/ﬂ)
and Ps_ (Z; > uy)=1-®(u; — 8iny/T), then directly we have Ps__ (Z; > u;)> Ps_ (Z; >
U, ) because of dymax > Smin > 0. Similarly, we have Ps__ ( uk, z; = u)> Ps_. ( uk,z,>
u;). Per optimization algorithm in Figure 1, Ps_. ( UK, Zi > u)=1-B. Let Ps_ .. ( uk,z, >
u;)=1-f’, where ' < B tosatisfy I-g' > 1 —f.Let 1 — ' =1 — 3 + A, where difference

A= (1-p—-(@1-B)>0.

Because Ps__ (U, Zi > u)=Ps__ (Z; = u)+ Ps_ (UK Z; > ) =A+Bif Ps__ (Z; > uy)
= A and PvSmax( ukitz > ui)z B respectively. ~ Ps,. (Z; = u;))=A=1-+A—-B>0.Our
objective becomes to prove: 3 tj, t? <t; <1, suchthat A > 1 — B. There are two cases for
this. Case One: If using t9, initial (least) standard fraction of information used at stage one, we
already have Ps__ (Z; = u;)= 1 — B, then there is nothing to prove. We just use t9 together
with the chosen way of partition for the remaining information to search for each optimized
design. Case Two: at t?, we have Ps_..(Z1 = u;) = A<l — (3, then we have to show that when
we increase tY to tj, we can have Ps_..(Zi =u)=A=1-8.
To prove Case Two, we know that I; = I« * t1, where ;54 is determined by «, 3 and ag
and has nothing to do with 6,55 (Figure 9.1). So, again, for Ps__ (Z; =2 u;)=A=1-®(u; —
SMaX\/E): 1-®(u; — dmaxy/ Imax * t1)- Given I 54, A increases as t; increases. At the
extremity, t; = 1, a case that group sequential design degenerates to the usual fixed sample
design, Ps . (Z; = uy)> Ps_. (Z; = uy) = 1-B, which is what we proved above in the
preliminary. For any tin between, thatis t <t; <1,
We have a continuous probability function A, which is a function in t; , in a closed interval
[t?,1], A has areal value at t? Ilessthan 1 — B, on the other hand has a real value at t=1
greater or equal to 1 — . Per Intermediate Value Theroem from Real Analysis, we can conclude
that thereisa t;, witht? < t; < 1, such that Ps_..(Z1 =u;)=1—B isexactly achieved at
t;. When t,> t;, A=Ps _ (Z; = u)>1-p.
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Chapter 10

A Two-stage Adaptive Design with a New Combination Test

(to be submitted)
Abstract: Inspired by Bauer and Kohne (1994), a method applying Fisher’s combination rule
to form a two-stage adaptive procedure (BK method), utilizing Box and Muller (1958), one of
the most popular methods of generating standard normal random variable using two independent
uniform (0, 1) deviates, a new method is proposed here to combine two p-values from two
disjoint samples for designing a trial with two stages. Procedure is defined with carefully
consideration of controlling overall type I error rate under null hypothesis. Operational
characteristics including power and expected sample size under both null and alternative
hypotheses were investigated. Simulations were used to confirm type I error control.
Comparisons of new combination method with BK method were also investigated.
Key Words: Two-stage Adaptive Design; Combination Test; Sample Size Re-estimation.
Subject classification codes: 05B99 62E20

Section 10.1: Introduction

In adaptive or flexible designs, study is monitored at interim while data are still being accrued
and the study design, such as sample size, allocation of treatment et.al, can be modified
accordingly to new internal/external information after the interim analysis. Statistical approaches
must be shown to maintain the integrity of the trial such as controlling type | error as well as
gaining adequate power. Among many publications, there are three methods wildly discussed
and cited in the literature to deal with adaptations: Conditional power approach by Proshan and
Hunsberger (1995); and two for combination tests: i) Fisher’s combination rule by Bauer and
Kohne (1994) and ii) the inverse normal method by Lehmacher and Wassmer (1999). In Proshan
and Hunsberger (1995), the circular conditional error function, which increases for the increasing
value of test statistic at stage 1, was defined for p-value of p, . Null hypothesis would be
rejected if p, was less than or equal to a, (alpha spent at stage 1) or p, was less than or equal
to the conditional error at stage 2. Bauer and Kohne (1994) made use of the fact that

