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Abstract 

A summary is given of certain features of the output from routines 

in BMDP, GENSTAT, RUMMAGE, SAS and SPSS that perform analysis of co­

variance calculations. 

l. INTRODUCTION 

Output from statistical computing packages for analysis of covariance is not 

always labeled unequivocally. For example, we find for a completely random design 

(one-way classification) with one covariate and unequal numbers of observations in 

the classes, that the sum of squares label "mean" is given to at least five 

different values (Tables 3 and 4) computed by a current array of available com­

puting packages. Ascertaining precisely what it is that an output label means, 

i.e., exactly what has been computed, is therefore an important problem for the 

statistician who wants to use a package for data analysis. One way of doing this 

is to process small, hypothetical data sets through the package and verify every 

output value from hand calculations. Verification consists of (perhaps repetitively) 

speculating on the nature of the package output values and checking that one's 

final conjecture is upheld for subsequent data sets. This procedure is not fully 

rigorous. However, since program documentation is often erroneous by omission or 

in fact, and since reading program code is a task beyond most of us, the method 

appears to be a useful and manageable one. 
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The variety of calculations available in the analysis of variance and co-

variance of unbalanced data (having unequal numbers of observations in the sub-

classes) is quite large and yet, for balanced data (having equal numbers of ob-

servations in the subclasses), they nearly all reduce to the same set of well 
a a 

known calculations. (The simplest example of this is that L n.y. / L n. and 
i=l J. J.• i=l J. a 

L y. /a are different for unbalanced data but the 
i=l J.• 

same for balanced data. ) 

Processing small sets of hypothetical, unbalanced data through a statistical com-

puting package can therefore be a fruitfUl way of ascertaining not only what it 

is that any particular package calculates, but also what the differences between 

packages are. With these ends in mind the basis of this paper is the analysis 

of data from a completely randomized design (1-way classification) with one co-

variate. We use the data sets of Table 1, but implications drawn here extend to 

data from more complex situations. 

(SHOW TABLE 1) 

Our primary purpose is to highlight, illustrate, and explain differences 

that exist among different packages. Similarities among packages do, of course, 

abound, especially in output such as cell means, numbers of observations, pre-

dieted values, residuals, and so on. Our purpose is not to describe all output 

features of the packages, but rather to highlight some features that are distinc-

tively different from one package to another. This is done, not for the purpose 

of suggesting what is preferable, but for the more important reason of emphasizing 

that the packages do compute different things, and for providing information on 

what some of those differences are. Statisticians using computer package output 

need to know that apparently-similar labels on output from different packages do 

not always mean the same thing. The conclusion is not necessarily that one 

package is better than another in any sense, but that packages do differ from one 
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another in certain prescribed ways. Only when one knows and understands the 

differences can one make appropriate decisions about which output values are 

suitable for the needs at hand. 

2. LINEAR MODELS 

Consider a completely randomized design with a classes and ni observations 

We yij in the i'th class, for j = 1, 2, ···, n1 and i = 1, ···, a, with ni > 0. 

represent the corresponding observation on the covariate as z. .• Then, withE 
~J 

representing expectation over repeated sampling, a without-covariate model for 

yij is 

(1) 

where a. is the effect due to the i'th class. And the covariate can be incorpor­
~ 

ated in the model so as to have either 

or 

-where z 

n. a ~ 

= I: I: z . ./N for N = n = 
i=l j=l ~J 

variate rather than the traditional x 

(2) 

(3) 

a 
I: n. • (The symbol z is used for the co­

i=l ~ 
so that when writing a covariate model in 

matrix notation X can be retained as the incidence matrix for terms other than 

the covariate. ) 

None of the models (l), (2) or (3) has a restriction of the form 

a 
I:a.=O (4) 

i=l ~ 

which can be attached to a model such as (1). So as to distinguish (l), (2) and 

(3) from their counterparts with (4) included, we refer to (1), (2) and (3) as 
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unrestricted models. We call (4) a ~-restriction, and when it is used in con-

junction with (1), (2) or (3) we call the resulting model a ~-restricted model 

and write, for example, (1) and (4) as 

a 
~ a. = o . 

i=l 1 

The notation of putting a dot above each parameter in (5) is done to clearly 

(5) 

distinguish (5) as being a restricted model, in contrast to (1) which is an un-

restricted model. Similarly 

a 
E(yij) 

. 
+ bzij ~ ai (6) = 1-L + ai with = 0 

i=l 

and 

a 
E(yij) 

. 
+ b(z .. - - ) ~a. (7) = 1-L +a. z with = 0 

1 1J i=l 1 

are the ~-restricted counterparts of (2) and (3). Although in (6) and (7) the 
a 

restriction ~ a. = 0 applies only to the a.'s, in which notation the dot above 
i=l 1 1 

the a emphasizes that a. of (6), for example, is to be distinguished from a. of 
1 1 

(2), the dot notation covers all parameters of the model so as to distinguish the 

whole of a restricted model from its unrestricted counterpart. 

