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Chapters 1-5 concern statistical methods in designing and analyzing data for survival 

clinical trials, and predicting trial duration. In Chapter 1, a method is proposed to 

calculate additional time to event after being censored at the withdrawal time together 

with some imputation strategies to conduct sensitivity analyses for a real trial with 

informative censoring. Chapter 2 extends Mehta and Pocock (2010) to provide a 

method for deciding sample size increase in adaptive survival trials. Chapter 3 is 

inspired by the need from a real trial. A novel method for predicting the timing of 

events in clinical trials with survival endpoints is proposed using different parametric 

event distributions in the presence and absence of censoring. Chapter 4 investigates 

scenarios in planning a comparative group sequential survival clinical trial with 

subjects who remain event-free can stay until the study is terminated; Chapter 5 treats 

the same issues as in Chapter 4 but for survival trials with subjects who have a fixed 

follow-up time after randomization.  

Chapters 6-8 concern statistical methods in clinical trials with sequential parallel 

designs, which have been proposed for trials with high placebo response rates which 

can lead to a higher failure rate in drug development. Chapter 6 introduces the 

extended sequential parallel design (ESPD), in which there is re-randomization of not 

only placebo non-responders during Period 1 but also of drug responders during 



 

Period 1 into Period 2. Chen et al. [Contemp. Clin. Trials, 32: 592-604 (2011)] 

heuristically proved that the covariance of two estimators is zero assuming equal 

correlation coefficients. In Chapter 7, this covariance is re-derived without any strong 

assumption in equality between two correlation coefficients. Assuming the number of 

subjects continuing into Period 2 is a random variable, the covariance is re-confirmed 

to be zero for both normal and binomial data. Chapter 8 clarifies a misunderstanding 

of a new approach to drug-placebo difference calculation in short term antidepressant-

drug trials, which was proposed by Rihmer at al. (2011). 

Chapter 9 proposes optimized asymmetric group sequential designs that consider 

constraints on stopping probabilities at stage one (under the null and alternative 

hypotheses) in addition to traditional overall type I error and power. Thus validity of a 

group sequential design is ensured from the very first stage throughout. 

Utilizing Box and Muller (1958), one of the most popular methods of generating 

standard normal random variable using two independent uniform (0, 1) deviates, a 

new method is proposed in Chapter 10 to combine two p-values from two disjoint 

samples for designing a trial with two stages. 

 



 

v 

BIOGRAPHICAL SKETCH 

Yanning Liu is currently a principal statistician working at Janssen Pharmaceuticals, 

Inc. in charge of several phase 2-3 trials for an “accelerated-to-value” (i.e., most 

important ones in the pipeline) investigational compound to treat treatment-resistant 

depression (TRD) and suicidality in patients with major depressive disorder (MDD). 

Since Yanning joined Johnson and Johnson (JNJ) in Jan 2006, she has worked on 

many phase1-3 trials and has participated three successful compounds’ U.S. and 

world-wide submissions.  

While in Cornell, after finishing required core courses for entering graduate study for 

field of statistics, Yanning transferred from field of microbiology to field of statistics 

in 2001. During the subsequent four and a half years, Yanning has finished all 

required courses, exams and teaching assignments; and finished one summer intern in 

JNJ in 2014 and the other one in Pfizer Inc. in 2015. Prior to Cornell, Yanning has 

obtained a Bachelor’s degree in Microbiology and a Master degree in Microbiology 

and Genetics from China Agricultural University. 

Outside academics, Yanning is a paper reviewer for International Journal of 

Biometrics and Biostatistics and was a former Vice President of Cornell Chinese 

Student Association. Yanning has been participating volunteer work within JNJ and 

for nearby communities and has been an active participant in giving presentations 

within and outside JNJ. 

 

 

 

 

 

 



 

vi 

 

 

 

 

 

To My Parents



 

vii 

ACKNOWLEDGMENTS 

 

Firstly, I would like to express my sincere gratitude to my advisor Prof. Bruce W. 

Turnbull for the continuous support of my PhD study and related research, for his 

patience, motivation, and immense knowledge. His guidance helped me in designing 

and analyzing data in clinical trials, all the knowledge in group sequential and 

adaptive designs and writing of this thesis. I could not have imagined having a better 

advisor and mentor for my PhD study. And I could not have imagined joining in the 

pharmaceutical industry without him. 

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. 

Martin Wells and Prof. Giles Hooker, for their insightful comments and 

encouragement, but also for the hard questions which led me to widen my research 

from various perspectives. 

My sincere thanks also go to Janssen Pharmaceuticals Inc. and my colleagues there, 

who provided me an opportunity to join their team as an intern then granted me a full 

time position, and who allowed me to use trial data as examples in the manuscripts. 

Without they precious support it would not be possible to conduct these research 

projects. In fact, all research work complied here have been inspired from my daily 

work at Janssen Pharmaceuticals Inc.

http://stat.cornell.edu/people/faculty/giles-hooker


 

viii 

 

TABLE OF CONTENTS 

 

 

CHAPTER 0 ................................................................................................................. 20 

Overview of the Dissertation ........................................................................................ 20 

Section 0.1: Phase 2 and 3 Clinical Trials in Drug Development ............................ 20 

Section 0.2: Adaptive Designs in Clinical Trials ..................................................... 23 

Section 0.3: Sensitivity Analyses for Informative Censoring in Survival Data: A 

Trial Example ........................................................................................................... 25 

Section 0.4: Sample Size Increase during a Survival Trial When Interim Results are 

Promising .................................................................................................................. 26 

Section 0.5: Prediction of the Timing of Events in Clinical Trials with Survival 

Endpoints: A Trial Example ..................................................................................... 27 

Section 0.6: Planning a Comparative Group Sequential Clinical Trial with Loss to 

Follow-up and a Period of Continued Observation .................................................. 28 

Section 0.7: Planning the Duration of a Survival Group Sequential Trial with a 

Fixed Follow-up Time for All Subjects .................................................................... 29 

Section 0.8: Optimal Weighted Z Test and Linear Combination Test in Extended 

Sequential Parallel Designs ...................................................................................... 29 

Section 0.9: Covariance and Variance Evaluations of Two Estimators for Drug-

placebo Difference in a Trial with Sequential Parallel Design ................................ 30 

Section 0.10: Misunderstanding of a New Approach to Drug-Placebo Difference 

Calculation in Short Term Antidepressant-Drug Trials ........................................... 31 

Section 0.11: Optimal Group Sequential Designs Constrained on both Overall and 

Stage One Error Rates .............................................................................................. 32 

Section 0.12: A Two-stage Adaptive Design with a New Combination Test .......... 33 

CHAPTER 1 ................................................................................................................. 35 

Sensitivity Analyses for Informative Censoring in Survival Data: A Trial Example .. 35 

Section 1.1: Introduction .......................................................................................... 35 

Section 1.2: A Trial Example ................................................................................... 37 

Section 1.3: Methodology ........................................................................................ 40 

Section 1.4: Strategies for Sensitivity Analyses ....................................................... 45 

Section 1.5: Analysis Results ................................................................................... 48 



 

ix 

Section 1.6: Discussion ............................................................................................ 57 

References: ............................................................................................................... 61 

Statistical Appendix 1.1: .......................................................................................... 62 

CHAPTER 2 ................................................................................................................. 67 

Sample Size Increase during a Survival Trial When Interim Results are Promising ... 67 

Section 2.1: Introduction .......................................................................................... 67 

Section 2.2: Log-rank and Weighted Log-rank ........................................................ 71 

Section 2.3: Sample Space of the First-stage Statistic: Unfavorable, Promising and 

Favorable Zones ....................................................................................................... 75 

Section 2.4: CIBS I and II: Revisit ........................................................................... 82 

Section 2.5: Simulation Results ................................................................................ 83 

Section 2.6: Discussion ............................................................................................ 93 

Reference .................................................................................................................. 96 

CHAPTER 3 ................................................................................................................. 97 

Prediction of the Timing of Events in Clinical Trials with Survival Endpoints: A Trial 

Example ........................................................................................................................ 97 

Section 3.1:  Introduction ........................................................................................ 97 

Section 3.2:  Statistical Methods: Set Up .............................................................. 102 

Section 3.3: Prediction Prior to Trial Start in the Presence of Censoring .............. 107 

Section 3.4: Prediction for the To-be-randomized Subjects ................................... 109 

Section 3.4.1: Prediction in the Presence of Censoring ...................................... 110 

Section 3.4.2: Prediction without Censoring ...................................................... 111 

Section 3.4.3 When Death Time is Weibull or Another Type ........................... 111 

Section 3.5: Prediction for the At-Risk Subjects .................................................... 112 

Section 3.5.1: Prediction in the Presence of Censoring ...................................... 113 

Section 3.5.2: Prediction for Subjects in the Risk Set in Case There is No 

Censoring ............................................................................................................ 114 

Section 3.5.3 When Death Time is Weibull or Another Type ........................... 115 

Section 3.6: Clinical Trial Example ....................................................................... 116 

Section 3.6.1: Plotted Survival Curves at Time 𝒕𝟏 ............................................ 119 

Section 3.6.2: Prediction Calendar Time to Achieve 42 Events for Interim 

Analysis .............................................................................................................. 122 

Section 3.7:  Discussion ........................................................................................ 129 

References .............................................................................................................. 132 

Appendix 3.1: Prediction prior to trial start with exponential death time and 



 

x 

exponential censoring ............................................................................................. 134 

Appendix 3.2: Prediction for To-Be-Randomized subjects who will be randomized 

at a known time between 𝒕𝟏 and 𝒕𝟐 ..................................................................... 136 

Appendix 3.3: Prediction for At-Risk subjects ....................................................... 138 

Chapter 4 .................................................................................................................... 141 

Planning a Comparative Group Sequential Clinical Trial with Loss to Follow-up and a 

Period of Continued Observation ............................................................................... 141 

Section 4.1: Introduction ........................................................................................ 141 

Section 4.2: Preliminaries ....................................................................................... 144 

Section 4.3: Design of Group Sequential Trials with a Period of Continued 

Observation ............................................................................................................. 148 

Section 4.4: Examples ............................................................................................ 150 

Section 4.5: Discussion .......................................................................................... 163 

References .............................................................................................................. 166 

Appendix 4.1: No Cap for Follow-up Time on Each Subject ................................ 167 

Appendix 4.2: With A Cap for Follow-up Time (𝛕) on Each Subject ................... 169 

Chapter 5 .................................................................................................................... 170 

Planning the Duration of a Survival Group Sequential Trial with a Fixed Follow-up 

Time for All Subjects ................................................................................................. 170 

Section 5.1: Introduction and A Motivating Example ............................................ 170 

Section 5.1.1:  A Motivating Example .............................................................. 171 

Section 5.2: Trial Diagram ..................................................................................... 173 

Section 5.2.1 Survival Trials without A Fixed Follow-up Time ........................ 173 

Section 5.2.2 Survival Trials with A Fixed Follow-up Time ............................. 174 

Section 5.3: Preliminaries ....................................................................................... 175 

Section 5.3.1: Expected Number of Events at Real Time 𝒔 for Survival Trials 

with A Fixed Follow-up Period for All Subjects ................................................ 176 

Section 5.3.2: Survival Group Sequential Designs ............................................ 178 

Section 5.3.3: Operation Characteristics for Survival Group Sequential Trials 

with a Fixed Follow-up Period ........................................................................... 180 

Section 5.4: Examples ............................................................................................ 182 

Section 5.5: Discussion .......................................................................................... 196 

References .............................................................................................................. 199 

Chapter 6 .................................................................................................................... 200 

Optimal Weighted Z Test and Linear Combination Test in Extended Sequential 



 

xi 

Parallel Designs .......................................................................................................... 200 

Section 6.1: Introduction ........................................................................................ 200 

Section 6.2: Design Schematic ............................................................................... 202 

Section 6.3: Normal Data ....................................................................................... 203 

Section 6.3.1: General Theory of Design ........................................................... 203 

Section 6.3.2: Sample Size and Optimal Weight(s) Calculations ...................... 206 

Section 6.4: Linear Combination Test in An Extended SPD with Binomial Data . 209 

Section 6.4.1: Preliminaries ................................................................................ 209 

Section 6.4.2: Linear Combination Test ............................................................. 211 

Section 6.4.2: Sample Size Requirement and Simulated Rejecting Probabilities

 ............................................................................................................................ 212 

Section 6.5: Discussions ......................................................................................... 217 

Reference ................................................................................................................ 218 

Chapter 7 .................................................................................................................... 219 

Covariance and Variance Evaluations of Two Estimators for Drug-placebo Difference 

in a Trial with Sequential Parallel Design .................................................................. 219 

Section 7.1: Introduction ........................................................................................ 219 

Section 7.2: Normal -Normal Data ......................................................................... 223 

Section 7.2.1: Covariance for 𝜹𝟏 and 𝜹𝟐, Re-examination.............................. 223 

Section 7.2.2: Sample Size Derivation and A Hypothetical Trial Example ....... 227 

Section 7.2.3 Simulation Results under Assumed Conditional Independence ... 230 

Section 7.2.4: Simulation Results Under Correlated Endpoints Between Two 

Periods ................................................................................................................ 231 

Section 7.3: Binomial-Binomial Data .................................................................... 233 

Section 7.3.1: Covariance for 𝜹𝟏 and  𝜹𝟐, Re-examination ............................ 233 

Section 7.3.2 Sample Size Derivation and Evaluation ....................................... 233 

Section 7.4: Discussion .......................................................................................... 235 

Reference ................................................................................................................ 237 

Appendix 7.1 :  covariance for Normal-Normal Case .......................................... 238 

Appendix 7.2:  covariance for Binomial-Binomial Case ...................................... 242 

Chapter 8 .................................................................................................................... 246 

Misunderstanding of a New Approach to Drug-Placebo Difference Calculation in 

Short Term Antidepressant-Drug Trials ..................................................................... 246 

Section 8.1 Introduction ......................................................................................... 246 

Section 8.2:  Mechanism of Placebo and Antidepressant Effects ......................... 247 



 

xii 

Section 8.3: Drug-Placebo Difference Evaluation ................................................. 249 

Section 8.3.1: Various Dependent Structures ..................................................... 251 

Section 8.3.2: Independent Structure .................................................................. 254 

Section 8.3.3: Structures between Totally Dependent and Totally Independent 254 

Section 8.4: Discussion of Misunderstanding Leading to a Wrong New Approach

 ................................................................................................................................ 255 

Section 8.5: Discussion of Operational Management and Novel Designs to Cope 

with Placebo Effect in Antidepressant Clinical Trials ........................................... 257 

References .............................................................................................................. 259 

Chapter 9 .................................................................................................................... 260 

Optimal Group Sequential Designs Constrained on both Overall and Stage One Error 

Rates ........................................................................................................................... 260 

Section 9.1: Introduction ................................................................................... 260 

Section 9.2: Notations ............................................................................................ 261 

Section 9.2.1: A Motivating Example ................................................................ 261 

Section 9.2.2 Group Sequential Setting .............................................................. 263 

Section 9.2.3 Non-binding Efficacy Upper Boundaries ..................................... 264 

Section 9.2.4 Wang-Tsiatis Family as Upper Boundaries and Kim-Demets Family 

as Lower Boundaries .......................................................................................... 265 

Section 9.2.5: Operational Characteristics of Proposed Optimized Group 

Sequential Design ............................................................................................... 266 

Section 9.3: Optimization ....................................................................................... 267 

Section 9.3.1: Objective Function for Optimization .......................................... 268 

Section 9.3.2: Optimization Strategy And Numerical Calculation .................... 268 

Section 4: Results ................................................................................................... 271 

Section 9.5: Discussion .......................................................................................... 280 

References .............................................................................................................. 282 

Appendix 9.1 .......................................................................................................... 283 

Chapter 10 .................................................................................................................. 284 

A Two-stage Adaptive Design with a New Combination Test .................................. 284 

Section 10.1: Introduction ...................................................................................... 284 

Section 10.2: Formulation ...................................................................................... 285 

Section 10.3: Theoretic Power, Expected Sample Size and Sample Size Re-

estimation ............................................................................................................... 288 

Section 10.4: Simulations for Operating Characteristics ....................................... 292 



 

xiii 

Section 10.5: Discussion ........................................................................................ 296 

References: ............................................................................................................. 296 

 

 



 

xiv 

LIST OF FIGURES 

 

Figure 1(Fig. 1.1): Depiction of imputing process .............................................................................. 43 
Figure 2(Fig. 1.2): Sensitivity analyses strategies .............................................................................. 47 
Figure 3(Fig. 1.3): P-value summary for sensitivity analyses ............................................................. 55 
Figure 4(Fig. 1.4): KM plots ............................................................................................................... 56 
Figure 5(Fig. 2.1): Promising zone, adjusted critical value and conditional power ............................ 79 
Figure 6(Fig. 2.2): Percent increase in Sample size ............................................................................ 82 
Figure 7(Fig. 3.1): Depiction of prediction prior to and during trial start ......................................... 105 
Figure 8(Fig. 3.2): Study Completion and Withdrawal ..................................................................... 118 
Figure 9(Fig. 3.3): KM plot and estimated parametric survivor curves at November 29 .................. 120 
Figure 10(Fig. 3.4): Total number of events over time from prediction time November 2013 ......... 126 
Figure 11(Fig. 3.5): Total number of events over time from prediction time October 2013 ............ 128 
Figure 12(Fig. 4.1): Required accrual time (slow) vs. hazard ratio ................................................... 154 
Figure 13(Fig. 4.2): Required accrual time (fast) vs. hazard ratio .................................................... 155 
Figure 14(Fig. 5.1): Trial diagram without/with a fixed follow-up period ........................................ 175 
Figure 15(Fig. 5.2): Required accrual time (slow) vs. hazard ratio ................................................... 187 
Figure 16(Fig. 5.3): Required accrual time (fast) vs. hazard ratio .................................................... 188 
Figure 17(Fig. 6.1): Design schematic .............................................................................................. 202 
Figure 18(Fig. 6.2): Graphic method for determining sample size ................................................... 213 
Figure 19(Fig. 7.1): A SPD trial ........................................................................................................ 223 
Figure 20(Fig. 8.1): Drug-placebo difference graphic representation .............................................. 250 
Figure 21(Fig. 8.2): Probabilistic distribution of AD/PL responses ................................................... 251 
Figure 22(Fig. 8.3): Drug-placebo difference under four mutually exclusive and exhaustive scenarios

 .............................................................................................................................................. 251 
Figure 23(Fig. 8.4): Drug-placebo difference under independent structure..................................... 257 
Figure 24(Fig. 8.5): Two examples of drug-placebo difference under structures between totally 

dependent and independent ................................................................................................. 257 
Figure 25(Fig. 9.1): Graphic illustration ........................................................................................... 269 
Figure 26(Fig. 9.2): Efficiencies of optimized asymmetric group sequential designs ....................... 275 



 

xv 

LIST OF TABLES 

 

Table 1(Tab. 1.1): results from the original data (Table 1.1a) and results from the naive data (Table 
1.1b) ........................................................................................................................................ 40 

Table 2(Tab. 1.2): results from fully imputed data (Table 1.2a) and results from data with 50% 
imputation (Table 1.2b) ........................................................................................................... 49 

Table 3(Tab. 1.3): p-values from logrank tests .................................................................................. 54 
Table 4(Tab. 1.4): Ingredients for calculation of the expected additional time to event ................... 66 
Table 5(Tab. 2.1): Simulated Operating Characteristics of Adaptive or Non-adaptive Group 

Sequential Design without censoring ...................................................................................... 89 
Table 6(Tab. 2.2): Simulated Operating Characteristics of Adaptive or Non-adaptive Group 

Sequential Design in the presence of censoring ...................................................................... 90 
Table 7(Tab. 2.3): Simulated Operating Characteristics of Adaptive or Non-adaptive Group 

Sequential Design without censoring ...................................................................................... 91 
Table 8(Tab. 2.4): Simulated Operating Characteristics of Adaptive or Non-adaptive Group 

Sequential Design in the presence of censoring ...................................................................... 92 
Table 9(Tab. 2.5): Simulated Type I error for eight different designs ................................................ 93 
Table 10(Tab. 3.1): Sum of squared difference between survivor curve of a parametric distribution 

and the KM plot .................................................................................................................... 121 
Table 11(Tab. 3.2): Prediction of the earliest date to obtain 42 events assuming no censoring ...... 123 
Table 12(Tab. 3): Prediction of the earliest date to obtain 42 events in the presence of censoring 124 
Table 13(Tab. 4.1): Accrual time for group sequential designs for low or high hazard ratio ............ 152 
Table 14(Tab. 4.2): Total trial duration for OBF group sequential trials .......................................... 156 
Table 15(Tab. 4.3): Total trial duration for Pocock group sequential .............................................. 157 
Table 16(Tab. 4.4): Total trial duration for Wang-Tsiatis (shape = 0.15) group sequential trials ..... 157 
Table 17(Tab. 4.5): Operation Characteristics of group sequential designs ..................................... 160 
Table 18(Tab. 4.6): Operation Characteristics of group sequential designs ..................................... 161 
Table 19(Tab. 4.7): Operation Characteristics of group sequential designs ..................................... 162 
Table 20(Tab. 5.1): Accrual time for group sequential designs ........................................................ 185 
Table 21(Tab. 5.2): Total trial duration for WT (shape = 0.15) group sequential trials .................... 190 
Table 22(Tab. 5.3): Total trial duration for WT (shape = 0.15) group sequential trials .................... 190 
Table 23(Tab. 5.4): Total trial duration for WT (shape = 0.15) group sequential trials .................... 191 
Table 24(Tab. 5.5): Group sequential designs ................................................................................. 195 
Table 25(Tab. 5.6): Group sequential designs ................................................................................. 195 
Table 26(Tab. 6.1): Optimal rates and sample sizes for SPD ............................................................ 207 
Table 27(Tab. 6.2): Optimal rates and sample sizes for ESPD .......................................................... 208 
Table 28(Tab. 6.3): Extended sequential parallel design with binary data ...................................... 211 
Table 29(Tab. 6.4): Empirical one-sided type I error (X100) ............................................................ 214 
Table 30(Tab. 6.5): Required sample size and empirical power(X100) simulation ........................... 216 
Table 31(Tab. 7.1): Sample size (N) for SPDs ................................................................................... 231 
Table 32(Tab. 7.2): Simulated rejection probabilities ..................................................................... 232 
Table 33(Tab. 7.3): Sample sizes ..................................................................................................... 235 
Table 34(Tab. 9.1): Knowledge of relative effectiveness of drug and placebo prior to trial start .... 263 
Table 35(Tab. 9.2): Efficiencies for optimal asymmetric optimal group designs .............................. 273 
Table 36(Tab. 9.3): Optimized asymmetric groups sequential designs minimizing ASN .................. 277 
Table 37(Tab. 9.4): Optimized asymmetric groups sequential designs minimizing ASN .................. 278 
Table 38(Tab. 10.1): Critical values ................................................................................................. 288 
Table 39(Tab. 10.2): theoretic values of overall power and expected sample size for proposed two-

stage procedure .................................................................................................................... 291 



 

xvi 

Table 40(Tab. 10.3): simulated Type I error for new BM combination test ..................................... 293 
Table 41(Tab. 10.4): simulated values of overall power and expected sample size ......................... 294 
Table 42(Tab. 10.5): simulated values of overall power and expected sample ............................... 295 

 

 



 

xvii 

  LIST OF ABBREVIATIONS 

AD:  Antidepressant 

ADRS: Adaptive Dose-Ranging Studies 

A-GSD: Adaptive Group Sequential Design 

ASN: average sample number  

BK: Bauer and Kohne 

BLAs: Biologic License Applications 

BM: Box and Muller 

CDF: Cumulative Distribution Function 

CIBIS Cardiac Insufficiency Bisoprolol Study 

CRM: Continual Reassessment Method 

CROs: Contracted Research Organizations  

DB: Double-blind 

EDC: Electronic Data Capture 

EOS: End-of-study 

ESPD: Extended Sequential Parallel Design 

FDA: Food and Drug Administration  

GSD: Group Sequential Design 

HDRS17: Hamilton Depression Rating Scale 

HAMD: Hamilton Rating Scale for Depression 

IPCW: Inverse Probability-of-censoring Weights 

IWRS/IVRS : Interactive Web Response System 

KD: Kim-Demets 

KM: Kaplan-Meier 

MCMC: Markov Chain Monte Carlo  

MDD: Major Depressive Disorder 

MMRM: Mixed effect Model Repeat Measurement 

NDA/BLA: New Drug Application/Biologic License Application 

NMEs: New Molecular Entities 

OBF: O’Brien and Fleming 

PhRMA: the Pharmaceutical Research and Manufacturers of America  

PL:  Placebo 

SPD: Sequential Parallel Design 

SSRI: Selective Serotonin Reuptake Inhibitors 

TPM: Topiramate 

Tufts CSDD: Tufts Center for the Study of Drug Development 

WT: Wang and Tsiatis 



 

xviii 

 

LIST OF SYMBOLS 

Symbols are defined differently in each Chapter



 

19 

PREFACE 

 

Chapters 1 and 8 have been published at Journal of Biopharmaceutical Statistics 

online (March, 2016) and Open Journal of Statistics (2015) respectively with Y. Liu 

as the sole author. Chapter 2 was published online at July 17
th

 by Communication in 

Statistics: Theory and Methods in January 2016 with Y. Liu as the first author 

(coauthored with Pilar Lim). Chapter 5 and 7 were accepted by Communication in 

Statistics: Theory and Methods in January 2016 and in Jun 2016, respectively, with Y. 

Liu as the sole author. Chapters 3, 4, 6 are under review by Journal of 

Biopharmaceutical Statistics, Statistics in Biopharmaceutical Research and 

Communication in Statistics: Theory and Methods, respectively. Chapters 9 and 10 

will be submitted shortly. All chapters in this dissertation are original work with Y. 

Liu as the only author or the first author and thus are eligible to be included as 

respective chapters in a PhD dissertation per Cornell Graduate School. All published 

papers or manuscripts accepted or being reviewed or to be submitted have gone 

through the proper processes for data use and external publication process at Janssen 

Pharmaceuticals Inc., because Y. Liu is a current employee at Janssen Pharmaceuticals 

Inc.   

  



 

20 

 

CHAPTER 0 

 

Overview of the Dissertation 

 

Section 0.1: Phase 2 and 3 Clinical Trials in Drug Development 

The pharmaceutical history can be roughly viewed as consisting of three periods (i.e., 

mid-1800 to 1945, 1945-1970 and 1970-1980s). Between mid-1800 and 1945, 

botanicals such as morphine and quinine were extracted; epinephrine, norepinephrine 

were synthesized for treating asthma attacks as well as nasal congestion and 

amphetamine synthesized for psychiatric indications; barbiturates were discovered and 

developed by Bayer pharmaceuticals for treating attention deficit disorder and 

epilepsy; discovery and widespread availability of insulin therapy has changed the 

prognosis for diabetics from only having a few months of life expectancy to just being 

a chronic disease (Rosenfeld L, 2002); anti-infective researches resulted in many 

classes of antibiotics (for example, Salvarsan, Prontosil and Penicillin) and vaccines so 

that human beings for the first time in history had a way to substantially reduce death 

rate after being disastrously infected by bacteria or viruses. In the post-war years, 

1945-1970, there were further advancements in anti-infective research and 

development of antihypertensive drug followed with invention of oral contraceptives, 

the thalidomide issue and the Kefauver-Harris Amendments. In the years of 1970-

1980s, the discovery and development of statins helped the patients reduce cholesterol 

levels so that their chances of dying of a heart attack would be reduced by 40%. Since 

1990, drug discovery and development has entered a new era, focusing on 

understanding the metabolic pathways related to a disease state or pathogen and 
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finding a molecule interfering these pathways. Now large pharmaceutical corporations 

participate in the complete range of drug discovery, formulation, development, 

manufacturing, quality control, marketing, sales and distribution while smaller 

organizations focus on a smaller spectrum of the whole process such as discovery drug 

candidates or formulation or clinical development. Drug development consists of the 

following phases: 1) Preclinical phase to conduct in vitro and in vivo studies in non-

human subjects for gathering efficacy, toxicity and pharmacokinetic information; 2) 

Phase 0 to test on approximately 10 human volunteers to gather pharmacodynamics 

and pharmacokinetics information; 3) Phase 1 to test the drug on 20-100 healthy 

volunteers for checking dose range; 4) Phase 2 (on 100-300 patients) to determine 

whether drug candidate can have any efficacy; 5) Phase 3 (on 1000-2000 patients) to 

test and confirm drug’s therapeutic effect, effectiveness and safety; and 6) Phase 4 for 

post marketing surveillance and watching drug use in public. In the past decade, the 

author of this dissertation has been working on trials from phase 1 to phase 4 but 

focusing on phase 3 trials for registration submission to the Food and Drug 

Administration (FDA) and other regulatory agencies from the rest of the world. 

According to PhRMA’s homepage (http://www.phrma.org/about), America’s 

biopharmaceutical industry had more than 550 new medicines approved by FDA, 

which performs the lead role in the world. However, among all investigated 

compounds for use in humans, only a very small fraction are eventually approved by 

FDA in the U.S. or other regulatory agencies outside U.S. Accordingly to FDA’s 

website 

(http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugInnovation/default.ht

http://www.phrma.org/about
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m), the average number of submitted and approved New Molecular Entities (NMEs) 

or Biologic License Applications (BLAs) in the U.S. between 2004 and 2013 were 38 

and 29 per year with average approval rate of 83.9% in this decade. The inspiring 

news is that submitted NMEs/BLAs (41 and 45 in calendar years of 2014 and 2015) 

were all approved with medicines resulting from new advancements in science and 

technology in the past a couple of decades. On the other hand, the approval comes 

from substantial investment in pre-human and clinical trials and post-approval safety 

monitoring. According to the Tufts Center for the Study of Drug Development (Tufts 

CSDD located at http://csdd.tufts.edu/Research/Milestones.asp) and J.A. DiMasi et al. 

2016, the predicted overall clinical success rate is only 11.83%, the majority of the 

drug candidates will fail during the development process and will then generate no 

revenue in the end. Hence once the cost of failed drugs are taken into account, the 

average out-of-pocket cost (not including marketing cost) and capitalized cost 

(adjusted for the time value of money as well as the cost of debt) are 1,395 and 2,558 

million U.S. dollars respectively in 2013 (DiMasi et al. 2016). Among the estimated 

average total capitalized cost per a NME/BLA in 2013, 1,098 million (43%) was used 

in the pre-human tests while the rest of 1,460 million (57%) was used for clinical trials 

(DiMasi et al. 2016). Over the time, the total capitalized cost per a NME/BLA in the 

decade of interest is always more than twice that of the previous decade. They are 179, 

413, 1044 and 2,558 million U.S. dollars in 1970s-early 1980s, 1980s-early 1990s, 

1990s–mid 2000s and 2000s –mid 2010s respectively (DiMasi et al. 2016). 

Due to the fact that substantial time and cost are needed in developing NMEs/BLAs, 

innovations and improvements are imperative at every aspect during drug 

http://csdd.tufts.edu/Research/Milestones.asp


 

23 

development process. To name a few here, novel and more sophisticated measuring 

scales; new generation of computers/ workstations with higher computing power; 

more complicated Electronic Data Capture (EDC) system for data capture and 

Interactive Web Response System (IWRS/IVRS) for patient enrollment, 

randomization, medication dispense according to protocol and subject withdrawal; 

dynamic and real time communication between EDC system and IWRS/IVRS system 

during trial execution; more multi-site and multi-countries trials; more collaborations 

among big pharmaceutical organizations, small biotechnology companies and with 

Contracted Research Organizations (CROs); and innovative statistical methods to 

address unmet needs in drug development including saving time and cost together 

with making better use of data information at every step of the drug development. As a 

clinical biostatistician, the author is more familiar with phase 2 and 3 trials and will 

briefly discuss some advancement in adaptive designs in Section 0.2 below.  

Section 0.2: Adaptive Designs in Clinical Trials 

Particular motivation for research and implementation of adaptive designs came from 

the observation of low transition probability both from phase 2 to phase 3 (36%) and 

from phase 3 to New Drug Application/Biologic License Application (NDA/BLA) 

submission (62%) (Fig. 1, J.A. DiMasi et al. 2016), where the low rates could possibly 

be attributed to reasons such as the inability to demonstrate superiority of an 

investigational compound over placebo, suboptimal dose selected at phase 2 and 

incorrect patient population investigated, just to name a few here.  

There are four major categories of adaptive designs:  

1) Adaptive randomization designs including later randomization based on past 
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treatment assignment only, or past treatment assignment plus covariate-adaptive, or 

plus response-adaptive or plus both covariate-adaptive and response-adaptive;  

2) Group sequential designs (GSDs). Dating back to the 1920s, sequential design 

started to assess trial data after every observation, while group sequential designs 

include a small number of interim analyses as data from groups of subjects become 

available. By interim results, a trial could stop for efficacy or futility at interim. 

Design parameters are all specified prior to trial start and are not allowed to be 

modified during the trial. GSDs have been very popular since 1970 and still popular 

now;  

3) Sample size re-estimation. In contrast to GSDs, sample size re-estimation allows 

one to adjust the sample size of the trial based on cumulative interim data using either 

blinded data or un-blinded data. Sample size re-estimation using blinded data is used 

to update variability of the data for a normal endpoint, or to update response rate in the 

control group when data are binary or to update baseline hazard rate for the combined 

group in the trial with survival endpoint. For sample size re-estimation, re-estimated 

sample size is based on treatment effect calculated using un-blinded interim data, 

which provides an opportunity to adjust the sample size when the treatment effect was 

over-estimated a priori;  

4) Adaptive dose-response designs occur in phase 1 and 2 trials. This includes 

continual reassessment method (CRM) to estimate maximum tolerable dose in phase 1 

trials. Estimating minimum effect dose using novel methods and simulations are 

currently under-investigation by the PhRMA “Adaptive Dose-Ranging Studies” 

(ADRS) working group;  
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5) Treatment selection designs. Supposing a trial starting with several treatments and a 

concurrent control, one (or more) dose (doses) are selected based on interim point 

estimates, results of hypothesis testing, external information and expert knowledge. 

Selected dose(s) and control groups are continued to stage 2. Data from the two stages 

will be combined using a combination test to conduct hypothesis testing in a way that 

the overall type I error is controlled at a pre-specified level, thus providing 

confirmatory evidence of efficacy to support new drug application or biologic license 

application. As a clinical biostatistician, the author herself has worked on many phase 

2 and 3 trials in the central nervous system (CNS) for a decade and has participated 

three compounds’ U.S. and the rest of the world submissions. In Sections 0.3-0.12, the 

abstract of ten manuscripts that were triggered by real trial questions will be presented, 

where Sections 0.4, 0.6, 0.7, 0.11 and 0.12 are about adaptive designs, Section 0.3 and 

0.5 are about sensitivity analyses and trial monitoring for survival trials, and Sections 

0.8, 0.9 and 0.10 are about a novel design of sequential parallel design to deal with the 

issue of having high placebo response rate in clinical trials.                        

 

Section 0.3: Sensitivity Analyses for Informative Censoring in Survival Data: A 

Trial Example 

In a controlled clinical trial comparing an experimental drug to a control using time to 

event analysis, the logrank test is normally used to test against the equality between 

two survival curves when the proportional hazard rate assumption is held, which of 

course requires non-informative censoring. The authors used an example from a 

randomized, double-blind, parallel group, low-dose active controlled study comparing 

the safety and efficacy of two doses (400 mg/day versus 50 mg/day) of study 
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medication used as monotherapy for the treatment of newly diagnosed or recurrent 

epilepsy. This analysis imputes the event time of subjects considered to have 

problematic informative censoring to demonstrate the impact of violations in 

necessary assumptions, and assesses robustness of the p-value as calculated from 

imputed data as compared with un-imputed data. Assuming a parametric distribution 

for time to event, had these subjects resulted in an event in the trial after withdrawal, 

the expected additional time to event  is formulated and calculated using methods 

developed in this paper. Combining the imputed informative censoring subjects with 

the remainder of the original data, new p-values are obtained using the log-rank test 

and compared to the original p-value. KM plots are also compared. 

Section 0.4: Sample Size Increase during a Survival Trial When Interim Results 

are Promising 

In clinical trials with survival end point, an anticipated log hazard ratio is used to plan 

a trial (with either fixed sample design or a design with multiple stages) before trial 

begins. Uncertainty of log hazard ratio under alternative hypothesis may create a need 

for a sample size increase when interim results are promising and treatment effect has 

been underestimated. This paper generalizes Mehta and Pocock (2000) method to 

provide a way for adaptive sample size increase in survival trials. Unlike trials with 

normal or binary endpoints, subjects who were at risk at the interim analysis 

contribute both at interim and at final, resulting in dependent data structure between 

interim log-rank test and final log-rank test. A method to create independent increment 

in order to obtain a weighted test statistic and search for an adjusted critical value for 

final analysis is proposed. Before trial start, given the information time for interim 

analysis and the ratio of maximum total sample size after increase to planned sample 
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size before trial start are specified, the sample space is divided by the observed test 

statistic at interim into three zones: unfavorable, promising and favorable, the sample 

size (required number of events) remains unchanged when interim test statistic is 

located in unfavorable or favorable zones, but is increased if it is located in the 

promising zone instead. Implementation of sample size increase in survival trials is 

described in details. Simulations with scenarios with equally spaced group sequential 

designs with/without censoring and with/without adaptation in sample size are 

performed. Simulations allowing a 4-fold increase in sample size against 2-fold 

increase are compared. Besides equally spaced group sequential designs, interims 

occurring at the earlier part (at 20% of anticipated information is used) or the later part 

(at 80% of anticipated information is used) are also investigated. 

Section 0.5: Prediction of the Timing of Events in Clinical Trials with Survival 

Endpoints: A Trial Example 

In event-based clinical trials, interim and final analyses at pre-specified event times 

are often proposed. In a randomized withdrawal trial with a time-to-event primary 

endpoint, the design consists of subjects receiving a test treatment for a specified 

period and then being randomized to continue on that treatment or placebo. We 

present methodology to predict the time of reaching a required number of events 

during the double-blind phase of such a trial. We consider prediction at any time 

during the course of this trial: at the beginning of the trial; during the open-label phase 

of the trial and also during the double-blind phase of the trial (where some subjects 

could still be in the open-label phase). There has been recent work on tackling various 

aspects of this problem using parametric, semi-parametric or from a Bayesian 

perspective. Starting from Whitehead’s method (2001), we consider four additional 
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features: (i) censoring process can be incorporated; (ii) calculating expected number of 

events by a future calendar time, t2, for subjects who were in the risk set at t1; (iii) 

predicting number of events by a future time point  t2 for subjects who were 

enrolled prior to randomization and will be randomized at a fixed time point before 

t2;  and (iv) various parametric survival distributions other than exponential (i.e., 

Weibull, Lognormal, Log logistic). We applied our methodology during the conduct 

of a recently completed clinical trial to accurately predict the timing of the interim 

analysis. This allowed sufficient resources to be deployed leading to timely data 

analysis and reporting. 

Section 0.6: Planning a Comparative Group Sequential Clinical Trial with Loss 

to Follow-up and a Period of Continued Observation 

This paper is motivated by Rubinstein, et al., (1981) and Kim and Tsiatis (1990) and 

provides a way to design group sequential trials analyzed using logrank test for 

comparing survival under two treatments with loss to follow-up and a period of 

continued observation. These are frequently encountered in Phase II/III clinical trials.  

A method is developed to calculate the length of accrual period to assure a desired 

power for given control group median time to event, hazard ratio, length of the period 

of continued observation, information time of analyses and times of analyses, hazard 

rate of time to censoring and significance level.  The results show that, similar to 

trials with fixed duration (Rubinstein, et al. 1981), introducing a period of continued 

observation after the end of patient accrual period reduces the total number of patients 

required to detect treatment effect substantially. Assuming both time to event and time 

to censoring (loss to follow-up) are exponential, the estimator of log hazard ratio 
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(placebo vs. treatment) is used to test the null hypothesis of equality in survival 

distributions between treatment and placebo groups. Tables are created in which total 

trial durations are calculated for a wide range of cases for O’Brien and Fleming 

(1979), Pocock (1977) and Wang and Tsiatis(1987) efficacy upper boundaries, 

respectively. For the same accrual rate, three different curves are depicted to show the 

impacts of time to censoring and a period of continued observation on accrual time to 

ensure power in respective group sequential settings. 

Section 0.7: Planning the Duration of a Survival Group Sequential Trial with a 

Fixed Follow-up Time for All Subjects 

To account for the need of exploring operating characteristics of survival group 

sequential trials with a fixed follow-up period for each subject after randomization, the 

accrual time and total trial duration to ensure power and type I error rate requirements 

are explained. Situations investigated are for hazard ratios ranging from 1.3 to 3.0, 

with slow or high accrual rate, and in the presence or absence of censoring. Impacts of 

hazard rate, accrual rate and competitive censoring on accrual time and subsequently 

on total trial duration are carefully illustrated by well-designed tables and figures. Real 

calendar time for interim analyses, needed number of events and recruited number of 

subjects at time of interim analyses, are also tabulated so that all operation 

characteristics can be assessed prior to the trial start and re-assessed during the trial 

after incorporating adjusted accrual rate based on blinded data review. The importance 

of having such explorations is illustrated via a motivating example.  

Section 0.8: Optimal Weighted Z Test and Linear Combination Test in Extended 

Sequential Parallel Designs 

Many times in clinical trials using Sequential Parallel Design (SPD) with two 
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treatments (placebo and drug), subjects are randomized in Period 1 and placebo non-

responders are re-randomized in period 2 to either continue with placebo or switch to 

active drug. The re-randomization of placebo non-responders during Period 1 into 

Period 2 helps to overcome the potential imbalance in baseline factors resulting due to 

informative withdrawals during Period 1 was discussed by Chen et al. (2011) and Liu 

et al. (2012). In this paper, we introduce extended SPD (ESPD) and consider the re-

randomization of not only placebo non-responders during Period 1 but also the re-

randomization of drug responders during Period 1 into Period 2. Statistical methods to 

analyze data from an ESPD are discussed. An optimal weighted Z test which combines 

three individual test statistics is suggested to test the hypothesis of no drug effect 

across periods. It is shown that the ESPD is more efficient compared to SPD. 

Simulation results are also presented.  Additionally, a linear combination test is 

proposed for binary data, which demonstrates good and fair operational characteristics 

under both null and alternative hypotheses, respectively.   

Section 0.9: Covariance and Variance Evaluations of Two Estimators for Drug-

placebo Difference in a Trial with Sequential Parallel Design 

Fava et al., 2003 proposed Sequential Parallel Design (SPD) to test for a drug effect in 

the presence of a placebo effect by combining two estimators from first and second 

periods of the trial. Here subjects are randomized to receive either placebo or drug in 

the first period and only placebo non-responders at the end of the first period are 

continued into the second period. Chen et al. (2011) heuristically proved that the 

covariance of two estimators is zero assuming the correlation coefficient between the 

first and the second period normal responses for subjects who were placebo non-

responders in period 1 and continued to be treated by placebo in period 2 being the 
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same as the correlation coefficient between the first and the second period normal 

responses for subjects who were placebo non-responders in period 1 and continued to 

be treated by testing drug in period 2. However in practice it is often difficult to justify 

the equality assumption between two correlation coefficients. In this article, the above 

covariance is re-derived without needing any strong assumption in equality between 

two correlation coefficients. Assuming number of subjects continuing into period 2 

being a random variable, covariance is re-confirmed to be zero not only for normal 

data but also for binomial data. Subsequently, the sample size for a SPD trial using 

weighted test for hypothesis testing is derived with estimated non-responder rate at the 

end of the first period being replaced by its expected value. The efficiency of a SPD 

design is evaluated accordingly relative to fixed sample design for both scenarios. 

Simulations are also performed to assess type I error rate and power when period 1 

and 2 endpoints are correlated.       

Section 0.10: Misunderstanding of a New Approach to Drug-Placebo Difference 

Calculation in Short Term Antidepressant-Drug Trials 

In clinical trials, drug effect is measured by a difference between subjects who are 

treated by experimental drug against placebo-treated subjects. In case of binary data, 

with observing YES/NO on each subject in certain period of time, it is the proportion 

of subjects who respond in treatment group minus the proportion of responders in 

placebo group (for example, 50% vs. 30%). However, a greater difference was 

proposed by Rihmer et al. (2011) with their supporting arguments, in that 

antidepressant response and placebo response had different mechanisms and there 

were equal chances for antidepressant responder to be responding to placebo and not 

responding to placebo at all. Therefore, the authors proposed 50% - 30% * 50% when 
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the response rate in the treatment group and the placebo group are 50% and 30% 

respectively, resulting in higher drug-placebo difference than traditional understanding 

of 50% - 30%. In this article, we tried to explain why the authors misunderstood the 

drug-placebo concept for evaluating drug superiority, their misunderstanding of 

assumptions of traditional calculation, as well as their wrong reasoning on their 

proposed approach. All in all, we conclude the traditional approach of 50% - 30% is 

the correct way of evaluating drug-placebo difference. The possible methods to 

control impact of placebo effect are briefly discussed at the end of this article. 

Section 0.11: Optimal Group Sequential Designs Constrained on both Overall 

and Stage One Error Rates 

Optimized group sequential designs proposed in the literature have the aim of 

minimizing average sample size (ASN) with respect to a prior distribution of treatment 

effect with overall type I and type II error rates well-controlled. The optimized 

asymmetric group sequential designs that we present here additionally consider 

constraints on stopping probabilities at stage one: probability of stopping for futility at 

stage one when no drug effect exists as well as the probability of rejection when the 

maximum effect size is true at stage one so that accountability of group sequential 

design is ensured from the very first stage throughout. As well, non-binding efficacy 

bounds are used to account for overrunning in common real trials. The shape 

parameters for Wang-Tsiatis upper bounds and Kim-DeMets lower bounds are utilized 

to find optimized group sequential designs minimizing ASN while maintaining error 

and power requirements overall and at stage one. From examples illustrated, the 

maximum sample size determined through such optimization is smaller than prior 

optimized designs using other optimization criteria. 
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Section 0.12: A Two-stage Adaptive Design with a New Combination Test 

Inspired by Bauer and Kohne (1994), a method applying Fisher’s combination rule to 

form a two-stage adaptive procedure, together with Box and Muller (1958, referred to 

as ‘BM’), one of the most popular methods of generating standard normal random 

variable using two independent uniform (0, 1) deviates, a new method (denoted as 

‘BM combination test’) is proposed here to combine two p-values from two disjoint 

samples for designing a trial with two stages. Procedure is defined with carefully 

consideration of controlling overall type I error rate under null hypothesis. Operational 

characteristics including power and expected sample size under both null and 

alternative hypotheses are investigated. Simulations are used to confirm type I error 

control. Comparisons of BM combination test with Fisher’s combination test are also 

investigated. 
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CHAPTER 1 

Sensitivity Analyses for Informative Censoring in Survival Data: A 

Trial Example 

(published in Journal of Biopharmaceutical Statistics · March 2016 · DOI: 

10.1080/10543406.2016.1167076) 

 

Abstract: In a controlled clinical trial comparing an experimental drug to a control 

using time to event analysis, the logrank test is normally used to test against the 

equality between two survival curves when the proportional hazard rate assumption is 

held, which of course requires non-informative censoring. The authors used an 

example from a randomized, double-blind, parallel group, low-dose active controlled 

study comparing the safety and efficacy of two doses (400 mg/day versus 50 mg/day) 

of study medication used as monotherapy for the treatment of newly diagnosed or 

recurrent epilepsy.  This analysis imputes the event time of subjects considered to 

have problematic informative censoring to demonstrate the impact of violations in 

necessary assumptions, and assesses robustness of the p-value as calculated from 

imputed data as compared with un-imputed data. Assuming a parametric distribution 

for time to event, had these subjects resulted in an event in the trial after withdrawal, 

the expected additional time to event  is formulated and calculated using methods 

developed in this paper. Combining the imputed informative censoring subjects with 

the remainder of the original data, new p-values are obtained using the log-rank test 

and compared to the original p-value. KM plots are also compared.  

Keywords: Survival data; Informative censoring; Robustness; Sensitivity; Expected 

time to event. 

 

Section 1.1: Introduction 

After being randomized into the double-blind phase until the end of study, subjects 

can have event, or loss to follow-up (due to loss to contact, subject consent or due to 

adverse event), or remain event free at the time of study termination. The logrank 

statistic is used to compare the survival distribution of two samples when censoring is 

non-informative (i.e., the censoring process is independent of the event process). The 

test was proposed by Nathan Mantel (1966) and was named as ‘logrank test’ by 

Richard Peto and Julian Peto (1972). Logrank test statistic is constructed by 

https://www.researchgate.net/journal/1520-5711_Journal_of_Biopharmaceutical_Statistics
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computing the difference between observed and expected number of events in one of 

the two groups at each unique observed event time and then adding these differences 

so that a measure for the overall summary across events time points where there is an 

event is obtained to evaluate two survival distributions in their entirety.   The 

logrank statistic can also be derived as the score test for the Cox proportional hazard 

model (Cox, David R, 1972) comparing two groups. Based on efficiency of score test, 

it is therefore asymptotically equivalent to the likelihood ratio test statistic if the 

proportional hazard model is held, whereas exponential failure time is a special case of 

the proportional hazard model. 

As noted above, logrank test requires non-informative censoring to ensure 

independence between censoring mechanism and time to event process. In case this 

assumption is questionable, the validity of this test to measure superiority of one 

survival curve over the other will be easily challenged. And therefore robustness of p-

value from logrank test in this case has to be assessed via sensitivity analyses.  For 

reviewing submitted clinical trial results to support drug label claims, US FDA 

published a guidance for pharmaceutical industry titled as “E9 Statistical Principles for 

Clinical Trials”, which indicated their current thinking on this topic as they claimed in 

the front page. In E9, it is said that “It is important to evaluate the robustness of the 

results and primary conclusions of the trial.” Robustness refers to “the sensitivity of 

the overall conclusions to various limitations of the data, assumptions, and analytic 

approaches to data analysis”. A real trial is introduced in Section 1.2, with which 

problematic informative censoring is shown in final data and could possibly invalidate 

its p-value interpretation. Section 1.3 describes proposed method following up with 

http://en.wikipedia.org/wiki/David_Cox_(statistician)
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strategies for sensitivity analyses and subsequent analysis results in Sections 1.4 and 

1.5, respectively; and final discussions on method limitations and other methods in 

Section 1.6 conclude this paper.      

Section 1.2: A Trial Example  

The objective of this study was to compare the safety and efficacy of 2 doses of 

topiramate (referred to as ‘TPM’) as monotherapy in pediatric and adult subjects with 

newly diagnosed (within 3 months) epilepsy characterized by partial-onset or 

generalized seizures, or with recurrent epilepsy while off of antiepileptic drugs. To 

ascertain tolerability and to allow for discontinuation of any baseline antiepileptic 

drugs therapy, eligible subjects received TPM 25 during a 7-day open treatment phase. 

Between screening (up to 14 days before study entry) and randomization, subjects 

were to have no more than 1 seizure. Subjects who experienced significant tolerability 

relating to safety problems during the open-treatment phase were not eligible for 

randomization. At the end of open treatment, eligible subjects were randomly assigned 

to either TPM 50 or TPM 400. Antiepileptic drugs therapies, if any, were tapered off 

prior to randomization. The double-blind phase comprised 2 periods: titration (up to 

42 days) and stabilization (of variable duration); subjects who experienced significant 

tolerability relating to safety problems during the first 21 days of the double-blind 

phase were withdrawn from the study. Subjects remained in the double-blind phase 

until i) the first partial onset seizures or generalized seizures, ii) double-blind phase 

termination (6 months after the last subject was randomized), or iii) withdrawal for 

protocol-specified reasons (adverse events, subject choice, or lost to follow-up). The 

efficacy assessment was based on between-group difference in time to first seizure 
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during the double-blind phase. Subjects or their caregivers recorded the date and type 

of each seizure that occurred in their seizure diaries. A seizure required clinical 

verification by the investigator. Upon experiencing a seizure, each subject was to 

contact the investigator, who then evaluated the event in terms of consistency with 

epileptic partial onset or generalized tonic-clonic seizures.  

A total of 487 subjects were enrolled; of those, 16 withdrew during the open treatment 

phase. Of the 471 subjects randomized, 470 had at least 1 study visit after 

randomization and were included in the intent-to-treat analysis. Primary efficacy 

analysis was based on a survival analysis of the difference between TPM 400 and 

TPM 50 with respect to time to first partial onset seizures or generalized seizures 

during the double-blind phase (excluding taper). Kaplan-Meier (referred to as ‘KM’) 

estimates were calculated for time to first seizure. Statistical significance of the 

treatment effect was tested by the log-rank test.  Trial registration identifier for this 

study is NCT00231556 at clinicaltrials.gov and trial results were published at Journal 

of Child Neurology (Glauser et al. 2007). 

Table 1a lists the completion/withdrawal status along with p-value of efficacy results 

for original observed data. The first subject’s randomization occurred at 19NOV1999; 

and afterwards eligible patients were continuously randomized until 15AUG2001.   

There are 470 subjects (TPM 50=234 and TPM400=236), with 90 (38%) and 49 

(21%) events occurred in the TPM 50 and TPM 400, respectively. Comparison of the 

KM survival curves of time to first seizure favored TPM 400 over TPM 50 (p=0.0002; 

2-sided log-rank test). When the trial ended at 26FEB2002, there were 217 (TPM 

50=105, TPM 400=112) remained event-free at the time of study termination, which 
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were considered as  being administratively censored since censoring was caused by 

trial operation and thus was also considered as non-informative censoring. The 

proportions of withdrawals due to lost to follow-up and other reason were almost the 

identical between high and low dose levels (that is: non-differential between two 

treatment groups), which hinted the claim of non-informative nature for these two 

kinds of withdrawals. However, at the time of study termination, in the TPM 50 group, 

6% (N=13) of subjects had early withdrawal due to adverse event and 4% (N=9) of 

subjects due to subject choice while having 17% (N=40) of withdrawals due to 

adverse event and 6% (N=13) of withdrawals due to subject choice in the TPM 400 

group.  These two types of withdrawals are differential between two treatment 

groups. Combining these two types of withdrawals together,  dis-proportionality in 

early withdrawal rates between two groups (TPM 400=23% vs. TPM 50=10%) makes 

people believe that these withdrawals might have informative censoring with being 

informative with respect to treatment assignment, resulting in violating of non-

informative censoring assumption in application of logrank test.   

To address this issue, one proposal from US FDA (Food and Drug Administration) 

reviewer then was to impute informative censoring subjects and treat them as they 

have had an event occurred at the time of early withdrawal (Table 1.1b). The number 

of events then becomes 112 (48%) in the TPM 50 group and 102 (43%) in the TPM 

400 group, resulting in a big decrease in the difference in event proportion between 

two groups (5% in difference: TPM 50=48% vs. TPM 400=43%) in this naïve data as 

compared with original data (17% in difference: TPM 50=38% vs. TPM 400=21%). 

More importantly, p-value of log-rank test from the naïve data becomes 0.3859 (Table 
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1.1b), which fails to support the claim of superiority of TPM 400 over TPM 50 in 

preventing time to first seizure in the double-blind phase.  The naïve data are very 

artificial and incorrect because we only know that subjects who were informatively 

censored at their withdrawal time but with no knowledge on whether or when event 

occurred afterwards. Surely for them, there was no event occurring at their date of 

early withdrawal. From this perspective, the naïve data can be viewed as the ‘worst-

case- scenario’ imputation of the original data. One question to ask next is: what else 

imputations could possibly depict intermediate scenarios?     

 
Table 1(Tab. 1.1): results from the original data (Table 1.1a) and results from the naive data (Table 1.1b) 

Table 1.1: results from the original data (Table 1.1a) and results from the naive 

data (Table 1.1b) 
Table 1.1a: 

category Sub-category TPM 50  

N= 234 

TPM 400 

N= 236 

Total 

N=470 

 

n(%) n(%) n(%) p-value 

=0.0002 Event seizure 90(38) 49(21) 139(30) 

Informative 

censoring 

Withdrawal due to adverse event 13(6) 40(17) 53(11) 

Withdrawal due to subject choice 9(4) 13(6) 22(5) 

Non-

informative  

censoring 

Administrative censoring 105(45) 112(47) 217(46) 

Withdrawal due to lost to follow-up 9(4) 10(4) 19(4) 

Withdrawal due to other reason 8(3) 12(5) 20(4) 

Table 1.1b: 

category Sub-category TPM 50  

N= 234 

TPM 400 

N= 236 

Total 

N=470 

 

n(%) n(%) n(%) p-value 

=0.3859 Event 
 

seizure 90(38) 49(21) 139(30) 

Withdrawal due to adverse event 13(6) 40(17) 53(11) 

Withdrawal due to subject 

choice 

9(4) 13(6) 22(5) 

Non-

informative  

censoring 

Administrative censoring 105(45) 112(47) 217(46) 

Withdrawal due to lost to 

follow-up 

9(4) 10(4) 19(4) 

Withdrawal due to other reason 8(3) 12(5) 20(4) 

 

 

Section 1.3: Methodology 



 

41 

From analysis of naïve data, we understand that testing of superiority of higher dose 

versus lower dose via logrank statistic will become non-significant once we consider 

those informative censoring subjects as event subjects because the test is driven by 

events and this action adds 53 events to TPM 400 whilst only 22 events to TPM 50, 

resulting in diluting superiority of TPM 400 over TPM 50 on preventing time to 

seizure after randomization. To further check sensitivity of p-value in this direction, 

we propose a method that still assumes that those informative censoring subjects have 

had an event, but on the contrast, admitting of the event time being later than the 

withdrawal date, to be consistent with the fact that those subjects didn’t have an event 

at their withdrawal time in the observed data. In Figure 1.1, the upper graph depicts 

subject’s status in the observed data; and after imputation, informative censoring 

subjects will result in an event between respective withdrawal time and the trial end 

date 26FEB2002 (see the lower graph in Figure 1.1). The time from randomization to 

event for informative censoring subjects is imputed with expected additional time to 

event after being informatively censored at 𝑡𝑖1 plus observed time course in the 

double-blind phase (i.e., 𝑡𝑖1), had this (𝑖𝑡ℎ) subject resulted in first seizure event 

between withdrawal time 𝑡𝑖1 and end date 𝑡2. In the upper graph of Figure 1.1, 

triangle symbol at right end means subjects who had an event in the original data. 

Subjects with an across symbol at the right end withdrew early due to non-informative 

reasons (loss to follow-up or other reason). Circled subjects are the ones who are 

assumed to have informative censoring in the observed data. In the lower graph, 

suspicious informative censoring subjects are imputed to have an event before or on 

26FEB2002, with the long-dash line in bold after their respective early withdrawal 
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time 𝑡𝑖1 indicating the expected additional time to seizure. Therefore, after 

imputation, this cohort of subjects will have time to first seizure as total length from 

randomization time to the predicted event time between early withdrawal time ti1 

and administrative trial end time 26FEB2002. 

Methodology developed below will only apply to informatively censored subjects in 

the original data. Let 𝑋𝑖𝑗 and 𝑊𝑖𝑗, j=C for TPM 50 and E for TPM 400, represent the 

random variable of time from randomization to first seizure event and from 

randomization to the time of being censored, respectively, for the 𝑖𝑡ℎ subject in the 

𝑗𝑡ℎ group who was randomized at time 𝑟𝑖𝑗 . As explained in the Appendix 1.1, in 

order to calculate the expected additional time to event for informative censoring 

subjects, we firstly have to obtain the probability of having an event in (𝑡𝑖1, 𝑡2] given 

that this subject is event-free at 𝑡𝑖1. For a specific event distribution, parameters are 

estimated from treatment-specific original data with a parametric event distribution 

imposed (Tables 1.3a-1.3f). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

𝑡𝑖1 𝑡𝑖1 

Randomization 

Start 19NOV1999  
Randomization 

End 15AUG2001  
Administrative End 

26FEB2002= 𝑡2 
  

Randomization 

Start 19NOV1999  
Randomization 

End 15AUG2001  
Administrative End 

26FEB2002= 𝑡2 
  

𝑡𝑖1 
𝑡𝑖1 
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Figure 1(Fig. 1.1): Depiction of imputing process 

Figure 1.1: Depiction of imputing process, with the triangle symbol indicating 

experiencing an event (including events in original data and imputed events in 

the lower graph), the circle symbol indicating having an informative censoring at 

𝒕𝒊𝟏 in the original data (see in the upper graph), and the across symbol indicating 

non-informative censoring in the original data, solid line for observed time course 

and long-dashed line in bold for the expected additional time to event prior to or 

on the target time 𝒕𝟐. The upper graph represents un-imputed data and the 

lower graph represents data after imputation. 

 

 

Based on data from non-informative censoring subjects (i.e., subjects who withdrew 

due to loss to follow-up or some other reason in this trial), parameters for time to 

censoring is estimated by: make these non-informative censoring subjects as having an 

event in the original dataset and the remainder of subjects are all censored. Extract 

estimated hazard rate parameter by imposing exponential distribution on these created 

‘event’ of time to non-informative censoring.  𝜙𝐸=0.000267784 

and 𝜙𝐶 =0.0003303452 (Tables 1.3b and 1.3d) are the estimated exponential hazard 

rates for time to censoring for TPM 400 and TPM 50, respectively.  

From Appendix 1.1, it is known that the probability of having an event in (𝑡𝑖1, 𝑡2] for 

a subject in TPM 50 group in the presence of exponential censoring process competing 

with event process, given that this subject is event-free at 𝑡𝑖1 can be expressed as: 

𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶 , 𝑋𝑖𝐶 < 𝑊𝑖𝐶|𝑋𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶 ,𝑊𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶)   

= ∫  
𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)
∗

𝑡2−𝑟𝑖𝐶
𝑡𝑖1−𝑟𝑖𝐶

exp(−∅𝐶𝑥𝑖𝐶 )

exp[−∅𝐶(𝑡𝑖1−𝑟𝑖𝐶)]
𝑑𝑥𝑖𝐶   

Utilizing independence between event process and exponential censoring process in 

(𝑡𝑖1, 𝑡2], the above probability can be decomposed to be the product of two 

components in the integrand, and then the integration is carried out from lower limit 
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𝑡𝑖1 − 𝑟𝑖𝐶 to upper limit 𝑡2 − 𝑟𝑖𝐶. The first component 
𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)
 is the 

derivative of conditional probability of having an event in (𝑡𝑖1, 𝑡2] without 

competitive censoring (i.e.,  𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶) ) with respect to 

𝑡2 − 𝑟𝑖𝐶; and the second component is the conditional exponential censoring survival 

function  
𝑒𝑥𝑝(−∅𝐶𝑥𝑖𝐶 )

𝑒𝑥𝑝[−∅𝐶(𝑡𝑖1−𝑟𝑖𝐶)]
, given this subject is censoring-free at withdrawal time ti1. 

The expected additional time to event, have this informatively exponential censored 

subject had resulted in an event in (ti1, t2] is then: 

∫  
𝑥𝑖𝐶 ∗

𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)
∗

exp(−∅𝐶𝑥𝑖𝐶 )

exp[−∅𝐶(𝑡𝑖1−𝑟𝑖𝐶)]

𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶, 𝑋𝑖𝐶<𝑊𝑖𝐶|𝑋𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶, 𝑊𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶)

𝑡2−𝑟𝑖𝐶
𝑡𝑖1−𝑟𝑖𝐶

 𝑑𝑥𝑖𝐶    

While other censoring distribution can also plays a role here, as in Equation 1.4′ 

from Appendix 1.1, with Weibull censoring, this expected additional time to event is 

then: 

∫  
𝑥𝑖𝐶 ∗

𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)
∗
𝜔𝑐𝛽𝑐𝑥𝑖𝐶 

𝜔𝑐−1 𝑒𝑥𝑝(−𝛽𝑐𝑥𝑖𝐶 
𝜔𝑐)

𝑒𝑥𝑝(−𝛽𝑐(𝑡𝑖1−𝑟𝑖𝐶)
𝜔𝑐)

𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶, 𝑋𝑖𝐶<𝑊𝑖𝐶|𝑋𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶, 𝑊𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶)

𝑡2−𝑟𝑖𝐶
𝑡𝑖1−𝑟𝑖𝐶

 𝑑𝑥𝑖𝐶    

with βC =0.0134838899 and  ωE= 0.6153282175 (βE = 0.0066766023 and  

ωE =0.6255320211) as parameters estimates for informative Weibull censoring 

(Tables 1.3e-1.3f) 

When censoring process is not essential in calculating expected additional time to 

event for imputed informative censoring subjects, conditional survival function for 

censoring process will be dropped from the numerator. And the denominator for 

probability of having an event in (𝑡𝑖1, 𝑡2], given that this subject is event-free at 𝑡𝑖1, 

can then be expressed as 𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶 , ) without involving the 

censoring variable 𝑊𝑖𝐶.  Therefore, the expected additional time to event for those 
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informative censoring subjects is now: 

∫  
𝑥𝑖𝐶 ∗

𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)

𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶,)

𝑡2−𝑟𝑖𝐶
𝑡𝑖1−𝑟𝑖𝐶

 𝑑𝑥𝑖𝐶   

In this section, the algorithm of calculating expected additional time to seizure (bold 

long-dash line in the lower graph of Figure 1.1) is provided for either with or without 

considering competitive censoring process. As above, every imputed informative 

censoring subject will have an event in (𝑡𝑖1, 𝑡2] with the length of time to event equal 

to sum of time to early withdrawal in the original data (i.e., 𝑡𝑖1) and the expected 

additional time to event in (𝑡𝑖1, 𝑡2], given that this subject was still at risk at 𝑡𝑖1. 

When calculating this expected additional time to event without considering censoring 

process competing with event process, the integrand part is different from the case 

with considering it in both denominator and nominator and hence resulting in different 

expected additional time to event in (𝑡𝑖1, 𝑡2].  

Section 1.4: Strategies for Sensitivity Analyses 

To make explanations easier, the event distribution and informative censoring 

distribution (if needed) are both exponential for purpose of illustrating strategies for a 

series of sensitivity analyses. Figure 1.2 graphically depicts the proposed sensitivity 

analyses as well as original analysis and naïve analysis proposed by US FDA. In 

original analysis (referred to as ‘O’ in Figure 1.2) contains old seizure events data 

(TPM 50=90 and TPM 400=49 in Table 1.1a), informative censoring subjects whose 

censoring are probably related to treatment and non-informative censoring subjects 

whose censoring are considered to be random and independent of treatment 

assignment. Hazard rates  𝜆𝐶 and 𝜆𝐸 are estimated from original data after 
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imposing a parametric distribution on event time  whilst hazard rates of censoring  

𝜙𝐶  and 𝜙𝐸  are estimated using the method mentioned above by ‘inverting’ original 

data with non-informative censoring data as ‘event’ and all the remainders as 

censoring subjects. Sensitivity strategy S1 in Figure 1.2 denotes the one proposed by 

US FDA to have all informative censoring subjects have a seizure event at their 

withdrawal time. Sensitivity analysis strategies S2 and S3 are newly proposed from 

this paper, in which all or half of the informative censoring subjects will have a 

seizure event at the predicted time point after withdrawal.  Conditional on the fact 

that informative censoring subjects were still at risk at withdrawal time 𝑡𝑖1, the 

expected time to seizure prior to 𝑡2 is calculated for each informative censoring 

subject and then the newly created data for this cohort will be added back to the 

remainder of original data so that p-value and KM plot can be regenerated.  As 50% 
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Figure 2(Fig. 1.2): Sensitivity analyses strategies 

Figure 1.2: Sensitivity analyses strategies. IC and NC denote informative censoring and non-informative censoring subjects, 

respectively. 
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of the informative censoring subjects imputed is because withdrawals due to adverse 

event or subject choice are generally independent of treatment assignment in normal 

clinical trials. Therefore, we can’t always assume all informative censoring subjects in 

this cohort had informative censoring. Of note, regardless of with or without 

considering censoring, full imputation will have all informative censoring subjects 

result in an event in (𝑡𝑖1, 𝑡2] and 50% imputing will have half of informative 

censoring subjects result in an event in (𝑡𝑖1, 𝑡2], while as shown in Section 1.3 and the 

Appendix 1.1, absence of censoring will change value of integrand when doing 

integration and thus will result in different expected additional time to event as 

compared with the case in the presence of censoring. 

Section 1.5: Analysis Results 

After extracting parameters from original data, for each informative censoring subject, 

probability of having an event before 𝑡2 is calculated, which is then to be put in the 

denominator of the integrand in order to obtain the expected additional time to event, 

had this subject have an event in (𝑡𝑖1, 𝑡2]. After imputing those informative censoring 

subjects, they are put back together with the remainder of original data to do 

hypothesis testing. Now event/censoring status for intent-to-treat subjects are as 

represented as in Table 1.2a. From p-value of 0.0002 from original data to 0.3859 with 

naïve data, it seems more events added-in, the less significant p-value the test will end 

up with. To test this speculation, we’ve tried 50% imputation (Table 1.2b). For each 

informative censoring subject (N=22 in TPM 50, N=53 in TPM 400), one uniform 

random variable in a range of [0, 1] is generated. This subject will be imputed to have 

event at his/her expected time  before  𝑡2 if this uniform random variable is great 
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than or equal to 0.5, otherwise this subject will still be censored at his/her withdrawal 

time and no imputation will be conducted. After this manipulation, we created a 

population with nearly 50% of informative censoring subjects imputed.  Results from 

data with 50% imputation are displayed in Table 1.2b. Of those, 12 out of 22 

informative censoring subjects in the TPM 50 group are imputed and 25 out of 53 

informative censoring subjects in the TPM 400 are imputed.  

Table 2(Tab. 1.2): results from fully imputed data (Table 1.2a) and results from data with 50% imputation 

(Table 1.2b) 

Table 1.2: Results from fully imputed data (Table 1.2a) and results from data 

with 50% imputation (Table 1.2b) 
Table 1. 2a: 

category Sub-category TPM 50  

N= 234 

TPM 400 

N= 236 

Total 

N=470 

n(%) n(%) n(%) 

Event 

 

seizure 90(38) 49(21) 139(30) 

Withdrawal due to adverse event (fully imputed) 13(6) 40(17) 53(11) 

Withdrawal due to subject choice (fully imputed) 9(4) 13(6) 22(5) 

Non-

informative  

censoring 

Administrative censoring 105(45) 112(47) 217(46) 

Withdrawal due to lost to follow-up 9(4) 10(4) 19(4) 

Withdrawal due to other reason 8(3) 12(5) 20(4) 

Table 1.2b: 

category Sub-category TPM 50  

N= 234 

TPM 400 

N= 236 

Total 

N=470 

n(%) n(%) n(%) 

Event 

 

seizure 90(38) 49(21) 139(30) 

Withdrawal due to adverse event (imputed) 6(3) 15(6) 21(4) 

Withdrawal due to subject choice (imputed) 6(3) 10(4) 16(3) 

Non-

informative  

censoring 

Withdrawal due to adverse event  7(3) 25(11) 32(7) 

Withdrawal due to subject choice 3(1) 3(1) 6(1) 

Administrative censoring 105(45) 112(47) 217(46) 

Withdrawal due to lost to follow-up 9(4) 10(4) 19(4) 

Withdrawal due to other reason 8(3) 12(5) 20(4) 

 

 

 

To understand how informative censoring subjects could potentially impact final 

summary measure of p-value from logrank test due to violation of independent 

censoring assumption in the original data, we investigate imputations under the 

scenarios:  different parametric event distribution, with/without considering 
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censoring, fully imputed or only with 50% imputation, and with or without treatment-

specific parameters reverted: 

i) p-values from logrank tests with data imputation for informative censoring 

subjects without considering of censoring process competing with the event 

process (Table 1.3a), 

ii) the same as i) but with considering exponential censoring in calculating 

expected addition time to event (Table 1.3b), 

iii) The same as i) but with treatment-specific parameters swapped (Table 

1.3c), 

iv) Without considering censoring and with treatment-specific parameters 

swapped (Table 1.3d), 

where, as noted in Section 1.4, parameters swap/reverted refers to switch the set of 

estimated parameters for time to event by arm, plus switch those for time to 

informative dropout by arm. 

Tables 1.3a-1.3d have shown p-values of imputations with intermediate states in-

between the original and the naïve data. New methods are developed to address 

informative censoring issue while making use of the fact that those subjects were not 

yet having had an event at their withdrawal time. When all these 77 subjects are 

imputed (Row 3 in Tables 1.3a-1.3d), p-values become at 0.1 level regardless of event 

distribution type, ranging from 0.1165 to 0.1687. The extent of p-values is consistent 

among different parametric event distributions.  Calculation of the expected 

additional time to seizure makes use of group information by extracting treatment-

specific parameters as well as subject-level information by having subject specific 
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conditional density conditional upon the fact of being at risk at withdrawal time. p-

values at 0.1 level for full imputation show that original p-value of 0.0002 is quite 

robust because events added to TPM400 group from imputation is more than two 

times higher than that of TPM50 group (e.g., 53 vs. 21) so that imputation in this case 

indeed introduced a great extent of dilution to the overall effect on preventing from 

time to seizure between high and low dose groups.  

To see the variants for this worst case scenario (‘worse’ means resulting in a decrease 

in treatment effect after imputation), imputation to calculate expected additional time 

to event is also conducted while considering censoring process accompanying with the 

event process (Table 1.3b), it is good to see that the p-values are still at 0.1 level. The 

impact of competing censoring process has little impact on conditional probability of 

having an event prior to the trial end date and hence has little impact on the expected 

length of having an event in (𝑡𝑖1, 𝑡2], given that this subject is event-free at 𝑡𝑖1.  

To check the worse situation of each of the above imputed strategies, we inverted two 

sets of parameters when calculating the expected additional time to event for chosen 

informative censoring, making the estimated parameters from TPM 50 group (or TPM 

400) to do imputation for TPM 400 (or TPM 50) IC subjects so that we can further 

dilute treatment difference between TPM 400 and TPM 50, because, for this cohort of 

imputed informative censoring subjects, treatment effect is in the opposite direction of 

the overall effect in the whole intent-to-treat analysis set. Results are shown in Tables 

1.3c and 1.3d, which are uniformly worse than (as expected) their counterparts in 

Tables 1.3a-1.3b, but in a small extent. This, per our opinion, further supports our 

conclusion that impacts from this set of informative censoring subjects on original p-
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value are not substantial. All cases with treatment-specific parameters reverted has a 

larger p-value than that of its counterpart without purposely inverting  in Tables 1.3a 

and 1.3b, but the excess level is 0.02 or less for fully imputed cases and only 0.002 

level or less for 50% imputed cases.  

Tables 3e and 3f are added per reviewer’s suggestion to assess impact of different 

distribution of censoring on robustness of p-values after imputation. Comparing with 

exponential censoring, Weibull censoring results in a little bigger p-value for every 

parametric event distribution without/with parameter swap (Table 1.3e vs. Table 1.3b 

and Table 1.3f vs. Table 1.3d), whereas general conclusions above regarding 

robustness of p-value after imputation with/out censoring and with/out parameters 

swap remain the same. 

Figure 1.3 graphically depicts all p-values in Tables 1.3a-1.3f into one graph to 

illustrate the whole picture of our imputation strategy, with left-most as p-value from 

the original data, right-most as p-value from the naïve data, 50% as well as full 

imputation as intermediate imputations proposed in this paper. Significance decreases 

from left for being most significant, still significant for all 50% imputations 

irrespective to with or without competitive censoring process and parameter swap 

between to comparing groups, non-significant for full imputations, and the most non-

significant case for p-value is computed from the naïve data.   

