
VEC A..l\JD VECH OPERATORS FOR lvfATRICES, HITH SOME USES m 
JACOBIANS Ali!D MULTIVARIATE STATISTICS 

BU-643-M by April, 1978 

H. V. Henderson* and S. R. Searle 

Biometrics Unit, Cornell University, Ithaca, Ne1v York 

Abstract 

The vee of a matrix X stacks columns of X one under another in a 

single column; the vech of a square matrix X does the same thing but 
.... 

starting each column at its diagonal element. The Jacobian of a one-

to-one transformation X _, Y is then !Ia (vecX )/o (vecY)II \·Then X and Y are 
,_ .. - ,.,. ,... 

non-symmetric and it is II() (vechX )/o (vechY )!I lJ'hen X and Y are symmetric. 
~ ~ ~ ,... 

Kronecker product properties of vec(ABC) = (C' ® A)vecB permit easy - - ... 
evaluation of this determinant in many cases. They also provide 

succinct descriptions in multivariate statistics. 

l. Introduction 

An operator on matrices in which there has recently been resurgent interest 

in statistics is that of stacking the columns of a matrix one underneath the other 

to form a single vector. The operator is coming to be knovm as vee. Thus, for 

x., i = 1, ···, c, being the c columns of the r X c matrix X, 
... 1 

X= [x x ·•• x] .... 1 ... 2 ... c 
and vecX = 
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An early reference to this idea is Sylvester [1884 ], vrho used it in connection uith 

linear equations. Roth [1934] develops results for using the operation on a product ~ 

matrix, Aitken [1949] mentions the idea in connection 1vith Jacobians and, more 

recently, Neudecker [1968, 1969] has exploited the concept in a variety of ways for 

statistics. The operation has been referred to variously as the column string of X 

and the pack of X, vTith vecX (for "vector form of X") being the description cur-- - -
rently in vogue. The equivalent notations vecX and vec(X) are used interchangeably, ,.. 

the parentheses being employed only 'llthen deemed necessary for clarity. 

Variations on vecX are also available. For X square, Searle [1978] defines 

vechX in the same >·ray that vecX is defined, except that for each column of X only .. 
that part of it which is on or belar.v the diagonal of X is put into vechX ("vector-- - -
half" of X). In this vray vechX, for X symmetric, contains only the distinctly 
- ,.,. - ""'* 

different elementl of X, a feature that is useful in deriving Jacobians for trans--
formations from one symmetric array of variables to another. For example, vrith 

(vecX)' = [a b b c] and (vechX)' = [a b c]. (2) 

Ideas similar to vechX for symmetric X, but with different notations, have been 

used by Tracy and Singh [1972] and Vetter [1975], and also by Aitken [1949] and by 

Brmme [1974 ], who confine attention to elements of X on and above the diagonal. 

A generalization of vechX for X symmetric is that of putting into a single 

vector just the distinctly different elements of any patterned matrix in which, 

solely on account of the pattern, some elements occur more than once. He then 

define vecp{X) as the vector of distinctly different elements of a patterned matrix 

X, the exact elements in vecp(X) being determined by the nature of the pattern in X . ... 

~~ Distinctly different means functionally independent, so that if a and b are 
distinctly different then oa/ob = o. 
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For example, \rhert X is ske1·r-symmetric ~;t!§ ·define veck(X) (for "vector ske1;r" o:f X) -
as the vector made up from the elements ·belovr the diagonal o:f X; e. g., 

-a a 

0 veck(X) = b (3) 

c c 

Again, this turns out to be a useful concept in deriving Jacobians. other examples 

could be illustrated, such as vecp(X) for ·t.riangule.r, circulant, centrosymmetric, -
or diagonal matrices, and so on. Details and extensions of these ideas (extensions 

to orthogonal matrices, :for example), ivill be reported by one of us (H. V. H. ) in a 

dissertation. 