A different restriction which is sometimes used in place of the ~-restriction 

is 

a 
~ n.a. = 0 , 

i=l 1 1 
(8) 

a 
which we call the ~n-restriction. Used in place of ~a. = 0 in (5), (6) and (7) 

. 1 1 1= 

it defines a third set of models (for which we should perhaps use a further dis-

tinguishing symbol such as a. -but we shall not). 
1 
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3. CELL MEANS MODELS 

Models (5), (6) and (7) are simply one way of overcoming the inherent diffi­

culties of the overparameterized models (1), (2) and (3). A straightforward way 

of avoiding these difficulties is simply to use full-rank, cell means models from 

the outset: 

E(yij) = IJ.i ' 
(9) 

E(yij) = IJ.i + bz .. 
' 

(10) 
lJ 

and 

E(yij) + b(zij - ) (11) = IJ.i - z 

in place, respectively, of either (1), (2) and (3), or (5), (6) and (7). Certainly 

(9), (10) and (11) are much easier to understand than either the overparameterized 

models (1), (2) and (3) with the accompanying need for estimability considerations, 

or the restricted models such as (5), (6) and (7) with their need for knowing the 

effects of the restrictions. In this connection, the reader is referred to Hocking 

and Speed (1975) and Speed et al. (1978) for excellent discussion of cell means 

models. 

Despite the advantages of cell means models (especially for unbalanced data), 

many current computer packages, whilst being able to handle cell means models very 

easily, are nevertheless designed with the long-standing overparameterized models 

in mind. Furthermore, they are certainly used this way on numerous occasions by 

users who are ofttimes more familiar with overparameterized models than with cell 

means models. Because the latter are, indeed, easier to understand, we prefer 

them; but because some computer packages contain features oriented to overparameter-

ized and to restricted models our descriptions use all three kinds of model. We 

believe the reader will find that understanding some of these features is made 

easier by thinking in terms of cell means models. 
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4. COMRJTER PACKAGES 

The computer packages used in this study are listed in Table 2. Three, PlV, 

(SH<M TABLE 2) 

P2V and I4v, are from the BMDP package of the Department of Biomathematics of the 

University of California at Los Angeles, RUMMAGE is from the Department of Sta-

tistics at Brigham Young University in Provo, Utah, GENSTAT ANOVA is part of the 

GENSTAT package from Rothamsted Experimental Station of Harpenden, England, SAS 

GLM is the general linear model routine of the Statistical Analysis System of the 

SAS Institute in Raleigh, North Carolina, and SAS HARVEY is a user-supported pro-

cedure therein; and SPSS ANOVA and MANOVA are two routines in the statistical 

programs for social scientists emanating from SPSS Inc., 444 N. Michigan Avenue, 

Chicago, Illinois. 

Table 2 summarizes several characteristics of these packages. It shows the 

form in which covariates are handled (either as z .. or as 8 .. = z .. - z ), the 
~J ~J ~J 

restrictions used (if any), and the values given in the output as solutions to 

the normal equations for the one-way classification. Those packages for which no 

solutions are shown do not, in general, have solutions to normal equations as part 

of their output. Table 2 also shows which packages have adjusted class (treatment) 

means A. = y. + b(z. - z ) among their output, and whether or not the package 
~ ~· ~· .. 

handles intraclass slopes as in the model E (y .. ) = ll + a. + b. z ..• 
~J ~ ~ ~J 

An immediate reaction to Table 2 is that no two of these nine computer 

packages are exactly the same. No doubt other features of the packages could have 

been listed, which would perhaps have made some packages look more alike, such as 

the output of means, standard deviations, analyses of variance and so on. But the 

object of Table 2 is to show features where there are important differences between 

the packages. 
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5. SUMS OF SQUARES DUE TO THE MEAN 

In fitting the general linear model E(y) = Xb, the normal equations are - -
0 0 X'Xb = X'y where b is any solution thereof, and the sum of squares due to -- -- -

fitting the model is 

O' R(b) = b X'y (12) .,. ... ,.. ... 

which is the inner product of the vector of solutions and vector of right-hand-

sides of the normal equations. Searle et al. (1981) call (12) the R-algorithm. 