Figures 1.4 contains Kaplan-Meier plots for some proposed cases of imputation 

against both KM plot from original data as well as the naïve data, because KM plot is 

an alternative way to show the differences among different imputations. The biggest 

separation between two groups occurs in original data (the upper left in Figure 1.4) 
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and no separation is shown in naïve data (the upper right in Figure 1.4). Separations 

between two groups are bigger in the plots with 50% imputation than those with full 

imputation, regardless of distribution assumption and whether the parameter set being 

swapped or not. Note that the same set of KM plots for other parametric distributions 

are done but not shown in this paper due to space limitation.
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Table 3(Tab. 1.3): p-values from logrank tests 

Table 1.3: p-values from logrank tests with imputations for informative 

censoring subjects (fully imputed or with 50% imputation) when calculation of 

the expected additional time to event is in the absence of censoring (1.3a), 

exponential censoring is present in (1.3b), in the absence of censoring together 

with parameter swap (1.3c), in the presence of exponential censoring together 

with parameter swap (1.3d), in the presence of Weibull censoring (1.3e) and in 

the presence of Weibull censoring together with parameter swap (1.3f) 

 
Table 1.3a: in the absence of censoring 

 Exponential Weibull Log normal Log logistic 

Parameters 𝜆𝐶=0.0013703428 

𝜆𝐸=0.0007085123 

𝛼𝑐 = 0.0100808764 

𝛾𝑐 = 0.6609148602 

𝛼𝐸 =0.0047444152 

𝛾𝐸= 0.6791830664 

𝜇𝑐=6.4815452017 

𝜎𝑐=2.2883766324 

𝜇𝐸=7.7589738974 

𝜎𝐸=2.5726080137 

𝛼𝑐 = 0.007403468 

𝛾𝑐 = 0.7639210804 

𝛼𝐸 = 0.0039600968 

𝛾𝐸= 0.7365174685 

p-value(full) 0.1165 0.1367 0.1441 0.1362 

p-value(50% imputation) 0.0106 0.0117 0.0119 0.0115 

Table 1.3b: in the presence of exponential censoring 
 Exponential Weibull Log normal Log logistic 
Parameters As in Table 1.3a As in Table 1.3a As in Table 1.3a As in Table 1.3a 

ϕC=0.000267784, ϕE =0.0003303452 
p-value(full imputation) 0.1207 0.1383 0.1496 0.1420 
p-value(50% imputation) 0.0109 0.0116 0.0121 0.0118 
Table 1.3c: in the absence of censoring and with parameter swap 

 Exponential Weibull Log normal Log logistic 

Parameters 𝜆𝐸=0.0013703428 

𝜆𝐶=0.0007085123 

𝛼𝐸 = 0.0100808764 

𝛾𝐸  = 0.6609148602 

𝛼𝐶 =0.0047444152 

𝛾𝐶= 0.6791830664 

𝜇𝐸=6.4815452017 

𝜎𝐸=2.2883766324 

𝜇𝐶=7.7589738974 

𝜎𝐶=2.5726080137 

𝛼𝐸 = 0.007403468 

𝛾𝐸 = 0.7639210804 

𝛼𝐶 = 0.0039600968 

𝛾𝐶= 0.7365174685 

p-value(full imputation) 0.1394 0.1565 0.1663 0.1658 

p-value(50% imputation) 0.0123 0.0126 0.0129 0.0129 

Table 1.3d: in the presence of exponential censoring and with parameter swap 

 Exponential Weibull Log normal Log logistic 

Parameters As in Table 1.3c As in Table 1.3c As in Table 1.3c As in Table 1.3c 
 𝜙𝐸=0.000267784,  𝜙𝐶 =0.0003303452 

p-value(full imputation) 0.1429 0.1584 0.1687 0.1652 

p-value(50% imputation) 0.0120 0.0125 0.0130 0.0129 

Table 1.3e: in the presence of Weibull censoring 
 Exponential Weibull Log normal Log logistic 
Parameters As in Table 1.3a As in Table 1.3a As in Table 1.3a As in Table 1.3a 

𝛽𝐸 = 0.0066766023,  𝜔𝐸  =0.6255320211  and 𝛽𝐶 =0.0134838899, 𝜔𝐸= 0.6153282175 
p-value(full imputation) 0.144 0.1589 0.1638 0.1575 
p-value(50% imputation) 0.0119 0.0125 0.0125 0.0123 
Table 1.3f: in the presence of Weibull censoring and with parameter swap 

 Exponential Weibull Log normal Log logistic 

Parameters As in Table 1.3𝑐 As in Table 1.3c As in Table 1.3𝑐 As in Table 1.3c 
𝛽𝐸 =0.0134838899, 𝜔𝐸= 0.6153282175 and 𝛽𝐶 = 0.0066766023,  𝜔𝐶  =0.6255320211 

p-value(full imputation) 0.187 0.2005 0.2082 0.2074 

p-value(50% imputation) 0.0139 0.144 0.0147 0.0147 
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Figure 3(Fig. 1.3): P-value summary for sensitivity analyses 

Figure 1.3: P-value summary for sensitivity analyses in Tables 1.3a-1.3f. From 

left to right, left triangle indicates p-value from original data, following up four 

vertical bars at 0.01 level and four circles between 0.1 and 0.21  represent p-

values obtained from exponential, Weibull, log normal and log logistic event 

distribution, and the right triangle indicates p-value from the naïve data.  
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Figure 4(Fig. 1.4): KM plots 

Figure 1.4: KM plots for: original data (upper left), naïve data (upper right), 

informative censoring subjects exponentially distributed without considering 

exponential censoring in calculating expected additional time to event (with only 

50% imputation: lower left; fully imputed: lower right). 
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Section 1.6: Discussion 

Starting from a real example for a clinical trial with survival endpoints accompanying 

with obvious informative censoring, authors develop methods to do sensitivity 

analyses to demonstrate the robustness of p-value from logrank test. It is to estimate 

treatment-specific parameters for each group after imposing a particular parametric 

distribution; then calculate subject specific probability of having an event in (𝑡𝑖1, 𝑡2], 

given that this subject is event-free at 𝑡𝑖1 with or without considering censoring 

process competing with event process. Proposed imputations using expected time to 

event plus original time course as the event time for imputed informative-censoring 

subjects resulted in p-values at 0.01+ or  0.1+ level for exponential censoring and a 

little higher for Weibull censoring, regardless of parametric event distribution, with or 

without considering censoring, even additionally with treatment-specific parameters 

swapped between groups.  

To think of these imputations from a different angle (also see in Figure 1.3), the 

original data resulted in a strong claim in significance regarding treatment effect for 

comparing high dose with the lower dose on time to seizure. Results from partial 

imputations (50% imputation conducted here) are deemed to be the most reasonable 

ones among all methods mentioned in this paper. The reasoning should be as the 

following. As noted in the primary paper for this study (Glauser et al., 2007), “The 

most common adverse events, excluding typical childhood illnesses, were headache, 

appetite decrease, weight loss, somnolence, dizziness, concentration/attention 

difficulty, and paresthesia.”. Fifty-three subjects who withdrew early due to adverse 

events, although with differential dropout rates between groups, shouldn’t be all 
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considered as informative censoring and relating to study medication due to the nature 

of these events. This supports the usage of 50% imputation rather than full imputation. 

Therefore, p-values with 50% imputation are around 0.01 for both exponential and 

Weibull censoring, as compared with p-value 0.3859 from the naive data, further 

corroborating the significance claim from the original data.  

Parameter swap can further dilute treatment effect as treatment effect within this small 

group of imputed informative-censoring subjects is intentionally reversed and is in the 

opposite direction of the overall effect. However, p-values only increase by 0.002 or 

less (Table 1.3a vs. Table 1.3c and Table 1.3b vs. Table 1.3d) as compared with 50% 

imputation without parameter swap, irrespective of parametric distributions and 

irrespective of being in the presence or in the absence of censoring. Along this road, 

all doubtful withdrawals due to adverse events or subject choice are imputed (i.e., 

fully imputed) assuming all subjects in these two categories being informatively 

censored and they are all assumed to have had an event in (𝑡𝑖1, 𝑡2], which is of course 

an extremely strong assumption as in this case none of the adverse events and subject-

choice withdrawals is assumed not to be related to treatment assignment. p-values now 

become 0.11 - 0.2082, non-significant but still much less than 0.3859, the one from the 

naïve data. For now, we take back what we said early in Section 1.1 about that the 

imputation done in the naïve data is the ‘worst-case scenario’ imputation for this trial 

data. To our opinion, p-values with full imputation, instead of the p-value from the 

naïve data, should serve as the worst-case scenario among all proper imputations for 

this trial data, because in the naïve data all informative-censoring subjects are assumed 

to have had an event occurring right at their withdrawal time point and this is 
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something definitely not true. Therefore, p-values with proposed full imputation, 0.11-

0.2082, rather than 0.3859 (i.e., the one from the naïve data) should serve as the upper 

bound for p-values from sensitivity analyses after taking account of the variability 

introduced by violating independent censoring assumption.  

The whole set of exercises have done two things here: 1) provide a method for 

sensitivity analysis, and 2) confirm the robustness of p-value of log-rank test for the 

original data. In order to think of how these sensitivity analyses corroborate p-value 

from original data, we can imagine other hypothetical results with a different p-value 

profile: for example, if p-values from 50% imputation already reach out to a non-

significance level of 0.05, then the robustness of original p-value under this case will 

be fiercely challenged comparing with what have been observed in Tables 1.3a-1.3f 

and Figure 1.3. Anyway, statistical methods proposed in this paper together with 

proposed analysis strategies could possibly help trial statisticians conduct sensitivity 

analyses in facing trials with a similar issue.  

There is a rich literature on publications of sensitivity analyses for informative 

censoring in survival trials. Among them, the method of inverse probability-of-

censoring weights (referred to as ‘IPCW’) (Robins and Finkelstein 2000) has been 

considered as the most popular one for now, whilst at the same time being criticized 

by its limitations (Howe et.al. 2011). Our method is a supplement to available ones, 

which is much easier to digest by clinical statisticians as not being associated with 

behind scene martingale theories and it is very easy to implement. Due to limited time, 

IPCW method hasn’t been investigated by the author yet but comparison of methods 

will be the next thing to investigate.  
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Statistical Appendix 1.1: 

Notations used are re-stated here to ensure completeness of this appendix and 

methodology is described using the control group as an example. To impute 

informative censoring subjects, let 𝑋𝑖𝑗 and 𝑊𝑖𝑗, 𝑗 = 𝐶, 𝐸, represent random 

variables of time to event and time to censoring for 𝑖𝑡ℎ subject treated with control 

(C or TPM 50) and treatment (E or TPM 400) medications, respectively. All 

calculations in treatment group will be defined similarly. For the 𝑖𝑡ℎ subject in the 

control group TPM 50,  𝑟𝑖𝐶 and 𝑡𝑖1 are the randomization date and the date of 

informative censoring (e.g., withdrawal due to adverse event or subject choice in this 

trial), respectively.   Let 𝑡𝑖2 be the time of administrative trial end date 26Feb2002, 

which is date that the last patient had end-of-study visit performed. As 𝑡𝑖2 is the same 

for all subjects across two groups, we denote ti2 as 𝑡2 in this paper. Subscript 𝑖 

however can’t be omitted in 𝑟𝑖𝐶, 𝑟𝑖𝐸 and 𝑡𝑖1, as they are subject-level randomization 

dates and subject-level informative censoring date. It is known that the event time for 

subject 𝑖 will be at least 𝑡𝑖1 − 𝑟𝑖𝐶 due to early withdrawal at time 𝑡𝑖1. Assumed that 

this subject had resulted in an event between 𝑡𝑖1 and 𝑡2, the first quantity to be 

calculated is the probability of having an event in (𝑡𝑖1, 𝑡2], given that this subject is 

event-free at 𝑡𝑖1. Next, we return to our objective of calculating: Had this subject 

resulted in an event prior to 𝑡2, what would it be for the expected additional time of 

having this event after 𝑡𝑖1 and prior to 𝑡2? Before calculating the expected additional 

time to event for each imputed informative censoring subject, let’s calculate 

probability of having an event in(𝑡𝑖1, 𝑡2], given that subject is event-free at  𝑡𝑖1, 

which is needed for calculation of expected additional time to event in Step 2) below. 
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Step 1): For these informative censoring subjects, probability of having an event in 

(𝑡𝑖1, 𝑡2]  when there is an independent censoring process competes with event 

process is: 

𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶 , 𝑋𝑖𝐶 < 𝑊𝑖𝐶|𝑋𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶 ,𝑊𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶)  

= 𝐸𝑋𝑖𝐶  [𝐼(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶)𝑃(𝑥𝑖𝐶 < 𝑊𝑖𝐶|𝑊𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶)  ]   (1.1) 

= 𝐸𝑋𝑖𝐶  [
𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)

exp(−∅𝐶𝑥𝑖𝐶 )

exp[−∅𝐶(𝑡𝑖1−𝑟𝑖𝐶)]
 ]                                         (1.2)                                                                               

= ∫  
𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)
∗

𝑡2−𝑟𝑖𝐶
𝑡𝑖1−𝑟𝑖𝐶

exp(−∅𝐶𝑥𝑖𝐶 )

exp[−∅𝐶(𝑡𝑖1−𝑟𝑖𝐶)]
𝑑𝑥𝑖𝐶                            (1.3)                                                                  

Equation 1 is based on independence of time to censoring (i.e., 𝑊𝑖𝐶) and event 

process (i.e., 𝑋𝑖𝐶). Equation 1.2 makes use of time to non-informative censoring, 

which is exponentially distributed with hazard rate ∅𝐶. 
exp(−∅𝐶𝑥𝑖𝐶 )

exp[−∅𝐶(𝑡𝑖1−𝑟𝑖𝐶)]
 is the  

conditional exponential survival function for time to censoring, given that subject still 

in the risk set at time 𝑡𝑖1. 𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶) is the probability of 

having an event in (𝑡𝑖1, 𝑡2] in the absence of censoring, given that the subject is still 

in the risk set at time 𝑡𝑖1. In order to calculate conditional probability of having an 

event in the presence of censoring, one component in the integral is taking derivative 

of conditional probability in the absence of censoring with respect to 𝑡2 − 𝑟𝑖𝐶. That is 

𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)
 and the second component is the conditional exponential 

survival function of the censoring variable (See in Equation 1.3). 

Step 2): The expected time to event, had this informative censoring subject resulted in 

an event in (𝑡𝑖1, 𝑡2] is: 
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∫  
𝑥𝑖𝐶 ∗

𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)
∗

exp(−∅𝐶𝑥𝑖𝐶 )

exp[−∅𝐶(𝑡𝑖1−𝑟𝑖𝐶)]

𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶,𝑋𝑖𝐶<𝑊𝑖𝐶|𝑋𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶,𝑊𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶)

𝑡2−𝑟𝑖𝐶
𝑡𝑖1−𝑟𝑖𝐶

 𝑑𝑥𝑖𝐶                               (1.4)   

where the probability calculated in Equation 1.3 is now the denominator of the 

integrand in Equation 1.4 . To understand the above formulation, one way is to think 

of P(A|B)=P(AB)/P(B). P(B) is the conditional probability of have an event in (ti1, t2]  

for informative censoring subjects in the presence of censoring. For different 

parametric time to event distributions, density of event time (i.e., 𝑓𝑋𝑖𝐶(𝑡), row 1 in 

Table 1.4), is used to obtain conditional probability of having an event in (𝑡𝑖1, 𝑡2], 

which is 𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶  ) (row 2 of Table 1.4). Subsequently, after 

taking derivative with respect to the random variable 𝑡2 − 𝑟𝑖𝐶  (row 3 in Table 1.4), 

conditional probability of having an event in (𝑡𝑖1, 𝑡2],  in the presence of censoring  

as in Equation 1.3 or row 4 of Table 1.4 will be calculated for different parametric 

event distributions. Finally, the expected time to event in (𝑡𝑖1, 𝑡2] can be calculated, 

had this informative censoring subject resulted in an event before or on t2.  

In case of non-exponential censoring, other conditional survival density of time to 

censoring, which is the component of ( 𝑃(𝑥𝑖𝐶 < 𝑊𝑖𝐶|𝑊𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶) in Equation 

1.1, will be plugged in Equations 1.2, 1.3 and 1.4 in order to calculate the expected 

time to event in (𝑡𝑖1, 𝑡2] for imputed subject 𝑖. For example, in case time to 

censoring having Weibull distribution with parameters of 𝛽𝑐 and 𝜔𝑐, time to 

censoring density function then becomes 𝜔𝑐𝛽𝑐𝑥𝑖𝐶 
𝜔𝑐−1 𝑒𝑥𝑝(−𝛽𝑐𝑥𝑖𝐶 

𝜔𝑐) and survival 

function at time 𝑡𝑖1 − 𝑟𝑖𝐶  is 𝑒𝑥𝑝(−𝛽𝑐(𝑡𝑖1 − 𝑟𝑖𝐶)
𝜔𝑐), resulting in conditional 

survival density being 𝑃(𝑥𝑖𝐶 < 𝑊𝑖𝐶|𝑊𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶) =
𝜔𝑐𝛽𝑐𝑥𝑖𝐶 

𝜔𝑐−1 𝑒𝑥𝑝(−𝛽𝑐𝑥𝑖𝐶 
𝜔𝑐)

𝑒𝑥𝑝(−𝛽𝑐(𝑡𝑖1−𝑟𝑖𝐶)
𝜔𝑐)

.  
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Therefore Equations 1.2, 1.3, 1.4 will become Equations 1.2′,  1.3′, 1.4′ respectively 

as follows. 

𝐸𝑋𝑖𝐶  [
𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)
∗
𝜔𝑐𝛽𝑐𝑥𝑖𝐶 

𝜔𝑐−1 𝑒𝑥𝑝(−𝛽𝑐𝑥𝑖𝐶 
𝜔𝑐)

𝑒𝑥𝑝(−𝛽𝑐(𝑡𝑖1−𝑟𝑖𝐶)
𝜔𝑐)

 ]                                       (1.2′)  

∫  
𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)
∗

𝑡2−𝑟𝑖𝐶
𝑡𝑖1−𝑟𝑖𝐶

𝜔𝑐𝛽𝑐𝑥𝑖𝐶 
𝜔𝑐−1 𝑒𝑥𝑝(−𝛽𝑐𝑥𝑖𝐶 

𝜔𝑐)

𝑒𝑥𝑝(−𝛽𝑐(𝑡𝑖1−𝑟𝑖𝐶)
𝜔𝑐)

𝑑𝑥𝑖𝐶                              (1.3
′)  

∫  
𝑥𝑖𝐶 ∗

𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)
∗
𝜔𝑐𝛽𝑐𝑥𝑖𝐶 

𝜔𝑐−1 𝑒𝑥𝑝(−𝛽𝑐𝑥𝑖𝐶 
𝜔𝑐)

𝑒𝑥𝑝(−𝛽𝑐(𝑡𝑖1−𝑟𝑖𝐶)
𝜔𝑐)

𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶, 𝑋𝑖𝐶<𝑊𝑖𝐶|𝑋𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶,   𝑊𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶)

𝑡2−𝑟𝑖𝐶
𝑡𝑖1−𝑟𝑖𝐶

 𝑑𝑥𝑖𝐶                               (1. 4
′)    

And the rest for calculating expected additional time for imputed subjects remains the 

same as case of exponential time to censoring illustrated in Steps 1 and 2. 

Calculation will be much simplified if there is no censoring process in competition 

with event process.  Without considering censoring, the expected length time of 

being an event in (𝑡𝑖1, 𝑡2] for this informative censoring subject is then degenerated 

to: 

∫  
𝑥𝑖𝐶 ∗

𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)

𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡𝑖1−𝑟𝑖𝐶,)

𝑡2−𝑟𝑖𝐶
𝑡𝑖1−𝑟𝑖𝐶

 𝑑𝑥𝑖𝐶                                                                         (1.5)  

The numerator of integrand is 𝑥𝑖𝐶  times quantity from row 3 in Table 1.4 for 

respective parametric event distribution and the denominator is the conditional 

probability calculated in row 2 of Table 1.4. Table 1.4 contains necessary ingredients 

for computation, in which rows 3 is used in the numerator of integrand for both cases 

with or without considering censoring and row 2 and row 4 are used in the 

denominator part of the integrand for the case in the absence of censoring and the case 

in the presence of censoring, respectively.   
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Table 4(Tab. 1.4): Ingredients for calculation of the expected additional time to event 

Table 1.4: Ingredients for calculation of the expected additional time to event 

after withdrawal when parametric event distributions are exponential, Weibull, 

log normal and log logistic, respectively. Row 1, 2 and 3 display density of event 

distribution, conditional probability of having an event in (𝒕
𝒊𝟏
, 𝒕𝟐] in the absence 

of censoring and conditional density of having an event in (𝒕
𝒊𝟏
, 𝒕𝟐] in the absence 

of censoring, respectively. Row 3 is the first integrand component in calculating 

Row 4, which is the conditional probability of having an event in (𝒕
𝒊𝟏
, 𝒕𝟐] in the 

presence of exponential censoring. Row 5 is in the counterpart of Row 4 but with 

Weibull censoring. 

 

Event Distribution exponential Weibull 
Row 1 𝑓𝑋𝑖𝐶(𝑡) 𝜆𝐶exp (− 𝜆𝐶𝑡) 𝛾𝑐𝛼𝑐𝑡

𝛾𝑐−1 exp(−𝛼𝑐𝑡
𝛾𝑐) where 𝜎𝑐 = 1/𝛾𝑐 and 𝛼𝑐 =

exp (−𝜇𝑐/𝜎𝑐) 

Row 2 𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶 ) 
 1 −

exp [− 𝜆𝐶(𝑡2 − 𝑟𝑖𝐶) ]

exp [− 𝜆𝐶(𝑡𝑖1 − 𝑟𝑖𝐶)]
 1 −

exp[−𝛼𝑐(𝑡2 − 𝑟𝑖𝐶)
𝛾𝑐  ]

exp[−𝛼𝑐(𝑡𝑖1 − 𝑟𝑖𝐶)𝛾𝑐  ]
 

Row 3 𝑑𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶)

𝑑(𝑡2 − 𝑟𝑖𝐶)
 

𝜆𝐶𝑒𝑥𝑝 [− 𝜆𝐶(𝑡2 − 𝑟𝑖𝐶) ]

𝑒𝑥𝑝 [− 𝜆𝐶(𝑡𝑖1 − 𝑟𝑖𝐶)]
 

𝛼𝑐(𝑡2 − 𝑟𝑖𝐶)
𝛾𝑐−1𝑒𝑥𝑝[−𝛼𝑐(𝑡2 − 𝑟𝑖𝐶)

𝛾𝑐  ]

𝑒𝑥𝑝[−𝛼𝑐(𝑡𝑖1 − 𝑟𝑖𝐶)𝛾𝑐  ]
 

Row 4 𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶, 𝑋𝑖𝐶 < 𝑊𝑖𝐶|𝑋𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶,𝑊𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶) 

in the presence of exponential 
time to censoring 

∫
 𝜆𝐶 𝑒𝑥𝑝[− 𝜆𝐶(𝑡2 − 𝑟𝑖𝐶) ]

exp[− 𝜆𝐶(𝑡𝑖1 − 𝑟𝑖𝐶)]

𝑡2−𝑟𝑖𝐶

𝑡𝑖1−𝑟𝑖𝐶

∗ 

𝑒𝑥𝑝(−∅𝐶𝑥𝑖𝐶 )

𝑒𝑥𝑝[−∅𝐶(𝑡𝑖1 − 𝑟𝑖𝐶)]
𝑑𝑥𝑖𝐶  

∫
𝛼𝑐(𝑡2 − 𝑟𝑖𝐶)

𝛾𝑐−1𝑒𝑥𝑝[−𝛼𝑐(𝑡2 − 𝑟𝑖𝐶)
𝛾𝑐  ]

𝑒𝑥𝑝[−𝛼𝑐(𝑡𝑖1 − 𝑟𝑖𝐶)𝛾𝑐  ]

𝑡2−𝑟𝑖𝐶

𝑡𝑖1−𝑟𝑖𝐶

∗ 

𝑒𝑥𝑝(−∅𝐶𝑥𝑖𝐶 )

𝑒𝑥𝑝[−∅𝐶(𝑡𝑖1 − 𝑟𝑖𝐶)]
𝑑𝑥𝑖𝐶  

Row 5 𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶, 𝑋𝑖𝐶 < 𝑊𝑖𝐶|𝑋𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶,𝑊𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶) 

in the presence of Weibull time 
to censoring 

∫
 𝜆𝐶 𝑒𝑥𝑝[− 𝜆𝐶(𝑡2 − 𝑟𝑖𝐶) ]

𝑒𝑥𝑝 [− 𝜆𝐶(𝑡1 − 𝑟𝑖𝐶)]

𝑡2−𝑟𝑖𝐶

𝑡𝑖1−𝑟𝑖𝐶

∗ 

𝜔𝑐𝛽𝑐𝑥𝑖𝐶 
𝜔𝑐−1 𝑒𝑥𝑝(−𝛽𝑐𝑥𝑖𝐶 

𝜔𝑐)

𝑒𝑥𝑝(−𝛽𝑐(𝑡𝑖1 − 𝑟𝑖𝐶)𝜔𝑐)
𝑑𝑥𝑖𝐶  

∫
𝛼𝑐(𝑡2 − 𝑟𝑖𝐶)

𝛾𝑐−1𝑒𝑥𝑝[−𝛼𝑐(𝑡2 − 𝑟𝑖𝐶)
𝛾𝑐  ]

𝑒𝑥𝑝[−𝛼𝑐(𝑡𝑖1 − 𝑟𝑖𝐶)𝛾𝑐  ]
∗

𝑡2−𝑟𝑖𝐶

𝑡𝑖1−𝑟𝑖𝐶

 

𝜔𝑐𝛽𝑐𝑥𝑖𝐶 
𝜔𝑐−1 𝑒𝑥𝑝(−𝛽𝑐𝑥𝑖𝐶 

𝜔𝑐)

𝑒𝑥𝑝(−𝛽𝑐(𝑡𝑖1 − 𝑟𝑖𝐶)𝜔𝑐)
𝑑𝑥𝑖𝐶  

 

Event Distribution log normal Log logistic 
Row 1 𝑓𝑋𝑖𝐶(𝑡) 1

√2𝜋𝜎𝑐𝑡
exp(−

1

2
( 
log(t) − 𝜇𝑐

𝜎𝑐
 )) 

𝛼𝑐𝛾𝑐𝑡
𝛾𝑐−1

(1+𝛼𝑐𝑡𝛾𝑐)
2
 where 𝛾𝑐 = 1/𝜎𝑐 and 𝛼𝑐 =

exp (−𝜇𝑐/𝜎𝑐) 
 

Row 2 𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶 ) 
 

1 −
1 −Φ(

log(𝑡2 − 𝑟𝑖𝐶) − 𝜇𝑐
𝜎𝑐

)

1 − Φ(
log(𝑡𝑖1 − 𝑟𝑖𝐶) − 𝜇𝑐

𝜎𝑐
)
 

1 −
1 + 𝛼𝑐(𝑡𝑖1 − 𝑟𝑖𝐶)

𝛾𝑐

1 + 𝛼𝑐(𝑡2 − 𝑟𝑖𝐶)𝛾𝑐
 

Row 3 𝑑𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶)

𝑑(𝑡2 − 𝑟𝑖𝐶)
 𝑒𝑥𝑝(−(

𝑙𝑜𝑔(𝑡2 − 𝑟𝑖𝐶) − 𝜇𝑐
𝜎𝑐

)
2

)/(2 ∗ √2𝜋)

1 − 𝛷 (
𝑙𝑜𝑔(𝑡𝑖1 − 𝑟𝑖𝐶) − 𝜇𝑐

𝜎𝑐
)

(
1

𝜎𝑐
∗

1

𝑡2 − 𝑟𝑖𝐶
) 

[1 + 𝛼𝑐(𝑡𝑖1 − 𝑟𝑖𝐶)
𝛾𝑐] ∗ 𝛾𝑐𝛼𝑐(𝑡2 − 𝑟𝑖𝐶)

𝛾𝑐−1

[1 + 𝛼𝑐(𝑡2 − 𝑟𝑖𝐶)𝛾𝑐]2
 

Row 4 𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶, 𝑋𝑖𝐶 < 𝑊𝑖𝐶|𝑋𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶,𝑊𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶) 

in the presence of exponential 
time to censoring 

∫

𝑒𝑥𝑝
− (
𝑙𝑜𝑔(𝑥𝑖𝐶 ) – 𝜇𝑐

𝜎𝑐
)
2

2 ∗ √2𝜋

1 − 𝛷 (
𝑙𝑜𝑔(𝑡𝑖1 − 𝑟𝑖𝐶) − 𝜇𝑐

𝜎𝑐
)
(
1

𝜎𝑐
∗

1

𝑡2 − 𝑟𝑖𝐶
)

𝑡2−𝑟𝑖𝐶

𝑡𝑖1−𝑟𝑖𝐶

∗ 

𝑒𝑥𝑝(−∅𝐶𝑥𝑖𝐶 )

𝑒𝑥𝑝[−∅𝐶(𝑡𝑖1 − 𝑟𝑖𝐶)]
𝑑𝑥𝑖𝐶  

∫
[1 + 𝛼𝑐(𝑡𝑖1 − 𝑟𝑖𝐶)

𝛾𝑐] ∗ 𝛾𝑐𝛼𝑐𝑥𝑖𝐶 
𝛾𝑐−1

[1 + 𝛼𝑐𝑥𝑖𝐶 𝛾𝑐]2

𝑡2−𝑟𝑖𝐶

𝑡𝑖1−𝑟𝑖𝐶

∗ 

𝑒𝑥𝑝(−∅𝐶𝑥𝑖𝐶 )

𝑒𝑥𝑝[−∅𝐶(𝑡𝑖1 − 𝑟𝑖𝐶)]
𝑑𝑥𝑖𝐶  

Row 5 𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶, 𝑋𝑖𝐶 < 𝑊𝑖𝐶|𝑋𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶,𝑊𝑖𝐶 > 𝑡𝑖1 − 𝑟𝑖𝐶) 

in the presence of Weibull time 
to censoring 

∫

𝑒𝑥𝑝
− (
𝑙𝑜𝑔(𝑥𝑖𝐶 ) – 𝜇𝑐

𝜎𝑐
)
2

2 ∗ √2𝜋

1 − 𝛷 (
𝑙𝑜𝑔(𝑡𝑖1 − 𝑟𝑖𝐶) − 𝜇𝑐

𝜎𝑐
)
(
1

𝜎𝑐
∗

1

𝑡2 − 𝑟𝑖𝐶
)

𝑡2−𝑟𝑖𝐶

𝑡𝑖1−𝑟𝑖𝐶

∗ 

𝜔𝑐𝛽𝑐𝑥𝑖𝐶 
𝜔𝑐−1 𝑒𝑥𝑝(−𝛽𝑐𝑥𝑖𝐶 

𝜔𝑐)

𝑒𝑥𝑝(−𝛽𝑐(𝑡𝑖1 − 𝑟𝑖𝐶)𝜔𝑐)
𝑑𝑥𝑖𝐶  

∫
[1 + 𝛼𝑐(𝑡𝑖1 − 𝑟𝑖𝐶)

𝛾𝑐] ∗ 𝛾𝑐𝛼𝑐𝑥𝑖𝐶 
𝛾𝑐−1

[1 + 𝛼𝑐𝑥𝑖𝐶 𝛾𝑐]2

𝑡2−𝑟𝑖𝐶

𝑡𝑖1−𝑟𝑖𝐶

∗ 

𝜔𝑐𝛽𝑐𝑥𝑖𝐶 
𝜔𝑐−1 𝑒𝑥𝑝(−𝛽𝑐𝑥𝑖𝐶 

𝜔𝑐)

𝑒𝑥𝑝(−𝛽𝑐(𝑡𝑖1 − 𝑟𝑖𝐶)𝜔𝑐)
𝑑𝑥𝑖𝐶  
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CHAPTER 2 

Sample Size Increase during a Survival Trial When Interim Results are 

Promising 

(published at Communication in Statistics: theory and method DOI: 

10.1080/03610926.2015.1137596 ) 

 

Abstract: This paper is to extend Mehta and Pocock (2010) to provide a way in doing sample 

size increase in survival trials. Sample space is divided by observed test statistic at interim into 

three zones: unfavorable, promising and favorable, within which sample size (required number 

of events) has a proper increase if falling into the promising zone and otherwise remains 

unchanged. Simulations with scenarios in the presence/absence of censoring, with/without 

adaptation, and allowing 4 folds vs. 2-folds of increase in sample size are compared.  

Keyword: Survival Trials; Promising Zone; Sample Size Re-estimation; Group Sequential 

Design. 

 

Section 2.1: Introduction 

Clinical trials to fulfil the requirements of new drug application need to show both efficacy in a 

disease indication and safety for patients who have been exposed to investigational drug for a 

long enough time period. Comparing time to event for experimental drug against the control 

group, log-rank test is normally used to test against the equality between two survival curves 

when proportional hazard assumption is held. An anticipated log hazard ratio (control vs. 

experimental) is assumed prior to trial start in order to design a trial ensuring desired power to 

detect treatment difference when a certain amount of relative superiority indeed exists. However, 

design adaptations (i.e., with respect to either increase in sample size, drop treatment arms/doses, 

change entry criteria, change randomization ratio, even change endpoint or other areas) are 

imperative especially when the trial is in an underexplored territory regarding unmet medical 

needs.  In a seminar talk held in 2010 

(http://catalyst.harvard.edu/docs/biostatsseminar/Pocock_04_March_2010.pdf), some trial 

examples were mentioned on how trial adaptations could possibly rescue a failure trial in drug 

development history in several disease areas. Here is one related to survival analysis. The 

http://catalyst.harvard.edu/docs/biostatsseminar/Pocock_04_March_2010.pdf
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Cardiac Insufficiency Bisoprolol Study (CIBIS) began at 1989 to answer the question “Does 

bisoprolol reduce mortality in heart failure”. With an underpowered design, 641 subjects with 

chronic heart failure of various etiologies and a left ventricular ejection fraction <40% entered 

into the double-blind phase (bisoprolol=320 and placebo=321). Mean duration in the double-

blind phase was 1.9 years. Equivalent withdrawal rates in the double-blind phase occurred 

between two groups (82 on placebo and 75 on bisoprolol). P-value of 0.22 from log-rank test 

failed to show the superiority of bisoprolol over placebo in reducing the mortality in heart failure 

(hazard ratio: 0.80; 95% confidence interval: 0.56 to 1.15); and 67 patients died on placebo and 

53 on bisoprolol (CIBS, 1994). CIBS-II trial was conducted to re-check the effect of decreasing 

all-cause mortality in chronic heart failure. Results were published in The Lancet (CIBS-II, 

1999), with which 2647 symptomatic patients from Europe were enrolled and randomly assigned 

to 1.25 mg bisporolol (N=1327) and placebo (N=1320) daily. CIBIS-II was stopped early after 

the second interim analysis because bisoprolol showed a significant benefit in all-cause mortality 

over placebo (P-value<0.0001; hazard ratio=0.66; and 95% confidence interval 0.54-0.81). There 

was significantly less all-cause mortality among patients on bisoprolol than those on placebo 

(156 [11.8%] vs 228[17.3%]). The estimated annual mortality rate from CIBS-II was 8.8% in the 

bisoprolol group and 13.2% in the placebo group. It took almost ten years from failing an under-

powered study CIBS-I to a successful re-testing of the same hypothesis in CIBS-II.  And 

eventually drug approval was obtained in 1999. Have sample size adaptation had been 

implemented in CIBS-I trial, would CIBS-II trial be no longer needed? This will be answered in 

Section 2.4 as an illustration example for the proposed method. Because modifying ongoing 

phase III trial designs seems a contradictory action against its confirmatory nature and any 

adaptation during the trial could potentially jeopardize trial’s integrity and inflate false positive 
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rate of the trial,  the PhRMA Adaptive Working Group published a White Paper concerning 

operational issues (PhRMA, 2007), while the FDA more conservatively adopted an attitude to 

wait for more experience on sample size re-estimation based on unblinded treatment information 

(FDA, 2010).  

Among many methodological articles on sample size re-estimation, a focus has been on how to 

preserve the overall type I error rate. A circular conditional error was proposed and an adjusted 

critical value for final analysis based on power requirement while preserving type I error rate for 

normal data was proposed by Proschan and Hunsberger (1995). Cui, Hung and Wang (1999) 

proposed combining the Wald statistic from two stages using pre-specified weights, in which 

weighted Wald statistic under null hypothesis is normally distributed with mean zero and 

variance of one resulting from independence from statistic before and after interim analysis. 

Bauer and Kohne (1994) proposed using Fisher's combination test to combine two p-values from 

stage one and two in order to control type I error rate. Another way proposed by Lehmacher and 

Wassmer (1999) is to use inverse normal function. Above methods to combine independent test 

statistic or p-values from independent cohorts of subjects are easily applied for normal data and 

binary data since subjects to be included prior to or after the interim are naturally in different 

cohorts and inherently independent in terms of endpoint measuring clinical benefits. Survival 

data are different in which subjects who are ongoing at the time of interim analysis (i.e., 

administratively censored) will definitely contribute to the final analysis in a way either being 

censored or experiencing an event upon final analysis.  In controlling type I error rate in 

adaptive designs, Muller and Schafer (2001) generalized methods for controlling overall type I 

error rate and showed that the overall type I error rate can be preserved unconditionally for any 

possible adaptation, provided that the conditional error based interim test statistic would have 
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been obtained had there been no adaptation is preserved.  

All adaptive methods discussed above are to use non-standard final test statistic in which 

subjects enrolled before or after the interim analysis are treated (or weighted) differently.  This 

stimulated a hot discussion on the appropriateness of assigning different weights to subjects 

enrolled before or after interim adaptation. A seemly more attractive way is to stick on 

conventional statistic without a weighting strategy while using accumulative data upon study 

termination and unadjusted critical value for final decision with which it then seems violation of 

“one patient one vote” principle introduced by unequal weights is avoided. Chen, Demets and 

Lan (2004) took an initial step in this direction and showed that type I error rate won’t get 

inflated using conventional final analysis and unadjusted critical value if the interim results are 

located in a “promising zone”. Next, Gao, Ware and Mehta (2008) worked out the statistical 

rational for Chen, Demets and Lan (2004) and further expanded the range of the promising zone 

based on conditional power using treatment effect observed at interim analysis. Mehta and 

Pocock (2010) extended Chen, Demets and Lan (2004) a bit in a more practical manner by 

tabulating explicit cutoff value for the promising zone determined by pre-specified information 

vector, ratio of maximum sample size relative to pre-planned sample size, and observed test 

statistic at interim.  

This paper starts with historical clinical trials of CIBS-I and CIBS-II in Section 2.1 to address the 

importance of having sample size increase for clinical trials with survival data. Section 2.2 

describes trial hypothesis in testing equality of two survival curves using conventional log-rank 

test and weighted log-rank test after sample size increase at interim. Section 2.3 extends the 

method proposed by Mehta and Pocock (2010) to survival data, emphasizing on obtaining 

sample space based on interim test statistic divided as unfavorable, promising and favorable 
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zones before trial starts. Section 2.4 revisits two CIBS trials and calculates the required sample 

size for stage two after interim analysis, had proposed sample size re-estimation algorithm been 

implemented in CIBS-I trial. Section 2.5 includes extensive simulations on exponential survival 

data: 1) in the presence or absence of censoring; 2) sample size increase occurred in the middle 

of the trial, in the early part or in the later part of the trial; and 3) ratio of total maximum sample 

size after adaptation relative to the planned total sample size being large (i.e., dmax/d=4) or 

moderate (i.e., dmax/d=2). Section 2.6 summarizes all the findings and discusses possible 

refinements in future research.  

Section 2.2: Log-rank and Weighted Log-rank 

Assuming time to failure for control subjects is exponentially distributed with a constant hazard 

of 𝜆𝑐, the median time of 𝑀𝑐 = ln (2)/𝜆𝑐, to test against null hypothesis of equal survival 

curves, i.e.,  ln (Δ) = 0 , where Δ =
𝜆𝑐

𝜆𝐸
, 𝜆𝐸 being the hazard rate for experimental group 

subjects,  one wishes to have a pre-specified power in testing one-sided alternative of 

ln (Δ) > 0 (or Δ > 1) against ln(Δ) = 0.  During the double-blind phase, time to failure is 

independently and identically distributed ( i.e., i.i.d.) within a treatment group and independent 

of subject’s entry time as well as independent of time to censoring, where time to censoring are 

i.i.d.s with expo(𝜙), with the same hazard rate of time to censoring for subjects in two 

comparative groups. Let Δ̂ be the estimator of  Δ. The reason to use ln (Δ) instead of Δ is 

because ln (Δ̂) is less skewed and has a more accurate asymptotic approximation. With 

exponential distribution, hazard function is constant, which is actually not necessary for logrank 

statistic. Logrank statistic can also be derived as the score test for the Cox Proportional Hazard 

model (Cox, David R, 1972) comparing two groups only requiring proportional hazard (i.e., 

constant hazard ratio instead of constant hazard rate). Based on efficiency of the score test, it is 

http://en.wikipedia.org/wiki/David_Cox_(statistician)
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therefore asymptotically equivalent to the likelihood ratio test statistic if the proportional hazard 

model holds, whereas exponential failure time is a special case of it. For a fixed sample design, 

to test 𝐻0: ln(Δ) = 0 vs.  𝐻𝐴: ln(Δ) > 0 at one-sided significance level of 𝛼/2 and power of 

1 − 𝛽 under alternative hypothesis, one needs to link log hazard ratio with type I and II error 

requirements using asymptotical properties of logrank statistic; and then calculate the required 

number of evens to ensure testing power when alternative hypothesis is true. For a group 

sequential design, a coefficient is to be multiplied with the requirement number of events 

calculated for corresponding fixed sample design to account for multiple testing over stages 

(Jennison and Turnbull, 2000).   

Without loss of generality, one considers a two-stage group sequential design with upper efficacy 

boundary vector {𝑏1, 𝑏} and the number of events vector {𝑑1, 𝑑} with subscript 1 indicating 

analysis at interim. The corresponding information vector is {𝑡1, 1} with 𝑡1 =
𝑑1

𝑑
. Without 

adaptation, interim will occur when 𝑑1 events are accumulated and final analysis will occur 

when 𝑑 events are accumulated with corresponding log-rank test statistic 𝑍1 for interim and 𝑍 

for final using accumulative data up to analysis time. Null hypothesis of equal hazard rates (or 

hazard ratio being 1 under proportional hazard) between groups will be rejected if 𝑧1 being 

greater or equal to critical value 𝑏1; or if not, after adaptation, study continues to accumulate 𝑑2
∗  

number of events. Note that if there is no adaptation when null is not rejected at interim analysis, 

trial continues to accumulate additional 𝑑2 (i.e.,𝑑 − 𝑑1) events before final analysis. 

Again, when there is a need for sample size adaptation, as in the CIBS I trial, 𝑑2 might be 

increased to 𝑑2
∗ . Then simply comparing conventional test statistic 𝑍∗(conducting logrank test 

using accumulative data) based on 𝑑∗ (𝑑∗ = 𝑑1 + 𝑑2
∗) with the unadjusted final critical value 𝑏 

to do hypothesis testing at final analysis might inflate type I error. At the time of interim 
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analysis, accumulative data are put together for log-rank test, including subjects who have had an 

event or experienced censoring prior to interim cutoff date and subjects who are still ongoing 

will be administratively censored at time of cutoff date. As those administratively censored 

subjects at interim analysis could either have an event or to be censored at time of final analysis, 

there is no way to simply use subjects enrolled after interim to do analysis for the independent 

increment as what we generally do for both normal and binary data. Inspired by Equations 2.3-

2.6 in Proschan, Lan, Wittes (2006), we propose using imaginary independent increment  𝑋2
∗ to 

obtain weighted log-rank test 𝑍∗. As defined in Proschan, Lan, Wittes (2006), let 𝐵(𝑡1) =

√𝑡1𝑍1 and 𝐵(1) = 𝑍 for our two-stage group sequential design.  𝑍 is log-rank test statistic 

with no adaptation in sample size, a function of  𝑑2. 

𝐵(1) = 𝐵(𝑡1) + 𝐵(1) − 𝐵(𝑡1) 

𝑍 = √𝑡1𝑍1 +√1 − 𝑡1 𝑋2
∗ because independent increment 𝐵(1) − 𝐵(𝑡1) = √1 − 𝑡1 𝑋2

∗ 

After sample size increase, 𝑡1 becomes 𝑡1
∗ =

𝑑1

𝑑∗
. Similarly, we will have 

𝑍∗ = √𝑡1
∗𝑍1 +√1 − 𝑡1

∗ 𝑋2
∗, where 𝑍∗ is log-rank test statistic after sample size adaptation, a 

function of 𝑑2
∗ .  

After adaptation, we now get imaginary independent increment 𝑋2
∗ =

𝑍∗−√𝑡1
∗𝑍1

√1−𝑡1
∗ . Putting  𝑋2

∗  

back into equation for 𝑍, we then have 

𝑍𝐶𝐻𝑊
∗ = √𝑡1𝑍1 +√1 − 𝑡1 𝑋2

∗ = √𝑡1𝑍1 +√1 − 𝑡1
𝑍∗−√𝑡1

∗𝑍1

√1−𝑡1
∗ .    

Because 𝑍𝐶𝐻𝑊
∗  is a test type similar to the one for normal/binary data in Cui, Hung and Wang 

(1999), we use subscript ‘CHW’ to indicate it. As noted above, 𝑍𝐶𝐻𝑊
∗  under null hypothesis 

shares the same distributional assumptions with 𝑍 in absence of adaptation and thus decision 

rule of 𝑍𝐶𝐻𝑊
∗ ≥ 𝑏 can be used for final analysis without jeopardizing controlling of type I error 
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rate. However, 𝑍𝐶𝐻𝑊
∗ ≥ 𝑏 is not used in this paper and we indeed try to find a way of using 

𝑍∗ ≥ 𝑏 even after sample size adaptation. 

In summary, in Z = √𝑡1𝑍1 +√1 − 𝑡1 𝑋2
∗ , weight of 𝑡1 is pre-specified, independent of 

observed 𝑍1 and independent of imaginary increment  𝑋2
∗. Plugging  𝑋2

∗ (obtained from 

𝑍𝐶𝐻𝑊
∗ = √𝑡1

∗𝑍1 +√1 − 𝑡1
∗ 𝑋2

∗) into 𝑍 helps creating a weighted log-rank test statistic 𝑍𝐶𝐻𝑊
∗ , 

which is a function of  𝑡1
∗ and hence a function of  𝑑2

∗  as well,  but having the same 

distributional property as 𝑍 to control type I error rate. 

Another component in need is the conditional power assuming current trend being carried 

towards the end of the trial. That is: 

𝑃𝐻𝐴(𝑍
∗ ≥ 𝑏|𝑍1 = 𝑧1, 𝜃 = ln (Δ̂)), where ln(Δ̂) =

𝑧1

√
𝑑1
4

 and assumes the trend observed at interim 

is carried forward to the final analysis. Equation  𝑍∗  then becomes √𝑡1
∗𝑧1 +√1 − 𝑡1

∗ 𝑋2
∗ after 

observing  𝑍1 = 𝑧1. We now have conditional power as: 

𝑃𝐻𝐴 (
𝑍∗√

𝑑1+𝑑2
∗

4
− 𝑧1√

𝑑1
4
−√

𝑑2
∗

4
∗√
𝑑2
∗

4
∗𝜃̂

√𝑑2
∗

4

≥
𝑏√

𝑑1+𝑑2
∗

4
− 𝑧1√

𝑑1
4
−√

𝑑2
∗

4
∗√
𝑑2
∗

4
∗𝜃̂

√𝑑2
∗

4

)  

=𝑃𝐻𝐴

(

 
 
𝑍∗√

𝑑1+𝑑2
∗

4
− 𝑧1√

𝑑1
4
−√

𝑑2
∗

4
∗√
𝑑2
∗

4
∗
𝑧1

√𝑑1
4

√𝑑2
∗

4

≥

𝑏√
𝑑1+𝑑2

∗

4
− 𝑧1√

𝑑1
4
−√

𝑑2
∗

4
∗√
𝑑2
∗

4
∗
𝑧1

√𝑑1
4

√𝑑2
∗

4

)

 
 

 

=1-Φ

(

 
 
𝑏√

𝑑1+𝑑2
∗

4
− 𝑧1√

𝑑1
4
−√

𝑑2
∗

4
∗√
𝑑2
∗

4
∗
𝑧1

√𝑑1
4

√𝑑2
∗

4

)

 
 
                                                                                              (2.1)  

because left-hand side of equation becomes standard normal variable with mean 0 and variance 

of 1 asymptotically. Obviously, conditional power with current trend is a function of 𝑑2
∗  
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additional number of events. After iterative search, we can find 𝑑2
∗  to ensure conditional power 

of 1-𝛽 that is to have the conditional power the same as the overall power of the trial. When 

there is no sample size change, 𝑑2
∗ = 𝑑2, then the conditional power carrying current trend 

becomes:  

1-Φ

(

 

𝑏√
𝑑1+𝑑2
4

− 𝑧1√
𝑑1
4
−√

𝑑2
4
∗√
𝑑2
4
∗
𝑧1

√𝑑1
4

√
𝑑2
4

)

                                                                                                  (2.2)  

Alternatively, there is a closed form for 𝑑2
∗  to ensure power of 1-𝛽 asymptotically, which is 

actually used for the calculations and simulations in this article. Detailed derivations on this 

closed form can be obtained upon request from the correspondence author. And the closed form 

of 𝑑2
∗   to ensure asymptotic conditional power is as follows: 

𝑑2
∗ =

𝑑1

𝑧1
2 {
𝑏√𝑑 − 𝑧1√𝑑1

√𝑑2
+ 𝑧1−𝛽}

2

                                                                                                   (2.3) 

Equation (2.3) is actually the same as Equation 3.11 in Wassmer, G. (2006), provided that there 

is no stratification plus having 1:1 randomization ratio between treatment and placebo.  

Section 2.3: Sample Space of the First-stage Statistic: Unfavorable, Promising and 

Favorable Zones 

Without sample size adaptation, decision using 𝑍 ≥ 𝑏  will ensure type I error rate control. 

With sample adaptation, 𝑍𝐶𝐻𝑊
∗ ≥ 𝑏 can ensure type I error rate as explained in Section 2.2. In 

the meanwhile, there are two more ways to control type I error rate: 𝑍∗ ≥ 𝑏∗ and 𝑍∗ ≥ 𝑏, 

where the latter is to use both conventional test statistic (but based on 𝑑∗ after adaptation) and 

unadjusted critical value 𝑏 to avoid violating  ‘one person one vote’ concern as mentioned 

before and it is also what this paper is dedicated to, while with specific interests in applications 

in survival data. Actually, 𝑍∗ ≥ 𝑏∗, as described below, can also control type I error rate. And 

strategies used in method for using  𝑍∗ ≥ 𝑏∗ also plays an important role in developing 
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strategies for the method for using 𝑍∗ ≥ 𝑏. 

Without futility bound at interim (i.e. no stopping for futility), the unconditional type I error 

spent at stage two without and with adaptation, respectively, is as follows: 

 ∫ 𝑃𝐻0(𝑍 ≥ 𝑏| 𝑍1 = 𝑧1) ∅(𝑧1)
𝑏1

−∞
𝑑𝑧1 and ∫ 𝑃𝐻0(𝑍

∗ ≥ 𝑏∗| 𝑍1 = 𝑧1) ∅(𝑧1)
𝑏1

−∞
𝑑𝑧1 

Obviously, in order to control overall type I error rate, we have to have 

𝑃𝐻0(𝑍 ≥ 𝑏| 𝑍1 = 𝑧1) = 𝑃𝐻0(𝑍
∗ ≥ 𝑏∗| 𝑍1 = 𝑧1) for all 𝑧1 ∈ (−∞, 𝑏1) 

That is 𝑃𝐻0(𝑍 ≥ 𝑏| 𝑍1) = 𝑃𝐻0(𝑍
∗ ≥ 𝑏∗| 𝑍1) unconditionally. 

Similar to computing conditional power, getting conditional error is under null effect of hazard 

ratio being one rather than carrying observed effect towards the end of the trial, therefore, the 

left-hand side becomes 𝐿𝐻𝑆 = 1 − Φ(
𝑏√

𝑑1+𝑑2
4

− 𝑧1√
𝑑1
4

√
𝑑2
4

)   

and the right-hand side  is 𝑅𝐻𝑆 = 1 − Φ(
𝑏∗ √

𝑑1+𝑑2
∗

4
− 𝑧1√

𝑑1
4

√𝑑2
∗

4

)  

Equating both, we have 𝑏∗ as the function of 𝑏. That is: 

𝑏∗ =
1

√𝑑1+𝑑2
∗ [ (√

𝑑2
∗

𝑑2
( 𝑏√𝑑1 + 𝑑2 − 𝑧1√𝑑1 )) + 𝑧1√𝑑1]                                                          (2.4)  

So after adaptation type I error rate will be well-controlled when 𝑍∗ ≥ 𝑏∗  is used as the final 

rejection rule. Above derivation is an implementation of Gao, Ware and Mehta (2008) to survival 

data. Now, let’s go back to the question asked in Section 2.1, is it possible to stick to decision 

rule using both conventional test after adaptation (i.e., 𝑍∗) and original critical value 𝑏 while 

still not inflating type I error rate even with a sample size increase after interim? So the goal here 

is: instead of controlling type I error rate using 𝑍 ≥ 𝑏 without adaptation or 𝑍∗ ≥ 𝑏∗ after 

adaptation, when is it applicable to use 𝑍∗ ≥ 𝑏, the conventional test 𝑍∗ after adaptation but 
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still with original critical value 𝑏? In doing that, weighting strategy which violates of “one 

patient one vote” is not used at final analyses, which therefore makes communications between 

statisticians and clinical people much easier. Since 𝑏∗ (also defined as 𝑏∗(𝑧1, 𝑑2
∗)) is a function 

of 𝑑2
∗  whereby 𝑑2

∗  is linked to conditional power, one can only do adaptation in a sample space 

of 𝑧1 where conditional power based on 𝑧1 and 𝑑2
∗   leads to  𝑏∗(𝑧1, 𝑑2

∗) ≤ 𝑏.   See below 

for picking up 𝑑2
∗  in Steps i)-ii).  

For these cases of 𝑧1 in a region resulting in 𝑏∗(𝑧1, 𝑑2
∗) ≤ 𝑏, it can be proved that 𝑃𝐻0(𝑍

∗ ≥

𝑏∗| 𝑍1) ≥ 𝑃𝐻0(𝑍
∗ ≥ 𝑏| 𝑍1). Specifically, because 𝑏2

∗ is chosen so that  ∫ 𝑃𝐻0(𝑍
∗ ≥

+∞

𝑏1

𝑏∗|𝑍1 =𝑧1)∅(𝑧1)𝑑𝑧1 = 𝛼2, with 𝛼2 being alpha level spent at stage two after interim, the 

usage of 𝑍∗ ≥ 𝑏 at the final analysis only when 𝑧1 is in the region resulting in 𝑏∗(𝑧1, 𝑑2
∗) ≤ 𝑏  

will always result in a type I error rate  at stage 2 being less than or equal to the pre-allocated 

alpha for stage 2. Mathematically, =  𝛼1 + 𝛼2 = 

Φ(𝑏1) + ∫ 𝑃𝐻0(𝑍
∗ ≥ 𝑏∗|𝑍1 = 𝑧1

+∞

𝑏1
)∅(𝑧1)𝑑𝑧1 ≥ Φ(𝑏1) + ∫ 𝑃𝐻0(𝑍

∗ ≥ 𝑏|𝑍1 = 𝑧1
+∞

𝑏1
)∅(𝑧1)𝑑𝑧1, 

because during the sample size adaptation 𝑑2
∗  given 𝑧1 is chosen in a region with 𝑏∗(𝑧1, 𝑑2

∗) ≤

𝑏. 

Following Mehta and Pocock (2010), here are the steps to do sample size increase during a 

survival trial when interim results are promising: 

i) For each 𝑍1 = 𝑧1, find corresponding 𝑑2
# so that conditional power carrying current 

trend till the study end being 1 − 𝛽.  

ii) 𝑑2
∗ = min(𝑑2

#, 𝑑2,𝑚𝑎𝑥 = 𝑑𝑚𝑎𝑥 − 𝑑1) to account for budget limit. 

iii) For a pair of (𝑧1, 𝑑2
∗), calculate adjusted critical value 𝑏∗(𝑧1, 𝑑2

∗) using Equation (2.4). 

iv)  For a pair of (𝑧1, 𝑑2
∗), calculate new conditional power 𝐶𝑃𝜃 ̂(𝑧1, 𝑑2

∗) based on adjusted 

additional 𝑑2
∗  events after interim using Equation (2.1). 
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v) For this particular 𝑧1, calculate original conditional power 𝐶𝑃𝜃 ̂(𝑧1, 𝑑2) based on 

planned additional 𝑑2 events after interim using Equation (2.3). 

vi) Iterative Steps i)-v) for 𝑧1  ∈ [0.01,4.00] by increment of 0.01. 

Using all values obtained from above in Steps i)-vi), a promising zone is created as follows:  

vii) Plotting 𝑏∗(𝑧1, 𝑑2
∗) versus 𝑧1. 

viii) Plotting the curve of preplanned critical value line 𝑏 for final analysis which is a 

horizontal line. 

ix) Plotting the curve of conditional power 𝐶𝑃𝜃 ̂(𝑧1, 𝑑2) against pair of 𝑧1 and pre-planned 

𝑑2. 

x) Promising zone is defined as: 𝕡 = {𝐶𝑃𝜃 ̂(𝑧1, 𝑑2): 𝑏
∗(𝑧1, 𝑑2

∗) ≤ 𝑏 } and the minimal 

conditional power is:  𝐶𝑃𝜃̂,𝑚𝑖𝑛=inf{𝐶𝑃𝜃 ̂(𝑧1, 𝑑2): 𝑏
∗(𝑧1, 𝑑2

∗) ≤ 𝑏}. 

xi) 𝐶𝑃𝜃̂,𝑚𝑎𝑥={𝐶𝑃𝜃 ̂(𝑧1, 𝑑2): 𝐶𝑃𝜃 ̂(𝑧1, 𝑑2) = 1 − 𝛽}. 

xii) The sample space of 𝑧1 is then divided into three regions: 

The unfavorable zone 𝐶𝑃𝜃 ̂(𝑧1, 𝑑2) ∈ [0, 𝐶𝑃𝜃̂,𝑚𝑖𝑛) 

The promising zone 𝐶𝑃𝜃 ̂(𝑧1, 𝑑2) ∈ [𝐶𝑃𝜃̂,𝑚𝑖𝑛, 1 − 𝛽] 

The favorable zone 𝐶𝑃𝜃 ̂(𝑧1, 𝑑2) ∈ (1 − 𝛽, 1] 

xiii) Set d2
∗ = d2 when 𝑧1 is located in both unfavorable and favorable zones. 

xiv) Plotting the curve of conditional power CPθ ̂(z1, d2
∗) against z1 based on the adapted 

d2
∗  to check conditional power change after boosting sample size from  d2 to d2

∗  in 

this promising zone. 
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Figure 5(Fig. 2.1): Promising zone, adjusted critical value and conditional power 

Figure 2.1: Promising zone, adjusted critical value and conditional power curves for a two 

stage design with WT boundaries with shape parameter of 0.15, 𝐭𝟏=0.5, 𝛂 = 𝟎. 𝟎𝟐𝟓, 𝛃 =
𝟎. 𝟏, 𝐝𝐦𝐚𝐱/𝐝=2 and no early stopping for futility.  

 

2.1a: adjusted final critical value 𝑏∗(𝑧1, 𝑑2
∗), conditional power based on 𝑑2 and d2

∗  

respectively versus 𝑧1. 

2.1b: Adjusted d2
∗  versus 𝑧1 in the promising zone. 
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Figure 2.1a graphically represents how optimal zone is chosen based on Steps i)-xiv). A two-

stage group sequential design using Wang-Tsiatis (1987) (WT) upper boundaries with shape 

parameter of 0.15, t1=0.5, α = 0.025, β = 0.1, dmax/d=2, hazard ratio Δ = 2 and no early 

stopping for futility. Then one obtains b vector = (2.556876, 2.006084), required events d1 =

45,  d2 = 45, d=90, dmax = 180 and  d2,max = 135. For each z1  in the sample space,  d2
# 

is sought out to ensure conditional power CPθ ̂(z1, d2
#) being 0.9 using Equation (2.1) with 

assuming observed effect size at interim being carried towards the end of the trial; then the 

adapted sample size for stage two is  d2
∗ = min(d2

#, d2,max = dmax − d1 = 135) with 

truncation from above due to budget limit. Figure 2.1a has the second x-axis below the main x-

axis 𝑧1 to show the corresponding 𝑑2
∗  associated with each sample point of 𝑧1. Adjusted 

𝑏∗(𝑧1, 𝑑2
∗) per Equation (2.3) is the final adjusted critical value to control type I error rate when 

using decision rule 𝑍∗ ≥ 𝑏∗(𝑧1, 𝑑2
∗), where 𝑍∗ is the conventional log-rank test statistic based 

on accumulative data upon study termination without weighting strategy. Next, using 𝑍∗ ≥ 𝑏 =

2.006084 as the rejection rule whenever 𝑧1 is residing in the zone with 𝑏∗(𝑧1, 𝑑2
∗) ≤ 𝑏 will 

control the type I error rate at 0.025 level because probability of conventional test statistic being 

greater than or equal to 𝑏∗(𝑧1, 𝑑2
∗) under null hypothesis is exactly 0.025 and hence resulting in 

type I error less than or equal to 0.025 when test statistic is compared with 𝑏 in the promising 

zone with 𝑏∗(𝑧1, 𝑑2
∗) ≤ 𝑏. Black Long-dash line decreases first and then increases in 𝑧1 with an 

interval being less than equal to the horizontal line of original critical value 𝑏, the grey long-

dash line in Figure 2.1a. So the point when these two curves cross at left side corresponds to the 

smallest  𝑧1 in this promising zone, within which the conditional power at this point is the 

minimal conditional power 𝐶𝑃𝜃̂,𝑚𝑖𝑛. This corresponds to 𝑧1 = 1.24 and 𝐶𝑃𝜃̂,𝑚𝑖𝑛 = 0.3605 in 
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Figure 2.1a. The upper bound of promising zone is the point when conditional power based on 

planned 𝑑2 equals 0.9, which corresponds to 𝑧1 = 2.06 and 𝐶𝑃𝜃 ̂(𝑧1, 𝑑2) = 0.9. The black 

dotted and back medium-dash curves are the conditional powers based on original d2 and 

adjusted 𝑑2
∗  respectively; and both are against right y-axis in a scale ranging from 0 to 1 and 

coincide with each other outside the promising zone because d2 is still used in these two zones. 

Conditional power based on adjusted 𝑑2
∗  is boosted up in the range of 𝑧1 ∈ [1.24,1.51] 

because the maximum allowable sample size 𝑑2
∗ = 135 is used in the region due to the required 

number of events to gain power of 0.9 being larger than the maximum allowable limit; and be the 

constant of 0.9 for 𝑧1 between 1.52 and 2.06. Figure 2.1b shows corresponding 𝑑2
∗   with 

respect to 𝑧1 in the promising zone. 
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Figure 6(Fig. 2.2): Percent increase in Sample size 

Figure 2.2: Percent increase in Sample size versus 𝒛𝟏for {𝒕𝟏 = 𝟎. 𝟓, 𝟏}: Upper left for 
𝒅𝒎𝒂𝒙

𝒅
= 𝟏. 𝟓; upper right for Upper left for 

𝒅𝒎𝒂𝒙

𝒅
= 𝟐; lower left for 

𝒅𝒎𝒂𝒙

𝒅
= 𝟑;  and lower 

right for 
𝒅𝒎𝒂𝒙

𝒅
= 𝟒 

 

This promising zone is set up prior to trial start for a given set including 𝛼, 𝛽, {𝑡1, 1}, 𝑑𝑚𝑎𝑥/𝑑 

and a certain type of group sequential upper boundaries. 𝛼, 𝛽, {𝑡1, 1} and type of group 

sequential test defines {𝑏1, 𝑏} and {𝑑1, 𝑑2} upfront. After conducting the trial to collect 𝑑1 

number of events, interim logrank test statistic 𝑧1 will be calculated. If the conditional power 

𝐶𝑃𝜃 ̂(𝑧1, 𝑑2) is located in the promising zone and null hypothesis is not rejected at interim, we 

continue into stage two to collect additional 𝑑2
∗  (Figure 2.1) number of events such that 

𝐶𝑃𝜃 ̂(𝑧1, 𝑑2
∗)=1- 𝛽 if required number of events is below maximum allowable number or the 

same as the maximum allowable number when the required number exceeds it. When interim 

test statistic 𝑧1 falls either the unfavorable zone or the favorable zone, the trial will continue to 

collect 𝑑2 events with no adaptation. 

Figure 2.2 shows the sample space division for 𝑧1 when there is an equally spaced two-stage 

design with different ratios of maximum sample size after adaptation relative to pre-planned 

sample size. When 
𝑑𝑚𝑎𝑥

𝑑
= 1.5, allowing maximum of 50% in total sample size increase, the 

promising zone starts from conditional power of 0.4063 to 0.9, corresponding to 𝑧1 from 1.31 to 

2.06. For  
dmax

d
= 2, 

dmax

d
= 3 and 

dmax

d
= 4, the lower limit of promising zone is respectively 

with conditional power of 0.3605, 0.3026 and 0.2752.  The lower bound of promising zone 

decreases as ratio of dmax/d increases. 

Section 2.4: CIBS I and II: Revisit 

In old bad days, it took ten years from a failed, underpowered trial to a success trial conducted 
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with enough power to detect alternative hypothesis. The estimated annual mortality rate from 

CIBS-II is 8.8% in the bisoprolol group and 13.2% in the placebo group. So the hazard ratio is 

estimated to be 1.5 (i.e., 0.132/0.088). Based on hazard ratio 1.5, for a two-stage group 

sequential trial with one-sided error of 0.025 and information vector of t = (0.5, 1) using WT 

boundary with shape parameter 0.15, the upper boundary vector is b1= 2.554 and b=2.006. Total 

number of events required to detect hazard ratio 1.5 with above two-stage WT group sequential 

design is 261 (note that CIBS-II had 384 events in total in the end and CIBS-I only accumulated 

120 events in total) when 𝛼 = 0.025 and 1 − 𝛽 = 0.9. If  𝑑𝑚𝑎𝑥/𝑑 is 3, a promising zone for 

CIBS-I can be constructed accordingly per steps in Section 2.3. Now let one take a look and see 

what would have been obtained had there been a sample increase implemented in CIBS-I while 

back to 1989? The minimal conditional power is then 0.3023 with optimal zone located within 

(0.3023, 0.9). From CIBS-I publication, interim log-rank test statistic was only 1.23 with low 

conditional power of 0.3531. Implementing optimal zone algorithm for survival data, additional 

80 or more events are in need to be accumulated, rather than stopped the trial at the time when 

only 120 events were accumulated to disclaim the ‘failure’ of the trial. Had optimal zone method 

have been implemented, drug development time for bisoprolol would have been shorten up to 

maybe only 4-5 years instead of ten-year long plus huge economic cost for initiating one more 

trial.  

Section 2.5: Simulation Results 

Extensive simulations for proposed method are done with survival data in the presence or 

absence of censoring. As in Section 2.4, a one-sided two-stage group sequential design (GSD) is 

set up with WT boundaries with a shape parameter of 0.15 so that the upper bounds are defined 

accordingly: b=(2.554, 2.006) for equally spaced design with t = (0.5,1), b = (3.422, 1.963) for a 

design with  early interim analysis (i.e., t = (0.2,1) ); and b = (2.209, 2.043) with late interim 
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analysis (i.e., t = (0.8,1) ). Power requirement of 0.9 (𝛽 = 0.1) is used to search for total number 

of events to ensure enough power of detecting alternative hypothesis of hazard ratio of 2 (i.e., 

Δ =
𝜆𝑐

𝜆𝐸
= 2). Subsequently, 90 total events is required for both equally spaced and late interim 

analysis, while only 88 is required for design with early interim analysis of  t = (0.2, 1).  Only 

exponential censoring with ∅𝐶 = ∅𝐸 = 0.5𝜆𝐶 is covered. That is:  hazard rates of censoring in 

both treatment and placebo groups are the same and is 50% of the event hazard rate for placebo 

group subjects. Of course, censoring is assumed to be independent of both the time to event 

process and the accrual process. No futility boundaries are defined for simplicity but can be 

easily added if necessary. GSD is converted into adaptive GSD (A-GSD) by inserting an option 

of sample size increase in the situation when the interim result falls into the promising zone. To 

assess how an underpowered GSD performs under A-GSD, simulations are done with hazard 

ratio being 1.2, 1.4, 1.6, 1.8, and 2, in combination of different information vectors and 
𝑑𝑚𝑎𝑥

𝑑
  

ratios. In the meantime, the impacts of censoring on trial operating characteristics are shown as 

side results in both GSD and A-GSD.  

Tables 2.1 – 2.4 list simulate operating characteristics with summaries of conditional results 

(Columns 5-7) and unconditional results (Columns 8-9) with Columns 5-7 being subset into two 

small columns with GSD and A-GSD side-by-side to illustrate resulting differences in between. 

Column 3 is the frequency distribution of three zones accompanied by Column 4 with probability 

of rejecting null hypothesis at interim given interim results, from which no rejection is present in 

both unfavorable and promising zones and only a portion of  z1 resulting in the right tail of the 

favorable zone have null hypothesis rejected at interim analysis. Columns 5 and 6 contain the 

conditional probability of rejecting null at final analysis and the combined conditional 

probability of rejecting null either at interim or final, respectively, conditional upon interim 
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outcome. From Columns 5 and 6, it is shown that there is an obvious boost in conditional power 

after sample size adaptation when interim test statistic falling into the promising zone. 

Subsequently, Column 7 presents conditional average sample size per zone. Column 8, on the 

other hand, illustrates overall probabilities of rejection null at interim/final/interim or final and 

the expected average sample number irrespective of interim zone, following by the last column 

to show expected sample number for both GSD and A-GSD. As pointed out by a reviewer, 

conditional power is as important as overall power as the decision on any adaptation is taken at 

the time of the interim analysis and is therefore driven by the gain in conditional power and 

subsequently leading to increase in overall power.  

Tables 2.1- 2.2 show the operating characteristics of both GSD and A-GSD for 
𝑑𝑚𝑎𝑥

𝑑
= 2 with 

interim performed in the middle of the trial in the absence of censoring (Table 2.1) and in the 

presence of censoring (Table 2.2). In Table 2.1, the overall probability of rejecting null 

hypothesis under hazard ratio of 2 is 89.1% for GSD and increases to 92.0% with insertion of 

sample size increase in the promising zone. The increase in overall power from GSD to A-GSD 

is the largest when hazard ratio being 1.4 and 1.6. For example, it is 4.9% for Δ = 1.4 (from 

34.1% to 39.0%), 6.6% for Δ = 1.6 (from 58.2% to 64.8%), 4.6% for Δ = 1.8 (from 77.4% to 

82.0%), and 2.9% for Δ = 2.0 (from 89.1% to 92.0%). The increase of overall power using A-

GSD is due to increase in conditional power when interim log-rank test statistic belongs to the 

promising zone. For instance, it is 17.5% for Δ = 1.4 (from 45.5% to 63.0%) and 20.3% for 

Δ = 1.6 (from 62.4% to 82.7%) and 15.1% for Δ = 1.8 (from 77.9% to 93.0%). The designed 

parameters are calibrated at alternative hypothesis with hazard ratio of 2.0 and trial will be 

under-powered when the true hazard ratio is below 2.0. In this case, one can see that the 

proposed procedure rescued under-powered study to achieve a reasonable power (>=64.8%) as 
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long as true hazard ratio is above 1.6. The increase in overall power is due to a considerable 

amount of patients falling in the promising zone (18.2%, 28.0%, 32.8%, 30.2% and 27.0% for 

Δ=1.2, 1.4, 1.6, 1.8 and 2.0 respectively). Table 2.1 has the same design as the one in Figure 2.1 

as well as the one in the upper right corner in Figure 2.2.  As depicted in Figure 2.1a, promising 

zone is an interval with 𝑧1 ranging from 1.24 to 2.06, among which the maximum conditional 

power is 0.9 while first half (i.e., 𝑧1 ∈ [1.24,1.51]) being less than 0.9. A boost in conditional 

power in the promising zone results in a boost in overall power, while the extent of increase 

decreases when true hazard ratio approaches the designed value of 2 because original group 

sequential design without sample size re-estimation already has large enough overall power. The 

average sample number (ASN) in Table 2.1 is consistently around 110 for A-GSD when the true 

hazard ratio is between 1.4 and 2.0, with 20+% increases from that of GSD.  

From Table 2.2, there are no signs that inserting competing process of censoring will lower down 

overall power in either GSD or A-GSD as compared with cases in the absence of censoring. It 

seems that, uniformly for cases of Δ = 1.4, 1.6, 1.8 and 2.0, powers in the presence of censoring 

are similar to their counterparts in Table 2.1. For hazard ratio 1.6, the overall powers are 58.4% 

and 64.9% for GSD and A-GSD respectively in the presence of censoring in Table 2.2 as 

compared with 58.2% and 64.8% in Table 2.1. Similarly, when true hazard ratio is 2, they are 

89.1% and 92.0% in overall power for GSD and A-GSD respectively for cases in the absence of 

censoring in Table 2.1 as compared with 89.4% (for GSD) and 92.3% (for A-GSD) in the 

presence of censoring in Table 2.2.  

Tables 2.3 – 2.4 investigate how the operating characteristics change if allowable increase ratio 

(i.e.,
𝑑𝑚𝑎𝑥

𝑑
) is changed from 2 to 4 in the absence of censoring (Table 2.3) and in the presence of 

censoring (Table 2.4) can rescue the underpowered trials better? And in what magnitude as 
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compared with its respective cases in Tables 2.1 – 2.2?  From Tables 2.3 - 2.4, increase in 

allowable sample size limit can increase overall power but in a small extent (from 92.0% to 

92.4% in the absence of censoring in Tables 2.1 and 2.3 and from 92.3% to 93.0% in the 

presence of censoring in Tables 2.2 and 2.4 for Δ = 2.0), but with expense of 13% percent in 

increase of expected sample size (113/127 to 111/126). Change in 
𝑑𝑚𝑎𝑥

𝑑
 from 2 to 4 does not 

impact operation characteristics in all aspects except for impacts on expected sample size, which 

bring a question on the necessity of gaining that extra little power but at the expense of 13% of 

increase in sample size. Similarly for conditional power, for interim test statistic falling in the 

promising zone, which is the zone one wants to conduct rescue, conditional power increases up 

to 97.2% (vs. 96.6%) and 97.6% (vs. 97.0%) in the absence of censoring and in the presence of 

censoring respectively under 
𝑑𝑚𝑎𝑥

𝑑
= 4 (vs. 

𝑑𝑚𝑎𝑥

𝑑
= 2) at Δ = 2.0. 

Comparing with Tables 2.1 – 2.4, with which interims are done in the middle of the trial per pre-

planned information level,  t = (0.8,1)  and t = (0.2,1) show the properties of A-GSD when the 

interim analysis performs in the later part and close to the end of the trial and at the early part of 

the trial,  respectively. Power simulations to check impacts of timing design operation 

characteristics are not shown here. 𝑡1 = 0.2 results in much less subjects falling in the 

promising zone while 𝑡1 = 0.8 on the contrary results in more than half of first stage log-rank 

test statistic falling in the promising zone.  

