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Abstract

The vec of a matrix 5 stacks columns of § one under another in a
single column; the vech of a square matrix 5 does the same thing but
starting each column at its diagonal element. The Jacobian of a one-
to-one transformation X - Y is then ”a(vecg)/a(vecz)ﬂ vhen X and Y are
non-symmetric and it is ”a(vechf)/a(vechz)ﬂ vhen X and Y are symmetric.
Kronecker product properties of vec(ﬁgg) = (S' 8>é)vec§ permit easy
evaluation of this determinant in many cases. They also provide

succinet descriptions in multivariate statistics.

1. Introduction

An operator on matrices in which there has recently been resurgent interest
in statistics is that of stacking the columns of a matrix one underneath the other
to form a single vector. The operator is coming to be known as vec. Thus, for

X,, 1i=1, »++, ¢, being the ¢ columns of the r X ¢ matrix X,

~

B3]
X = Lfl X, e fc] end  vecX = fx,| . (1)
-~C -~
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An early reference to this idea is Sylvester [1884], who used it in connection with

linear equations. Roth [1934] develops results for using the operation on a product ‘
matrix, Aitken [1949] mentions the idea in connection with Jacobians and, more

recently, Neudecker [1968, 1969] has exploited the concept in a variety of ways for
statistics. The operation has been referred to variously as the column string ofz(

and the pack of )f, with veci( (for "vector form of Z(") being the description cur-

rently in vogue. The equivalent notations vecz.( and vec(‘)‘() are used interchangeably,

the parentheses being employed only when deemed necessary for clarity.

Variations on vecX are also available. For )‘E square, Searle [1978] defines
vechz'( in the same way that vec?.( is defined, except that for each column of X only
that part of it which is on or below the diagonal Of.)..( is put into vechz'( ( "Yector-
}_1alf" of )5). In this way vechz'(, for l( symmetric, contains only the distinctly

different elementd of X, a feature that is useful in deriving Jacobians for trans-

formations from one symmetric array of variables to another. For example, with ‘

b
X = [a ’, (vecX)' = [abbec] eand (vechX)' = [a b cl. (2)

Ideas similar to vechX for symmetric X, but with different notations, have been
used by Tracy and Singh [1972] and Vetter [1975], and also by Aitken [1949] and by

Browme [197hk], vwho confine attention to elements of X on and above the diagonal.

~

A generalization of vech’).( for }f symmetric is that of putting into a single
vector just the distinctly different elements of any patterned matrix in which,
solely on account of the pattern, some elements occur more than once, Ve then
define vecp(')v() as the vector of distinctly different elements of a patterned matrix

X, the exact elements -in vecp(X) being determined by the nature of the pattern in X.

* Distinctly different means functionally independent, so that if a and b are
distinetly different then 3a/3b = 0.
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For example, vhen X is Skew-symmetric ¢ défine veck(X) (for "vector skew" of X)

" as the vector made up from the elements bélow the diagonal of X; e.g.,

-
0 -a -b.] a

X=la O -c|, veck(X)=]|Db |. (3)
b c ol c

Again, this turns out to be a useful concept in deriving Jacobians, Other examples
could be illustrated, such as veep(X) for trianguler, circulant, centrosymmetric,
or diagonal matrices, and so on. Details and exfensions of these ideas (extensions

to orthogonal matrices, for example), will be reported by one of us (H.V.H.) in a

dissertation,

2. Kronecker Products

The vec of a product of matrices gives rise to the Kronecker product of

matrices, defined for ﬁqu = {aij} and EIXS’ of orders p X q and r X s respectively,
as é ®>§ = {aijg}erqs vithi=1, ¢+, pand j=1, ¢+, gq. Well-known properties

of the Kronecker product include

GopEey) -mer, op -aer,
(&)
lhop © Bl = 1417 127 ama o)y =nrep,

vhere, in these expressions, the necessary rank and conformability conditions for
their existence are assumed to be satisfied, and where A  is a generalized inverse

of A such that AA™A = A.