It plays an important role in understanding how certain sums of squares in re-

stricted models are calculated. 

An extension to R(2) arises from partitioning ~ so as to have E(!) = !J21 

+ !222 • Then the sum of squares for ~l adjusted for ~2 is 

(13) 

In the right-hand side of (13), each term can be calculated from (12) using first 

[!1 ! 2] as! and [2i 22]' as 2 for calculating R(21,22), and then ! 2 as! and 

~2 as ~ for R(22 ). 

As the simplest illustration of complications that can arise with unbalanced 

data when using restricted models as part of the computing procedure, we consider 

what might loosely be called sums of squares due to the mean: we find that at 

least five different expressions can come under this rubric. True, "testing the 

mean" may often not be of much practical interest, although one case where it can 

be important is, to quote from Bryce (1982), in "testing the gain score in a pre-

post type design where a pretest is made, the treatments are applied, and the post-

test follows." Nevertheless, the complications we illustrate here are symptomatic 

of those that can arise from the same kind of causes in sums of squares that are 

more involved than just those concerned with the mean. 
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Consider 

R(~ja) = R(~,a) - R(a) • (14) ... ... ... 

From fitting (1) we get R(~,a) = Ln1y; , and the sum of squares for fitting ... ~· 

E(y.j) = ai is R(a) = Lniy; • Hence (14) is identically zero. This is an 
~ ... ~· 

example of Nelder's (1974) concept of marginality, and as such R(~la) is a sum -
of squares that has no use. But certain variants of it in restricted models are 

not zero. For example, consider R(~j~)L, the same kind of sum of squares as (14) 

but for the E-restricted model (5). Using the notation of Searle et al. (1981), 

we denote it as ~(~j~)E so that in writing 

(15) 

analogous to (14), the asterisk emphasizes that theE-restrictions of model (5) 

which are implicit in the first term on the right-hand side of (15) are also 

being used in the second term there. 

!~~· For Data lb of Table 1 the model equation and normal equations for 

the E-restricted model (5) without covariate are, respectively, 

74 1 1 0 
68 1 1 0 . 

7 1 0 '-' 553 77 1 1 0 ~ ~ 

76 1 0 1 . 
and 1 5 2 '-' 41 (16) E = al ' al = 

80 1 0 1 . 0 2 4 * -22 
85 1 -1 -1 

a2 a2 

93 1 -1 -1 

~ ~ ~ 
Solutions to the normal equations are ~ = 80, a1 = -7 and a 2 = -2. Hence, by 

(12) 

~(~,~)E = 80(553) - 7(41) - 2(-22) = 43,997 . 
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This equals R(~,a), as would be expected because the (~,a)-model is just a re--
parameterization of the (~,~)-model. But the asterisk on~(~)~ in (15) means, 

not that we start with an a-model and (if necessary) reparameterize it using the 

~-restriction, but that in fact we take just the a part of the already-restricted ... 
(~,a)-model, i.e., just the a parts of equations (16), and apply (12) to them. - -
This means using just 

[ 5 2] [~1] = [ 41] ... with solution 
2 4 a2 -22 [ _::] ' 

and in applying (12) getting~(~)~= 13(41) - 12(-22) = 797· Then (15) gives 

~(~I~)~= 43,997- 797 = 43,200. (17) 

This result is important in several respects. First, it is not identically zero 

as is R(~la) of (14). Second, it differs from R(~) =NY:. = 7(7~) = 43,687. ,... 

Thus the sum of squares labeled "mean" from one computer package may be R(~) and 

from another it may be ~(~j~)~, and by the labeling of the output, it may be 

difficult to distinguish one from another, especially since the distinction does 

not make itself evident with balanced data; only with unbalanced data does it 

become readily apparent. Finally, this is the simplest example of where an R(· I·) 
in an unrestricted model is identically zero and its counterpart~(· I·)~ in a 

restricted model is not. Another example occurs in the two-way crossed classifi-

cation with main effect factors denoted by a and ~ and their interaction by y. 

Then, like (14) and (15), respectively, 

(18) 

Indeed, as Searle et al. (1981) show, when all cells contain data, ~(~1~,~,y)~ 

is the sum of squares for the a-factor in the weighted squares of means analysis. 
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Table 3 shows an array of values like that in (17), for the two sets of data 

in Table 1, using L-restrictions and Ln-restrictions, both without a covariate, 

-and with a covariate used either as z or as 8 = z - z The illustration of 

( SHCM TABLE 3) 

line 3 of Table-3 between (16) and (17) can be repeated for lines 4 through 8, 

where line 4 is for using the Ln-restriction on the no-covariate model, and lines 

5 through 8 show the four cases of combining each of the L- and Ln-restrictions 

with each way of treating the covariate, as b (z .. - z ) and as bz ..• 
~J ~J 

A noticeable feature of Table 3 is, apart from line 2, the five different 

values in its last column, for the unbalanced data; i.e., five different values 

that might be called a sum of squares due to the mean. In contrast, there are 

only two different values for the balanced data. 