To assess rejecting probability under null hypothesis (i.e.,Δ = 1), Table 2.5 presents operational 

characteristics of four scenarios in Tables 2.1 – 2.4. With no surprise, under null hypothesis the 

majority of subjects ended up in the unfavorable zone during simulations: 88.4% and 87.8% in 

the absence and presence of censoring respectively when 
𝑑𝑚𝑎𝑥

𝑑
= 2  (vs. 89.4% and 87.3% 
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when 
𝑑𝑚𝑎𝑥

𝑑
= 4). All simulations are done in 10000 simulation runs, type I error rates are all 

well-controlled as: 2.6%-2.9% for GSD with no sample size adaptation and 2.5%-2.7% for A-

GSD with sample size increase when interim statistic falls in the optimal zone (Table 2.5). 
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Table 5(Tab. 2.1): Simulated Operating Characteristics of Adaptive or Non-adaptive Group Sequential Design without censoring 

Table 2.1: Simulated Operating Characteristics of Adaptive or Non-adaptive Group Sequential Design without censoring 

while with t=(0.5,1), dmax/d=2, WT boundaries with shape parameter of 0.15, ∆= 𝟐. 𝟎, 𝜶 = 𝟎. 𝟎𝟐𝟓 and 𝜷 = 𝟎. 𝟏. 
Hazard  

Ratio for 
simulation 

Interim 

outcome 

P(interim 

outcome) 

P(Rejecti

on at 
interim | 

interim 

outcome) 
 

P(Rejection at final | 

interim outcome) 
 

 

Rejection Probability 

(interim or final) 
Conditional on Interim 

Outcome 

E(d 

|Interim Outcome) 

Overall 

Rejection Probability  

E(d) 

GSD A-GSD GSD A-GSD GSD A-GSD GSD 
(interim/final/either) 

A-GSD 
(interim/final/either) 

GS
D 

A-

GSD 
1.2 Unfavorable 74.4% 0% 4.0% 4.0% 4.0% 4.0% 90 90 2.8%/9.9%/12.7% 2.8%/11.2%/14.1% 90 101 

Promising 18.2% 0% 25.1% 32.3% 25.1% 32.3% 90 150 

Favorable 7.4% 37.9% 32.5% 32.5% 70.4% 70.4% 90 90 

1.4 Unfavorable 55.0% 0% 13.0% 13.0% 13.0% 13.0% 90 90 7.3%/26.8%/34.1% 7.3%/31.7%/39.0% 90 107 

Promising 28.0% 0% 45.5% 63.0% 45.5% 63.0% 90 148 

Favorable 17.0% 43.0% 40.6% 40.6% 83.6% 83.6% 90 90 

1.6 Unfavorable 37.2% 0% 26.8% 26.8% 26.8% 26.8% 90 90 15.7%/42.5%/58.2% 15.7%/49.2%/64.8% 90 111 

Promising 32.8% 0% 62.4% 82.7% 62.4% 82.7% 90  

Favorable 30.0% 52.2% 40.3% 40.3% 92.5% 92.5% 90 90 

1.8 Unfavorable 24.1% 0% 41.3% 41.3% 41.3% 41.3% 90 90 27.2%/50.2%/77.4% 27.2%/54.8%/82.0% 90 112 

Promising 30.2% 0% 77.9% 93.0% 77.9% 93.0% 90 142 

Favorable 45.7% 59.6% 36.6% 36.6% 96.2% 96.2% 90 90 

2.0 Unfavorable 15.4% 0% 58.9% 58.9% 58.9% 58.9% 90 90 38.6%/50.5%/89.1% 38.6%/53.4%/92.0% 90 113 

Promising 27.0% 0% 86.0% 96.6% 86.0% 96.6% 90 139 

Favorable 57.6% 67.0% 31.7% 31.7% 98.7% 98.7% 90 90 
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Table 6(Tab. 2.2): Simulated Operating Characteristics of Adaptive or Non-adaptive Group Sequential Design in the presence of censoring 

Table 2.2: Simulated Operating Characteristics of Adaptive or Non-adaptive Group Sequential Design in the presence of 

censoring while with t=(0.5,1),dmax/d=2, WT boundaries with shape parameter of 0.15, ∆= 𝟐. 𝟎, 𝜶 = 𝟎. 𝟎𝟐𝟓 and 𝜷 = 𝟎. 𝟏. 
Hazard  

Ratio for 
simulation 

Interim 

outcome 

P(interim 

outcome) 

P(Rejecti

on at 
interim | 

interim 

outcome) 
 

P(Rejection at final | 

interim outcome) 
 

 

Rejection Probability 

(interim or final) 
Conditional on Interim 

Outcome 

E(d 

|Interim Outcome) 

Overall 

Rejection Probability  

E(d) 

GSD A-GSD GSD A-GSD GSD A-GSD GSD 
(interim/final/either) 

A-GSD 
(interim/final/either) 

GS
D 

A-

GSD 
1.2 Unfavorable 73.9% 0% 3.9% 3.9% 3.9% 3.9% 90 90 2.5%/10.2%/12.6% 2.5%/11.8%/14.3% 90 102 

Promising 18.9% 0% 26.0% 34.9% 26.0% 34.9% 90 150 

Favorable 7.3% 34.3% 32.6% 32.6% 66.9% 66.9% 90 90 

1.4 Unfavorable 55.5% 0% 12.9% 12.9% 12.9% 12.9% 90 90 7.3%/26.7%/34.0% 7.3%/32.2%/39.5% 90 107 

Promising 27.5% 0% 46.1% 66.0% 46.1% 66.0% 90 147 

Favorable 16.9% 42.8% 40.6% 40.6% 83.4% 83.4% 90 90 

1.6 Unfavorable 37.6% 0% 27.0% 27.0% 27.0% 27.0% 90 90 15.6%/42.9%/58.4% 15.6%/49.3%/64.9% 90 111 

Promising 32.0% 0% 64.0% 84.0% 64.0% 84.0% 90 144 

Favorable 30.4% 51.3% 40.2% 40.2% 91.5% 91.5% 90 90 

1.8 Unfavorable 23.6% 0% 41.4% 41.4% 41.4% 41.4% 90 90 26.2%/51.5%/77.7% 26.2%/56.3%/82.6% 90 112 

Promising 31.7% 0% 77.8% 93.1% 77.8% 93.1% 90 141 

Favorable 44.8% 58.5% 38.3% 38.3% 96.8% 96.8% 90 90 

2.0 Unfavorable 14.5% 0% 58.0% 58.0% 58.0% 58.0% 90 90 38.5%/50.9%/89.4% 38.5%/53.8%/92.3% 90 111 

Promising 27.5% 0% 86.4% 97.0% 86.4% 97.0% 90 138 

Favorable 58.0% 66.3% 32.3% 32.3% 98.6% 98.6% 90 90 
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Table 7(Tab. 2.3): Simulated Operating Characteristics of Adaptive or Non-adaptive Group Sequential Design without censoring 

Table 2.3: Simulated Operating Characteristics of Adaptive or Non-adaptive Group Sequential Design without censoring 

while with t=(0.5,1), dmax/d=4, WT boundaries with shape parameter of 0.15, ∆= 𝟐. 𝟎, 𝜶 = 𝟎. 𝟎𝟐𝟓 and 𝜷 = 𝟎. 𝟏. 
Hazard  

Ratio for 
simulation 

Interim 

outcome 

P(interim 

outcome) 

P(Rejecti

on at 
interim | 

interim 

outcome) 
 

P(Rejection at final | 

interim outcome) 
 

 

Rejection Probability 

(interim or final) 
Conditional on Interim 

Outcome 

E(d 

|Interim Outcome) 

Overall 

Rejection Probability  

E(d) 

GSD A-GSD GSD A-GSD GSD A-GSD GSD 
(interim/final/either) 

A-GSD 
(interim/final/either) 

GS
D 

A-

GSD 
1.2 Unfavorable 69.0% 0% 3.5% 3.5% 3.5% 3.5% 90 90 2.9%/10.6%/13.4% 2.9%/13.9%/16.8% 90 116 

Promising 23.2% 0% 23.5% 38.0% 23.5% 38.0% 90 197 

Favorable 7.8% 36.9% 34.1% 34.1% 70.9% 70.9% 90 90 

1.4 Unfavorable 50.3% 0% 11.5% 11.5% 11.5% 11.5% 90 90 7.6%/26.9%/34.5% 7.6%/35.5%/43.1% 90 124 

Promising 32.3% 0% 44.3% 71.0% 44.3% 71.0% 90 187 

Favorable 17.4% 43.5% 38.9% 38.9% 82.4% 82.4% 90 90 

1.6 Unfavorable 32.6% 0% 24.0% 24.0% 24.0% 24.0% 90 90 16.1%/42.2%/58.3% 16.1%/52.2%/68.2% 90 129 

Promising 36.6% 0% 60.0% 87.1% 60.0% 87.1% 90 180 

Favorable 30.9% 52.0% 40.5% 40.5% 92.4% 92.4% 90 90 

1.8 Unfavorable 21.2% 0% 40.5% 40.5% 40.5% 40.5% 90 90 26.7%/51.0%/77.7% 26.7%/57.4%/84.1% 90 127 

Promising 34.2% 0% 75.9% 94.6% 75.9% 94.6% 90  

Favorable 44.7% 59.7% 37.0% 37.0% 96.7% 96.7% 90 90 

2.0 Unfavorable 12.3% 0% 52.2% 52.2% 52.2% 52.2% 90 90 38.3%/50.4%/88.7% 38.3%/54.1%/92.4% 90 127 

Promising 29.3% 0% 84.6% 97.2% 84.6% 97.2% 90 169 

Favorable 58.4% 65.5% 32.9% 32.9% 98.4% 98.4% 90 90 
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Table 8(Tab. 2.4): Simulated Operating Characteristics of Adaptive or Non-adaptive Group Sequential Design in the presence of censoring 

Table 2.4: Simulated Operating Characteristics of Adaptive or Non-adaptive Group Sequential Design in the presence of 

censoring while with t=(0.5,1),dmax/d=4, WT boundaries with shape parameter of 0.15, ∆= 𝟐. 𝟎, 𝜶 = 𝟎. 𝟎𝟐𝟓 and 𝜷 = 𝟎. 𝟏. 
Hazard  

Ratio for 

simulation 

Interim 

outcome 

P(interim 

outcome) 

P(Rejecti

on at 

interim | 

interim 

outcome) 
 

P(Rejection at final | 

interim outcome) 

 

 

Rejection Probability 

(interim or final) 

Conditional on Interim 

Outcome 

E(d 

|Interim Outcome) 

Overall 

Rejection Probability  

E(d) 

GSD A-GSD GSD A-GSD GSD A-GSD GSD 
(interim/final/either) 

A-GSD 
(interim/final/either) 

GS
D 

A-

GSD 
1.2 Unfavorable 69.9% 0% 3.4% 3.4% 3.4% 3.4% 90 90 2.5%/10.2%/12.6% 2.5%/13.6%/16.1% 90 115 

Promising 22.9% 0% 23.7% 38.9% 23.7% 38.9% 90 196 

Favorable 7.3% 34.3% 32.6% 32.6% 66.9% 66.9% 90 90 

1.4 Unfavorable 50.8% 0% 11.2% 11.2% 11.2% 11.2% 90 90 7.3%/26.7%/34.0% 7.3%/35.5%/42.7% 90 123 

Promising 32.3% 0% 43.8% 70.9% 43.8% 70.9% 90 186 

Favorable 16.9% 42.8% 40.6% 40.6% 83.4% 83.4% 90 90 

1.6 Unfavorable 32.9% 0% 24.0% 24.0% 24.0% 24.0% 90 90 15.6%/42.9%/58.4% 15.6%/52.5%/68.0% 90 130 

Promising 36.8% 0% 61.8% 88.0% 61.8% 88.0% 90 181 

Favorable 30.4% 51.3% 40.2% 40.2% 91.5% 91.5% 90 90 

1.8 Unfavorable 20.0% 0% 38.3% 38.3% 38.3% 38.3% 90 90 26.2%/51.5%/77.7% 26.2%/58.1%/84.3% 90 129 

Promising 35.2% 0% 75.8% 94.4% 75.8% 94.4% 90 173 

Favorable 44.8% 58.5% 38.3% 38.3% 96.8% 96.8% 90 90 

2.0 Unfavorable 12.0% 0% 54.5% 54.5% 54.5% 54.5% 90 90 38.5%/50.9%/89.4% 38.5%/54.5%/93.0% 90 126 

Promising 29.9% 0% 85.5% 97.6% 85.5% 97.6% 90 165 

Favorable 58.0% 66.3% 32.3% 32.3% 98.6% 98.6% 90 90 
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Table 9(Tab. 2.5): Simulated Type I error for eight different designs 

Table 2.5: Simulated Type I error for eight different designs which have WT 

boundaries with shape parameter of 0.15, ∆= 𝟐. 𝟎, 𝜶 = 𝟎. 𝟎𝟐𝟓 and 𝜷 = 𝟎. 𝟏. 
 Interim 

outcome 

P(interim 

outcome) 

Overall Rejection Probability  E(d) 

GSD 

(interim/final/either) 

A_GSD 

(interim/final/either) 

GS

D 
A-

GSD 
∆= 1.0 (simulation), 𝜑 = 0, 

𝑡 = (0.5,1), 𝑑𝑚𝑎𝑥/𝑑 = 2 
 

Unfavorable 88.4% 0.7%/2.2%/2.9% 0.7%/2.0%2.7% 90 96 

Promising 9.2% 

Favorable 2.4% 

∆= 1.0 (simulation),𝜑 = 0.5𝜆𝑐, 

𝑡 = (0.5,1), 𝑑𝑚𝑎𝑥/𝑑 = 2 
 

Unfavorable 89.4% 0.5%/2.1%/2.6% 0.5%/2.0%/2.5% 90 96 

Promising 8.7% 

Favorable 1.9% 

∆= 1.0 (simulation), 𝜑 = 0, 

𝑡 = (0.5,1), 𝑑𝑚𝑎𝑥/𝑑 =4 
 

Unfavorable 87.8% 0.6%/2.2%/2.8% 0.6%/2.0%/2.6% 90 102 

Promising 10.4% 

Favorable 2.3% 

∆= 1.0 (simulation),𝜑 = 0.5𝜆𝑐, 

𝑡 = (0.5,1), 𝑑𝑚𝑎𝑥/𝑑 = 4 
 

Unfavorable 87.3% 0.5%/2.1%/2.6% 0.5%/2.0%/2.5% 90 102 

Promising 10.8% 

Favorable 1.9% 

 

Section 2.6: Discussion 

This paper extends Mehta and Pocock (2010) to survival trials with a real example 

from a historical drug development example, together with extensive simulations on 

various scenarios in the presence or absence of censoring, large or moderate allowable 

limit in sample size increase, interim analysis occurring at an earlier or later time 

point. It can be seen that this method is very easy to implement for survival data and 

can be presented to non-statisticians easier than other methods as conventional test 

statistic and original critical value will be used for final analysis, which hence avoids 

the hotly-debated issue of violating “one patient one vote” with weighted test for final 

analysis. Due to the fact that no real clinical trials are lack of censoring, which can be 

caused by early withdrawal due to adverse event, lack of efficacy, loss to follow-up 

and subject consent as well as administratively censoring at analysis time point, 

simulation results for cases in the presence of censoring will assure its practicability in 

survival group sequential trials. Adaptation method proposed here performs well when 

timing of interim is not so early. Doing adaptation too early should not be considered 
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in general as estimate of drug effect is not stable at the early stage, thus downgrading 

the capability of rescuing an underpowered trial by sample size increase in the 

promising zone. Results also show that after a certain level, further increase of 

allowable sample size limit will barely help in terms of conditional and overall powers 

but at a big expense of expected sample size, therefore economically not efficient for 

having 
𝑑𝑚𝑎𝑥

𝑑
 too large. 

In the past two decades, numerous publications on sample size re-estimation and 

adaptive designs are mainly from two aspects: 1)use weighted test to construct a final 

test statistic comparing with original critical value, with which weighted test has the 

same distributional property under null hypothesis as the planned test statistic so that 

the type I error rate is controlled; 2) use conventional test even after adaptation but 

adjust critical value so that the overall type I error rate is controlled when decision is 

based on using conventional test statistic to be compared with adjusted critical value. 

Sample size increase in the promising zone provided the third way to control type I 

error rate. That is to define promising zone upfront based on type I error, power, 

budget limit, data type and test statistic to be used for both interim and final analyses 

together with adaptation rules in the promising zone as in Figures 2.1a and 2.1b. In 

this promising zone, sample size can be increased and conventional test without 

weighting strategy will be used to compare with the original critical value without any 

adjustment. Although being quite novel, this is a method not well-evaluated yet. As 

being criticized by Emerson, Levin and Emerson (2011), the efficiency of this method 

under-investigated. Therefore, how to improve the efficiency of this method in terms 

of minimizing average sample size with respect to parameters of interests is the 
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direction for future research. All in all, the promising zone is defined as the region of 

𝑧1 (or equivalently the region of conditional power under the initial design) 

where𝑏∗(𝑧1, 𝑑2
∗) ≤ 𝑏. The motivation for defining the promising zone in this way is 

that one can use the regular test 𝑍∗ ≥ 𝑏 for the final analysis without scarifying type I 

error rate control. However, as pointed out by the reviewer and agreed by the authors, 

that this is by no means the only way to specify the promising zone. In general, the 

promising zone could simply be perceived as a region of  𝑧1 within which the 

sponsor is willing to increase the sample size in exchange for a substantial gain in 

conditional power. It may be convenient to confine it to a region within which the 

conventional test 𝑍∗ ≥ 𝑏  is valid, but this is not necessary. If the promising zone 

contains a region in which 𝑏∗(𝑧1, 𝑑2
∗) > 𝑏, one would control the type I error rate with 

the CHW test 𝑍𝐶𝐻𝑊
∗ ≥ 𝑏. The choice of promising zone and the method for 

controlling the type I error is not necessarily linked. 
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CHAPTER 3 

Prediction of the Timing of Events in Clinical Trials with Survival 

Endpoints: A Trial Example 

(Being Reviewed by Journal of Biopharmaceutical Statistics) 

Abstract: In event-based clinical trials, interim and final analyses at pre-specified 

event times are often proposed. In a randomized withdrawal trial with time-to-event 

primary endpoint, the design consists of subjects receiving a test treatment for a 

specified period and then being randomized to continue on that treatment or placebo. 

We present methodology to predict the time of reaching a required number of events 

during the double-blind phase of such a trial. We consider prediction at any time 

during the course of this trial: at the beginning of the trial; during the open-label phase 

of the trial and also during the double-blind phase of the trial (where some subjects 

could still be in the open-label phase). There has been recent work on tackling various 

aspects of this problem using parametric, semi-parametric or from a Bayesian 

perspective. Starting from Whitehead’s method (2001), we consider four additional 

features: (i) censoring process can be incorporated; (ii) calculating expected number of 

events by a future calendar time, t2, for subjects who were in the risk set at t1; (iii) 

predicting number of events by a future time point  t2 for subjects who were 

enrolled prior to randomization and will be randomized at a fixed time point before 

t2;  and (iv) various parametric survival distributions other than exponential (i.e., 

Weibull, Lognormal, Log logistic).  We applied our methodology during the conduct 

of a recently completed clinical trial to accurately predict the timing of the interim 

analysis. This allowed sufficient resources to be deployed leading to timely data 

analysis and reporting. 

Keywords: Time-to-event outcomes; trial duration prediction; interim analysis; 

survival endpoint. 

 

Section 3.1:  Introduction 

In clinical trials designed to compare survival curves under two treatments, it is often 

desirable to model and predict the timing to a pre-specified number of events since 

this has important implications on resource allocation, study budget and planning. In a 

randomized withdrawal trial with time-to-event primary endpoint, the design consist 

of subjects receiving a test treatment for a specified period of time (herein referred to 

as open-label phase) and then being randomly assigned to continue on that treatment 

or placebo (herein referred to as double-blind phase). During the recruitment period, 
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subjects who meet inclusion and exclusion criteria are screened, enter the trial at a 

certain rate for a specified period of time, and if meeting certain stability requirements, 

are randomized to one of the two treatment groups. After randomization process ends, 

there is a period called “continuation period”, during which patient follow-up 

continues (on treatment or placebo). Aside from having events during the trial, some 

event times (e.g., death or relapse times) are typically not observed and are said to be 

right-censored, as death times are only known to be greater or equal to the censoring 

time. Two types of censorship exist: 1) Subjects withdraw early due to adverse events, 

withdrawal of consent or loss to contact. These censorings are generally called “loss to 

follow-up”; 2) Subjects remain event-free at time of study termination, and are said to 

be “administratively censored”. Both censorships are not related to individual death 

times; hence it seems reasonable to assume independence between event and 

censoring time in prediction and statistical analysis. The log-rank statistic (Mantel, 

1966) has been widely accepted and used to compare survival curves in the presence 

of such censorships. Simulations (Lee, Desu and Gehan, 1975) show that the Mantel 

statistic (logrank) has acceptable power against other types of alternatives as well as 

proportional hazards, in which one hazard is a constant multiple of the other.  

In the literature, some authors have considered the dual problem of planning the size 

(i.e., the required number of patients) and the required duration of the trial when death 

times are assumed to be exponentially distributed. Pasternack and Gilbert (1971) 

converted fixed sample size determination into equivalent “person-years at risk”.  

When patients were accrued by cohorts, they derived required duration and number of 

events to ensure enough power to detect a certain percentage increase in the median 
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survival of subjects in treatment group over the control group.  Similar to Pasternack 

and Gilbert (1971), George and Desu (1974) also assumed exponential death times in 

the situation with lack of censoring during the trial. Instead of accrual by cohorts, 

accumulated number of patient-year in the time interval to obtain required number of 

events is now modeled as a filtered Poisson process. George and Desu (1974) showed 

that the required duration can be found by solving a non-linear equation using iterative 

techniques and proved that the minimal (optimal) required duration of study requires 

no continuation period after accrual period. Rubinstein, Gail and Santner (1981) 

extended the trial length calculations of Pasternack and Gilbert (1971) and George and 

Desu (1974) to cover experiments with Poisson accrual, loss to follow-up and a 

continuation period. In the case of no loss to follow-up and no continuation period, 

Rubinstein, Gail and Santner’s (1981) calculations differ very little from Table 2 of 

George and Desu (1974). All these length calculations are based on the assumption 

that the death times are exponential and the comparison was made via the maximum-

likelihood-estimation (MLE) of the death hazard rates. Simulations in Rubinstein, Gail 

and Santner (1981) showed that trial length calculations using MLE yield accurate 

power for Logrank test for exponential death times and approximately valid even for 

Weibull death times.  Although we use death times and survival time 

interchangeably, survival endpoints have actually become more broadly used, 

including not only time to death endpoint, but also time to other events. In a 

randomized withdrawal study design, subjects receiving a test treatment (i.e., open-

label) for a fixed-period of time are randomly assigned to continue on test drug or 

switch to placebo (i.e., withdrawal of active therapy) in the double-blind phase. Any 
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difference that appears between the group continuing on test drug and the group 

randomized to placebo would demonstrate the effect of the active treatment. For 

example, in randomized withdrawal trials, time from randomization to relapse in the 

double-blind phase is the key efficacy variable (measuring persistence of 

effectiveness) used to compare treatments in the double-blind phase after subjects 

being stabilized for disease symptoms in the open-label phase. See more details on 

randomized withdrawal trials on Pages 17-19 of FDA guidance document 

“Enrichment Strategies for Clinical Trials to Support Approval of Human Drugs and 

Biological Products”. Interim analyses are a common feature of clinical trials, 

especially for large trials or trials for rare disease with a low accrual rate. Whitehead 

(2001) described predicting final sample size and total duration of a sequential 

survival study with exponential death times and examined the pay-off between speed 

of accrual rate and length of continuation period, however, competing process of time 

to follow-up (censoring) was not considered. All prediction methods first estimate 

number of events required to test null hypothesis with certain power and size level, 

and then length of trial is estimated using accrual rate, rate of time to event, rate of 

loss to follow-up, accrual time, and length of the continuation period.  In this paper, 

we extend Whitehead (2001) to include censoring process in prediction prior to trial 

start and then provide methods to carry out prediction during the trial prior to interim 

analysis.    

In addition to parametric and semi-parametric approaches, others have considered 

prediction algorithms using Bayesian methods. Posterior parameters can be sampled 

using Markov Chain Monte Carlo (MCMC) with help from priors, observed likelihood 
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at time of prediction assuming parametric exponential survival times (Bagiella and 

Heitjan, 2001) or Weibull survival times (Ying and Heitjian, 2008). The predictive 

probability distribution of calendar time to obtain certain number of events can be 

completed by simulation based on posterior parameters for subjects not yet having an 

event at prediction time or to be recruited with a homogenous accrual process. 

Cumulative events at future time t2 consist of events occurring prior to and after 

prediction time. When randomization is blinded, estimating of posterior probability of 

being in one particular treatment can be incorporated in the middle of sampling 

algorithm (Donovan, Elliott and Heitjan, 2006); and similar research was done in the 

situation when randomization is not only masked but also blocked (Donovan, Elliott 

and Heitjan, 2007). Additional variation includes prediction when there is a delay in 

reporting events during the trial with some withdrawals recorded in database possibly 

having had an event occurred prior to withdrawal but without reporting (Wang et al., 

2012). All of these predictions assumed homogeneous accrual process together with 

either exponential or Weibull event times. Non-homogenous accrual combined with 

Bayesian prediction have also been explored in order to take into account different 

accrual rates across regions that normally occur in multi-regional clinical trials (Zhang 

and Long, 2010, 2012a). Additionally, Zhang and Long (2012b) published a 

systematic review paper on modeling and prediction of subject accrual and event times 

in clinical trials using Bayesian methods. 

Although extensive research has been done for various situations from Bayesian 

perspective, the choice of prior distribution, extensive sampling for each posterior 

parameter and creating complete sample based on posterior parameters somehow 
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prevent this set of methods from being widely used in clinical trials because of their 

computational and methodological complexities. Commercial software developers are 

now beginning to fill that need.  

In this paper, we develop methodologies to carry out prediction during the trial with or 

without censoring using different parametric death time distributions. Use of 

accumulated trial data can be incorporated without unmasking study treatment. 

Section 3.2:  Statistical Methods: Set Up 

To compare two treatments based on survival response, hypothesis testing could be 

constructed on a summary measure of the log hazard ratio, 𝜃 = −𝑙𝑜𝑔
𝜆𝐸(𝑡)

𝜆𝐶(𝑡)
,  for all 

𝑡 > 0, where 𝜆𝐸(𝑡) and 𝜆𝐶(𝑡) denote hazard at time 𝑡 for experimental and control 

group respectively, when there is exponential death time or the more general case of 

constant hazard ratio over time. The null hypothesis is 𝐻0: 𝜃 = 0 against   𝐻𝐴: 𝜃 =

𝜃𝑅, where 𝜃𝑅 is the clinically meaningful difference that the experimental group 

holds over the control group. Alternatively, this referential difference can be 

characterized in terms of survival functions 𝑆𝐸(𝑡) and 𝑆𝐶(𝑡) on E (experimental 

group) and C (control group): 𝜃 = − log[− log[𝑆𝐸(𝑡) ] ] +  log[− log[𝑆𝐶(𝑡) ] ], for all 

𝑡 > 0. After finding survivor probability for control group 𝑆𝐶(𝑡0) at 𝑡0, a specified  

𝑆𝐸(𝑡0) can be estimated. If the probability of rejecting (required power) null 

hypothesis against alternative is 1 − 𝛽 at two-sided significance level 𝛼, utilizing 

asymptotical normality properties  of Logrank statistic, the required number of events 

is 𝑒 =
(𝑧1−𝛼 /2 +𝑧1−𝛽)

2

(
𝜃𝑅
2
)2

 , where 𝑧1−𝛼 /2 is the 1 − 𝛼 /2 quartile value of standard 

normal random variable. This is deduced from the fact that, when 𝜃 is small, the 
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logrank statistic Z is approximately normal and distributed with mean 𝜃𝑉 and 

variance 𝑉, and 𝑉 = 𝑒/4 (Section 9.2.1 of Collett, 1994), 𝑒 is expected number of 

events at the end of the trial. Asymptotical normal approximation is very accurate for 

𝜃𝑅 < 1; and acceptable for 1 ≤ 𝜃𝑅 < 2. We only make use of relative reference of 

𝜃𝑅, 𝛼 and 𝛽. The rate of randomization accrual, randomization accrual time, length of 

continuation period, and rate of loss to follow-up haven’t played a role in trial design 

at this stage.  Starting from required number of events, number of patients to be 

randomized in time 𝑇 and then to be followed in time 𝜏 can be deduced in Sections 

below. We specifically consider prediction based on a clinical trial with a randomized 

withdrawal design. We illustrate predicting number of patients to recruit (or trial 

duration to achieve required number of events) by two different scenarios: 1) 

Predicting before trial start. In this case, we can integrate with respect to distribution 

of times from entry to end of trial (Figure 3.1a, Appendix 3.1). 2) Predicting during 

the trial before interim or final analysis (Figure 3.1b, Appendices 3.2 and 3.3).   

During the trial, specifically at time t1, the expected cumulative number of events up 

to a future time t2 includes events that have occurred prior to and on t1 plus events 

yet to occur between t1 and t2.  For trials which have fixed-length phases prior to 

randomization into the double-blind phase, at time t1, some subjects may be ongoing 

during the phases prior to randomization and will be randomized at a known time  

between t1 and t2, this cohort will contribute to the total number of events up to a 

future time t2. Subjects who were randomized but remained event free in the double-

blind phase of the trial at t1, who are in the at-risk set at predicting time t1, will also 

contribute to future events between t1 and t2. Figure 3.1a depicts the prediction prior 
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to trial start and Figure 3.1b depicts prediction during the trial.  Appendix 3.1 shows 

prediction algorithm in the presence of censoring prior to trial start. Appendix 3.2 

describes prediction algorithm for subjects to be randomized at a known time between 

t1 and t2 with or without censoring with death times of exponential, Weibull, Log-

logistic and Lognormal respectively and exponential censoring when it is present. 

Appendix 3.3 provides the prediction method for subjects who are in the risk set at 

prediction time t1. 

To do prediction prior to trial start, as depicted in Figure 3.1a, subjects are uniformly 

randomized in time interval [0, 𝑇] months. After randomization period, subjects 

remained in the trial are continued to be followed for additional 𝜏 months. Time to 

event or time to loss to follow-up can occur at any time during period [0, 𝑇 + 𝜏]. 

Subjects who are still remained event-free at time 𝑇 + 𝜏 are administratively 

censored. Appendix 3.1 describes calculation of expected number of events by time 

𝑇 + 𝜏, provided that both survival and censoring times are exponentially distributed 

and there is an uniform randomization period. From Figure 3.1a, where there is 

approximate uniform randomization accrual in [0, 𝑇] and subjects who have 

remained in the trial at time T are all followed for additional 𝜏 months. From Figure 

3.1a, we have 9 events and 4 censoring by time 𝑇 + 𝜏, including one with 

administrative censoring. 
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Figure 7(Fig. 3.1): Depiction of prediction prior to and during trial start 

Figure 3.1: Depiction of prediction prior to and during trial start. 

Figure 3.1a: Depiction of prediction prior to trial start with hypothetical subjects. 

Vertical bar “|” on the left hand of time line denotes the timing of performing 

randomization procedure and then subjects entered into the double-blind phase. 

Circle on the right hand indicates survival event occurred on this subject during 

the double-blind phase while cross symbol denotes censoring. 

 
Figure 3.1b:  Depiction of prediction during the trial. Upper graph: hypothetical 

subjects status before prediction at 𝐭𝟏. Lower graph: subjects status by time 𝐭𝟐. 

Vertical bar and circle symbols are defined in the same way as in Figure 3.1a. 
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Prediction is not a one-time thing and it is not just required prior to trial start. In 

normal practice, data can be blindly reviewed in order to obtain more information 

about what is going on in the trial while still not unblinding treatment information in 

order to maintain trial validity.  

Different from Figure 3.1a, subjects in Figure 3.1b start the trial with a fixed-length 

period prior to randomization. For example, in a randomized withdrawal trial, subjects 

will be treated in an open-label period with study medication to stabilize acute 

symptoms before being randomized to continue on the study drug or being switched to 

placebo. Time from randomization to first documentation of relapse in the double-

blind phase is primary endpoint to be observed so that the superiority of study drug 

over placebo in terms of delaying time to relapse can be assessed.   

As illustrated in the upper half of Figure 3.1b, there were three subjects who withdrew 

early in the phases prior to randomization (Subjects A, B and C). At time 𝑡1, one 

subject already had an event and one was censored; and four subjects who remained in 

the trial at time 𝑡1, within which two out of four will be randomized between 𝑡1 and 

𝑡2, the other two were randomized prior to 𝑡1 and are considered to be in the at risk 

set and might have events in (𝑡1, 𝑡2]. As illustrated in lower half of Figure 3.1b, by 

time 𝑡2,  the accumulated number of events in the double-blind phase can come from 

three different resources: 

 events occurred prior to or on  𝑡1 

 from subjects who are in the phases prior to double-blind phase and will be 

randomized between 𝑡1and 𝑡2, who could have events by time 𝑡2 
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 from subjects who are in the risk set at 𝑡1, who may have events by time 𝑡2 

Starting from cases well-known in the literature, Section 3.3 first extends Whitehead 

(2001) to predict trial duration for newly randomized subjects in the presence of 

censoring, assuming time to censoring non-related to death time in the trial. Besides 

working out predicting trial duration prior to trial start in the presence of censoring 

while Whitehead (2001) only has the case without censoring (i.e.  𝜙𝑐 =  𝜙𝐸 = 0), our 

main contributions are mainly in Sections 3.4 and 3.5 for prediction during the trial in 

the absence or presence of censoring. As depicted in Figure 3.1b, subjects who are 

ongoing at prediction time 𝑡1 consist with two cohorts: “To-Be-Randomized” 

subjects who are still ongoing in the phases prior to the double-blind phase and “At-

Risk” subjects who are ongoing without events in the double-blind phase at time of 

prediction. Section 3.4 is about prediction for “To-be-randomized” subjects who will 

be randomized at a known time between 𝑡1 and 𝑡2, starting with the case with 

censoring (Section 3.4.1) to the case without censoring, and from exponential death 

times  to non-exponential death times (Section 3.4.3). Section 3.5 describes 

prediction of expected number of events for “at-risk” subjects. Section 3.5.1 starts 

with the simpler case of no censoring present in the trial under exponential death time. 

Section 3.5.2 is for exponential death time in the presence of exponential censoring. 

Section 3.5.3 explores other death times in the presence of exponential censoring. 

 

Section 3.3: Prediction Prior to Trial Start in the Presence of Censoring  

In case that time to censoring competes with the time to event process in the double-

blind phase, subjects can be censored prior to a particular calendar time. If censoring 
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is indeed present in the trial, ignoring its existence will result in overestimating 

number of events at a given time and consequently underestimate the required trial 

duration needed to obtain certain number of events for analysis.   

Now let’s consider the prediction of trial duration prior to trial start. The steps to 

implement prediction for number of events prior to trial start or for newly randomized 

subjects are depicted in Appendix 3.1. Subjects are uniformly randomized at a rate of 

𝑎 for 𝑇 months, resulting in 𝑎𝑇 subjects randomized over time interval [0, 𝑇]. Since 

randomization ratio is 𝐴: 1 for treatment group over control group, the expected 

number randomized into treatment and control group are 
𝐴

𝐴+1
𝑎𝑇  and  

1

𝐴+1
𝑎𝑇, 

respectively. Because subjects are uniformly randomized into the double-blind phase 

over [0, 𝑇], the times from being randomized to end-of-study (EOS) are also 

independent and identically distributed ( i.i.d) uniform over [𝜏, T+ 𝜏] with density  

1

𝑇
 (where 𝜏 is the follow-up time). Given a time interval 𝑢 from entry onto control 

group to end-of-study, the probability that this entry will result in an event is 

 𝜆𝐶

 𝜆𝐶+ 𝜙𝐶
[ 1 − exp[−( 𝜆𝐶 +  𝜙𝐶)𝑢] ] given that time to event is i.i.d. exponential ( 𝜆𝐶), 

time to censoring is i.i.d. exponential ( 𝜙𝐶); and the two processes are independent of 

each other. Based on uniform distribution of 𝑢 (i.e. the times from entry to end-of-

study (EOS)) and given 𝑛𝐶  subjects being randomized into the control group, the 

expected number of events achieved by time T+ 𝜏 in the control group is:  

𝐸(𝑒𝑐|𝑛𝐶) =
 𝜆𝐶𝑛𝐶

 𝑇( 𝜆𝐶+ 𝜙𝐶)
 [ 𝑇 + 

exp[−( 𝜆𝐶+ 𝜙𝐶)(𝑇+𝜏)]−exp[−( 𝜆𝐶+ 𝜙𝐶)𝜏]

 𝜆𝐶+ 𝜙𝐶
 ].    

Replacing 𝑛𝐶  with 𝐸(𝑛𝐶), we get the expected number of events in the control group 

for newly randomized subjects by time T+ 𝜏 as follows: 
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𝐸(𝑒𝑐) =
𝑎 𝜆𝐶

(𝐴+1) ( 𝜆𝐶+ 𝜙𝐶)
 [ 𝑇 + 

exp[−( 𝜆𝐶+ 𝜙𝐶)(𝑇+𝜏)]−exp[−( 𝜆𝐶+ 𝜙𝐶)𝜏]

 𝜆𝐶+ 𝜙𝐶
 ].    

The process of conditioning and un-conditioning are repeatedly used in above 

formulation and the conditional independence between death times and censoring 

times do play a key role in finding the probability of resulting in an event rather than 

being censored by a particular time. Treatment group follows the same procedure as 

the control group. Adding up events in both groups leads to the predicted number of 

events by T+ 𝜏 for newly randomized subjects in the presence of censoring.  That is: 

𝐸(𝑒) =  𝐸(𝑒𝐶) + 𝐸(𝑒𝐸) =

𝑎𝑇 𝜆𝐶

(𝐴+1) ( 𝜆𝐶+ 𝜙𝐶)
+

𝑎𝐴 𝑇𝜆𝐸

(𝐴+1) ( 𝜆𝐸+ 𝜙𝐸)
+
𝑎 𝜆𝐶 [exp[−( 𝜆𝐶+ 𝜙𝐶)(𝑇+𝜏)]−exp[−( 𝜆𝐶+ 𝜙𝐶)𝜏]]

(𝐴+1) (𝜆𝐶+ 𝜙𝐶)2
+

𝑎𝐴 𝜆𝐸[exp[−( 𝜆𝐸+ 𝜙𝐸)(𝑇+𝜏)]−exp[−( 𝜆𝐸+ 𝜙𝐸)𝜏]]

(𝐴+1) (𝜆𝐸+ 𝜙𝐸)2
 . 

For a given number of events to be required for an interim or final analysis, trial 

duration T+ 𝜏 can be derived using the same equation by tilting values of T and/or 𝜏.  

 

Section 3.4: Prediction for the To-be-randomized Subjects  

As depicted in Figure 3.1b, to predict number of events during the trial, there is a 

cohort of subjects who were not yet randomized at 𝑡1 and will be randomized at a 

known time in (𝑡1, 𝑡2] who can contribute to events in (𝑡1, 𝑡2] referred to as “𝑒𝑛𝑒𝑤” , 

representing events from newly randomized subjects. Since the randomization time for 

a control subject is known as 𝑟𝑖𝐶 with 𝑡1 < 𝑟𝑖𝐶  ≤ 𝑡2, probability of resulting in an 

event in interval (𝑡1, 𝑡2] can be calculated directly and the outer integration with 

respect to distribution of accrual process as shown in Appendix 3.1 is no longer 

needed. This approach is very different from prediction prior to trial start where 
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randomization is a stochastic process and is modeled as uniformly distributed. Time to 

be randomized is now determined at 𝑟𝑖𝐶 for control subject in this cohort and time 

from randomization to 𝑡2 is 𝑡2 − 𝑟𝑖𝐶. For each To-Be-Randomized subject, 

probability of resulting in an event can be directly calculated. Thereafter summing 

over each subject in this cohort from both control and treatment groups will lead to the 

expected number of events in (𝑡1, 𝑡2]. After To-Be-Randomized subjects will be 

considered to be at risk once they are successfully randomized into the comparative 

double-blind phase after all protocol scheduled visits prior to it.  

Appendix 3.2 describes the prediction method for this cohort of subjects during the 

trial. Since without censoring is a special case of with censoring, prediction with 

exponential censoring is derived first in Section 3.4.1 and then goes to prediction 

without censoring together with different parametric type of death times. 

Section 3.4.1: Prediction in the Presence of Censoring 

Let 𝑢𝑖 be the time interval from randomization to end-of-study (i.e. 𝑢𝑖 = 𝑡2 − 𝑟𝑖𝐶), 

for each subject in the control group.  Thus, the probability of having an event for 

control subject 𝑖  is 𝑃[𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 < 𝑢𝑖] in the presence of censoring.  Event of 

(𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 < 𝑢𝑖) indicates event process occurred before the censoring process in  

(𝑡1, 𝑡2] and resulted in an event prior to 𝑡2.  

From Appendix 3.2, conditional on censoring variable, indicator variable 𝐼( 𝑌𝑐 < 𝑢𝑖)  

can be pulled out from expectation because of independence between death time and 

time to censoring, which is a reasonable assumption in survival trials. Thus probability 

of having an event for control subject 𝑖  is 

𝑃[𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 < 𝑢𝑖] = ∫ 𝑓𝑌𝐶
𝑢𝑖
0

(𝑡)𝑆𝑊𝐶
(𝑡)𝑑𝑡, where 𝑌𝑐 and 𝑊𝑐 are death time 
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variable and censoring variable respectively, 𝑢𝑖 is the time from randomization to 𝑡2, 

𝑓𝑌𝐶(𝑡) is the density of death times and 𝑆𝑊𝐶
(𝑡) (i.e. exp(− 𝜙𝐶𝑡) for exponential 

censoring) is the survivor function for time to censoring random variable. After 

plugging in death time density and exponential survivor function, integrate this 

product with respect to time 𝑡  resulting in the required probability. In case of 

exponential death time, 𝑓𝑌𝐶(𝑡) = 𝜆𝐶 exp(− 𝜆𝐶𝑡)  and 

𝑃[𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 < 𝑢𝑖]=∫  𝜆𝐶exp (− 𝜆𝐶𝑡)
𝑢𝑖
0

exp(− 𝜙𝐶𝑡) 𝑑𝑡 

As noted above, summing over all subjects in this cohort leads to the contribution on 

number of events from them in time (𝑡1, 𝑡2].  That is: 𝑒𝑛𝑒𝑤 = 𝐸(𝑒𝑐) + 𝐸(𝑒𝐸) 

= ∑ 𝑃[𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 < 𝑢𝑖]
𝑛𝑐
𝑖=1 + ∑ 𝑃[𝑌𝐸 < 𝑊𝐸 ,  𝑌𝐸 < 𝑢𝑖]

𝑛𝐸
𝑖=1  

Section 3.4.2: Prediction without Censoring 

With no censoring existing in the trial, 𝑆𝑊𝐶
(𝑡) is ignored in calculating predicted 

probability. Hence, P[Yc < Wc,  Yc < ui]  degenerates to P[ Yc < ui], which is 

basically the cumulative density function for death times. See Appendix 2 for 

corresponding cumulative density function (CDF) for different parametric death time 

distributions. 𝑒𝑛𝑒𝑤 = 𝐸(𝑒𝑐) + 𝐸(𝑒𝐸) = ∑ 𝑃[ 𝑌𝑐 < 𝑢𝑖]
𝑛𝑐
𝑖=1 + ∑ 𝑃[ 𝑌𝐸 < 𝑢𝑖]

𝑛𝐸
𝑖=1  

Section 3.4.3 When Death Time is Weibull or Another Type  

Similarly, for death time other than exponential, right density of  𝑓𝑌𝐶 is used with 

exponential censoring survival function 𝑆𝑊𝐶
(𝑡) and then integration with respect to 

time from 0 to 𝑢𝑖 can result in the probability of having an event in time (𝑡1, 𝑡2] for 

subject 𝑖 in this cohort.  

Not every To-Be-Randomized subject would withdraw early before being randomized 
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into the double-blind phase, only a fraction of the subjects who are ongoing in the 

phases prior to the double-blind phase can finish required period and then continue to 

be randomized into the double-blind phase at 𝑟𝑖𝐶 (with 𝑡1 < 𝑟𝑖𝐶  ≤ 𝑡2) so that they 

can contribute to the event count in (𝑡1, 𝑡2]. Because we only have loss to follow-up 

and administrative censorship in controlled clinical trial, there is no basis to assume 

non-constant hazard rate for time to censoring and thus only exponential censoring 

time is used in predicting methods in this paper throughout. However, in case having 

other censoring process present in the trial, other parametric censoring other than 

exponential can be incorporated as well. Similarly, hazard rate of death time could 

change over time in the trial. For example, cholesterol lowering therapies may take a 

year before physiologic changes are sufficient to reduce the hazard (Lipid Research 

Clinical Program, 1979). In this regards, parametric death times other than exponential 

could also be used in prediction algorithm. 

Section 3.5: Prediction for the At-Risk Subjects 

As illustrated in Figure 3.1b, predicting during the trial not only need to consider To-

Be-Randomized subjects, but also need to determine the probability of having an event 

in (𝑡1, 𝑡2] for subjects who remained event-free right in the double-blind phase at 

time 𝑡1.  These subjects are considered to be in the risk set at 𝑡1 because they 

potentially can have an event at any time after 𝑡1. For these At-Risk subjects, Sections 

3.5.1 and 3.5.2 illustrate the prediction algorithm in the presence of censoring and 

without censoring respectively. Section 3.5.3 explores prediction with Weibull death 

times as an example. Appendix 3.3 includes all the elements for prediction with or 

without censoring, and considers different parametric death times such as exponential, 
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Weibull, Log-logistic and Log-normal. 

Section 3.5.1: Prediction in the Presence of Censoring 

The same considerations made in the prediction described in Sections 3.3 and 3.4 are 

noted here. Let random variable of time to censoring for subject 𝑖 in the control 

group be exponentially distributed with hazard rate ∅𝐶.   

To calculate probability of having an event in the presence of censoring by 𝑡2 given 

subject is in the risk set at time 𝑡1, two machineries are needed (Appendix 3.3). First 

machinery is the conditional density of having an event prior to or on 𝑡2 conditioning 

on subject being in the risk set at 𝑡1. That is, to take derivative of 𝑃(𝑋𝑖𝐶 ≤ 𝑡2 −

𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶) with respect to variable of  𝑡2 − 𝑟𝑖𝐶  when 𝑡2 is varying from 

𝑡1 to positive infinity. The second machinery is the truncated survival function of time 

to censoring given time to censoring is greater than 𝑡1 − 𝑟𝑖𝐶. Excerpted from 

Appendix 3.3, the probability of having an event for At-Risk subject 𝑖 in the control 

group in the presence of censoring is: 

𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶 , 𝑋𝑖𝐶 < 𝑊𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶,𝑊𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶) 
= 𝐸𝑋𝑖𝐶  [ 𝐼(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶)𝑃(𝑥𝑖𝐶 ≤ 𝑊𝑖𝐶|𝑊𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶)  ]  

= ∫
𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)

exp (−∅𝐶𝑥𝑖𝐶 )

 exp [−∅𝐶(𝑡1−𝑟𝑖𝐶)]
𝑑𝑥𝑖𝐶  

𝑡2−𝑟𝑖𝐶
𝑡1−𝑟𝑖𝐶

   

The probability of having an event before 𝑡2 in the presence of censoring for At-Risk 

subjects is the event of 𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶   and 𝑋𝑖𝐶 < 𝑊𝑖𝐶 given both  𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶 

and 𝑊𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶, where 𝑋𝑖𝐶 and 𝑊𝑖𝐶 are exponential random variable for time to 

event and time to censoring for control subject 𝑖 respectively. Note that although time 

to death are i.i.d exponential with hazard rate  𝜆𝐶 and time to censoring are i.i.d. 

exponential with hazard rate ∅𝐶, we put a subscript 𝑖 to represent each subject in the 

formulation because conditional density and probabilities differ from each other due to 
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the difference in 𝑡1 − 𝑟𝑖𝐶 resulting from different randomization time from subject to 

subject. Probability of event of 𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶   and 𝑋𝑖𝐶 < 𝑊𝑖𝐶 given both  

𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶 and 𝑊𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶, as in Appendix 3.3, can be expressed as the 

expected value of an indicator function. Conditioning on random variable of time to 

censoring 𝑊𝑖𝐶, event of  𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶 can be separated out. Then 

two machineries mentioned above can be multiplied together as the integrand to be 

integrated in the range of (𝑡1 − 𝑟𝑖𝐶 ,  𝑡2 − 𝑟𝑖𝐶] to get the required probability for each 

subject in the risk set.  

For subject 𝑖 in the risk set at 𝑡1, the conditional probability accompanying with 

censoring is 
 𝜆𝐶[exp[−( 𝜆𝐶+∅𝐶)(𝑡1−𝑟𝑖𝐶)]−exp [−( 𝜆𝐶+∅𝐶)(𝑡2−𝑟𝑖𝐶)] ]

( 𝜆𝐶+∅𝐶)exp [−( 𝜆𝐶+∅𝐶)(𝑡1−𝑟𝑖𝐶)]
 . When ∅𝐶=0, the case 

with no censoring, this probability degenerates to 1 −
exp [− 𝜆𝐶(𝑡2−𝑟𝑖𝐶)]

exp [− 𝜆𝐶(𝑡1−𝑟𝑖𝐶)]
.  

Section 3.5.2: Prediction for Subjects in the Risk Set in Case There is No 

Censoring 

Unlike the prediction carried out prior to trial start in Section 3.3, each subject in the 

risk set has unique randomization date, hence has varying length of time from 

randomization to prediction time 𝑡1 and we do not make use of randomization 

accrual rate similar to what we did in predicting number of events prior to trial start.  

Deriving conditional probability directly for each individual and then summing all 

probabilities to get predicted number of events by 𝑡2 are what we propose (Appendix 

3.3).  Without considering censoring, the conditional probability for subject 𝑖 to 

have an event before 𝑡2 given being at risk at 𝑡1 is 𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 −

𝑟𝑖𝐶) = 1 −
𝑆𝐶(𝑡2−𝑟𝑖𝐶)

𝑆𝐶(𝑡1−𝑟𝑖𝐶)
.  
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This probability degenerates to be  1 − 𝑆𝐶(𝑡2 − 𝑟𝑖𝐶)  when  𝑡1 = 𝑟𝑖𝐶. In this case, 

this subject is no longer present in the risk set at 𝑡1, but could be considered as being 

randomized right at 𝑡1. The probability of having an event before 𝑡2 should be 

exactly one minus the survivor probability. When plugging in exponential death time, 

𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶) becomes 1 − exp [− 𝜆𝐶(𝑡2 − 𝑡1)], which shows the 

memory-less property of exponential distribution, with which the probability is only  

function of 𝑡2 − 𝑡1and the time staying in the trial prior to 𝑡1is fully ignored as there 

is no memory on it at all. 

Section 3.5.3 When Death Time is Weibull or Another Type 

There is no reason to assume non-constant hazard for time to censoring in clinical trial 

where withdrawals are non-informative with regard to death time process, but death 

times themselves could have non-constant hazard overtime. In case of other death time 

distribution,  𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶) will no longer have memory-less 

property for exponential death times; and  

𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶 , 𝑋𝑖𝐶 < 𝑊𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶 ,𝑊𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶) in the presence of 

censoring will be even harder to calculate. For other parametric death times, it is not 

easy or even possible to find the closed form for probability of having an event before 

𝑡2 for subjects in the risk set with or without censoring. However, numerical 

integration can easily help with calculating this probability measure.  For example, 

consider the two-parameter Weibull distribution with hazard function λ(t) =

λΥ(λt)Υ−1, Υ, λ > 0.  The hazard is monotone decreasing for Υ < 1, increasing for 

Υ > 1, and reduces to the constant hazard if Υ = 1. The probability for At-Risk 

subject 𝑖 to result in an event before 𝑡2 is 
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𝐸(𝑒𝑖𝑐) = ∫
𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)

exp(−∅𝐶𝑥𝑖𝐶 )

exp[−∅𝐶(𝑡1−𝑟𝑖𝐶)]
𝑑𝑥𝑖𝐶  

𝑡2−𝑟𝑖𝐶
𝑡1−𝑟𝑖𝐶

 

= ∫
λCΥC[λC𝑥𝑖𝐶]

ΥC−1exp [−[λC𝑥𝑖𝐶]
ΥC

exp [−[λC(𝑡1−𝑟𝑖𝐶)]
ΥC

𝑡2−𝑟𝑖𝐶
𝑡1−𝑟𝑖𝐶

∅𝐶exp (−∅𝐶𝑥𝑖𝐶 )

 exp [−∅𝐶(𝑡1−𝑟𝑖𝐶)]
𝑑𝑥𝑖𝐶 .   

When censoring process is ignored, it degenerates to  

𝐸(𝑒𝑖𝑐) = ∫
𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)
𝑑𝑥𝑖𝐶  

𝑡2−𝑟𝑖𝐶
𝑡1−𝑟𝑖𝐶

=

∫
λCΥC[λC𝑥𝑖𝐶]

ΥC−1exp [−[λC𝑥𝑖𝐶]
ΥC

exp [−[λC(𝑡1−𝑟𝑖𝐶)]
ΥC

𝑡2−𝑟𝑖𝐶
𝑡1−𝑟𝑖𝐶

𝑑𝑥𝑖𝐶 .   

Prediction for At-Risk subjects with death times in Log-logistic or Lognormal 

distribution with or without censoring is also explored in Appendix 3.3. Different from 

prediction for To-Be-Randomized subjects, all At-Risk subjects at 𝑡1 should be 

evaluated to contribute to the effective number of events accumulated in (𝑡1, 𝑡2]. The 

number of events from this cohort is referred as “𝑒𝑎𝑡𝑟𝑖𝑠𝑘”, which is  

𝐸(𝑒𝑐) + 𝐸(𝑒𝐸)= ∑ 𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶 , 𝑋𝑖𝐶 < 𝑊𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶 ,𝑊𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶)
𝑛𝑐
𝑖=1 +

∑ 𝑃(𝑋𝑖𝐸 ≤ 𝑡2 − 𝑟𝑖𝐸 , 𝑋𝑖𝐶 < 𝑊𝑖𝐸|𝑋𝑖𝐸 > 𝑡1 − 𝑟𝑖𝐸 ,𝑊𝑖𝐸 > 𝑡1 − 𝑟𝑖𝐸)
𝑛𝐸
𝑖=1                                

or 

𝐸(𝑒𝑐) + 𝐸(𝑒𝐸)= ∑ 𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶)
𝑛𝑐
𝑖=1 +

∑ 𝑃(𝑋𝑖𝐸 ≤ 𝑡2 − 𝑟𝑖𝐸|𝑋𝑖𝐸 > 𝑡1 − 𝑟𝑖𝐸 , )
𝑛𝐸
𝑖=1   for cases with censoring or without 

censoring respectively.  

 

Section 3.6: Clinical Trial Example  

During the conduct of a recently completed clinical trial (Berwaerts et al, 2015), the 

proposed methodology was implemented to yield accurate prediction of events.  

Briefly, this study evaluated the efficacy of an investigational compound compared to 

placebo in delay of the time to first occurrence of relapse.  The study consists of 4 
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phases: a screening Phase (up to 3 weeks); a 17-week flexible dose open-label 

transition phase; a 12-week fixed dose open-label maintenance phase; and a 

randomized, double-blind, fixed dose, placebo-controlled relapse prevention phase of 

variable duration. Subjects remained in the study for as long as they were clinically 

stable or until the Sponsor stopped the trial.  

As part of study design, it was assumed that the 12-month relapse rates for treatment 

and placebo will be 20% and 40%, respectively, resulting in a hazard ratio of 0.44. 

Approximately 196 subjects were expected to be randomized in the double-blind 

phase in a 1:1 ratio to either treatment or placebo in order to obtain 70 relapse events 

to show that treatment is significantly different from placebo at the 2-sided 

significance level of 0.05, with 90% power to detect a hazard ratio of 0.44. A 2-stage 

group-sequential design with one interim analysis was proposed to allow for early 

stopping if there was significant evidence of efficacy based upon the interim analysis 

after 60% of the projected relapse events (i.e., 42 relapse events) have occurred. It was 

assumed that at least 50% of subjects who enter the transition phase would discontinue 

the study or not meet the criteria for randomization in the double-blind Phase. To meet 

the expected number of 196 subjects (98 per treatment group) to be randomized in the 

double-blind phase, a total of 392 subjects were to be enrolled. The total number of 

subjects enrolled depended on the time that it would take to obtain 70 relapse events. 

The actual total number of subjects enrolled was 506. 

Several predictions were carried out during the course of trial to help with trial 

monitoring. One such prediction based on data from November 29, 2013 is used for 

the illustration below (Figure 3.2). The study begun on April 26, 2012, first subject 
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was randomized on November 26, 2012 and first event has occurred at December 10, 

2012. Figure 3.2 illustrates the states of affairs on November 29, 2013. 

 

Figure 8(Fig. 3.2): Study Completion and Withdrawal 

Figure 3.2: Study Completion and Withdrawal Information at Predicting Time 

𝐭𝟏 of November 29, 2013. 
 

By November 29, 2013, enrollment of subjects into the transition phase has been 

completed, the subjects who were still in the transition/maintenance phases were the 

only eligible cohort to be randomized after November 29, 2013 to have event and 

subjects who were ongoing on November 29, 2013 could have event later on. Since 

187 (37%) of the 506 enrolled subjects had withdrawn early from the 

transition/maintenance phase, we assume that 63% of other remaining subjects (n=58) 

in the transition/maintenance subjects would be randomized after 𝑡1. Thus, a uniform 

random variable is generated for each of the 58 subjects and a subject will be 

randomized after 𝑡1 if the uniform random variable is greater than or equal to 0.37.  

Therefore, among 58 subjects who were on-going in the combined 

transition/maintenance phases at prediction time, only 31 of them will be randomized 

later.  
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As shown in Figure 3.2, we then predict the time to achieve required number of events 

𝑡2 (with 𝑡2 > 𝑡1)  based on data as of November 29, 2013 (𝑡1):  

 28 events occurred in the double-blind before November 29, 2013 (i.e. 

𝑒𝑜𝑐𝑐=28);  

 Subjects (N=220) who were event-free in the double-blind phase on November 

29, 2013. The predicted number of events before 𝑡2 in this group is denoted 

as 𝑒𝑎𝑡𝑟𝑖𝑠𝑘;  

 63% of the subjects (n=31) who were ongoing during the 

transition/maintenance phases at November 29, 2013 and will be randomized 

after 𝑡1. The predicted number of events in this cohort is denoted as 𝑒𝑛𝑒𝑤. 

Section 3.6.1: Plotted Survival Curves at Time 𝒕𝟏 

Before implementing prediction algorithm on cutoff date of November 29, 2014, we 

derive the parametric death time distribution for prediction using exponential, 

Weibull, Log-logistic and Lognormal distributions. Parameters were extracted after 

fitting data with a parametric death time distribution of interest and were then used to 

create parametric survivor curve over time to compare with non-parametric Kaplan-

Meier (i.e. KM) curve. The parametric distribution closest to non-parametric KM plot 

would be considered appropriate. In order to maintain treatment information blinded, 

one combined group is used to extract parameters for death times instead of having 

treatment specific parameters. Figure 3.3 shows the KM plot along with fitted 

parametric death curves of exponential, Lognormal, Weibull and Log-logistic 

separately.  
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Figure 9(Fig. 3.3): KM plot and estimated parametric survivor curves at November 29 

Figure 3.3: KM plot and estimated parametric survivor curves at time 𝐭𝟏 of 

November 29, 2013 for the combined group in the DB phase 
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In addition to the plot, we calculated the distance between a particular parametric 

curve and KM plot at each death time point. Suppose there are J distinct death time 

points in the combined group in above KM plot (multiple events can occur at the same 

time point), si,KM is the survivor probability for KM plot at ith time point while si,p 

is for a particular parametric survival curve. The sum of squared differences over all J 

distinct time points is summarized for death times of Exponential, Weibull, Log-

logistic and Lognormal against KM plot respectively in Table 3.1. 

Table 10(Tab. 3.1): Sum of squared difference between survivor curve of a parametric distribution and the 

KM plot 

Table 3.1: Sum of squared difference between survivor curve of a parametric 

distribution and the KM plot 

 Exponential Weibull Log-logistic  Lognormal  

Sum of squared differences 

=∑(𝑠𝑖,𝑝 − 𝑠𝑖,𝐾𝑀)
2

𝐽

𝑖=1

 

0.066 0.119 0.099 0.050 

 

From Figure 3.4 and Table 3.1, it is difficult to choose the best parametric death time 

distribution to use for prediction, so all are used for prediction. This allows the 

prediction to yield a range of dates that could be used for trial monitoring and 

operational planning.  

In the Section 3.6.2 details on using data from November 29, 2013 to predict the 

calendar time, by which 42 relapses (including 28 relapses that had occurred prior to 

or on November 29, 2013) can be accumulated in the double-blind phase. Parameters 

for each parametric death times based on the combined data were already extracted in 

order to do plots in Figure 3.1. The hazard parameter for exponential censoring in the 

double-blind phase can be obtained using the same data but by considering time to 
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withdrawals prior to the 1st relapse and prior to November 29, 2013 as events while 

with the rest being censored at their relapse dates or at the cutoff date November 29, 

2013. There is a reason why only early withdrawals are used as censoring events. As 

the main goal in this paper is to calculate probability of subject having an event prior 

to or on a future time and censoring process that could possibly impact this prediction 

is concerned. But most probably only the non-administrative censoring (i.e., early 

withdrawals) would have such impacts while administrative censoring won’t have. 

Section 3.6.2: Prediction Calendar Time to Achieve 42 Events for Interim 

Analysis  

The prediction is carried out as follows: 

 Estimate parameters for death time: on November 29, 2013 there were 28 

relapses that had occurred. For subjects who were randomized but with no 

record of relapse are censored at either date of withdrawal or at the cutoff date. 

This data is used to fit exponential, Weibull, Lognormal and Log-logistic 

distributions, and parameters for the corresponding death time distributions can 

be extracted for prediction.  

 Estimate exponential hazard rate for censoring: In order to estimate hazard rate 

for exponential censoring process, the 13 early withdrawal subjects (Figure 3.2) 

in the DB phase are considered as the events and others as censored. This data 

is fitted using an exponential distribution to get hazard rate for exponential 

censoring parameter ∅ in the combined group.  

 Preparations for obtaining 𝑒𝑛𝑒𝑤 in (𝑡1, 𝑡2]: Using the subset data set (N=31) 

from those yet to-be-randomized subjects in the transition / maintenance 
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phases at time of November 29, 2013, we derive their randomization dates. For 

example, if one subject was at Week 28 visit at November 29, 2013 who will 

be eligible for randomization, this subject will be randomized a week later (i.e., 

December 6, 2013).  

 Preparations for obtaining 𝑒𝑎𝑡𝑟𝑖𝑠𝑘 in(𝑡1, 𝑡2]: For the 220 subjects who are 

already in the double-blind phase on November 29, 2013, we save their 

randomization dates which have occurred prior to the cutoff date for prediction.   

There are 8 scenarios of predictions: Table 3.2 includes prediction results with death 

times of exponential, Weibull, Log-logistic, Lognormal respectively when censoring is 

not present; and Table 3 includes prediction results from the same set of parametric 

death time distributions but in the presence of censoring.  

For each scenario, in order to predict 𝑡2, the earliest time to accumulate 42 events in 

the double-blind phase,  a date after 𝑡1 is chosen for initial prediction. For example, 

we choose January 01, 2014. 𝑒𝑛𝑒𝑤 and 𝑒𝑎𝑡𝑟𝑖𝑠𝑘 at  𝑡2= January 01, 2014 are then 

calculated using algorithms in Sections 4-5 and Appendixes 2-3. If the total number of 

events (i.e. 𝑒 = 𝑒𝑜𝑐𝑐 + 𝑒𝑛𝑒𝑤 + 𝑒𝑎𝑡𝑟𝑖𝑠𝑘) is less than 42, we then increase the date and 

redo calculation until the earliest date to accumulate 42 events for interim analysis is 

achieved.  

Table 11(Tab. 3.2): Prediction of the earliest date to obtain 42 events assuming no censoring 

Table 3.2: Prediction of the earliest date to obtain 42 events assuming no 

censoring  
 Exponential  Weibull  Log-logistic Log-normal 

eocc  28  28  28  28 

eatrisk t2 =Jan20,2014 13.2 Jan10,2014 13.71 Jan11,2014 13.86 Jan12,2014 13.60 

enew 0.85 0.44 0.439 0.46 

e by 42.05 42.14 42.29 42.06 



 

124 

t2 

 
Table 12(Tab. 3): Prediction of the earliest date to obtain 42 events in the presence of censoring 

Table 3: Prediction of the earliest date to obtain 42 events in the presence of 

censoring 
 Exponential  Weibull  Log-logistic Log-normal 

eocc  28  28  28  28 

eatrisk 𝑡2=Feb 6,2014 12.83 Jan10,2014 

 

13.88 Jan11,2014 13.69 Jan 

13,2014 

13.74 

enew 1.22 0.45 0.43 0.46 

e by t2 42.05 42.33 42.12 42.20 

 

 

Results of the prediction ranged from Jan 10, 2014 (using Weibull death times 

with/without censoring) to Feb 6, 2014 (exponential death time in the presence of 

censoring). For each death time, predicted date of 𝑡2 for the case with censoring is 

later than or the same as the date using the same death time distribution but without 

censoring. This is understandable, because with time to censoring competing with 

process of time to event, the time to get required events will be delayed. In our data, 

we actually only have 13 early withdrawals out of total 261 randomized subjects. So 

the time to censoring barely impacted the prediction dates.   

In our example, prediction based on exponential model differs from predictions using 

other models, while exponential is easiest one among all prediction and wildly used in 

design and monitoring survival trials. This suggests that one cannot rely on one 

particular parametric model. In the actual study, the required 42 events needed for 

interim analysis was observed on January 24. Based on the prediction, the study team 

was able to plan appropriately and external Statistical Support Group (supporting the 

Independent Data Monitoring Committee) was ready to go as soon the requisite time 

point was reached. Figure 3.4 below depicts predicted total number of events from the 
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prediction carried out on November 29 2013 in the absence or presence of censoring 

until the 42 events needed for interim analysis are achieved, compared with the actual 

curve for total number of events the trial ended up with (solid line). The upper and 

lower plots include depict predictions in the absence and in the presence of censoring 

respectively. 

An earlier prediction with data cutoff of October 16, 2013 (when only 20 events had 

been observed) actually resulted in predicted date range from December 24, 2013 to 

January 20, 2014 (Figure 3.5), which was less accurate than predictions done one 

month later on November 29, 2013 (Figure 3.4).  
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Figure 10(Fig. 3.4): Total number of events over time from prediction time November 2013 

Figure 3.4: Total number of events over time from prediction time 𝐭𝟏=29 
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November 2013 until reaching 42 events. The upper and lower plots include 

predictions in the absence and in the presence of censoring respectively.
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Figure 11(Fig. 3.5): Total number of events over time from prediction time October 2013 

Figure 3.5: Total number of events over time from prediction time 𝐭𝟏=16 

October 2013 until reaching 42 events. The upper and lower plots include 

predictions in the absence and in the presence of censoring respectively.  

Days since first event time

280 300 320 340 360 380 400 420

T
o

ta
l 
n
u

m
b

e
r 

o
f 
e

v
e
n

ts

10

20

30

40

50 Actual Total No. of Events over Time: Jan 24, 2014

Exponential (No censor) : Jan 3, 2014

Weibull (No censor): Dec 24, 2013

log-logistic (No censor): Dec 24, 2013 

Log-normal (No censor):Dec 26, 2013

Jan 24, 2014

Nov 29, 2013

42

Oct 16, 2013

Days since first event time

280 300 320 340 360 380 400 420

T
o

ta
l 
n

u
m

b
e

r 
o

f 
e

v
e

n
ts

10

20

30

40

50 Actual Total No. of Events over Time: Jan 24, 2014

exponential (with censor) : Jan 20, 2014

Weibull (with censor): Dec 25, 2013

log-logistic (with censor): Dec 25, 2013 

Log-normal (with censor):Dec 28, 2013

Jan 24, 2014

Nov 29, 2013

42

Oct 16, 2013



 

129 

 

Section 3.7:  Discussion 

This paper extends Whitehead (2001) to include prediction in the presence of 

censoring prior to trial start. Inspired by the need to know when a certain number of 

events would be observed during the trial, we develop methodologies to carry out 

prediction during the trial with or without censoring using different parametric death 

time distributions. Technical details (Appendix 3.1-3.3) are inspired by statistical 

appendix in Rubinstein, Gail and Santner (1981). The key is that in the presence of 

censoring, the integrand part of this probability can be separated into two parts 

because of the independence between death time and time to censoring.   For 

subjects who will be randomized at a given date in (𝑡1, 𝑡2], one part is the 

unconditional density of death time and the other is the unconditional survivor 

function for censoring time; for subjects who are already randomized and in the at-risk 

set at prediction time 𝑡1, one part is the conditional density of death time and the other 

is the conditional survivor function of censoring time given both death time and censor 

time are greater than 𝑡1 − 𝑟𝑖𝐶. For prediction during the trial, given 𝑡2, integration 

range (the time interval in which this subject will result in an event) for each 

individual is known and thus the probability of resulting in an event can be obtained 

directly. Summing up probability over all subjects in corresponding cohort will obtain 

the expected number of events in the interval of interest because expectation of an 

indicator function equals its probability and expectation of sum equals the sum of 

expectations. For prediction prior to trial start, an additional integration with respect to 

randomization accrual variable is needed to obtain the expected number of events 
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(Appendix 3.1) prior to calendar time 𝑇 + 𝜏.   

Methods derived here are both easy to understand and easy to implement. Knowing 

the possible calendar time for interim analysis ahead of time makes trial planning 

much easier, and needed resources can be deployed in a timely manner such as getting 

database ready to be locked for final analysis. Successful prediction during the course 

of an actual trial in Section 6 corroborated this claim. Before study start, the prediction 

had been based on exponential distribution and study start assumptions suggesting 

some time during the third quarter of 2014. The prediction work at later times allowed 

the team to adjust timelines based on actual trial data. A more accurate prediction is 

needed for trial management, especially for a globally-managed trial involving many 

patients, personnel, and functions. The resulting prediction suggested a first quarter 

interim analysis.   

The prediction algorithm used combined treatment information so there was no need 

to unblind the treatment arms. Assumption about treatment group differences have to 

be made and this may affect the precision of the prediction.  But our trial experience 

showed that prediction based on a combined group is good enough for trial 

management. Initial trial prediction is based on the same assumptions made for sample 

size calculation, and can be enhanced with actual accumulated data. Our methods of 

using a series of parametric distributions for single predicted time contrasts with other 

methods based on simulating empirical distribution of predicted target time 𝑡2 based 

on posterior sampled parameters as illustrated in Bayesian methods. Although the 

latter method has also been used to obtain an interval around the prediction time, extra 

sampling/prediction errors will be added for an algorithm which already includes 
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uncertainty from prior and MCMC sampling for incomplete data and posteriors.  

Nonparametric prediction using Kaplan-Meier estimator to extrapolate the survival 

probability into the future together with Bayesian bootstrapped prediction intervals has 

also been proposed by Ying, Heitjan and Chen (2004); but was shown to less accurate 

than predictions using Bayesian parametric prediction by the same group of authors 

(Ying and Heitjan, 2008). Detailed comparisons between these various Bayesian 

methods using parametric or non-parametric event times with our method can be the 

subject of future research.   
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Appendix 3.1: Prediction prior to trial start with exponential death time and 

exponential censoring  

Assuming that patients are uniformly randomized into an interval [0, T] in unit of 

month, the total number of subjects entering the DB phase N=𝑛𝐸  +𝑛𝐶  will be 𝑎𝑇 in 

total with recruitment rate of 𝑎 per month over the T month accrual. With 

randomization ratio A:1 of treatment group (𝑛𝐸) to control group (𝑛𝐶), then the 

expected recruitment in T months for treatment and control groups respectively are: 

𝐸[𝑛𝐸] =
𝐴

𝐴+1
𝑎𝑇  and 𝐸[𝑛𝐶] =

1

𝐴+1
𝑎𝑇. Given N, the patient’s entry times will be 

independently and identically distributed (i.i.d.) uniformly over [0, T]. Therefore, with 

follow-up time 𝜏, the times from randomization to end-of-study (EOS) will be i.i.d. 

uniform over [𝜏, T+ 𝜏] (Figure 1a).  

Given a time interval 𝑢 from randomization onto control group end-of-study, the 

probability that this entry will result in an event is:  

𝑃[𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 <  𝑢] = 𝐸[ 𝐼(𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 < 𝑢)] = 𝐸[  𝐸[ 𝐼(𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 <  𝑢)|𝑊𝑐] ]   

=E[ 𝐼( 𝑌𝑐 <  𝑢)  𝐸[ 𝐼(𝑌𝑐 < 𝑊𝑐)|𝑊𝑐] ]           because of independence 

between 𝑊𝑐  and  𝑌𝑐 
=E[𝐼( 𝑌𝑐 <  𝑢) 𝑆𝑊𝐶

(𝑢)) ]       

= ∫ 𝑓𝑌𝐶

𝑢

0

(𝑡)𝑆𝑊𝐶
(𝑡)𝑑𝑡 

𝑆𝑊𝐶
(𝑢) is the survivor function of time to censoring variable while 𝑊𝑐 is 

exponentially distributed with constant hazard 𝜙𝐶 , that is  𝑆𝑊𝐶
(𝑡) = exp(− 𝜙𝐶𝑡).  

𝑓𝑌𝐶  is the probability density function of time to event in the control group, which 

has constant hazard  𝜆𝐶 with density function 𝑓𝑌𝐶 =  𝜆𝐶exp( 𝜆𝐶).  Plugging the 

density and survivor functions in, we obtain, 

𝑃[𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 <  𝑢] = ∫  𝜆𝐶exp (− 𝜆𝐶𝑡)
𝑢

0
exp(− 𝜙𝐶𝑡) 𝑑𝑡 =

 𝜆𝐶

 𝜆𝐶+ 𝜙𝐶
[ 1 − exp[−( 𝜆𝐶 +  𝜙𝐶)𝑢] ]  

Similar definitions hold for the treatment group, we have 

𝑃[𝑌𝐸 < 𝑊𝐸 ,  𝑌𝐸 <  𝑢] = ∫  𝜆𝐸exp (− 𝜆𝐸𝑡)
𝑢

0
exp(− 𝜙𝐸𝑡) 𝑑𝑡 =

 𝜆𝐸

 𝜆𝐸+ 𝜙𝐸
[ 1 − exp[−( 𝜆𝐸 +  𝜙𝐸)𝑢] ]  

During the T+ 𝜏 months of trial duration, given 𝑛𝐶  subjects randomized into the 

control group, the expected number of events in this group is as follows: 

𝐸(𝑒𝑐|𝑛𝐶) = 𝑛𝐶𝑃(event on control)= 𝑛𝐶𝐸[ 𝐸[ 𝐼(𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 <  𝑢)|𝑢 ] ]  

=

𝑛𝐶 ∫ 𝑃(𝑒𝑣𝑒𝑛𝑡 𝑜𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙|𝑡𝑖𝑚𝑒 𝑓𝑟𝑜𝑚 𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝐸𝑂𝑆 𝑏𝑒𝑖𝑛𝑔 𝑢)𝑔(𝑢)𝑑𝑢
𝑇+𝜏

𝜏
      

where  𝑔(𝑢) is the density of 𝑢 

= 𝑛𝐶 ∫
 𝜆𝐶

 𝜆𝐶+ 𝜙𝐶
[ 1 − exp[−( 𝜆𝐶 +  𝜙𝐶)𝑢] ]

1

𝑇
𝑑𝑢

𝑇+𝜏

𝜏
  

=
𝑛𝐶 𝜆𝐶

𝑇 ( 𝜆𝐶+ 𝜙𝐶)
 [ 𝑇 + 

exp[−( 𝜆𝐶+ 𝜙𝐶)(𝑇+𝜏)]−exp[−( 𝜆𝐶+ 𝜙𝐶)𝜏]

 𝜆𝐶+ 𝜙𝐶
 ]  

So  𝐸(𝑒𝑐) = 𝐸[ 𝐸(𝑒𝑐|𝑛𝐶) ] 

=
𝐸(𝑛𝐶) 𝜆𝐶

𝑇 ( 𝜆𝐶+ 𝜙𝐶)
 [ 𝑇 + 

exp[−( 𝜆𝐶+ 𝜙𝐶)(𝑇+𝜏)]−exp[−( 𝜆𝐶+ 𝜙𝐶)𝜏]

 𝜆𝐶+ 𝜙𝐶
 ]  
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=
𝑎 𝜆𝐶

(𝐴+1) ( 𝜆𝐶+ 𝜙𝐶)
 [ 𝑇 + 

exp[−( 𝜆𝐶+ 𝜙𝐶)(𝑇+𝜏)]−exp[−( 𝜆𝐶+ 𝜙𝐶)𝜏]

 𝜆𝐶+ 𝜙𝐶
 ]  

And 

𝐸(𝑒𝐸) = 𝐸[ 𝐸(𝑒𝐸|𝑛𝐸) ] =
𝑎𝐴 𝜆𝐸

(𝐴+1) ( 𝜆𝐸+ 𝜙𝐸)
 [ 𝑇 + 

exp[−( 𝜆𝐸+ 𝜙𝐸)(𝑇+𝜏)]−exp[−( 𝜆𝐸+ 𝜙𝐸)𝜏]

 𝜆𝐸+ 𝜙𝐸
 ] 

Thus, 

𝐸(𝑒) =  𝐸(𝑒𝐶) + 𝐸(𝑒𝐸) =
𝑎𝑇 𝜆𝐶

(𝐴+1) ( 𝜆𝐶+ 𝜙𝐶)
+

𝑎𝐴 𝑇𝜆𝐸

(𝐴+1) ( 𝜆𝐸+ 𝜙𝐸)
+
𝑎 𝜆𝐶 [exp[−( 𝜆𝐶+ 𝜙𝐶)(𝑇+𝜏)]−exp[−( 𝜆𝐶+ 𝜙𝐶)𝜏]]

(𝐴+1) (𝜆𝐶+ 𝜙𝐶)2
+

𝑎𝐴 𝜆𝐸[exp[−( 𝜆𝐸+ 𝜙𝐸)(𝑇+𝜏)]−exp[−( 𝜆𝐸+ 𝜙𝐸)𝜏]]

(𝐴+1) (𝜆𝐸+ 𝜙𝐸)2
,      whenever there is no censoring, 

 𝜙𝐶 =  𝜙𝐸 = 0, the expected number of new randomized subjects degenerates to: 

𝐸(𝑒) =
𝑎𝑇

(𝐴+1) 
+

𝑎𝐴𝑇

(𝐴+1) 
+
𝑎 [exp[− 𝜆𝐶(𝑇+𝜏)]−exp[− 𝜆𝐶 𝜏]]

(𝐴+1) 𝜆𝐶
+
𝑎𝐴[exp[− 𝜆𝐸(𝑇+𝜏)]−exp[− 𝜆𝐸 𝜏]]

(𝐴+1) 𝜆𝐸
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Appendix 3.2: Prediction for To-Be-Randomized subjects who will be 

randomized at a known time between 𝒕𝟏 and 𝒕𝟐 

At time 𝑡1, we are interested in calculating the probability of resulting in an event prior 

to or on 𝑡2 for those subjects who will be randomized between 𝑡1 and 𝑡2 (𝑡1 <
𝑟𝑖𝐶  ≤ 𝑡2).  Since the randomization time for a control subject is known as 𝑟𝑖𝐶 with 

𝑡1 < 𝑟𝑖𝐶  ≤ 𝑡2, probability of resulting in an event in interval (𝑡1, 𝑡2] can be 

calculated directly and the outer integration as in Appendix 3.1 with respect to 

distribution of accrual process is no longer needed.  