~~ ~

The relationship between A ® B and B ® A is clearly one of sequencing of rows

~ L ~ -

and columns, since both have the same order and contain the same terms as elements,

but arranged in different sequences., Pre- and post-multiplication of either
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Kronecker product by appropriate permutation matrices therefore yilelds the other,
the particular form of permutation matrix in this instance being denoted by I (P,
Tracy and Singh [1972] (using the symbol E(q)) define .].:(p,q) as a rearrangement of
rows of ,:.[pq’ obtained by taking every gq'th row starting at the first, then every

q'th row starting at the second, and so on. For example, the rows of

.1.(2,3)= S RN

(where dots represent zeros), are rows 1, 4, 2, 5, 3 and 6, respectively, of Ig-

From this it is easily seen that

= = !t =
0" X " Zeol “Xew ™ Xpaier) “he )
and that
ErXs ® f,‘pxq = I(p,r)(épxq ..rXs)I(s,q) (©)
A particular example of (6), derived from ‘using (5), is
...(n, )(...an ...nxn) = (ﬁ‘an ..an)I(n,n) (7)

for A and B square, of order n. Another example is

® B = (A ®I)(I ®BrXr)

= ® A
Bop @ 2mr T Vpp ¥ T, 0) T @ Ao, )

r)(I ® grxr

which leads to the determinantal result in (4) because I ® A Xp is block diagonal

with r matrices ApxP on its diesgonal.
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Although the definition of I(P is given by Tracy and Singh {1972], it was

:Q)
MacRae [1974] who introduced the notation I(p Q) to emphasize its order, namely pq.
~ 4 H

She called it a permuted identity matrix (a neme vhich actually describes any permu-

tation matrix), and defined E ,q) as square, of order pq, partitioned into q rows
and p columns of submatrices of order p X g, such that the (i,j)'th sqch submatrix
has unity as its (j,i)'th element and ze;bs eléé;here. (Actuall&; MécRée;s fl??h]
definition is a mite vague, in regard to specifying the partition;nézépd the order

of the submatrices, but her uses of I(P q) leave no doubt that the preceding
~\ Py

definition is vhat is meant. )

3. Properties of the Vec and Vech Operators

3.1. Products, traces and transposes

The definitions of vec and of Kronecker product show that vec(xy') =y ® x,

an extension of which is
vec(ABC) = (C' ® A)vecB , (8)
derived by Roth [1934] and rediscovered by Neudecker [1969]. From this it is easy
to get
vec(AB) = (I ® A)vecB = (B' ® A)vecI = (B' ® I)vecA (9)
and for-A non-singular this leads to

1 -1

vecé— = (é '@ é"l)vecé . o - (10)
A second useful result from Neudeckef [i969] is

tr(ég) = (vecé')'vec? - (11)
vhich, together with (8), gives

tr (AX'BXC) = (vecX)'(A'C' ® B)vecX = (vecX)'(CA ® B')vecX . (12)

~ rarire
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And for the vec of a transposed matrix A', wre have

vec[(AY) p)vee (a_ ) (13)

=T
- qxp] ~(q, ~DXQ

for I(qu) defined in Section 2.

3.2. Relationships for symmetric matrices

The number of elements in vech(an n) is, by the definition of the vech

operator, n(n +1). When X is symmetric, the elements of vecX are those of vechX

~

with some repetitions. Therefore vecX and vechX for symmetric X are linear trans-

~ ~

formations of one another. We represent these transformations by the matrices H

~

and G defined, respectively, by the equalities

vechX = HvecX, vecX = GvechX and vecX = GHvecX (1)

~ ~ ~

vhere, for X = X' of order n X n,

~

His 2n(n+1)x n® and G is n® X In(n+1) . (15)

Examples of H and G for n = 3, showm alongside I(3 3) 17ith which they have several
~ ~ ~ >

relationships, are

-~ . . - g . \ -
lo"ioolo.n ) ) li.l..l'
...l o-"-u | . . .l'.l'
eve e lo' lno ves oo ool o0 o
_-I__l__-‘ _:’]__!1_ ! ..-'...'.._
l' 1 -di"oo:ioo l| |
_ . o‘oo¢‘0.0 _ ”21”.12” _ . 0[00'0
E(3’3) - oot‘ol'.oi‘- ] §6x9 = 1= "l“i"— =" and 9%6 -~ .‘.lli.l . -(16)
ooolooolo . "‘I' il.i. ooolo!o
""‘-"'."'" co'lo»:’g‘o:‘o ""."""-
ovlivoolvca ""l" -I--- ..ll'.l'
v-tlvol cee nao"-o'vol oco.o]-‘-
ovre eso -.l ~ - see oo l
! - — ! ! b

The equation vecX = GvechX of (14), for symmetric X of order n, is true for

all such X for a unique G, of the form shovm in (16) for n = 3. But this uniqueness ‘
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does not apply to B the form in (16) can be modified, for example,.such that in
each rov that contains two elements 3, one of them can be & and the other 1-a for
any o, with a different o for each such row, if desired. Furthermore, g is not

only unique in the menner described, but it has full column rank 3n(n+1); and H

always has full row rank,

Two useful properties of G and H that hold for all forms of H are

HG = .\I.%-n(n*l) and E(n,n)g =G (17)