2. Kronecker Products 

The vee of a product of matrices gives rise to the Kronecker product of 

matrices, defined :for ApX = {a .. } and B X , of orders p X q and r X s respectively, 
... q lJ ... r s 

as A ® B = (a .. B} .v vrith i = 11 • • ·, p and j = 1, • • •, q. Hell-known properties ,.. ... lJ- prAqS 

of the Kronecker product include 

(A ® B) (X ® Y) = AX ® BY , (A ® B)- = A- ® B- , 

(4) 

and (A ® B ) I = A' ® B I ' 

•·rhere, in these expressions, the necessary rank and con:formability conditions :for 

their existence are assumed to be satisfied, and 1·rhere A- is a generalized inverse 

of A such that AA-A =A. 

The relationship bet1·reen A ® B and B ® A is clearly one of sequencing of roi•rs 

and columns, since both have the same order and contain the same terms as elements, 

but arranged in different sequences. Pre- and post-multiplication of either 
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I{ronecker product by appropriate permutation matrices therefore yields the other, 

the particular· form of permutation matrix in this instance being denoted by I( )• ~ ... p,q 

Tracy and Singh [1972] (using the symbol I( )) define I( ) as a rearrangement of 
- q - p,q 

rows of I , obtained by taking every q'th row starting at the first, then every ,..pq 

q' th ro'1>T starting at the second, and so on. For example, the row·s of 

I 
- (2, 3) 

1 . . I . 
~~ ...... ~ ....... ~, :~···· ~ .. 

= 
.:.._:_~1:..-:.~ 
. . 1 1 • • • 

l • l . 1 
I 

(c·.rhere dots represent zeros), are rou-s 1, 4, 2, 5, 3 and 6, respectively, of !6. 

From this it is easily seen that 

I - I = I ... (p,l)- ... (l,p) ... p' 
[I ] I - I 
... (p,q) - .... (q,p) and I I = I _(p,q) ... {q,p) _.pq' (5) 

and that 

B ® A = I (A ® B ) I • .... rxs .... p<q ... (p,r) ... p<q ... rXs .... (s,;q) (6) 

A particular example of (6), derived from using (5), is 

I (B ® A ) = (A ® B )I 
.... (n,n) ... nxn ... nxn ... nxn .... nXn ... (n,n) (7) 

for A and B square, of order n. Another example is ... 

A ® B , = (A ® I ) (I ® B ) = I (I ®A )I (I ® B ) ... pXp ... rxr .... p<p ... r ... p ... rXr ... (r,p) .... r ... p<p ..,(p,r) .... p .... rxr 

-v1hich leads to the determinantal result in (4) because I ® A.,.,v: is block diagonal 
.... r -..t'·P 

vrith r matrices A " on its diagonal. 
-P"P 
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Although the definition of I( ) is given by Tracy and Singh [1972], it i'ras 
- p,q 

MacRae [1974] who introduced the notation I( )' to emphasize its order, namely pq • 
... p,q' 

She called it a permuted identity matrix (a name 1·rhich actually describes any permu-

tation matrix), and defined I( ) as square, of order pq, partitioned into q rovrs 
- p,q 

and p columns of submatrices of order p X q, such that the (i,j)'th such submatrix 
. -· . 

has unity as its (j, i)'th element and zeros eise1vhere. (Actually, MacRae's [1974] 

definition is a mite vague, in regard to specifying the partitioning and the order 

of the submatrices, but her uses of I( ) leave no doubt that the preceding 
- p,q 

definition is 1rrhat is meant. ) 

3. ~roperties of the Vee and Vech Operators 

3.1. Products, traces and transposes 

The definitions of vee and of Kronecker product shmr that vee (xy') = y ® x, 
,_ 

an ex tens ion of i'rhich is 

vec(ABC) = (C' ® A)vecB , (8) 

derived by Roth [1934] and rediscovered by Neudecker [1969]. From this it is easy 

to get 

vec(AB) =(I ®A)vecB = (B' ® A)veci = (B' ® I)vecA (9) 

and for-A non-singular this leads to 

-1 (A-1' -1) vecA = ® A vecA (10) 

A second useful result from Neudecker [1969] is 

tr(AB) = (vecA' )'vecB (ll) 

1rhich, together uith (8), gives 

tr(AX'BXC) = (vecX)'(A'C' ® B)vecX = (vecX)'(CA ® B')vecX (12) 
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And for the vee of a transposed matrix A', :·re have -
vee [ (A 1 ) ,... ] = I ( )vee (ApX ) 

- "%'p - q, p - q 
(13) 

for ! ( q, p) defined in Section 2. 