𝑢𝑖 is the time interval from randomization onto control group end-of-study (i.e., 

𝑢𝑖 = 𝑡2 − 𝑟𝑖𝐶), and the probability that this subject will result in an event is:  

𝑃[𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 < 𝑢𝑖] = 𝐸[ 𝐼(𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 < 𝑢𝑖)] = 𝐸[  𝐸[ 𝐼(𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 <
 𝑢𝑖)|𝑊𝑐] ]   

=E[ 𝐼( 𝑌𝑐 < 𝑢𝑖)  𝐸[ 𝐼(𝑌𝑐 < 𝑊𝑐)|𝑊𝑐]]              because of independence 

between 𝑊𝑐  and  𝑌𝑐 
=E[𝐼( 𝑌𝑐 < 𝑢𝑖) 𝑆𝑊𝐶

(𝑢𝑖)) ]       

= ∫ 𝑓𝑌𝐶
𝑢𝑖
0

(𝑡)𝑆𝑊𝐶
(𝑡)𝑑𝑡=∫ 𝑓𝑌𝐶

𝑡2−𝑟𝑖𝐶
0

(𝑡)𝑆𝑊𝐶
(𝑡)𝑑𝑡 

Exponential censoring is used in prediction with survivor function 𝑆𝑊𝐶
(𝑡) =

exp(− 𝜙𝐶𝑡).  For exponential death times, density of 𝑓𝑌𝐶(𝑡) is already given above 

in Appendix 3.1. The following are the death time densities when death times are 

distributed with Weibull, log-normal or log-logistic function respectively. 

Weibull: 𝑓𝑌𝐶(𝑡) = 𝛾𝑐𝛼𝑐𝑡
𝛾𝑐−1 exp(−𝛼𝑐𝑡

𝛾𝑐) where 𝜎𝑐 = 1/𝛾𝑐 and 𝛼𝑐 = exp (−𝜇𝑐/

𝜎𝑐)  

Log-logistic: 𝑓𝑌𝐶(𝑡) =
𝛼𝑐𝛾𝑐𝑡

𝛾𝑐−1

(1+𝛼𝑐𝑡𝛾𝑐)2
 where 𝛾𝑐 = 1/𝜎𝑐 and 𝛼𝑐 = exp (−𝜇𝑐/𝜎𝑐) 

Log-normal: 𝑓𝑌𝐶(𝑡) =
1

√2𝜋𝜎𝑐𝑡
exp(−

1

2
( 
log(t)−𝜇𝑐

𝜎𝑐
 )2) 

Therefore, 𝑃[𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 < 𝑢𝑖] ( 𝑖. 𝑒. , 𝐸[ 𝐼(𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 < 𝑢𝑖)] ) for death times of 

exponential, Weibull, Log-logistic and Log-normal are respectively: 

Exponential: ∫  𝜆𝐶exp (− 𝜆𝐶𝑡)
𝑢𝑖
0

exp(− 𝜙𝐶𝑡) 𝑑𝑡 

Weibull: ∫ 𝛾𝑐𝛼𝑐𝑡
𝛾𝑐−1

𝑢𝑖
0

exp(− 𝜙𝐶𝑡) 𝑑𝑡 

Log-logistic: ∫
𝛼𝑐𝛾𝑐𝑡

𝛾𝑐−1

(1+𝛼𝑐𝑡𝛾𝑐)2

𝑢𝑖
0

exp(− 𝜙𝐶𝑡) 𝑑𝑡  

Log-normal: ∫
1

√2𝜋𝜎𝑐𝑡
exp(−

1

2
( 
log(t)−𝜇𝑐

𝜎𝑐
 )2)

𝑢𝑖
0

exp(− 𝜙𝐶𝑡) 𝑑𝑡 

In case of no censoring, ∫ 𝑓𝑌𝐶
𝑢𝑖
0

(𝑡)𝑆𝑊𝐶
(𝑡)𝑑𝑡 degenerates to ∫ 𝑓𝑌𝐶

𝑢𝑖
0

(𝑡)𝑑𝑡 =

𝑆(𝑢𝑖), the cumulative density function of respective death time distribution. These are: 

Exponential: ∫  𝜆𝐶exp (− 𝜆𝐶𝑡)
𝑢𝑖
0

𝑑𝑡 =  exp (− 𝜆𝐶𝑢𝑖)  

Weibull: ∫ 𝛾𝑐𝛼𝑐𝑡
𝛾𝑐−1

𝑢𝑖
0

𝑑𝑡 =  exp (−𝛼𝑐𝑢𝑖
𝛾𝑐) 

Log-logistic: ∫
𝛼𝑐𝛾𝑐𝑡

𝛾𝑐−1

(1+𝛼𝑐𝑡𝛾𝑐)2

𝑢𝑖
0

𝑑𝑡 = 
1

1+𝛼𝑐𝑢𝑖
𝛾𝑐

 

Log-normal: ∫
1

√2𝜋𝜎𝑐𝑡
exp(−

1

2
( 
log(t)−𝜇𝑐

𝜎𝑐
 )2)

𝑢𝑖
0

𝑑𝑡 = 1 − Φ(
log(𝑢𝑖)−𝜇𝑐

𝜎𝑐
) 

In the case of no censoring, the probability of having an event in interval (𝑡1, 𝑡2] after 
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randomization equals the CDF function with time length 𝑢𝑖, where 𝑢𝑖 varies and 

depends on when this subject will be randomized in (𝑡1, 𝑡2]. Closed form for 

individual CDF is provided as above. In the case where censoring is present, this 

probability can be obtained by numerical integration with formulas provided.  

𝑒𝑛𝑒𝑤 = 𝐸(𝑒𝑐) + 𝐸(𝑒𝐸) = ∑ 𝑃[𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 < 𝑢𝑖]
𝑛𝑐
𝑖=1 + ∑ 𝑃[𝑌𝐸 < 𝑊𝐸 ,  𝑌𝐸 < 𝑢𝑖]

𝑛𝐸
𝑖=1  
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Appendix 3.3: Prediction for At-Risk subjects  

We first work on the conditional probability of a subject having an event before 𝑡2 in 

the DB phase, given that the subject was still in the risk set at time 𝑡1.  

𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶 , 𝑋𝑖𝐶 < 𝑊𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶 ,𝑊𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶) 
= 𝐸[ 𝐼((𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶 , 𝑋𝑖𝐶 < 𝑊𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶 ,𝑊𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶)) ] 

= 𝐸[ 𝐸[  𝐼((𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶 , 𝑋𝑖𝐶 < 𝑊𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶 ,𝑊𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶)| 𝑊𝑖𝐶  ] ]  

= 𝐸𝑋𝑖𝐶  [ 𝐸𝑊𝑖𝐶
[ 𝐼(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶)𝐼(𝑋𝑖𝐶 < 𝑊𝑖𝐶|𝑊𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶)] ]  

= 𝐸𝑋𝑖𝐶  [ 𝐼(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶) 𝐸𝑊𝑖𝐶
[ 𝐼(𝑋𝑖𝐶 < 𝑊𝑖𝐶|𝑊𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶) ] ]  

= 𝐸𝑋𝑖𝐶  [ 𝐼(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶)𝑃(𝑥𝑖𝐶 ≤ 𝑊𝑖𝐶|𝑊𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶)  ] 

Note that  𝑃(𝑥𝑖𝐶 ≤ 𝑊𝑖𝐶|𝑊𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶) = 𝑆𝑊𝑐(𝑥𝑖𝐶|𝑊𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶)  is indeed the 

conditional survivor function for censoring random variable, which can be calculated 

by integrating of conditional density function over constrained interval [𝑡1 −

𝑟𝑖𝐶 , +∞). The conditional density function is: 𝑓(𝑤𝑖𝐶|𝑊𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶) =
𝑔(𝑤𝑖𝐶)

𝑆𝑊𝐶(𝑡1−𝑟𝑖𝐶)
 ,  

where 𝑔(𝑤𝑖𝐶) is the same as unconditional density function for random variable 

𝑤𝑖𝐶 , that is  𝑓(𝑤𝑖𝐶 ) = ∅𝐶exp (−∅𝐶𝑤𝑖𝐶 ),  but restricted on the set of (𝑡1 − 𝑟𝑖𝐶  , ∞). 
For exponential censoring, this becomes: 

𝑃(𝑊𝑖𝐶|𝑊𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶)  = ∫
𝑔(𝑤𝑖𝐶)

𝑆𝑊𝐶
(𝑡1−𝑟𝑖𝐶)

 = ∫
∅𝐶exp (−∅𝐶𝑤𝑖𝐶 )

exp [−∅𝐶(𝑡1−𝑟𝑖𝐶)]

∞

𝑥𝑖𝐶

∞

𝑥𝑖𝐶
𝑑𝑤𝑖𝐶  =

 
exp (−∅𝐶𝑥𝑖𝐶)

 exp [−∅𝐶(𝑡1−𝑟𝑖𝐶)]
 with 𝑥𝑖𝐶 ∈ (𝑡1 − 𝑟𝑖𝐶 , +∞). 

Plugging in the conditional survivor function for exponential censoring, 

 𝐸𝑋𝑖𝐶  [ 𝐼(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶)𝑃(𝑥𝑖𝐶 ≤ 𝑊𝑖𝐶|𝑊𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶)  ]    

= 𝐸𝑋𝑖𝐶  [ 𝐼(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶)
exp (−∅𝐶𝑥𝑖𝐶 )

 exp [−∅𝐶(𝑡1−𝑟𝑖𝐶)]
 ]  

= ∫
𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)

exp (−∅𝐶𝑥𝑖𝐶 )

 exp [−∅𝐶(𝑡1−𝑟𝑖𝐶)]
𝑑𝑥𝑖𝐶  

𝑡2−𝑟𝑖𝐶
𝑡1−𝑟𝑖𝐶

   

In order to calculate conditional probability of having an event before 𝑡2 for subjects 

who are still at risk at time 𝑡1, we have to get the derivative of the conditional CDF of 

death time with respect to 𝑡2 − 𝑟𝑖𝐶 provided that subject is at risk set at 𝑡1, i.e., 
𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)
, which can be obtained by taking derivative of  conditional 

probability of 𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶) with respect to time length from 

randomization to 𝑡2, that is 𝑡2 − 𝑟𝑖𝐶.  We calculate 𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 −
𝑟𝑖𝐶)  for each parametric death times first. 

𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶) =
𝑃(𝑡1−𝑟𝑖𝐶≤𝑋𝑖𝐶<𝑡2−𝑟𝑖𝐶)

𝑃(𝑋𝑖𝐶>𝑡1−𝑟𝑖𝐶)
=
𝑆𝐶(𝑡1−𝑟𝑖𝐶)−𝑆𝐶(𝑡2−𝑟𝑖𝐶)

𝑆𝐶(𝑡1−𝑟𝑖𝐶)
    

= 1 −
𝑆𝐶(𝑡2−𝑟𝑖𝐶)

𝑆𝐶(𝑡1−𝑟𝑖𝐶)
, where 𝑆𝐶(𝑡1 − 𝑟𝑖𝐶) 𝑎𝑛𝑑 𝑆𝐶(𝑡2 − 𝑟𝑖𝐶) are unconditional survivor 

function at time 𝑡1 − 𝑟𝑖𝐶 and 𝑡2 − 𝑟𝑖𝐶 respectively. 

Exponential: 𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶) = 1 −
exp [− 𝜆𝐶(𝑡2−𝑟𝑖𝐶) ]

exp [− 𝜆𝐶(𝑡1−𝑟𝑖𝐶)
 

Weibull: 𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶) = 1 −
exp[−𝛼𝑐(𝑡2−𝑟𝑖𝐶)

𝛾𝑐  ]

exp[−𝛼𝑐(𝑡1−𝑟𝑖𝐶)
𝛾𝑐  ]

  

Log-logistic: 𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶) = 
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1 −

1

1+𝛼𝑐(𝑡2−𝑟𝑖𝐶)
𝛾𝑐

1

1+𝛼𝑐(𝑡1−𝑟𝑖𝐶)
𝛾𝑐

= 1 −
1+𝛼𝑐(𝑡1−𝑟𝑖𝐶)

𝛾𝑐

1+𝛼𝑐(𝑡2−𝑟𝑖𝐶)
𝛾𝑐

 

Lognormal: 𝑃(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶) = 1 −
1−Φ(

log(𝑡2−𝑟𝑖𝐶)−𝜇𝑐

𝜎𝑐
)

1−Φ(
log(𝑡1−𝑟𝑖𝐶)−𝜇𝑐

𝜎𝑐
)
 

Taking derivative with respect to 𝑡2 − 𝑟𝑖𝐶, provided that 𝑡1 − 𝑟𝑖𝐶 is a fixed value for 

subjects still at risk at time 𝑡1. 
𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)
  for death times of exponential, Weibull, log-logistic and 

lognormal are then respectively calculated as the follows: 

Exponential: 
𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)
=
 𝜆𝐶exp [− 𝜆𝐶(𝑡2−𝑟𝑖𝐶) ]

exp [− 𝜆𝐶(𝑡1−𝑟𝑖𝐶)
 

Weibull: 
𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)
=
𝛼𝑐(𝑡2−𝑟𝑖𝐶)

𝛾𝑐−1exp[−𝛼𝑐(𝑡2−𝑟𝑖𝐶)
𝛾𝑐  ]

exp[−𝛼𝑐(𝑡1−𝑟𝑖𝐶)
𝛾𝑐  ]

 

 Log-logistic: 
𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)
=
[1+𝛼𝑐(𝑡1−𝑟𝑖𝐶)

𝛾𝑐]∗𝛾𝑐𝛼𝑐(𝑡2−𝑟𝑖𝐶)
𝛾𝑐−1

[1+𝛼𝑐(𝑡2−𝑟𝑖𝐶)
𝛾𝑐]2

 

Lognormal: 
𝑑𝑃(𝑋𝑖𝐶≤𝑡2−𝑟𝑖𝐶|𝑋𝑖𝐶>𝑡1−𝑟𝑖𝐶)

𝑑(𝑡2−𝑟𝑖𝐶)
=
exp(−(

log(𝑡2−𝑟𝑖𝐶)−𝜇𝑐

𝜎𝑐
)
2

)/(2∗√2𝜋)

1−Φ(
log(𝑡1−𝑟𝑖𝐶)−𝜇𝑐

𝜎𝑐
)

(
1

𝜎𝑐
∗

1

𝑡2−𝑟𝑖𝐶
) 

Combining conditional death time density and conditional survivor function for 

censoring, we have the following form of conditional probability for subjects in the 

risk set at 𝑡1 to result in an event in interval (𝑡1, 𝑡2]: 
For exponential:  

 𝐸𝑋𝑖𝐶  [ 𝐼(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶)𝑃(𝑥𝑖𝐶 ≤ 𝑊𝑖𝐶|𝑊𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶)  ]  

= ∫  𝜆𝐶exp ( − 𝜆𝐶[𝑥𝑖𝐶 − (𝑡1 − 𝑟𝑖𝐶)] )
𝑡2−𝑟𝑖𝐶
𝑡1−𝑟𝑖𝐶

exp(−∅𝐶𝑥𝑖𝐶 )

exp[−∅𝐶(𝑡1−𝑟𝑖𝐶)]
𝑑𝑥𝑖𝐶   

When 𝑡1 − 𝑟𝑖𝐶 = 0,  i.e., a subject is randomized at time 𝑡1, this integration 

degenerates to the unconditional case as in Appendix 1. That is: 

∫  𝜆𝐶exp (− 𝜆𝐶𝑥𝑖𝐶 )
𝑡2−𝑟𝑖𝐶
0

exp(−∅𝐶𝑥𝑖𝐶 ) 𝑑𝑥𝑖𝐶  , which is consistent with what we 

derived in Appendix 1. This further confirms the correctness of our derivation. 

For Weibull, log-logistic and lognormal death times, there is no closed form for this 

complicated integration. 

Weibull:  

𝐸𝑋𝑖𝐶  [ 𝐼(𝑋𝑖𝐶 ≤ 𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶)𝑃(𝑥𝑖𝐶 ≤ 𝑊𝑖𝐶|𝑊𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶)  ]  

= ∫
𝛼𝑐𝑥𝑖𝐶 

𝛾𝑐−1exp[−𝛼𝑐𝑥𝑖𝐶 
𝛾𝑐  ]

exp[−𝛼𝑐(𝑡1−𝑟𝑖𝐶)
𝛾𝑐  ]

𝑡2−𝑟𝑖𝐶
𝑡1−𝑟𝑖𝐶

exp(−∅𝐶𝑥𝑖𝐶 )

exp[−∅𝐶(𝑡1−𝑟𝑖𝐶)]
𝑑𝑥𝑖𝐶   

Log-logistic: ∫
[1+𝛼𝑐(𝑡1−𝑟𝑖𝐶)

𝛾𝑐]∗𝛾𝑐𝛼𝑐𝑥𝑖𝐶 
𝛾𝑐−1

[1+𝛼𝑐𝑥𝑖𝐶 
𝛾𝑐]2

𝑡2−𝑟𝑖𝐶
𝑡1−𝑟𝑖𝐶

exp(−∅𝐶𝑥𝑖𝐶 )

exp[−∅𝐶(𝑡1−𝑟𝑖𝐶)]
𝑑𝑥𝑖𝐶   

Lognormal: ∫
exp(−(

log(𝑥𝑖𝐶 )−𝜇𝑐

𝜎𝑐
)
2

)/(2∗√2𝜋)

1−Φ(
log(𝑡1−𝑟𝑖𝐶)−𝜇𝑐

𝜎𝑐
)

(
1

𝜎𝑐
∗

1

𝑡2−𝑟𝑖𝐶
)

𝑡2−𝑟𝑖𝐶
𝑡1−𝑟𝑖𝐶

exp(−∅𝐶𝑥𝑖𝐶 )

exp[−∅𝐶(𝑡1−𝑟𝑖𝐶)]
𝑑𝑥𝑖𝐶   

In the case of no censoring, there is no need to go through the above process of taking 

derivative, times conditional survivor function for censoring variable, and then 

integrating the product integrand back from 𝑡1 − 𝑟𝑖𝐶  to 𝑡2 − 𝑟𝑖𝐶,  simply 𝑃(𝑋𝑖𝐶 ≤
𝑡2 − 𝑟𝑖𝐶|𝑋𝑖𝐶 > 𝑡1 − 𝑟𝑖𝐶)  is already the correct probability of resulting in an event in 

interval (𝑡1, 𝑡2] for subjects at risk at  𝑡1. 
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𝐸(𝑒𝑐) = 𝐸[ 𝐸(𝑒𝑖𝑐|𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑖 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑎𝑛𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑖𝑠𝑘 𝑠𝑒𝑡)]] 
And 𝑒𝑎𝑡 𝑟𝑖𝑠𝑘 = 𝐸(𝑒) = ∑ 𝐸(𝑒𝑖𝑐)

𝑛𝑐
𝑖=1 + ∑ 𝐸(𝑒𝑖𝐸)

𝑛𝐸
𝑖=1  
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Chapter 4 

Planning a Comparative Group Sequential Clinical Trial with Loss to Follow-

up and a Period of Continued Observation 

(being reviewed by Statistics in Biopharmaceutical Research) 

Abstract: This paper is motivated by Rubinstein, et al., (1981) and Kim and Tsiatis (1990) to 

provide a way in designing group sequential trials analyzed using logrank test for comparing 

survival under two treatments with loss to follow-up and a period of continued observation, 

which are frequently encountered in Phase II/III clinical trials.  A method is developed to 

calculate the length of accrual period to assure a desired power for given control group median 

time to event, hazard ratio, length of the period of continued observation, information time of 

analyses and times of analyses, hazard rate of time to censoring and significance level.  The 

results show that, similar to trials with fixed duration (Rubinstein, et al. 1981), introducing a 

period of continued observation after the end of patient accrual period reduces the total number 

of patients required to detect treatment effect substantially. Assuming both time to event and 

time to censoring (loss to follow-up) are exponential, the estimator of log hazard ratio (placebo 

vs. treatment) is used to test the null hypothesis of equality in survival distributions between 

treatment and placebo groups. Tables are created in which total trial duration are calculated for a 

wide range of cases for O’Brien and Fleming (1979), Pocock (1977) and Wang and Tsiatis 

(1987) efficacy upper boundaries, respectively. For the same accrual rate, three different curves 

are depicted to show the impacts of time to censoring and a period of continued observation on 

accrual time to ensure power in respective group sequential settings.  

Key Words: Survival Trials; A period of Continued Observation; Group Sequential Design.  

 

Section 4.1: Introduction 

In clinical trials with survival data, patients are accrued in an accrual period, during which 

patients are screened if the inclusion and exclusion criteria are met, may or may not be required 

to go through a phase or a couple of phases before randomization, then all patients who meet 

randomization criteria can be randomized to either treatment or control group in a ratio of 𝐴: 1 

(treatment versus placebo). The accrual period in this article starts from the first subject being 

randomized until the last subject is randomized, and the rate of accrual is assumed to be uniform.  

The accrual period is followed by a period of “continued observation”, in which all subjects in 

the trial are still exposed to study medication (i.e., treatment or placebo). After being randomized 

into the randomization phase until the end of the study (i.e., including both the accrual period 

and the continuation period), subjects can have failure, or loss to follow-up (due to loss to 
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contact, subject consent, due to adverse event or other reasons), or remain event-free at the time 

of study termination. Except for subjects who have failed, all other subjects are considered to be 

censored in the randomization phase. The logrank statistic, also viewed as a time stratified 

Cochran-Mantel-Haenszel test, is the hypothesis test to compare the survival distribution of two 

groups, which is non-parametric and appropriate to use when the data are right-censored and the 

censoring is independent of the failure process. The test was proposed by Nathan Mantel (1966) 

and was named by Richard and Julian Peto (1972). Logrank test statistic is constructed by 

computing the difference between the observed and expected numbers of events in one of the 

two groups at each unique observed event time and then summing this difference over event time 

points so that a measure for the overall summary across event time points is obtained to evaluate 

two survival distributions in their entirety. The logrank statistic can also be derived as the score 

test for the Cox Proportional Hazard model (Cox, David R, 1972) comparing two groups. Based 

on efficiency of the score test, it is therefore asymptotically equivalent to the likelihood ratio test 

statistic if the proportional hazard model holds, whereas exponential failure time is a special case 

of the proportional hazard model.  George and Desu (1974) proved that the total duration is 

minimized when we continue to randomize subjects into the randomization phase until the end of 

the trial (i.e., no period of continued observation after accrual period).  Rubinstein, Gail and 

Santer (1981) explored the impact of a period of continued observation on the number of patients 

to be accrued to ensure a required statistical power and found that although total duration of the 

trial is increased a little as compared with that of the case with no continued observation period, 

accrual time could be reduced substantially as high as 50% or more after introducing a period of 

continued observation. Besides substantial cost saving because of reducing the required number 

of patients to be randomized, regulatory agencies normally challenge survival trials without a 

http://en.wikipedia.org/wiki/David_Cox_(statistician)
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reasonable period of continued observation especially when a large cohort of patients get 

randomized right close to study termination. This is because this cohort of patients had not been 

exposed to the study medication long enough to differentiate the treatment-placebo difference 

before trial termination and, hence, how this cohort contributes to overall drug effect is 

questionable. Of note, both George and Desu (1974) and Rubinstein, Gail and Santer (1981) only 

focused on fixed sample design and similar investigations under group sequential setting are not 

yet done.  

As trials get larger and longer in the past two decades, numerous group sequential designs have 

been developed to ensure overall type I and power requirements. Among them, Pocock (1977), 

O’Brien and Fleming (1979) and Wang and Tsiatis (1987) are three of the well-known ones. 

Non-binding upper efficacy boundaries, by definition, are defined without considering stopping 

for futility lower boundaries, which allow analysis of overrunning data when efficacy boundary 

was already crossed and efficacy was claimed in previous stage. Hence one-sided asymmetric 

group sequential designs with non-binding upper efficacy boundaries are considered in this 

paper. Group sequential trials for, to plan the duration of group sequential trials for survival 

response, Kim and Tsiatis (1990) provided algorithm to calculate the required length of the 

period for continued observation in the group sequential setting when the accrual period length is 

fixed under the scenario that there is no censoring process competing with time to failure. 

Different from Kim and Tsiatis (1990), we allow to have time to censoring process; and we 

search for the length of accrual period instead of searching for the length of the period of 

continued observation as we deem that, in real clinical practice, randomized subjects should have 

to expose to the study medication for a period long enough to evaluate drug effect and, hence, 

length of accrual is calculated according to a fixed length of the period of the continued 
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observation. A required period of continued observation for every subject in the trial allows 

biological systems to respond to the investigational drug so that the trial results on treatment 

effect are more clinically interpretable.    

Section 4.2 lays out the notations and other preliminaries for fixed sample design with survival 

response and then for group sequential designs. Section 4.3 describes the calculation of accrual 

period length, accumulated number of patients and real times for group sequential analyses with 

a period of continued observation after accrual. Section 4.4 lays out the overall characteristics for 

such group sequential designs for a wild range of cases. Section 4.5 discusses results and 

potential usage of proposed method in practice as compared with common survival clinical trials 

without a period of continued observation.    

Section 4.2: Preliminaries 

There is an accrual period of 𝑠𝑎 years, during which patients are uniformly randomized into 

either the treatment group or the placebo group with ratio of 𝐴: 1. After all qualified patients are 

randomized, there is a period called continued observation, during which all subjects remain 

treated in the randomization phase for another 𝑠𝑓 years. Time to failure for control subjects is 

exponentially distributed with constant hazard rate 𝜆𝑐, hence with median time  𝑀𝑐 = ln (2)/

𝜆𝑐. To test against the null hypothesis of equal survival, i.e.,ln (Δ) = 0, where Δ =
𝜆𝑐

𝜆𝐸
, 𝜆𝐸 being 

the hazard rate for experimental group subjects, we wish to have a pre-specified power against 

one-sided alternative of ln(Δ) > 0, or Δ > 1. During the randomization phase, time to failure 

are independently and identically distributed (referred to as ‘i.i.d.’) within groups and 

independent of entry time as well as being independent of time to censoring process, where time 

to censoring are i.i.d.s with exp (𝜙), with the same hazard rate 𝜙 in both groups. The reason to 

use ln (Δ̂) instead of Δ̂ is because ln (Δ̂) is less skewed and has a more accurate asymptotic 
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approximation, where Δ̂ is the estimated hazard ratio. 

For a fixed sample design, to test 𝐻0: ln(Δ) = 0 vs. 𝐻𝐴: ln(Δ) > 0 at one-sided significance level 

of 𝛼/2 and power of 1 − 𝛽 under alternative hypothesis, we need to link log hazard ratio with 

the overall type I and II error requirements using asymptotic properties of the logrank statistic; 

and then calculate accrual period length to ensure required number of events, which is closely 

associated with testing power.  In Appendix of Rubinstein, Gail and Santer (1981) proved that 

ln (Δ̂) is asymptotically normally distributed with mean ln (Δ) and variance 𝜎2 = [𝐸(𝑒𝑐)]
−1 +

[𝐸(𝑒𝐸)]
−1, where 𝐸(𝑒𝑐) and 𝐸(𝑒𝐸) are expected number of events accumulated at the end of 

the trial for control and experimental groups respectively and the total trial duration is 𝑠𝑎 + 𝑠𝑓.   

Of note, symbol 𝐴 in the following equations is the randomization ratio of treatment group 

relative to placebo group, where 𝐴 = 1 is used for all examples in this paper to indicate equal 

randomization in the randomization phase. 

From Appendix 1B’ at end of this paper, when accrual rate is 𝑚 per year, we have: 

𝐸(𝑒𝐶(𝑠)) =
𝑚 𝜆𝐶

(𝐴+1) ( 𝜆𝐶+𝜙)
 [𝑠𝑎 − 

exp[−( 𝜆𝐶+𝜙)𝑠𝑓]−exp[−( 𝜆𝐶+𝜙)(𝑠𝑎+𝑠𝑓)]

 𝜆𝐶+𝜙
 ]  and   

𝐸(𝑒𝐸(𝑠)) =
𝑚 𝐴𝜆𝐸

(𝐴+1) ( 𝜆𝐸+𝜙)
 [𝑠𝑎 − 

exp[−( 𝜆𝐸+𝜙)𝑠𝑓]−exp[−( 𝜆𝐸+𝜙)(𝑠𝑎+𝑠𝑓)]

 𝜆𝐸+𝜙
 ]  

Because ln(Δ) = 0 under the null hypothesis, the asymptotic one-sided size 𝛼/2 test of 

𝐻0 𝑣𝑠. 𝐻𝐴 rejecting null for ln(Δ̂) >  𝜎̂ 𝑍1−𝛼/2, where 𝑍1−𝛼/2 is the standard normal (1 − 𝛼/

2) quantile and 𝑍 is the standard normal random variable. To have power 1 − 𝛽, we then have 

to have 𝑃𝐻𝐴(ln(Δ̂) >  𝜎̂ 𝑍1−𝛼/2)= 1 − 𝛽. Using normal distribution property, we obtain  

[𝐸(𝑒𝑐)]
−1 + [𝐸(𝑒𝐸)]

−1   = [
ln (Δ)

(𝑍1−𝛼\2+𝑍1−𝛽) 
]2                                                                              (4.1)  

Moving the right-hand side of Equation 1 to its left side, a function equal to zero (i.e., f(𝑠𝑎)=0) is 

created. Utilizing Newton-Raphson method, we can reversely find accrual time of  𝑠𝑎  for the 
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fixed sample design. Derivative of 𝑓(𝑠𝑎) contains two components:  
𝑑𝐸(𝑒𝑐)

−1

𝑑𝑠𝑎
 and 

𝑑𝐸(𝑒𝐸)
−1

𝑑𝑠𝑎
, 

which are derived in Appendix 4.1B’. 

Additionally, if under null hypothesis, when 𝐸(𝑒𝑐) = 𝐸(𝑒𝐸) =
𝑑𝑓𝑖𝑥

2
, with 𝑑𝑓𝑖𝑥 being the total 

number of events accumulated at the end of the trial for a fixed sample design, variance of log 

hazard ratio 𝜎𝑓𝑖𝑥
2 = [𝐸(𝑒𝑐)]

−1 + [𝐸(𝑒𝐸)]
−1 =

4

𝑑𝑓𝑖𝑥
.  The standardized test statistic based on 

estimate of log hazard ratio is asymptotically equal to logrank statistic. That is  
ln(Δ̂)

𝜎̂
= 𝑍 .   

We now explore the relationship between ln(Δ̂) and the logrank test statistic in a group 

sequential setting. Since the sequential version of Logrank test statistic  𝑇(𝑠) = ln(Δ̂) ∗
1

𝜎̂2
 

= 
1

𝜎̂
𝑍, where 𝑇(𝑠) has asymptotical normal distribution of (𝑠) ∼ 𝑁(ln(Δ)V(s), V(s)) , V(s) 

is the reciprocal of the variance of ln(Δ̂) at time 𝑠 (or called as the Fisher’s information for 

ln(Δ̂)  at time 𝑠, with 𝑠 ∈ (0, 𝑠𝑎 + 𝑠𝑓)), which is approximately 
𝑑(𝑠)

4
, or precisely 𝑉(𝑠)  = 

1

[𝐸(𝑒𝑐(𝑠))]−1+[𝐸(𝑒𝐸(𝑠))]−1
, when 𝑠 = 𝑠𝑎 + 𝑠𝑓. Z, as before, is the standard normal random variable. 

Normal approximation of the sequential Logrank was first proposed by Armitage (1975), 

verified via simulation by Gail, DeMets, and Slud (1981), refined by Jennison and Turnbull 

(1984), and finally proved by Tsiatis (1982), Sellke and Siegmund (1983), and Slud (1984).   

To implement a particular group sequential test, Fisher’s information for a group sequential trial 

is obtained by multiplying the Fisher’s information of fixed sample design by a factor (denoted 

as 1/𝑅𝑔𝑠𝑑) to ensure power of testing the null against the alternative in the group sequential 

setting (Jennison and Turnbull, 2002). Therefore, the variance of sequential test at time 𝑡𝑖 is the 

time fraction multiplying 𝑅𝑔𝑠𝑑, and then multiplying variance of the corresponding fixed sample 

design. Suppose analysis time 𝑠 becomes 𝑠𝑖, i = 1,… , K, where 𝑡𝑖 is the information fraction 
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used at 𝑠𝑖, and K analyses are performed for a group sequential design, variance at 𝑠𝑖 

𝑉(𝑠𝑖) =  𝑡𝑖 ∗ 𝑅𝑔𝑠𝑑 ∗ 𝜎𝑓𝑖𝑥
2 =

 𝑡𝑖∗𝑅𝑔𝑠𝑑∗𝑑𝑓𝑖𝑥

4
                                                                                          (4.2)  

Alternatively, we can calculate variance of ln(Δ̂) at time 𝑠𝑖 as 

 𝑉(𝑠𝑖) =  𝐸(𝑒𝑐(𝑠𝑖))]
−1 + [𝐸(𝑒𝐸(𝑠𝑖))]

−1                                                                                       (4.3)  

Equating  Equation 4.2 with Equation 4.3, we can easily find a way to search real time for 

interim analysis at time 𝑠𝑖 (see Appendices 4.1A and 4.1B), as all numbers in the right hand of 

Equation 4.2 are given by design parameters and 𝑠 can be searched using Newton-Raphson 

algorithm. Given a function ƒ defined over 𝑠𝑖, and its derivative ƒ', we begin with a first guess 

si,0 for a root of the function f. Provided the function satisfies all the assumptions made in the 

derivation of the formula, a better approximation si,1 is si,1 = si,0 −
f(si,0)

f′(si,0)
. The process is 

repeated as 𝑠𝑖,𝑛+1 = 𝑠𝑖,𝑛 −
𝑓(𝑠𝑖,𝑛)

𝑓′(𝑠𝑖,𝑛)
 until a sufficiently accurate value 𝑠𝑖  is reached. 

That is, target function 𝑓 is as follows: 

 
4

 𝑡𝑖∗𝑅𝑔𝑠𝑑∗𝑑𝑓𝑖𝑥
− [𝐸(𝑒𝑐(𝑠𝑖))]

−1 + [𝐸(𝑒𝐸(𝑠𝑖))]
−1 = 0. Based on Appendix 4.1A, when 𝑠𝑖 ≤ 𝑠𝑎, 

𝐸(𝑒𝑐(𝑠𝑖)) =
 𝑚𝜆𝐶

(𝐴+1)( 𝜆𝐶+𝜙)
[ 𝑠𝑖 − 

1−exp[−( 𝜆𝐶+𝜙)𝑠𝑖]

 𝜆𝐶+𝜙
 ]  and 

𝐸(𝑒𝐸(𝑠𝑖)) =
 𝑚𝐴𝜆𝐸

(𝐴+1)( 𝜆𝐸+𝜙)
[ 𝑠𝑖 − 

1−exp[−( 𝜆𝐸+𝜙)𝑠𝑖]

 𝜆𝐸+𝜙
 ] .  

When  𝑠𝑖 > 𝑠𝑎 , 𝐸(𝑒𝑐(𝑠𝑖)) =
 𝑚𝜆𝐶

(𝐴+1)( 𝜆𝐶+𝜙)
[ 𝑠𝑎 − 

exp[−( 𝜆𝐶+𝜙)(𝑠𝑖−𝑠𝑎)]−exp[−( 𝜆𝐶+𝜙)𝑠𝑖]

 𝜆𝐶+𝜙
 ]  and 

𝐸(𝑒𝐸(𝑠𝑖)) =
 𝑚𝐴𝜆𝐸

(𝐴+1)( 𝜆𝐸+𝜙)
[ 𝑠𝑎 − 

exp[−( 𝜆𝐸+𝜙)(𝑠𝑖−𝑠𝑎)]−exp[−( 𝜆𝐸+𝜙)𝑠𝑖]

 𝜆𝐸+𝜙
 ] . 

Searching for 𝑠 using Newton-Raphson needs 𝑓′(𝑠𝑖),  which involves 
𝑑𝐸(𝑒𝑐(𝑠𝑖))

−1

𝑑𝑠
 and 

𝑑𝐸(𝑒𝐸(𝑠𝑖))
−1

𝑑𝑠
 Both are provided in Appendices 4.1A and 4.1B for 𝑠𝑖 < 𝑠𝑎 and 𝑠𝑖 > 𝑠𝑎, 

http://en.wikipedia.org/wiki/Derivative
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respectively. 

Section 4.3: Design of Group Sequential Trials with a Period of Continued Observation   

For a group sequential design, to test 𝐻0: ln(Δ) = 0 vs. 𝐻𝐴: ln(Δ) > 0 with 𝑖 = 1,2, …𝐾, we 

have to satisfy both type I and II error requirements under group sequential settings. Considering 

a group sequential trial with 𝐾 planned analyses, let 𝜃  be the parameter of interest, a measure 

of placebo-drug difference and assume it can be estimated from trial data. The distribution of 

statistics 𝑍1 , 𝑍2 , …, 𝑍𝐾 are derived from cumulative data up to stages from 1,2 …𝐾, and it 

follows a canonical joint form (Chapter 3, Jennison and Turnbull, 2000) of multivariate normal 

distribution with E(𝑍𝑖) =𝜃√𝑡𝑖 and Cov(𝑍𝑖 , 𝑍𝑗)=√𝑡𝑖/𝑡𝑗 , 1≤ 𝑖 ≤ 𝑗 ≤ 𝐾 and {𝑡1, … , 𝑡𝐾} are 

information levels for parameter 𝜃, whith final 𝑡𝐾 = 1.  

Startng with notations in Section 4.2, where time 𝑠 is on continuous scale ranging from 0 to end 

of study time 𝑠𝑎 + 𝑠𝑓, analysis times in group sequential design are discretized at K time points. 

Now, analysis time 𝑠 becomes 𝑠𝑖 , i = 1,… , K, where 𝑠𝐾 = 𝑠𝑎 + 𝑠𝑓. Accordingly, to 

accommodate group sequential notations, we denote, on the discretized time points instead,  𝑒𝑐,𝑖 

is the accumulative number of events at Stage 𝑖, which is the same as 𝑒𝑐(𝑠) in Section 4.2, with 

𝑠 = 𝑠𝑖. Simliarly, 𝑒𝐸,𝑖, 𝑑𝑖, 𝑉𝑖,i = 1,… , K,  are discretized versions of 𝑒𝐸(𝑠), 𝑑(𝑠) and 𝑉(𝑠) 

respectively with 𝑠 = 𝑠𝑖. 

Because of asymptoticl normality of 𝑇(𝑠) ( with 𝑠 = 𝑡𝑖) mentioned in Section 4.2, standardized 

logrank statistic at (Chapter 13.2, Jennison and Turnbull), 

 𝜃 =
ln(Δ̂)

𝜎̂
 = Z obtained at Stage 𝑖  aproximately has the canonical joint distribution, 

withstandardized information level  of 

 𝑡𝑖 = 
𝑉𝑖

𝑉𝐾
= ([𝐸(𝑒𝑐,𝑖)]

−1 + [𝐸(𝑒𝐸,𝑖)]
−1)/([𝐸(𝑒𝑐,𝐾)]

−1 + [𝐸(𝑒𝐸,𝐾)]
−1) ≈ (

4

𝑑𝑖
)/(

4

𝑑𝐾
) 
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For a group sequential test, upper efficacy boundaries (Equation 4.4) are made to preserve type I 

error under null hypothesis. Non-binding upper boundaries {𝑢1, . . . , 𝑢𝐾} are used as their 

calculations do not depend on lower bounds of {𝑙1, . . . , 𝑙𝐾}. Fisher’s information vector, which is 

𝑅𝑔𝑠𝑑 ∗ {𝑡1, … , 𝑡𝐾} and a multiple of standardized information vector, together with Kim-DeMets 

(1987),  is used to search  for the lower boundaries to maintain per-specified power under 

alternative hypothesis (Equation 4.5). 

𝑃𝐻0{𝑍1 ≥ 𝑢1⋃𝑍2 ≥ 𝑢2⋃⋯⋃𝑍𝐾 ≥ 𝑢𝐾} =
𝛼

2
                                                                               (4.4) 

𝑃𝐻𝐴{𝑍1 ≥ 𝑢1} + 𝑃𝐻𝐴{𝑙1 ≤ 𝑍1 ≤ 𝑢1, 𝑍2 ≥ 𝑢2} + ⋯+ 𝑃𝐻𝐴{𝑙1 ≤ 𝑍1 ≤ 𝑢1, … , 𝑙𝐾−1 ≤ 𝑍𝐾−1 ≤

𝑢𝐾−1, 𝑍𝐾 ≥ 𝑢𝐾}=1 − 𝛽                                                                                                                     (4.5)                                                                                                                                                 

Tables and Figures in this paper are created using O’Brien and Fleming (1979), Pocock (1977) 

and Wang and Tsiatis (1987) with shape parameter of 0.15 as efficacy upper boundaries 

respectively. For lower bounds {𝑙1, . . . , 𝑙𝐾}, power spending is used with shape parameter of 0.8.  

That is: 𝑓(𝑡𝑖, 𝛽) = 𝛽 ∗ 𝑡𝑖
0.8, 𝑖 = 1,2, … , 𝐾. For a equally-spaced three-stage group sequential 

design (i.e., 𝑡(1) = (0.33, 0.67,1)), the cumulative type II error when overall 𝛽 = 0.2 is 

𝑓(𝑡, 𝛽) = (0.082, 0.145, 0.2). 

Here are the steps to calculate design parameters for group sequential trials for survival response: 

1) Use 𝛼, 𝛽 and log hazard ratio under alternative hypothesis to calculate required number 

of events for fixed sample design 𝑑𝑓𝑖𝑥. 

2) Use Equations 4.4 and 4.5 to calculate {𝑙1, . . . , 𝑙𝐾},  {𝑢1, . . . , 𝑢𝐾}, and 𝑅𝑔𝑠𝑑 .  

3) Given 𝑠𝑓 and 𝑡𝐾 = 1, search for  𝑠𝑎 for a group sequential design to ensure power of 

group sequential test by obtaining 𝑑𝑓𝑖𝑥 ∗  𝑅𝑔𝑠𝑑.  And the second derivatives of target 

function 𝑓 used in Newton-Raphson search are provided in Appendix 4.1B’.  
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4)  For the 𝑖th interim analysis, inverse search of real time 𝑠𝑖 𝑖 = 1, … , 𝐾 − 1, for the 𝑖𝑡ℎ 

interim analysis is performed using Newton-Raphson algorithm as explained in Section 

4.2 with the second derivative of target function 𝑓 provided in Appendices 4.1A and 

4.1B for 𝑠𝑖 ≤ 𝑠𝑎 and 𝑠𝑖 > 𝑠𝑎, respectively. Of note, the searching process can start from 

initial real time vector 𝑠𝑖,0 =  (𝑠𝑎 + 𝑠𝑓) ∗ 𝑡𝑖. 

5) Number of patients recruited at stage 𝑖, 𝑖 = 1,… , 𝐾, is 𝑁𝑖 = 𝑚𝑠𝑖 if 𝑠𝑖 ≤ 𝑠𝑎 , otherwise  

𝑁𝑖 = 𝑚𝑠𝑎 if 𝑠𝑖 > 𝑠𝑎. 

Section 4.4: Examples 

With all examples with one-sided type I error of 0.025 and power of 0.8 , 𝐾=3 three-stage 

group sequential designs, median time of failure for the control group = 1 year, three different 

information times are chosen: 𝑡(1) = (0.33, 0.67, 1), 𝑡(2) = (0.5, 0.75, 1), and 𝑡(3) =

(0.2, 0.8, 1) to represent equal increment of time fraction, interims occurring in the later part of 

the study and first interim occurred in the early part and later ones in the later part for 𝑡(1), 𝑡(2) 

and 𝑡(3), respectively. Hazard rate of 𝜆𝑐/𝜆𝐸 is ranging from 1.3 to 3 in Figures 4.1-4.2. Lower 

rate of accrual with 𝑚 = 50 per year is used to compare with brisk accrual of 𝑚 = 240 per 

year which is 20 patients per month. O’Brien and Fleming (referred to as ‘OBF’), Pocock and 

Wang and Tsiatis(referred to as ‘WT’) are plotted in red, blue and green respectively in Figures 

4.1- 4.2. ‘Fixed’ denotes cases for fixed sample design. 

For Figures 4.1- 4.2 as well as Tables 4.4 - 4.6, there are three types of design features in terms 

of with/without censoring and with/without a period of continued observation. Types A, B and C 

are depicted using solid line, dotted line and dashed line respectively in Figures 4.1- 4.2.    

Type A: With censoring (𝜙 = 𝜆𝑐/2) and no continued observation (𝑠𝑓 = 0)  

Type B: No censoring(𝜙 = 0) and no continued observation (𝑠𝑓 = 0) 
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Type C: No censoring(𝜙 = 0) and continued observation for 𝑠𝑓 = 1 year  

Comparing Type B with Type A shows the impact of competitive censoring on enlarging 

necessary accrual time and trial duration and comparing Type C against Type B gives the effect 

of adding a continued observation period on shortening accrual time but enlarging total trial 

duration. Varying hazard ratios and slow accrual versus quick enrolment rate on the extent of the 

above are assessed by evaluating Types A, B and C under a certain combination of hazard ratio 

and accrual rate. 

Table 4.1 shows that eliminating censoring decreases required accrual time more for low accrual 

rate than that of high accrual rate:  under 𝑡(1), by 4.57 years for OBF with rate of 50 per year 

and hazard ratio of 1.3 (from 15.18 to 10.61), while only 0.67 years (from 3.98 to 3.31) for rate 

of 240 per year at the same low hazard ratio 1.3; similarly but to a much lesser extent for high 

hazard ratio of 3: by 2.10 years (from 2.39 to 2.10) for m=50 per year as compared with by 0.05 

year (from 0.98 to 0.93) for m=240 per year. Similar trends exist in all three group sequential 

designs and all three time information vectors. This confirms that the power of detecting 

treatment difference for survival trials only depends on number of events. When accrual rate is 

low and/or hazard ratio is small, more time is needed to accumulate events to ensure power. 

Therefore, the impact of competing from censoring will enlarge the accrual time more for either 

lower accrual rate and/or lower hazard ratio as events will take longer time to occur in the 

treatment group.  Table 4.1 also shows that including one year of continued observation always 

shortens required accrual years: from 10.61 to 9.86 years, from 2.10 to 1.36 years, from 3.31 to 

2.59 years and from 0.93 to 0.38 years for OBF tests performed at  t(1) information times with 

𝑚=50 per year and Δ = 1.3, 𝑚=50 per year and Δ = 3.0, 𝑚=240 and Δ = 1.3 and 𝑚=240 

per year and Δ = 3.0 respectively, where the saving for the last case with both high accrual rate 
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and high hazard ratio is more than 50%! 

Table 13(Tab. 4.1): Accrual time for group sequential designs for low or high hazard ratio 

Table 4.1: Accrual time for group sequential designs for low or high hazard ratio (1.3 vs. 

3.0) and slow or brisk accrual rate (50 per year vs. 240 per year), 𝜶/𝟐=0.025, 𝜷=0.2,  

𝝓 = 𝝀𝒄/𝟐  for Type A and 𝒔𝒇 = 𝟏 years for Type C. 
  Fixed OBF Pocock WT 

A B C A B C A B C A B C 

a= 𝟓𝟎 

𝚫 = 𝟏. 𝟑 

 

𝐭(𝟏) 15.42 10.78 10.03 15.18 10.61 9.86 16.77 11.62 10.87 18.72 12.85 12.10 

𝐭(𝟐) 15.33 10.70 9.95 16.18 11.24 10.49 18.89 12.96 12.21 

𝐭(𝟑) 15.18 10.61 9.86 16.90 11.70 10.95 18.65 12.81 12.06 

 

a = 50 

Δ = 3.0 
 

t(1) 2.16 1.93 1.23 2.39 2.10 1.36 2.55 2.23 1.48 2.75 2.38 1.62 

t(2) 2.40 2.11 1.37 2.49 2.18 1.43 2.77 2.40 1.63 

t(3) 2.38 2.10 1.36 2.57 2.24 1.48 2.75 2.38 1.61 

 

a = 240 

Δ = 1.3 
 

t(1) 4.02 3.34 2.62 3.98 3.31 2.59 4.32 3.55 2.82 4.73 3.84 3.11 

t(2) 4.01 3.33 2.61 4.19 3.46 2.74 4.77 3.86 3.13 

t(3) 3.98 3.31 2.59 4.35 3.57 2.84 4.72 3.83 3.10 

 

a = 240 

Δ = 3.0 
 

t(1) 0.87 0.83 0.33 0.98 0.93 0.38 1.04 0.98 0.41 1.11 1.04 0.46 

𝐭(𝟐) 0.98 0.93 0.38 1.02 0.96 0.40 1.11 1.05 0.46 

𝐭(𝟑) 0.98 0.93 0.38 1.04 0.98 0.42 1.11 1.04 0.46 

 

Figures 4.1- 4.2 are the counterparts of Figure 1 in Rubinstein, et al., (1981), but expanded to 

include group sequential designs. Accrual time 𝑠𝑎 required to conduct a test against 

𝐻0 : ln(Δ) = 0 is plotted on the x- axis with size 𝛼/2 = 0.025 and power of 0.8 (𝛽 = 0.2) to 

detect the alternative Δ on the y-axis. For all curves in Figures 4.1- 4.2, median time to failure 

for control group subjects is always 1 year. Figure 4.1 plots the curves for long duration trials 

with slow accrual (𝑚=50 per year) while Figure 4.2 plots short duration with a brisk accrual 
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(𝑚=240 per year). Within each set (one particular design with a certain information time vector), 

consisting of three types, the upper curve represents Type A, the case with censoring present 

(𝜙 = 𝜆𝑐/2 and 𝑠𝑓 = 0); the middle curve represents Type B, the case with no censoring and no 

continued observation period (𝜙 = 0 and 𝑠𝑓 = 0); and the lower curve represents Type C, the 

case with one-year of continued observation period after accrual ends (𝜙 = 0 and  𝑠𝑓 = 1).  

Figures 4.1 - 4.2 and Tables 4.2 - 4.4 show that, similar to fixed sample designs, in group 

sequential designs, eliminating one-year of continued observation only reduces 1/4  year in 

total trial duration ( from 14.25 years to 14 years for OBF, 𝑡(1), Δ = 1.25,m = 50 per year), 

that is to say, accrual time increases for 3/4 years.  This is kind of counter-intuitive but quite 

inspiring: there are indeed two ways to collect events for a survival trial, recruiting more patients 

or following patients in the trial for a longer time. An ideal way needs to be identified, on one 

hand, to account for disease characteristics for enough exposure so that treatment effect can take 

place; and on the other hand to shorten time length and meet economic cost limitations. Half of a 

year saving in time or fifty less subjects to be recruited matters a lot in today’s drug development 

process in face of harsh competition and high cost in conducting clinical trials. Eliminating one-

year of continued observation reduces very little for a short duration trial with a rapid accrual, 

i.e., 𝑚 = 240 per year, from 4.35 years to 4.07 year for OBF, 𝑡(𝟏), Δ = 1.25; in other words, 

only increases in accrual time by 0.72 years. Subsequently, this elimination will result in accrual 

of a large chunk of patients to compensate for lacking a continued observation period. 
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Figure 12(Fig. 4.1): Required accrual time (slow) vs. hazard ratio 

Figure 4.1: Required accrual time vs. hazard ratio (from 1.3 to 3.0) for accrual rate of 50 

per year, 𝜶/𝟐=0.025, and 𝜷=0.2 (color figure available online). 
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Figure 13(Fig. 4.2): Required accrual time (fast) vs. hazard ratio 

Figure 4.2: Required accrual time vs. hazard ratio (from 1.3 to 3.0) for accrual rate of 240 

per year, 𝜶/𝟐=0.025, and 𝜷=0.2 (color figure available online). 
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Tables 4.2 - 4.4 furthermore show that, in contrast to a long trial with slow accrual (𝑚 = 50 per 

year), for short trial with rapid accrual rate (i.e., 𝑚 = 240 per year), adding censoring process 

will increase accrual time, subsequently in total trial time to a less extent. Let’s take OBF, 𝑡(𝟏), 

Δ = 1.25,m = 240 per year sf = 0  as an example, censoring (∅ = 0.5λc) adds 1 years in total 

trial duration (from 4.07 years to 5.07 years) while for 6.4 years (from 14 years to 20.40 years) 

when with a shorter trial associated with low accrual time of 𝑚 = 50. Actually, from Figures 

4.1- 4.2, we can also see adding censoring changes little in accrual time for long trials with brisk 

accrual unless hazard ratio is less than 2. On the other hand, this reminds us that accounting for 

censoring in designing group sequential survival trials are important when we have a long trial 

associated with slow accrual and/or alternative hazard ratio is small. In such cases, ignoring 

censoring will result in underestimated trial accrual time and total trial duration, which leads to 

inadequate design preparation. Unfortunately, ignoring censoring widely exists in designing 

clinical trials with survival endpoint from practices nowadays.  

Table 14(Tab. 4.2): Total trial duration for OBF group sequential trials 

Table 4.2: Total trial duration for OBF group sequential trials when information vector is 

𝐭(𝟏), 𝒎 = 50 per year or 240 per year, 𝐬𝐟 = 0, 0.5, 1, or 2 years,  
𝜶

𝟐
= 0.025, and 𝜷 = 0.2. 

 Δ ∅=0 ∅=0.25λc ∅=0.5λc ∅=λc 
  50 240 50 240 50 240 50 240 

sf=0 1.25 14.00 4.07 17.12 4.54 20.40 5.07 27.13 6.26 

1.5 5.49 2.01 6.32 2.13 7.26 2.26 9.35 2.56 

2 2.96 1.22 3.22 1.27 3.53 1.32 4.25 1.42 

3 2.10 0.93 2.23 0.95 2.39 0.98 2.74 1.04 

sf=0.5 1.25 14.06 4.15 17.21 4.63 20.50 5.17 27.27 6.39 

1.5 5.56 2.10 6.40 2.23 7.35 2.37 9.48 2.69 

2 3.03 1.34 3.30 1.39 3.62 1.44 4.36 1.56 

3 2.17 1.06 2.31 1.09 2.47 1.12 2.84 1.19 

sf=1 1.25 14.25 4.35 17.43 4.86 20.75 5.43 27.57 6.70 

1.5 5.73 2.33 6.61 2.48 7.59 2.64 9.77 3.00 

2 3.21 1.63 3.50 1.69 3.84 1.75 4.64 1.89 

3 2.36 1.38 2.51 1.41 2.69 1.45 3.10 1.53 

sf=2 1.25 14.84 4.98 18.12 5.55 21.51 6.18 28.42 7.55 
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1.5 6.31 3.05 7.26 3.23 8.32 3.42 10.60 3.84 

2 3.81 2.43 4.15 2.51 4.54 2.58 5.44 2.75 

3 2.99 2.23 3.17 2.27 3.38 2.32 3.87 2.41 

 
Table 15(Tab. 4.3): Total trial duration for Pocock group sequential 

Table 4.3: Total trial duration for Pocock group sequential trials when information vector 

is 𝐭(𝟏), 𝒎 = 50 or 240 per year, 𝐬 𝐟= 0, 0.5, 1, or 2 years, 
𝜶

𝟐
= 0.025, and 𝜷 = 0.2. 

 Δ ∅=0 ∅=0.25λc ∅=0.5λc ∅=λc 
  50 240 50 240 50 240 50 240 

sf=0 1.25 15.38 4.39 18.91 4.92 22.57 5.53 30.10 6.88 

1.5 5.93 2.14 6.88 2.27 7.95 2.42 10.31 2.77 

2 3.16 1.30 3.46 1.35 3.81 1.40 4.63 1.52 

3 2.23 0.98 2.38 1.01 2.55 1.04 2.96 1.10 

sf=0.5 1.25 15.45 4.46 19.00 5.01 22.67 5.63 30.23 7.01 

1.5 6.00 2.23 6.96 2.37 8.04 2.53 10.44 2.90 

2 3.22 1.41 3.54 1.46 3.89 1.53 4.75 1.66 

3 2.29 1.11 2.45 1.14 2.63 1.17 3.06 1.25 

sf=1 1.25 15.64 4.66 19.21 5.24 22.93 5.88 30.54 7.32 

1.5 6.17 2.46 7.17 2.62 8.28 2.80 10.73 3.20 

2 3.40 1.69 3.73 1.75 4.12 1.82 5.02 1.98 

3 2.48 1.41 2.65 1.45 2.84 1.49 3.31 1.58 

sf=2 1.25 16.23 5.28 19.90 5.93 23.68 6.64 31.38 8.17 

1.5 6.74 3.16 7.82 3.35 9.01 3.57 11.56 4.04 

2 3.99 2.48 4.37 2.56 4.81 2.64 5.82 2.84 

3 3.09 2.26 3.29 2.30 3.52 2.35 4.07 2.46 
 

Table 16(Tab. 4.4): Total trial duration for Wang-Tsiatis (shape = 0.15) group sequential trials 

Table 4.4: Total trial duration for Wang-Tsiatis (shape = 0.15) group sequential trials when 

information vector is 𝐭(𝟏),  𝒎 = 50 per year or 240 per year, 𝐬𝐟 = 0, 0.5, 1, or 2 years, 
𝜶

𝟐
 = 

0.025, and 𝜷 = 0.2. 

 Δ ∅=0 ∅=0.25λc ∅=0.5λc ∅=λc 
  50 240 50 240 50 240 50 240 

sf=0 1.25 17.09 4.77 21.10 5.39 25.24 6.09 33.74 7.64 

1.5 6.47 2.29 7.57 2.45 8.80 2.62 11.49 3.03 

2 3.40 1.38 3.75 1.44 4.15 1.50 5.10 1.64 

3 2.38 1.04 2.56 1.07 2.75 1.11 3.22 1.18 

sf=0.5 1.25 17.16 4.84 21.18 5.48 25.35 6.19 33.87 7.77 

1.5 6.54 2.38 7.65 2.54 8.89 2.73 11.62 3.15 

2 3.46 1.49 3.82 1.55 4.23 1.62 5.22 1.77 

3 2.44 1.16 2.62 1.20 2.83 1.24 3.32 1.32 

sf=1 1.25 17.34 5.03 21.40 5.70 25.60 6.44 34.18 8.08 

1.5 6.71 2.60 7.85 2.78 9.13 2.99 11.91 3.45 

2 3.63 1.76 4.01 1.83 4.45 1.91 5.49 2.09 
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3 2.62 1.46 2.81 1.50 3.03 1.55 3.57 1.65 

sf=2 1.25 17.94 5.65 22.09 6.39 26.35 7.20 35.03 8.93 

1.5 7.27 3.29 8.50 3.51 9.86 3.75 12.74 4.29 

2 4.20 2.54 4.64 2.62 5.14 2.72 6.28 2.94 

3 3.21 2.29 3.43 2.34 3.69 2.39 4.31 2.52 

 

Based on the required number of events for a group sequential design, accrual time and total trial 

duration for this group sequential trial can be derived. Impacts from adding censoring and 

eliminating observation period are addressed above in Tables 4.1- 4.4 and Figures 4.1- 4.2. There 

are other aspects of group sequential design that need to be explored prior to trial start as interim 

analyses allowing for early stopping using accumulating data needed to conducted in contrast to  

fixed duration fixed sample design. These parameters are: 1) real time at interim and final 

analyses; 2) required number of events at each analysis; and 3) accrued number of patients at 

each analysis. As described in Sections 4.2 and 4.3, inverse searching using Newton-Raphson is 

implemented to first find real time, then accumulated number of patients is calculated to ensure 

required number of events at each analysis so that overall power to detect treatment effect is 

reached.  

One moderate hazard ratio, Δ = 2, is picked up to tabulate operation characteristics for OBF, 

Pocock and Wang-Tsiatis group sequential trials, respectively. Tables 4.5 – 4.7 list design 

specifics which re-emphasize the impact of censoring and continued observation on trial design. 

Besides new features like number of patients and real time at interim, other group sequential 

parameters like upper and lower bounds are also tabulated. Probability and expected information 

under null or alternative can be obtained easily, but not included in Tables 4.5 – 4.7 due to space 

limitation. From a design with equal-spaced information time for OBF, as an example, we can 

see eliminating one-year of continued observation has bigger impact on reducing required 

number of patients for a long trial with brisk accrual than that of a short trial associated with 
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slow accrual. For 𝑚 = 50 per year, the required total number of patients with sf = 1 is 110 

patients while requiring 148 for sf = 0 for design of OBF with 𝑡(1). But adding one year of 

continued observation will end up saving 51% patients of subjects (from n = 294 to n = 150) for 

brisk accrual while only adding 0.41 years in total duration (from 1.22 years to 1.63 years). From 

Table 4.5 – 4.7, for m=240 per year, all group sequential designs with t(1) and t(2)  finish 

required accrual prior to first interim analysis, whereas the rest of the designs finish accrual at 

either prior to the second analysis or at or prior to the final analysis.  
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Table 17(Tab. 4.5): Operation Characteristics of group sequential designs 

Table 4.5: Operation Characteristics of group sequential design with OBF upper bounds and beta-spending lower bounds with 

shape parameter of 0.8, 𝜶/ 𝟐 = 0.025, 𝜷 = 0.2, hazard ratio = 2. 
# of 

events 

Information 

time 

bounds Real time (year) Number of Patients Accrual time / follow-up time  (year) 

Accrual rate=50 Accrual rate=240 Accrual rate=50 Accrual 

rate=240 

Accrual rate=50 Accrual rate=240 

a b A B C A B C A B C A B C A B C A B C 

22 0.33 0.204386 2.976604 1.70 1.55 1.54 0.70 0.68 0.67 85 78 77 169 162 150 3.53/0 2.96/0 2.21/1 1.32/0 1.22/0 0.63/1 

45 0.67 1.020234 2.08901 2.68 2.33 2.31 1.04 0.99 1.10 133 116 110 251 237 150 

67 1.0 1.709928 1.709928 3.53 2.96 3.21 1.32 1.22 1.63 176 148 110 316 294 150 

                      

34 0.5 0.770656 2.45016 2.22 1.97 1.96 0.89 0.85 0.88 111 99 98 214 203 152 3.55/0 2.98/0 2.23/1 1.32/0 1.23/0 0.63/1 

51 0.75 1.194913 2.000547 2.91 2.50 2.52 1.12 1.05 1.22 145 125 111 269 253 152 

68 1.0 1.732525 1.732525 3.55 2.978 3.23 1.32 1.23 1.63 178 149 111 318 296 152 

                      

13 0.2 -0.35608 3.84717 1.26 1.18 1.17 0.54 0.52 0.51 63 59 58 129 125 124 3.53/0 2.96/0 2.21/1 1.32/0 1.22/0 0.63/1 

54 0.8 1.390059 1.923585 3.02 2.58 2.63 1.16 1.08 1.29 151 129 110. 278 260 150 

67 1.0 1.720506 1.720506 3.53 2.96 3.21 1.32 1.22 1.63 176 148 110 316 294 150 
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Table 18(Tab. 4.6): Operation Characteristics of group sequential designs 

Table 4.6: Operation Characteristics of group sequential design with Pocock upper bounds and beta-spending lower bounds 

with shape parameter of 0.8, 𝜶/𝟐 = 0.025, 𝜷=0.2, hazard ratio = 2. 
# of 

events 

Information 

time 

bounds Real time (year) Number of Patients Accrual time / follow-up time  (year) 

Accrual rate=50 Accrual rate=240 Accrual rate=50 Accrual 

rate=240 

Accrual rate=50 Accrual rate=240 

𝒂 b A B C A B C A B C A B C A B C A B C 

25 0.33 0.291524 1.992737 1.82 1.65 1.64 0.75 0.72 0.71 91 82 82 179 172 165 3.81/0 3.16/0 2.40/1 1.40/0 1.30/0 0.69/1 

50 0.67 1.161621 1.992735 2.88 2.48 2.46 1.11 1.04 1.15 144 124 120 266 250 165 

75 1.0 1.992734 1.992734 3.81 3.16 3.40 1.40 1.30 1.69 190 158 120 337 312 165 

                      

36 0.5 0.82858 1.947182 2.31 2.04 2.03 0.92 0.87 0.90 115 102 102 221 210 160 3.70/0 3.09/0 2.33/1 1.37/0 1.27/0 0.66/1 

54 0.75 1.285168 1.947182 3.03 2.59 2.60 1.16 1.09 1.25 151 130 116 278 261 160 

72 1.0 1.947181 1.947181 3.70 3.09 3.33 1.37 1.27 1.66 185 154 116 329 205 160 

                      

15 0.2 -0.28265 2.002045 1.35 1.25 1.25 0.57 0.55 0.55 68 63 62 137 133 131 3.83/0 3.18/0 2.42/1 1.41/0 1.30/0 0.69/1 

60 0.8 1.572608 2.002045 3.27 2.77 2.80 1.24 1.15 1.35 163 138 121 297 277 166 

76 1.0 2.002039 2.002039 3.83 3.18 3.42 1.41 1.30 1.69 191 159 121 338 313 166 
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Table 19(Tab. 4.7): Operation Characteristics of group sequential designs 

Table 4.7: Operation Characteristics of group sequential design with WT upper bounds (shape = 0.15) and beta-spending 

lower bounds with shape parameter of 0.8, 𝜶/𝟐 = 0.025, 𝜷 = 0.2, hazard ratio = 2. 
# of 

events 

Information 

time 

bounds Real time (year) Number of Patients Accrual time / follow-up time  (year) 

Accrual rate=50 Accrual rate=240 Accrual rate=50 Accrual 

rate=240 

Accrual rate=50 Accrual rate=240 

a b A B C A B C A B C A B C A B C A B C 

28 0.33 0.392837 3.009054 1.96 1.76 1.75 0.80 0.76 0.75 99 88 87 191 183 181 4.15/0 3.40/0 2.63/1 1.50/0 1.38/0 0.76/1 

56 0.67 1.288984 2.348463 3.12 2.66 2.64 1.19 1.11 1.20 156 133 132 285 267 182 

84 1.0 2.041314 2.041314 4.15 3.40 3.63 1.50 1.38 1.76 207 170 132 361 332 182 

                      

43 0.5 1.002881 2.631239 2.57 2.25 2.23 1.01 0.95 0.97 129 112 112 242 229 183 4.18/0 3.42/0 2.65/1 1.51/0 1.39/0 0.76/1 

64 0.75 1.479783 2.283118 3.39 2.86 2.86 1.28 1.19 1.33 170 143 133 306 285 183 

85 1.0 2.064428 2.064428 4.18 3.42 3.65 1.51 1.39 1.76 209 171 133 363 334 183 

                      

17 0.2 -0.21179 3.59089 1.44 1.33 1.32 0.60 0.58 0.58 72 66 66 145 140 139 4.13/0 3.39/0 2.62/1 1.50/0 1.38/0 0.76/1 

67 0.8 1.678852 2.210452 3.52 2.95 2.97 1.31 1.22 1.40 176 148 131 315 293 181 

84 1.0 2.044384 2.044384 4.13 3.40 3.63 1.50 1.38 1.76 207 169 131 360 332 181 
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Section 4.5: Discussion 

Competitive censoring is normally not considered at the stage of designing a survival trial prior 

to trial start. Normal practice is that: a required number of events is firstly calculated to ensure 

control of type I error when null hypothesis is true and enough power to detect the alternative 

hypothesis when investigational compound is effective; and then a rough number of required 

number to be recruited is reversely calculated assuming an overall probability of a subject 

resulting in an event in the randomization phase irrespective of treatment groups. During the 

trial, accrual process stops when the required number to be recruited is achieved, whereas trial 

may still be ongoing until we observe at least certain number of events to ensure power of 

detecting the treatment difference. So there is no specification of continued observation in the 

trial. 

As shown from tables and figures in this paper, current trial practice has many shortcomings in 

not accounting for factors of accrual time, continued observation time and censoring process in 

calculating real time and required number of patients in a group sequential trial. The minimal 

length of continued observation period should come from clinical perspective and depends on 

disease characteristics, which is a necessary period for drug to be differentiated from comparator 

in the trial. Constrained on this minimum length, real length of continued observation time to be 

used in the trial could be chosen based on balance of required number of patients and total trial 

length. This paper provides a method of designing a group sequential trial with fixed length of 

continued observation in the presence of censoring with a trial without censoring as a special 

case of it. A way to search for real time of interim analysis with which searching formulas 

depending on if the real time is less or greater than trial accrual time. Figures and tables vividly 

display the impact of having censoring process and having continued observation on trial accrual 

time and total trial during under different scenarios with a particular combination of hazard ratio 
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and accrual rate. Results from this paper also show the necessity of doing trial design in 

proposed way; as such impact could be substantial in certain situations. For example, only 0.25 

years increase in total trial duration can reduce the required number of patients to be 50% or 

more, which is really worth serious consideration in face of harsh competition in today’s world. 

Instead of adding a required continued observation after stopping of recruitment process which 

means last randomized subject will be followed up to a maximum time length in the 

randomization phase if the survival event has not occurred prior to it and then the trial will be 

ended, all subjects might only be allowed to stay in the randomization phase until a maximum 

length in the trial or having an event. This is often a concern for trials investigating treatment of 

a life-threatening disease and with subjects randomized into the placebo group in the 

randomization phase which poses a question on long term exposure of placebo on patients in the 

trial. Even for subjects who are randomized into the treatment group in the randomization phase, 

it is ethical not allowing them to be followed too long, as it is just an investigational drug with 

profile of efficacy and safety not well-investigated. Research on this topic is being worked on 

currently, but Appendix 2 shows mathematics as the basis for numerical calculations with the 

difference in using grid-search instead of Newton-Raphson search for 𝑠𝑖 𝑖 = 1,… , 𝐾 − 1, 𝐾 as 

being discretized in the presence of a cap for each subject’s follow-up time after accrual. 

Although Software ADDPLAN® and Software EAST® has implemented group sequential 

design for survival data and SAS® has SEQDESIGN and SEQTEST procedures to deal with 

designs and analyses, there hasn’t been any publication substantively assessing the impacts of a 

period of continued observation on operation characteristics of a particular design. This paper 

serves this purpose and the authors would like to share our R codes with audience upon request. 

Per authors’ over ten years of experience of being a trial statistician, direct explorations using 
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automated codes on a variety of scenarios considering trial-specific requirements prior to trial 

start are much more efficient than obtaining one set of design parameters only for one scenario 

after entering parameters in a step-by-step fashion into software windows and then repeat the 

whole process for every scenario, let alone software development normally lags behind practical 

needs and some applications are not yet implemented to fit current trial-specific issues. Even 

software already has all ingredients for trial design (normally not true at all), it is hard to be 

utilized for finding an optimal design regarding a specific cost function to be used in a survival 

trial; for example, an optimal design considering efficiency in terms of both time and detecting 

power. All concerns listed above led us writing up this paper to share with all trial statisticians; 

and optimal survival trials are being investigated by us.    
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Appendix 4.1: No Cap for Follow-up Time on Each Subject 

Appendix 1A:  𝑠 ≤ 𝑠𝑎 

Let’s set time to randomize first subject in the trial as anchor time 0 and assume time to 

censoring is present in the trial and independent of process of time to event.  For a subject in the 

control group who was randomized at time 𝑢, at real time s,  the time from randomization to 

evaluation time point is 𝑠 − 𝑢, and thus the probability of this entry will result in an event is:  

𝑃[𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 <  𝑠 − 𝑢]  = ∫  𝜆𝐶 exp(− 𝜆𝐶𝑡)
𝑠−𝑢

0

exp(−𝜙𝑡) 𝑑𝑡   

= 
 𝜆𝐶

 𝜆𝐶+𝜙
[ 1 − exp[−( 𝜆𝐶 + 𝜙)(𝑠 − 𝑢)] ]    

𝐸(𝑒𝑐(𝑠)|𝑛𝐶) = 𝑛𝐶𝑃(event on control)= 𝑛𝐶𝐸[ 𝐸[ 𝐼(𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 < 𝑠 − 𝑢)|𝑢 ] ] 

= 𝑛𝐶 ∫ 𝑃(event on control|time from randomization to evaluation time being u)𝑔(𝑢)𝑑𝑢
𝑠

0
       

 𝑔(𝑢) is the density of 𝑢. Based on uniform accrual in interval [0, s], 𝑔(𝑢) =
1

𝑠
. 

𝐸(𝑒𝑐(𝑠)|𝑛𝐶) = 𝑛𝐶 ∫
 𝜆𝐶

 𝜆𝐶+𝜙
[ 1 − exp[−( 𝜆𝐶 + 𝜙)(𝑠 − 𝑢)] ]

1

𝑠
𝑑𝑢 

𝑠

0
  

=
 𝜆𝐶

 𝜆𝐶+𝜙
[ 𝑛𝐶 − 𝑛𝐶

1

𝑠
 
1−exp[−( 𝜆𝐶+𝜙)𝑠]

 𝜆𝐶+𝜙
 ]   

With  𝑛𝐶 =
𝑚𝑠

𝐴+1
 and 𝑛𝐸 =

𝑚𝐴𝑠

𝐴+1
, 

𝐸(𝑒𝑐(𝑠)) =
 𝑚𝜆𝐶

(𝐴+1)( 𝜆𝐶+𝜙)
[ 𝑠 − 

1−exp[−( 𝜆𝐶+𝜙)𝑠]

 𝜆𝐶+𝜙
 ]  

𝐸(𝑒𝐸(𝑠)) =
 𝑚𝐴𝜆𝐸

(𝐴+1)( 𝜆𝐸+𝜙)
[ 𝑠 − 

1−exp[−( 𝜆𝐸+𝜙)𝑠]

 𝜆𝐸+𝜙
 ]  

𝑑𝐸(𝑒𝑐(𝑠))
−1

𝑑𝑠
= 

exp[−( 𝜆𝐶+𝜙)𝑠]−1

 𝑚𝜆𝐶
(𝐴+1)( 𝜆𝐶+𝜙)

[ 𝑠−
1−exp[−( 𝜆𝐶+𝜙)𝑠]

 𝜆𝐶+𝜙
 ]2

  

𝑑𝐸(𝑒𝐸(𝑠))
−1

𝑑𝑠
= 

exp[−( 𝜆𝐸+𝜙)𝑠]−1

 𝑚𝐴𝜆𝐸
(𝐴+1)( 𝜆𝐸+𝜙)

[ 𝑠−
1−exp[−( 𝜆𝐸+𝜙)𝑠]

 𝜆𝐸+𝜙
 ]2

  

Appendix 1B:   𝑠 > 𝑠𝑎 

𝐸(𝑒𝑐(𝑠)|𝑛𝐶) = 𝑛𝐶 ∫
 𝜆𝐶

 𝜆𝐶+𝜙
[ 1 − exp[−( 𝜆𝐶 + 𝜙)(𝑠 − 𝑢)] ]

1

𝑠𝑎
𝑑𝑢 

𝑠𝑎

0
  

=
 𝜆𝐶

 𝜆𝐶+𝜙
[ 𝑛𝐶 −

𝑛𝐶

𝑠𝑎
 
exp[−( 𝜆𝐶+𝜙)(𝑠−𝑠𝑎)]−exp[−( 𝜆𝐶+𝜙)𝑠]

 𝜆𝐶+𝜙
 ]   

𝐸(𝑒𝑐(𝑠)) =
 𝑚𝜆𝐶

(𝐴+1)( 𝜆𝐶+𝜙)
[ 𝑠𝑎 − 

exp[−( 𝜆𝐶+𝜙)(𝑠−𝑠𝑎)]−exp[−( 𝜆𝐶+𝜙)𝑠]

 𝜆𝐶+𝜙
 ]  

𝐸(𝑒𝐸(𝑠)) =
 𝑚𝐴𝜆𝐸

(𝐴+1)( 𝜆𝐸+𝜙)
[ 𝑠𝑎 − 

exp[−( 𝜆𝐸+𝜙)(𝑠−𝑠𝑎)]−exp[−( 𝜆𝐸+𝜙)𝑠]

 𝜆𝐸+𝜙
 ]  

𝑑𝐸(𝑒𝑐(𝑠))
−1

𝑑𝑠
= 

exp[−( 𝜆𝐶+𝜙)𝑠]−exp[−( 𝜆𝐶+𝜙)(𝑠−𝑠𝑎)]

 𝑚𝜆𝐶
(𝐴+1)( 𝜆𝐶+𝜙)

[ 𝑠𝑎−
exp[−( 𝜆𝐶+𝜙)(𝑠−𝑠𝑎)]−exp[−( 𝜆𝐶+𝜙)𝑠]

 𝜆𝐶+𝜙
 ]2

  

𝑑𝐸(𝑒𝐸(𝑠))
−1

𝑑𝑠
= 

exp[−( 𝜆𝐸+𝜙)𝑠]−exp[−( 𝜆𝐸+𝜙)(𝑠−𝑠𝑎)]

 𝑚𝐴𝜆𝐸
(𝐴+1)( 𝜆𝐸+𝜙)

[ 𝑠𝑎−
exp[−( 𝜆𝐸+𝜙)(𝑠−𝑠𝑎)]−exp[−( 𝜆𝐸+𝜙)𝑠]

 𝜆𝐸+𝜙
 ]2

  

 

Appendix 1B’: when 𝑠 = 𝑠𝑎 + 𝑠𝑓, i.e. at the end of the trial, we will have: 

𝐸(𝑒𝐶(𝑠)) =
𝑚 𝜆𝐶

(𝐴+1) ( 𝜆𝐶+𝜙)
 [𝑠𝑎 − 

exp[−( 𝜆𝐶+𝜙)𝑠𝑓]−exp[−( 𝜆𝐶+𝜙)(𝑠𝑎+𝑠𝑓)]

 𝜆𝐶+𝜙
 ]  

𝐸(𝑒𝐸(𝑠)) =
𝑚 𝐴𝜆𝐸

(𝐴+1) ( 𝜆𝐸+𝜙)
 [𝑠𝑎 − 

exp[−( 𝜆𝐸+𝜙)𝑠𝑓]−exp[−( 𝜆𝐸+𝜙)(𝑠𝑎+𝑠𝑓)]

 𝜆𝐸+𝜙
 ]  

Taking derivative with respect to 𝑠𝑎, we then have: 
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𝑑𝐸(𝑒𝑐(𝑠))
−1

𝑑𝑠𝑎
= 

exp[−( 𝜆𝐶+𝜙)(𝑠𝑎+𝑠𝑓)]−1

 𝑚𝜆𝐶
(𝐴+1)( 𝜆𝐶+𝜙)

[ 𝑠𝑎−
exp[−( 𝜆𝐶+𝜙)𝑠𝑓]−exp[−( 𝜆𝐶+𝜙)(𝑠𝑎+𝑠𝑓)]

 𝜆𝐶+𝜙
 ]2

  

𝑑𝐸(𝑒𝐸(𝑠))
−1

𝑑𝑠𝑎
= 

exp[−( 𝜆𝐸+𝜙)(𝑠𝑎+𝑠𝑓)]−1

 𝑚𝐴𝜆𝐸
(𝐴+1)( 𝜆𝐸+𝜙)

[ 𝑠𝑎−
exp[−( 𝜆𝐸+𝜙)𝑠𝑓]−exp[−( 𝜆𝐸+𝜙)(𝑠𝑎+𝑠𝑓)]

 𝜆𝐸+𝜙
 ]2
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Appendix 4.2: With A Cap for Follow-up Time (𝛕) on Each Subject 

Under Case 2A: s≤ sa: 
For a subject in the control group who was randomized at time u, at real time s,  the time from 

randomization to evaluation time point is s − u, and thus the probability of this entry to result in 

an event is when every subject can stay in the trial for maximum time 𝜏:  

P[Yc < Wc,  Yc <  s − u,  Yc <  τ]  = ∫  λC exp(− λCt)
min(s−u,   τ)

0

exp(−ϕt) dt 

=
 λC

 λC+ϕ
[ 1 − exp[−( λC + ϕ) min(s − u,   τ)] ]    

E(ec(s)|nC) = nCP(event on control)= nCE[ E[ I(Yc < Wc,  Yc < s − u,  Yc <  τ)|u ] ] 
=

𝑛𝐶 ∫ 𝑃(𝑒𝑣𝑒𝑛𝑡 𝑜𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙|𝑡𝑖𝑚𝑒 𝑓𝑟𝑜𝑚 𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑏𝑒𝑖𝑛𝑔 𝑢)𝑔(𝑢)𝑑𝑢
𝑠

0
       

 g(u) is the density of u. Based on uniform accrual in interval [0, s], g(u) =
1

s
.  Plugging in 

density of u,  

E(ec(s)|nC) = nC ∫
1

s
 

s

0
P[Yc < Wc,  Yc <  s − u,  Yc <  τ]du  

=nC ∫
1

s
 

s

0

 λC

 λC+ϕ
[ 1 − exp[−( λC +  ϕC) min(s − u,   τ)] ]du 

∴ E(ec)= 
1

A+1
msa ∫

1

s
 

s

0

 λC

 λC+ϕ
[ 1 − exp[−( λC + ϕ) min(s − u, τ)] ]du                     (4.1A) 

Similarly, E(eE)= 
A

A+1
msa ∫

1

s
 

s

0

 λE

 λE+ϕ
[ 1 − exp[−( λE + ϕ) min(s − u,   τ)] ]du    (4.2A)                         

Under Case 2B: s> sa: 

E(ec(s)|nC) = nC ∫
1

sa
 

sa

0
P[Yc < Wc,  Yc <  s − u,  Yc <  τ]du  

∴ E(ec)= 
1

A+1
msa ∫

1

sa
 

sa

0

 λC

 λC+ϕ
[ 1 − exp[−( λC + ϕ) min(s − u, τ)] ]du                  (4.1B) 

E(eE)= 
A

A+1
msa ∫

1

sa
 

sa

0

 λE

 λE+ϕ
[ 1 − exp[−( λE + ϕ)min(s − u,   τ)] ]du                       (4.2B) 

Under Case 2B’, where real time s = sa + τ, 

 E(ec)= 
1

A+1
msa ∫

1

sa
 

sa

0

 λC

 λC+ϕ
[ 1 − exp[−( λC + ϕ)min(sa + τ − u,   τ)] ]du           (4.1B′)  

E(eE)= 
A

A+1
msa ∫

1

sa
 

sa

0

 λE

 λE+ϕ
[ 1 − exp[−( λE + ϕ) min(sa + τ − u,   τ)] ]du            (4.2B′)     
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Chapter 5 

Planning the Duration of a Survival Group Sequential Trial with a Fixed 

Follow-up Time for All Subjects 

(accepted for publication in Jan 2016 by Communication in Statistics: theory and method) 

 

Abstract: To explore the operation characteristics of survival group sequential trials with a fixed 

follow-up period, the accrual time and total trial duration to ensure power and type I error rate 

requirements are explained and investigated for hazard ratios ranging from 1.3 to 3.0, with slow 

or high accrual rate, and in the presence or absence of censoring. Impacts of hazard rate, accrual 

rate and competitive censoring on accrual time and subsequently on total trial duration are 

carefully illustrated. Real time for interim analyses, needed number of events and recruited 

number of subjects at time of interim analyses are also tabulated. 