This means that H is a left inverse of G, one form of which is
= 1 -1 t
H=(c'G)c . (18)
This is the form illustrated in (16), for which we alsc have

=~,J;- +
gg “pgnz I(n,n)] and HI

~

=H. (19)

3.3. Relationships for square matrices

Suppose A is square of order n, but not necessarily symmetric. Then pre-

multiplying (13) by G' and using (5) and (17) gives G'vecA = G'vecA'. Define

diagA = diagonal matrix of diagonal elements of A ,

(20)

= {aijaij}
for i,j = 1, -+, n and where 6ij is the Kronecker delta. Then it is readily showm
that

G'vecA = G'vecA' = vech(A + A' - diagA) (21)
where

+ AY o i = + -
f A diagh {aij 243 5ijaij} (22)
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for i, =1, ***, n, It might be noted in passing theat

for symmetric A, A+A" - diagh = 0= A =0

and (23)
otheriwise A+ A" - diagh = 0= A = -A",

Suppose that with symmetric X we use AXA' in place of X, in the last equality

of (1+). Then, on also using (8) we get

(A ® A)vecX = GH(A ® A)vecX . (24)

~r ae ~

And so, on using the second equality in (14), we have

(A ® A)GvechX = GH(A ® A)GvechX . (25)

~re o~

In (24) and (25) X is symmetric. Therefore, in (24 ) vecX always has some elements

repested, whereas this is not so for vechX in (25)., There, vechX can take any

value we please. Ve therefore let vechX take, in turn, the values of the columns

of I of order Zn(n +1) and so derive

(A®A)G =GH(A ® A)G . (26)
From this, for H of (18) and (19), it is then easy to derive

K@ © ) = o A @)

Determinants that occur in certain Jacobians can be evaluated with the aid of (26),

as is now showmn.

3.4, Determinants

We prove the following result:

5(a & a)g| =A™ (28)

for A of order n.
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Proof: Consider first the case where the canonical form of A under similarity

‘ U-lAU = D exists, with D being a diagonal matrix of the n latent roots ki of A for

i=1, *++, n. Then

|B(A ® A)G]

]

(™ & U™l

l5(u e u)(D ® D)(U™ ® U™

|H(U ® U)GH(D ® D)GH(U ® g‘l)gl, from (26)

~ A e

]

|H(U ® U)al 1H(U'l ® U'l)Gl |H(D ® D)G|

|5(u @ v)erv™t @ uh)g| |E(D ® D)

]

|6 & U)(U™ ® u™)a| |H(D ® D)a|, from (26)

|Ho| [E(D ® D)ol (29)

|E(D @ D)a|, from (17). (30)

The nature of D means that D ® D is a diagonal matrix with elements >‘i>‘,j for

~

i,j =1, ¢++, n in lexicon order and so,

]

|H(A ® A)G| = |B{G with (i,J)"th row multiplied by M’*j}l

n
= !'I)sk 3()\?\ +A>\ )bythe nature ofH (31)
! as illustrated in (16)
n n n
=0 OAA. =T )\’;ﬂ = |a)®*t (32)
i=1l j=2i J i= ~

which is (28). It is easily shown that this result is invariant to whatever left

inverse of G is used, for H.
-~ ~
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If A is such that U":L does not exist in AU = UD, we say that A is defective,

~ow

in vhich case the singular-valued decomposition LAM' = A can be used in the develop-~ .

ment of (30) in place of U AU = D, In 1AM = A, L and M are orthogonal matrices

and 42 is the diagonal matrix of eigenvalues of AA'. (A here is square and diagonal

elements of A are the positive square roots of those of A%.) It will then be found

that (29) becomes

il

|H(A ® A)g] = [H(L'M ® L'M)G| |§(e ® )G

' n+l) by ( 30)

[
=y
e

n

|a]?*t, (33)

because IAM' = A gives A = L'AM and hence |A| = IL'M[ |A| Thus (30) applies

~ Nev

whether A is defective or not. Q.E.D.