3.2. Relationships for symmetric matrices 

The number of elements in vech(Xnx ) is, by the definition of the vech 
- n 

operator, !n{n + 1). Hhen X is symmetric, the elements of vecX are those of vecbX 

i·rith some repetitions. Therefore vecX and vechX for symmetric X are linear trans-- -
formations of one another. He represent these transformations by the matrices H 

and G defined, respectively, by the equalities 

vechX = HvecX, vecX = GvecbX and vecX = GHvecX (14) - - ,.. 

rrhere, for X =X' of order n X n, 

H is isn(n +1) X n2 and G is n2 X ¥;n(n+l) . (15) -
Examples of H and G for n = 3, shmm alongside !(3, 3), lTith 11hich they have several 

relationships, are 

I I 
1.. . . . . .. 
• • • I 1. • I • • • 

I I 
. . . . . . 1 .. 

I I 

I I 
. 1. . . . . .• 
• • • I • 1. I • • • 

I I 
. . . . • . .1. ' I = - (3, 3) 

I I 

I I 
. . 1 . . . . .. 

I I 
. . . . .1 ... l I I 
. . . . . . . .1 

I I 
-i 

l. • I • • • I • • • 
:t I :t I 

·2· ·2·. . .. 
:t I I l. 

. ·2, •• ·, 13•. 
and ~9< 6 = 

... '.1.' ... 
I l.l :t 

···.··2,·1i· 

... · ... ' .. 1 
I I 

r
l. • I • • I • 

.1.1 •. 1. 

.. 1· .. '. 
I I - - - - -

. 1. ' .. ' . 
• • • I 1. 1 • • (16) 
• •• I • I . 

I I 

. . 1· .. ' . 
• • • I •! • 
••• J •• ' 1 

I I 

The equation vecX = GvechX of (14), for symmetric X of order n, is true for 

all such X for a unique G, of the form shmm in (16) for n = 3. But this uniqueness e 
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does not apply to H; the form in (16) can be modified, for example,.s~ch that in 
.... 

each rmr that contains t-.;·ro elements !, one of them can be a: and the other 1 -a for 

any a:, lrith a different a: for each such ro'Vr, if desired. Furthermore, G is not -
only unique in the manner described, but it has full column rank in(n +1); and H 

all-rays has full rrn1 rank. 

'Dro useful properties of G and H that hold for all forms of H are 

HG = I:t 
...... • .. .-2 n(n+l) 

and I( )G = G • ... n,n _ ... (17) 

This means that H is a left inverse of G, one form of uhich is 

(18) -... 

This is the form illustrated in (16 ), for which 1re alsd have 

and HI( ) = H • ....... n,n 
(19) 

3.3. Relationships for square matrices 

Suppose A is square of order n, but not necessarily symmetric. Then pre--
multiplying (13) by G' and using (5) and (17) gives G'vecA = G'vecA'. Define 

for i, j = 1, 

that 

vhere 

diagA = diagonal matrix of diagonal elements of A , 

(20) 

, n and uhere 5 .. is the Kronecker delta. Then it is readily shovm 
lJ 

G'vecA = G'vecA' = vech(A +A' - diagA) (21) -

A+ A' - diagA ={a .. +a .. - 5 .. a .. } 
lJ Jl lJ lJ 

(22) 
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for i, j = 1, , n. It might be noted in passing that 

for symmetric A, A + A 1 - diagA = 0 => A = 0 ... 
and (23) 

other1-rise A + A' - diagA = 0 => A = -A 1 

Suppose that 1rith symmetric X ue use AXA' in place of X, in the last equality ,..,.,.. ... 
of (14). Then, on also using (8) ue get 

(A ® A)vecX = GH(A ® A)vecX • (24) ---
And so, on using the second equality in (14 ), l"le have 

(A® A)GvechX = GH(A ®A)GvechX. (25) 

In (24) and (25) X is symmetric. Therefore, in (24) vecX al1·rays has some elements 

repeeted, whereas this is not so for vechX in (25). There, vechX can take any 

value ~re please. 'He therefore let vechX take, in turn, the values of the columns 

of I of order tn(n +1) and so derive 

(A ® A)G = GH(A ® A)G • (26) 
#'011*""1 ...,~ 

From this, for H of (18) and (19), it is then easy to derive 

H(A ® A) = H(A ® A)GH . (27) ---
Determinants that occur in certain Jacobians can be evaluated >'lith the aid of (26 ), 

as is now shmm. 