Key Words: Survival endpoint; Group sequential trial; a fixed follow-up period; Operation 

characteristics. 

 

Section 5.1: Introduction and A Motivating Example 

For time to event analysis, the logrank statistic was proposed by Nathan Mantel (1966) and was 

named by Richard and Julian Peto (1972).The logrank statistic can also be derived as the score 

test for the Cox Proportional Hazard model (Cox, David R, 1972) comparing survival curves 

between two groups. In terms of planning a survival trial, George and Desu (1974) proved that 

the total duration is minimized when we continue to randomize subjects into the double-blind 

phase until the end of the trial (i.e., no period of continued observation after accrual period).  

Rubinstein, Gail and Santer (1981) explored the impact of a period of continued observation on 

number of patients to be accrued to ensure a required statistical power and found: although total 

duration of the trial is increased a little as compared with that of the case with no continued 

observation period, accrual time could be reduced substantially as high as 50% or more after 

introducing a period of continued observation. Of note, both George and Desu (1974) and 

Rubinstein, Gail and Santer (1981) only focused on fixed sample designs.  

As trials get larger and longer in the past two decades, trials are analyzed using accumulating 

data periodically to allow stopping early if treatment effect is shown to be large enough and/or if 

there is no hope to show treatment effect even when the trial lasts to the end. Numerous group 

http://en.wikipedia.org/wiki/David_Cox_(statistician)
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sequential designs have been developed to ensure overall type I error rate and power 

requirements. Among them, Pocock (1977), O’Brien and Fleming (1979) and Wang and Tsiatis 

(1987) are three of the well-known ones. Normal approximation of the sequential logrank was 

first proposed by Armitage (1975), verified via simulation by Gail, Demets, and Slud(1981), 

refined by Jennison and Turnbull (1984), and finally proved by Tsiatis (1982), Sellke and 

Siegmund (1983), and Slud (1984).  In group sequential trials with survival endpoints, to plan 

the duration of group sequential trials for survival response, Kim and Tsiatis (1990) searched 

required length of the period for continued observation in group sequential setting when accrual 

period length is fixed under the scenario that there is in the absence of censoring process 

competing with time to failure. Group sequential survival trials with each subject followed-up 

with a fixed period of time is not yet explored but frequently encountered in drug development 

practice as the motivating example below indicates.  

Section 5.1.1:  A Motivating Example 

Drug A with a 1-month injection interval and has been approved by FDA. A new formulation 

with a 3-month administration interval (referred to as ‘Drug B’) is being studied for the 

maintenance treatment effect in subjects with recent onset of schizophrenia who have been 

treated for four or more months of Drug A. The primary objective of a clinical trial study is to 

compare the efficacy of Drug B in delaying time to first treatment failure with approved active 

comparator Drug A, in subjects with recent onset of schizophrenia. A randomized withdrawal 

trial is planned and all enrolled subjects will have an open-label phase treated with Drug A to 

stabilize disease status before being randomized into either Drug A group or Drug B group. Time 

to relapse is defined in multiple dimensions as time to first occurrence in the double-blind phase 

of: Psychiatric hospitalization; or suicide, deliberate self-injury or clinically significant suicidal 
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thoughts or behavior as determined by the investigator; or change in PANSS total score or in 

some PANSS items (details are not described here due to non-relating to design details 

investigated in this paper), which, from different perspectives, shows deterioration in symptom 

of schizophrenia after randomization. Due to the fact that subjects in both groups will be treated 

with active treatments, relapse rates for subjects in either group won’t be high and thus it is not 

easy to accumulate relapse events in the double-blind phase. Assuming relapse rate over a year 

for Drug A being 30%, the primary hypothesis is to determine superiority of Drug B over Dug A 

on maintenance effect for having 15% less in yearly relapse rate (i.e., Drug A = 30% and Drug B 

= 15%). A large number of events are required to ensure 80% power to establish superiority of 

Drug B over Drug A. A question is now raised up: Should we conduct an event-driven trial, 

within which all relapse-free subjects should remain in the trial till trial termination after 

collecting enough number of events? By doing this, many subjects will have to stay in the trial 

for a very long period of time due to low event rate in both groups as well as the fact that a large 

number of events is required for the trial due to having relatively small treatment-placebo 

difference by using an active comparator. Therefore, it is hard to get consented from the patients 

to participate in this trial because they might end up staying in the trial for too long. Hence, 

together with other considerations, a reasonable follow-up period, 48 weeks, was proposed by 

the study team to cap the duration of each subject in the double-blind phase. It is that all subjects 

in the double-blind phase will be followed-up until either experiencing a relapse, or early 

withdrawal or up to 48 weeks, whichever date comes the earliest. A side gain from this operation 

is: due to the majority of subjects will be administratively censored by this fixed follow-up time 

(i.e., remained event-free over 48 weeks in the double-blind phase), safety parameters and 

secondary efficacy variables can now be reasonably assessed, because, otherwise, between-group 
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comparisons for incidence rates of safety parameters and effects overtime of secondary endpoints 

make no sense when the majority of subjects have a variable length in the double-blind and one 

group could stay substantially longer than the other. Capping the follow-up time by 48 weeks 

enables the administratively censored subjects, i.e., the largest cohort among all randomized 

subjects, censored at 48 weeks in the double-blind phase and resulting in a comparable length of 

exposure in the double-blind phase within this cohort regardless of treatment groups. On the 

other hand, comparing a trial without any requirement on a minimum length of follow-up time 

could result in an un-acceptable short period for a subject to expose to the study medication upon 

study termination, even to the shortest of only one day. This, in some sense, violates the intent-

to-treat principle because there will have a big chunk of subjects being censored at study 

termination right after randomization without any contribution to evaluation of between-group 

difference in survival curves.    

Section 5.2 illustrates the trial diagram for survival trials in the absence and presence of a fixed 

follow-up period for each subject in Figure 5.1a and 5.1b, respectively. Rational for designing a 

group sequential survival trial with a fixed follow-up period for each subject is discussed in 

Section 5.3, together with calculating design operation characteristics. Section 5.4 shows 

examples explored about how adding a fixed follow-up for each subject could impact clinical 

trial designs. In the end, Section 5.5 includes discussions and then concludes this paper.  

Section 5.2: Trial Diagram 

Section 5.2.1 Survival Trials without A Fixed Follow-up Time 

Figure 5.1a shows survival trials without a fixed follow-up time, which is normally done in 

clinical trial practice.  From Figure 5.1a, we can see approximate uniform randomization 

accrual in [0, 𝑠𝑎] and subjects who have remained in the trial at time 𝑠𝑎 are all followed for 
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additional 𝑠𝑓 months to accumulate enough events in the trial. Vertical bar “|” on the left hand 

of time line denotes the timing of performing randomization procedure and then the subject enter 

into the double-blind phase. Circle on the right hand indicates a survival event occurred on this 

subject during the double-blind phase while cross symbol denotes censoring prior to study 

termination and triangle symbol indicates administrative censoring at trial termination. From 

Figure 5.1a, we have 9 events and 4 censorings by time 𝑠𝑎 + 𝑠𝑓, including one with 

administrative censoring because this subject was ongoing at the time of study termination. 

Censorings other than administrative ones could be due to withdrawal of consent, adverse events, 

lost to follow-up or other reasons.  

Section 5.2.2 Survival Trials with A Fixed Follow-up Time 

Figure 5.1b shows the trial of interest in this paper. After being randomized into the double-blind 

phase, each subject will be followed-up up to a fixed length of period, for example 𝑠𝑓 = 0.92 

years (i.e., 48 weeks) as in the motivating example. Subjects could finish end-of –study visit due 

to event or censoring prior to 0.92 years follow-up time. As in Figure 5.1a, vertical bar “|” on the 

left hand of time line denotes date of randomization and circle indicates event times.  

Administrative censorings (triangle symbol) will occur due to time truncation. Note that time to 

administrative censoring in Figure 5.1b is fixed as of 𝑠𝑓 years for every subject while it could 

be a variable number in (0, 𝑠𝑎 + 𝑠𝑓] in Figure 5.1a. Besides, time to event in Figure 5.1b is also 

truncated by 𝑠𝑓, while being in the range of 0 to 𝑠𝑎 + 𝑠𝑓 in trials without a follow-up time 

constrain as in Figure 5.1a. In Figure 5.1b, there were 5 events, 2 non-administrative censorings 

due to early withdrawal prior to truncation time and 6 administrative censorings due to time 

truncation. Time from randomization to event and censoring are both bounded by the maximum 

follow-up time 𝑠𝑓. Although it appears that the total trial duration is 𝑠𝑎 + 𝑠𝑓 for both designs, 
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𝑠𝑓 is defined differently in two scenarios, which is the length of the continued observation 

period after closure of the accrual process while being the maximum follow-up time for all 

subjects in Figure 5.1b. When 𝑠𝑓 is pre-defined, 𝑠𝑎 will differ a lot in two scenarios when to 

detest the same alternative hypothesis and under the same conditions for accrual rate, type I error 

rate and power requirements. 

              

Figure 14(Fig. 5.1): Trial diagram without/with a fixed follow-up period 

Figure 5.1: Trial diagram without/with a fixed follow-up period. 

Figure 5.1a: Trial diagram without a fixed follow-up period. Symbol “|”denotes the timing 

of randomization; circle symbol indicates an event; and cross and triangle symbols denote 

censoring. 𝒔𝒂 is the accrual time for the trial and 𝒔𝒇 is the continued observation period 

of the trial after accrual is closed. 

                     
Figure 5.1b: Trial diagram with a maximum follow-up period imposed on all subjects. Symbol 

“|”denotes the timing of performing randomization; circle symbol indicates an event; and cross 

and triangle symbols denote censoring. 𝑠𝑎 is the accrual time for the trial and 𝑠𝑓 is the 

maximum follow-up time imposed on each subject . 

 

Section 5.3: Preliminaries 
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Section 5.3.1: Expected Number of Events at Real Time 𝒔 for Survival Trials with 

A Fixed Follow-up Period for All Subjects 

Since patients are uniformly randomized into an interval [0, sa] in unit of year, the total number 

of subjects entering the double-blind phase N = nE + nC will be msa in total with recruitment 

rate of m per year over the sa years of accrual. With randomization ratio A: 1 of treatment 

group (nE) to control group (nC), then expected recruitment in sa years for treatment and 

control groups, respectively, are: E[nE] =
A

A+1
msa and E[nC] =

1

A+1
msa.  Let’s set time to 

randomize first subject in the trial as anchor time 0 and assume time to censoring is present in the 

trial and independent of process of time to event and accrual process. Any real time s in the trial 

could be either: Case A: s≤ sa or Case B:s > sa. Case B’:s = sa + sf, a special case of Case B, 

denotes the real time when the whole trial is terminated and the time of performing the last visit 

of the last patient (referred to as ‘LPLV’). Assuming survival rate for treatment and control 

groups and censoring rate regardless of treatment assignment are exponential with rates of  

 λE,  λC and ϕ, respectively. These three exponential random variables are mutually independent 

and also independent of the uniform accrual process. Let 𝑌𝑖 and 𝑊𝑖, 𝑖 = 𝐶, 𝐸, represent 

random variables of time to event and time to censoring for subjects treated with control (𝐶) and 

treatment (𝐸) medications, respectively. E(ec) and E(eE) are expected number of events from 

subjects treated with control and treatment medications, respectively, accumulated up to study 

end, conditional upon that all subjects are followed-up up to a fixed period of 𝑠𝑓 in the double-

blind phase; and 𝑛𝐶  and 𝑛𝐸  are the number of subjects accrued in the control and treatment 

groups, respectively. Hazard ratio Δ =
𝜆𝑐

𝜆𝐸
, with 𝜆𝐸 being the hazard rate for experimental group 

subjects and 𝜆𝐶 being the hazard rate for control-treated subjects. Δ̂ is the estimated hazard 

ratio.  
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Under Case A: s≤ sa: 

For a subject in the control group who was randomized at time u, at real time s,  the time from 

randomization to evaluation time point is s − u, and thus the probability of this entry to result in 

an event is:  

𝑃[𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 <  𝑠 − 𝑢,  𝑌𝑐 < 𝑠𝑓]  = ∫  𝜆𝐶 exp(− 𝜆𝐶𝑡)
min(𝑠−𝑢,   𝑠𝑓)

0

exp(−𝜙𝑡) 𝑑𝑡 

=
 𝜆𝐶

 𝜆𝐶+𝜙
[ 1 − exp[−( 𝜆𝐶 + 𝜙) min(𝑠 − 𝑢,   𝑠𝑓)] ]    

𝐸(𝑒𝑐(𝑠)|𝑛𝐶) = 𝑛𝐶𝑃(event on control)= 𝑛𝐶𝐸[ 𝐸[ 𝐼(𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 < 𝑠 − 𝑢)|𝑢 ] ] 

=

𝑛𝐶 ∫ 𝑃(𝑒𝑣𝑒𝑛𝑡 𝑜𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙|𝑡𝑖𝑚𝑒 𝑓𝑟𝑜𝑚 𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑏𝑒𝑖𝑛𝑔 𝑢)𝑔(𝑢)𝑑𝑢
𝑠

0
       

 𝑔(𝑢) is the density of 𝑢. Based on uniform accrual in interval [0, s], 𝑔(𝑢) =
1

𝑠
.  Plugging in 

density of 𝑢,  

𝐸(𝑒𝑐(𝑠)|𝑛𝐶) = 𝑛𝐶 ∫
1

𝑠
 

𝑠

0
𝑃[𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 <  𝑠 − 𝑢,  𝑌𝑐 < 𝑠𝑓]𝑑𝑢  

=𝑛𝐶 ∫
1

𝑠
 

𝑠

0

 𝜆𝐶

 𝜆𝐶+𝜙
[ 1 − exp[−( 𝜆𝐶 +  𝜙𝐶) min(𝑠 − 𝑢,   𝑠𝑓)] ]𝑑𝑢 

∴ 𝐸(𝑒𝑐)= 
1

𝐴+1
𝑚𝑠𝑎 ∫

1

𝑠
 

𝑠

0

 𝜆𝐶

 𝜆𝐶+𝜙
[ 1 − exp[−( 𝜆𝐶 + 𝜙) min(𝑠 − 𝑢,   𝑠𝑓)] ]𝑑𝑢                    (5.1𝐴) 

Similarly, 

𝐸(𝑒𝐸)= 
𝐴

𝐴+1
𝑚𝑠𝑎 ∫

1

𝑠
 

𝑠

0

 𝜆𝐸

 𝜆𝐸+𝜙
[ 1 − exp[−( 𝜆𝐸 + 𝜙) min(𝑠 − 𝑢,   𝑠𝑓)] ]𝑑𝑢                        (5.2𝐴)                         

Under Case B: s> 𝑠𝑎: 

𝐸(𝑒𝑐(𝑠)|𝑛𝐶) = 𝑛𝐶 ∫
1

𝑠𝑎
 

𝑠𝑎

0
𝑃[𝑌𝑐 < 𝑊𝑐,  𝑌𝑐 <  𝑠 − 𝑢,  𝑌𝑐 < 𝑠𝑓]𝑑𝑢  

∴ 𝐸(𝑒𝑐)= 
1

𝐴+1
𝑚𝑠𝑎 ∫

1

𝑠𝑎
 

𝑠𝑎

0

 𝜆𝐶

 𝜆𝐶+𝜙
[ 1 − exp[−( 𝜆𝐶 + 𝜙) min(𝑠 − 𝑢,   𝑠𝑓)] ]𝑑𝑢                  (5.1𝐵) 

𝐸(𝑒𝐸)= 
𝐴

𝐴+1
𝑚𝑠𝑎 ∫

1

𝑠𝑎
 

𝑠𝑎

0

 𝜆𝐸

 𝜆𝐸+𝜙
[ 1 − exp[−( 𝜆𝐸 + 𝜙)min(𝑠 − 𝑢,   𝑠𝑓)] ]𝑑𝑢                       (5.2𝐵) 
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Under Case B’, where real time 𝑠 = 𝑠𝑎 + 𝑠𝑓, 

 𝐸(𝑒𝑐)= 
1

𝐴+1
𝑚𝑠𝑎 ∫

1

𝑠𝑎
 

𝑠𝑎

0

 𝜆𝐶

 𝜆𝐶+𝜙
[ 1 − exp[−( 𝜆𝐶 + 𝜙)min(𝑠𝑎 + 𝑠𝑓 − 𝑢,   𝑠𝑓)] ]𝑑𝑢          (5.1𝐵′)  

𝐸(𝑒𝐸)= 
𝐴

𝐴+1
𝑚𝑠𝑎 ∫

1

𝑠𝑎
 

𝑠𝑎

0

 𝜆𝐸

 𝜆𝐸+𝜙
[ 1 − exp[−( 𝜆𝐸 + 𝜙) min(𝑠𝑎 + 𝑠𝑓 − 𝑢,   𝑠𝑓)] ]𝑑𝑢          (5.2𝐵′)     

The reason that we spent so much on deriving E(ec) and E(eE) is because: for a fixed sample 

design, to test H0: ln(Δ) = 0 vs. HA: ln(Δ) > 0, Appendix A1 of Rubinstein, Gail and Santer 

(1981) proved that ln (Δ̂) is asymptotically normally distributed with mean ln(Δ) and variance 

σ2 = [E(ec)]
−1 + [E(eE)]

−1, where the total trial duration is sa + sf. That is: σ2 = V(sa +

 sf) = [E(ec)]
−1 + [E(eE)]

−1, where asymptotically being  4/dfix, with dfix = E(ec)+E(eE), 

the total number of events accumulated at time sa + sf. Note that  E(eE), E(ec), V, d are all 

function of time s on (0, sa + sf], which can also be interchangeably represented as E(eE(s)), 

E(ec(s)), V(s) and  d(s). 

Section 5.3.2: Survival Group Sequential Designs 

For a group sequential design to test 𝐻0: ln(Δ) = 0 vs. 𝐻𝐴: ln(Δ) > 0 with 𝑖 = 1,2, …𝐾, we 

have to satisfy both type I and II error requirements under a group sequential setting. 

Considering a group sequential trial with 𝐾 planned analyses, let 𝜃  be the parameter of 

interest, a measure of placebo-drug difference and assume it can be estimated from trial data. 

The distribution of statistics 𝑍1 , 𝑍2 , …, 𝑍𝐾 are derived from cumulative data up to stages 

from 1,2 … , 𝐾, and it follows a canonical joint form (Chapter 3, Jennison and Turnbull, 2000) 

of multivariate normal distribution with E(𝑍𝑖) = 𝜃√𝑡𝑖 and Cov(𝑍𝑖, 𝑍𝑗) = √𝑡𝑖/𝑡𝑗  , 1≤ 𝑖 ≤ 𝑗 ≤ 𝐾 

and {𝑡1, … , 𝑡𝐾} are standard information levels for parameter 𝜃, whith final 𝑡𝐾 = 1.  

Startng with notations in Section 5.2, where time 𝑠 is on a continuous scale ranging from 0 to 

end of study time 𝑠𝑎 + 𝑠𝑓, analysis times in group sequential design are discretized into 𝐾 time 
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points. Accordingly, to accommodate group sequential notations, we denote, on the discretized 

time points instead,  𝑒𝑐,𝑖 as the accumulative number of events at Stage 𝑖, which is the same as 

𝑒𝑐(𝑡𝑖) in Section 5.3.1. Similarly, 𝑒𝐸,𝑖, 𝑑𝑖, 𝑉𝑖,i = 1,… , K,  are discretized versions of 

𝑒𝐸(𝑡𝑖), 𝑑(𝑡𝑖) and 𝑉(𝑡𝑖), respectively, with 𝑠 = 𝑡𝑖.  

Because of asymptotic normality of standardized log-rank statistic (Chapter 13.2, Jennison and 

Turnbull),  𝜃 =
ln(Δ̂)

√𝜎̂2
  obtained at stage 𝑖 aproximately has the canonical joint distribution. 

The standardized information level 𝑡𝑖 also equals the ratio of variance accumulated at  𝑠𝑖 

relative to that of at the end of the trial (𝑠𝑎 + 𝑠𝑓). That is: 

 𝑡𝑖 = 
𝑉𝑖

𝑉𝐾
= ([𝐸(𝑒𝑐,𝑖)]

−1 + [𝐸(𝑒𝐸,𝑖)]
−1)/([𝐸(𝑒𝑐,𝐾)]

−1 + [𝐸(𝑒𝐸,𝐾)]
−1) ≈

4

𝑑𝑖
4

𝑑𝐾

                        (5.3) 

where observed information and required information (per group sequential theory) at time 𝑠𝑖 

are on the left and right sides of “approximately equal sign”(i.e., ′ ≈ ′ ), respectively.  

For a group sequential test, upper efficacy boundaries {𝑢1, . . . , 𝑢𝐾} (see Equation 5.4 below) are 

made to preserve type I error under null hypothesis. Non-binding boundaries {𝑢1, . . . , 𝑢𝐾} are 

used in this paper as their calculations don’t depend on lower bounds {𝑙1, . . . , 𝑙𝐾}. Fisher’s 

information vector for a group sequential trial is searched to maintain per-specified power under 

alternative hypothesis (Equation 5.5); and in the end would equal to 𝑅𝑔𝑠𝑑 ∗ {𝑡1, … , 𝑡𝐾} (Jennison 

and Turnbull, 2000). 

𝑃𝐻0{𝑍1 ≥ 𝑢1⋃𝑍2 ≥ 𝑢2⋃⋯⋃𝑍𝐾 ≥ 𝑢𝐾} =
𝛼

2
                                                                                 (5.4) 

𝑃𝐻𝐴{𝑍1 ≥ 𝑙1} + 𝑃𝐻𝐴{𝑙1 ≤ 𝑍1 ≤ 𝑢1, 𝑍2 ≥ 𝑢2} +⋯+ 𝑃𝐻𝐴{𝑙1 ≤ 𝑍1 ≤ 𝑢1, … , 𝑙𝐾−1 ≤ 𝑍𝐾−1 ≤

𝑢𝐾−1, 𝑍𝐾 ≥ 𝑢𝐾}=1 − 𝛽                                                                                                                        (5.5)                                                                                                                                                 

Tables and Figures in this paper are created using Wang and Tsiatis (1987) (referred to as ‘WT’) 
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with shape parameter of 0.15 for efficacy upper boundaries. Besides, for lower bounds 

{𝑙1, . . . , 𝑙𝐾}, power spending is used with shape parameter of 0.8 (Kim and DeMets, 1987, 

referred to as ‘Kim-DeMets’). That is: 𝑓(𝑡𝑖, 𝛽) = 𝛽 ∗ 𝑡𝑖
0.8, 𝑖 = 1,2, … , 𝐾. For a equally spaced 

three-stage group sequential design (ie, 𝑡 = (0.33, 0.67,1)), the cumulative type II error when 

overall 𝛽 = 0.2 is 𝑓(𝑡, 𝛽) = (0.082, 0.145, 0.2). 

Section 5.3.3: Operation Characteristics for Survival Group Sequential Trials with a 

Fixed Follow-up Period 

Equation 5.6 below is the key equation to obtain real time of a survival group sequential trial 

with fixed follow-up time on every subject in the trial. To implement a particular group 

sequential test, Fisher’s information for a group sequential trial is obtained by multiplying the 

Fisher’s information of the fixed sample design by a factor to ensure power requirement 

(Jennison and Turnbull, 2002). Therefore, the variance of sequential test at time ti is the time 

fraction multiplying Rgsd, and then multiplying variance of the corresponding fixed sample 

design. Suppose analysis time s becomes si, = 1,… , K, variance at si is: 

V(s) =  ti ∗ Rgsd ∗ σfix
2 =

 ti∗Rgsd∗dfix

4
.  

On the other hand, because variance of ln(Δ̂) at time s is 

V(s) =  E(ec(s))]
−1 + [E(eE(s))]

−1, resulting in information at real time s being 

1

E(ec(s))]−1+[E(eE(s))]−1
. Equating information collected in the trial at time of analysis and required 

information per group sequential theory, we have the following the key equation for calibrating 

operation characteristics for a survival trial with a fixed follow-up period: 

 
1

E(ec(s))]−1+[E(eE(s))]−1
= 

1

ti∗(
1

4
)∗dfix∗ Rgsd

                                                                                                (5.6)  

Here are the steps to calculate design parameters for a group sequential trial for survival 
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endpoints with a fixed follow-up period: 

1) Use 𝛼, 𝛽 and log hazard ratio under alternative hypothesis to calculate the required 

number of events 𝑑𝑓𝑖𝑥 for a fixed sample design. 

2) With design parameters 𝛼, 𝛽, {𝑡1, … , 𝑡𝐾}, upper efficacy boundaries (i.e., non-blinding 

WT with shape parameter of 0.15) together with Kim-DeMets (1987)  lower boundaries 

with shape parameter of 0.8 , Equations 5.4 and 5.5 are utilized to calculate {𝑙1, . . . , 𝑙𝐾},  

{𝑢1, . . . , 𝑢𝐾}, and 𝑅𝑔𝑠𝑑 .  

3) The required number of events at interim and final are  then 𝑑𝑓𝑖𝑥 ∗  𝑅𝑔𝑠𝑑 ∗ {𝑡1, … , 𝑡𝐾}. 

4) Given sf (i.e., length of the fixed follow-up time), calculate needed accrual time sa for 

a group sequential design to ensure power of group sequential test. This can be achieved 

by accumulating dfix ∗  Rgsd number of events at the end of the trial (i.e., at time of 

sa + sf). That is:  Set ti = 1 in Equation 5.6 and utilizes Equations 5.1B’ and 5.2B’ to 

obtain  E(ec(s)) and E(eE(s)), respectively.  Based on Equation 5.6 and making use 

of inverse-grid search, accrual time sa for this group sequential trial is obtained. 

5) For a range of accrual time s ∈ [0.01, sa], with increment of 0.01 years, corresponding  

E(ec(s)) and E(eE(s)) can be calculated where Equations 5.1A and 5.2A are used when 

s≤ sa  and Equations 5.1B and 5.2B are used when s > sa. Real trial times, si, for 

interim analysis are then obtained using inverse search to ensure information at interim 

analysis i, i = 1,… , K − 1 via Equation 6. Note that for the final analysis K, real time 

sK=sa + sf is already obtained in Step 4) above. 

6) Number of patients to recruit at Stage 𝑖, 𝑖 = 1,… , 𝐾, is 𝑁𝑖 = 𝑚𝑠𝑖 if 𝑠𝑖 ≤ 𝑠𝑎 , 

otherwise  𝑁𝑖 = 𝑚𝑠𝑎 if 𝑠𝑖 > 𝑠𝑎. 
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In summary, the required maximum number of events is calculated based on group sequential 

theory to ensure enough power of detecting a hazard ratio of interest under alternative hypothesis 

while well-controlling of overall false positive rate. The accrual time for the whole group 

sequential trial 𝑠𝑎 is calculated via obtaining enough information to achieve maximum 

information at the final analysis 𝐾. For interim analysis, at a real time after first-patient-in, 

events occurred up to it will be calculated via the pair of Equations 5.1A and 5.A, (or the pair of 

5.1B and 5.2B, or the pair of 5.1B’ and 5.2B’) conditional upon the fact that event/censoring 

times are truncated above by 𝑠𝑓 in the trial. And the real time for interim analysis can be 

reversely calculated by equating observed information so far with information needed at interim 

per group sequential asymptotic theory. Number of recruited patients at interim can thus be 

calculated with the help of accrual rate and real time at interim analysis (see Step 6 above).  

Section 5.4: Examples 

All examples use one-sided type I error of 0.025, power of 0.8, 𝐾 = 3, and with median time of 

failure for the control group to be 1 year. Three different information times are chosen, as 

follows: 𝑡(1) = (0.33, 0.67, 1), 𝑡(2) = (0.5, 0.75, 1), and 𝑡(3) = (0.2, 0.8, 1) to represent equal 

increment of time fraction, interims occurring in the later part of the study, and first interim 

occurred in the early part and later ones in the later part, respectively.  

Hazard ratio 𝜆𝑐/𝜆𝐸 is ranging from 1.3 to 3 in Figures 5.2 and 5.3. Lower rate of accrual with 

𝑚 = 50 per year is used to compare with brisk accrual of 𝑚 = 200 per year (i.e., 17 patients 

per month). Three-stage group sequential WT designs together with fixed sample design(denoted 

as ‘Fixed’) are carefully investigated for the required accural time or total trial duration in the 

Tables 5.1 - 5.4 and Figures 5.2 - 5.3 regarding the following four categories: 

Type A: with no censoring (𝜙 = 0) and short period of follow-up (𝑠𝑓 = 0.5 years)  
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Type B: With censoring(𝜙 = 𝜆𝑐/2) and short period of follow-up (𝑠𝑓 = 0.5 years) 

Type C: with no censoring (𝜙 = 0) and long period of follow-up (𝑠𝑓 = 1 years)  

Type D: With censoring(𝜙 = 𝜆𝑐/2) and long period of follow-up (𝑠𝑓 = 1 years) 

In Figures 5.2 – 5.3, Types A, B, C and D are depicted using solid, medium dash, dash-dot and 

dotted line, respectively. Interestingly, they visually top each other in the order of B-A-D-C from 

upper- and right- most to lower- and left- most in the graphs. Comparing Type B with Type A, as 

well as Type D vs. Type C, shows the impact of competitive censoring on enlarging necessary 

accrual time and trial duration. The long length of follow-up period on shortening accrual time is 

shown via comparing designs having 𝑠𝑓 = 1 years with those having 𝑠𝑓 = 0.5 years. The 

impacts of varying hazard ratios and slow accrual versus quick enrolment rate on trial planning 

are assessed by evaluating Types A, B, C and D under a certain combination of hazard ratio and 

accrual rate. 

Table 5.1 shows that eliminating censoring decreases required accrual time more for low accrual 

rate than for high accrual rate:  under 𝑡(1), by 3.68 years for WT with rate of 50 per year and 

hazard ratio of 1.3 (from 47.21 years to 43.53 years), while only 0.92 years (from 11.79 years to 

10.87 years) for rate of 200 per year at the same low hazard ratio of 1.3; similarly but in a much 

less extent for high hazard ratio of 3:  by  0.44 years (from 5.51 years to 5.07 years) for 𝑚 = 

50 per year as compared with by 0.11 years (from 1.36 years to 1.25 years) for 𝑚 = 200 per 

year.  Similar trends exist in all group sequential trials with three time information vectors as 

well as in fixed sample design.  

When accrual rate is low and hazard ratio is small, much longer time is needed to accumulate 

events to ensure power, with which sometimes is unreasonably long and seems not feasible as a 

real trial that could possibly be conducted by humankind. Fortunately, either reasonable increase 
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in accrual rate or increase in hazard ratio can shorten it up. For example, accrual time for WT 

designs with 𝑡(1) information time, in the presence of censoring ϕ = 0.5λC, and every subject 

will be followed for one year is 29.01 years for 𝑚 = 50 per year and Δ = 1.3; 3.09 years for 

𝑚 = 50 per year and Δ = 3; 7.24 years for 𝑚 = 200 per year and Δ = 1.3 and only 0.77 

(i.e., the shortest) years for 𝑚 = 200 per year and Δ = 3.0. Given operational feasibility of 

multi-national (regional) trials in current practice, accrual 200 patients world-wide in a year is 

achievable. And due to large span of required accrual times for different combinations of accrual 

time, hazard ratio and follow-up time from our exercises, feasibility explorations should be 

carefully done at the stage of designing a trial prior to recruiting first patient, rather than starting 

a trial with whatever accrual rate at hand and passively waiting for events to occur. In the later 

case, the study team might have to wait forever to collect the targeted number of events, which 

was actually happening in one of the bipolar trials the author has worked at.  

Table 5.1 shows that including one year of follow-up has shortened the required accrual years as 

compared with short follow-up period of 0.5 years for all subjects: from 43.53 to 24.93 years, 

from 5.07 to 2.62 years, from 10.87 to 6.21 years and from 1.25 to 0.65 years for WT tests 

performed at  t(1) information times in the absence of censoring with 𝑚=50 per year and 

Δ = 1.3, 𝑚=50 per year and Δ = 3.0, 𝑚=200 per year and Δ = 1.3 and 𝑚=200 per year and 

Δ = 3.0, respectively, where the saving in the last case with both high accrual rate and high 

hazard ratio is 48%!! Similar observations are also noticed in corresponding cases when 

censoring is indeed present.  

As for designs under different information vectors, WT designs with 𝑡(3) generally have the 

shortest accrual times as compared with those both under 𝑡(1) and 𝑡(2) because stopping at the 

first interim, which is only 0.2 of the total information time (i.e., 𝑡(3)), shortens the overall 
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accrual time. And all three information vectors tend to have accrual times in a magnitude close to 

each other when both accrual rate and hazard ratio are high (i.e., 𝑚=200 per year and Δ = 3.0) 

because  the required number of events can be accumulated quick enough, in rates almost non-

differentiable. WT designs with 𝑡(2), accordingly to Table 5.1, always have the largest accrual 

period among all cases (Table 5.1).  

In the past two decades, whenever group sequential trials are mentioned, it is said that they apply 

for trials with slow accrual. However, due to rapid change in information technology and 

improvement in trial conducts, data cleaning and analysis can be accurately executed within 4-6 

weeks in pharmaceutical companies and thus expand the use of group sequential designs in drug 

development for trials with a quick accrual.  Further, adding a fixed follow-up period for all 

subjects in group sequential survival trials will subsequently increase accrual time comparing 

with fixed sample designs, regardless of the accrual rate, which eases operational requirement in 

time a little. 

Table 20(Tab. 5.1): Accrual time for group sequential designs 

Table 5.1: Accrual time for group sequential designs under different combinations of 

hazard ratio (low 1.3 vs. high 3.0) and accrual rate (slow 50 per year vs. brisk 200 per year) 

when WT boundary is used for upper efficacy with shape parameter of 0.15 and lower 

boundary of Kim-Demets for futility with shape parameter of 0.8, 𝜶 = 𝟎. 𝟎𝟐𝟓 and 

𝜷 = 𝟎. 𝟐.   
  Fixed WT 

𝛟 = 𝟎 
𝒔𝒇 = 𝟎.𝟓 

𝛟 = 𝟎.𝟓𝛌𝐂 
𝒔𝒇 = 𝟎. 𝟓 

𝛟 = 𝟎 
𝒔𝒇 = 𝟏 

𝛟 = 𝟎.𝟓𝛌𝐂 
𝒔𝒇 = 𝟏 

𝛟 = 𝟎 
𝒔𝒇 = 𝟎.𝟓 

𝛟 = 𝟎.𝟓𝛌𝐂 
𝒔𝒇 = 𝟎. 𝟓 

𝛟 = 𝟎 
𝒔𝒇 = 𝟏 

𝛟 = 𝟎. 𝟓𝛌𝐂 
𝒔𝒇 = 𝟏 

a= 𝟓𝟎 

𝚫 = 𝟏. 𝟑 

 

t(1) 35.06 38.02 20.15 23.44 43.53 47.21 24.93 29.01 

t(2) 43.94 47.66 25.16 29.28 

t(3) 43.36 47.03 24.83 28.90 
  

𝐚 = 𝟓𝟎 

𝚫 = 𝟑. 𝟎 

 

t(1) 3.27 3.55 1.77 2.08 5.07 5.51 2.62 3.09 

t(2) 5.12 5.56 2.65 3.12 

t(3) 5.05 5.49 2.61 3.08 
  

𝐚 = 𝟐𝟎𝟎 

𝚫 = 𝟏. 𝟑 

 

t(1) 8.76 9.51 5.03 5.86 10.87 11.79 6.21 7.24 

t(2) 10.98 11.91 6.27 7.31 

t(3) 10.83 11.75 6.19 7.21 
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𝐚 = 𝟐𝟎𝟎 

𝚫 = 𝟑. 𝟎 

 

t(1) 0.81 0.88 0.44 0.52 1.25 1.36 0.65 0.77 

t(2) 1.26 1.37 0.65 0.78 

t(3) 1.25 1.35 0.64 0.77 

 

In Figures 5.2 -5.3, accrual time 𝑠𝑎 required to conduct a test against 𝐻0 : ln(Δ) = 0 is plotted 

on the x- axis with size 𝛼 = 0.025 and power of 0.8 (𝛽 = 0.2) to detect the alternative Δ on 

the y-axis. Median time to failure for control group subjects is always 1 year. Figure 5.2 plots the 

curves for long duration trials with slow accrual (𝑚 = 50 per year) while Figure 5.3 plots short 

duration with a brisk accrual (𝑚 = 200 per year). Within each set (one particular design with a 

certain information time vector), consisting with four types, the uppermost curve represents Type 

B, the case with moderate censoring present and short follow-up period (𝜙 = 𝜆𝑐/2 and 𝑠𝑓 = 0.5 

years); the second upper curve represents Type A, the case with no censoring and short follow-

up period (𝜙 = 0 and 𝑠𝑓 = 0.5 years); the second to the lowest curve represents Type D, the 

case with moderate censoring and one-year follow-up period for all subjects (𝜙 = 𝜆𝑐/2  and 

 𝑠𝑓 = 1 years); and the lowermost curve represents Type C, the case with no censoring and 1-

year follow-up  (𝜙 = 0 and  𝑠𝑓 = 1 years). For any hazard ratio, the required accrual length to 

detect treatment difference will have a order of Type C<Type D<Type A<Type B, showing the 

need of more accrual time resulted from censoring process while on the contrary shortening 

accrual period when the accrual rate increases. And the separation between the pair A and B and 

the pair C and D shows that the impact on the accrual time from accrual rate change is more 

dramatic as compared with that of introducing competitive censoring process. In Figures 5.2 – 

5.3, the upper left, upper right, lower left and lower right graphs are for fixed sample design, WT 

under 𝑡(1), 𝑡(2) and 𝑡(3), respectively. Figures 5.2 – 5.3 are the complete version of Table 5.1 

with regard to the varying hazard ratio, which in all scenarios show a decrease function of the 
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required length of accrual time of the trial in the increase of hazard ratio (i.e., from 1.3 to 3.0). A 

much longer accrual time is required when a small hazard ratio is in need to detect treatment 

difference, which further emphasizes how important it is to explore design characteristics prior to 

trial start as well as during the trial for necessary sample size re-estimation in the middle of a 

trial if the design parameter is over-estimated beforehand to avoid a underpowered study. 

Comparing Figure 5.3 with Figure 5.2, accrual time for both fixed sample design and group 

sequential design with brisk accrual is much shortened up; and the impact of adding competition 

from censoring on accrual time tends to diminish but not disappear  in Figure 5.3 when having a 

much higher accrual rate of 𝑚 = 200 per year.    

 

Figure 15(Fig. 5.2): Required accrual time (slow) vs. hazard ratio 

Figure 5.2: Required accrual time vs. hazard ratio (from 1.3 to 3.0) for accrual rate of 50 

per year, alpha=0.025, and beta=0.2 
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Figure 16(Fig. 5.3): Required accrual time (fast) vs. hazard ratio 

Figure 5.3: Required accrual time vs. hazard ratio (from 1.3 to 3.0) for accrual rate of 200 

per year, alpha=0.025, and beta=0.2 
 

Besides accrual time length, total trial duration, which is the accrual time plus the follow-up 

time, is also investigated. In Tables 5.2 – 5.4, under t(1), t(2) and t(3) are, respectively, 

examined for four censoring rates of ∅ = 0, 0.25λc, 0.5λcand λc, four follow-up times of  sf = 

0.5, 1, 1.5 and 2 years; and slow and brisk accrual rates of 50 per year and 200 per year as 

before, aiming at showing the magnitude of impact on total trial duration for a survival trial with 

different combinations of follow-up time, accrual rate and tested relative difference between 
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placebo and treatment using WT upper boundary and Kim-DeMets lower boundary. For 

example, under t(1) and Δ = 2 and sf=1 year (shaded row in Table 5.2), a case embroils a real 

testing in drug development, the required total trial duration is 5.65, 6.03, 6.43 and 7.31 years for 

∅ = 0, 0.25λc, 0.5λc and λc, respectively, with slow accrual of 50 patients per year while being 

2.15, 2.25, 2.35 and 2.57 years correspondingly for fast accrual rate of 200 per year. There are 

indeed two ways to collect events quicker in a survival trial, recruiting more patients and 

following patients in the trial for a longer time. When comparing long follow-up time (i.e., sf = 

1 year) versus short follow-up time (i.e., sf = 0.5 years), eliminating 0.5 years of follow-up 

length increases very little (i.e., 0.46 years) in total trial duration for a short duration trial with a 

rapid accrual, i.e., 𝑚 = 200 per year, from 2.15 years to 2.61 years for  𝑡(1), Δ = 2.0 and 

∅ = 0; but the recruited number of subjects will change from 178 patients (i.e., (2.15-1)*200 = 

230) for sf = 1 to 340 patients for sf=0.5 (i.e., (2.61-0.5)*200 = 422). In other words 0.5 years 

shortening-up of follow-up time will result in accrual of an additional large chunk of patients 

(i.e., 92 more patients) and a longer trial (i.e., 0.46 years) to compensate for the shortened-up 

follow-up time 0.5 years. 

Tables 5.2 – 5.4 furthermore show that, in contrast to long trial with slow accrual (𝑚=50 per 

year), for short trials with rapid accrual rate (i.e., 𝑚 = 200 per year), adding censoring process 

will increase accrual time, subsequently in total time to a less extent. Let’s take 𝑡(𝟏), Δ =

2.0,m = 200 per year, sf = 1.0 years as an example, censoring (∅ = 0.5λc) adds 0.20 years in 

accrual time (from 2.15 years to 2.35 years) while for 0.78 years (from 5.56 years to 6.43 years) 

when with a shorter trial associated with low accrual time of 𝑚 = 50 per year. Actually, from 

Figures 5.2 – 5.3, we can also see adding censoring changes little in accrual time for long trials 

with brick accrual unless hazard ratio is less than 2. On the other hand, this reminds us that 
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accounting for censoring in design group sequential survival trials are important when we have a 

long trial associated with slow accrual and/or hazard ratio is small. In such cases, ignoring 

censoring will result in underestimated trial accrual time and total trial duration, which leads to 

inadequate design preparations.   

Table 21(Tab. 5.2): Total trial duration for WT (shape = 0.15) group sequential trials 

Table 5.2: Total trial duration for WT (shape = 0.15) group sequential trials when 

information vector is 𝒕(𝟏), plus alpha=0.025, and beta = 0.2. 

 Δ ∅=0 ∅=0.25λc ∅=0.5λc ∅=λc 
  50 200 50 200 50 200 50 200 

sf=0.5 1.25 50.49 15.20 50.49 15.81 50.50 16.44 50.50 17.74 
1.5 20.44 5.47 21.28 5.68 22.13 5.90 23.91 6.35 
2 9.01 2.61 9.37 2.71 9.74 2.80 10.51 3.00 
3 5.57 1.76 5.79 1.81 6.01 1.86 6.48 1.99 

sf=1.0 1.25 34.82 9.45 37.53 10.13 40.34 10.82 46.33 12.33 
1.5 12.25 3.80 13.16 4.04 14.11 4.26 16.14 4.78 
2 5.65 2.15 6.03 2.25 6.43 2.35 7.31 2.57 
3 3.62 1.64 3.86 1.70 4.10 1.77 4.61 1.90 

sf=1.5 1.25 27.25 7.93 30.19 8.67 33.29 9.43 39.94 11.10 
1.5 9.93 3.60 10.92 3.85 11.95 4.11 14.21 4.67 
2 4.88 2.33 5.29 2.44 5.74 2.55 6.69 2.79 
3 3.33 1.94 3.56 2.00 3.82 2.07 4.38 2.21 

sf=2.0 1.25 23.90 7.47 27.05 8.26 30.40 9.09 37.61 10.89 
1.5 9.07 3.76 10.13 4.03 11.25 4.30 13.69 4.91 
2 4.77 2.68 5.20 2.80 5.68 2.91 6.70 3.16 
3 3.44 2.34 3.69 2.41 3.95 2.47 4.55 2.63 

 
Table 22(Tab. 5.3): Total trial duration for WT (shape = 0.15) group sequential trials 

Table 5.3: Total trial duration for WT (shape = 0.15) group sequential trials when 

information vector is 𝒕(𝟐), plus alpha = 0.025, and beta = 0.2. 

 Δ ∅=0 ∅=0.25λc ∅=0.5λc ∅=λc 
  50 200 50 200 50 200 50 200 

sf=0.
5 

1.25 50.49 15.34 50.49 15.95 50.50 16.59 50.50 17.91 
1.5 20.63 5.52 21.47 5.73 22.34 5.95 24.13 6.40 
2 9.09 2.63 9.45 2.73 9.83 2.82 10.60 3.02 
3 5.62 1.77 5.84 1.82 6.06 1.87 6.53 2.01 

sf=1.
0 

1.25 35.14 9.53 37.88 10.22 40.71 10.92 46.76 12.43 
1.5 12.36 3.83 13.28 4.06 14.24 4.29 16.28 4.81 
2 5.696 2.16 6.08 2.26 6.49 2.36 7.37 2.58 
3 3.652 1.65 3.89 1.71 4.13 1.78 4.65 1.90 

sf=1. 1.25 27.50 7.99 30.46 8.74 33.59 9.51 40.30 11.19 
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5 1.5 10.01 3.62 11.01 3.87 12.05 4.14 14.33 4.70 
2 4.91 2.34 5.32 2.45 5.78 2.56 6.74 2.80 
3 3.35 1.95 3.58 2.01 3.85 2.08 4.40 2.22 

sf=2.
0 

1.25 24.11 7.52 27.29 8.32 30.67 9.16 37.95 10.98 
1.5 9.14 3.78 10.21 4.05 11.34 4.32 13.780 4.94 
2 4.80 2.69 5.23 2.80 5.71 2.92 6.74 3.17 
3 3.45 2.35 3.701 2.41 3.97 2.48 4.58 2.63 

 
Table 23(Tab. 5.4): Total trial duration for WT (shape = 0.15) group sequential trials 

Table 5.4: Total trial duration for WT (shape = 0.15) group sequential trials when 

information vector is 𝒕(𝟑), plus alpha = 0.025, and beta = 0.2. 

 Δ ∅=0 ∅=0.25λc ∅=0.5λc ∅=λc 
  50 200 50 200 50 200 50 200 

sf=0.
5 

1.25 50.49 15.15 50.49 15.75 50.50 16.38 50.50 17.68 
1.5 20.36 5.45 21.20 5.66 22.05 5.88 23.82 6.32 
2 8.98 2.60 9.34 2.70 9.70 2.79 10.47 2.99 
3 5.55 1.75 5.77 1.80 5.99 1.85 6.45 1.99 

sf=1.
0 

1.25 34.70 9.42 37.39 10.09 40.19 10.79 46.16 12.28 
1.5 12.21 3.79 13.12 4.02 14.06 4.25 16.08 4.76 
2 5.63 2.14 6.02 2.24 6.41 2.34 7.28 2.56 
3 3.61 1.64 3.85 1.70 4.09 1.77 4.60 1.89 

sf=1.
5 

1.25 27.16 7.91 30.08 8.64 33.17 9.40 39.79 11.06 
1.5 9.89 3.59 10.88 3.84 11.92 4.11 14.16 4.66 
2 4.86 2.33 5.27 2.43 5.72 2.55 6.67 2.78 
3 3.32 1.94 3.55 2.00 3.81 2.07 4.37 2.21 

sf=2.
0 

1.25 23.82 7.45 26.96 8.23 30.29 9.06 37.48 10.86 
1.5 9.04 3.76 10.10 4.02 11.21 4.29 13.64 4.90 
2 4.76 2.68 5.19 2.79 5.66 2.91 6.68 3.16 
3 3.43 2.34 3.68 2.41 3.95 2.47 4.55 2.62 

 

Based on required number of events for a group sequential design, accrual time and total trial 

duration for survival group sequential trial with fixed follow-up time can be derived. Impacts 

from censoring and different follow-up periods are addressed above in Tables 5.1 – 5.4 and 

Figures 5.2 – 5.3. There are three other aspects of group sequential designs that needed to be 

explored prior to trial start, as interim analyses allowing for early stopping using results from 

accumulating data up to analysis stage in contrast to fixed duration fixed sample design. These 

parameters are as follows:  
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i) Real time at interim and final analyses;  

ii) Required number of events at each analysis including interim and final;  

iii) Accrued number of patients at each analysis including interim and final.  

As described above, inverse searching utilizing numerical integration is implemented to find the 

real time for each analysis; then accumulated number of patients at time is calculated to 

accumulate required number of events at each analysis so that overall power of detecting 

treatment effect is ensured. One moderate hazard ratio, i.e., Δ = 2, is picked up to tabulate the 

operation characteristics group sequential trials with WT upper boundary and Kim-DeMets 

lower boundary. Tables 5.5 – 5.6 list design specifics which re-emphasize the impact of 

censoring and length of follow-up period on trial designs. Besides new features like number of 

patients and real time at interim, other group sequential parameters like upper and lower bounds 

are also tabulated. Probability and expected information under null or alternative are not included 

due to space limitation.  

Tables 5.5 and 5.6 depict operation characteristics for designs with follow-up time of 0.5 or 1 

years, and under 𝑡(1), 𝑡(2) or 𝑡(3). In each table, there are four cases in combination of 

censoring status and an accrual rate (50 per year or 200 per year): 

Case I: ϕ = 0 and m = 50 per year;  

Case II: ϕ = 0.5λc and m = 50 per year;  

Case III: ϕ = 0 and m = 200 per year;  

Case IV: ϕ = 0.5λc and m = 200 per year. 

Using asymmetric three-stage group sequential design, under equally-spaced 𝑡(1), the upper WT 

boundaries with shape parameter of 0.15 is 𝑢 = (3.009054, 2.348463, 2.041314) and Kim-

Demets lower boundaries with shape parameter of 0.8 is 𝑙 = (0.392837, 1.288984,2.041314). 
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The trial will stop for efficacy if log-rank test statistic is greater than or equal to 3.009054 at first 

stage or greater than or equal to 2.348463 at the second stage, stop for futility if less than 

0.392837 at Stage One or less than 1.288984 at Stage Two; and at the final stage will reject null 

if logrank test statistic is greater than or equal to 2.041314 and accept otherwise. The required 

number of events to conduct analysis is 28, 56 and 88 at Stage One, Stage Two and the final 

stage, respectively. From Table 5, for fixed follow-up of 0.5 years for each subject and in the 

absence of censoring, the first interim analysis will occur at 3 years after date of first-patient-in 

(denoted as ‘FPI’) with 150 patients accrued in the trial for accrual rate of 50 per year (i.e., Case 

I under 𝑡(1) in Table 5.5) while around 0.9 years after FPI with 180 patients accumulated for 

accrual rate of 200 per year (i.e., Case III under 𝑡(1) in Table 5.5);  the second interim will 

occur at 5.90 years with 295 patients accumulated in the trial and 1.65 years with 330 patients 

accrued for accrual rate of 50 per year and 200 per year, respectively. Subsequently, the final 

analysis will occur at 9.01 years with 425 patients accrued in total and 2.63 years with the same 

amount of subjects accumulated, under which the accrual time for slow and fast accruals 

respectively has to recruit subjects for 8.51 years and 2.13 years. In the presence of censoring, 

accordingly Case II and IV in Table 5.5, accrual time, subsequently total trial duration and 

recruited number of patients will all increase in order to accumulate the same number of events 

comparing trial that in the absence of censoring for detecting the same alternative hypothesis of 

Δ = 2.     

Comparing operation characteristics for short follow-up time with long follow-up time (Table 

5.5 vs. Table 5.6), under t(1), in Case I of slow accrual in the absence of censoring, adding 0.5 

years of follow-up for each subjects resulted in saving of 3.86 years (45%) in accrual time (from 

8.51 years to 4.65 years), saving of 3.46 (38%) in total trial length (from 9.01 years to 5.65 
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years) and saving of 193 (45%) in accrued number of patients (from 425 to 232) to test against 

equality of hazard rate when trial is powered at hazard ratio of 2.  Additionally, for fast accrual 

and long follow-up trials, i.e., Case III and IV in Table 5.6, there is no need to recruit patients 

after Interim Two as enough patients have been recruited at time of Interim Two; and the trial 

team can stop enrollment and wait patiently for more events to occur for the final stage and then 

terminate the trial. Therefore, without exploration of trial operation characteristics, the study 

team has no way be aware of when to stop enrollment of patients and when to get preparations 

done upon the right timing for interim and final analyses in group sequential survival trials with 

fixed length of follow-up time; and neither do they know how to adjust these parameters when 

accrual rate changes during the trial and the extent of censoring is different from what they 

thought prior to trial start.  
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Table 24(Tab. 5.5): Group sequential designs 

Table 5.5: Group sequential design with WT upper bounds (shape=0.15) and Kim-Demets beta-spending lower bounds with 

shape parameter of 0.8, alpha=0.025, beta=0.2, hazard ratio=2 and 𝐬𝐟 = 𝟎. 𝟓 while Case I: 𝛟 = 𝟎 and m=50 per year; Case 

II: 𝛟 = 𝟎. 𝟓𝛌𝐜 and m=50 per year; Case III: 𝛟 = 𝟎 and m=200 per year; and Case IV: 𝛟 = 𝟎. 𝟓𝛌𝐜 and m=200 per year. 
  

# of 

events 

Inform

ation 

time 

bounds Real time (year) Number of Patients Accrual time / follow-up time  (year) 

𝑙 𝑢 Case 

I 

Case 

II 

Case 

III 

Case 

IV 

Case I Case II Case III Case IV Case I Case II Case III Case IV 

t(1) 28 0.33 0.392837 3.009054 3.00 3.25 0.9 0.95 150 162 180 190 8.51/0.5 9.24/0.5 2.13/0.5 2.30/0.5 

56 0.67 1.288984 2.348463 5.90 6.40 1.65 1.75 295 320 330 350 

88 1.0 2.041314 2.041314 9.01 9.74 2.63 2.80 425 462 425 461 

                 

t(2) 44 0.5 1.002881 2.631239 4.50 4.85 1.30 1.35 225 243 260 270 8.59/0.5 9.33/0.5 2.15/0.5 2.32/0.5 

66 0.75 1.479783 2.283118 6.65 7.20 1.80 1.95 333 360 360 390 

89 1.0 2.064428 2.064428 9.09 9.83 2.65 2.82 429 466 429 465 

                 

t(3) 17 0.2 -0.21179 3.59089 1.90 2.05 0.65 0.65 95 103 130 130 8.48/0.5 9.20/0.5 2.12/0.5 2.29/0.5 

70 0.8 1.678852 2.210452 7.00 7.60 1.90 2..05 350 380 380 410 

87 1.0 2.044384 2.044384 8.98 9.70 2.62 2.79 424 460 423 459 

 

Table 25(Tab. 5.6): Group sequential designs 

Table 5.6: Group sequential design with WT upper bounds (shape=0.15) and Kim-Demets beta-spending lower bounds with 

shape parameter of 0.8, alpha=0.025, beta=0.2, hazard ratio=2 and 𝐬𝐟 = 𝟏. 𝟎 while Case I: 𝛟 = 𝟎 and m=50 per year; Case 

II: 𝛟 = 𝟎. 𝟓𝛌𝐜 and m=50 per year; Case III: 𝛟 = 𝟎 and m=200 per year; and Case IV: 𝛟 = 𝟎. 𝟓𝛌𝐜 and m=200 per year. 
  

# of 

events 

Inform

ation 
time 

bounds Real time (year) Number of Patients Accrual time / follow-up time  (year) 

𝑙 𝑢 Case 
I 

Case II Case 
III 

Case 
IV 

Case I Case II Case III Case 
IV 

Case I Case II Case III Case IV 

t(1) 28 0.33 0.392837 3.009054 1.95 2.20 0.80 0.85 98 110 160 170 4.65/1.0 5.44/1.0 1.16/1.0 1.35/1.0 

58 0.67 1.288984 2.348463 3.55 4.05 1.20 1.30 178 203 231 260 

86 1.0 2.041314 2.041314 5.65 6.44 2.16 2.35 232 272     231 270 

                 

t(2) 43 0.5 1.002881 2.631239 2.80 3.15 1.00 1.10 140 158 200 220 5.69/1.0 5.49/1.0 1.17/1.0 1.36/1.0 

65 0.75 1.479783 2.283118 3.95 4.50 1.35 1.45 198 225 233 272 

87 1.0 2.064428 2.064428 5.69 6.49 2.17 2.36 234 274 233 272 

                 

t(3) 17 0.2 -0.21179 3.59089 1.35 1.50 0.60 0.65 68 75 120 130 4.63/1.0 5.41/1.0 1.16/1.0 1.34/1.0 

68 0.8 1.678852 2.210452 4.15 4.75 1.40 1.50 208 238 231 268 

86 1.0 2.044384 2.044384 5.63 6.41 2.16 2.34 231 270 231 268 
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Section 5.5: Discussion 

Randomized clinical trials have been widely used in clinical trial submissions to assess 

maintenance effect of investigational compound relative to placebo in the double-blind phase on 

patients who have been stabilized for symptoms after a period of open-label treatment phase. For 

a trial design without a fixed follow-up period for each subject as in Figure 5.1a, randomized 

subjects are followed-up until event occurring, or early withdrawal, or until trial termination, 

whichever date comes the earliest. There are issues observed from drug development practice in 

trials without a fixed follow-up length imposed on all subjects as follows: safety parameters can’t 

be interpreted properly due to variable duration in the double-blind phase; some overtime effects 

measured by scales using repeated measures can’t be evaluated properly because missing is not 

at random; and long exposure to the investigation medication of those patients remaining until 

study termination is also questionable. Adding a fixed-length of follow-up time for all subjects 

can alleviate above issues in certain extent as discussed in our motivation example (Section 5.1). 

Especially, for trials comparing investigational drug against active comparator when relapse rates 

are low in both groups so that most of subjects in the double-blind phase will be administratively 

censored at the end of the follow-up time with time to censoring 𝑠𝑓, safety and secondary 

efficacy endpoints in this case can, in some extent, be assessed properly by having the same trial 

length among these subjects. In the meantime, primary efficacy endpoint can be addressed in a 

better way as compared with a trial without a fixed follow-up period, because in the intent-to-

treat analysis, there can’t exist a large chunk of subjects being administratively censored at the 

study termination with a minimum exposure up to one day to the study medication so that 

resulting in no attribution to evaluation of the overall treatment effect between two survival 

curves.  
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Careful explorations of accrual time requirement are needed prior to trial start, Table 5.1 shows 

that some trials are desperately long with slow accrual rate when to test small hazard ratio, which 

is often occurred in non-inferiority randomized withdrawal trials, as our motivation example, 

statistical exploration of trial feasibility is a must to predict large enough accrual rate to finish 

trial earlier especially in face of nowadays’ fierce competition in drug development. Impacts of 

censoring can also be explored a priori as non-administrative censoring is determined to exist in 

every trial but in a different extent, which, by Tables 5.1 - 5.6 and Figures 5.2 – 5.3, is a factor to 

determine trial length and required number of patients. By our explorations, the length of follow-

up time has substantial impacts on trial accrual time as well on total trial duration and recruited 

patients’ number. The minimum exposure length is normally chosen to account for the 

requirement of both safety and tolerability of study drug in balance with the need of long enough 

exposure to detect placebo-treat difference in efficacy. Within a range of fixed follow-up lengths, 

which are all longer than the minimum exposure requirement and under which subjects are well-

tolerated, a longer follow-up length can substantially save time and budget and can gather a 

better safety profile as compared with that of a short follow-up time. Additionally, real time for 

interim gives trial team in good preparation in time and is operationally highly appreciated 

because this prediction can avoid allocate resources too early or too late. Lastly, Newton-

Rapshon search as used in Kim and Tsiatis (1990) is not working here, as we have a minimum 

function in the integrand part of the integration. Brutal force grid-search is proposed in the trial, 

but can be done very quickly even with a personal laptop. Of note, although our motivating 

example is a double-blind randomized withdrawal trial, methods established in this paper apply 

to any survival group sequential trials with a fixed follow-up period imposed on all subjects 

irrespectively of blind or open-label, maintenance study or direct confirmative study on drug 
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efficacy in acute patients. It is also of note that subjects can still withdraw early from the trial 

prior to the maximum follow-up time if it is deemed necessary, because as pointed out by the 

reviewer that it may be equally unethical to force subjects to be studied by the same length if a 

subject changes the informed consent or encounters an unexpected adverse event.  

Although Software ADDPLAN® and Software EAST® has implemented group sequential 

design for survival data and SAS® has SEQDESIGN and SEQTEST procedures to deal with 

designs and analyses, there hasn’t been any publication substantively assessing the impacts of 

imposing a maximum follow-up period for each subject on operation characteristics of a 

particular design. This paper serves this purpose and furthermore, optimality feature could be 

assessed using automated written codes but hard to achieve using available software. 

Programming codes were done in R and available for distribution from the author upon request.    
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Chapter 6 

Optimal Weighted Z Test and Linear Combination Test in Extended 

Sequential Parallel Designs 

(Being reviewed by Communication in Statistics: theory and method) 

 
Abstract: Many times in clinical trials using Sequential Parallel Design (SPD) with two 

treatments subjects are randomized in Period 1 and placebo non-responders are re-randomized in 

period 2 to either continue with placebo or switch to drug.  In this paper, we introduce extended 

SPD (ESPD) and consider the re-randomization of not only placebo non-responders during 

Period 1 but also the re-randomization of drug responders during Period 1 into Period 2. 

Statistical methods to analyze data from an ESPD have been discussed. An optimal weighted Z 

test for normal data and a linear combination test for binary data are proposed and investigated. 

Keywords: Weighted Z Test; Parallel Sequential Design; Double Randomization; Placebo 

Effect; Linear Combination Test.          

 

Section 6.1: Introduction 

To maintain the balance among baseline factors between treatment groups, randomization of 

subjects in different treatment groups is commonly used in randomized trials. After meeting 

inclusion/exclusion criteria, subjects are randomized onto either drug or placebo to assess drug 

effect. Given that baseline factors have been evenly balanced between comparing groups, 

observed drug-placebo difference can then be considered as a measure of drug effect on patient 

population. Although majority of clinical trials only have one randomization, there are occasions 

when subjects enter from first period to second period depending upon some success criteria and 

re-randomization is needed prior to subjects enter the Period 2. For instance, to investigate 

maintenance effect after having been stabilized on drug, the second randomization could 

eliminate the bias resulted from differential early withdrawals between groups.  There is a rich 

history of published trials employing the double randomization in different therapeutic areas 

(Mills et al. 2007; Heyn et al. 1974; Habermann et al. 2006).  

Strong placebo response has been problematic in central nervous system (CNS) clinical trials, 

leading to a reduced drug effect and thus resulting in decrease in probability of finding an 
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effective drug (Khin et al. 2011).  The ideal situation is to have comparative data collected only 

from subjects who are placebo non-responders. Stringent trial procedures together with 

enrichment of placebo non-responders are some of the ways to decrease placebo response in 

clinical trials. Fava et al. (2003) proposed a SPD where subjects are only randomized during 

Period 1. Accordingly, some placebo non-responders in Period 1 continue on placebo in Period 2 

and others switch to drug in Period 2; and subjects who are treated with drug in Period 1 would 

continue to receive drug in Period 2. Treatment sequences for all subjects are all pre-specified 

prior to trial start; and data from Period 2 for subjects who are on drug in both periods are for 

safety evaluations only. An estimator is proposed to assess drug effect in each period, and a 

combined estimator is also proposed to test superiority of investigational drug over placebo 

across periods. Tamura & Huang (2007) suggest seemingly unrelated regression analysis (SUR) 

to obtain individual estimator from each period to analyze data from a SPD trial. To adjust for 

the bias caused by possible unbalanced dropouts among placebo non-responders in Period 1, 

both Fava et al. (2003) and Chen et al. (2011) propose re-randomizing Period 1 placebo non-

responders into Period 2. They showed that when certain conditions are met the covariance 

between two estimators to be zero. Re-randomization of Period 1 placebo non-responders into 

Period 2 is also suggested by Liu et al. (2012) where they suggested a weighted Z test to increase 

efficiency of hypothesis test. This paper in addition to re-randomization of placebo non-

responders in Period 1 also considers re-randomization of Period 1 drug responders into Period 2 

after washing off the residual effects. Section 6.2 describes the design schematic, Section 6.3 

introduces an optimal weighted Z test for normal data in an extended SPD trial and Section 6.4 

proposes a linear combination test for binary data. Discussions and further research directions are 

provided in Section 6.5.  
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Section 6.2: Design Schematic 

 
Figure 17(Fig. 6.1): Design schematic 

Figure 6.1: Design schematic 
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Subjects with endpoint value of a period greater than or equal to a threshold value are defined as 

a responders during the period (or on the contrary, being less than or equal to a threshold value). 

The design consists of two periods. At the beginning of Period 1, eligible subjects are 

randomized to receive either placebo or drug, and subjects can withdraw early for lack-of-

efficacy, adverse event, or other safety issues. At the end of Period 1, placebo patients are 

classified as responder or non-responder based on endpoint value. Placebo non-responders are 

re-randomized to receive either drug or placebo in Period 2. Similarly, subjects in drug group are 

also classified as responders or non-responders. A proper washout period is used to eliminate 

residue effects obtained from Period 1 and then drug responders are re-randomized to receive 

either placebo or continue on drug in Period 2. To maintain balance of baseline factors between 

comparing groups in Period 2, randomization ratio in Period 2 is set as 1:1 for both placebo non-

responders and drug responders. Period 1 randomization ratio of 1:1 is not required but it should 

be 1:1 in Period 2 within each randomization group. 

Section 6.3: Normal Data 

Section 6.3.1: General Theory of Design 

Let 𝜃1 be Period 1 drug effect with standard error 𝜐1. Pairs 𝜃21 and 𝜐21 are similarly defined 

for drug effect in Period 2 obtained from re-randomized Period 1 placebo non-responders, so do  

𝜃22 and 𝜐22 obtained from re-randomized Period 1 drug responders. Let  r1 denote the 

randomization ratio of subjects receiving placebo versus drug in Period 1. Let r21 and r22 

denote re-randomization ratio for placebo versus drug in Period 2 for Period 1 placebo non-

responders and for Period 1 drug responders, respectively. Therefore, the number of subjects for 

drug and placebo in Period 1 are respectively 𝑛1 and 𝑛1 ∗ 𝑟1. Note that the sample sizes for both 

Period 1 placebo non-responders and drug responders are random and depend on the attrition rate 
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in Period 1 as well as the probability of being a responder at the end of Period 1. n21
∗  and 

n21
∗ ∗ r21 are the expected number of Period 1 placebo non-responders who switch to receive 

drug in Period 2 and remain on placebo in Period 2, respectively. Similarly, n22
∗   and   

n22
∗ ∗ r22 are defined as the expected number of drug responders who remain on drug in Period 2 

and switch to receive placebo in Period 2, respectively. 

We are interested in testing the following global null hypothesis: 

𝐻0: 𝜃1 ≤ 0  and  𝜃21 ≤ 0 and 𝜃22 ≤ 0    in favor of the alternative hypothesis 

𝐻𝐴: 𝜃1 > 0  or  𝜃21 > 0 or 𝜃22 > 0     

For 𝜃1, 𝜃21 and 𝜃22, the test statistics for testing the individual null hypothesis 𝐻01: 𝜃1 ≤ 0, 

𝐻021: 𝜃21 ≤ 0 and 𝐻022: 𝜃22 ≤ 0 are 𝑍1, 𝑍21 and 𝑍22, respectively, with each test statistic 

defined as an estimate divided by its standard error. They are standard normal variables with 

mean zero and variance of one under null hypotheses and with a positive mean and variance of 

one under alternative hypothesis. Note that the individual statistics here are different from widely 

cited weighted Z statistic from two stages (Cui et al. 1999) resulting from a design with one 

randomization only. Here 𝑍21 and 𝑍22 are obtained from Period 2 after re-randomization. The 

relationships among 𝑍1, 𝑍21 and 𝑍22 are essential to understand asymptotical distribution of 

the combined test statistic under both null and alternative hypotheses. Since Period 1 placebo 

non-responders contribute to both 𝑍1  and 𝑍21 and Period 1 drug responders contribute to both  

𝑍1 and 𝑍22, correlation coefficient between them (i.e., Z1 versus Z21 or Z22) must be 

evaluated in order to test the hypothesis when using combined test statistic against the global null 

hypothesis. Let 𝜌1 denote the correlation coefficient between outcomes at Period 1 and Period 2 

for subjects who are placebo non-responders in Period 1 and then treated with placebo in Period 

2 and 𝜌2 is defined similarly but for subjects who are placebo non-responders in Period 1 and 
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treated with drug in Period 2. Assuming equal correlation coefficients (i.e., 𝜌1 = 𝜌2 ) as in 

Chen et al. (2011), it is proved that covariance between 𝑍1 𝑎𝑛𝑑 𝑍21 is zero (that is cov (𝑍1, 

𝑍21) = 0). Similarly, cov (𝑍1, 𝑍22) = 0. Also 𝑍21 and 𝑍22 are independent of each other as 

coming from different cohorts of subjects in Period 2, which says cov (𝑍21, 𝑍22)=0.  

To establish the efficacy of the drug, one combines 𝑍1, 𝑍21and 𝑍22 via 

Z=√𝜆1𝑍1 + √𝜆2𝑍21 + √1 − 𝜆1 − 𝜆2𝑍22 

Due to mutual independence, Var(Z) = 1 under both null or alternative hypotheses.  

with 𝑅𝑘 =
𝑟𝑘

1+𝑟𝑘
, 𝛿𝑘 =

𝜃𝑘

𝜐𝑘
, 𝑓𝑜𝑟 𝑘 = 1, 21 𝑜𝑟 22, one obtains 

E(Z)= √𝜆1√𝑛1𝑅1𝛿1 + √𝜆2√𝑛21
∗ 𝑅21𝛿21 + √1 − 𝜆1 − 𝜆2√𝑛22

∗ 𝑅22𝛿22   

This expectation is zero under null because having zero 𝛿’s under null. Furthermore, assuming 

positive 𝛿’s,  maximizing the power of the test 𝑍 > 𝑧1−𝛼
2
  is equivalent to maximize the 

expectation of Z under alternative. Taking derivative of expectation function with respect to 𝜆1   

and 𝜆2 separately,  setting derivative function equal to zero and solving equations 

simultaneously, one can get optimal weights 𝜆1 and 𝜆2 as: 

𝜆1
∗ =

𝑛1𝑅1𝛿1
2𝑛22
∗ 𝑅22𝛿22

2

(𝑛1𝑅1𝛿1
2+𝑛22

∗ 𝑅22𝛿22 
2 )(𝑛21

∗ 𝑅21𝛿21
2 +𝑛22

∗ 𝑅22𝛿22 
2 )−𝑛1𝑅1𝛿1 

2𝑛21
∗ 𝑅21𝛿21

2   

𝜆2
∗ =

𝑛21
∗ 𝑅21𝛿21

2 𝑛22
∗ 𝑅22𝛿22

2

(𝑛1𝑅1𝛿1
2+𝑛22

∗ 𝑅22𝛿22 
2 )(𝑛21

∗ 𝑅21𝛿21
2 +𝑛22

∗ 𝑅22𝛿22 
2 )−𝑛1𝑅1𝛿1 

2𝑛21
∗ 𝑅21𝛿21

2   

1 − 𝜆1
∗ − 𝜆2

∗ =
𝑛22
∗ 𝑅22𝛿22

2 𝑛22
∗ 𝑅22𝛿22

2

(𝑛1𝑅1𝛿1
2+𝑛22

∗ 𝑅22𝛿22 
2 )(𝑛21

∗ 𝑅21𝛿21
2 +𝑛22

∗ 𝑅22𝛿22 
2 )−𝑛1𝑅1𝛿1 

2𝑛21
∗ 𝑅21𝛿21

2   

It can be seen that weights are obtained from splitting variance of 1 into three components, with 

each being less than 1 and greater than 0, and each coefficient of 𝑍𝑘, 𝑘 = 1, 21 𝑜𝑟 22 is the 

square root of corresponding weight. This is indeed very similar to variance spending method 

which dispenses variance into three independent test statistics. Let 𝜋21 be the rate of 
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attrition/exclusion for placebo responders in Period 1 and 𝜋22 be the rate of attrition/exclusion 

of drug non-responders in Period 1. Thus, the expected sample size 𝑛21
∗  𝑎𝑛𝑑 𝑛22

∗  in Period 2 can 

be represented as a function of randomization ratio together with 𝜋′𝑠. That is:  𝑛21
∗ =

𝑛1𝑟1(1−𝜋21)

1+𝑟21
  and 𝑛22

∗ =𝑛1(1 − 𝑅22)(1 − 𝜋22). With 𝜏21
2 =

𝛿21
2

𝛿1
2 , 𝜏22

2 =
𝛿22
2

𝛿1
2 , for given two-sided 

type I error 𝛼 and type II error 𝛽, the required sample size for 𝑛1 is: 𝑛1 =
(z1−β+z1−𝛼

2
)

2

𝛿1
2𝑅𝐵

, 

where 𝑅𝐵 = 𝑅1 + 
𝑅21𝑅1(1−𝑅21)(1−𝜋21)

1−𝑅1
𝜏21
2 + (1 − 𝑅22)𝑅22(1 − 𝜋22)𝜏22

2 . Enrichment of placebo 

non-responders alone (Liu et al. 2012) is a special case of the proposed method here. That is: 

without re-randomization of drug responders into Period 2, one now has  𝜆1
∗ =

𝑛1𝑅1𝛿1
2

𝑛1𝑅1𝛿1
2+𝑛21

∗ 𝑅21𝛿21
2  

and 𝑛1 =
(z1−β+z1−𝛼

2
)

2

𝛿1
2𝑅1𝑅𝐴

  with  𝑅𝐴 = 1 +
𝑅21(1−𝑅21)(1−𝜋21)

1−𝑅21
𝜏21
2 . Because 𝑅𝐵 = 𝑅𝐴 + (1 −

𝑅22)𝑅22(1 − 𝜋22)𝜏22
2 > 𝑅𝐴, sample size for enrichment of both Period 1 placebo non-responders 

and Period 1 drug responders can further decrease sample size and hence increase efficiency of 

the design compared to a SPD design with only re-randomizing Period 1 placebo non-responders 

into Period 2. 