—2log(p;),i = 1,2 has a Chi-squared distribution with 2 degree of freedom. Thus the product
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of p; and p, from disjoint data from stage 1 and stage 2 respectively was with a Chi-squared
distribution with degree of freedom 4. To control the overall alpha level, a combination test
(p1,P2) = p1*p2 < exp(—0.5x3(1 — «)) could be utilized, where x%(1 — «) is the 100*(1-
a)th percentile of the Chi-squared distribution with 4 degree of freedom. Inverse normal

method by Lehmacher and Wassmer (1999) was proposed under group sequential setting. It is
simply the weighted-z test to replace original test,C (p1, p2) = VW1Z; + /1 — w, Z,, with which
Z; = ®(1 —p;) (i.e., the inverse of standard normal cumulative distribution function) and w,

is pre-fixed weight for stage 1 data. Under null hypothesis and the predefined weight w;,

Vw,Z, + \/1——wlZz would be a standard normal. Even though sample size update using
interim results seemed creating dependence between two statistics between stages, the inverse
normal of 1 — p; value always derived a standard normal variable to ensure inter-stage
independence in testing statistic.

Similar to combining independent p-values using Fisher’s combination test, our method utilized
Box and Muller (1958) (BM transformation) to combine two p-values. Section 10.2 stated the
formulation of this two-stage procedure. Starting from objective of the test, given overall alpha
level and stage one futility boundary, alpha-spent at stage 1 will be derived. Section 10.3
illustrated how the power and expected sample size could be calculated under null and
alternative hypothesis respectively. Examples of calculating operation characteristics were
followed in Section 10.4. And simulations were used to confirm that type I error is controlled as
desired. Discussion in Section 10.5 concluded this paper.

Section 10.2: Formulation

Considering the situation to compare mean p, of treatment group with mean p, of control

group with a known common variance of 62, a two-stage test procedure for the one-sided testing
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of superiority of treatment over control (positive difference means better) is structured with
hypotheses: Hg: u;-p, =0 versus Hgy: py-p, =0
The standardized effect size will be 6§ = % Because each pair of subjects is identical and

independently (i.i.d.) distributed with normal mean p, — p, and correspondingly variance of

202, with n; subjects accumulated at interim, the test statistic is defined as T, =

which should be Normal(y/n, /2 8, 1) and p-value for this test as p, =1-¢(Jﬁ210;2_/ﬁ;). Similar
1

definitions are defined for T, and p,. Under null hypothesis, p-values under null hypothesis are
known to be uniformly distributed from O to 1.

Assuming p; and p, are independent, for example case 1)deriving from two different cohorts
of subjects as in current formulation 2)don’t come from two different cohorts of subjects but are
indeed independent asymptotically as the formulation for survival analysis. Here we propose a
new way to combine two-stage data so that adaptation can be implemented after interim analysis

to account for updated information from interim results or from external information. This is

based on the fact of C(p4,pz) = X, = +/—2log(p,) cos 2mp,, where p; L p, (“L” indicating
independence) and X is distributed as a standard normal variable under null hypothesis with

subscript ¢ indicating ‘combined’ and X, itself denoting the combined test statistic at the end of

stage 2. At the end of Stage 2, null hypothesis H, will be rejected if \/—2log(p,) cos 2mp; <
Z1_o, With z;_, denoting the 100*(1- )th percentile of the standard normal distribution. Or null
hypothesis will get rejected at first stage if p; < oy (with oy < «) if early rejection is planned
ahead. Let a, be the alpha-spent at interim and o be the overall alpha level for both stages. If
stopping for futility is also planned at interim with p; = a,, given a value of «, that provides a

lower bound for p, to stop the trial with the larger value of p; indicating acceptance of H, at
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interim, the two-stage procedure can be summarized as the follows:
If p1 = ap, the trial stops with acceptance of H,,
If p; < o;(0y < @), the trial stops with rejection of H,,