).4. Determinants 

·He prove the follovTing result: 

IH(A ® A)GI = IAJn+l (28) 
I¥ ,.., ,., ,.. ,.,. 

for A of order n. 



- 9 -

Proof: Consider first the case ivhere the canonical form of A under similarity 
~ -

u-1Au = D exists, 1·rith D being a diagonal matrix of the n latent roots X. of A for 
,. ...... ,. ... 1 ,.,. 

i = 1, ···, n. Then 

IH(A ® A)Gf = fH(UDu-1 ® unu-1 )GI 
,... #V#f# ,.,.,~ _,.,..., ,.., 

= I H(u ® u)(n ® n) (u-1 ® u-1 )al 
,.,.. ,. t1'tt# ,.,. ,.. ""' #Ill# 

= jH(U ® U)GH(D ® D)GH(U-l ® u-1)Gj, from (26) 
NN IVI'tiNIIIlllt N,..,.,,., ,_ ,_, 

= jH(u ® u)af 1H(u-1 ® u-1 )aj IH(D ® D)Gj 
~H ,.H HIV ~ ~ N~ ~,_ 

= jH(u ® u)GH(u-1 ® u-1 )al IH(D ® n)al 
,.,.,_ ,.,#Ill,.,.. ., ,., .. flit# ,._,., 

= IH(U ® U)(u-1 ® u-1)al IH(D ® D)Gj, from (26) ,..., .. ,., ,. , ,..,,.. ,.,.,., 

= IHGI IH(D ® D)Gj 
,.,.. ,.,. ,.,. ,. fllft#. 

(29) 

= jH(D ® D)Gj, from (17). ,. ,.. ,.,. ,. (30) 

The nature of D means that D ® D is a diagonal matrix i'li. th elements ). .). . for 
- ... - l.J 

i,j = 1, ···, n in lexicon order and so, 

I H(A ® A )GI = I H{ G ~rith (i, j) 'th row multiplied by X J •. } f 
N N #Ill# ~ #ttl ,_ ~ J 

n n 
= n A. 1A.. n i(A. .X. +X .X.) by the nature of H (31) 

i=l J j>i J. J J J. -
as illustrated in (16) 

n n n 
=· rr n A. .A. . = n A. ~+1 = 

. l .,. J. J . l J. 
J.= J.::.J. J.= 

(32) 

'Nhich is (28 ). It is easily shmm that this result is invariant to whatever left 

inverse of G is used, for H. -
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If A is such that u-l does not exist in AU = UD, 1·re say that A is defective, -- - ... 
in ~·rhich case the singular-valued decomposition LAM' = a -can be used in the develop- e - --1 ment of (30) in place of U ~U = D. In LAM' =a, L and M are orthogonal matrices 

#t# ~ H ,.,.,.. _,. IW #W 

and ~2 is the diagonal matrix of eigenvalues of AA'. (A here is square and diagonal 

elements of a are the positive square roots of those of a2 • ) It i'Till then be found ... 
that (29) becomes 

I H(A ® A)GI = fH(L'M ® L.'M)Gj jH(A ® fj. )Gj 
-~ ~~ ~~~ ~~H -~ -~ 

= IL'Min+l lain+!, ... - ... by (30) 

= I L' Ml laj. -..., ... because IAM' =A gives A = L'A~ and hence - ... --
whether A is defective or not. Q.E.D. 