6. HYPOTHESES 

We have illustrated how, for the same unbalanced data set, different values 

can be calculated for the label "sum of squares due to the mean". Knowing how 

these values are calculated unfortunately provides no real understanding of their 

usefulness (if any). For this reason, Table 4 shows the hypothesis tested were 

each sum of squares to be used as the numerator of an F-statistic under the 

customary normality assumptions. The sums of squares in lines l through 4 are 

(SHCM TABLE 4) 

for models without covariate and the corresponding hypotheses are in terms of the 

unrestricted model E(y .. ) = ~· = ~ +a.; and for lines 5 through 8, for sums of 
~J ~ ~ 

squares for models with covariate, the hypotheses are in terms of the unrestricted 

model E (y .. ) = ~i + bz .. = ~ + a. + bz. j' In each of the six restricted models 
~J ~J ~ ~ 
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of lines 3- 8, the hypothesis being tested is H : ~ = 0. But, because from one 

restricted model to another ~ is not always the same function of the parameters 

of an unrestricted model, the hypothesis H : ~ = 0 which applies in each restricted 

model takes on different forms when expressed in terms of unrestricted parameters. 

For example, for line 3, ~ = r.~./a = ~ + ra./a, and soH:~ = 0 is equivalent to 
J. J. 

H: r.~./a = 0. 
J. 

The hypotheses shown in Table 3 may or may not be of any practical value in 

themselves. Nevertheless, they do provide a means of understanding what the sums 

of squares can be used for, and what the distinctions between them are. 

7. EXPLICIT FORMULAE 

The R- and ~-notation used in Tables 3 and 4 generalizes easily from the 

sums of squares due to the mean shown in those tables to sums of squares for any 

factor or covariate in a multi-factor situation. An example is ~(aj~,~,Y)r. 

shown in (18) and discussed at some length in Searle et al. (1981). Even though 

in being either an R(·) or an R*( ), such sums of squares can always be calculated 

as illustrated between (16) and (17), the corresponding quadratic functions of 

the observations are not, in general, easily derived for unbalanced data. However, 

for the sums of squares of Tables 3 and 4 these functions are readily available 

and are shown in Table 4. They can be verified as being numerator sums of squares 

for F-statistics for testing the hypotheses shown in Table 4. Their availability 

permits ready observation that for balanced data (when y = r.n.y. /N andy = L.y. /a 
J. J.. J.. 

are equal, as are z and z, and when h = r.l/a2n. = 1/N) the formulae on lines 7 
J. 

and 8 become equal, and the rest reduce to N~. 
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Conclusion 

Computer output for analysis of covariance is not all that (by its labeling) 

it is made out to be. Values with labels that appear to be the same can be quite 

different because they do in fact represent different calculations. 
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TABLE 1. 'IWO SETS OF HYPOI'HETICAL DATA 

FOR THE 1-WAY CLASSIFICATION 

Balanced Data 

Y.. z Y.. z 

29 2 39 3 
Data la 30 5 40 11 

31 8 41 7 

Unbalanced Data 

y z l. z l. z 

74 3 76 2 85 4 
Data lb 68 4 80 4 93 6 

77 2 
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TABLE 2. DISTINCTIVE FEATURES OF ANALYSIS OF COVARIANCE OUTRJT 

FROM SEVERAL COMPUTING PACKAGES 

Note: 
~ 

1-way classification, for either E(y .. ) = ~ +a. 
1J 1 

= ~ +a. + b(z .. - z ), all packages compute 
1 1J •• 

A 

b = El:(y .. - y)(z .. - z)/l:l:(zi. - z)2 • 
1J 1J J 

- - - -y and z denote Y •• and z , respectively. 