~

4, Applications

4.1. Linear matrix equations

The equation

k 4

I Y ED K, - ()
in X, of order m X n, is a broad generalization of linear matrix equations dis-
cussed in the literature, one particular form being the Procrustes' problem (e.g.,
Schéneman [1966]). Other special cases are those of £ = O considered in Lancaster
[1970], Rao and Mitra [1971], and Vimmer and Ziebur [1972], and, the particular
case AX + 1(5 = S in Hartwig [1975]); and é'l( + ‘}'('é = S in Hodges [1957]. All of

these and more are embodied in (34), which can be solved directly, just as they

stand, by using the vec operator, as in Vetter [1975].
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Taking the vec of both sides of (34) and using (8) and (13) gives

Z (B!®A +[Z E!®D .]I }vecX=vecC.

{-1(~ A +| Z @5 @ D))t gy} veek = vece (35)
Solving this is easy: 1if the matrix muwltiplying vecX is non-singular, there is
but a single solution for vecX, otherwise there are many solutions, based on any
generalized inverse of that matrix (see, for example, Searle [1971, p. 9, Theorem
2]). For any solution vecX, with given m and n, X o

Simplifications for certain special cases are available in Kadane et al. [1977].

is then uniquely determined.

4.2. Jacobians

If y(x) is a vector of n differentiable functions of the elements of x, of
order n, of such a nature that the transformation x - y is 1l-to-1, then the Jacobian

of the transformation is defined as the absolute value of the determinant

-1/ {2 (36)
for i,j =1, *++, n. Vector representation of (36) is
X Y
oy = lay /55 (37)

In the distribution theory of multivariate statistics we often need the Jacobian
of a 1l-to-1 transformation from variables represented by X to those represented by

Y. We first consider the case of X and Y non-symmetric or, to put it more care-

-~

fully, the case of X and Y each consisting of distinctly different elements.

(a) Non-symmetric transformations

The Jacobian matrix of the transformation X -+ Y, when X and Y each consist of

distinctly different elements, is the matrix of every element of X differentiated
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with respect to every element of Y. By the definition of the vec operator and

analogous to (37) the Jacobian is therefore the absolute value of .
avecx JdvecY
J‘}S-.z avecY / ‘a\recx B J3~§ (38)
as given by Neudecker [1969]. We give three examples.
Examples
(1) The transformation Y Yq = KX px E has Jacobian
Ty = 187 |B7P (39)
This is so because
dvec (AXB)' 5(B' ® A)vecX
1/ Jz‘(* Y = ave‘;%“' ' = f—= Bvez)f =l from (8)

|B' ® a] =|a]? |B|P, from (4).

Result (39) is well-knowm and is to be found, for example, in Deemer and Olkin

[1951, Theorem 3.6] and Neudecker [1969, equation 7.l.lj.

The preceding example is a linear transformation from)f to z For non-linear
transformations, (38) can be used only through invoking the property that even then
the total differentials are linear functions of each other; i.e., for vector vari-
ables .}f and Z (with f having distinct elements) there exists a matrix ‘D_/I such that

dy = Mdx; and also, == =M', (40)

by a theorem from Neudecker [1969].
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This result is, of course, also true for linear transformations, although its
use is redundant in such cases, Nevertheless, it is useful to observe for the

linear case Y = AXB just considered, that
dY = A(dX)B (k1)

and so

d(vecz) = vec(d}') = (‘13' ® é)vec(di() = (g' ® f:)d(veci()

leads by way of (40O) to

and hence to (39).

w1l . . _ 2n . . .
Yoxn = X 75 the Jacobian is Jy 4 = ]z[ . This transformation is
non-linear and so we take differentials of XY = I, giving 0 = dI = d(XY) = X(dy) +

~

(ii) For

(&X)Y, and so

dy = -1(’ (). k2)

Since this is akin to (41) we cen immediately use (40), and through (39) get, on

ignoring sign,

-1 - -1~ 2
S i I e I b A (:3)

~

This result is, of course, availeble in many places; e.g., Anderson {1958, p. 349],
Dwyer [1967, equation (15.9)], and Kshirsagar [1972, p. 525, but with failure to

acknowledge non-symmetry].

(iii) For Y = X® we have dY =

N Mg

31 (ax )P, so that taking vec of both sides
i l~ ~ ~e
and using (8) gives

p

vee(ay) = = x'P @ x 1 )vee (ax) (44 )
D= X X
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from vwhich (38) yields

For non-defective X, as defined following equation (32), with D being the diagonal

matrix of the eigenvalues, this becomes

Y, =% Pl e gl H]
~ o~ i=1 "
. P . s P P
_ p-i, i-1 p-i i-1 p-i, i-1 p-i, i-X
=| e {iil"l S ZM e lzl)"n-]]?‘n Zn 2 (5)

where n is the order of X and dgf } is a diagonal matrix having the terms in the
braces along its diagonal. Therefore

n n

P

r. -1
1/J =0 0 PRI, 46)
XY 4ol je1p=1 * 9

In the literature we have found only a special case of this, namely for p = 2,
n

Y, 4= T n(x +1.) = (Hxi) n(1+x/x), (47)
2= i=1 3= J i=1 -1 j=1

as in Neudecker [1969].