4. Applications 

4.1. Linear matrix equations 

The equation 

k I-
E A.XB. + E D.X'E. = C 

i=l"'J.-,..~ j=l-J- -J 

Thus (30) applies 

(33) 

(34) 

in X, of order m X n1 is a broad generalization of linear matrix equations dis-... 
cussed in the literature, one particular form being the Procrustes' problem (e.g., 

Schoneman [1966]). Other special cases are those oft= 0 considered in Lancaster 

[1970], Rao and Mitra [1971], and lilimm.er and Ziebur [1972), and, the particular 

case AX + XB = C in Hart1·rig [1975]; and A'X ± X'A = C in Hodges [1957]. All of 
~N ~ - ~ 

these and more are embodied in (34 ), 1·1hich can be solved directly, just as they 

stand, by using the vee operator, as in Vetter [1975]. 
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Taking the vee of' both sides of' (34) and u~ing (8) and (13) gives 

k ~ 

{ Z (B! 0 A. ) + [ Z (E '. ® D . )Jr ( ) } vecX = vecC • 
i=l .... 1 .... 1 j=l -~ -J ... n,m .... 

(35) 

Solving this is easy: if the matrix multiplying vecX is non-singular, there is 

but a single solution for vecX, other~>rise there are many solutions, based on any 

generalized inverse of that matrix {see, for example, Searle [1971, p. 9, Theorem 

2]). For any solution vecX,·uith given m and n, X is then uniquely determined. 
- ... mxn 

Simplifications for certain special cases are available in Kadane et al. [1977]. 

4. 2. Jacobians 

If y(x) is a vector of' n differentiable functions of the elements of x, of 
~... ... 

order n, of such a nature that the transformation x - y is 1-to-1, then the Jacobian 
N 

of the transformation is defined as the absolute"·value of the determinant 

(36) 

for i, j = 1, n. Vector representation of (36) is 

(37) 

In the distribution theory of multivariate statistics we often need the Jacobian 

of a 1-to-1 transformation from variables represented by X to those represented by 

Y. He first consider the case of X and Y non-symmetric or, to put it more care-

fully, the case of X and Y each consisting of distinctly different elements. 

{a) Non-s etric transformations 

The Jacobian matrix of the transformation X - Y, when X and Y each consist of 

distinctly different elements, is the matrix of every element of X differentiated 
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1-rith respect, to every element of Y. By the definition of the vee operator and 

analogous to (37) the Jacobian is therefore the absolute value of 

J _ J cvec~j _ 1/l avec!' _ 1/ J 
X ... Y - 0vecY - (lvecX - Y .... X 

N #W ~ ..., 

(38) 

as given by Neudecker [1959]. vle give three examples. 

(i) The transformation Y.,.,v = AX-nv B has Jacobian 
-.I:'" q_ ........ J:N' q_ 

(39) 

This is so because 

= '()vee(~~)~ 
0vecX -

= 10 (~' ®~)vee~, 
0vecX ' -

from (8) 
... -

= IB' ®AI = jAjq IBIP, from (4). 
#W ,.., ., ,... 

Result (39) is well-kno1-m and is to be found, for example, in Deemer and Olkin 

[1951, Theorem 3.6] and Neudecker [1969, equation 7.1.1]. 

The preceding example is a linear transformation from X to Y. For non-linear 

transformations, (38) can be used only through invoking the property that even then 

the total differentials are linear functions of each other; i.e., for vector vari-

ables x and y (•dth x having distinct elements) there exists a matrix M such that 

dy = Mdx; and also, -
by a theorem from Neudecker [1969]. 

c,y 
......:::. = M' 
(lx ... ' 

(40) 



- 13 -

This result is, of course, also true for linear transformations, although its 

use is redundant in such cases. Nevertheless, it is useful to observe for the 

linear case Y = AXB just considered, that --
dY = A(d.X)B (41) 

.... --
and so 

d(vecY) = vec(dY) = (B' ® A)vec(dX) = (B' ® A)d(vecX) 

leads by vmy of (40) to 

0vecY 
.... (B'®A)' 

0vecX = 

and hence to (39 ). 

(ii) For ~nxn = x-1, the Jacobian is Jx ..... y = ~~~ 2n. This transformation is 

non-linear and so l"re take differentials of XY = I, giving 0 = di = d(XY) = X(dY) + ,.,I'J ,., ,., 

(dX)Y, and so 

dY = -X-1 (dX )X-l • (42) - -
Since this is akin to (41) ;·re can immediately use (40), and through (39) get, on 

ignoring sign, 

(43) - .... 