Otherwise, p; < oy < «ay, the second stage procedure can be performed; and in the second

stage, H, can be rejected if p, < exp[—0.5 * (—=2—)2].

COS 2Tp,

So, to get an overall level- o test, the value of a, has to be determined such that

j.(xo fexp[ -0.5*(—(:02512_1.?131)2] jao [ ( Z1—q )2] ( )
oy + dp dp =0oq + exp —0.5 %« (——— dp = 10.1
1 o 2 1 1 ) cos 2 L 1

If a, isgiven, a, can be determined using bisection searching together through above
equation. Also, from above deduction, conditional error left for Stage 2 after observing p, is

A(py) = exp[—0.5 * (w?#“p)z], a function of p,; and z,_, is the critical value to be
1

compared the combination test C(p;, p,) combining p,and p, (i.e.,

C(py, p2) = /—2log(p,) cos 2mp,). Type | error will be well-controlled as long as p, < A(py),
even after n,, sample size for Stage 2, is adapted to n; based on interim results. Note that
because a,, type | error spent at stage 1, is normally less than or equal to 0.1, it can be seen that
in the range of 0 < a; < 0.1, the conditional error for Stage 2 decreases for the increasing p;.
This shows the validity of proposed combination method, in which that a bigger p; at Stage 1
showing less evidence of treatment effect, rejection of H, at Stage 2 will become harder.

To interpret newly proposed BM method better, taking first row in Table 10.1 as an example,
null hypothesis will be rejected at stage 1 if p; < 0.0335, or be accepted if p; = 0.30 or

t; = z4,; Or go to gather Stage 10.2 data if 0.0335 < p; < 0.30. At the end of Stage 10.2, data

gathered from Stage 10.2 only will be used to obtain p,, and null will be rejected if  p, <
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exp[—0.5 * (—=2-)2] = A(p,); or equivalently the combined test statistic c(p;,p,) = X, =

COS 2Ttp1

J—2log(p,) cos 2mp; < z;_, = 1.644854 in combining data in a way through p; and p,;
and will fail to reject null otherwise.

When a, isgiven, a; can be obtained using integration and bisection root searching using
Equation 10.1. Given that o = 0.05, for a, = 0.30,0.35, 0.40, 0.45, 0.50, respectively, one can
find corresponding o, be 0.0335, 0.0332, 0.0286, 0.0166 and 0.0001 (Table 10.1). It is very
interesting to see that there is almost no possibility to reject null at stage 1 (a; = 0.0001) when
ao is 0.5 for proposed BM method while BK method using Fisher’s combination test still has

a; equal to 0.0233. Actually BK method has smaller change in o (from 0.0233 to 0.0299) when
a, changes from 0.3 to 0.5 than those of new method (Table 10.1), which changes from 0.00001
to 0.0335. Type | error spent at Stage 1, a;, for both new BM method and BK Fisher’s
combination test are found in the same magnitude when a, is small and ranging from 0.30 to

0.40; and the discrepancies become larger as «, become large. For example «;=0.45 and 0.5.
Table 38(Tab. 10.1): Critical values

Table 10.1: Critical values for new BM combination test as compared with BK method
using Fisher’s combination rule. Stage 1 critical value z,, equals to 11— ay).