Section 6.3.2: Sample Size and Optimal Weight(s) Calculations 

Optimal weight(s) and sample size are calculated for enrichment of placebo non-responders 

alone (Table 6.1) and for enrichment of both placebo non-responders and drug responders (Table 

6.2) under a variety of scenarios. 

Table 1 contains the results for enrichment of placebo non-responders alone, 𝑟1 = 2  

corresponding to 2:1 randomization ratio in Period 1, which is also proposed in various papers 

with SPD design to ensure that enough subjects can enter into Period 2.  A special case of 
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𝑟1 = 2 shows that increase in sample size leads to higher power of the trial. Total sample size 

for Period 1 is 114 for power 0.8 while power is equal to 0.9 for sample size of 152 when 

𝛿1 = 𝛿21 = 0.5. With power of 0.8, sample size for total number of subjects in Period 1 

decreases from 114 to 104 when having 20% increase in effect size (𝛿21=0.6) in Period 2 from 

Period 1 (𝛿1=0.5), as compared with the case with no change after enrichment (i.e., 𝛿1 = 𝛿21 =

0.5). Similar trends also occur with other values of 𝑟1. Considering varying value of 𝑟1, one 

notices that weight 𝜆1,𝑜𝑝𝑡 decreases as  𝑟1 increases. And the optimal weights for the listed 

scenarios are ranging from 0.6 to 0.8, consistent with published numbers in the literature. 

Table 26(Tab. 6.1): Optimal rates and sample sizes for SPD 

Table 6.1: For a SPD trial with enrichment of placebo non-responder, calculation of 

optimal 𝝀𝟏,𝒐𝒑𝒕  and sample size when 𝜶/𝟐 = 𝟎. 𝟎𝟐𝟓, 𝜷 = 𝟎. 𝟏 𝒐𝒓 𝟎. 𝟐, 𝜹𝟏 = 𝟎. 𝟓, 

𝜹𝟐𝟏 = 𝟎. 𝟓 𝒐𝒓 𝟎. 𝟔, and 𝒓𝟏 = 𝟏. 𝟓, 𝟏. 𝟕, 𝟐. 𝟎, 𝟐. 𝟐 𝒐𝒓 𝟐. 𝟓. 
1 − 𝛽 𝜋21 𝛿1 𝛿21 𝜀21 𝑟1 𝜆1,𝑜𝑝𝑡 𝑛1 𝑁1 = n1 + n1 ∗ r1 

0.8 0.5 0.5 0.5 1.0 

1.5 0.76 42 105 

1.7 0.75 40 108 

2.0 0.73 38 114 

2.2 0.71 37 117 

2.5 0.70 36 124 

0.8 0.5 0.5 0.6 1.2 

1.5 0.69 39 97 

1.7 0.67 37 99 

2.0 0.65 35 104 

2.2 0.63 34 107 

2.5 0.61 33 114 

0.9 0.5 0.5 0.5 1.0 

1.5 0.76 57 141 

1.7 0.75 54 145 

2.0 0.73 51 152 

2.2 0.71 49 156 

2.5 0.70 48 165 

0.9 0.5 0.5 0.6 1.2 

1.5 0.69 52 129 

1.7 0.67 50 133 

2.0 0.65 47 140 

2.2 0.63 45 144 

2.5 0.61 44 152 

 

 

Table 6.2 repeats the calculations in Table 6.1 but with enrichment of both Period 1 placebo non-

responders and Period 1 drug responders. Comparing with enrichment of placebo non-responders 
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alone (Table 6.1), in ESPD trials, total sample size decreases by 15%-20% as compared with 

cases in Table 6.1, resulting in more efficient designs. For r1 = 2, all cases result in 

substantially saving in sample size as compared with respective cases in Table 6.1. Since both 

Period 1 placebo non-responders and Period 1 drug responders continue into Period 2 in ESPD 

trials, balanced randomization in Period 1 is more desirable and hence one could have r1 around 

1 rather than a number bigger than 1 as in Table 6.1. Note that in the proposed ESPDs, when 

r1 = 1, equal effect size (i.e. δ1 = δ21 = δ22 = 0.5) and power 0.8, the required total sample 

size in Period 1 is 84; and as expected, sample size decreases to 79 when enrichment works and 

the effect size increases to 0.6 in Period 2 from being 0.5 in Period 1. From Table 6.2, it is also 

clear that optimal λ1 is between 0.4 and 0.7, while λ2 being a positive number less than 0.3. 

Compared to a simple parallel design, trials with SPD will save 30% in sample size (Liu et al. 

2012) and further saving about 15%-20% in sample size can be achieved by ESPD compared to 

SPD trial. 

Table 27(Tab. 6.2): Optimal rates and sample sizes for ESPD 

Table 6.2: For an ESPD with both enrichment of placebo non-responders and drug 

responders, calculation of optimal  𝝀𝟏,𝒐𝒑𝒕 , 𝝀𝟐,𝒐𝒑𝒕  and sample size when 𝜶/𝟐 = 𝟎. 𝟎𝟐𝟓, 

𝜷 = 𝟎. 𝟏 𝒐𝒓 𝟎. 𝟐, 𝜹𝟏 = 𝟎. 𝟓, 𝝅𝟐𝟏 = 𝝅𝟐𝟏 = 𝟎. 𝟓, 𝜹𝟐𝟏 = 𝟎. 𝟓, 𝜹𝟐𝟐 = 𝟎. 𝟓 𝒐𝒓 𝟎. 𝟔, and 

𝒓𝟏 = 𝟎. 𝟓, 𝟎. 𝟕, 𝟏. 𝟎, 𝟏. 𝟐, 𝟏. 𝟓, 𝟏. 𝟕, 𝟐. 𝟐 𝒐𝒓 𝟐. 𝟓. 
1 − 𝛽 𝜋21 𝜋22 𝛿1 𝛿21 𝛿22 𝜀21 𝜀22 𝑟1 𝜆1,𝑜𝑝𝑡 𝜆2,𝑜𝑝𝑡 𝑛1 𝑁1 

0.8 0.5 0.5 0.5 0.5 0.5 1 1 

0.5 0.640 0.120 61 91 

0.7 0.660 0.140 51 86 

1.0 0.667 0.167 42 84 

1.2 0.665 0.182 39 85 

1.5 0.658 0.206 35 87 

1.7 0.651 0.220 33 88 

2 0.640 0.240 31 91 

2.2 0.632 0.253 29 93 

2.5 0.620 0.271 28 96 

0.8 0.5 0.5 0.5 0.6 0.6 1.2 1.2 

0.5 0.402 0.075 55 82 

0.7 0.421 0.089 47 79 

1.0 0.431 0.108 40 79 

1.2 0.433 0.119 36 79 

1.5 0.431 0.135 33 82 

1.7 0.428 0.144 31 83 

2 0.422 0.158 29 86 
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2.2 0.418 0.167 28 88 

2.5 0.411 0.180 27 91 

0.9 0.5 0.5 0.5 0.5 0.5 1 1 

0.5 0.640 0.120 81 122 

0.7 0.660 0.140 68 115 

1.0 0.667 0.167 57 113 

1.2 0.665 0.183 52 113 

1.5 0.658 0.205 47 116 

1.7 0.651 0.220 44 118 

2 0.640 0.240 41 122 

2.2 0.632 0.253 39 124 

2.5 0.620 0.271 37 128 

0.9 0.5 0.5 0.5 0.6 0.6 1.2 1.2 

0.5 0.402 0.075 73 110 

0.7 0.421 0.089 62 106 

1.0 0.431 0.108 53 105 

1.2 0.433 0.119 49 106 

1.5 0.431 0.135 44 109 

1.7 0.428 0.144 42 112 

2 0.422 0.158 39 115 

2.2 0.418 0.167 37 118 

2.5 0.411 0.180 35 122 

 

 

Section 6.4: Linear Combination Test in An Extended SPD with Binomial Data 

Section 6.4.1: Preliminaries 

For binary data collected from both periods, as shown in Table 6.3, there are four groups of 

patients across two periods: 1) patients who receive placebo in Period 1, are non-responders and 

re-randomized to receive placebo in Period 2 (PP), 2) patients who receive placebo in Period 1, 

are non-responders and re-randomized to receive drug in Period 2 (PD), 3) patients who receive  

drug in Period 1, are responders and then re-randomized to receive placebo in Period 2 (DP), and 

4) patients who receive drug in Period 1, are responder and re-randomized to receive drug in 

Period 2 (DD).  

Define  𝑝1 = 𝑃(𝑑𝑟𝑢𝑔 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑖𝑛 𝑃𝑒𝑟𝑖𝑜𝑑 1), 𝑞1 = 𝑃(𝑝𝑙𝑎𝑐𝑒𝑏𝑜 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑖𝑛 𝑃𝑒𝑟𝑖𝑜𝑑 1), 

𝑝21 = 𝑃(𝑑𝑟𝑢𝑔 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑖𝑛 𝑃𝑒𝑟𝑖𝑜𝑑 2|𝑝𝑙𝑎𝑐𝑒𝑏𝑜 𝑛𝑜𝑛 − 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟 𝑖𝑛 𝑃𝑒𝑟𝑖𝑜𝑑 1), 𝑞21 =

𝑃(𝑝𝑙𝑎𝑐𝑒𝑏𝑜 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑖𝑛 𝑃𝑒𝑟𝑖𝑜𝑑 2|𝑝𝑙𝑎𝑐𝑒𝑏𝑜 𝑛𝑜𝑛 − 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟 𝑖𝑛 𝑃𝑒𝑟𝑖𝑜𝑑 1),  

𝑝22 = 𝑃(𝑑𝑟𝑢𝑔 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑖𝑛 𝑃𝑒𝑟𝑖𝑜𝑑 2|𝑑𝑟𝑢𝑔 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟 𝑖𝑛 𝑃𝑒𝑟𝑖𝑜𝑑 1), 

𝑞22 = 𝑃(𝑝𝑙𝑎𝑐𝑒𝑏𝑜 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑖𝑛 𝑃𝑒𝑟𝑖𝑜𝑑 2|𝑑𝑟𝑢𝑔 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟 𝑖𝑛 𝑃𝑒𝑟𝑖𝑜𝑑 1). 
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Here, 𝑝21, 𝑞21,𝑝22, 𝑎𝑛𝑑 𝑞22 are all conditional probabilities. Among PP subjects,  𝑛11 denotes 

the observed number of  responders in Period 2; 𝑛12 denotes the observed number of subjects 

who are non-responders in both periods; 𝑛1𝐴 is the observed number of subjects who are placebo 

responders in Period 1; 𝑛1 is the total number of PP subjects and therefore 𝑛1 = 𝑛11 + 𝑛12 +

𝑛1𝐴. Vector (𝑛11, 𝑛12, 𝑛1𝐴) is multinomially distributed with (𝑛1, (1 − 𝑞1)𝑞21, (1-𝑞1)(1-𝑞21), 𝑞1).  

𝑛21 is, of the PD subjects, the observed number of subjects who are non-responders in Period 1 

and responders in Period 2;  n22 is, of the PD subjects, the observed number of subjects who 

are non-responders in both periods; 𝑛2𝐴 is, of the PD subjects, the observed number of subjects 

who are placebo responders in Period 1; 𝑛2 is the total number of PD subjects and 𝑛2 = 𝑛21 +

𝑛22 + 𝑛2𝐴. Vector (𝑛21, 𝑛22, 𝑛2𝐴) is multinomially distributed as (𝑛2, (1 − 𝑞1)𝑝21, (1-q1)(1-

p21), 𝑞1). 𝑛3𝐵 is, of the DP subjects, the observed number of subjects who are drug non-

responders in Period 1; 𝑛33 is, of the DP subjects, the observed number of subjects who are 

responders in both periods; 𝑛34 is, of the DP subjects, the observed number of subjects who are 

responders in Period 1 and non-responders in Period 2. 𝑛3 = 𝑛3𝐵 + 𝑛33 + 𝑛34. Vector 

(𝑛3𝐵 , 𝑛33, 𝑛34) is multinomially distributed as (𝑛3, (1 − 𝑝), 𝑝1𝑞22, 𝑝1(1 − 𝑞22)). 𝑛4𝐵 is, of the 

DD subjects, the observed number of subjects who are drug non-responders in Period 1; 𝑛43 is, 

of the DD subjects, the observed number of subjects who are responders in both periods; 𝑛44 is, 

of the DD subjects, the observed number of subjects who are responders in Period 1 and non-

responders in Period 2. 𝑛4 = 𝑛4𝐵 + 𝑛43 + 𝑛44. Vector (𝑛4𝐵, 𝑛43, 𝑛44) is multinomially 

distributed as (𝑛4, (1 − 𝑝1), 𝑝1𝑝22, 𝑝1(1 − 𝑝)). The total sample size of the trial is n and n= 

𝑛1 + 𝑛2 + 𝑛3 + 𝑛4.  For sample size estimation and simulation of rejection probabilities, for the 

purpose of convenience, it is set to have 𝑛1 = 𝑛2 = 𝑛3 = 𝑛4 = 𝑛/4. Table 6.3 depicts the 

distribution of count data described above. 



 

211 

Table 28(Tab. 6.3): Extended sequential parallel design with binary data 

Table 6.3: Extended sequential parallel design with binary data. 
          Treatment                                Response 

Period  1          Period 2      Period 1        Period 2                         Count                       

Probability                     

Placebo Placebo  

 ( 𝑛1) 
No Yes    𝑛11  (1-𝑞1) 𝑞21 

No No    𝑛12  (1-𝑞1)(1-𝑞21) 

Yes X    𝑛1𝐴   𝑞1 

Placebo Drug 

( 𝑛2 ) 

No Yes   𝑛21  (1-𝑞1) 𝑝21 

No No   𝑛22  (1-𝑞1)(1-𝑝21) 

Yes X    𝑛2𝐴   𝑞1 

Drug Placebo  

  𝑛3 

No X    𝑛3𝐵  (1-𝑝1) 

Yes Yes    𝑛33  𝑝1𝑞22 

Yes No    𝑛34   𝑝1(1 − 𝑞22) 
Drug Drug 

( 𝑛4 ) 

No X   𝑛4𝐵  (1-𝑝1) 

Yes Yes   𝑛43  𝑝1𝑝22 

Yes No   𝑛44  𝑝1(1 − 𝑝22) 

  

Section 6.4.2: Linear Combination Test  

To test potential drug effect across two periods of the trial, we propose using maximum 

likelihood estimators from two periods; and then obtaining the linear combination of the two 

estimators, say ℎ. Because estimated ℎ ̂after plugging in maximum estimators is a function of 

all count vectors which have four different multinomial distributions, utilizing asymptotical 

normality of multinomial counts, delta method can be used to derive asymptotical variance of ℎ̂. 

The joint likelihood for observed data is defined as 

L=𝑝1
𝑛33+𝑛34+𝑛43+𝑛44(1 − 𝑝1)

𝑛4𝐵+𝑛3𝐵𝑞1
𝑛1𝐴+𝑛2𝐴(1 − 𝑞1)

𝑛11+𝑛12+𝑛21+𝑛22𝑝21
𝑛21(1 −

𝑝21)
𝑛22𝑞21

𝑛11(1 − 𝑞21)
𝑛12𝑝22

𝑛43(1 − 𝑝22)
𝑛44𝑞22

𝑛33(1 − 𝑞22)
𝑛34 

logL=(n33 + n34 + n43 + n44) log(p1) + (n4B + n3B) log(1 − p1) + (n1A + n2A) log(q1) +

(n11 + n12 + n21 + n22) log(1 − q1) + n21log (p21) +n22 log(1 − p21) + n11 log(q21) +

 n12 log((1 − q21) + n43log (p22)+ n44 log(1 − p22) + n33 log(q22) + n34log (1 − q22) 

ĥ = w1(p̂1 − q̂1)    + w2(p̂21 − q̂21) + (1 − w1 −w2)(p̂22 − q̂22 ), where 𝑤1 and 𝑤2 are 

pre-specified weights.  Under the situation of zero drug-placebo difference, 𝑝1 = 𝑞1, 𝑝21 =
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𝑞21, 𝑝22 = 𝑞22, h then equals 0. More effective a drug is, a bigger value ℎ will become. The 

maximum likelihood estimate (MLE) can be solved by setting the first derivative of logL to 0.  

𝑝̂1 =
𝑛33+𝑛34+𝑛43+𝑛44

𝑛33+𝑛34+𝑛43+𝑛44+𝑛4𝐵+𝑛3𝐵
, 𝑞̂1 =

𝑛1𝐴+𝑛2𝐴

𝑛11+𝑛12+𝑛21+𝑛22+𝑛1𝐴+𝑛2𝐴
,  𝑝̂21 =

𝑛21

𝑛21+𝑛22
, 𝑞̂21 =

𝑛11

𝑛11+𝑛12
,  𝑝̂22 =

𝑛43

𝑛43+𝑛44
 , 𝑞̂22 =

𝑛33

𝑛33+𝑛34
. The maximum likelihood of h, ℎ̂𝑀𝐿𝐸, is obtained by 

substituting the MLEs into ℎ function and the variance of ℎ̂𝑀𝐿𝐸 can be estimated using delta 

method. Define 𝐷𝑇= [
𝜕ℎ̂

𝜕𝑛11
,
𝜕ℎ̂

𝜕𝑛12
,
𝜕ℎ̂

𝜕𝑛1𝐴
,
𝜕ℎ̂

𝜕𝑛21
,
𝜕ℎ̂

𝜕𝑛22
,
𝜕ℎ̂

𝜕𝑛2𝐴
,
𝜕ℎ̂

𝜕𝑛3𝐵
,
𝜕ℎ̂

𝜕𝑛33
,
𝜕ℎ̂

𝜕𝑛34
,
𝜕ℎ̂

𝜕𝑛4𝐵
,
𝜕ℎ̂

𝜕𝑛43
,
𝜕ℎ̂

𝜕𝑛44
] and 

define V=cov([𝑛11 𝑛12 𝑛1𝐴 𝑛21 𝑛22 𝑛2𝐴 𝑛3𝐵  𝑛33 𝑛34 𝑛4𝐵𝑛43 𝑛44]
T). Then asymptotic 

Var(ℎ̂𝑀𝐿𝐸)=𝐷̂𝑉̂𝐷̂𝑇. Since 𝑛1,𝑛2, 𝑛3,   𝑎𝑛𝑑 𝑛4,   are multinomially distributed and resulting from 

four count vectors of (𝑛11,, 𝑛12,, 𝑛1𝐴 ), (𝑛21,, 𝑛22,, 𝑛2𝐴 ), (𝑛3𝐵,, 𝑛33,, 𝑛34 ), and (𝑛4𝐵,, 𝑛43,, 𝑛44 ) 

respectively. For instance, Var(𝑛11)= 𝑛1(1-(1-𝑞1) 𝑞21) (1-𝑞1) 𝑞21 and Cov(𝑛11, 𝑛12)= 

Cov(𝑛12, 𝑛11)=- 𝑛1(1-𝑞1) 𝑞21(1-𝑞1)(1-𝑞21).  Similarly, all other variances and covariance can be 

easily derived.  Thus, V=cov([𝑛11 𝑛12 𝑛1𝐴 𝑛21 𝑛22 𝑛2𝐴 𝑛3𝐵  𝑛33 𝑛34 𝑛4𝐵𝑛43 𝑛44]
T), a 12X12 

block diagonal matrix. 

The resulting statistic is 𝑇𝑙𝑐 =
ℎ̂

√𝐷̂𝑉̂𝐷̂𝑇
,  which converges to standard normal under null 

hypothesis. This shows that this linear combination test is a Wald test under null hypothesis of 

h=0. 

Section 6.4.2: Sample Size Requirement and Simulated Rejecting Probabilities 

Based on asymptotic normal of 𝑇𝑙𝑐, sample size can be derived. Plugging in expected values of 

 𝑛11, 𝑛12,𝑛1𝐴, 𝑛21, 𝑛22,𝑛2𝐴,, 𝑛3𝐵 , 𝑛33,𝑛34, 𝑛4𝐵, 𝑛43, 𝑛44 into DV𝐷𝑇 and let ℎ = 𝑤1(𝑝1 − 𝑞1) +

𝑤2(𝑝21 − 𝑝21) + (1 − 𝑤1 − 𝑤2)(𝑝22 − 𝑞22 ), expected value of 𝑇𝑙𝑐 is 
ℎ

√𝐷𝑉𝐷𝑇
. To achieve two-

sided type I error of 𝛼 and type II error of 𝛽, E(𝑇𝑙𝑐)|𝐻𝐴=𝑧1−𝛼/2+𝑧1−𝛽, where 𝑧1−𝛼/2 is the 
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(1 −
𝛼

2
) 𝑡ℎ quintiles of the standard normal variable. Figure 2 shows the expected value of 𝑇𝑙𝑐 

under alternative for different 𝑛. The horizontal dot-dashed line shows the value of 

𝑧1−𝛼/2+𝑧1−𝛽 when 𝛼 = 0.05 and 𝛽 = 0.1. At the point that the horizontal dot-dashed line 

intercepts, one draws a vertical line to intercept with the x-axis. The value at x-axis corresponds 

to the required sample size for a trial. For instance, the solid line is for drug-placebo difference 

being 0.1 for both periods and the required sample size to achieve power 0.9 is 620. The dashed 

line is for drug effect of 0.1 and 0.2 in Period 1 and Period 2 respectively and it requires 𝑛 to be 

252. When drug-placebo difference is 0.2 for both periods, it requires 113 for total 𝑛 (dotted 

line in Figure 6.2). Comparing dashed line with dotted line, one can see clearly that sample size 

saves substantially when enrichment works in Period 2 (i.e., n = 620 versus n = 252).   

Figure 18(Fig. 6.2): Graphic method for determining sample size 

Figure 6.2: Graphic method for determining sample size. Expected value of 𝑻𝒍𝒄 under 

alternative hypothesis for different sample size at the beginning of Period 1 for 𝐰𝟏 =
𝟎. 𝟓 and 𝐰𝟐 = 𝟎. 𝟐. The solid line is for 𝐩𝟏 = 𝟎. 𝟕, 𝐪𝟏 = 𝟎. 𝟔, 𝐩𝟐𝟏 = 𝟎. 𝟕, 𝐪𝟐𝟏 = 𝟎. 𝟔, 𝐩𝟐𝟐 =
𝟎. 𝟕, 𝐪𝟐𝟐 = 𝟎. 𝟔; The dashed line is for 𝐩𝟏 = 𝟎. 𝟕, 𝐪𝟏 = 𝟎. 𝟔, 𝐩𝟐𝟏 = 𝟎. 𝟕, 𝐪𝟐𝟏 = 𝟎. 𝟓, 𝐩𝟐𝟐 =
𝟎. 𝟕, 𝐪𝟐𝟐 = 𝟎. 𝟓; the dotted line is for 𝐩𝟏 = 𝟎. 𝟕, 𝐪𝟏 = 𝟎. 𝟓, 𝐩𝟐𝟏 = 𝟎. 𝟕, 𝐪𝟐𝟏 = 𝟎. 𝟓, 𝐩𝟐𝟐 =
𝟎. 𝟕, 𝐪𝟐𝟐 = 𝟎. 𝟓; and the horizontal dot-dashed line is the required expected mean under  

alternative hypothesis when 2-sided alpha is 0.05 and beta is 0.1. 

 

Table 6.4 shows the rejection error rates under null hypothesis for four scenarios of parameter 

profiles. Five cases of weight combinations are used. Based on explorations carried on bellow, 
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optimal weights for extended SPDs are for w1 from 0.5-0.7 and 𝑤1 from 0.15-0.25. 10000 

simulation runs are used for all simulation experiments. It is clear that type I error rate is well 

controlled for all chosen parameters and weight combinations when sample size ranging from 50 

to 1000. Note that the empirical type I error rates here are all subject to simulation errors.  

Table 29(Tab. 6.4): Empirical one-sided type I error (X100) 

Table 6.4: Empirical one-sided type I error (X100). 

 n 
𝑤1 = 0.5  
𝑤2 = 0.2 

𝑤1 = 0.5  
𝑤2 = 0.3 

𝑤1 = 0.6  
𝑤2 = 0.15 

𝑤1 = 0.6  
𝑤2 = 0.20 

𝑤1 = 0.7  
𝑤2 = 0.15 

 

𝑞1 = 0.6  
𝑞21 = 0.4  
𝑞22 = 0.4  
 

50 2.91 3.42 3.23 3.25 3.20 

100 3.23 3.40 3.66 3.44 2.95 

150 3.13 3.20 3.05 2.87 2.94 

200 3.06 3.21 2.97 3.37 2.85 

300 3.27 3.41 2.92 2.87 2.68 

400 2.85 2.86 2.90 2.90 2.85 

500 2.99 2.91 3.05 2.58 3.20 

800 2.55 2.98 2.71 2.74 3.05 

1000 2.67 2.85 2.64 2.82 2.69 

𝑞1 = 0.5  
𝑞21 = 0.3  
𝑞22 = 0.3  
 

50 3.06 3.37 3.16 3.00 3.24 

100 3.57 3.67 3.23 3.60 2.87 

150 3.19 3.13 3.36 3.13 2.74 

200 3.20 3.54 3.15 2.92 2.77 

300 3.10 2.90 3.02 2.87 2.90 

400 3.07 3.35 2.77 2.90 2.56 

500 2.81 3.13 2.97 2.90 2.67 

800 3.07 2.42 2.87 2.68 2.53 

1000 2.75 2.91 2.96 2.43 2.49 

𝑞1 = 0.4  
𝑞21 = 0.2  
𝑞22 = 0.2  
 

50 3.61 3.47 3.39 3.21 3.05 

100 3.37 3.30 3.28 2.95 2.64 

150 3.45 2.93 3.46 3.04 2.78 

200 3.30 3.06 3.05 3.34 2.65 

300 3.28 2.90 3.05 3.00 2.67 

400 2.83 3.03 3.12 2.79 2.68 

500 2.68 3.10 2.76 2.84 2.67 

800 3.02 2.83 2.72 2.74 2.69 

1000 2.75 3.01 2.99 2.82 2.71 

 

Table 6.5 contains calculation of the required sample size based on the method described in 

Figure 6.2 for various parameter-weight combinations. After obtaining sample sizes, simulations 

are conducted with 10000 simulation runs for each scenario. There are 3 sets of simulations. 

Case A: drug-placebo difference (𝑝𝑟 − 𝑞𝑟), where index 𝑟 =1, 21, or 22 all being 0.1 in both 

periods, which includes three subtypes with the probability of being a placebo responder being 
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0.6, 0.5 and 0.4 respectively. Case B: drug-placebo difference being 0.1 and 0.2 for Period 1 and 

Period 2, respectively, which includes three subtypes with 𝑞1 = 0.6 and 𝑞21 = 𝑞22 = 0.5; 

𝑞1 = 0.5 and 𝑞21 = 𝑞22 = 0.4 and 𝑞1 = 0.4 and 𝑞21 = 𝑞22 = 0.3, respectively. Case C: drug-

placebo difference being 0.2 in both periods, which contains three subtypes with 𝑞𝑟 =

0.5, 0.4,0.3, 𝑟 = 1,21,22, respectively.  

If drug effect is 0.1 in both periods (Case A), 0.1 in Period 1 and 0.2 in Period 2 (Case B) and 

drug effect is 0.2 in both periods (Case C), it is clear that the required sample size decreases from 

Case A to Case C (Table 6.5). It confirms that it is easier to detect drug superiority when either 

enrichment works (Case B versus Case A) and/or drug effect size increases (Case C versus Case 

B).   

In all cases of simulations, empirical powers are always smaller than the target power of 0.9 used 

for calculating sample size. However, the extent of power decrease shows interesting patterns. In 

Case A, when drug-placebo is equal to 0.1, the required sample size is high, but the simulated 

power is only 3-4% less than the design value 90%; in Case B, when drug-placebo difference 

increases from 0.1 in Period 1 to 0.2 in Period 2,  the simulated power was 5-8% less than the 

design value 90%; in Case C, when drug-placebo difference is 0.2 for both periods, the required 

sample size is only a little more than 100, but the simulated power is 15-18% less than the design 

value 90%. This is an alert to us because we normally use calculated sample size directly to plan 

a trial, or just increase sample size by 10% to ensure power. But our examinations on empirical 

powers in extended SPD trials tell us that 10% increase from the calculated sample size based on 

asymptotic normality as suggested in Liu et al. (2012) can’t always guarantee enough power in 

real practices. And the required sample size in real practices may depend on the particular 

parameter profile of interest and may require extensive simulation explorations prior to trial start 
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rather than lazily using the calculated sample size based on asymptotic normality.  

The results of the simulations show the impacts of pre-specified weights on trial powers. For 

instance, among five scenarios with 𝑝1 = 0.7, 𝑞1 = 0.6, 𝑝21 = 0.7, 𝑞21 = 0.6, 𝑝22 = 0.7, 𝑞22 =

0.6, the highest sample size is 721 occurring at 𝑤1 = 0.5 and 𝑤2 = 0.3 while the lowest is 157 

(a decrease of 564 from 721) occurring when 𝑤1 = 0.6 and 𝑤2 = 0.15. However, no specific 

rules can be summarized here. One also notices that sample size has a small variation among the 

explored scenarios in Case C when having a relatively large drug-effect of 0.2 in both periods. 

Tables 6.4 – 6.5 show that sample sizes calculated using asymptotic properties of linear 

combination test are good enough for conducting clinical trials. However, it would be better to 

conduct extensive simulations for various parameter profiles of interest prior to trial start since 

there is a difference in extent of power deduction probably caused by insufficiency in asymptotic 

normality. 

Table 30(Tab. 6.5): Required sample size and empirical power(X100) simulation 

Table 6.5: Required sample size and empirical power(X100) simulation. 
 

 
w1 = 0.5  
w2 = 0.2 

w1 = 0.5  
w2 = 0.3 

w1 = 0.6  
w2 = 0.15 

w1 = 0.6  
w2 = 0.20 

w1 = 0.7  
w2 = 0.15 

n power n power n power n power n power 

Case 

A 

p1 = 0.7, q1 = 0.6  
p21 = 0.7, q21 = 0.6  
p22 = 0.7, q22 = 0.6  

620 85.7 721 86.2 564 84.9 588 85.8 580 85.9 

p1 = 0.6, q1 = 0.5  
p21 = 0.6, q21 = 0.5  
p22 = 0.6, q22 = 0.5 

681 86.3 716 86.4 628 86.4 625 85.9 625 87.1 

p1 = 0.5, q1 = 0.4  
p21 = 0.5, q21 = 0.4  
p22 = 0.5, q22 = 0.4 

716 85.8 681 86.1 657 86.0 625 85.8 628 86.6 

Case 

B 

p1 = 0.7, q1 = 0.6  
p21 = 0.7, q21 = 0.5  
p22 = 0.7, q22 = 0.5 

252 80.3 297 81.8 268 81.7 281 81.5 324 83.3 

p1 = 0.6, q1 = 0.5  
p21 = 0.6, q21 = 0.4  
p22 = 0.6, q22 = 0.4 

273 81.8 284 81.2 292 82.4 292 82.3 384 84.5 

p1 = 0.5, q1 = 0.4 
p21 = 0.5, q21 = 0.3  
p22 = 0.5, q22 = 0.3 

276 81.5 265 81.6 300 81.9 284 82.9 345 84.7 

Case 

C 
p1 = 0.7, q1 = 0.5 
p21 = 0.7, q21 = 0.5  
p22 = 0.7, q22 = 0.5 

113 72.6 124 72.9 100 71.2 105 72.2 105 72.7 
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p1 = 0.6, q1 = 0.4 
p21 = 0.6, q21 = 0.4  
p22 = 0.6, q22 = 0.4 

124 73.2 124 74.4 113 72.5 108 72.6 113 74.5 

p1 = 0.5, q1 = 0.3  
p21 = 0.5, q21 = 0.3  
p22 = 0.5, q22 = 0.3 

124 72.7 113 72.2 113 72.2 105 72.4 105 72.7 

 

 

Section 6.5: Discussions 

In this article, we introduce an ESPD. In this design, placebo responders and drug non-

responders during period 1 are re-randomized to receive placebo or drug during period 2 of the 

trial. The proposed statistics to test superiority of drug against placebo is the optimal weight Z 

test for normal data, which requires deriving optimal weight upfront. After evaluating clinical 

outcomes from two periods, weight Z test with optimal weights will be used to combine 

information from three cohorts, one from Period 1 and two from Period 2. This is different from 

the design suggested by Fava et al. (2003) which does not have the second randomization. It is 

also different from design considered by Chen et al. (2011) and Liu et al. (2012) where only 

placebo non-responders during Period 1 are re-randomized prior to period 2. Since we extend 

Liu et al. (2012) to further include Period 1 drug responders into Period 2, other related 

discussions in Liu et al. (2012) such as controlling baseline variables, multiplicity issue, using 

trend test in certain contexts and so on can also be utilized here. For binary data, linear 

combination test for ESPD trials is proposed in Section 4. Sample size can be planned using a 

graphic method. Simulations are done to evaluate type I error rate controlling and power 

achievement in ESPD and it is suggested that it is very important to conduct extensive 

simulations prior to trial start in order to extensively exam trial operational characteristics. 
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Chapter 7 

 Covariance and Variance Evaluations of Two Estimators for Drug-placebo 

Difference in a Trial with Sequential Parallel Design 

(accepted for publication in Jun 2016 by Communication in Statistics: theory and method) 

 
Abstract: Chen et al. [Contemp. Clin. Trials, 32: 592-604 (2011)] heuristically proved that the 

covariance of two estimators is zero assuming equal correlation coefficients. In this article, 

above covariance is re-derived without any strong assumption in equality between two 

correlation coefficients. Under rigorous analytic derivations plus assuming number of subjects 

continuing into Period 2 is a random variable, covariance is re-confirmed to be zero for both 

normal and binomial data.  

Keywords: Placebo Effect; Sequential Parallel Design; Drug-placebo Difference; Seemly 

Unrelated Regression.  

 

Section 7.1: Introduction  

In randomized double-blind clinical trials, subjects are randomized to receive either drug or 

placebo where the assigned treatment is unknown to both patients and investigators. By doing 

this, the drug-placebo difference on the endpoint will demonstrate the drug effect on patients if 

there is no placebo effect, since randomization has balanced out baseline covariates between 

drug and placebo groups and blinding can hopefully eliminate positive expectancy towards study 

drug during the trial. However, if the placebo response is relatively high in the trial, this drug-

placebo difference decreases, which may result in the failure of detecting treatment effect. 

Adding a placebo lead-in period prior to randomization is the most conventional method to 

reduce placebo response. After the lead-in period, only placebo non-responders (based on 

predefined criteria/criterion) are randomized into the double-blind period where the drug-placebo 

difference is measured. Among 86 major depressive disorder (MDD) trials, least-squared mean 

change from baseline to endpoint for the Hamilton Rating Scale for Depression (HAMD) for 

placebo-treated subjects in thirty trials without the placebo lead-in period was -9.24 (SD=1.87), 

while for the two other types (differentiated by criterion for placebo responder) of trials with a 

placebo lead-in period it was -7.88 (SD=2.12) and -7.56 (SD=1.80) (Walsh et al. 2002).    
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The conventional parallel group has only one treatment period, whereas, Fava’s sequential 

parallel design (Fava et al. 2003) has two treatment periods with Period 2 consisting of only 

placebo non-responders from Period 1. In Period 2, subjects either continue on placebo or 

receive treatment. At the end of the trial, inference on the drug-placebo difference for all subjects 

randomized in Period 1 (δ̂1) and inference on the drug-placebo difference in Period 2 (δ̂2) for 

Period 1 placebo non-responders is combined. The null hypothesis is H0: δ1= δ2= 0, the 

alternative hypothesis is HA : δ1 > 0  or δ2 > 0 and the combined estimator is wδ̂1 +

(1 − w)δ̂2 . The sequential parallel design (SPD) is more efficient than the traditional parallel 

group design (1): δ̂2 is estimated from Period 1 placebo non-responders, which is normally 

bigger than δ̂1, and (2): Period 1 placebo non-responders contribute twice in testing 𝛿1  and 

𝛿2, resulting in a larger ‘effective’ sample size than that of utilizing data collected from Period 1 

only, and hence increases power.  

To implement a SPD trial with continuous endpoints, Tamura and Huang (2007) proposed 

seemly unrelated regression (SUR). By stacking continuous data from two periods together, SUR 

simultaneously estimate the variance-covariance matrix and parameters of interests, and then 

constructs a test statistic based on the combined estimator and its variance. That is: 

w2Var(δ̂1) + 2w(1 − w)cov(δ̂1, δ̂2) + (1 − w)
2Var(δ̂2), or  w

2σ̂11 + 2w(1 − w)σ̂12 +

(1 − w)2σ̂22.  The data from two periods can be expressed via a linear relationship: Yi =

Kiδi + ϵi, i=1,2, where Yi is a vector of a continuous endpoint from the ith period, and Zi is 

the design matrix of the ith period, assuming there is only one independent variable (i.e., 

treatment arm) in linear equation. Ki is either 1 for drug and 0 for placebo. The coefficient for 

K1 is δ1 and the coefficient for K2 is δ2. The size of Y1 is the number of subjects in Period 

1, and size of Y2 is the number of placebo non-responders from Period 1 who continue into 
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Period 2. 𝜖1 is error term for the 1
st
 regression and independently distributed with mean 0 and 

variance of 𝜎11
2  for every subject in Period 1; 𝜖2 is error term for the 2

nd
 regression and 

independently distributed with mean 0 and variance of 𝜎22
2  for every subject in Period 2; and the 

covariance  σ12(or σ21) for endpoints at Period 1 and Period 2 only for subjects who are 

placebo non-responders at the end of Period 1 and continue into Period 2.  To estimate both  

δ1 and δ2, two linear equations are stacked to become a single linear model form of:  

[
Y1
Y2
] [
K1 0
0 K1

] [
δ1
δ2
] + [

ϵ1
ϵ2
]and the within patient residual vector has a variance covariance 

matrix of: Σ = [
σ11 σ12
σ21 σ22

]. In the stacked linear model, there are three parameters of 

σ11, σ22 and σ12(σ21) in Σ to be estimated from the data using ordinary least squares residuals, 

and then the coefficient vector of [
δ1
δ2
] will be obtained once the response vector, design matrix 

and Σ are known. When the sample size for both periods are large enough, Σ̂ will be 

consistent. 

At the beginning of Period 2 of an SPD trial, placebo non-responders can be re-randomized. For 

an SPD trial, the estimate for each period is used to evaluate drug-placebo difference. There are 

several methods to combine the evidences from two periods. When the Wald-test is used, the 

variance of the weighted estimators which is the key for hypothesis testing consists of calculating 

the intra-variability between the endpoints from two periods (i.e., covariance) and the variance of 

two estimators separately, with the latter being much easier to derive. If the covariance equal to 

zero, the complexity of the test in an SPD trial will be much reduced. In Chen et al. (2011), 

covariance of 𝛿1and 𝛿2 was further investigated and was shown to be zero for normal data. In 

their derivation, the sample size for Period 2 is a fixed number. This is a questionable assumption 

because being a placebo responder or a non-responder is a random variable and hence the 
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number of placebo non-responders to enter Period 2 will also be a random variable. Furthermore, 

the equality assumption in the two correlation coefficients is also questionable.   

To relax the limitations in the derivation of covariance, we derive the covariance between the 

two estimators for the scenario with normal endpoints in both Period 1 and Period 2 (i.e., 

normal-normal) and binomial-binomial in Sections 7.2 and 7.3, respectively. Section 7.2.1 lays 

out the proof structure for the normal-normal case; Section 7.2.2 revisits the sample size 

derivation under the assumption of the covariance being zero plus the assumption that the 

number of subjects continuing into Period 2 is a random variable; Section 7.2.3 performs 

simulation exercises assessing type I error rate and power under the conditional independence 

assumption; and Section 7.2.4 examines possible violations of the proposed independence 

assumption in Section 7.2.3. Section 7.3 repeats steps in Sections 7.2.1 – 7.2.3 but for binomial-

binomial data, without conducting simulations under dependence structure because we lack a 

clear understanding on how binomial endpoints from the two periods are correlated in practice. 

In the end, Section 7.4 concludes this paper with discussions and further research directions 

hinted by research results here.
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 Section 7.2: Normal -Normal Data 

 Section 7.2.1: Covariance for 𝜹̂𝟏 and 𝜹̂𝟐, Re-examination 

 

Figure 19(Fig. 7.1): A SPD trial 

Figure 7.1: A SPD trial. NR and R denotes non-responders (X1i ≤ c for normal data X1i =0 for binomial data) and responders (X1i > c for normal data X1i 

= 1 for binomial data I = nn +1, …, n). Similar definitions are defined for subjects in the treatment group. T and P denote treatment and placebo group 

respectively in both periods. 
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Suppose there are 𝑛 subjects to be treated in Period1 by study drug and the corresponding 

endpoint, X1i ,  i = 1,…, n, is normally distributed with mean μ
T1

 and variance σT1
2  at the end 

of Period 1, resulting in nn non-responders with X1i ≤ 𝑐 while n- nn responders with endpoint 

realized with a value greater than the threshold value 𝑐. In the meantime, there are 𝑚 subjects 

to be treated in Period 1 by placebo and corresponding endpoint, Y1i ,  i = 1,…, m, is normally 

distributed with mean μ
P1

 and variance σP1
2 , resulting in mn non-responders with Y1i ≤ 𝑐 while 

m- mn responders with Y1i > 𝑐. Unlike subjects in the treatment group, the placebo non-

responders are enrolled in Period 2 for further assessment of the drug-placebo difference. Period 

1 placebo non-responders who are on study drug in Period 2 will have 

endpoint, Y2i
nT| Y1i ≤ c, i = 1,…, 𝜉mn, normally distributed with mean μ

nT
 and variance σnT

2 , with  

ξ  as the proportion of Period 1 non-responders being treated with study drug in Period 2. 

Similarly, non-responders treated with placebo in Period 2 will have endpoint, Y2i
nP| Y1i ≤ c,  , 

ξ𝑚𝑛+1, …, 𝑚𝑛, normally distributed with mean μ
nP
 and variance σnP

2 .  

That is:   X1i ~ Normal (μ
T1

,  σT1
2 ),  i = 1,…, n;   Y1i ~ Normal (μ

P1
,  σP1

2 ), i = 1,… ,m 

Y2i
nT| Y1i ≤ c ~ Normal (μ

nT
,  σnT

2 ), i = 1,…, ξ𝑚𝑛 ;   Y2i
nP| Y1i ≤ c ~ Normal (μ

nP
,  σnP

2 ), i =  ξ𝑚𝑛 

+ 1, …, 𝑚𝑛  

So the estimators of drug-placebo difference at Period 1and Period 2 respectively, are as follows: 

𝛿1 = 𝜇̂T1 − 𝜇̂P1 =
1

𝑛
∑ 𝑋1𝑖
𝑛
𝑖=1 −

1

𝑚
∑ 𝑌1𝑖
𝑚
𝑖=1   

𝛿2 = 𝜇̂nT − 𝜇̂nP =
1

𝜉mn
∑ Y2i

nT𝜉mn
𝑖=1 −

1

(1−𝜉)mn
∑ Y2i

nPmn
𝑖=𝜉𝑚𝑛+1

  

𝑐𝑜𝑣(𝛿̂1, 𝛿2) = 𝑐𝑜𝑣(𝜇̂T1 − 𝜇̂P1, 𝜇̂nT − 𝜇̂nP) 

= 𝑐𝑜𝑣(𝜇̂T1, 𝜇̂nT) − 𝑐𝑜𝑣(𝜇̂T1, 𝜇̂nP) − 𝑐𝑜𝑣(𝜇̂P1, 𝜇̂nT) +  𝑐𝑜𝑣(𝜇̂P1, 𝜇̂nP)  

=0 per proof in Appendix 7.1. 
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Appendix 7.1 proves zero covariance for the normal-normal case. The covariance of Period 1 

treatment-placebo difference of δ̂1 and Period 2 treatment-placebo difference of δ̂2 can be 

decomposed into four parts, in which cov(μ̂T1, μ̂nT) and cov(μ̂T1, μ̂nP) are both equal to zero 

because two estimators are drawn from different cohorts of subjects. Non-zero terms 

cov(μ̂P1, μ̂nT) and cov(μ̂P1, μ̂nP) are then calculated using the ‘law of total covariance’ so that 

the covariance is equal to sum of the expected covariance and the covariance of expectations, 

where the variable to be conditioned upon is the random variable of placebo non-responders (i.e.,  

𝐼(Y1i > c), i = 1,… ,m) at the end of Period 1. For instance, after conditioning upon 𝐼(Y1i > c), 

𝑐𝑜𝑣(𝜇̂P1, 𝜇̂nT) calculation becomes the expectation of conditional covariance plus the covariance 

of two conditional variables. That is: 𝑐𝑜𝑣(𝜇̂P1, 𝜇̂nP)  = 𝐸[𝑐𝑜𝑣(𝜇̂P1,  𝜇̂nP|𝐼(Y1i > c), i =

1, … ,m)] + 𝑐𝑜𝑣( 𝐸(𝜇̂P1|𝐼(Y1i > c), i = 1,… ,m), 𝐸(𝜇̂nP|𝐼(Y1i > c), i = 1,… ,m)) = 𝒜 + ℬ.  

Similarly, 𝑐𝑜𝑣(𝜇̂P1, 𝜇̂nT) = 𝒜′ + ℬ′. Hence 𝑐𝑜𝑣(𝛿̂1, 𝛿2) = 𝑐𝑜𝑣(𝜇̂P1, 𝜇̂nP) − 𝑐𝑜𝑣(𝜇̂P1, 𝜇̂nT) 

= 𝒜 + ℬ − {  𝒜′ + ℬ′  }. 

𝒜 = 𝐸[𝑐𝑜𝑣(𝜇̂P1, 𝜇̂nP|𝐼(Y1i > c), i = 1,… ,m)] and the inner part under its expectation is the 

covariance of two conditional random variables, where 𝑐𝑜𝑣(𝜇̂P1, 𝜇̂nP|𝐼(Y1i > c), i = 1,… ,m) 

can be further decomposed into four expectations of the product of two quantities, which is 

either a conditional random variable or an expectation of a conditional random variable. 

Therefore, one has cov(μ̂P1, μ̂nP|I(Y1i>c), i = 1,… ,m)  = A − B − C + D  with 𝒜 

= E(A) − E(B) − E(C) + E(D) (Appendix 7.1).  Terms A, B, C and D are then respectively 

calculated for  𝒜 and 𝒜′ and simplified with help of the quantities of the mean and the 

variance of truncated normal random variables of Y1i| Y1i ≤ c and Y1i| Y1i > c, i = 1,… ,m. 

When all terms are combined together, 𝒜 −𝒜′ is shown to be zero and with the help of 

the ‘law of total expectation’, which states that the expected value of the conditional expected 
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value of 𝑅 given 𝑆 is the same as the expected value of 𝑅.  Besides, both ℬ and ℬ′ are 

shown to be zero per calculation. In summary, cov(δ̂1, δ̂2) is proved to be zero in an SPD 

trial with normal-normal data.  

To simplify the understanding of this tedious proof in Appendix 7.1, a schematic is shown 

in Illustration 7.1 in Appendix 7.1, in which Step I makes use of the ‘law of total covariance’ 

and Step II utilizes the ‘law of total expectation’ when calculating E(H), E(G), E(I) and 

E(J). As pointed out by the reviewer, some people are not familiar with the term 

“conditional random variable” because a random variable is just a random variable and 

conditioning is for the purpose of calculating distribution property such as conditional 

expectations. We totally agree with these comments and also agree that the purpose of 

using conditional random variable in this paper is to help with the proof as what was done 

in deriving variance decomposition formula (or law of total variance) in probability theory.  

Next, let’s return to the proof of zero covariance between 𝛿1 and 𝛿2 by Chen and et al. 

(2011) and see how it differs from the proposed method here. From Chen and et al. (2011), the 

proof is re-written using notations in this paper as follows: 

𝑐𝑜𝑣(𝛿̂1, 𝛿2) = 𝑐𝑜𝑣 (
1

𝑛
∑ 𝑋1𝑖
𝑛
𝑖=1 −

1

𝑚
∑ 𝑌1𝑖
𝑚
𝑖=1 ,

1

𝜉mn
∑ Y2i

nT𝜉mn
𝑖=1 −

1

(1−𝜉)mn
∑ Y2i

nPmn
𝑖=𝜉mn+1

)  

= 𝑐𝑜𝑣 (
1

𝑛
∑ 𝑋1𝑖
𝑛
𝑖=1 ,

1

𝜉mn
∑ Y2i

nT𝜉mn
𝑖=1 ) − 𝑐𝑜𝑣 (

1

𝑛
∑ 𝑋1𝑖
𝑛
𝑖=1 ,

1

(1−𝜉)mn
∑ Y2i

nPmn
𝑖=𝜉mn+1

)  

−𝑐𝑜𝑣 (
1

𝑚
∑ 𝑌1𝑖
𝑚
𝑖=1 ,

1

𝜉mn
∑ Y2i

nT𝜉mn
𝑖=1 ) + 𝑐𝑜𝑣 (

1

𝑚
∑ 𝑌1𝑖
𝑚
𝑖=1 ,

1

(1−𝜉)mn
∑ Y2i

nPmn
𝑖=𝜉mn+1

)  

= 0 − 0 − 𝑐𝑜𝑣 (
1

𝑚
∑ 𝑌1𝑖
𝑚
𝑖=1 ,

1

𝜉mn
∑ Y2i

nT𝜉mn
𝑖=1 ) + 𝑐𝑜𝑣 (

1

𝑚
∑ 𝑌1𝑖
𝑚
𝑖=1 ,

1

(1−𝜉)mn
∑ Y2i

nPmn
𝑖=𝜉mn+1

)  

= −
1

𝑚
∗

1

𝜉mn
∗ 𝜉mn ∗ ρ(𝑌1𝑖 ,Y2i

nT) ∗ σP1 ∗ σnT +
1

𝑚
∗

1

(1−𝜉)mn
∗ (1 − 𝜉)mn ∗ ρ(𝑌1𝑖,Y2i

nP) ∗ σP1 ∗

σnP = −
1

𝑚
∗ ρ(𝑌1𝑖,Y2i

nT) ∗ σP1 ∗ σnT +
1

𝑚
∗ ρ(𝑌1𝑖,Y2i

nP) ∗ σP1 ∗ σnP=0 
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The above derivation assumes ρ(Y1i,Y2i
nT) = ρ(Y1i,Y2i

nP)  as well as σnT = σnP, and also treats 

𝑚𝑛 as a constant. These questionable assumptions are no longer required in the proposed 

method here. However, it might be worthwhile to explain why zero covariance can be obtained 

when equal correlation ( i.e., ρ(Y1i,Y2i
nT) = ρ(Y1i,Y2i

nP) ) is removed heuristically besides using 

lengthy mathematical calculations. From our perspective, the most reasonable answer for this 

may be the stipulation of conditional independence between endpoints between two periods. 

That is, given normally distributed with mean μ
nT

 and variance σnT
2  for Y2i

nT| Y1i  ≤ c ( or μ
nP

 

and variance σnP
2  for Y2i

nP| 𝑌1𝑖≤ c ), it is said that the Period 1 endpoint is independent of the 𝑌1𝑖 

because the Period 2 endpoint is not a function of the realization of the Period 1 variable. The 

impact of this assumption on proposed method will be assessed below in Section 7.2.4.  

Section 7.2.2: Sample Size Derivation and A Hypothetical Trial Example 

After evaluating and re-confirming the zero covariance in Section 7.2.1 when the endpoints in 

Period 1 and Period 2 are both normal, re-examination of the variance of the weighted test 

statistic for an SPD trial will be done in this section. In Chen et al. (2011), the estimated rate of 

being a placebo non-responder at the end of Period 1 is used in the variance equation. However, 

with a pre-defined distribution for Period 1 data, the expected rate of being a placebo non-

responder at end of Period 1 can be calculated and used for sample size calculation. For normal 

data, the probability of being a placebo non-responder, that is 𝑌1𝑖≤ c, is Φ(
c−μP1

σP1
)  with c as 

the cutoff point for being a responder. In the case of a binomial endpoint, the probability of being 

a placebo non-responder is 1 − 𝑃𝑃(𝑟1).  The allocation ratio for placebo and treatment is 

𝑏: (1 − 𝑏) in Period 1 and then equal allocation between two groups (i.e., 0.5:0.5) in Period 2. 

𝑏 = 0.66 is used for the sample size calculation in order to ensure more subjects to be 

randomized into the placebo group in Period 1.  
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With Z as a standard normal random variable and standardized weighted-z test of 

T=
wδ̂1+(1−w)δ̂2

√w2Var(δ̂1)+(1−w)2Var(δ̂2)

, the probability of rejecting null (δ1 = δ2 = 0) when alternative 

hypothesis is true (δ1, δ2 > 0) is:  

PHA (T > Z1−α
2
) = PHA (T < −z1−α

2
) = PHA(

wδ̂1+(1−w)δ̂2

√w2Var(δ̂1)+(1−w)2Var(δ̂2)

< −z1−α
2
)   

=PHA(
wδ̂1+(1−w)δ̂2−(wδ1+(1−w)δ2)

√w2Var(δ̂1)+(1−w)2Var(δ̂2)

< −z1−α
2
−

wδ1+(1−w)δ2

√w2Var(δ̂1)+(1−w)2Var(δ̂2)

)=PH0(Z < −z1−α
2
−

wδ1+(1−w)δ2

√w2Var(δ̂1)+(1−w)2Var(δ̂2)

) = Φ(−z1−α
2
−

wδ1+(1−w)δ2

√w2Var(δ̂1)+(1−w)2Var(δ̂2)

),  where α is the type I 

error rate for this two-sided hypothesis test. 

∴   z1−β + z1−𝛼
2
= −

𝑤𝛿1+(1−𝑤)𝛿2

√𝑤2𝑉𝑎𝑟(𝛿̂1)+(1−𝑤)2𝑉𝑎𝑟(𝛿̂2)

, where 𝛽  is type II error to ensure probability of 

rejecting null when alternative hypothesis is true. 

Thus, 𝑤2𝑉𝑎𝑟(𝛿1) + (1 − 𝑤)
2𝑉𝑎𝑟(𝛿2) = (

𝑤𝛿1+(1−𝑤)𝛿2

z1−β+z1−𝛼
2

)2 

For normal data, 𝑉𝑎𝑟(𝛿1) =
𝜎𝑇1
2

𝑛
+
𝜎𝑃1
2

𝑚
 = 

𝜎𝑇1
2

𝑁(1−𝑏)
+
𝜎𝑃1
2

𝑁𝑏
 

and 𝑉𝑎𝑟(𝛿2) =
𝜎𝑛𝑇
2

𝜉𝑚𝑛
+

𝜎𝑛𝑃
2

(1−𝜉)𝑚𝑛
=

𝜎𝑛𝑇
2

𝜉𝑟̂𝑁𝑏
+

𝜎𝑛𝑃
2

(1−𝜉)𝑟̂𝑁𝑏
=

1

Φ(
𝑐−μ𝑃1
𝜎𝑃1

)
(
𝜎𝑛𝑇
2

𝜉
+

𝜎𝑛𝑃
2

(1−𝜉)
) =

2

Φ(
𝑐−μ𝑃1
𝜎𝑃1

)𝑁𝑏
(𝜎𝑛𝑇
2 +

𝜎𝑛𝑃
2 ) because the probability of being a placebo non-responder in the placebo group at the end of 

Period 1,  𝑟̂,  is Φ(
𝑐−μ𝑃1

𝜎𝑃1
) and we have 𝑏 =

1

2
 for a balanced re-randomization at the 

beginning of Period 2. 

All in all, for an SPD trial, due to zero covariance proved above, the test statistic for 𝐻𝐴 against 
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𝐻0 is: Z=
𝑤𝛿̂1+(1−𝑤)𝛿̂2

√𝑤2𝑉𝑎𝑟(𝛿̂1)+(1−𝑤)2𝑉𝑎𝑟(𝛿̂2)

. 

If 𝑁𝑁𝑁  is defined as the required sample size for an SPD trial when Period 1 and Period 2 

endpoints are normal-normal data, the required sample size should be:   

NNN =
(z1−β+z1−α/2)

2

(wδ1+(1−w)δ2)2/( w2(
σT1
2

(1−b)
+
σP1
2

b
)+(1−w)2 

2(σnT
2 +σnP

2 )

Φ(
c−μP1
σP1

)b
 )

  

After collecting data from a trial with an SPD, weighted-z test could be used to assess treatment 

effect. Lack of data from real trials, a hypothetical trial and its data are used here to illustrate the 

proposed testing procedure. Assuming there was a phase 2a trial designed to evaluate efficacy, 

safety and tolerability of experimental drug as an adjunctive treatment for major depressive 

disorder with significant anxiety symptoms. The weights used for analysis were determined as 

per the method outlined in Liu et al. (2012) and were 0.846 for Period 1 and 0.154 for Period 2. 

Based on mixed effect model repeat measurement (MMRM) with treatment(placebo, drug), time 

and pooled center as factors,  time-by-treatment interaction and baseline Hamilton Depression 

Rating Scale (HDRS17) total score (for respective period) as a covariate, least-square mean 

differences (SE) in change from baseline to endpoint in HDRS17 from Period 1 and Period 2 for 

Placebo subjects (Period 1 N=58 and Period 2 N=11) were respectively -9.0 (0.72) and -7.0 

(1.62) and for drug group (Period 1 N=61 and Period 2 N=11) were -9.4 (0.72) and -9.8 (1.60) 

resulting respective Wald test for Period 1 and 2 being -0.5 and -1.2.  

Z=
wδ̂1+(1−w)δ̂2

√w2Var(δ̂1)+(1−w)2Var(δ̂2)

=
0.846∗(−9.4−(−9.0))+(1−0.846)∗(−9.8−(−7.0))

√0.8462∗(0.722+0.722)+ (1−0.846)2∗(1.622+1.602)
= −0.8274754 

P-value ≈ 0.2. Therefore, based on change from baseline to end point in HDRS17 total score, 

experimental drug can’t be declared to be superior to Placebo as an adjunctive therapy for major 

depressive disorder with significant anxiety symptoms.  
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Section 7.2.3 Simulation Results under Assumed Conditional Independence  

In the normal-normal case, with 0.8 for power 1- β, 0.6 for weight w and 10 for the mean 

difference between treatment groups for both periods, the sample size for the SPD is 107 (Table 

7.1) while sample size for traditional parallel group design is 126. When mean difference in 

Period 2 increases to 12, SPD can be more efficient having sample size of only 92, which is a 

27% savings relative to parallel group design. Increase of the mean difference from placebo at 

Period 2 is a reasonable assumption as only placebo non-responders are randomized to Period 2 

in SPD. Eliminating placebo responders could possibly increase drug-placebo difference in 

Period 2. Similar patterns are also observed when 𝑤 equals to 0.8 or when the power increases 

to be 0.9.  

Although the covariance of  δ̂1 and δ̂2 is zero in both Chen et al. (2011) and this research, 

sample size differs little between each. The estimate of probability of being a placebo non-

responder in the placebo group at the end of Period 1, r̂, is used in Chen et al. (2011) while the 

expected value of  𝑟̂ (i.e., Φ(
𝑐−μ𝑃1

𝜎𝑃1
)) is used here. For binomial-binomial data, E(𝑟̂)= 1-

𝑃𝑃(𝑟1). 

Simulations are done to assess type I error rate and power under the null and alternative 

hypothesis, respectively, using the sample size calculated in Section 7.2.2. In Column 4 of Table 

7.1, the simulated type I error rate and power are displayed next to the sample size N after 10000 

runs. For simplicity, type I error rates are simulated under μ
T1
= μ

P1
= μ

T2
= μ

P2
= 15 for all 

cases in Table 7.1 while power is simulated under specifications in Columns 3 and 4. Per 

simulation results, type I error rate has been maintained at one-sided 0.025 level in the presence 

of simulation error and the designed power of 0.8 (upper half) and 0.9 (lower half) have been 

achieved in all scenarios. Note that simulations in this section are under assumption of 
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conditional independence because both mean and variance of random variable (Y2i
nT and Y2i

nP 

respectively) in Period 2 are not a function of the realization of Period 1 endpoint Y1i , even 

though both endpoints have occurred on the same set of subjects. 

Table 31(Tab. 7.1): Sample size (N) for SPDs 

Table 7.1: Sample size (N) for SPDs when Period 1 and Period 2 data are all normally distributed with 

X1i ~ Normal(μ
T1

,  σT1
2 = 𝟐𝟎𝟐), X1i~Normal(μ

T1
,  σT1

2 = 𝟐𝟎𝟐), Y2i
nT| Y1i  ≤ c ~ Normal(μ

nT
,  σnT

2 = 𝟐𝟎𝟐), 

Y2i
nP| Y1i ≤ c ~ Normal(μ

nP
,  σnP

2 = 𝟐𝟎𝟐), 𝜶 = 𝟎. 𝟎𝟐𝟓, 𝜷 =0.1(upper half) or 0.2 (lower half) 𝒄 = 7, 𝒘 = 0.6 or 

0.8, the probability of being a placebo non-responder at Period 1 being  𝐄(𝐫̂) = 𝟎. 𝟓𝟒, and  𝐍𝐭𝐩𝐝 denoting 

corresponding sample size for traditional parallel design.    

Power 𝑤 𝛿1( 𝜇𝑇1,  𝜇𝑃1) 𝛿2( 𝜇𝑛𝑇 ,  𝜇𝑛𝑃) 
N/simulated type I error 

rate/power 

Ntpd  with b=0.50 

𝛿1( 𝜇𝑇 ,  𝜇𝑃) 
1 − 𝛽 

Ntpd 

1 − 𝛽 = 0.8 

0.6 10 (15, 5) 10 (15, 5) 107/0.0312/0.7906 

10 (15, 5) 

1 − 𝛽 =0.8 

 

126 

 

0.6 10 (15, 5) 12 (15, 3) 92/0.0271/0.7814 

0.8 10 (15, 5) 10 (15, 5) 104/0.0262/0.7970 

0.8 10 (15, 5) 12 (15, 5) 96/0.0237/0.7918 

1 − 𝛽 = 0.9 

0.6 10 (15, 5) 10 (15, 5) 143/0.0251/0.8878 
10 (15, 5) 

1 − 𝛽 =0.9 

 

169 

 
0.6 10 (15, 5) 12 (15, 5) 123/0.0250/0.8887 

0.8 10 (15, 5) 10 (15, 5) 139/0.0284/0.8938 

0.8 10 (15, 5) 12 (15, 5) 129/0.0274/0.8971 

 

Section 7.2.4: Simulation Results Under Correlated Endpoints Between Two Periods 

Statistical methods illustrated in Section 7.2.3 as well as Chen et al. (2011) and Liu et al. (2012) 

don’t assume dependence structure between endpoints from two periods even though they occur 

on the same set of subjects. This definitely casts some doubts as in practice we can’t rule out 

dependence when two random variables occur on the same subject. Also, even if the covariance 

between two phases’ estimates is in fact zero, sample covariance may not be zero when the size 

of the study is small. To address these questions, simulations are conducted for scenarios listed 

in Table 7.1, while on the contrary conditional dependence is built up accordingly using the 

properties of the bivariate normal distribution. Given ρP being the correlation between Y1i  

and Y2i
nP for subjects who are placebo non-responder in Period 1 and continue to be treated with 
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placebo in Period 2, after observing Y1i = y1i,, Y2i
nP will be normally distributed with mean 

 μnP − 𝜌𝑃 ∗ (
σ𝑛𝑃

σ𝑃1
)*( y1i −  μp1) and variance σnP

2 *(1-𝜌𝑃
2). Similarly, 𝜌T and conditional 

distribution of Y2i
nT are defined for subjects who are placebo non-responder in Period 1 

and then treated with investigational drug in Period 2. As in Table 7.1, scenarios under null 

hypothesis are also simulated with μ
T1
= μ

P1
= μ

T2
= μ

P2
= 15, but with the conditional 

mean based on the realized value y
1i

 at the end of Period 1. Using calculated sample size in 

Table 7.1, type I error rate and power for each scenario are re-simulated using the conditional 

bivariate normal distribution instead (Table 7.2).  Results re-assure maintenance of target 

power under equal correlations as in Chen et al. (2011), but somehow expose 

disadvantages of this method under unequal correlations. Simulated power achieves the 

designed level only for Row 1 with ρP = ρT = 0 and Row 2 with ρP = ρT = 0.5, but lower 

than designed level in Rows 3-5 when unequal correlation coefficients are ρP = 0.75 and  ρT =

0.5, ρP = 0.75 and  ρT = 0.25, and ρP = 0.50 and  ρT = 0.25, respectively, among which 

simulated power decreases as the difference between ρP and ρT increases. Extensive 

simulations have been done for other situations but not listed here due to space limitation. 

Table 32(Tab. 7.2): Simulated rejection probabilities 

Table 7.2: Simulated rejection probability under null and alternative hypotheses 

respectively when Period 2 endpoint is conditional upon Period 1 realization.  
 

𝛒𝐏/𝛒𝑻 𝑤 = 0.6 
1 − 𝛽 = 0.8 
 𝛿1( 𝜇𝑇1,  𝜇𝑃1)
= 10(15,5)   
𝛿2( 𝜇𝑛𝑇,  𝜇𝑛𝑃)
= 10(15,5) 
N=107 
Simulated 
Type I error 
rate / power 

 

𝑤 = 0.6 

1 − 𝛽 = 0.8 
 𝛿1( 𝜇𝑇1,  𝜇𝑃1)
= 10(15,5)   
𝛿2( 𝜇𝑛𝑇,  𝜇𝑛𝑃)
= 12(15,3) 
N=92 

Simulated 
Type I error 
rate / power 

 

𝑤 = 0.8 

1 − 𝛽 = 0.8 
 𝛿1( 𝜇𝑇1,  𝜇𝑃1)
= 10(15,5)   
𝛿2( 𝜇𝑛𝑇,  𝜇𝑛𝑃)
= 10(15,5) 
N=104 

Simulated 
Type I error 
rate / power 

 

𝑤 = 0.8 

1 − 𝛽 = 0.8 
 𝛿1( 𝜇𝑇1,  𝜇𝑃1)
= 10(15,5)   
𝛿2( 𝜇𝑛𝑇,  𝜇𝑛𝑃)
= 12(15,3) 
N=96 

Simulated 
Type I error 
rate / power 

 

 𝑤 = 0.6 

1 − 𝛽 = 0.9 
 𝛿1( 𝜇𝑇1,  𝜇𝑃1)
= 10(15,5)   
𝛿2( 𝜇𝑛𝑇,  𝜇𝑛𝑃)
= 10(15,5) 
N=143 

Simulated 
Type I error 
rate / power 

 

𝑤 = 0.6 

1 − 𝛽 = 0.9 

 𝛿1( 𝜇𝑇1,  𝜇𝑃1)
= 10(15,5)   
𝛿2( 𝜇𝑛𝑇,  𝜇𝑛𝑃)
= 12(15,3) 
N=123 

Simulated 
Type I error 
rate / power 

 

𝑤 = 0.8 

1 − 𝛽 = 0.9 
 𝛿1( 𝜇𝑇1,  𝜇𝑃1)
= 10(15,5)   
𝛿2( 𝜇𝑛𝑇,  𝜇𝑛𝑃)
= 10(15,5) 
N=139 

Simulated 
Type I error 
rate / power 

 

𝑤 = 0.8 

1 − 𝛽 = 0.9 
 𝛿1( 𝜇𝑇1,  𝜇𝑃1)
= 10(15,5)   
𝛿2( 𝜇𝑛𝑇,  𝜇𝑛𝑃)
= 12(15,3) 
N=129 

Simulated 
Type I error 
rate / power 

 

0.00 / 0.00 0.0293/0.7905 
 

0.03/0.7893 0.0279/0.7894 0.0275/0.7883  0.0267/0.8877 0.0264/0.893 0.0253/0.8986 0.024/0.8891 

0.50 / 0.50 0.0237/0.8147 0.0271/0.814 0.0246/0.7977 0.0271/0.8015  0.0259/0.9111 0.028/0.9114 0.0244/0.9001 0.0229/0.8992 



 

233 

0.75 / 0.50 0.0053/0.719 0.0064/0.731 0.0125/0.7457 0.0131/0.7398  0.0046/0.8279 0.0057/0.8397 0.0106/0.8566 0.0116/0.8632 

0.75 / 0.25 0.0001/0.5517 0.0012/0.5762 0.005/0.6703 0.006/0.6669  0.0004/0.6671 0.0005/0.6998 0.004/0.7929 0.0038/0.7946 

0.50 / 0.25 0.0077/0.6808 0.0075/0.6966 0.0108/0.7365 0.0127/0.7391  0.0053/0.799 0.0042/0.811 0.0116/0.8523 0.0119/0.8455 

 

Section 7.3: Binomial-Binomial Data 

Section 7.3.1: Covariance for 𝜹̂𝟏 and  𝜹̂𝟐, Re-examination 

X1i ~ Bernoulli(1, 𝑃𝑇(𝑟1) ),i=1,…, n;    Y1i ~ Bernoulli(1,  𝑃𝑃(𝑟1)), 𝑖 = 1,… ,𝑚; 

Y2i
nT| NR ~ Bernoulli (1,  𝑃𝑛𝑃(𝑟2|𝑛𝑟1)), i = 1, …, 𝜉mn  and NR denotes non-responder. 

 Y2i
nP| NR ~ Bernoulli (1,  𝑃𝑛𝑇(𝑟2|𝑛𝑟1)), 𝑖 = 𝜉mn + 1,… ,mn, with 𝑃𝑇(𝑟1) as the probability of 

being a responder for drug-treated subjects in Period 1, 𝑃𝑃(𝑟1) as the probability of being a 

responder for placebo-treated subjects in Period 1, 𝑃𝑛𝑝(𝑟2|𝑛𝑟1) as the probability of being a 

responder at end of Period 2 when a Period 1 placebo non-responder was treated with placebo in 

Period 2, and 𝑃𝑛𝑇(𝑟2|𝑛𝑟1) as the probability of being a responder at end of Period 2 when a 

Period 1 placebo non-responder was treated with placebo in Period 2. 

𝑃̂𝑇(𝑟1)=
1

𝑛
∑ 𝑋1𝑖
𝑛
𝑖=1 ,    𝑃̂𝑃(𝑟1)=

1

𝑚
∑ 𝑌1𝑖
𝑚
𝑖=1   

𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1) =
1

𝜉mn
∑ Y2i

nT𝜉mn
𝑖=1 ,  𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1) =

1

(1−𝜉)mn
∑ Y2i

nPmn
𝑖=𝜉mn+1

  

𝑐𝑜𝑣(𝛿̂1, 𝛿2) = 𝑐𝑜𝑣 (𝑃̂𝑇(𝑟1)−    𝑃̂𝑃(𝑟1), 𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1) − 𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1))  

= cov ( 𝑃̂𝑃(𝑟1),  𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1) ) - cov( 𝑃̂𝑃(𝑟1),  𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1) )  

=0 per proof in Appendix 7.2. 

Section 7.3.2 Sample Size Derivation and Evaluation 

For binomial data,  𝑉𝑎𝑟(𝛿1) =
𝑃𝑇(𝑟1)(1-𝑃𝑇(𝑟1))

𝑛
+
𝑃𝑃(𝑟1)(1-𝑃𝑃(𝑟1))

𝑚
= 

𝑃𝑇(𝑟1)(1-𝑃𝑇(𝑟1))

𝑁(1−𝑏)
+
𝑃𝑃(𝑟1)(1-𝑃𝑇𝑃(𝑟1))

𝑁𝑏
. 

With the probability of being a non-responder in the placebo group at the end of Period 1 being  
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1-𝑃𝑃(𝑟1), that is E(𝑟̂)= 1-𝑃𝑃(𝑟1), 𝑉𝑎𝑟(𝛿2)=
 𝑃𝑛𝑇(𝑟2 |n𝑟1)(1- 𝑃𝑛𝑇(𝑟2 |n𝑟1))

𝜉𝑚𝑛
+
 𝑃𝑛𝑃(𝑟2 |n𝑟1)(1- 𝑃𝑛𝑃(𝑟2 |n𝑟1))

(1−𝜉)𝑚𝑛
 

=
 𝑃𝑛𝑇(𝑟2 |n𝑟1)(1- 𝑃𝑛𝑇(𝑟2 |n𝑟1))

𝜉𝑟̂𝑁𝑏
+
 𝑃𝑛𝑃(𝑟2 |n𝑟1)(1- 𝑃𝑛𝑃(𝑟2 |n𝑟1))

(1−𝜉)𝑟̂𝑁𝑏
 

=
1

(1−𝑃𝑃(𝑟1))Nb
(
 𝑃𝑛𝑇(𝑟2 |n𝑟1)(1- 𝑃𝑛𝑇(𝑟2 |n𝑟1))

𝜉
+
 𝑃𝑛𝑃(𝑟2 |n𝑟1)(1- 𝑃𝑛𝑃(𝑟2 |n𝑟1))

(1−𝜉)
)  

=
2

(1−𝑃𝑃(𝑟1))Nb
( 𝑃𝑛𝑇(𝑟2 |n𝑟1)(1- 𝑃𝑛𝑇(𝑟2 |n𝑟1))+  𝑃𝑛𝑃(𝑟2 |n𝑟1)(1- 𝑃𝑛𝑝(𝑟2 |n𝑟1)) , with 𝑏 =

1

2
 

The sample size for normal-normal data is  
(z1−β+z1−α/2)

2

δ2/(
σT
2

(1−b)
+
σP
2

b
)

  whereas for binomial-binomial data 

the sample size is(z1−β + z1−α
2
)
2

/[δ2/ (
PT(r1)(1-PT(r1))

(1−b)
+
PP(r1)(1-PP(r1))

b
) ]. 

If 𝑁𝐵𝐵 is defined as the required sample size for an SPD when Period 1 and Period 2 endpoints 

are binomial-binomial, it should be: 

𝑁𝐵𝐵 = (z1−β + z1−𝛼
2
)
2

/[(𝑤𝛿1 + (1 − 𝑤)𝛿2)
2/( 𝑤2 (

𝑃𝑇(𝑟1)(1-𝑃𝑇(𝑟1))

(1−𝑏)
+
𝑃𝑃(𝑟1)(1-𝑃𝑃(𝑟1))

𝑏
)   +

 (1 − 𝑤)2  
2( 𝑃𝑛𝑇(𝑟2 |n𝑟1)(1- 𝑃𝑛𝑇(𝑟2 |n𝑟1))+ 𝑃𝑛𝑃(𝑟2 |n𝑟1)(1- 𝑃𝑛𝑃(𝑟2 |n𝑟1)) ) 

(1−𝑃𝑃(𝑟1))b
 ]   

Table 7.3 exhibits sample size for a SPD trial when data are binomially distributed in both 

periods. Let’s take power of 0.8 as an example. Surprisingly, there is no much saving relative to 

fixed sample design (155 vs. 157) when the rate difference, that is 0.2, is the same in both 

periods and weight w is 0.6. However, in the case where enrichment is functioning and the rate 

difference increases from 0.2 in Period 1 to 0.3 in Period 2, the sample size becomes 109, 31% 

reduction in sample size relative to the corresponding parallel group design. When the rate 

difference is 0.2 for both periods while weight w is 0.8 with more weight allocated to Period 1 

data, sample size decreases to 129. Among four scenarios for power of 0.8, the smallest SPD 

sample size of 107, is achieved when δ1 = 0.2, δ2 = 0.3 and w = 0.8. In summary, different 

from normal-normal cases, there is almost no sample size saving relative to the traditional 
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parallel group design with 𝛿1 = 0.2, 𝛿2 = 0.2 and 𝑤 = 0.6. Simulations under dependence 

structure are not done because we lack of clear guides on how binomial endpoints from two 

periods are correlated in practice. 