+ bz .. or 
1J 

Computing Covariate Restric- Solutions to Adjusted Intra-

Package z = zij tionsY normal equations for means?! class 

8. z - z ij the 1-way classification slopes]/ 

For ~ For a 1 

BMD: PlV z l: - - A. Yes 
1 

P2V z l: - - Some 1i/ No 

FtV z 4: or l:n2/ - - No No 

!RUMMAGE z or 8 §} l: - - -§! c11 A. Yes A- bz or A 
1 

- -GENSTAT ANOVA 8 l:n y A. - y A. No 

SAS: 

SPSS: 

y 
g/ 

y 

1i/ 
21 
§/ 

71 
w 
21 

.!91 

1 1 

- "'- §/ GI.M z None Ya. - bz A. - A A. Yes a. 1 a 1 

HARVEY 8 l: A A. - A A. §/ No 
1 1 

- -8 l:n AN OVA y A. - y No No 
1 

l:n2/ A- - A A +d,!gl MAN OVA z A - bz Ai Yes 
i 

l: denotes !:-restrictions: l:a1. = 0; l:n denotes l:n-restrictions: l:n.a. = 0. 
1 1 

- A -Adjusted mean for class i is A. = y. - b(z. - z); and A = l:A./a • 
1 1• 1• 1 

Model: E(yij) = ~ + ai + bizij · 

Calculated only for models with highest-order interactions and all cells filled. 

User-specified cell weights of unity (ni) are equivalent to l: (l:n). 

8 can be used only when z is available as input. 

Estimates of user-supplied contrasts among a.'s. 
. 1 

Labeled "Least Squares Means"; see Searle et al. (1980). 

Specifying METHOD = SSTYPE(UNIQUE) uses l:; default is l:n. 
A 

d = b(l:z. /a - z). 
1• 
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TABLE 3. SUMS OF SQUARES THAT COULD BE CALLED "DUE TO THE MEAN" 

- - -Notation: y = y and z = z 
~-..,.· .. 

Calculated Values 

Sum of Squares Computer Balanced Data Unbalanced Data 

PackageY Data la Data lb 

1. R(~) 7350 = Nr 43,687 = Nr 
2. R(~la) = R(~,a) - R(a) = 0 - 0 0 

3. R* C~la)L g; BMDP2V, 4vJY 7350 43,2oo ~ Nr 
4. R* C~ja)Ln BMDI4V~ 7350 43,687 

5. ~., .. ) 11 RUMMAGE 7350 42, 112~~ ~ Nr (~ a, b8 L 
SAS HARVEY 

6. Itt (~I a, b8 )Ln 7350 43,687 

1· R* C~l a, oz )L 11 B:MDP2V1 4V~ 1288~:3 1: Nr 2,557~ r Nr 
RUMMAGE 

8. ~C~Ia,i>z)Ln BMDI4V~ 
SPSS MANOVA'2/ 

1288~323 -t Nr 55 ., r 2, 62758' N 

y BMDPlV, 2V (since 1981) and 4v, and GENSTAT and SAS GLM produce no sum of 
squares "due to the mean". 

gj L denotes L-restrictions: La. = 0; En denotes En-restrictions: En.a. = 0. 
l l l 

]/ b~ represents using z .. - z as the covariate, and b represents using z ..• 
u lJ z lJ 

~ User-specified cell weights of unity (n.) in BMDI4V produces lines 3 and 7 
(lines 4 and 8). 1 

Lf Specifying METHOD = SSTYPE(UNIQUE) produces line 1· 
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TABLE 4. SUMS OF SQUARES (from Table 3), EXPLICIT FORMUIA 

AND ASSOCIATED HYPOTHESIS 

R( )-form 

1. R(!-l) 

2. R(!-lja) 

3 · get (~ I 0: )z 

4. 1ft C~IO:)zn 

5. Jft (~I 0:, b~)z 

6. ~(~ja,b8 )zn 

Sum of Squares 

Explicit Formul~ 

0 

(Y - b'Z )2 I (h + 7.2 Is ) z 1. ~ c~ 1 a, b z )z 

8. g't(~la,bz)tn CY- £zf/(l/N + z2 /s ) z 

,; Notation: 
::!::/ ~-oJ 

- - A y, z and b, as in Table 3, 

y = ty. /a and z = tz. /a • 
~· ~· 

Associated 

Hypo the s iss! 

Model: E(y •. ) = 1-l· = 1-l +a . 
... .. .. -----~--- ..1:- ........... __ .2:; 

H : .En .j..l . /N = 0 
~ ~ 

None 

H: Zl-l/a = 0 

H : .En .j..l ./N = 0 
~ ~ 

Model: E(yij) = 1-li + bz1J 
~~ ........... ~~"-

H : Lj..l. I a + bz = 0 
~ 

H : tn ·1-l· /N + bz = o 
~ ~ 

H: Z!-li/a = 0 

H : .Enil-li/N = 0 

s = zt(z .. - z)2 and h = [!:(1/n. )]/a2 • z ~J ~ 

g( Hypothesis tested when sum of squares is used as numerator of an F-statistic. 