New BM BK
g a; Zq, a, Zg,
0.30 0.0335 1.8319 0.0299 1.8817
0.35 0.0332 1.8357 0.0277 1.9163
0.40 0.0286 1.9013 0.0263 1.9380
0.45 0.0166 2.1289 0.0248 1.9642
0.50 0.00001 4.2649 0.0233 1.9896

Section 10.3: Theoretic Power, Expected Sample Size and Sample Size Re-estimation
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The power of new combination test based on independent p-values from respective stages for a

pre-specified alternative Hy: % =3 is:

foal fs(p1)dp; +

A
Il ®V £ (py, p2) dpzdp; (10.2)
A
= 1= [} f5(p1)dps =[5 f5(p1)dps + [1° J3 ™ f5(p1)fs( p2) dp2dps (10.3)
1 o 1) [0} 1
=1- fo;O fs(p1)dp1 — fal f51(p1)dp1 + fal fs(p1) [1 - fA(pl) fs(p2) dpz] dp, (10.4)
=1- fao fs(p1)dp1 — falo fA(p1) fs(p1)fs(p2) dpdpy (10.5)

The first and second term in Equation 10.2, respectively, is the rejection probability at Stage 1
and Stage 2. Because of independence, density fs(p;) can be pulled out from the inner
integration in Equation 10.4. After above simplifications, the power calculation for two-stage
design goes to derive individual probability densities of p; and p,.

Because inverting p-value results in a standard normal, the densities of p; and p, can be
derived by variable substitution. Let ¢5 and ¢, respectively be normal density with mean &
and 0 and variance of 1. @5 denotes the inverse of standard normal cumulative distribution

function (CDF).

f5(p0) = bo(@5"(1 — PG (1 = pp)) = (5" (1 — py))] LEEEE g,

-1
b (1(1 5. 1 _ ds(®5ta-p)) 4
o(Po (1 =P gramaapy P = Guogiapn) WP

When one has N(u;,02) and N(u,,02) for independent and identically distributed subjects
within each treatment group, assuming equal size in both stages, we again accumulate n, and
n, pairs of subjects at stage 1 and stage 2, respectively.

The expected sample size for this combination procedure can be easily obtained from the density
function of p,. The total expected size equals the n;+ n,*(Probability of continuing into Stage
2). When null hypothesis is true and fs—,(p;) = 1, the expected sample size under null

hypothesis is:
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Eg,(N) =n;+ nz*f(zo fs=o(Pi)dps = ny+ ny * (ag — 0y) (10.6)
The expected sample size under alternative needs numerical integration.

$s(Pyt(1-py)
Eq,(N) = ng+ nz*f:;o fs(p1)dp; = n+ ny* ioﬁdpl (10.7)

when p, is derived from t-test statistic.

With ratio in sample size (Stage 1 vs. total sample size) being r, then n; = nr and

n, = n(1l—r) andr=0.3, 0.5 or 0.7. With mean difference being 0.3, standard derivation being
1, one-sided type I error being 0.05, total sample size of 105 (or 137 or 190) for fixed-sample
design to ensure power of 0.7 (or 0.8 or 0.9) (Table 10.2). Due to early rejection for efficacy and
early stopping for futility which can possibly save sample size, one found that the expected
sample sizes under all alternatives were smaller than that of the fixed sample design and were
substantially reduced under null hypothesis. The theoretic power values under alternative
hypotheses were as higher as or higher than respective power for fixed sample design. We also
note that the overall power increases as r increases, which further suggests that the early
stopping for efficacy or futility at Stage 1 makes this two-stage procedure more powerful as
compared with fixed sample design because larger r allocates more subjects into Stage 1.
Power also increases as a, increases, with which more trials stops early for futility when no

sign of effect is shown at interim.
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Table 39(Tab. 10.2): theoretic values of overall power and expected sample size for proposed two-stage procedure

Table 10.2: theoretic values of overall power and expected sample size for proposed two-stage procedure

Power EHO(N) EHA(N)