Table 33(Tab. 7.3): Sample sizes 

Table 7.3: Sample size when Period 1 and Period 2 data are normally distributed with 

X1i~Bernoulli(𝑷𝑻(𝒓𝟏) ), Y1i~Bernoulli(𝑷𝑷(𝒓𝟏)),   Y2i
nT| NR~ Bernoulli (𝑷𝒏𝑷(𝒓𝟐|𝒏𝒓𝟏)),Y2i

nP| NR~ Bernoulli ( 𝑷𝒏𝑻(𝒓𝟐|𝒏𝒓𝟏)), 𝜶 =
𝟎. 𝟎𝟐𝟓,𝜷 = 𝟎. 𝟏 𝒐𝒓 𝟎. 𝟐, 𝒘=0.6 or 0.8, 𝑬(𝒓̂) = 𝟎. 𝟒, 𝐚𝐧𝐝  𝐍𝐭𝐩𝐝 denoting corresponding sample size for 

tranditional parallel design.  

 
Power 𝑤 𝛿1( 𝑃𝑇 (𝑟1), 

 𝑃𝑃 (𝑟1)) 
𝛿2( 𝑃𝑛𝑇(𝑟2 |n𝑟1), 
 𝑃𝑛𝑃(𝑟2 |n𝑟1)) 

N 

/simulated type I 

error rate/power 

Ntpd  with b=0.50 

𝛿( 𝑃𝑇 (𝑟1),  𝑃𝑃 (𝑟1)) 

1 − 𝛽 

Ntpd 

1 − 𝛽 = 0.8 0.6 0.2 (0.8,0.6) 0.2 (0.8,0.6) 155 
/0.1130/0.9363 

0.2 (0.8,0.6)   

1 − β =0.8 
 

157 
 

0.6 0.2 (0.8,0.6) 0.3 (0.8, 0.5) 109 

/0.1099/0.9323 

0.8 0.2 (0.8,0.6) 0.2 (0.8, 0.6) 129 
/0.0419/0.8342 

0.8 0.2 (0.8,0.6) 0.3 (0.8, 0.5) 107 

/0.0418/0.8295 

1 − β = 0.9 0.6 0.2 (0.8,0.6) 0.2 (0.8, 0.6) 207 
/0.1091/0.9756 

0.2 (0.8,0.6)  

1 − β =0.9 
 

211 

0.6 0.2 (0.8,0.6) 0.3 (0.8, 0.5) 146 

/0.1118/0.9698 

0.8 0.2 (0.8,0.6) 0.2 (0.8, 0.6) 173 

/0.0385/0.9207 

0.8 0.2 (0.8,0.6) 0.3 (0.8, 0.5) 143 

/0.0403/0.9145 

 

Section 7.4: Discussion 

Different from Chen et al. (2011), the covariance of δ̂1 and δ̂2 is evaluated to be zero in this 

paper under rigorous distributional assumptions while without assuming equal correlation 

coefficients. In derivation, we iteratively used the following formulations: 1) Covariance of two 

random variables is equal to expectation of conditional covariance plus covariance of conditional 

expectation. That is, cov(A,B)=E[cov(A|C)]+cov(E(A|C),E(B|C)) where A and B are variables of 

interest and C is the random variable that A and B to be conditioning upon. 2) Covariance of two 

random variables is the expectation of the product of expectation of each variable minus its 

expectation. That is: cov(A, B)=E[(A-E(A|C) ) *( B|C-E(B|C) )]. Additionally, different from 
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Chen et al. (2011), the estimated probability of being a placebo non-responder in Period 1 in 

sample size formula is replaced by its expected value for a better sample size calculation. Zero 

covariance reduces calculation of variance of the weighted estimator from three components to 

two components and the power of proposed method is confirmed in Table 7.1 under the 

conditional independence assumption. However, further simulations in Table 7.2 under 

conditional dependence show the limitation of this proposed method but point out the direction 

of future research. Rigorous formulation is in need for correlated endpoints from the two periods 

in a SPD trial. Besides normal-normal data, binomial-binomial data have also been explored in 

Section 7.3. Substantial saving of sample size, more than 30%, is achieved in normal-normal 

data but not in binomial-binomial data. We also observed that further savings is achieved when 

the weight increased from 0.6 to 0.8 and more weights is placed on Period 1 for normal-normal 

data. Impacts from weight change/weight optimization and normal-binomial data and binomial-

normal data have also been investigated by authors but not shown due to space limitation. All in 

all, this paper provides another view of combination test in an SPD trial and rigorously 

formulates covariance calculation without equal correlation coefficients. Most importantly it 

investigates the performance of the proposed method under unequal correlation coefficients in 

addition to independence assumption, which haven’t been done by either Chen et al. (2011) or 

Liu et al. (2012). 
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Appendix 7.1 :  covariance for Normal-Normal Case 

 
Illustration 7.1: A schematic of the proof of zero covariance in normal-normal case. 

 

 
𝑐𝑜𝑣(𝛿̂1, 𝛿2) = 𝑐𝑜𝑣(𝜇̂T1 − 𝜇̂P1, 𝜇̂nT − 𝜇̂nP) 

= 𝑐𝑜𝑣(𝜇̂T1, 𝜇̂nT) − 𝑐𝑜𝑣(𝜇̂T1, 𝜇̂nP) − 𝑐𝑜𝑣(𝜇̂P1, 𝜇̂nT) +  𝑐𝑜𝑣(𝜇̂P1, 𝜇̂nP)   

=  𝑐𝑜𝑣(𝜇̂P1, 𝜇̂nP) − 𝑐𝑜𝑣(𝜇̂P1, 𝜇̂nT),   with 𝑐𝑜𝑣(𝜇̂T1, 𝜇̂nT) and 𝑐𝑜𝑣(𝜇̂T1, 𝜇̂nP) being zero as they 

are on different subjects      

= 𝐸[𝑐𝑜𝑣(𝜇̂P1, 𝜇̂nP|𝐼(Y1i>c), i = 1,… ,m)] +  

𝑐𝑜𝑣( 𝐸(𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m), 𝐸(𝜇̂nP|𝐼(Y1i>c), i = 1,… ,m)) −  

{   𝐸[𝑐𝑜𝑣(𝜇̂P1, 𝜇̂nT|𝐼(Y1i>c), i = 1,… ,m)] + 

𝑐𝑜𝑣( 𝐸(𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m), 𝐸(𝜇̂nT|𝐼(Y1i>c), i = 1,… ,m))   }  

=  𝒜 + ℬ − {  𝒜′ + ℬ′  }  

Let  𝒜 = 𝐸[𝑐𝑜𝑣(𝜇̂P1, 𝜇̂nP|𝐼(Y1i>c), i = 1,… ,m)], then the inner part of this expectation is as 

follows: 

𝑐𝑜𝑣(𝜇̂P1, 𝜇̂nP|𝐼(Y1i>c), i = 1,… ,m) 
= 𝑐𝑜𝑣( (𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m), (𝜇̂nP|𝐼(Y1i>c), i = 1, … ,m) ) 
= E[  ( (𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m) − E(𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m) ) ∗  

(  (𝜇̂nP|𝐼(Y1i>c), i = 1,… ,m) − E(𝜇̂nP|𝐼(Y1i>c), i = 1,… ,m) )    ]  

= E [  (𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m)(𝜇̂nP|𝐼(Y1i>c), i = 1,… ,m) − 

         (𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m)E(𝜇̂nP|𝐼(Y1i>c), i = 1, … ,m) − 

        E(𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m)(𝜇̂nP|𝐼(Y1i>c), i = 1,… ,m) + 

        E(𝜇̂P1|𝐼(Y1i>c), i = 1, … ,m)E(𝜇̂nP|𝐼(Y1i>c), i = 1,… ,m)    ] 

= E[  (𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m)(𝜇̂nP|𝐼(Y1i>c), i = 1, … ,m)  ]– 
     E[ (𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m)E(𝜇̂nP|𝐼(Y1i>c), i = 1,… ,m) ] – 

     E[  E(𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m)(𝜇̂nP|𝐼(Y1i>c), i = 1,… ,m)  ] + 

      E[  E(𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m)E(𝜇̂nP|𝐼(Y1i>c), i = 1,… ,m)  ] 
=  𝐴 − 𝐵 − 𝐶 + 𝐷 

So  𝒜 = 𝐸(𝐴) − 𝐸(𝐵) − 𝐸(𝐶) + 𝐸(𝐷) 
A =  𝐸[  (𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m)(𝜇̂nP|𝐼(Y1i>c), i = 1,… ,m)  ]  
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  = E[  
 1

𝑚
(∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i≤c+∑ 𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i>c)(
1

(1−𝜉)𝑚𝑛
(∑ Y2i

nP| Y1i≤c
𝑚𝑛
𝑖=𝜉𝑚𝑛+1

))  ] 

  =  

E[
1

(1−𝜉)𝑚𝑚𝑛
(∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i≤c*∑ Y2i

nP| Y1i≤c
𝑚𝑛
𝑖=𝜉𝑚𝑛+1

+∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i>c*∑ Y2i
nP| Y1i≤c

𝑚𝑛
𝑖=𝜉𝑚𝑛+1

)] 

B = E[ (𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m)E(𝜇̂nP|𝐼(Y1i>c), i = 1,… ,m) ]  

  = E[
1

𝑚
(∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i≤c+∑ 𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i>c)*μnP ]  

  = 
μnP

𝑚
(𝑚𝑛𝐸(𝑌1𝑖| Y1i ≤ c) + (𝑚 −𝑚𝑛)𝐸(𝑌1𝑖| Y1i > 𝑐)) 

Based on property of truncated normal distribution,  

𝐸(𝑌1𝑖| Y1i ≤ c) = μP1 - 𝜎P1
∅(
c−μP1
𝜎P1

)

Φ(
c−μP1
𝜎P1

)
 , 𝐸(𝑌1𝑖| Y1i > 𝑐) = μP1 + 𝜎P1

∅(
c−μP1
𝜎P1

)

1−Φ(
c−μP1
𝜎P1

)
  , with ∅ as the 

standard normal density and  Φ as the CDF of standard normal.  1 − Φ(
c−μP1

𝜎P1
) = PP(r1),

probability of being a placebo repsonder at the end of Period 1.  For simplicity, let’s use 

∅ denote ∅(
c−μP1

𝜎P1
)  and Φ denote Φ(

c−μP1

𝜎P1
) in all subsequent equations instead. 

C = E[ 𝐸(𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m)(𝜇̂nP|𝐼(Y1i>c), i = 1,… ,m) ]   

= E[ 
 1

𝑚
(𝑚𝑛𝐸(𝑌1𝑖| Y1i ≤ c) + (𝑚 −𝑚𝑛)𝐸(𝑌1𝑖| Y1i > 𝑐))* (𝜇̂nP|𝐼(Y1i>c), i = 1,… ,m) ] 

= 
 1

𝑚
E(𝑚𝑛𝐸(𝑌1𝑖| Y1i ≤ c) + (𝑚 −𝑚𝑛)𝐸(𝑌1𝑖| Y1i > 𝑐))E[(𝜇̂nP|𝐼(Y1i>c), i = 1,… ,m)] 

=
μnP
𝑚
(𝑚𝑛𝐸(𝑌1𝑖| Y1i ≤ c) + (𝑚 −𝑚𝑛)E(𝑌1𝑖| Y1i > 𝑐)) 

D = E[ E(𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m)E(𝜇̂nP|𝐼(Y1i>c), i = 1,… ,m) ]   

=
μnP
𝑚
(𝑚𝑛𝐸(𝑌1𝑖| Y1i ≤ c) + (𝑚 −𝑚𝑛)E(𝑌1𝑖| Y1i > 𝑐)) 

∴ 𝒜 =  𝐸[𝑐𝑜𝑣(𝜇̂P1, 𝜇̂nP|𝐼(Y1i>c), i = 1, … ,m)] 

        =  𝐸(𝐴) − 𝐸(𝐵) − 𝐸(𝐶) + 𝐸(𝐷) 

        = 
1

(1−𝜉)𝑚𝑛
E [  

1

𝑚
(  𝐸[∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i≤c*∑ Y2i

nP| Y1i≤c
𝑚𝑛
𝑖=𝜉𝑚𝑛+1

] + 

                             𝐸[ ∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i>c*∑ Y2i
nP| Y1i≤c

𝑚𝑛
𝑖=𝜉𝑚𝑛+1

 ]  )  ]  

           −
μnP

𝑚
∗ [ 𝑚ΦE(𝑌1𝑖| Y1i≤c) + 𝑚(1 − Φ)E(𝑌1𝑖| Y1i>c) ], with Φ defined as above. 

Similarly, 𝒜′ =  E[𝑐𝑜𝑣(𝜇̂P1, 𝜇̂nT|𝐼(Y1i>c), i = 1, … ,m)] 
𝑐𝑜𝑣(𝜇̂P1, 𝜇̂nT|𝐼(Y1i>c), i = 1,… ,m) 

= E[(𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m)(𝜇̂nT|𝐼(Y1i>c), i = 1,… ,m) ]– 
      E[ (𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m)E(𝜇̂nT|𝐼(Y1i>c), i = 1,… ,m) ] – 

      E[ 𝐸(𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m)(𝜇̂nT|𝐼(Y1i>c), i = 1,… ,m) ] + 

      E[ 𝐸(𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m)E(𝜇̂nT|𝐼(Y1i>c), i = 1,… ,m) ] 
=  𝐴′ − 𝐵′ − 𝐶′ + 𝐷′ 

A’ =  E[
1

𝜉𝑚𝑚𝑛
(∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i≤c*∑ Y2i

nT| Y1i≤c
𝜉𝑚𝑛
𝑖=1 +∑ 𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i>c*∑ Y2i
nT| Y1i≤c

𝜉𝑚𝑛
𝑖=1 )]  

E(B’)  =  
μnT
𝑚
∗ [ 𝑚ΦE(𝑌1𝑖| Y1i≤c) + 𝑚(1 − Φ)E(𝑌1𝑖| Y1i>c) ] 

𝐸(𝐶’) = 
μnT

𝑚
∗ [ 𝑚ΦE(𝑌1𝑖| Y1i≤c) + 𝑚(1 − Φ)E(𝑌1𝑖| Y1i>c) ] 

𝐸(𝐷’)  =  
μnT
𝑚
∗ [ 𝑚ΦE(𝑌1𝑖| Y1i≤c) + 𝑚(1 − Φ)E(𝑌1𝑖| Y1i>c) ] 

∴ 𝒜 −𝒜′ =  
1

(1−𝜉)𝑚
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E 

[
1

𝑚𝑛
( E[∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i≤c*∑ Y2i

nP| Y1i≤c
𝑚𝑛
𝑖=𝜉𝑚𝑛+1

]  +

E[ ∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i>c*∑ Y2i
nP| Y1i≤c

𝑚𝑛
𝑖=𝜉𝑚𝑛+1

 ] ) ]  - 

–
1

𝜉𝑚
E [

1

𝑚𝑛
( E[∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i≤c*∑ Y2i

nT| Y1i≤c
𝜉𝑚𝑛
𝑖=1 ] + E[ ∑ 𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i>c*∑ Y2i
nT| Y1i≤c

𝜉𝑚𝑛
𝑖=1  ] ) ] 

 +
(μnT−μnP)

𝑚
∗ [ 𝑚ΦE(𝑌1𝑖| Y1i≤c) + 𝑚(1 − Φ)E(𝑌1𝑖| Y1i>c) ] 

= 
1

𝜉(1−𝜉)𝑚
 E  [

1

𝑚𝑛
( 𝜉E[∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i≤c*∑ Y2i

nP| Y1i≤c
𝑚𝑛
𝑖=𝜉𝑚𝑛+1

] − 

(1-𝜉) E[∑ 𝑌1𝑖
𝑚𝑛
𝑖=1 | Y1i≤c*∑ Y2i

nT| Y1i≤c
𝜉𝑚𝑛
𝑖=1 ]) ]  +  

1

𝜉(1−𝜉)𝑚
 E  [

1

𝑚𝑛
( 𝜉E[ ∑ 𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i>c*∑ Y2i
nP| Y1i≤c

𝑚𝑛
𝑖=𝜉𝑚𝑛+1

 ] − 

(1-𝜉) E[ ∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i>c*∑ Y2i
nT| Y1i≤c

𝜉𝑚𝑛
𝑖=1  ] )  ] + 

(μnT−μnP)

𝑚
∗ [ 𝑚ΦE(𝑌1𝑖| Y1i≤c) + 𝑚(1 − Φ)E(𝑌1𝑖| Y1i>c) ] 

=

  
1

𝜉(1−𝜉)𝑚 
E [ 

1

𝑚𝑛
(   E (𝜉 ∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i≤c * ∑ Y2i

nP| Y1i≤c
𝑚𝑛
𝑖=𝜉𝑚𝑛+1

 +

 𝜉 ∑ 𝑌1𝑖
𝑚𝑛
𝑖=1 | Y1i≤c * ∑ Y2i

nT| Y1i≤c
𝜉𝑚𝑛
𝑖=1  ) ) − 

1

𝑚𝑛
E [∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i≤c * ∑ Y2i

nT| Y1i≤c
𝜉𝑚𝑛
𝑖=1  ]  ] + 

1

𝜉(1−𝜉)𝑚 
 𝐸 [ 

1

𝑚𝑛
 (  E ( 𝜉 ∑ 𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i>c * ∑ Y2i
nP| Y1i≤c

𝑚𝑛
𝑖=𝜉𝑚𝑛+1

+

  𝜉 E[ ∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i>c * ∑ Y2i
nT| Y1i≤c

𝜉𝑚𝑛
𝑖=1  ] ) )  −

 
1

𝑚𝑛
 E[ ∑ 𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i>c * ∑ Y2i
nT| Y1i≤c

𝜉𝑚𝑛
𝑖=1  ] ] + 

(μnT − μnP)

𝑚
∗ [ 𝑚ΦE(𝑌1𝑖| Y1i≤c) + 𝑚(1 − Φ)E(𝑌1𝑖| Y1i>c) ] 

= 
1

𝜉(1−𝜉)𝑚
E[  

1

𝑚𝑛
E(𝐻) − 

1

𝑚𝑛
E(𝐺)]+ 

1

𝜉(1−𝜉)𝑚
E[  

1

𝑚𝑛
E(𝐼) − 

1

𝑚𝑛
E(𝐽)] + 

(μnT − μnP)

𝑚
∗ [ 𝑚ΦE(𝑌1𝑖| Y1i≤c) + 𝑚(1 − Φ)E(𝑌1𝑖| Y1i>c) ] 

E(H) =  𝜉 E[ ∑ 𝑌1𝑖
𝑚𝑛
𝑖=1 | Y1i≤c*(∑ Y2i

nP| Y1i≤c
𝑚𝑛
𝑖=𝜉𝑚𝑛+1

 +∑ Y2i
nT| Y1i≤c

𝜉𝑚𝑛
𝑖=1 ) ]  

=  𝜉 E[  E[ ∑ 𝑌1𝑖
𝑚𝑛
𝑖=1 | Y1i≤c*(∑ Y2i

nP| Y1i≤c
𝑚𝑛
𝑖=𝜉𝑚𝑛+1

 +∑ Y2i
nT| Y1i≤c

𝜉𝑚𝑛
𝑖=1 )|  Y1i|Y1i≤c ]  ] 

=  𝜉 E[ ∑ 𝑌1𝑖
𝑚𝑛
𝑖=1 | Y1i≤c*E(∑ Y2i

nP| Y1i≤c
𝑚𝑛
𝑖=𝜉𝑚𝑛+1

 +∑ Y2i
nT| Y1i≤c

𝜉𝑚𝑛
𝑖=1 ) ] 

=  𝜉 E[ (∑ 𝑌1𝑖
𝑚𝑛
𝑖=1 | Y1i≤c)*( (1-𝜉)𝑚𝑛μnP+𝜉𝑚𝑛μnT) ] 

=  𝜉( (1-𝜉)𝑚𝑛μnP+𝜉𝑚𝑛μnT) 𝑚𝑛E(𝑌1𝑖| Y1i≤c) 

E(G) = E[∑ 𝑌1𝑖
𝑚𝑛
𝑖=1 | Y1i≤c*∑ Y2i

nT| Y1i≤c
𝜉𝑚𝑛
𝑖=1 ] 

= E[ E [∑ 𝑌1𝑖
𝑚𝑛
𝑖=1 | Y1i≤c*∑ Y2i

nT| Y1i≤c
𝜉𝑚𝑛
𝑖=1 | Y1i|Y1i≤c ] ] 

= E[∑ 𝑌1𝑖
𝑚𝑛
𝑖=1 | Y1i≤c* E( ∑ Y2i

nT| Y1i≤c
𝜉𝑚𝑛
𝑖=1  )  ] 

=  𝜉𝑚𝑛μnT𝑚𝑛E(𝑌1𝑖| Y1i≤c)  

E(I) =  𝜉E[ ∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i>c*(∑ Y2i
nP| Y1i≤c

𝑚𝑛
𝑖=𝜉𝑚𝑛+1

+ ∑ Y2i
nT| Y1i≤c

𝜉𝑚𝑛
𝑖=1  )] 

=  𝜉E[ E[∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i>c*(∑ Y2i
nP| Y1i≤c

𝑚𝑛
𝑖=𝜉𝑚𝑛+1

+ ∑ Y2i
nT| Y1i≤c

𝜉𝑚𝑛
𝑖=1  )|Y1i|Y1i≤c]] 

=  𝜉E[ ∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i>c*E[(∑ Y2i
nP| Y1i≤c

𝑚𝑛
𝑖=𝜉𝑚𝑛+1

+ ∑ Y2i
nT| Y1i≤c

𝜉𝑚𝑛
𝑖=1  )|Y1i|Y1i≤c]] 

=  𝜉E[ ∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i>c*( (1-𝜉)𝑚𝑛μnP+𝜉𝑚𝑛μnT)] 
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=  𝜉((1-𝜉)𝑚𝑛μnP+𝜉𝑚𝑛μnT)(𝑚 −𝑚𝑛) E(𝑌1𝑖| Y1i>c) 

E(J) = E[ ∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i>c*∑ Y2i
nT| Y1i≤c

𝜉𝑚𝑛
𝑖=1   ] 

= E[ E[∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i>c*∑ Y2i
nT| Y1i≤c

𝜉𝑚𝑛
𝑖=1 |Y1i|Y1i≤c] ] 

= E[∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i>c * E(∑ Y2i
nT| Y1i≤c

𝜉𝑚𝑛
𝑖=1 ) ] 

=  E [(∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i>c) 𝜉𝑚𝑛μnT] 

=   𝜉𝑚𝑛μnT(𝑚 −𝑚𝑛) E(𝑌1𝑖| Y1i>c) 

∴ 𝒜 −𝒜′ =  
1

𝜉(1−𝜉)𝑚
E [  

1

𝑚𝑛
E(𝐻) − 

1

𝑚𝑛
E(𝐺)]+ 

1

𝜉(1−𝜉)𝑚
E [  

1

𝑚𝑛
E(𝐼) − 

1

𝑚𝑛
E(𝐽)]+ 

(μnT − μnP)

𝑚
∗ [ 𝑚ΦE(𝑌1𝑖| Y1i≤c) + 𝑚(1 − Φ)E(𝑌1𝑖| Y1i>c) ] 

= 
1

𝜉(1 − 𝜉)𝑚
E [  

1

𝑚𝑛
 𝜉((1-𝜉)𝑚𝑛μnP+𝜉𝑚𝑛μnT)𝑚𝑛E(𝑌1𝑖| Y1i≤c) − 

                       
1

𝑚𝑛
𝜉𝑚𝑛μnT𝑚𝑛E(𝑌1𝑖| Y1i≤c)  ] + 

1

  𝜉(1−𝜉)𝑚
E [  

1

 𝑚𝑛
𝜉((1-𝜉)𝑚𝑛μnP+𝜉𝑚𝑛μnT)(𝑚 −𝑚𝑛) E(𝑌1𝑖| Y1i>c) −       

                        
1

𝑚𝑛
𝜉𝑚𝑛μnT(𝑚 −𝑚𝑛) E(𝑌1𝑖| Y1i>c)  ] +  

(μnT − μnP)

𝑚
∗ [ 𝑚ΦE(𝑌1𝑖| Y1i≤c) + 𝑚(1 − Φ)E(𝑌1𝑖| Y1i>c) ] 

= 
1

(1 − 𝜉)𝑚
 E (𝑌1𝑖|Y1i≤c)E[( (1-𝜉)μnP +  𝜉μnT − μnT)𝑚𝑛] − 

1

(1−𝜉)𝑚
 E (𝑌1𝑖|Y1i>c)E[( (1-𝜉)μnP +  𝜉μnT − μnT)(𝑚 −𝑚𝑛)]+  

(μnT − μnP)

𝑚
∗ [ 𝑚ΦE(𝑌1𝑖| Y1i≤c) + 𝑚(1 − Φ)E(𝑌1𝑖| Y1i>c) ] 

=  E (𝑌1𝑖|Y1i≤c)( μnP − μnT) ( 1 − 𝑃𝑝(𝑟1) )+ E(𝑌1𝑖|Y1i>c)( μnP − μnT) 𝑃𝑝(𝑟1) +  

(μnT − μnP)

𝑚
∗ [ 𝑚 (1 − 𝑃𝑝(𝑟1)) E(𝑌1𝑖| Y1i≤c) + 𝑚𝑃𝑝(𝑟1)E(𝑌1𝑖| Y1i>c) ] 

=  E (𝑌1𝑖|Y1i≤c)( μnP − μnT)(1 − 𝑃𝑝(𝑟1))+ E(𝑌1𝑖|Y1i>c)( μnP − μnT)𝑃𝑝(𝑟1) +  

(μnT − μnP) ∗ [ (1 − 𝑃𝑝(𝑟1))E(𝑌1𝑖| Y1i≤c) + 𝑃𝑝(𝑟1)E(𝑌1𝑖| Y1i>c) ] = 0 

ℬ = 𝑐𝑜𝑣( E(𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m), E(𝜇̂nP|𝐼(Y1i>c), i = 1,… ,m)) 

= E [ (E (𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m) −  E(𝜇̂P1)) (E (𝜇̂nP|𝐼(Y1i>c), i = 1,… ,m) −  E(𝜇̂nP)) ] 

= E [ (
1

𝑚
( ∑ 𝐸(𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i≤c)+∑ E(𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i>c))- μP1 )  (
1

(1−𝜉)𝑚𝑛
 ∑ E(Y2i

nP| Y1i≤c
𝑚𝑛
𝑖=𝜉𝑚𝑛+1

) 

– E(𝜇̂nP)   )  ] = E [ (
1

𝑚
( ∑ E(𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i≤c)+∑ E(𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i>c))- μP1 )  (μnp– μnp )  ]=0 

ℬ′ = 𝑐𝑜𝑣( 𝐸(𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m), E(𝜇̂nP|𝐼(Y1i>c), i = 1,… ,m)) 

= E [ (𝐸 (𝜇̂P1|𝐼(Y1i>c), i = 1,… ,m) −  E(𝜇̂P1)) (𝐸 (𝜇̂nT|𝐼(Y1i>c), i = 1,… ,m) −  E(𝜇̂nT)) ] 

= E [ (
1

𝑚
( ∑ 𝐸(𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i≤c)+∑ E(𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i>c))- μP1 )  (
1

(1−𝜉)𝑚𝑛
 ∑ E(Y2i

nT| Y1i≤c
𝑚𝑛
𝑖=𝜉𝑚𝑛+1

) 

– E(𝜇̂nT)   )  ] = E [ (
1

𝑚
( ∑ 𝐸(𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i≤c)+∑ E(𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i>c))- μP1 )  (μnT– μnT )  ]=0 

Thus 𝑐𝑜𝑣(𝛿1, 𝛿2) = 𝒜 + ℬ − (𝒜′ + ℬ′) = 𝒜 −𝒜′=0 for Normal-Normal scenario. 
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Appendix 7.2:  covariance for Binomial-Binomial Case 

𝑐𝑜𝑣(𝛿̂1, 𝛿2) = 𝑐𝑜𝑣 (𝑃̂𝑇(𝑟1) − 𝑃̂𝑃(𝑟1), 𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1) − 𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1)) 

= 𝑐𝑜𝑣( 𝑃̂𝑃(𝑟1),  𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1)) −𝑐𝑜𝑣( 𝑃̂𝑃(𝑟1),  𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1))  

= E [𝑐𝑜𝑣( 𝑃̂𝑃(𝑟1), 𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m)] +  

𝑐𝑜𝑣 ( E( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m), E(𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m)) −  

{   E [𝑐𝑜𝑣( 𝑃̂𝑃(𝑟1), 𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1, … ,m)] +  

𝑐𝑜𝑣 ( E( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m), E(𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m))   }  

=  𝒜 + ℬ − (𝒜′ + ℬ′) 

𝒜 = E [𝑐𝑜𝑣( 𝑃̂𝑃(𝑟1), 𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1))| 𝐼(Y1i=1), i = 1,… ,m)], the inner part of the expectation is 

as follows: 

𝑐𝑜𝑣( 𝑃̂𝑃(𝑟1), 𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1)| 𝐼(Y1i=1), i = 1,… ,m) 

= 𝑐𝑜𝑣( ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m), (𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m)) 

= E [  ( ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m) − E( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m) ) ∗  

(  (𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1, … ,m) − E(𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m) )    ]  

= E [   ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m)(𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m) − 

         ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m)E(𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m) − 

        E ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1, … ,m)(𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m) + 

        E ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m)E(𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m)    ] 

= E [  ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m)(𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m)  ]– 

     E [ ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m)E(𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m) ] – 

     E [  E( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m)(𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m)  ] + 

      E [  E( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m)E(𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m)  ] 

=  𝐴 − 𝐵 − 𝐶 + 𝐷 

𝒜 =  𝐸(𝐴) − 𝐸(𝐵) − 𝐸(𝐶) + 𝐸(𝐷) 

A =  E [  ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m)(𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1, … ,m)  ]  

  = E [  
 1

𝑚
(∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i=0+∑ 𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i=1)(
1

(1−𝜉)𝑚𝑛
(∑ Y2i

nP| Y1i=0
𝑚𝑛
𝑖=𝜉𝑚𝑛+1

))  ] 

  =  E 

[
1

(1−𝜉)𝑚𝑚𝑛
(∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i=0*∑ Y2i

nP| Y1i
𝑚𝑛
𝑖=𝜉𝑚𝑛

=0+∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i=1*∑ Y2i
nP| Y1i=0

𝑚𝑛
𝑖=𝜉𝑚𝑛+1

)] 

B = E [ ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=0), i = 1,… ,m)E(𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1)|𝐼(Y1i=0), i = 1,… ,m) ]  

  = E [
1

𝑚
(∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i=0+∑ 𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i=1)*𝑃𝑛𝑃(𝑟2|𝑛𝑟1) ] 

= 
𝑃𝑛𝑃(𝑟2|𝑛𝑟1)

𝑚
𝐸[𝑚𝑛 ∗ 0 + (𝑚 −𝑚𝑛) ∗ 1] 

= 𝑃𝑛𝑃(𝑟2|𝑛𝑟1) 𝑃𝑃(𝑟1) 
C = D =  𝑃𝑛𝑝(𝑟2|𝑛𝑟1) 𝑃𝑃(𝑟1) 
Similarly, 

𝒜′ = E[𝑐𝑜𝑣( 𝑃̂𝑃(𝑟1), 𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1))| 𝐼(Y1i=1), i = 1, … ,m)] 

𝑐𝑜𝑣( 𝑃̂𝑃(𝑟1), 𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1)| 𝐼(Y1i=1), i = 1,… ,m) 

= 𝑐𝑜𝑣( ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m), (𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m) ) 
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= E [  ( ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m) − E( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m) ) ∗  

(  (𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m) − E(𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m) )    ]  

= E [   ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m)(𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m) − 

         ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m)E(𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m) − 

        E ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1, … ,m)(𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m) + 

        E ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m)E(𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m)    ] 

= E [  ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m)(𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m)  ]– 

     E [ ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m)E(𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m) ] – 

     E [  𝐸( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1, … ,m)(𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m)  ] + 

      E [  𝐸( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1, … ,m)E(𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1, … ,m)  ] 

=  𝐴′ − 𝐵′ − 𝐶′ + 𝐷′ 

  𝐴’ =  𝐸 [  ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m)(𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1)|𝐼(Y1i=c), i = 1,… ,m)  ]  

= E [  
 1

𝑚
(∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i=0+∑ 𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i=1)(
1

(1−𝜉)𝑚𝑛
(∑ Y2i

nT| Y1i=0
𝑚𝑛
𝑖=𝜉𝑚𝑛+1

))  ] 

= E 

[
1

(1−𝜉)𝑚𝑚𝑛
(∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i=0*∑ Y2i

nP| Y1i
𝑚𝑛
𝑖=𝜉𝑚𝑛

=0+∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i=1*∑ Y2i
nT| Y1i=0

𝑚𝑛
𝑖=𝜉𝑚𝑛+1

)] 

B’ = E [ ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=0), i = 1, … ,m)E(𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1)|𝐼(Y1i=0), i = 1, … ,m) ]  

= E [
1

𝑚
(∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i=0+∑ 𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i=1)*𝑃𝑛𝑇(𝑟2|𝑛𝑟1) ] 

= 
𝑃𝑛𝑇(𝑟2|𝑛𝑟1)

𝑚
𝐸[𝑚𝑛 ∗ 0 + (𝑚 −𝑚𝑛) ∗ 1] 

= (𝑟2|𝑛𝑟1) 𝑃𝑃(𝑟1) 
C’ = D’ =  𝑃𝑛𝑇(𝑟2|𝑛𝑟1) 𝑃𝑃(𝑟1) 

∴ 𝒜 −𝒜′ =  
1

(1−𝜉)𝑚
  

E 

[
1

𝑚𝑛
( E[∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i=0*∑ Y2i

nP| Y1i=0
𝑚𝑛
𝑖=𝜉𝑚𝑛+1

]  +

E[ ∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i=1*∑ Y2i
nP| Y1i=0

𝑚𝑛
𝑖=𝜉𝑚𝑛+1

 ] ) ]  – 

–
1

𝜉𝑚
E [

1

𝑚𝑛
( E[∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i=0*∑ Y2i

nT| Y1i=0
𝜉𝑚𝑛
𝑖=1 ] + E[ ∑ 𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i=1*∑ Y2i
nT| Y1i=0

𝜉𝑚𝑛
𝑖=1  ] ) ] 

 +(𝑃𝑛𝑇(𝑟2|𝑛𝑟1) −𝑃𝑛𝑃(𝑟2|𝑛𝑟1))𝑃𝑃(𝑟1) 

= 
1

𝜉(1−𝜉)𝑚
 E  [

1

𝑚𝑛
( 𝜉E[∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i=0*∑ Y2i

nP| Y1i=0
𝑚𝑛
𝑖=𝜉𝑚𝑛+1

]   – 

(1-𝜉) E[∑ 𝑌1𝑖
𝑚𝑛
𝑖=1 | Y1i=0*∑ Y2i

nT| Y1i=0
𝜉𝑚𝑛
𝑖=1 ]) ]  + 

1

𝜉(1−𝜉)𝑚
 E  [

1

𝑚𝑛
( 𝜉E[ ∑ 𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i=1*∑ Y2i
nP| Y1i=0

𝑚𝑛
𝑖=𝜉𝑚𝑛+1

 ] – 

(1-𝜉) E[ ∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i=1*∑ Y2i
nT| Y1i=0

𝜉𝑚𝑛
𝑖=1  ] )  ] + 

(𝑃𝑛𝑇(𝑟2|𝑛𝑟1) – 𝑃𝑛𝑃(𝑟2|𝑛𝑟1))𝑃𝑃(𝑟1) 
=

  
1

𝜉(1−𝜉)𝑚 
E [ 

1

𝑚𝑛
(   E (𝜉 ∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i=0 * ∑ Y2i

nP| Y1i=0
𝑚𝑛
𝑖=𝜉𝑚𝑛+1

 +

 𝜉 ∑ 𝑌1𝑖
𝑚𝑛
𝑖=1 | Y1i=0 * ∑ Y2i

nT| Y1i=0
𝜉𝑚𝑛
𝑖=1  ) ) − 

1

𝑚𝑛
E [∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i=0 *∑ Y2i

nT| Y1i=0
𝜉𝑚𝑛
𝑖=1  ]  ] + 

1

𝜉(1−𝜉)𝑚 
 𝐸 [ 

1

𝑚𝑛
 (  E ( 𝜉 ∑ 𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i=1 * ∑ Y2i
nP| Y1i=0

𝑚𝑛
𝑖=𝜉𝑚𝑛+1

+
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  𝜉 E[ ∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i=1 * ∑ Y2i
nT| Y1i=0

𝜉𝑚𝑛
𝑖=1  ] ) ) −

 
1

𝑚𝑛
 E[ ∑ 𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i=1 * ∑ Y2i
nT| Y1i=0

𝜉𝑚𝑛
𝑖=1  ] ] + 

(𝑃𝑛𝑇(𝑟2|𝑛𝑟1) –𝑃𝑛𝑃(𝑟2|𝑛𝑟1))𝑃𝑃(𝑟1) 

=  
1

𝜉(1−𝜉)𝑚
E[  

1

𝑚𝑛
E(𝐻) − 

1

𝑚𝑛
E(𝐺)]+ 

1

𝜉(1−𝜉)𝑚
E[  

1

𝑚𝑛
E(𝐼) − 

1

𝑚𝑛
E(𝐽)] + 

(𝑃𝑛𝑇(𝑟2|𝑛𝑟1) −𝑃𝑛𝑃(𝑟2|𝑛𝑟1))𝑃𝑃(𝑟1) 

E(H) =  𝜉 E[ ∑ 𝑌1𝑖
𝑚𝑛
𝑖=1 | Y1i=0*(∑ Y2i

nP| Y1i=0
𝑚𝑛
𝑖=𝜉𝑚𝑛+1

 +∑ Y2i
nT| Y1i=0

𝜉𝑚𝑛
𝑖=1 ) ]  

=  𝜉 E[  E[ ∑ 𝑌1𝑖
𝑚𝑛
𝑖=1 | Y1i=0*(∑ Y2i

nP| Y1i=0
𝑚𝑛
𝑖=𝜉𝑚𝑛+1

 +∑ Y2i
nT| Y1i=0

𝜉𝑚𝑛
𝑖=1 )|  Y1i|Y1i=0 ]  ] 

=  𝜉 E[ ∑ 𝑌1𝑖
𝑚𝑛
𝑖=1 | Y1i=0*E(∑ Y2i

nP| Y1i=0
𝑚𝑛
𝑖=𝜉𝑚𝑛+1

 +∑ Y2i
nT| Y1i=0

𝜉𝑚𝑛
𝑖=1 ) ] 

= 𝜉 E[ (∑ 𝑌1𝑖
𝑚𝑛
𝑖=1 | Y1i=0)*( (1-𝜉)𝑚𝑛𝑃𝑛𝑃(𝑟2|𝑛𝑟1)+𝜉𝑚𝑛𝑃𝑛𝑇(𝑟2|𝑛𝑟1)) ] 

=  𝜉( (1-𝜉)𝑚𝑛𝑃𝑛𝑃(𝑟2|𝑛𝑟1)+𝜉𝑚𝑛𝑃𝑛𝑇(𝑟2|𝑛𝑟1)) 𝑚𝑛 ∗ 0 = 0 

E(G) = E[∑ 𝑌1𝑖
𝑚𝑛
𝑖=1 | Y1i=0*∑ Y2i

nT| Y1i=0
𝜉𝑚𝑛
𝑖=1 ] 

= E[ E [∑ 𝑌1𝑖
𝑚𝑛
𝑖=1 | Y1i=0*∑ Y2i

nT| Y1i=0
𝜉𝑚𝑛
𝑖=1 | Y1i|Y1i=0 ] ] 

= E[∑ 𝑌1𝑖
𝑚𝑛
𝑖=1 | Y1i=0* E( ∑ Y2i

nT| Y1i=0
𝜉𝑚𝑛
𝑖=1  )  ] 

= 𝜉𝑚𝑛𝑃𝑛𝑇(𝑟2|𝑛𝑟1)𝑚𝑛 ∗ 0 = 0  

E(I) =  𝜉E[ ∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i=1*(∑ Y2i
nP| Y1i=0

𝑚𝑛
𝑖=𝜉𝑚𝑛+1

+ ∑ Y2i
nT| Y1i=0

𝜉𝑚𝑛
𝑖=1  )] 

=  𝜉E[ E[∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i=1*(∑ Y2i
nP| Y1i=0

𝑚𝑛
𝑖=𝜉𝑚𝑛+1

+ ∑ Y2i
nT| Y1i=0

𝜉𝑚𝑛
𝑖=1  )|Y1i|Y1i=0]] 

=  𝜉E[ ∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i=1*E[(∑ Y2i
nP| Y1i=0

𝑚𝑛
𝑖=𝜉𝑚𝑛+1

+ ∑ Y2i
nT| Y1i=0

𝜉𝑚𝑛
𝑖=1  )|Y1i|Y1i=0]] 

=  𝜉E[ ∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i=1*( (1-𝜉)𝑚𝑛𝑃𝑛𝑃(𝑟2|𝑛𝑟1)+𝜉𝑚𝑛𝑃𝑛𝑇(𝑟2|𝑛𝑟1))] 

=  𝜉((1-𝜉)𝑚𝑛𝑃𝑛𝑃(𝑟2|𝑛𝑟1)+𝜉𝑚𝑛𝑃𝑛𝑇(𝑟2|𝑛𝑟1))(𝑚 −𝑚𝑛)  

E(J) = E[ ∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i=1*∑ Y2i
nT| Y1i=0

𝜉𝑚𝑛
𝑖=1   ] 

= E[ E[∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i=1*∑ Y2i
nT| Y1i=0

𝜉𝑚𝑛
𝑖=1 |Y1i|Y1i=0] ] 

= E[∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i=1 * E(∑ Y2i
nT| Y1i=0

𝜉𝑚𝑛
𝑖=1 ) ] 

= E[(∑ 𝑌1𝑖
𝑚
𝑖=𝑚𝑛+1

| Y1i=1) 𝜉𝑃𝑛𝑇(𝑟2|𝑛𝑟1)] 

= 𝜉𝑚𝑛𝑃𝑛𝑇(𝑟2|𝑛𝑟1)(𝑚 −𝑚𝑛)  

∴ 𝒜 −𝒜′ =   
1

𝜉(1−𝜉)𝑚
E[  

1

𝑚𝑛
E(𝐻) − 

1

𝑚𝑛
E(𝐺)]+ 

1

𝑎(1−𝜉)𝑚
E[  

1

𝑚𝑛
E(𝐼) − 

1

𝑚𝑛
E(𝐽)] + 

(𝑃𝑛𝑇(𝑟2|𝑛𝑟1) −𝑃𝑛𝑃(𝑟2|𝑛𝑟1))𝑃𝑃(𝑟1) 

=  
1

𝜉(1−𝜉)𝑚
 E [  

1

𝑚𝑛
E(𝐼) − 

1

𝑚𝑛
E(𝐽)] + (𝑃𝑛𝑇(𝑟2|𝑛𝑟1) – 𝑃𝑛𝑃(𝑟2|𝑛𝑟1))𝑃𝑃(𝑟1) 

=
1

𝜉(1−𝜉)𝑚
 E [ 

1

𝑚𝑛
  𝜉 ((1-𝜉)𝑚𝑛𝑃𝑛𝑃(𝑟2|𝑛𝑟1)+ 𝜉𝑚𝑛𝑃𝑛𝑇(𝑟2|𝑛𝑟1)) (𝑚 −𝑚𝑛)  −

 
1

𝑚𝑛
 ( 𝜉𝑚𝑛𝑃𝑛𝑇(𝑟2|𝑛𝑟1)(𝑚 −𝑚𝑛)  )]+ (𝑃𝑛𝑇(𝑟2|𝑛𝑟1) −𝑃𝑛𝑃(𝑟2|𝑛𝑟1))𝑃𝑃(𝑟1) 

= 
1

(1−𝜉)𝑚
 E[   ((1-𝜉)𝑃𝑛𝑃(𝑟2|𝑛𝑟1)+ 𝜉𝑃𝑛𝑇(𝑟2|𝑛𝑟1)) (𝑚 −𝑚𝑛)   −   ( 𝑃𝑛𝑇(𝑟2|𝑛𝑟1) (𝑚 −𝑚𝑛)  )]+ 

(𝑃𝑛𝑇(𝑟2|𝑛𝑟1) −𝑃𝑛𝑃(𝑟2|𝑛𝑟1))𝑃𝑃(𝑟1) 

= 
1

(1−𝜉)𝑚
[ ((1-𝜉)𝑃𝑛𝑃(𝑟2|𝑛𝑟1)+ 𝑎𝑃𝑛𝑇(𝑟2|𝑛𝑟1) )– 𝑃𝑛𝑇(𝑟2|𝑛𝑟1) ] m𝑃𝑃(𝑟1) + 

(𝑃𝑛𝑇(𝑟2|𝑛𝑟1) –𝑃𝑛𝑃(𝑟2|𝑛𝑟1))𝑃𝑃(𝑟1) 

= - (𝑃𝑛𝑇(𝑟2|𝑛𝑟1) – 𝑃𝑛𝑃(𝑟2|𝑛𝑟1))𝑃𝑃(𝑟1) + (𝑃𝑛𝑇(𝑟2|𝑛𝑟1) – 𝑃𝑛𝑃(𝑟2|𝑛𝑟1))𝑃𝑃(𝑟1) = 0 
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ℬ = 𝑐𝑜𝑣 ( E( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m), E(𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m)) 

= E [ (E ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m)

−  E( 𝑃̂𝑃(𝑟1))) , (E (𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1, … ,m) −  E (𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1))) ] 

= E [ ( 
 1

𝑚
(∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i=0+∑ 𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i=1)- 𝑃𝑃(𝑟1) )  (
1

(1−𝜉)𝑚𝑛
 ∑ E(Y2i

nP| Y1i=0
𝑚𝑛
𝑖=𝜉𝑚𝑛+1

) –

 E (𝑃̂𝑛𝑃(𝑟2|𝑛𝑟1))   )  ] 

= E [ (
1

𝑚
( ∑ E(𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i=0)+∑ E(𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i=1))- μP1 )  (𝑃𝑛𝑃(𝑟2|𝑛𝑟1)– 𝑃𝑛𝑃(𝑟2|𝑛𝑟1) )  

]=0 

ℬ′ = 𝑐𝑜𝑣 ( E( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m), E(𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1,… ,m)) 

= 𝐸 [ (E ( 𝑃̂𝑃(𝑟1)|𝐼(Y1i=1), i = 1,… ,m)

−  E( 𝑃̂𝑃(𝑟1))) , (𝐸 (𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1)|𝐼(Y1i=1), i = 1, … ,m) −  E (𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1))) ] 

= E [ ( 
 1

𝑚
(∑ 𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i=0+∑ 𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i=1)- 𝑃𝑃(𝑟1) )  (
1

𝜉𝑚𝑛
 ∑ E(Y2i

nT| Y1i=0
𝜉𝑚𝑛
𝑖=1 ) –

 E (𝑃̂𝑛𝑇(𝑟2|𝑛𝑟1))   )  ] 

=  E [ (
1

𝑚
( ∑ E(𝑌1𝑖

𝑚𝑛
𝑖=1 | Y1i=0)+∑ E(𝑌1𝑖

𝑚
𝑖=𝑚𝑛+1

| Y1i=1))- μP1 )  (𝑃𝑛𝑇(𝑟2|𝑛𝑟1)– 𝑃𝑛𝑇(𝑟2|𝑛𝑟1) )  ] 

= 0 

Thus 𝑐𝑜𝑣(𝛿1, 𝛿2) = 𝒜 + ℬ − (𝒜′ + ℬ′) = 𝒜 −𝒜′=0 for Binomial-Binomial scenario.
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Chapter 8 

Misunderstanding of a New Approach to Drug-Placebo Difference 

Calculation in Short Term Antidepressant-Drug Trials 

(Liu, Y. (2015) Misunderstanding of a New Approach to Drug-Placebo Difference Calculation in Short 

Term Antidepressant-Drug Trials. Open Journal of Statistics, 5, 113-119. 

doi: 10.4236/ojs.2015.52014.) 

 

Abstract: In clinical trials, drug effect is measured by a difference between subjects who are 

treated by experimental drug against placebo-treated subjects. In case of binary data, with 

observing YES/NO on each subject in certain period of time, it is the proportion of subjects who 

respond in treatment group minus the proportion of responders in placebo group (for example, 

50% vs. 30%). However, a greater difference was proposed by Rihmer et al. (2011) with their 

supporting arguments, in that antidepressant response and placebo response had different 

mechanisms and there were equal chances for antidepressant responder to be responding to 

placebo and not responding to placebo at all. Therefore, the authors proposed 50% - 30% * 50% 

when the response rate in the treatment group and the placebo group are 50% and 30% 

respectively, resulting in higher drug-placebo difference than traditional understanding of 50% - 

30%. In this article, we tried to explain why the authors misunderstood the drug-placebo concept 

for evaluating drug superiority, their misunderstanding of assumptions of traditional calculation, 

as well as their wrong reasoning on their proposed approach. All in all, we conclude the 

traditional approach of 50% - 30% is the right way of evaluating drug-placebo difference and the 

possible methods to control impact of placebo effect are briefly discussed at the end of this 

article. 

Keywords: Antidepressant; Placebo Effect; Short-Term Antidepressant Effect; Unipolar Major 

Depression. 

 

Section 8.1 Introduction 

In clinical trials, patients are not only taking a testing drug on rigorous schedules, but also under 

a specific healthcare environment. Routine checks, clinical visiting and lots of psychological 

interviews might create a misconception to patients and clinicians and result in placebo effect. 

Placebo effect blunts the ability to detect drug-placebo difference in a well-controlled trail, 

resulting in trial failures, longer time and more resource in developing promising drugs for 

unmet medical needs. To deduce this trial background effects, randomization is normally 

applied. Subjects are randomized into either placebo or treatment group with equal probability 

and baseline characteristics got balanced out. With the help of randomization, only post-

randomization factors and drug-placebo difference can contribute to different effects between 

http://dx.doi.org/10.4236/ojs.2015.52014
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drug and placebo groups. However, if investigators and patients have known what is given and 

what is taken in the trial, psychological effects will impact clinical rating scales, self-evaluation 

scores, compliance and patient’s willingness of coordination with trial personnel. Hence blinding 

is essential to get rid of above impacts on evaluating drug-placebo effect. Double- blinding is a 

way to exclude some of those post-randomization factors. Use of placebo is to evaluate the 

background effect of trial procedure on patients. Placebo is sometimes better than not treated, 

which is seen in most psychiatry trials depending on different disease characteristics. Placebo 

effect is well-known in antidepressant trials. How placebo works, how placebo effect is different 

from drug effect, whether there are interactions between them or not, and how these issues get 

accounted in statistical comparison all become interesting to the academic community. And the 

newly proposed method on how to calculate drug-placebo difference was one particular effort to 

answer one aspect of these questions. What makes anti-depressant special is that general 

antidepressant clinical trials, especially in short-term trials, have relatively larger placebo effect 

than those of other drug-testing clinical trials. Section 8.2 describes complexity of placebo and 

antidepressant mechanisms in depressive patients. Section 8.3 evaluates drug-placebo difference 

under various interaction types between placebo and antidepressant responses. Section 8.4 

explains all the misunderstanding of drug-placebo difference and logic errors in Rihmer et al. 

2011, similar errors were also made in other two articles (Rihmer, 2007; Rihmer and Gonda 

2008). Section 8.5 discusses operational management and novel designs to cope with placebo 

effect in antidepressant clinical trials. 

Section 8.2:  Mechanism of Placebo and Antidepressant Effects 

Most widely used antidepressants include two classes: SSRI (selective serotonin reuptake 

inhibitors) and serotonin norepinephrine reuptake inhibitors. Namely, these two classes work 

mostly on central serotonin and norepinephrine systems (Johnson et al. 1993); Carpenter et al., 
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2003) respectively. That is: the AD (antidepressant) response relies on specific underlying 

biological pathway in relation to biological state/illness characteristics. Moreover, due to 

biochemical heterogeneity, depression symptomatic improvement only occurs in certain 

subpopulation of individuals affected by depression. Interestingly, PL (placebo) response 

behaves very differently, especially from perspective of its biomarker profile. When the 

biomarker of change in brain glucose metabolism, a measure of positron emission tomography 

was monitored, PL response was shown to be associated with regional metabolic increases in the 

prefrontal and anterior cingulate cortices, while fluoxetine (one kind of antidepressant) response 

was associated with additional changes in additional changes in brainstem, striatum, and 

hippocampal activity (Mayberg et al., 2002). At subject level, PL (placebo) responders showed a 

significance increase in prefrontal cortex activity, whereas no such increase occurred in none of 

the rest of the population consisting of PL non-responders, AD (i.e., fluoxetine or venlafaxine) 

responders, and AD non-res- ponders (Leuchter et al. 2002). Moreover, most recent studies 

showed endogenous opiod and dopaminergic neurotransmission mediated nocebo effects, while 

central opioid and dopaminergic activation mediated on PL response (Enck et al. 2008); Scott et 

al. 2008). Then next question is how the central opoid and dopaminergic activation differs from 

endogenous opiod and dopaminergic neurotransmission; recent research argued that the former 

could mediate optimistic personality features (Sharot et al., 2007). Now the connection appears 

explainable, as placebo response, not with specific drug molecule, shows general response to the 

overall environment. For instance, some reward expectations on clinical improvement in both 

patients and clinicians after placebo administration, subsequently result in change in systems that 

mediate optimistic personality feature. So far, we can summarize that AD response and PL 

response work differently and could overlap in certain ways. Not everyone responds to placebo, 
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neither does to antidepressants. From each subject, as Rihmer et al. (2011) noted patients could 

be divided into four different categories: (P1) AD responder and PL responder (++); (P2) AD 

responder and PL non-responder (+−); (P3) AD non-responder and PL responder (−+); and (P4) 

AD non- responder and PL non-responder (−−). All types of P1 - P4 exist in real trial results. 

Section 8.3: Drug-Placebo Difference Evaluation 

In this section, we would like to explore the appropriate statistical evaluation for drug-placebo 

difference under the circumstance of placebo response in antidepressant trials. To be more 

complete, let’s put aside all founding in Section 8.2 first and explore all the scenarios, because 

some of these scenarios trigger Rihmer and co-authors (Rihmer et al. 2011) to pick up the new 

method over the traditional one. Therefore, it is necessary to explore all of them in detail first. 

Put AD and PL response in 2X2 contingency table, then the difference between drug and placebo 

can be viewed marginally and jointly. Marginally means whenever we consider AD response 

rate, we only concentrate on AD response (response = YES and response = NO corresponding to 

AD = 1 and AD = 0 respectively) without considering PL mechanism. Similarly, whenever 

looking at PL response rate, we ignore how AD works. From Figure 8.1(a), we can clearly see 

that rate of response in AD group minus rate of response in PL group is first column of down 

diagonal minus first row of up diagonal, that is Pr(AD = 1) − Pr(PL = 1) = 0.5 − 0.3. However, if 

we would like to look the rates jointly in terms of both AD and PL responding, then it is low left 

corner of down diagonal minus upper right corner of up diagonal, that is Pr(AD = 1 and PL = 0) 

− Pr(AD = 0 and PL = 1). Comparing to subtraction of marginal in method one in Figure 8.1(a), 

future specifications are needed to obtain these two joint probabilities of Pr(AD = 1 and PL = 0) 

− Pr (AD = 0 and PL = 1). Comparing method 1 of subtraction of marginal probabilities with 

subtraction of joint probabilities, we can find that they coincide with each other, since the only 

part in common, probability of being AD responder and PL responder, is eliminated from 

http://file.scirp.org/Html/3-1240485_55803.htm#f1
http://file.scirp.org/Html/3-1240485_55803.htm#f1
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because residing both before the minus sign and after the minus sign. That is: Pr(AD = 1) − 

Pr(PL = 1) = [Pr(AD = 1 and PL = 0) + Pr(AD = 1 and PL = 1)] − [Pr(AD = 0 and PL = 1) + 

Pr(AD = 1 and PL = 1)] = Pr(AD = 1 and PL = 0) − Pr(AD = 0 and PL = 1). Note that, in Figure 

8.2, we graphically denote divided probabilistic distribution of this joint AD and PL variables. 

Assuming two difference systems mediate PL response and AD response separately, then these 

two systems could: (D) totally dependent; (IND) totally independent; and (Other) some 

dependence in between. For totally dependence, we can further divide them into 4 subcategories 

(Figure 8.3): (D1) all placebo responders are AD responders; (D2) all placebo responders are AD 

non-responders; (D3) all AD responders are placebo responders; (D4) all AD responders are 

placebo non-responders. 

 
Figure 20(Fig. 8.1): Drug-placebo difference graphic representation 

Figure 8.1: Drug-placebo difference graphic representation. (a) Looking at it marginally, 

drug-placebo difference is shaded lower diagonal minus shaded upper diagonal. (b) 

Looking at it jointly, drug-placebo difference is still shaded lower diagonal minus shaded 

upper diagonal with trellised cell deleted as compared to (a). 

            

http://file.scirp.org/Html/3-1240485_55803.htm#f2
http://file.scirp.org/Html/3-1240485_55803.htm#f2
http://file.scirp.org/Html/3-1240485_55803.htm#f3
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Figure 21(Fig. 8.2): Probabilistic distribution of AD/PL responses 

Figure 8.2: Probabilistic distribution of AD/PL responses. 

 

 

 
Figure 22(Fig. 8.3): Drug-placebo difference under four mutually exclusive and exhaustive scenarios 

Figure 8.3: Drug-placebo difference under four mutually exclusive and exhaustive 

scenarios. D1: All PL responders are AD responders; D2: All PL responders are AD non-

responders; D3: All AD responders are PL responders; D4: All AD responders are PL non-

responders. 

 

Section 8.3.1: Various Dependent Structures 

(D1): Dependence scenario 1. Since all PL responders are AD responders, Pr(AD = 1|PL = 1) = 1. 

Circled cell Pr(AD = 1 and PL = 1) = Pr(AD = 1|PL = 1) * Pr(PL = 1) = 1 * 0.3 = 0.3; and then 

drug-placebo difference = Pr(AD = 1 and PL = 0) − Pr(AD = 0 and PL = 1) = 0.2 − 0 = 0.2 = 

Pr(AD = 1) − Pr(PL = 1) = 0.5 − 0.3. 

(D2): Dependence scenario 2. Since all PL responders are AD non-responders, Pr(AD = 0|PL = 1) 

= 1. Circled cell Pr(AD = 0 and PL = 1) = Pr(AD = 0|PL = 1) * Pr(PL = 1) = 1 * 0.3 = 0.3 and 

drug-placebo difference = Pr(AD = 1 and PL = 0) − Pr(AD = 0 and PL = 1) = 0.5 − 0.3 = Pr(AD = 

1) − Pr(PL = 1) = 0.5 − 0.3. 
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(D3): Dependence scenario 3. Intuitively, this can’t exist because: if all AD responders are PL 

responders, PL responder rate will be greater or equal to AD responder rate, which contradicts 

our assumption of probability of AD equal to 1 being 0.5 and PL equal to 1 being 0.3 

respectively. Had we have PL responder rate exceeded AD responder rate; this would be a wrong 

target drug to develop since its effect is numerically inferior to placebo. Mathematically, if we 

have all AD responders are PL responders, conditionally probability of Pr(PL = 1|AD = 1) = 1. 

Therefore, Pr(AD = 1 and PL = 1) = Pr(PL = 1|AD = 1) * Pr(AD = 1) = 1 * 0.5 > Pr(PL = 1) = 

0.3. This violates probability axiom, as Pr(PL = 1) = Pr(AD = 1 and PL = 1) + Pr(AD = 0 and PL 

= 1) and should not be less than Pr(AD = 1 and PL = 1) alone. This calculation proves our 

intuitive interpretation: under the condition of all AD responders are PL responders, existing of 

AD non-responders being PL responders will lead to greater PL response rate than AD response 

rate, in which is against the goal of drug development. 

(D4): Dependence scenario 4. Since all AD responders are PL non-responders, Pr(PL = 0|PL = 1) 

= 1. Circled cell Pr(PL = 0 and AD = 1) = Pr(PL = 0|AD = 1) * Pr(AD = 1) = 1 * 0.5 = 0.5 and 

drug-placebo difference = Pr(AD = 1 and PL = 0) − Pr(AD = 0 and PL = 0) = 0.5 − 0.3 = 0.2 = 

Pr(AD = 1) − Pr(PL = 1) = 0.5 − 0.3. Graphically, dependence scenario 2 equals dependence 

scenario 4. Let’s try to prove it mathematically. 

Claim: D2 dependence structure is the same as D4 dependence structure. 

Proof: D2 = >D4 

Pr(AD = 1 and PL = 1) + Pr(AD = 1 and PL = 0) + Pr(AD = 0 and PL = 1) + Pr(AD = 0 and PL 

= 0) = 1 

Pr(AD = 1 and PL = 1) + Pr(PL = 0|AD = 1) * Pr(AD = 1) + Pr(AD = 0|PL = 1) * Pr(PL = 1) 

+ Pr(AD = 0 and PL = 0) = 1 
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Because Pr(AD = 0|PL = 1) = 1, then Pr(PL = 0|AD = 1) * Pr(AD = 1) = 1 − 1 * Pr(PL = 1) − 

Pr(AD = 1 and PL = 1) − Pr(AD = 0 and PL = 0) = Pr(PL = 0) − Pr(AD = 1 and PL = 1) − Pr(AD 

= 0 and PL = 0) 

= Pr(AD = 1 and PL = 0) − Pr(AD = 1 and PL = 1) 

= Pr(AD = 1) * Pr(PL = 0|AD = 1) − Pr(AD = 1) * Pr(PL = 1|AD = 1) 

After Canceling Pr(AD = 1) from both sides, we have Pr(PL = 0|AD = 1) = Pr(PL = 0|AD = 1) − 

Pr(PL = 1|AD = 1) 

Pr(PL = 1|AD = 1) = 0 

 

Pr(PL = 1 and AD = 1) = 0 

Together with Pr(PL = 0 and AD = 1) + Pr(PL = 1 and AD = 1) = Pr(AD = 1) 

Pr(PL = 0 and AD = 1) = Pr(AD = 1) 

Pr(PL = 0|AD = 1) * Pr(AD = 1) = Pr(AD = 1) 

Pr(PL = 0|AD = 1) = 1, because Pr(AD = 1) is a positive number. 

Pr(PL = 0|AD = 1) = 1 is for D4 structure. All AD responders are PL non-responders.  

Similarly, we can show D4 => D2. 

In summary, under all reasonable dependence scenarios (i.e., D1 - D4 excluding D3), 4 cell 

probabilities are fixed and drug-placebo difference using joint probabilities is available. 

However, as discussed in Section 8.2, this drug-placebo difference is always 0.5 − 0.3, the same 

as that of being obtained by marginal probabilities. The other reason to have detailed discussion 
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about above mutually exclusive and exhaustive scenarios is for later discussion about the method 

proposed by Rihmer et al. (2011). 

Section 8.3.2: Independent Structure 

If the mechanism of placebo response is independent of that of antidepressant response, placebo 

responders can randomly either to be AD responder or to be AD non-responder. Similarly, AD 

responders have an equal chance to either be PL responder or be PL non-responder. Being a 

placebo responder is independent of being an AD responder. Then, under this scenario, what 

about drug-placebo difference? In Figure 8.4, we see that since Pr(AD = 1|PL = 1) = 0.5, we 

have Pr(AD = 1 and PL = 1) = Pr(AD = 1|PL = 1) * Pr(PL = 1) = 0.5 * 0.3 = 0.15. Then drug-

placebo difference using joint probability is 0.35 − 0.15 = 0.2, numerically exactly the same as 

Pr(AD = 1) − Pr(PL = 1) = 0.5 − 0.3 = 0.2 using marginal probabilities. 

Section 8.3.3: Structures between Totally Dependent and Totally Independent 

If neither definite dependence nor independence presents, some other structures in between play 

a role for mechanisms of placebo and AD responding. As in the 2X2 contingency table (Figure 

8.2), once one cell probability is fixed, all other cells are known as well. For instance, probability 

of both AD and PL (i.e., Pr(AD = 1 and PL = 1)) responding is known. In example 1, with 

Pr(AD = 1 and PL = 1) = 0.25 known (bigger than the probability under independence in Figure 

8.4), drug-placebo difference can be calculated as Pr(AD = 1 and PL = 0) = Pr(AD = 0 and PL = 

1) = 0.25 − 0.05 = 0.2, the same as Pr(AD = 1) − Pr(PL = 1) = 0.5 − 0.3 = 0.2. In example 2, with 

Pr(AD = 1 and PL = 1) = 0.1 known (smaller than its probability under independence scenario), 

drug-placebo difference can be calculated as Pr(AD = 1 and PL = 0) = Pr(AD = 0 and PL = 1) = 

0.4 − 0.2 = 0.2. As shown in Figure 8.5, Pr(AD = 1 and PL = 1) can be either greater than that of 

independence scenario in example 1, or less than that of example 2. No matter it is higher or 

http://file.scirp.org/Html/3-1240485_55803.htm#f4
http://file.scirp.org/Html/3-1240485_55803.htm#f2
http://file.scirp.org/Html/3-1240485_55803.htm#f2
http://file.scirp.org/Html/3-1240485_55803.htm#f4
http://file.scirp.org/Html/3-1240485_55803.htm#f4
http://file.scirp.org/Html/3-1240485_55803.htm#f5
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lower than that of independence structure, once joint probabilities are known, drug-placebo 

difference can easily derived, which again is the same as the marginal probability difference. The 

advantage of using marginal probability is that joint probabilities are normally unknown due to 

unobservable property and can’t be used to derived drug-placebo difference. On the contrary, 

marginal probabilities are always observable and hence can easily be used for evaluating drug 

superiority. 

In clinical trials, we measure response on each subject, and group them into treatment versus 

placebo to find a measure so that superiority of drug vs. placebo can be evaluated and tested. 

Each joint probability is actually unobservable in the trial except under wholly independence or 

dependence structures. It may be possible to use another trial to test independence assumption, 

but normally we can just reject or fail to reject independence hypothesis. Still, we can’t prove it 

is indeed independent. For dependence structure, even with an external trial specifically for 

evaluating dependence structure, it is really hard to prove which dependence structure it is. Also, 

from Section 8.2, the presence of AD non-responder and PL responders excludes the possibility 

of having dependence scenario 1, which is all PL responders are AD responders; similarly, the 

presence of AD responders and PL responders excludes dependence scenarios 2 and 4, which are 

all PL responders are AD non-responders and all AD responders are PL non-responders 

respectively. 

From general discussion in Section 8.2 and each specific example in Section 8.3, we all show 

that drug-placebo difference can be evaluated by marginal probability difference. 

Section 8.4: Discussion of Misunderstanding Leading to a Wrong New Approach  

After stating and proving the right way of evaluating drug-placebo difference, we now have to 

discuss why the proposed method by Rihmer et al. (2011) is wrong and where the logic flaws 

resided in their article. There are several steps for Rihmer et al. (2011) to propose 0.5 − 0.3 * 
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50% and reason against the traditional method of 0.5 − 0.3. First of all, they thought that old 

method of 0.5 − 0.3 depends on the assumption of all PL responders being AD responders (i.e., 

Pr(AD = 1|PL = 1) = 1), which corresponds to dependence structure 1 in Figure 8.3. This is 

indeed wrong. Under dependence structure 1, Then the authors had a wrong perspective that 

drug-placebo difference is Pr(AD = 1 and PL = 0) = Pr(AD = 1) − Pr(AD = 1 and PL = 1) = 0.5 

− 0.3 using joint probabilities in Figure 8.3 Dependence 1 table. This is actually using a wrong 

rational but to end up with a correct number of 0.2. Later they thought that more consideration 

should be put into Pr(AD = 1 and PL = 1) to account for the fact that not all PL responders can 

be AD responders. Under independence structure, there is equal probability for a PL responder to 

be an AD responder or not to be an AD responder. Hence they went to independence structure in 

Figure 8.4. As joint probabilities in Figure 8.4 show, Pr(AD = 1 and PL = 0) = Pr(AD = 1) − 

Pr(AD = 1 and PL = 1) = 0.5 − 0.15 = 0.35. We think that Rihmer and co-authors [1] started with 

wrong assumptions for drug-placebo difference; used wrong measure for it; had a wrong 

interpretation for this measure; and subsequently proposed a wrong approach. Now, let explain 

further about why probability of being an AD responder but not a PL responder (i.e., Pr(AD = 1 

and PL = 0)) is not a right measure of drug-placebo difference. This measure is measuring the 

chance for each individual to be AD responder and PL non-responder simultaneously; or is 

measuring relative frequency of subjects who are AD responder but not PL responder in the 

whole population. Either interpretation has nothing to do with the drug-placebo difference, which 

is the relative frequency of AD responders over PL responders in antidepressant patient 

population. And this joint probability is normally unobservable in the clinical trials, where 

patients are randomly assigned to PL or AD to obtain efficacy measure to assess AD relative 

superiority. On the contrary, each patient is a unit to be treated by either placebo or AD; 
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responder rate in AD-treated group minus the responder rate in the PL-treated group provide an 

objective measure for drug-placebo difference after all baseline factors being balanced out by 

randomization and the only factor contributing to drug-placebo difference is what they have 

received in the trial. This, as shown in Section 8.3, is irrespective of what kind of joint 

mechanism between drug and placebo responses. Besides, calculation from marginal rate 

difference is the same as calculating difference from joint probabilities, whereas the latter is 

normally unobservable and can’t be obtained from this randomized clinical trial. 

                 
Figure 23(Fig. 8.4): Drug-placebo difference under independent structure 

Figure 8.4: Drug-placebo difference under independent structure 

 

 
Figure 24(Fig. 8.5): Two examples of drug-placebo difference under structures between totally dependent and 

independent 

Figure 8.5: Two examples of drug-placebo difference under structures between totally 

dependent and independent. Example 1: probability of being AD and PL responders is 

greater than that of independence structure; Example 2: probability of being AD and PL 

responders is lower than that of independence structure. 

 

 

Section 8.5: Discussion of Operational Management and Novel Designs to Cope with 

Placebo Effect in Antidepressant Clinical Trials  

After the discussion of the right way of understanding and evaluating drug-placebo difference 
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and pointing out all the flaws in Rihmer and co-authors’ wrong proposal, it seems that we are 

going back to the original place to favor traditional method of Pr(AD = 1) − Pr(PL = 1). Then 

what should we do to avoid jeopardizing a trial because of placebo effect? And should we just let 

it go unchecked? Of course, the answer is no. This is actually a very interesting but complicated 

area and not intended to be covered in this article. Here, we can briefly point out some related 

perspectives. To avoid failure trial due to placebo effect, we can put more efforts on innovated 

design and manage it more appropriate in operation. The main challenge is to lower the 

optimistic expectation from both patient and clinician. Since higher placebo response was found 

in mild-moderate depression, excluding these patients in the trial should be considered. And 

more scientific scoring system, more self-scoring scale, help from biomarker markers, and/or 

central rating could be combined to narrow the possibility of overstated expectation. 

Mathematically, novel designs as sequential parallel designs are also available in the literature. 
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Chapter 9 

Optimal Group Sequential Designs Constrained on both Overall and Stage 

One Error Rates 

(to be submitted) 

Abstract: Optimized group sequential designs proposed in the literature have designs 

minimizing average sample size (ASN) with respect to a prior distribution of treatment effect 

with overall type I and type II error rates well-controlled. The optimized asymmetric group 

sequential designs that we present here additionally consider constrains on stopping probabilities 

at stage one: probability of stopping for futility at stage one when no drug effect exists as well as 

the probability of rejection when the maximum effect size is true at stage one so that 

accountability of group sequential design is ensured from the very first stage throughout. 

Besides, non-binding efficacy bounds are used to account for often-occurred overrunning in real 

trials, and the shape parameters for Wang-Tsiatis upper bounds and Kim-DeMets lower bounds 

are utilized to find optimized group sequential designs minimizing ASN while maintaining error 

and power requirements overall and at stage one. From examples illustrated, the maximum 

sample size determined through optimization turns out to be smaller than prior optimized designs 

using other ways of optimization. 

Keywords:  Group sequential design; Optimization; Asymmetric; Non-binding; Overrunning.  

 

Section 9.1: Introduction  

After publication of computational work by Armitage, McPherson and Rowe (1969), research on 

group sequential tests have been proposed including those of Haybittle (1971), Peto et al., 

(1976), Pocock (1977), O’Brien and Fleming (1979), Harrington and O’Brien (1984) and Wang 

and Tsiatis (1987). “Error spending function” introduced by Lan and DeMets (1983) allows more 

flexibility in group sequential designs when the number of stages is unpredictable at trial start or 

interim analysis is delayed past the planned timing of analyses as a trial proceeds so that 

boundaries need to be adjusted during the course of a trial. Jennison (1987) derived optimal one-

sided group sequential tests concerning the mean of a normal distribution with known variance, 

which are optimal in that expected sample size is minimized under given values of the mean or 

averaged over several values of the mean subject to constraints on the overall type I and type II 

error probabilities. Using backward algorithm, Eales and Jennison (1992) and Eales (1995) 

derived optimal group sequential tests for one-sided and two-sided scenarios, respectively. 
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Backward algorithm, though being one-dimensional, is quite complicated to implement. 

Anderson (2007) made use of shape parameters of overall type I and II error spending functions 

to derive optimized group sequential tests that minimize expected sample size or expected 

squared sample size , which lessens computational load compared with the backward algorithm 

proposed by Eales and Jennison (1992) and Eales (1995). Previous optimized group sequential 

tests are all subject to constraints on overall type I and type II error probabilities only. The 

method we present in this article additionally considers stopping probabilities at the first interim 

analysis when the maximum effect size is true or to stop for futility at stage one when the null 

hypothesis is true. Controlling probability at stage one is essential when the rejection/acceptance 

conclusion can be drawn at stage one, which is unfortunately ignored in many published optimal 

group sequential procedures.  Section 9.2 builds up the basics (i.e., notation and other 

preliminaries). Section 9.3 illustrates how optimization is done. Section 9.4 shows the results for 

optimized asymmetric group sequential tests with respect to desired prior distribution of the 

parameter of interest. Section 9.5 discusses features of proposed optimized designs compared 

with prior optimized designs. For example, the one proposed by Anderson (2007). 

Section 9.2: Notations  

Section 9.2.1: A Motivating Example 

For a trial with survival end point of time to relapse/death/failure, an event such as a 

relapse/death/failure in the randomization phase is defined as meeting one of the criteria for the 

first time after randomization. The objective of the trial is to test the superiority of drug against 

placebo in delaying time to relapse as an example from now on in the randomization phase after 

randomization with efficacy summarized by effect size δ, log hazard ratio divided by its 

variance. Detailed information is summarized in Table 9.1. There is a 50% of chance to have an 
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effect size (standardized log hazard ratio of placebo relative to drug) equal to zero (i.e., under 

null hypothesis). There is a 50% of chance to have an effective drug (i.e., under alternative 

hypothesis); the conditional probability of having the optimal effect size is 20% (standardized 

log hazard ratio equal to 0.755 and relapse rate being 35% and 60% for drug and placebo, 

respectively); the conditional probability of having the expected effect size is 20% (standardized 

log hazard ratio (placebo vs. drug) = 0.617 and relapse rate being 35% and 55% for drug and 

placebo, respectively); and the conditional probability of having minimal effect size of interest is 

50% (standardized log hazard ratio being 0.476 and relapse rate being 35% and 50% for drug 

and placebo, respectively). A design is preferred to incorporate all information regarding the 

prior information on effect δ. Hence an optimized group sequential design for minimizing 

average sample number while subject to a set of constrains needs to be developed. In order to 

ensure power and that the false positive rate to be well-controlled not only in the overall sense 

but also for every single interim analysis, we have to control error probabilities at stage one. 

Since tests in group sequential designs use cumulative data up to the testing stage, controlling 

error probabilities at stage one can guarantee validity of tests at subsequent stages. Inspired by 

design specifications i) and ii) on Page 141 of Liu and Chi (2001) and controlling of probability 

of continuing to later stages when the null hypothesis is true at stage one in Liu et al (2012), our 

optimized group sequential designs are constructed to ensure sufficient power to reject the null 

under  δmax (the maximum effect size) even at stage one and a proper probability for stopping 

for futility at Stage One if null is true; and the overall power is calculated under the minimal 

effect size δmin instead of expected effect size to avoid resulting in an underpowered study 

when true effect size is in between δmin and the expected effect size and the whole trial was 

prospectively powered under the expected effect size. More specifically, the optimized design 
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has the following operational properties: 

1) the power of rejecting the null hypothesis H0 based on data from stage one is at least 1- β, 

say 0.8 or 0.9, if the true effect size is δmax (i.e., 5.15 in our example);  

2) the overall power to reject the null hypothesis  H0 is at least 1- β, if the true effect size is 

δmin (i.e., 3.24 in our example);  

3) the overall type I error rate (one-sided) to reject null  H0 is α, say 0.025;   

4) if H0 is true, the probability of continuing to stage two while not stopping for futility at stage 

one is at most αF, say 0.3 or 0.2; and  

5) non-binding upper efficacy boundaries are employed to account for overrunning data.  