This result is, of course, available in many places; e.g., Anderson [1958, p. 349], 

Dl·zyer [1967, equation (15. 9) ], and Kshirsagar [1972, p. 525, but with failure to 

acknmrledge non-symmetry]. 

p p i-1 p-i 
(iii) For Y = X "i'!e have dY = Z X (dX)X , so that taking vee of both sides 

~ ~ i=l~ N ,., 

and using (8) gives 

vec(dY) = ~ (X'p-i ® Xi-l)vec(dX) 
i=l -

(44) 
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from vrhich (38) yields 

For non-defective X, as defined follmving equation (32 ), vrith D being the diagonal - -
matrix of the eigenvalues, this becomes 

{ p .. lp .. 1 p .. lp ""1} = I dg !: A. p-\ l.- !: ). p-\ l.- • • • !: ), P-:)_ l.- !: h p-\ l.- I 
i=l l 1 i=l 1 2 i=l n-1 n i=l n n 

(45) 

where n is the order of X and dg{ J is a diagonal matrix having the terms in the 

braces along its diagonal. Therefore 

n n p 
1/ J. = I1 I1 !: h ~-r). ~-1 

x .... y · 1 · 1 1 l. J - - l.= J= r= 
(46) 

In the literature ue have found only a special case of this, namely for p = 2, 

n n n n n n 
= I1 I1 (h . + A. • ) = ( II A. • ) II I1 ( 1 + h ./A. . ) , 

i=l j=l l. J i=l l. i=l j=l J l. 
(47) 

as in Neudecker [1969]. 

(b) S etric transformations 

Comparable to (38), vrhen X = X' and Y = Y', 1rre have 

= ';wee~~ 
Jx .... Y 0vechY (48) - - -

Examples 
~ 

(i) For Y = AXA', the Jacobian is --
'AI -(n+l) . 

Jx .... Y = - (49) 
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This is so because 

= Jovech(~' )I = , 0~(~ ®~)vee~, 
ovechX ~vechX , - -

from (8) and (14) - -
-- ~a~(~® ~)~vee~, 

ovechX , from (14) again 

-
= jH(A ® A)GI = IAin+l , from (28). 

,.. ,.., ,., ,.., ,. (50) 

(ii) The transformation Y = X-l for~ symmetric, has Jx .... y = ~~~n+l. In this 

case (42) still applies, but because X is symmetric vre now· use (4 9), rather than 

(39), and so, after again ignoring sign, Jx .... y = l~ln+l, as in Dwyer [1967]. Note 

2 - -
the difference between this and jxf n for the non-symmetric case in (43). -

(iii) For Y = xP for X = X' and Y = Y' vre use (14) to change (44) from vee to 

vech vectors, which gives 

(51) 

and this leads to 

n n p 
1/ JX ... y = IT IT !: >. ~-rA. ~-l , 

i=l j=i r=l ~ J 
(52) 

I'Jhich differs from (46) for the non-symmetric case in that j starts at 1 in (46) 

but at i in (52). 

(c) other patterned matrices 

For patterned matrices of any sort, in i'Thich ~l and ~2 may be of different 

patterns but each having the same number of distinctly different elements, ue can 

consider the transformation ~l .... ~2• Let M denote a class of matrices of pattern 
-Pt 
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p. v-ri th X . E M 
l -l -Pt 

fori= 1, 2. Define vecp.(X.) as the vector of all distinct 
1 ...,l 

elements of X .• 
,.,.J. 

Then, corresponding to (14), we have 

veep. (X.) = P.vec(X.) and vec(X.) = Q.vecp. (X.) = Q.P.vec(X.) 
J. ,..J. -l _l ,..l _l l ..,J. -:t-1 _l 

\'There P. and Q. correspond exactly to H and G of (14), a.hd" have similar properties: 
~1 ~~ ~ ~ 

P.Q. = I, Q. has full column rruli~ and is unique, in the sense that G is, and 
..,J...,;J. - ... l ,.. 