Ga—pdi cia g, 0.4 05 03 0.4 0.5 0.3 0.4 0.5
’;ffeg @, = 00335 000286 000001 00335 000285 000001 00335 000286  0.00001
03; 1, 0.03 =03 0749 0827 03885 5146 5911 6850 6823 7559 9655
05 =05 0845 0901 0939 6686 7231 79.00 7735 8165 101.70

=07 0903 0941 0966 8226 8551  89.50 8684 8892 103.78
0.3;1;0.05 =03 0797 0865 0913 6659 7665  89.00 8798 9689 12852
0% =05 0892 0934 0961 8712 9425 10300 9812 10292 13444

=07 0940 0966 0981 10692 11123 11650 11033 112.54  135.77
03: 1, 0.0 =03 08588 0911 0945 9245 10639 12350 11808 12865 18238
00 =05 0938 0965 00931 12032 13028 14250 12848  133.66  187.13

=07 0973 098 0993 14819 15417 16150 14709 14921  187.96
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Conditional power is defined as the probability of rejection at Stage 2, provided that the
estimated treatment effect from stage 1 is carried over to Stage 2. For the case of testing mean
difference for two independent normal data with known variance, null will be rejected if

p2 < A(py), which is the same as T, = z;_,(p,). With X and Y to indicate endpoints in

treatment 1 and 2, respectively,

nj —
N T Eizzl(xi—Yi) . X-Y
27 20?0y (20%/n;  f20%/n;

With assuming treatment effect observed at interim is carried forward to the final analysis,

151

w/n1/2

n} a n} o n; t
Pun (T2 = 21-app) = P, <T2 - \E 2 Z1-Apy) T \E 5) =Py | T2~ \E Jil =
2

nj t1 _ n; tl
Z1-A(py) ~ J;F =1-®(Z1-aep,) — \/;F)
2 2

5= because of E(T,)=1/n;/28. Therefore, the power at stage two is:

Equating 1-®(z;_a(p,) — \/%%) with required power for stage 2 test of 1-f3,, we can solve
2

2
n; for Stage 2 sample size. Thatis nj = n, =AD" 21-62) (10.8)

t]
Section 10.4: Simulations for Operating Characteristics
In Table 10.3, simulations with 100000 iterations for each scenario were used to assess type |
error for proposed BM combination test. And it was shown in Table 10.3 that all simulated errors
suggested that type I error was well-controlled. In Table 10.4, simulations were done to check
conditional power after sample size adaptation, overall power for this BM method, average

sample size at Stage 2 and average sample size for this adaptive two-stage procedure. In order to
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control Stage 2 sample size, constrains on both maximum and minimum were put on Stage 2
sample size, which ensured it can’t be greater than 4*ns;,.4-n; and can’t be smaller than
Nrixeqa~Ny- It is that real implemented stage sample size nf = max(min(nj, 4 * Nfixed —

n1), Nrixea-M1 ), Where nj is defined in Equation 8 using conditional power.

Simulations for related scenarios for BK method using Fisher’s combination rule were also
carried out for purpose of comparison (Table 10.5). Substantially simulation results have shown
that the proposed method can be implemented in trials but with less efficiency as compared with
well-known BK method using Fisher’s combination rule. The rationales behind this are still

unknown to us and are beyond the scope of this paper.

Table 40(Tab. 10.3): simulated Type I error for new BM combination test

Table 10.3: simulated Type I error for new BM combination test.