Table 34(Tab. 9.1): Knowledge of relative effectiveness of drug and placebo prior to trial start 

Table 9.1: Knowledge of relative effectiveness of drug and placebo prior to trial start, with ‘logHR’ means log 

of hazard ratio.   

Hypothesis 
(Probability)  
 

Conditional 
probability 

Difference in 
relapse rates 
(Placebo-
drug) 

Relapse  rate # of events 
needed ( 
fixed 
sample 
design) 

 
Effect size= Log(Hazard 
ratio(Placebo/drug))/

√(4/# 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠) 

 

drug placebo 

HA (50%) 20% 25% 
(optimal or 
maximum) 

35% 60% 74 logHR=0.755,  
𝛿𝑜𝑝𝑡=𝛿𝑚𝑎𝑥=5.15 

30% 20% 
(expected) 

35% 55% 111 logHR=0.617, 𝛿𝑒𝑥𝑝=4.21 

50% 15% 
(minimal) 

35% 50% 186 logHR=0.476, 𝛿𝑚𝑖𝑛=3.24 

H0 (50%) 100% 0% NA NA NA logHR=0, Effect size=0 

 

Section 9.2.2 Group Sequential Setting 

Considering a group sequential trial with K planned analyses, let δ be the parameter of interest, 

a measure of placebo-drug difference and assume it can be estimated from trial data. The 

distribution of statistics Z1 , Z2 , …, ZK are derived from cumulative data up to stages from 1, 

2 …, K, and follows a canonical joint form (Chapter 3, Jennison and Turnbull (2000)) of 
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multivariate normal distribution with E(Zi) =δ√Ii and Cov(Zi, Zj)=√Ii/Ij , 1≤ i ≤ j ≤ K and 

{I1, … , IK} are information levels for parameter δ.  For the motivating example described 

above, the standardized log-rank statistic (Chapter 13.2, Jennison and Turnbull) approximately 

has the canonical joint distribution, given information level Ii proportional to the number of 

events at the 𝑖𝑡ℎ interim analysis.  

Section 9.2.3 Non-binding Efficacy Upper Boundaries 

When a group sequential test is proposed t to test the null hypothesis H0 = 0 against HA = δ 

for fixed δ > 0 with overall probability of rejecting null at most α, say 0.025 for one-sided test 

when null hypothesis is true, and overall probability of rejecting null with power of 1- β when 

the alternative hypothesis  is true and the drug is effective, the null hypothesis will be rejected 

at stage i  when the observed statistic Zi ≥ ui  or trial is stopped early  for futility if Zi ≤ li, 

where  li and ui  are, respectively, the stage i lower futility and upper efficacy boundaries. 

During the trial, it takes time to close a site and then re-open it, or initiate new sites. At the time 

of interim analysis, without knowing the trial results and not knowing if the trial should be 

stopped or not, sites normally continue recruiting new subjects or subjects remained event-free 

are kept being treated during the period of conducting interim analysis. If the stopping for trial 

for efficacy or for futility can be claimed by interim data, overrunning data occurred succeeding 

interim cutoff date is inevitably accumulated. Based on the intent-to-treat principle, all 

randomized subjects should be included in the analysis because randomization is supposed to 

balance out impact of baseline characteristics on treatment effect and the final analysis including 

complete data should be conducted and included in the submission document per regulatory 

requirement. This practical issue poses some requirements on choosing a proper group sequential 

design as explained below.  
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Binding upper efficacy bounds namely indicate that upper bounds are derived under the 

consideration of lower bounds while otherwise not being considered for non-binding efficacy 

bounds. If the interim analysis suggests stopping for efficacy at interim, conducting final analysis 

including overrunning data will not inflate type I error rate regardless of whether upper efficacy 

boundaries are binding or not binding with lower bounds because the drug has been shown to be 

effective at interim and one more rejection on the same hypothesis won’t impact type I error rate; 

however, if the interim analysis shows stopping for futility, binding upper efficacy boundaries 

might inflate overall type I error rate because rejecting null at final analysis with futility bound 

crossed earlier on is not considered at all originally. In this case, non-binding efficacy boundaries 

can solve this dilemma, in which lower bounds are ignored when deriving upper efficacy 

boundaries and the null hypothesis may be rejected at final analysis, even though the trial has 

had futility criterion Zi ≤ li met at interim.  

Section 9.2.4 Wang-Tsiatis Family as Upper Boundaries and Kim-Demets Family as 

Lower Boundaries 

Group sequential tests allow stopping the trial and rejecting the null hypothesis at stage i  when 

the observed statistic Zi ≥ ui or stopping and accepting the null and stopping for futility if 

Zi ≤ li. Wang and Tsiatis (1987) proposed a family of boundary function of the form  

ui = (k/K)
ρ−1/2C                                                                                                                               (9.1)                                                                                                                                        

where the shape parameter ρ ∈ (−∞,+∞), k = 1, 2,…, K, and C is a constant. It is known that 

this family gives a Pocock boundary when ρ =
1

2
 and an O’Brien-Fleming boundary when 

ρ = 0. Liu and Anderson (2008a, 2008b) proposed using sequential p-value to obtain inference 

after group sequential test considering the totality of data; and they argued that sequential p-

value with help from the Wang-Tsiatis boundary function, compared with other boundary 
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functions, has special inferential meaning because it connects to the maximum likelihood 

estimate of δ, directed likelihood statistic and score statistic when ρ equals 1, ½ and 0, 

respectively (Section 3.1, Liu and Anderson (2008b)). The special inferential meaning carried by 

Wang-Tsiatis (referred to as ‘WT’) also made us use it as the upper boundary function to search 

for optimized tests, in which Wang-Tsiatis’ shape parameter plays an important role in 

optimization.   

Once upper bounaries are defined, Kim and DeMets (1987) (referred to as ‘KD’) β −spending 

function can be used to find lower boundaries which ensure a certain power to be achieved under 

the alternative hypothesis. For i = 1,2… , K, the type II error spent at stage i is denoted as 

 βi(δmin) = Pδmin {{Zi ≤ li} ∩j=1
i−1 {lj ≤ Zj ≤ uj}}                                                                       (9.2)                                                  

and then summing over stages, β(δmin) = ∑ βj(δmin)
K
j=1  results in the overall type II errror, 

which is the desired probability of crossing lower boundary at any analysis when  δmin is the 

true value for parameter of interest, δ.  

We wish to set lower boundary li  to obtain  β(
Ii

IK
, δmin)= ∑ βj(δmin)

i
j=1 , where on the other 

hand accumulating type II error up to stage i  β(
Ii

IK
, δmin)  is determined by β(

Ii

IK
)γ using 

Kim-DeMets function. That is: the Kim-DeMets function of  β(
Ii

IK
)γ determines the cumulative 

type II error up to Stage i , and then we use Equation 9.2 to back calculate lower bounds 

{l1, … lK}  and information level vectors {I1, … IK} to achieve the required overall power. 

Section 9.2.5: Operational Characteristics of Proposed Optimized Group Sequential 

Design 

Shape parameters ρ and γ mentioned above in Section 9.2.4 play a very important role in 

finding optimized group sequential designs to accommodate Criterion 1-5 in Section 9.2.1, 
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whereby these 5 requirements can mathematically be formulated as follows: 

P0{Z1 ≥ l1⋃ Z2 ≥ u2⋃,⋯ ,⋃ZK ≥ uK} = α                                                                          (9.3)                                                                                                       

Pδmax{Z1 ≥ u1} ≥ 1 − β                                                                                                              (9.4)                                                                                                                                       

Pδmin{Z1 ≤ u1} + Pδmin{l1 ≤ Z1 ≤ u1, Z2 ≥ u2} + ⋯+ Pδmin{l1 ≤ Z1 ≤ u1, … , lK−1 ≤ ZK−1 ≤

uK−1, ZK ≥ uK}=β                                                                                                                         (9.5)                                                                                                                                                    

P0{Z1 ≥ l1} = αF                                                                                                                           (9.6)                                                                                                                                                    

The requirement for overall type I error control with non-binding upper bounds is described in 

Equation 9.3; overall type II error (or power) requirement is depicted in Equation 9.5; first stage 

requirement for power to stop for efficacy when the maximum effect size is true is in Equation 

9.4; and the stop for futility at stage one when there is no effect at all is clearly stated in Equation 

9.6. The way how error rates in stage one are controlled is illustrated in the optimization steps 

below (Section 9.3.2). Appendix 9.1 shows that we can always find information time pint t1 to 

ensure large enough probability of rejecting for efficacy under maximum effect size in our 

proposed algorithm. 

On the contrary, Anderson (2007) and other publications on optimized group sequential designs 

only considered overall type I (Equation 9.3) and type II error rate (Equation 9.5) without 

considering stage one probabilities (Equations 9.4 and 9.6).  Additional considerations on stage 

one error rates in Equations 9.4 and 9.6 further ensure proper design features starting from stage 

one and throughout. Furthermore, the whole trial is powered at the minimal effect size δmin in 

our consideration to be more conservative and to avoid an underpowered study in case the true 

effect size is in between δmin and the expected effect size while the whole trial was erroneously 

powered under the expected effect size.  

Section 9.3: Optimization   
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Section 9.3.1: Objective Function for Optimization  

After finding 3K parameters of a particular group sequential design, {u1, … uK}, {l1, … lK} and 

{I1, … IK}, expected sample number, denoted as Eδ(n), at a particular alternative can be 

computed (P237, Jennison and Turnbull (2000)). From Table 9.1, we know the prior distribution 

of δ is: 50% chance of being 0, 10% chance of being maximum/optimum effect size of 

δmax = 5.15, 15% chance of being at expected effect size of δexp = 4.21 and 25% chance of 

being minimum effect size δmin = 3.24. Our objective function to minimize is average of Eδ(n) 

with respect to prior distribution of δ. That is ASN = ∑ Eδ(n)P(δ)δ∈M , where M is the range of 

δ and we have four options for δ in our motivating example. 

Section 9.3.2: Optimization Strategy And Numerical Calculation 

When the shape parameter for Wang-Tiastis family function, ρ, is given, ASN increases as  αF 

decreases. In order to minimize ASN, null probability of failure to stop at stage one is chosen, 

say αF=0.3. That is: when there is no effect for testing drug, the probability of stopping for 

futility at stage one is 0.7 (i.e., 1 minus 0.3). Figure 9.1 illustrates some points of the proposed 

optimization strategy.  

Step 1: For a given standardized information vector t (with first stage information fraction t1 

together with equally spaced remaining stages), type I error α and a shape parameter ρ for 

Wang-Tiastis function, upper bounds {u1, … , uK} are then obtained.   

Step 2: Given αF , for example 0.3, together with t vector,  α, β and ρ,  Kim-DeMets 

shape parameter  γ is chosen so that overall power under δmin is 1- β and the the probability 

of continuing to stage two is 1-αF. In this step, lower boundaries {l1, …  lK} and information 

vector  {I1, … , IK} are determined. Now γ is a function of α, αF, β and ρ, denoted as 

γ(t1,α, αF,ρ,β). 
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Step 3: Check if Pδmax{Z1 ≥ u1} ≥ 1 − β (Equation 9.4) is met. If not, increase information 

level spent at stage one (i.e., t1) and then redefine t vector with new t1 and equally spaced 

remaining stages, repeat Steps 1 and 2 until Equation 9.4 is met (Appendix 9.1). 

Step 4: Repeat Steps 1-3 for a range of values of ρ, for example ρ1, ρ2, ρ3, ..., and find the ρ∗ 

which gives minimal value of ASN with respect to prior distribution of δ while comforming to 

Criteria 1-5 in Section 9.2.1.  

Step 5: After finding ρ∗, pick up γ(t1,α, αF, ρ∗,β) which is the lower shape parameter to make the 

design meet Criteria 1-5 and based on ρ∗. 

Step 6: For a given set of α, αF, β, t1 and searched pair of optimal shape parameters 

(ρ∗, γ(t1,α, αF,ρ∗,β)), output optimized design with 3K parameters of {l1, …  lK}, {u1, … , uK}, 

{I1, … , IK} and corresponding operational characteristics based on chosen optimal shape 

parameters.   

 

Figure 25(Fig. 9.1): Graphic illustration 

Figure 9.1: Graphic illustration of optimization using shape parameter 𝛒 and 𝛄. 

 

 Seen from Figure 9.1 and optimization steps, upper bounds can be determined by overall type I 

error, standard information vector t and a WT shape parameter ρ. Subsequently, upper bounds 
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together with overall type II error and stage one futility error αF to make sure probability of 

continuing into stage two under null being 1-αF, lower KD shape parameter γ can be searched 

to fullfil given requirements. Now a specific group sequential design is defined, and probability 

of rejection at stage one under maximum effect size is then checked to make sure this probability 

is also 1- β (Equation 9.4). If not, standard information vector can be re-defined to have a larger 

t1(Appendix 9.1) along with equally spaced subsequent stages and then re-do all previous steps 

to set corresponding lower shape parameter γ together with upper/ lower bounds. Finally, in the 

space of shape parameter of ρ, a spectrum of group sequential designs can be defined so that ρ∗  

that minimizes ASN with regards to the  prior distribution of effect size can be explicitly sought 

out. In the end, we have optimal upper shape parameter ρ∗, corresponding γ(t1,α,αF,ρ∗,β) and all 

other operation characterisitics for this optimal design. In all our examples below, we start with 

t1 = 0.5,  which already meets the criterion of stopping for efficacy under maximum effect size 

with probability greater than 1 − β (Equation 9.4). Therefore, no further increase of t1 is 

needed. 

One question that still remains unclear is: how would we iteratively find the information vector 

{I1, … , IK} in Step 2? The trick is to set the a standardized information vector {t1, … , tK} with 

tK=1 first (for example: K=10, we have t={0.5, 0.55,0.61,0.67,0.78,0.83, 0.89,0.94,1}, whereby 

first stage use half of the maximum informaiton and subsequential stages are equally spaced); 

then use this t vector  to find non-binding WT upper bounds {u1, … , uK}  by substiting {
k

K
} 

in Equation 9.1 by t vector; then use it to to find error spent by 

β(
Ii

IK
, δmin)= β(ti, δmin)= β(ti)

γ; then utilizing Equation 9.2 together with known upper bounds, 

we can get lower bound vector {l1, … lK}; then we can search for a coefficient R(K, α, β) 

(Chapter 2, Jennison and Turnbull, 2000), which is the maximum information IK divided by 
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information needed for fixed sample desgin Ifix and hence get {I1, … , IK}. This is 

because: R(K, α, β) =IK/Ifix , and {
I1

IK
,
I2

IK
, … ,

IK

IK
}={t1, … , tK}, so 

{I1, … , IK}= R(K, α, β)*{t1, … , tK}. When upper, lower bounds and {t1, … , tK} are given, 

{I1, … , IK} is obtained by searching for R(K, α, β) to ensure power while also letting lK = uK at 

final stage K to ensure only either rejecting or accepting null hypothesis at the final stage.  

Section 4: Results 

Based on the motivating example, we transform the trial objective of proving superiority of study 

drug relative to placebo to testing H0 = 0 against HA = δmin = 3.24. The required sample size 

for fixed design with α =0.025(one-sided) and β=0.1 is to accumulate 186 events. After 

obtaining the optimal shape parameters of ρ for Wang- Tsiatis upper bounds and γ for Kim-

DeMets lower bounds satisfying all of 5 criteria for error rates overall and at stage one while 

minimizing ASN with respect to prior beliefs of  δ (see Section 9.2.1 and 9.2.5 and Section 

9.3), 3K parameters of upper, lower bounds and information vector can then be derived for this 

optimized group sequential design using optimal ρ and γ.   

Group sequential tests allow stopping  for efficacy and futility as early as stage one and then 

claim conclusion for hypothesis testing if bounds crossed at interim or otherwise continue up to 

the final stage. However, small numbers of patients accumulated at interims leave much to 

chance and greater uncertainty about the inferences. To avoid this not-large-enough sample size 

at interims causing more uncertainty issue, we coin our example with first interim occurred at the 

time when at least half of maximum information is used (i.e., t1= I1/IK = 0.5). Furthermore, for 

simplicity, the remaining stages are equally spaced. For example, for K=10, we use standard 

information vector t0={0.5, 0.55,0.61,0.67,0.78,0.83, 0.89,0.94,1} as the start point. t1 can be 

increased to  t1
∗  to satisfy the power requirement of rejecting null under maximum effect size 
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(Equation 9.4), whereby the existence of  t1
∗  is proved in Appendix 9.1.  

After obtaining 3K parameters of {l1, …  lK}, {u1, … , uK}, {I1, … , IK} for the optimized design 

sought-out by  proposed algorithm (Figure 9.1), probability of stopping at stage 𝑖 (i.e., 

Pr𝜃(T = i)) can be calculated using sub-density at stage 𝑖 (Pages 171-174, Jennison and 

Turnbull, 2000) and subsequently expected final information level, defined as  𝐸𝜃{𝐼} =

∑ Ii ∗ Pr𝜃 (T = i)
𝐾
𝑖=1  summing over different stages can be obtained to evaluate efficiency of the 

proposed optimized design, where 𝜃 is at the scale of 𝛿 in a range that cover 𝛿𝑚𝑖𝑛and 𝛿𝑚𝑎𝑥.    

In Figure 9.2, 𝐸𝜃{𝐼}/𝐼𝑓𝑖𝑥, expected final information level divided by Ifix given θ (with x-axis 

ranging from -0.5*δmin to 2*δmin) is plotted against ratio of θ to δmin for αF = 0.2 (solid 

line) and αF =0.3 (dotted line) and for K=2,…,10, respectively. For an optimized group 

sequential design with K=2 and the probability of continuing to Stage Two under null being 0.2, 

when the parameter θ is the same as the minmial effect size (i.e. θ/δmin=1), the expected final 

information level relative to that of fixed-sample design for the proposed optimized design is 

0.786 (Figure 9.2a), which also means the expected number of events is 0.786*Nfix=0.786*186; 

and similarly for αF=0.3, the expected information 𝐸𝜃{𝐼}/𝐼𝑓𝑖𝑥=0.775. There is little interest for 

investigating θ  less than δmin, as we are not pursuing any investigational drug less than 

minimal effect size. Thus for  θ  ranging from δmin to 1.5*δmin is much of our interests.  

When we look at the effect size which is 1.5 times the minimal requirement (i.e., θ/δmin=1.5), 

the expected final information level relative to that of fixed-sample design is 0.632 and 0.606 for 

αF=0.2 and αF=0.3, respectively (Figure 9.2a). This shows that designs with the same K, bigger 

effect size saves more resources; and for a given effect size, bigger αF spent at first stage leads 

to smaller expected final information level.  

One intuition is that designs with more interim analyses could result in smaller expected final 
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information level 𝐸𝜃{𝐼}. Surprisingly, we found this perception is only partially true. Table 9.2 

lists 𝐸𝜃{𝐼}/𝐼𝑓𝑖𝑥for effect size from as low as δmin up to 1.5 times of minimal effect size by 

increment of 0.05 in the ratio of θ/δmin. Let’s take the extreme cases K=2 vs. K=10 in Table 2 

to illustrate our points. Comparing K = 2 with K = 10 for αF = 0.2, optimized group sequential 

tests with K = 10 consistently have lower expected final information level for θ/δmin ranging 

from 1 to 1.35 (Table 9.2) than those of K = 2; however, the trend is reversed for ratios ranging 

from 1.40 to 2.0 (Note that data for ratios between 1.50 and 2.0 are not shown in Table 9.2). The 

same phenomenon is also observed for  αF = 0.3. All in all, when ratio θ/δmin is 1.50 and up, 

K = 10 has bigger expected final information level as compared with K = 2 while being smaller 

between ratios of 1.0 and 1.45 (shaded cells in Table 9.2). This actually shows that for a certain 

αF, increasing the number of analyses can not save resources when the effect size is too big. 

Additionaly, the saving in sample size is very limited when K is greater or equal to 3 irrespective 

of effect size.   

Table 35(Tab. 9.2): Efficiencies for optimal asymmetric optimal group designs 

Table 9.2: 𝑬𝜽{𝑰}/𝑰𝒇𝒊𝒙 for 𝛂𝐅 =0.2 or 0.3 when 𝛉/𝛅𝐦𝐢𝐧 ranging from 1.0 to 1.5 with 

increments of 0.05 
θ/δmin = 1.0 1.05 1.1 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 

αF= 

0.2 

 

K=2 0.786 0.766 0.745 0.726 0.707 0.690 0.675 0.662 0.650 0.640 0.632 

K=3 0.754 0.737 0.720 0.704 0.690 0.677 0.666 0.656 0.648 0.641 0.635 

K=4 0.745 0.729 0.713 0.699 0.686 0.674 0.664 0.656 0.648 0.642 0.637 

K=5 0.743 0.728 0.714 0.701 0.690 0.680 0.671 0.664 0.658 0.653 0.650 

K=6 0.738 0.723 0.709 0.696 0.684 0.674 0.665 0.657 0.651 0.646 0.642 

K=7 0.736 0.722 0.708 0.695 0.684 0.674 0.665 0.657 0.651 0.646 0.642 

K=8 0.736 0.722 0.709 0.697 0.686 0.677 0.669 0.662 0.657 0.653 0.649 

K=9 0.740 0.727 0.714 0.703 0.693 0.685 0.677 0.671 0.666 0.663 0.660 

K=10 0.734 0.719 0.706 0.694 0.683 0.673 0.665 0.658 0.652 0.647 0.643 

αF= 

0.3 

 

K=2 0.775 0.753 0.731 0.710 0.690 0.672 0.655 0.640 0.627 0.615 0.606 

K=3 0.739 0.720 0.701 0.684 0.668 0.654 0.641 0.629 0.620 0.611 0.605 

K=4 0.728 0.711 0.694 0.678 0.663 0.650 0.639 0.629 0.620 0.613 0.608 

K=5 0.723 0.707 0.690 0.675 0.661 0.649 0.638 0.629 0.622 0.615 0.610 

K=6 0.721 0.704 0.688 0.674 0.660 0.649 0.638 0.629 0.622 0.616 0.611 

K=7 0.719 0.703 0.687 0.672 0.659 0.647 0.637 0.628 0.621 0.615 0.610 

K=8 0.718 0.702 0.686 0.672 0.659 0.647 0.637 0.628 0.621 0.615 0.610 
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K=9 0.717 0.701 0.686 0.671 0.658 0.647 0.637 0.629 0.621 0.615 0.611 

K=10 0.716 0.700 0.685 0.671 0.658 0.647 0.637 0.629 0.622 0.616 0.616 

 

Back to Figure 9.2, which plots all scenarios on expected final information level relative to 

information of fixed-sample design for K = 2 up to 10 and αF =0.2 or 0.3, except for θ/δmin 

ranging from -0.5 to 0.7 in K = 2, the remainder of the design scenarios are uniformly most cost-

effective (i.e., having smaller expected final information level) for αF = 0.3 than those of αF = 

0.2. Looking at the shape of the curve in Figure 9.2 a-i, for each αF, shapes of K ≥ 3 are all 

similar to each other and different from that of K = 2. So there are cost savings in terms of 

𝐸𝜃{𝐼} from K = 2 to K = 3 for a given αF, but there is no further savings in having a larger K 

when  

K ≥ 3. The range of 𝐸𝜃{𝐼}/𝐼𝑓𝑖𝑥 for αF = 0.2 is all smaller than that of αF = 0.3 showing a 

smaller variability in expected final information level when αF = 0.2. Irrespective of the value 

of αF and K, maximum of 𝐸𝜃{𝐼}/𝐼𝑓𝑖𝑥 occurs when θ/δmin = 0.6. Except for K = 2, all 

maximum of 𝐸𝜃{𝐼}/𝐼𝑓𝑖𝑥  is a little smaller for αF = 0.3 than that of αF = 0.2. Our examples 

confirmed that it is worthwhile to have K = 3 in order to reduce expected sample size but it 

seems not worthwhile to further increase it to K = 4, and similar phenomenon was also noticed in 

Anderson (2007). 
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Figure 26(Fig. 9.2): Efficiencies of optimized asymmetric group sequential designs 

Figure 9.2: 𝐄𝛉{𝐈}/𝐈𝐟𝐢𝐱 vs. 𝛉/𝛅𝐦𝐢𝐧 for optimized asymmetric group sequential designs 

minimizing ASN when 𝛂 =0.025(one-sided), 𝛂𝐅 = 𝟎. 𝟐(solid line), 0.3(dotted line), 𝛃=0.1, 

K=2,3,4,5,6,7,8,9,10, and 𝐈𝟏/𝐈𝐊 = 𝟎. 𝟓 and the remaining stages equally spaced. Note: a: 

K=2, b: K=3, c: K=4, d: K=5, e: K=6, f: K=7, g: K=8, h: K=9, i: K=10.  

 

Operating characteristics for scenarios in Figure 9.2 and Table 9.2 are depicted in detail in 

Tables 9.3 and 9.4 accompanying with 3K parameters of lower boundaries, upper boundaries and 

information vector, and probability of rejecting null under maximum effect size at Stage One to  

control probability of continuing to stage two when null hypothesis is true (αF= 0.3, 0.2).  As 

αF= 0.3, a more lenient probability of continuing to stage two under the null, was advocated by 
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Liu, et, al (2012), we start our discussion with αF= 0.3 (Tables 9.3). With continuing probability 

at stage one when null is true controlled at 0.3 level and overall power equal to 0.9, maximum 

information relative to fixed-sample design, Imax/Ifix , is 1.135, 1.153, 1.174 and 1.183 for  

K = 2,3,4,5, respectively in our method while Anderson (2007) had 1.106, 1.180, 1.218, and 

1.237. Our method only has a slightly bigger Imax/Ifix  than that of Anderson (2007) at K = 2 

while the remaining Ks being smaller than Anderson (2007), showing advantage of our 

optimized group sequential tests in terms of reducing maximum information level with respect to 

prior beliefs of effect size. The real problem for Anderson (2007) is their lower information level 

at stage one, only with 0.553, 0.393, 0.305 and 0.247 for I1/Ifix  for K = 2, 3, 4 and 5, 

respectively, while we have at 0.567 for K = 2 and this value increases to 0.595 when K = 10. 

Decisions made only using 0.247 percent of total information for fixed sample design will leave 

any decision on this in doubt, especially significance in efficacy, more to chance rather than real 

drug effect; and this shortcoming for Anderson (2007) is the primary propulsion for us to 

develop a better optimized design here. The maximum information, even not fixed in advance, 

turns out to be well-controlled using our searching method for optimal shapes for ρ and γ 

(Figure 9.1). For example, it is only 1.19 even for K = 10 and power = 0.9 (Table 9.3). 

Due to implementing of non-binding upper boundary, overall type I error, as expected, is a little 

less than pre-specified 0.025 level irrespective of power = 0.8 or 0.9 and αF = 0.3 or 0.2 (Tables 

9.3 and 9.4). Comparing with αF= 0.3, αF= 0.2 has bigger Imax for any combination of K and 

power (Imax/Ifix =1.204, 1.264 for K = 2 and 10, respectively). The first stage lower bound, l1 

is higher in αF = 0.2 than that of αF = 0.3 to limit the chance of going to stage two under null 

(l1= 0.842 for αF = 0.2 and l1= 0.524 for αF= 0.3). As expected, the maximum information is 

lower in power of 0.8 than that of power = 0.9. One surprising finding in Tables 9.3 and 9.4 is 
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for power equal to 0.8: all Imax/Ifix  are less than 1 for all combinations of K and αF.    

Table 36(Tab. 9.3): Optimized asymmetric groups sequential designs minimizing ASN 

Table 9.3: Optimized asymmetric groups sequential designs minimizing ASN with 𝛂 =
𝟎. 𝟎𝟐𝟓(one-sided), 𝛃 = 𝟎. 𝟏, 𝐨𝐫  𝟎. 𝟐, k=2,3,4,5,6,7,8,9, 10, powered at  𝛅𝐦𝐢𝐧=3.24 and 

𝐭𝟏=0.5 and the remaining stages are equally spaced. 
 𝛽 = 0.1 (Power=0.9)  𝛽 = 0.2 (Power=0.8) 

K=2 𝜌 = 0.5047, 𝛾 = 1.862, 𝛼𝐹=0.3, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.956 and 𝛿𝑀𝑎𝑥=5.147 

 𝜌 =  0.4516, 𝛾 = 1.805, 𝛼𝐹=0.3, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.869 and 𝛿𝑚𝑎𝑥=5.147 

 𝛼𝑖 1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥   𝛼𝑖  1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥  

1 0.0148 0.606 0.524 2.175 0.567  0.0133 0.454 0.524 2.217 0.420 

2 0.0244 0.900 2.182 2.182 1.135  0.0243 0.800 2.144 2.144 0.841 

K=3 𝜌 = 0.4391, 𝛾 = 1.945, 𝛼𝐹=0.3, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.947 and 𝛿𝑀𝑎𝑥=5.147 

 𝜌 =  0.4116, 𝛾 = 1.889, 𝛼𝐹=0.3, 
P𝛿𝑀𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.854 and 𝛿𝑚𝑎𝑥=5.147 

 𝛼𝑖 1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥   𝛼𝑖  1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥  

1 0.0107 0.566 0.524 2.301 0.579  0.0100 0.423 0.524 2.327 0.432 

2 0.0183 0.799 1.359 2.245 0.868  0.0178 0.665 1.338 2.245 0.648 

3 0.0238 0.900 2.206 2.206 1.158  0.0237 0.800 2.188 2.188 0.864 

K=4 𝜌 = 0.4346, 𝛾 = 2.003, 𝛼𝐹=0.3, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.945 and 𝛿𝑀𝑎𝑥=5.147 

 𝜌 =  0.3959, 𝛾 =  1.926, 𝛼𝐹=0.3, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.846 and 𝛿𝑚𝑎𝑥=5.147 

 𝛼𝑖 1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥   𝛼𝑖  1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥  

1 0.0095 0.556 0.524 2.346 0.587  0.0086 0.406 0.524 2.382 0.437 

2 0.0154 0.737 1.063 2.302 0.783  0.0145 0.591 1.046 2.312 0.583 

3 0.0203 0.847 1.613 2.268 0.979  0.0198 0.724 1.585 2.259 0.729 

4 0.0236 0.900 2.242 2.242 1.174  0.0236 0.800 2.216 2.216 0.874 

K=5 𝜌 = 0.4343, 𝛾 = 2.036, 𝛼𝐹=0.3, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.944 and 𝛿𝑚𝑎𝑥=5.147 

 𝜌 =  0.3910, 𝛾 =  1.949, 𝛼𝐹=0.3, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.842 and 𝛿𝑚𝑎𝑥=5.147 

 𝛼𝑖 1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥   𝛼𝑖  1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥  

1 0.0088 0.549 0.524 2.372 0.592  0.0079 0.397 0.524 2.414 0.440 

2 0.0137 0.699 0.905 2.338 0.740  0.0127 0.547 0.891 2.356 0.550 

3 0.0178 0.801 1.325 2.310 0.888  0.0170 0.664 1.300 2.309 0.660 

4 0.0213 0.866 1.746 2.286 1.036  0.0208 0.750 1.713 2.271 0.770 

5 0.0236 0.900 2.267 2.267 1.183  0.0235 0.800 2.238 2.238 0.880 

K=6 𝜌 =  0.4247, 𝛾 =  2.049, 𝛼𝐹=0.3, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.941 and 𝛿𝑚𝑎𝑥=5.147 

 𝜌 =  0.3860, 𝛾 =  1.962, 𝛼𝐹=0.3, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.837and 𝛿𝑚𝑎𝑥=5.147 

 𝛼𝑖 1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥   𝛼𝑖  1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥  

1 0.0082 0.539 0.524 2.400 0.594  0.0074 0.389 0.524 2.438 0.442 

2 0.0123 0.670 0.805 2.367 0.712  0.0115 0.517 0.795 2.388 0.530 

3 0.0159 0.763 1.144 2.340 0.831  0.0151 0.620 1.124 2.346 0.619 

4 0.0191 0.830 1.478 2.317 0.950  0.0185 0.702 1.452 2.311 0.707 

5 0.0217 0.876 1.824 2.296 1.069  0.0214 0.763 1.793 2.280 0.796 

6 0.0235 0.900 2.278 2.278 1.187  0.0234 0.800 2.253 2.253 0.884 

K=7 𝜌 = 0.3896, 𝛾 =  2.040, 𝛼𝐹=0.3, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.941 and 𝛿𝑚𝑎𝑥=5.147 

 𝜌 =  0.3828, 𝛾 =  1.971, 𝛼𝐹=0.3, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.834and 𝛿𝑚𝑎𝑥=5.147 

 𝛼𝑖 1 − 𝛽𝑖  𝑙𝑖  𝑏𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥   𝛼𝑖  1 − 𝛽𝑖  𝑙𝑖  𝑏𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥  

1 0.0072 0.519 0.524 2.449 0.592  0.0070 0.384 0.524 2.456 0.443 

2 0.0107 0.638 0.734 2.408 0.691  0.0106 0.496 0.729 2.412 0.517 

3 0.0139 0.727 1.015 2.372 0.790  0.0138 0.587 1.004 2.374 0.591 

4 0.0168 0.796 1.295 2.342 0.888  0.0167 0.663 1.278 2.342 0.665 

5 0.0195 0.846 1.573 2.315 0.987  0.0194 0.725 1.554 2.313 0.739 

6 0.0218 0.881 1.867 2.290 1.086  0.0218 0.772 1.850 2.287 0.813 

7 0.0234 0.900 2.269 2.269 1.185  0.0234 0.800 2.264 2.264 0.887 

K=8 𝜌 = 0.3856, 𝛾 =  2.048, 𝛼𝐹=0.3,  𝜌 =  0.3800, 𝛾 =  1.9773, 𝛼𝐹=0.3, 
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P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.933 and 𝛿𝑚𝑎𝑥=5.147 P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.831 and 𝛿𝑚𝑎𝑥=5.147 

 𝛼𝑖 1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥   𝛼𝑖  1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥  

1 0.0069 0.513 0.524 2.465 0.593  0.0067 0.379 0.524 2.470 0.444 

2 0.0100 0.621 0.685 2.427 0.678  0.0099 0.479 0.681 2.431 0.508 

3 0.0129 0.703 0.925 2.395 0.763  0.0127 0.561 0.915 2.397 0.571 

4 0.0155 0.768 1.167 2.366 0.848  0.0154 0.632 1.152 2.367 0.635 

5 0.0179 0.819 1.405 2.341 0.933  0.0178 0.691 1.388 2.340 0.698 

6 0.0202 0.858 1.647 2.317 1.017  0.0201 0.740 1.628 2.316 0.761 

7 0.0221 0.885 1.909 2.296 1.102  0.0221 0.777 1.892 2.294 0.825 

8 0.0234 0.900 2.277 2.277 1.187  0.0234 0.800 2.273 2.273 0.888 

K=9 𝜌 = 0.3833, 𝛾 =  2.054, 𝛼𝐹=0.3, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.932 and 𝛿𝑚𝑎𝑥=5.147 

 𝜌 =  0.3768, 𝛾 =  1.9816, 𝛼𝐹=0.3, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.829 and 𝛿𝑚𝑎𝑥=5.147 

 𝛼𝑖 1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥   𝛼𝑖  1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥  

1 0.0066 0.509 0.524 2.477 0.594  0.0065 0.374 0.524 2.483 0.445 

2 0.0095 0.608 0.648 2.443 0.669  0.0094 0.465 0.646 2.448 0.500 

3 0.0121 0.683 0.856 2.413 0.743  0.0119 0.541 0.848 2.416 0.556 

4 0.0144 0.745 1.069 2.386 0.817  0.0143 0.606 1.056 2.388 0.612 

5 0.0167 0.795 1.279 2.362 0.892  0.0165 0.662 1.263 2.362 0.667 

6 0.0188 0.835 1.489 2.340 0.966  0.0187 0.711 1.470 2.339 0.723 

7 0.0207 0.866 1.704 2.320 1.040  0.0206 0.750 1.685 2.318 0.778 

8 0.0223 0.888 1.941 2.302 1.114  0.0223 0.781 1.925 2.298 0.834 

9 0.0233 0.900 2.284 2.284 1.189  0.0234 0.800 2.280 2.280 0.890 

K=10 𝜌 = 0.3814, 𝛾 =  2.059, 𝛼𝐹=0.3, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.931 and 𝛿𝑚𝑎𝑥=5.147 

 𝜌 =  0.3741, 𝛾 =  1.9849, 𝛼𝐹=0.3, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)=  0.826 and 𝛿𝑚𝑎𝑥=5.147 

 𝛼𝑖 1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥   𝛼𝑖  1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥  

1 0.0064 0.506 0.524 2.487 0.595  0.0063 0.371 0.524 2.494 0.445 

2 0.0091 0.597 0.620 2.456 0.661  0.0089 0.454 0.618 2.462 0.495 

3 0.0114 0.667 0.802 2.428 0.727  0.0113 0.524 0.795 2.432 0.544 

4 0.0136 0.725 0.992 2.404 0.793  0.0134 0.584 0.980 2.406 0.594 

5 0.0156 0.774 1.180 2.381 0.860  0.0155 0.638 1.164 2.382 0.643 

6 0.0176 0.814 1.366 2.360 0.926  0.0174 0.685 1.348 2.360 0.693 

7 0.0194 0.846 1.554 2.341 0.992  0.0193 0.725 1.535 2.339 0.742 

8 0.0210 0.871 1.749 2.323 1.058  0.0210 0.758 1.730 2.320 0.792 

9 0.0224 0.890 1.968 2.306 1.124  0.0224 0.784 1.951 2.303 0.841 

10 0.0233 0.900 2.291 2.291 1.190  0.0234 0.800 2.286 2.286 0.890 

 

 
Table 37(Tab. 9.4): Optimized asymmetric groups sequential designs minimizing ASN 

Table 9.4: Optimized asymmetric groups sequential designs minimizing ASN with 𝜶 =
𝟎. 𝟎𝟐𝟓(one-sided), 𝜷 = 𝟎. 𝟏, 𝒐𝒓  𝟎. 𝟐, k=2,3,4,5,6,7,8,9, 10, powered at  𝜹𝒎𝒊𝒏=3.24 and 

𝒕𝟏=0.5 and the remaining stages are equally spaced. 
 𝛽 = 0.1 (Power=0.9)  𝛽 = 0.2 (Power=0.8) 

K=2 𝜌 = 0.5546, 𝛾 = 1.091, 𝛼𝐹=0.2, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)=0.968 and 𝛿𝑚𝑎𝑥=5.147 

 𝜌 =  0.4881 , 𝛾 = 1.099, 𝛼𝐹=0.2, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.893 and 𝛿𝑚𝑎𝑥= 

 𝛼𝑖 1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥   𝛼𝑖  1 − 𝛽𝑖  𝑎𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥  

1 0.0162 0.647 0.842 2.140 0.602  0.0144 0.490 0.842 2.187 0.444 

2 0.0238 0.900 2.222 2.222 1.204  0.0235 0.800 2.169 2.169 0.889 

K=3 𝜌 =,0.4909 𝛾 = 1.1752, 𝛼𝐹=0.2, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)=0.963 and 𝛿𝑚𝑎𝑥=5.147 

 𝜌 =  0.4709, 𝛾 = 1.1953, 𝛼𝐹=0.2, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.888  and 𝛿𝑚𝑎𝑥=5.147 

 𝛼𝑖 1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥   𝛼𝑖  1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥  

1 0.0120 0.613 0.842 2.257 0.616  0.0115 0.470 0.842 2.274 0.460 

2 0.0190 0.822 1.494 2.249 0.923  0.0187 0.694 1.481 2.247 0.689 

3 0.0231 0.900 2.243 2.243 1.231  0.0230 0.800 2.228 2.228 0.919 
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K=4 𝜌 =  0.4627, 𝛾 = 1.211, 𝛼𝐹=0.2, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.959 and 𝛿𝑚𝑎𝑥=5.147 

 𝜌 =  0.4377 , 𝛾 =  1.219, 𝛼𝐹1=0.2, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.877  and 𝛿𝑚𝑎𝑥=5.147 

 𝛼𝑖 1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥   𝛼𝑖  1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥  

1 0.0102 0.593 0.842 2.320 0.621  0.0096 0.446 0.842 2.343 0.463 

2 0.0159 0.766 1.230 2.296 0.828  0.0154 0.625 1.223 2.301 0.618 

3 0.0203 0.860 1.697 2.277 1.035  0.0199 0.742 1.678 2.269 0.772 

4 0.0228 0.900 2.261 2.261 1.242  0.0227 0.800 2.244 2.244 0.927 

K=5 𝜌 = 0.5835, 𝛾 = 1.3193, 𝛼𝐹=0.2, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.969 and 𝛿𝑚𝑎𝑥=5.147 

 𝜌 =   0.4553, 𝛾 =  1.249 , 𝛼𝐹=0.2, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.879 and 𝛿𝑚𝑎𝑥=5.147 

 𝛼𝑖 1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥   𝛼𝑖  1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥  

1 0.0122 0.634 0.842 2.250 0.638  0.0093 0.447 0.842 2.353 0.468 

2 0.0169 0.756 1.115 2.293 0.798  0.0141 0.590 1.093 2.330 0.585 

3 0.0201 0.833 1.480 2.328 0.958  0.0180 0.694 1.432 2.311 0.702 

4 0.0223 0.878 1.871 2.358 1.117  0.0210 0.764 1.795 2.295 0.819 

5 0.0234 0.900 2.384 2.384 1.277  0.0228 0.800 2.281 2.281 0.936 

K=6 𝜌 = 0.4660 , 𝛾 = 1.2579 , 𝛼𝐹=0.2, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.957 and 𝛿𝑚𝑎𝑥=5.147 

 𝜌 =   0.4278, 𝛾 = 1.249 , 𝛼𝐹=0.2, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.870 and 𝛿𝑚𝑎𝑥=5.147 

 𝛼𝑖 1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥   𝛼𝑖  1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥  

1 0.0091 0.583 0.842 2.362 0.629  0.0083 0.429 0.842 2.397 0.468 

2 0.0133 0.706 1.011 2.348 0.754  0.0124 0.555 1.008 2.366 0.562 

3 0.0167 0.791 1.287 2.336 0.880  0.0159 0.652 1.275 2.340 0.656 

4 0.0194 0.848 1.574 2.325 1.006  0.0189 0.724 1.552 2.317 0.749 

5 0.0215 0.883 1.884 2.316 1.132  0.0212 0.774 1.855 2.298 0.843 

6 0.0228 0.900 2.307 2.307 1.257  0.0226 0.800 2.280 2.280 0.937 

K=7 𝜌 = 0.4609, 𝛾 = 1.267 , 𝛼𝐹=0.2, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.956 and 𝛿𝑚𝑎𝑥=5.147 

 𝜌 =   0.4237, 𝛾 =  1.256 , 𝛼𝐹=0.2, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.867 band 𝛿𝑚𝑎𝑥=5.147 

 𝛼𝑖 1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥   𝛼𝑖  1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥  

1 0.0086 0.577 0.842 2.381 0.630  0.0079 0.423 0.842 2.416 0.469 

2 0.0123 0.687 0.954 2.367 0.735  0.0115 0.534 0.953 2.387 0.548 

3 0.0154 0.765 1.180 2.355 0.840  0.0146 0.621 1.171 2.363 0.626 

4 0.0180 0.822 1.417 2.344 0.945  0.0173 0.690 1.400 2.342 0.704 

5 0.0201 0.862 1.663 2.334 1.050  0.0196 0.743 1.638 2.323 0.782 

6 0.0218 0.887 1.934 2.326 1.155  0.0214 0.780 1.903 2.306 0.861 

7 0.0228 0.900 2.318 2.318 1.260  0.0226 0.800 2.291 2.291 0.939 

K=8 𝜌 = 0.5405, 𝛾 =  1.323 , 𝛼𝐹=0.2, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.963 and 𝛿𝑚𝑎𝑥=5.147 

 𝜌 =  0.6103, 𝛾 = 1.359 , 𝛼𝐹=0.2, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.905   and 𝛿𝑚𝑎𝑥=5.147 

 𝛼𝑖 1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥   𝛼𝑖  1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥  

1 0.0100 0.605 0.842 2.326 0.639  0.0115 0.495 0.842 2.274 0.486 

2 0.0135 0.696 0.922 2.339 0.730  0.0151 0.580 0.931 2.308 0.555 

3 0.0162 0.761 1.117 2.350 0.822  0.0176 0.643 1.125 2.338 0.625 

4 0.0184 0.810 1.325 2.360 0.913  0.0196 0.693 1.333 2.365 0.694 

5 0.0201 0.846 1.539 2.369 1.004  0.0211 0.733 1.550 2.390 0.764 

6 0.0215 0.873 1.765 2.377 1.095  0.0222 0.764 1.783 2.414 0.833 

7 0.0226 0.891 2.020 2.385 1.187  0.0231 0.786 2.051 2.435 0.902 

8 0.0232 0.900 2.392 2.392 1.278  0.0236 0.800 2.455 2.455 0.971 

K=9 𝜌 =  0.6386, 𝛾 = 1.4012 , 𝛼𝐹=0.2, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.971 and 𝛿𝑚𝑎𝑥=5.147 

 𝜌 =  0.4442 , 𝛾 =  1.276 , 𝛼𝐹=0.2, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.869 and 𝛿𝑚𝑎𝑥=5.147 

 𝛼𝑖 1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥   𝛼𝑖  1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥  

1 0.0118 0.638 0.842 2.264 0.651  0.0078 0.425 0.842 2.418 0.473 

2 0.0152 0.713 0.902 2.301 0.733  0.0109 0.514 0.887 2.402 0.532 

3 0.0175 0.766 1.075 2.335 0.814  0.0134 0.585 1.043 2.388 0.591 

4 0.0193 0.806 1.263 2.366 0.896  0.0157 0.644 1.213 2.375 0.650 

5 0.0207 0.838 1.456 2.395 0.977  0.0176 0.693 1.388 2.364 0.709 

6 0.0219 0.862 1.658 2.422 1.058  0.0194 0.733 1.568 2.353 0.768 

7 0.0227 0.880 1.874 2.447 1.140  0.0208 0.765 1.761 2.343 0.827 
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8 0.0233 0.893 2.123 2.470 1.221  0.0220 0.787 1.984 2.334 0.886 

9 0.0237 0.900 2.492 2.492 1.303  0.0227 0.800 2.326 2.326 0.945 

K=10 𝜌 =  0.4456, 𝛾 = 1.278 , 𝛼𝐹=0.2, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.952 and 𝛿𝑚𝑎𝑥=5.147 

 𝜌 =   0.4305, 𝛾 =  1.274 , 𝛼𝐹=0.2, 
P𝛿𝑚𝑎𝑥(𝑍1 ≥ 𝑏1)= 0.864 and 𝛿𝑚𝑎𝑥=5.147 

 𝛼𝑖 1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥   𝛼𝑖  1 − 𝛽𝑖  𝑙𝑖  𝑢𝑖  𝐼𝑖/𝐼𝑓𝑖𝑥  

1 0.0077 0.561 0.842 2.424 0.632  0.0074 0.417 0.842 2.439 0.472 

2 0.0105 0.646 0.859 2.411 0.702  0.0102 0.499 0.863 2.421 0.525 

3 0.0129 0.710 0.998 2.398 0.772  0.0125 0.566 0.997 2.405 0.577 

4 0.0149 0.762 1.152 2.387 0.843  0.0146 0.622 1.147 2.390 0.630 

5 0.0168 0.803 1.310 2.376 0.913  0.0165 0.670 1.300 2.377 0.682 

6 0.0185 0.836 1.472 2.367 0.983  0.0182 0.711 1.458 2.365 0.735 

7 0.0199 0.862 1.638 2.358 1.053  0.0197 0.744 1.621 2.354 0.787 

8 0.0211 0.880 1.816 2.350 1.123  0.0210 0.770 1.797 2.343 0.839 

9 0.0221 0.893 2.022 2.342 1.194  0.0220 0.789 2.002 2.333 0.892 

10 0.0227 0.900 2.335 2.335 1.264  0.0226 0.800 2.324 2.324 0.944 

 

Section 9.5: Discussion 

Maximum sample size in our method is not fixed as Barber and Jennison (2002), Jennison 

(1987), Eales and Jennison (1992) and Jennison and Turnbull (2004) have done. And the 

maximum sample size is determined by optimization with help of shape parameters after 

implementing the iterative algorithm in Figure 9.1, which turns out to be better than Anderson 

(2007) (Tables 9.3 and 9.4) in terms of reducing resources in addition to more constraints on 

stage one probabilities. Wang and Tsiatis (1987) and Kim and DeMets (1987) are used here and 

there does not appear to be a need in using a more complex spending function family as in 

Jennison (1987). There are better features in our method as compared with previous ones 

mentioned above (Barber and Jennison (2002), Jennison (1987), Jennison (1992), Jennison and 

Turnbull (2004) and Anderson (2007)): power of rejecting at stage one is ensured when 

maximum effect size is true; error of continuing the trial when no drug effect exists is well-

controlled at stage one; and non-binding efficacy boundaries are used to account for overrunning 

data that normally occur in every real trial. In evaluating the number of analyses to perform, 

there is a benefit to increase analyses from two stages to three stages and perhaps little benefit in 

having more than 3 stages in most cases, while Anderson’s method (2007) shows no benefit in 
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having more than 4 stages. Fewer interim analyses should save a lot of on human resources and 

needed-time in conducting additional interim data cleaning and analysis. However, we have not 

done any example with unequal spacing between Stage 2 and the maximum stage. Though it is 

very easy to find optimized group sequential design using our method if unequal spacing is 

desirable for some operational reasons, Barber and Jennison (2002) noted that optimal designs 

allowing unequal spacing provide minimal advantage over equal spacing. R codes are available 

for the first author per your requests. 
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Appendix 9.1  

 Claim ∃ t1
∗ ,   t1

0  < 𝑡1
∗  ≤ 1, such that Pδmax(Z1 ≥ u1)≥ 1 − β 

Let’s prove one preliminary result first: Given δMax > δmin > 0,  Pδmax(Z1 ≥ u1)> Pδmin(Z1 ≥

u1) 

Proof: this is because Z1~N(√I1δ, 1) , which results in Pδmax(Z1 ≥ u1)=1-Φ(u1 − δmax√I1) 

and Pδmin(Z1 ≥ u1)=1-Φ(u1 − δmin√I1), then directly we have Pδmax(Z1 ≥ u1)> Pδmin(Z1 ≥

u1) because of δmax > δmin > 0. Similarly, we have Pδmax( ∪i=1
K Zi ≥ ui)> Pδmin( ∪i=1

K Zi ≥

ui). Per optimization algorithm in Figure 1, Pδmin( ∪i=1
K Zi ≥ ui)= 1 − β. Let Pδmax( ∪i=1

K Zi ≥

ui)=1-β′, where β′ < 𝛽 to satisfy 1-β′ > 1 − 𝛽. Let 1 − β′ = 1 − β + ∆, where difference 

∆= (1 − β′) − (1 − β)>0. 

Because Pδmax( ∪i=1
K Zi ≥ ui) = Pδmax(Z1 ≥ u1)+ Pδmax( ∪i=1

K−1 Zi ≥ ui) = A+B if Pδmax(Z1 ≥ u1) 

= A and Pδmax( ∪i=1
K−1 Zi ≥ ui)= B respectively. ∴  PδMax(Z1 ≥ u1) = A = 1 − β + ∆ −B>0. Our 

objective becomes to prove: ∃ t1
∗ ,   t1

0  < 𝑡1
∗  ≤ 1, such that A ≥ 1 − β. There are two cases for 

this. Case One: If using   t1
0, initial (least) standard fraction of information used at stage one, we 

already have Pδmax(Z1 ≥ u1)≥ 1 − β, then there is nothing to prove. We just use   t1
0 together 

with the chosen way of partition for the remaining information to search for each optimized 

design. Case Two: at   t1
0, we have Pδmax(Z1 ≥ u1) = A<1 − β, then we have to show that when 

we increase   t1
0 to  t1

∗ , we can have Pδmax(Z1 ≥ u1) = A≥ 1 − β. 

To prove Case Two, we know that I1 = Imax ∗ t1, where Imax is determined by α, β and αF  

and has nothing to do with δmax (Figure 9.1). So, again, for Pδmax(Z1 ≥ u1) = A = 1-Φ(u1 −

δMax√I1)= 1-Φ(u1 − δMax√Imax ∗ t1). Given Imax,  A increases as t1 increases. At the 

extremity, t1 = 1, a case that group sequential design degenerates to the usual fixed sample 

design, Pδmax(Z1 ≥ u1)> Pδmin(Z1 ≥ u1) = 1-β, which is what we proved above in the 

preliminary. For any t1in between, that is   t1
0 < 𝑡1 ≤ 1, 

We have a continuous probability function A, which is a function in t1 , in a closed interval 

 [ t1
0, 1], A has a real value at   t1

0  less than 1 − β, on the other hand has a real value at t=1 

greater or equal to 1 − β. Per Intermediate Value Theroem from Real Analysis, we can conclude 

that there is a  t1
∗  , with t1

0  < 𝑡1
∗  ≤ 1, such that Pδmax(Z1 ≥ u1)= 1 − β  is exactly achieved at 

 t1
∗ . When t1>  t1

∗ , A = Pδmax(Z1 ≥ u1)> 1 − 𝛽.                                      
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Chapter 10 

A Two-stage Adaptive Design with a New Combination Test 

(to be submitted) 

 

Abstract:  Inspired by Bauer and Kohne (1994), a method applying Fisher’s combination rule 

to form a two-stage adaptive procedure (BK method), utilizing Box and Muller (1958), one of 

the most popular methods of generating standard normal random variable using two independent 

uniform (0, 1) deviates, a new method is proposed here to combine two p-values from two 

disjoint samples for designing a trial with two stages. Procedure is defined with carefully 

consideration of controlling overall type I error rate under null hypothesis. Operational 

characteristics including power and expected sample size under both null and alternative 

hypotheses were investigated. Simulations were used to confirm type I error control. 

Comparisons of new combination method with BK method were also investigated.  

Key Words: Two-stage Adaptive Design; Combination Test; Sample Size Re-estimation. 

Subject classification codes: 05B99 62E20 

 

Section 10.1: Introduction 

In adaptive or flexible designs, study is monitored at interim while data are still being accrued 

and the study design, such as sample size, allocation of treatment et.al, can be modified 

accordingly to new internal/external information after the interim analysis. Statistical approaches 

must be shown to maintain the integrity of the trial such as controlling type I error as well as 

gaining adequate power. Among many publications, there are three methods wildly discussed 

and cited in the literature to deal with adaptations: Conditional power approach by Proshan and 

Hunsberger (1995); and two for combination tests: i) Fisher’s combination rule by Bauer and 

Kohne (1994) and ii) the inverse normal method by Lehmacher and Wassmer (1999). In Proshan 

and Hunsberger (1995), the circular conditional error function, which increases for the increasing 

value of test statistic at stage 1, was defined for p-value of p2 . Null hypothesis would be 

rejected if p1 was less than or equal to α1(alpha spent at stage 1) or p2 was less than or equal 

to the conditional error at stage 2. Bauer and Kohne (1994) made use of the fact that 

−2 log(pi) , i = 1,2 has a Chi-squared distribution with 2 degree of freedom. Thus the product 
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of p1 and p2 from disjoint data from stage 1 and stage 2 respectively was with a Chi-squared 

distribution with degree of freedom 4. To control the overall alpha level, a combination test 

(𝑝1, 𝑝2) = p1 ∗ p2 ≤ exp (−0.5χ4
2(1 − α)) could be utilized, where χ4

2(1 − α) is the 100*(1-

 α)𝑡ℎ percentile of the Chi-squared distribution with 4 degree of freedom. Inverse normal 

method by Lehmacher and Wassmer (1999) was proposed under group sequential setting. It is 

simply the weighted-z test to replace original test,𝐶(𝑝1, 𝑝2) = √w1Z1 +√1 − w1Z2, with which 

Zi = Φ(1 − pi) (i.e., the inverse of standard normal cumulative distribution function) and w1 

is pre-fixed weight for stage 1 data. Under null hypothesis and the predefined weight w1, 

√w1Z1 +√1 − w1Z2 would be a standard normal. Even though sample size update using 

interim results seemed creating dependence between two statistics between stages, the inverse 

normal of 1 − pi value always derived a standard normal variable to ensure inter-stage 

independence in testing statistic.  

Similar to combining independent p-values using Fisher’s combination test, our method utilized 

Box and Muller (1958) (BM transformation) to combine two p-values. Section 10.2 stated the 

formulation of this two-stage procedure. Starting from objective of the test, given overall alpha 

level and stage one futility boundary, alpha-spent at stage 1 will be derived. Section 10.3 

illustrated how the power and expected sample size could be calculated under null and 

alternative hypothesis respectively. Examples of calculating operation characteristics were 

followed in Section 10.4. And simulations were used to confirm that type I error is controlled as 

desired. Discussion in Section 10.5 concluded this paper.  

Section 10.2: Formulation 

Considering the situation to compare mean μ1 of treatment group with mean μ2 of control 

group with a known common variance of σ2, a two-stage test procedure for the one-sided testing 



 

286 

of superiority of treatment over control (positive difference means better) is structured with 

hypotheses:  H0: μ1-μ2 = 0   versus  HA: μ1-μ2 = 0  

The standardized effect size will be δ =
μ1−μ2

σ
. Because each pair of subjects is identical and 

independently (i.i.d.) distributed with normal mean μ1 − μ2  and correspondingly variance of 

2σ2, with n1 subjects accumulated at interim, the test statistic is defined as T1 =
μ̂1−μ̂2

√2σ2/n1
, 

which should be Normal(√n1/2 δ, 1) and p-value for this test as p1 =1-Φ(
μ̂1−μ̂2

√2σ2/n1
). Similar 

definitions are defined for T2 and p2. Under null hypothesis, p-values under null hypothesis are 

known to be uniformly distributed from 0 to 1. 

Assuming p1 and p2 are independent, for example case 1)deriving from two different cohorts 

of subjects as in current formulation 2)don’t come from two different cohorts of subjects but are 

indeed independent asymptotically as the formulation for survival analysis. Here we propose a 

new way to combine two-stage data so that adaptation can be implemented after interim analysis 

to account for updated information from interim results or from external information. This is 

based on the fact of C(p1, p2) = Xc = √−2log(p2) cos 2π p1, where p1 ⊥  p2 (“⊥” indicating 

independence) and Xc is distributed as a standard normal variable under null hypothesis with 

subscript c indicating ‘combined’ and Xc itself denoting the combined test statistic at the end of 

stage 2. At the end of Stage 2, null hypothesis H0 will be rejected if √−2log(p2) cos 2π p1 ≤

z1−α, with z1−α denoting the 100*(1- α)th percentile of the standard normal distribution. Or null 

hypothesis will get rejected at first stage if p1 ≤ α1 (with α1 < α) if early rejection is planned 

ahead. Let α1 be the alpha-spent at interim and α be the overall alpha level for both stages. If 

stopping for futility is also planned at interim with p1 ≥ α0, given a value of α0 that provides a 

lower bound for p1 to stop the trial with the larger value of p1 indicating acceptance of H0 at 
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interim, the two-stage procedure can be summarized as the follows: 

If p1 ≥ α0, the trial stops with acceptance of H0, 

If p1 ≤ α1(α1 < α), the trial stops with rejection of H0, 

Otherwise, p1 < α1 ≤ α0, the second stage procedure can be performed; and in the second 

stage, H0 can be rejected if p2 ≤ exp [−0.5 ∗ (
z1−α

cos2πp1
)2]. 

So, to get an overall level- α test, the value of α1 has to be determined such that 

α1 +∫ ∫ dp2dp1

exp [−0.5∗(
z1−α

cos2πp1
)2]

0

= α1 +∫ exp [−0.5 ∗ (
z1−α

cos 2π p1
)2]dp1

α0

α1

= α
α0

α1

     (10.1) 

If α1 is given, α0 can be determined using bisection searching together through above 

equation. Also, from above deduction, conditional error left for Stage 2 after observing p1 is 

A(p1) = exp [−0.5 ∗ (
z1−α

cos2πp1
)2], a function of p1 and z1−α, is the critical value to be 

compared the combination test C(p1, p2) combining p1and p2 (i.e., 

C(p1, p2) = √−2log(p2) cos 2π p1). Type I error will be well-controlled as long as p2 ≤ A(p1), 

even after n2, sample size for Stage 2, is adapted to n2
∗  based on interim results. Note that 

because α1, type I error spent at stage 1, is normally less than or equal to 0.1, it can be seen that 

in the range of 0 ≤ α1 ≤ 0.1, the conditional error for Stage 2 decreases for the increasing p1. 

This shows the validity of proposed combination method, in which that a bigger p1 at Stage 1 

showing less evidence of treatment effect, rejection of H0 at Stage 2 will become harder.       

To interpret newly proposed BM method better, taking first row in Table 10.1 as an example, 

null hypothesis will be rejected at stage 1 if p1 ≤ 0.0335, or be accepted if p1 ≥ 0.30 or 

t1 ≥ zα1; or go to gather Stage 10.2 data if 0.0335 < p1 < 0.30. At the end of Stage 10.2, data 

gathered from Stage 10.2 only will be used to obtain p2, and null will be rejected if   p2 ≤
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exp [−0.5 ∗ (
z1−α

cos2πp1
)2] = A(p1); or equivalently the combined test statistic c(p1, p2) = Xc =

√−2log(p2) cos 2π p1 ≤ z1−α = 1.644854 in combining data in a way through p1 and p2; 

and will fail to reject null otherwise.  

When α0 is given, α1 can be obtained using integration and bisection root searching using 

Equation 10.1. Given that α = 0.05, for α0 = 0.30, 0.35, 0.40, 0.45, 0.50, respectively, one can 

find corresponding α1 be 0.0335, 0.0332, 0.0286, 0.0166 and 0.0001 (Table 10.1). It is very 

interesting to see that there is almost no possibility to reject null at stage 1 (α1 = 0.0001) when 

α0 is 0.5 for proposed BM method while BK method using Fisher’s combination test still has 

α1 equal to 0.0233. Actually BK method has smaller change in α1(from 0.0233 to 0.0299) when 

α1 changes from 0.3 to 0.5 than those of new method (Table 10.1), which changes from 0.00001 

to 0.0335. Type I error spent at Stage 1, α1, for both new BM method and BK Fisher’s 

combination test are found in the same magnitude when α0 is small and ranging from 0.30 to 

0.40; and the discrepancies become larger as α0 become large. For example α0=0.45 and 0.5.  

Table 38(Tab. 10.1): Critical values 

Table 10.1: Critical values for new BM combination test as compared with BK method 

using Fisher’s combination rule. Stage 1 critical value 𝐳𝛂𝟏  equals to 𝚽𝟎
−𝟏(𝟏 − 𝛂𝟏). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Section 10.3: Theoretic Power, Expected Sample Size and Sample Size Re-estimation 

 New BM BK 

𝛼0 𝛼1 𝑍𝛼1 𝛼1 𝑍𝛼1 

0.30 0.0335 1.8319 0.0299 1.8817 

0.35 0.0332 1.8357 0.0277 1.9163 

0.40 0.0286 1.9013 0.0263 1.9380 

0.45 0.0166 2.1289 0.0248 1.9642 

0.50 0.00001 4.2649 0.0233 1.9896 
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The power of new combination test based on independent p-values from respective stages for a 

pre-specified alternative HA : 
μ1−μ2

σ
= δ is: 

∫ fδ(p1)dp1
α1

0
+

∫ ∫ fδ(p1, p2)
A(p1)

0
dp2dp1                                                                                                              (10.2) 

α0

α1
  

 = 1 − ∫ fδ(p1)dp1
1

α0
− ∫ fδ(p1)dp1

α0

α1
+ ∫ ∫ fδ(p1)fδ( p2)

A(p1)

0
dp2dp1

α0

α1
                           (10.3) 

= 1 − ∫ fδ(p1)dp1
1

α0
− ∫ fδ(p1)dp1

α0

α1
+ ∫ fδ(p1) [1 − ∫ fδ( p2)

1

A(p1)
dp2] dp1

α0

α1
                 (10.4)   

= 1 − ∫ fδ(p1)dp1 − ∫ ∫ fδ(p1)fδ( p2)
1

A(p1)
dp2dp1                                                              (10.5)

α0

α1

1

α0
  

The first and second term in Equation 10.2, respectively, is the rejection probability at Stage 1 

and Stage 2. Because of independence, density fδ(p1) can be pulled out from the inner 

integration in Equation 10.4. After above simplifications, the power calculation for two-stage 

design goes to derive individual probability densities of p1 and p2. 

Because inverting p-value results in a standard normal, the densities of p1 and p2 can be 

derived by variable substitution. Let ϕδ and ϕ0 respectively be normal density with mean δ 

and 0 and variance of 1. Φ0
−1 denotes the inverse of standard normal cumulative distribution 

function (CDF).  

fδ(pi) = ϕδ(Φ0
−1(1 − pi))d(Φ0

−1(1 − pi)) = ϕδ(Φ0
−1(1 − pi))|

d(Φ0
−1(1−pi))

dpi
|dpi  

=ϕδ(Φ0
−1(1 − pi))

1

ϕ0(Φ0
−1(1−pi))

dpi =
ϕδ(Φ0

−1(1−pi))

ϕ0(Φ0
−1(1−pi))

dpi                                                                   

When one has N(μ1, σ
2) and  N(μ2, σ

2) for independent and identically distributed subjects 

within each treatment group, assuming equal size in both stages, we again accumulate n1 and 

n2 pairs of subjects at stage 1 and stage 2, respectively.  

The expected sample size for this combination procedure can be easily obtained from the density 

function of p1. The total expected size equals the n1+ n2*(Probability of continuing into Stage 

2). When null hypothesis is true and fδ=0(pi) = 1, the expected sample size under null 

hypothesis is: 
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EH0(N) = n1+ n2*∫ fδ=0(pi)dp1
α0

α1
= n1+ n2 ∗ (α0 − α1)                                                       (10.6) 

The expected sample size under alternative needs numerical integration. 

EHA(N) = n1+ n2*∫ fδ(p1)dp1
α0

α1
= n1+ n2*∫

ϕδ(Φ0
−1(1−p1))

ϕ0(Φ0
−1(1−p1))

dp1
α0

α1
                                       (10.7)   

when p1 is derived from t-test statistic. 

With ratio in sample size (Stage 1 vs. total sample size) being r,  then n1 = nr  and 

n2 = n(1 − r) and r=0.3, 0.5 or 0.7. With mean difference being 0.3, standard derivation being 

1, one-sided type I error being 0.05, total sample size of 105 (or 137 or 190) for fixed-sample 

design to ensure power of 0.7 (or 0.8 or 0.9) (Table 10.2). Due to early rejection for efficacy and 

early stopping for futility which can possibly save sample size, one found that the expected 

sample sizes under all alternatives were smaller than that of the fixed sample design and were 

substantially reduced under null hypothesis. The theoretic power values under alternative 

hypotheses were as higher as or higher than respective power for fixed sample design. We also 

note that the overall power increases as r increases, which further suggests that the early 

stopping for efficacy or futility at Stage 1 makes this two-stage procedure more powerful as 

compared with fixed sample design because larger r allocates more subjects into Stage 1.  

Power also increases as α0 increases, with which more trials stops early for futility when no 

sign of effect is shown at interim.
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Table 39(Tab. 10.2): theoretic values of overall power and expected sample size for proposed two-stage procedure 

Table 10.2: theoretic values of overall power and expected sample size for proposed two-stage procedure 

 
   Power   EH0(N)  EHA(N) 

(𝜇1 − 𝜇2);   𝜎;  𝛼   

𝑛𝑓𝑖𝑥𝑒𝑑 

1 − 𝛽 

𝛼0 = 

𝛼1 = 

0.3 

0.0335 

0.4 

0.00286 

0.5 

0.00001 

0.3 

0.0335 

0.4 

0.00286 

0.5 

0.00001 

0.3 

0.0335 

0.4 

0.00286 

0.5 

0.00001 

0.3; 1; 0.05 

105 

0.7 

r=0.3 0.749 0.827 0.885 51.46 59.11 68.50 68.23 75.59 96.55 

r=0.5 0.845 0.901 0.939 66.86 72.31 79.00 77.35 81.65 101.70 

r=0.7 0.903 0.941 0.966 82.26 85.51 89.50 86.84 88.92 103.78 

0.3; 1; 0.05 

137 

0.8 

r=0.3 0.797 0.865 0.913 66.59 76.65 89.00 87.98 96.89 128.52 

r=0.5 0.892 0.934 0.961 87.12 94.25 103.00 98.12 102.92 134.44 

r=0.7 0.940 0.966 0.981 106.92 111.23 116.50 110.33 112.54 135.77 

0.3; 1; 0.05 

190 

0.9 

r=0.3 0.8588 0.911 0.945 92.45 106.39 123.50 118.08 128.65 182.38 

r=0.5 0.938 0.965 0.981 120.32 130.28 142.50 128.48 133.66 187.13 

r=0.7 0.973 0.986 0.993 148.19 154.17 161.50 147.09 149.21 187.96 
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Conditional power is defined as the probability of rejection at Stage 2, provided that the 

estimated treatment effect from stage 1 is carried over to Stage 2. For the case of testing mean 

difference for two independent normal data with known variance, null will be rejected if 

p2 ≤ A(p1), which is the same as T2 ≥ z1−A(p1). With X and Y to indicate endpoints in 

treatment 1 and 2, respectively, 

T2 =
μ̂1−μ̂2

√2σ2/ n2
∗ =

∑ (Xi
n2
∗

i=1
−Yi)

√2σ2/ n2
∗ =

X̅−Y̅

√2σ2/ n2
∗   

With assuming treatment effect observed at interim is carried forward to the final analysis, 

δ̂=
t1

√n1/2 
 because of E(T1)= √n1/2δ̂. Therefore, the power at stage two is: 

PHA(T2 ≥ z1−A(p1)) = PHA (T2 −√
n2
∗

2
δ̂ ≥ z1−A(p1) − √

n2
∗

2
δ̂) = PHA (T2 −√

n2
∗

2

t1

√
n1
2
 
≥

z1−A(p1) −√
n2
∗

2

t1

√
n1
2
 
)=1-Φ(z1−A(p1) −√

n2
∗

2

t1

√
n1
2
 
)  

Equating 1-Φ(z1−A(p1) −√
n2
∗

2

t1

√
n1
2
 
) with required power for stage 2 test of 1-β2, we can solve 

n2
∗  for Stage 2 sample size. That is  n2

∗ = n1
( z1−A(p1)+ z1−β2)

2

t1
2                                         (10.8) 

Section 10.4: Simulations for Operating Characteristics 

In Table 10.3, simulations with 100000 iterations for each scenario were used to assess type I 

error for proposed BM combination test. And it was shown in Table 10.3 that all simulated errors 

suggested that type I error was well-controlled. In Table 10.4, simulations were done to check 

conditional power after sample size adaptation, overall power for this BM method, average 

sample size at Stage 2 and average sample size for this adaptive two-stage procedure. In order to 
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control Stage 2 sample size, constrains on both maximum and minimum were put on Stage 2 

sample size, which ensured it can’t be greater than 4*𝑛𝑓𝑖𝑥𝑒𝑑-𝑛1 and can’t be smaller than 

𝑛𝑓𝑖𝑥𝑒𝑑-𝑛1. It is that real implemented stage sample size n2
# = max (min (n2

∗ , 4 ∗ 𝑛𝑓𝑖𝑥𝑒𝑑 −

𝑛1), 𝑛𝑓𝑖𝑥𝑒𝑑-𝑛1 ), where n2
∗  is defined in Equation 8 using conditional power. 

Simulations for related scenarios for BK method using Fisher’s combination rule were also 

carried out for purpose of comparison (Table 10.5). Substantially simulation results have shown 

that the proposed method can be implemented in trials but with less efficiency as compared with 

well-known BK method using Fisher’s combination rule. The rationales behind this are still 

unknown to us and are beyond the scope of this paper.     

Table 40(Tab. 10.3): simulated Type I error for new BM combination test 

Table 10.3: simulated Type I error for new BM combination test. 
(𝜇1 − 𝜇2);   𝜎;  𝛼   
 

n r  Simulated Type I error 

   

𝛼0 = 0.3 

𝛼0 = 0.0335 

 

𝛼0 = 0.4 

𝛼0 = 0.0286 

 

𝛼0 = 0.5 

𝛼0 = 0.00001 

 

0; 1; 0.05 105 0.3 0.0502 0.0495 0.0502 

  0.5 0.0482 0.0503 0.0493 

  0.7 0.0506 0.0506 0.0489 

 137 0.3 0.0496 0.0505 0.0490 

  0.5 0.0501 0.0499 0.0503 
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Table 41(Tab. 10.4): simulated values of overall power and expected sample size 

Table 10.4: simulated values of overall power and expected sample size for proposed two-

stage procedure 

 

BM method 

Conditional Power (Stage 2) / Overall power(two stages) 

ASN (Stage 2) / ASN(two stages) 

 

(𝜇1 − 𝜇2);   𝜎;  𝛼   

𝑛𝑓𝑖𝑥𝑒𝑑 

1 − 𝛽 

𝛼0 = 

𝛼1 = 

0.3 

0.0335 

0.4 

0.00286 

0.5 

0.00001 

0.3; 1; 0.05 

105 

0.7 

r=0.3 0.7268/0.5658 

192/177 

0.7004/0.6528 

199/236 

0.7717/0.6827 

232/201 

r=0.5 0.7592/0.6720 

192/165 

0.7479/0.7654 

193/234 

0.7839/0.7365 

223/171 

r=0.7 0.7953/0.7579 

201/161 

0.7927/0.8447 

194/238 

0.7874/0.7631 

221/149 

0.3; 1; 0.05 

137 

0.8 

r=0.3 0.7962/0.6593 

233/217 

0.7699/0.7395 

233/294 

0.8314/0.7609 

282/241 

r=0.5 0.8199/0.7629 

226/196 

0.8107/0.8417 

221/289 

0.8379/0.8070 

262/194 

r=0.7 0.8505/0.8391 

231/189 

0.8494/0.9054 

218/295 

0.8353/0.8221 

255/162 

0.3; 1; 0.05 

190 

0.9 

r=0.3 0.8698/0.7659 

288/176 

0.8354/0.8237 

278/381 

0.8941/0.8463 

349/294 

r=0.5 0.8909/0.8654 

265/236 

0.8703/0.9124 

249/372 

0.9000/0.8838 

312/220 

r=0.7 0.9071/0.9193 

265/224 

0.9060/0.9695 

241/379 

0.8807/0.8789 

296/169 
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Table 42(Tab. 10.5): simulated values of overall power and expected sample 

Table 10.5: Simulated values of overall power and expected sample size for BK method 

using Fisher’s combination rule 

 

BK method 

Conditional Power (Stage 2) / Overall power(two stages) 

ASN (Stage 2) / ASN(two stages) 

 
(𝜇1 − 𝜇2);   𝜎;  𝛼   

𝑛𝑓𝑖𝑥𝑒𝑑 

1 − 𝛽 

 

𝛼0 = 

𝛼1 = 

0.3 

0.0299 

0.4 

0.0263 

0.5 

0.0233 

0.3; 1; 0.05 

105 

0.7 

r=0.3 0.9014/0.7013 

168/205 

0.9127/0.7771 

193/225 

0.9199/0.8311 

210/236 

r=0.5 0.9407/0.8196 

185/234 

0.9421/0.8695 

198/239 

0.9410/0.9026 

210/242 

r=0.7 0.9651/0.8881 

191/248 

0.9634/0.9248 

201/247 

0.9573/0.9437 

208/245 

0.3; 1; 0.05 

137 

0.8 

r=0.3 0.9406/0.7728 

200/260 

0.9477/0.8382 

230/282 

0.9509/0.8833 

248/293 

r=0.5 0.9652/0.8762 

213/293 

0.9648/0.9159 

229/297 

0.9633/0.9410 

237/297 

r=0.7 0.9814/0.9317 

216/312 

0.9801/0.9580 

226/309 

0.9760/0.971 

233/303 

0.3; 1; 0.05 

190 

0.9 

r=0.3 0.9707/0.8465 

240/338 

0.9732/0.8963 

273/363 

0.9755/0.9304 

292/376 

r=0.5 0.9830/0.9343 

241/380 

0.9815/0.9581 

259/383 

0.9822/0.9721 

268/379 

r=0.7 0.9927/0.710 

242/409 

0.9915/0.9830 

250/399 

0.9899/0.9895 

256/385 
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Section 10.5: Discussion 

Similar to BK method using Fisher’s combination rule, proposed new BM method combines p-

values from two disjoint samples together to form a two-stage adaptive procedure. The validity 

of this method inherits from distributional property of this combination function of two 

independent p-values, along with formulas to calibrate conditional error for Stage 2 to ensure 

overall type I error control. Type I error is well-controlled based on asymptotical theory and then 

further confirmed by simulation results. Operational characteristics in terms of power and 

expected sample size under null and alternative hypotheses were also shown for this new BM 

combination test as compared with BK method using Fisher’s combination rule. Due to the 

invariance of p-value to be uniformly distributed from 0 to 1, this method can be applied all data 

type as long as p-values are from disjoint samples or independent asymptotically. 
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