P. = (Q!Q.)-1Q! is one possible value of P .• Then for the transformation x,..1 ~ x_2, 
... l ... J....;l ... l _l 

linear or non-linear, the differentials of ~2 are linear in those of ~l (Deemer and 

Olldn [1951] ); 1•Te define this linearity in terms of the matrix ~12 by 

(53) 

Nou 

and so, on applying (40 ), 

J.x" x = I ... P, clr,Q-1 · ... 1 ........ 2 ~ .:;...,(:! 
(54) 

The absolute value of this is the Jacobian of a transformation from ~l of. pattern 

p1 to ~2 of pattern p2• 

Example 
~ 

~l = ~2~2 for ~2 l01·1er triangular. 

Define vecp~2 as vect~2, just lil>;:e vec~2 but vTi th vec~2 = 32 vect~2 "tvhere S'2 has 

the form of G in (16) but i"lith all off-diagonal submatrices being null, and then 

;32 is a possible _:2• And since ~l is symmetric, 1'1ith vecpll = vec~1, ue have 

_:1 = ~ as in (14 ). To derive ~12_, note that 
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so that from (8) · 

vrhich, 'on using (7) and (13) becomes 

vee (dX_1 ) = [I 2 + I( )](x2 ® I)vec (dX2 ) • 
-n - n,n - - .... 

Therefore, from (53) 

= [I 2 + I.,.. )](x2 ® I) .... n .... \n,n .... .... 

and so in (54) 

It can then be.shO\m that this reduces to 

n n ]n-i+l 
Jx_l ..... _x2 = 2 n [x2(ii) 

i=l 
(55) 

as in Deemer and Olkin [1951, Theorem 4]. 

4.3. Uses in multivariate statistics 

There are many uses for vee and vech operators in the distribution theory of 

multivariate statistics, in addition to their use in differentiation and deriving 

Jacobians. Vle give but four such examples. 

(a) Distributions of transformed variables 

Suppose X= [x1 ••• x ] is a matrix of random variables having mean value 
,.. , Aotc 

M= [m • • • m ], 1·rith columns x. each having variance-covariance matrix V, and all 
.... 1 .... c -J .... 

pairs of columns uncorrelated. He summarize this as 

X has uncorrelated columns x. ,.... (m ., V), for j = 1, 
-J -J -

' c. (56) 
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A question arises as to the distribution of transformed variables BX and XC for -- -
some matrices B and C. The case of BX is easy: 

BX hes uncorrelated columns Bx. "" (Bm ., BVB' ), for j = 1, • • ·, c. (57) ,..,,.. ,.,..,J ,..,..,J #¥,.,.,.. 

For XC, first observe that from the uncorrelated and variance properties of the 

columns of X in (56) 

v 0 0 - - ... 
var(vecX) = 0 V 0 = (I® V) (58) 

0 0 v - -
and so (57) is vec(BX) ,... [vee (BM), I® BVB' ]. Then '\lli th E (XC ) = M:: we also have 

~ NN ,.,....,._, ....,. -
var [vee (XC ) ] = var [ ( C ' ® I )vecX] = ( C 1 ® I )(I ® V )( C ® I) = C 'C ® V 

and so 

vec(XC) ~ [vec(MC), C'C ® V] . (59) 

The dispersion matrix here, C'C ® V, summarizes the result given in Anderson [1958, 

penultimate equation follo,>ring (2) on p. 52]. '\tle also have the derivation, for 

X 
... pXq 

var[vec(X'A)] = var[(A' ® I)vecX'] = var[(A' ® I)I( )vec(X)], from (13) 
IJIV ""* ~ ,.,. ,.,,...q,p ,.. 

= (A 1 0 I ) I ( ) (I 0 V) I ( ) (A ® I) 
- ... - q, :p - - - p, q ... ... 