U=l ocia  n r Simulated Type I error
Ay = 0.3 g = 0.4 g = 0.5
@y = 0.0335 @ = 0.0286  ao = 0.00001
0; 1;0.05 105 0.3 0.0502 0.0495 0.0502
0.5 0.0482 0.0503 0.0493
0.7 0.0506 0.0506 0.0489
137 0.3 0.0496 0.0505 0.0490
0.5 0.0501 0.0499 0.0503
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Table 41(Tab. 10.4): simulated values of overall power and expected sample size

Table 10.4: simulated values of overall power and expected sample size for proposed two-

stage procedure

BM method
Conditional Power (Stage 2) / Overall power(two stages)

ASN (Stage 2) / ASN(two stages)

(=) o a @ 0.3 0.4 0.5
o @ = 0.0335 0.00286 0.00001
nfixed 1
1-p
0.3;1;0.05 =03 0.7268/0.5658 0.7004/0.6528 0.7717/0.6827
105 192/177 199/236 232/201
0.7
=0.5 0.7592/0.6720 0.7479/0.7654 0.7839/0.7365
192/165 193/234 223/171
=0.7 0.7953/0.7579 0.7927/0.8447 0.7874/0.7631
201/161 194/238 221/149
0.3;1;0.05 =03 0.7962/0.6593 0.7699/0.7395 0.8314/0.7609
137 2331217 233/294 282/241
0.8
=0.5 0.8199/0.7629 0.8107/0.8417 0.8379/0.8070
226/196 221/289 262/194
=0.7 0.8505/0.8391 0.8494/0.9054 0.8353/0.8221
231/189 218/295 255/162
03;1;0.05 =03 0.8698/0.7659 0.8354/0.8237 0.8941/0.8463
190 288/176 278/381 349/294
0.9
=0.5 0.8909/0.8654 0.8703/0.9124 0.9000/0.8838
265/236 249/372 312/220
=0.7 0.9071/0.9193 0.9060/0.9695 0.8807/0.8789
265/224 241/379 296/169
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Table 42(Tab. 10.5): simulated values of overall power and expected sample

Table 10.5: Simulated values of overall power and expected sample size for BK method
using Fisher’s combination rule

BK method

Conditional Power (Stage 2) / Overall power(two stages)

ASN (Stage 2) / ASN(two stages)

(g —w2); o«

e a = 0.3 0.4 0.5
fixed a, = 0.0299 0.0263 0.0233
1-p 1
0.3; 1; 0.05 r=0.3 0.9014/0.7013 0.9127/0.7771 0.9199/0.8311
105 168/205 193/225 210/236
0.7
r=0.5 0.9407/0.8196 0.9421/0.8695 0.9410/0.9026
185/234 198/239 210/242
r=0.7 0.9651/0.8881 0.9634/0.9248 0.9573/0.9437
191/248 201/247 208/245
0.3; 1;0.05 r=0.3 0.9406/0.7728 0.9477/0.8382 0.9509/0.8833
137 200/260 230/282 248/293
0.8
r=0.5 0.9652/0.8762 0.9648/0.9159 0.9633/0.9410
213/293 229/297 237/297
r=0.7 0.9814/0.9317 0.9801/0.9580 0.9760/0.971
216/312 226/309 233/303
0.3; 1;0.05 =0.3 0.9707/0.8465 0.9732/0.8963 0.9755/0.9304
190 240/338 273/363 292/376
0.9
r=0.5 0.9830/0.9343 0.9815/0.9581 0.9822/0.9721
241/380 259/383 268/379
r=0.7 0.9927/0.710 0.9915/0.9830 0.9899/0.9895
242/409 250/399 256/385
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Section 10.5: Discussion

Similar to BK method using Fisher’s combination rule, proposed new BM method combines p-
values from two disjoint samples together to form a two-stage adaptive procedure. The validity
of this method inherits from distributional property of this combination function of two
independent p-values, along with formulas to calibrate conditional error for Stage 2 to ensure
overall type I error control. Type I error is well-controlled based on asymptotical theory and then
further confirmed by simulation results. Operational characteristics in terms of power and
expected sample size under null and alternative hypotheses were also shown for this new BM
combination test as compared with BK method using Fisher’s combination rule. Due to the
invariance of p-value to be uniformly distributed from 0 to 1, this method can be applied all data
type as long as p-values are from disjoint samples or independent asymptotically.
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