= (A'VA ® I) , (60) 
IV -.,..., ,._ 

after using (7), (5) ~nd (4). Many useful special cases can be derived from these 

results, uhen features such as M = IJ.1 ', M = 1-lii ', BVB' = I, C 'C = I and A 'VA = I 
~~ ~N ~ ~ ~ ~ H~ 

arise, either •'lith or lrithout normality. 
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(b) The multivariate line,~ model 
,...~--~~ ......... ~ 

Under.normality assumptions, the traditional univariate linear model y = Xb + e 

can be denoted as 

y ~ N(Xb, a2r) (61) ,. ,.._. ,.,. 

1'lhere Xb is the expected value of y and a2r is its variance. It is shm-m in -
Searle [1978] hm·r the customary multivariate linear model YnX = XnX BqXp + Enx 

,..p ... q,... -P 

can easily be formulated in a similar manner as the univariate model 

vecY ~ N[(I ® X)vecB, t ® I ] 
AI ...,p ,_, N N .... n 

(62) 

v-rhere the rm·1s of E are n, independently and identically, normally distributed -
random vectors having zero mean and variance-covariance matrix ~. 

The formulation (62) provides ready opportunity for considering the multi-

variate linear model in a univariate frame"imrlt. For example, testing the hypothesis 

H: K'b = m in the model (61) can be done by uay of the statistic F = Q/s02 where K' --
has full rm·r ra.nlt s, vrhere 02 = y'Py/f for P = I - X(X'XfX' and f = n - r(X), and ,_.N,_. ..,_,.,... ,_ 

uhere 

Q = (K'b0 - m)'[K'(X'X)-K]-1 (K'b0 - m) (63) 
,..,. #Iff# I¥ - *""',., #It# ,... 

for b0 = (X'X:fX'y. Through the use of (62), Searle [1978] shovrs hmv adaptation -
of (63) leads to Hotelling's ~-statistic for testing, in the multivariate model 

Y = XB + E, the hypothesis that some rm·rs of B have pre-assigned values. ,., .,..,_ ,... 

(c) Fourth moments in a eneral linear model 

A more general representation of the linear model is y = X~ + Zu vmere ~ - -
represents fixed effects and u represents random effects having zero mean and -
variance-covariance matrix D. Then var(y) = V = ZDZ'. A common form of D is the --
follmring function of the elements of a2 = ( ci:}, i = 1, • • • 1 k, - ~ 
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(64) 

Under these conditions Anderson et al. [1977] show, using the tools discussed here, 

that a matrix involving fourth moments of y, namely -
F = var[(y- X~)® (y- X~)]~ var[vec(y- X~)(y- X~)'] (65) 
#ttl rt# HN Altllr# 1'1# ~ ""' ,..,,.,_ 

is 

'·:here dg[x] is e. diagonal matrix of the elements of x and D[y) has the same form - ... 
as (64), using the kurtosis parameters yi in place of the variances ~· In the 

case of normality, (66) reduces to F = (V ® V)[I 2 + I( )]. Analogous results 
... ... - ... n ... n,n 

are given by Pukelsheim [1977, p. 327] and Rao [1971, p. 447]. 

(d) The Hishart Distribution 

Suppose the columns of X are independently, identically normally dis-_:pxn 

tributed ivith mean 0 and dispersion matrix V. \'ie urite, similar to (56), - -
X has uncorrelated columns x.,..., i.i.d. N(O, V), for j = 1, ···, n. (67) 

... J 

Then S = XX' follov1s the p-dimensional 1r.Jishart distribution 1-rith scale matrix V 
n 

and n degrees of freedom. Because XX' = !: x x '., the mean value of S is readily 
j=l_j_J 

obtainable from (67) as 

E(S) 
n 

= I: E (x .x '.) = nV 1 
j=l ... J ... J 

a ,,rell-knmm result. Second moments of elements of S come from 

n n 
var (vecS) = var[ E vee (x .x'. )] = E var [vee (x .x'.)] , 

... j=l -J-J j=l -J-J 

(68) 
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using the independence of the ;j' s given in (67). Then, by having ;j play the 

part of y - X~ in (65), the consequent normality applied to (66) gives -... 

var(vecS) = n(V ® V)[I 2 + I( )] • ... - _ ... n ... n,n 

These succinct matrix representations, (68) and (69), correspond to the scalar 

expressions of, for example, Anderson [1958, p. 161]. 
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