(b) Symmetric transformations
Comparable to (38), when X = X' and Y = Y', we have

~

avechX 1dvechY
JX-»Y = avechY = avechX = l/JY-+X : (48)
Examples
(1) For Y = AXA', the Jacobian is
~(n+l
Ty = 1a7E “9)
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cX

dvech(AXA*') 3H(A ® A)ve
l/JX_’Y = avec;f = |-= ;vech ~!, from (8) and (14)
dH(A ® A)GvechX
= Sveonn , from (14) agein
= (e ® aA)al = |A]™*,  from (28). (50)
(ii) The transformation Y = XL for x symmetric, has J = [x]*,  1In this
~ ~ ~ 4 X"’Y i

case (42) still applies, but because X is symmetric we now us
(39), and so, after again ignorihg sign,

the difference between this and lX[2

(iii) For Y = XP for X = X' and

vech vectors, which gives

{§—»Y
n ~

Y

"~
~

e (49), rather than

‘n+l

Note

= |x , as in Dwyer [1967].

for the non-symmetric case in (43).

= Y' we use (14) to change (4l4t) from vec to

P . .
-1 i-1
Y3y 4= |HE 0" @ 27, (51)
and this leads to
n n p
-1, -1
Vi, ,= 0 0 £} AT (52)
~ o~ i=1l j=i r=1

vhich differs from (46) for the non-symmetric case in that j starts at 1 in (46)

but at i in (52).

(c) Other patterned matrices

For patterned matrices of any sort, in which X

1 and X2 may be of different

patterns but each having the same number of distinctly different elements, we can

consider the transformation X

1" X

20

ILet M
~Dy

denote a class of matrices of pattern
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Py with Xi e M for i=1, 2, Define vecpi(Xi) as the vector of all distinct

~x1

elements of X,. Then, corresponding to (14), we have
veep, (X ) = P, vec(X ) and vec(zi) = givecpi(gi) = gifiveCQ§i)

where P, and Q. correspond exactly to H and G of (14), and have similar properties:

Pigi =1, Qi has full column rank and is unique, in the sense that G is, and

- -1, . . R
~1 (81.1) 31 is one possible value of fi' Then for the transformation El.“ 52,

linear or non-linear, the differentials of X2 are linear in those of Xl (Deemer and

Olkin [1951]); we define this linearity in terms of the matrix C12

vec(qzl) = Elzvec(dfe) . (53)

Novr

veep, (&X, ) = Pyvec(dX)) = P,C,, = P1C10% X,)

and so, on applying (40),
% %, T |21C15%] - (54)

The absolute value of this is the Jacobian of a transformation from Xl of pattern

Py to 32 of pattern DPy-

Example

= 1
§l X2X2 for X2 lower triangular.

Define vecpi(2 as vecth, Jjust like vechX2 but with vecX2 = Q2vectx2 where Q2 has

the form of G in (16) but with all off-diagonal submatrices being null, and then

Qé is a possible Pé- And since Xl is symmetriec, with vecpl)fl = vecth, we have
P, =H as in (14). To derive C,5s note that

= ' : )
6%y = (X )p + Xp ()

~
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so that from (8)

vec(dX,) = (X, ® I)vec(d&X,) + (I ® X,)vee(dX)) ,

vhich, on using (7) and (13) becomes

vec (d?..(l) [Io + E(n,n)]sz ® E)vec(di(z) .

~ll

Therefore, from (53)
I, .
~(n,

| N
I

12~ [Enz * n)](,}..{Q ®E)

and so in (54)

T ox, T G2 I n) % @ DG -

It can then be.showm that this reduces to

I _ Qn;; [ ]n-i+i ( )
X=X Ty "2(11) »

as in Deemer and Olkin [1951, Theorem 4].

4,3. Uses in multivariate statistics

There are many uses for vec and vech operators in the distribution theory of
multivariate statistics, in addition to thelr use in differentiation and deriving

Jacobians. We give but four such examples,

(a) Distributions of transformed variables
Suppose X = [Xl xc] is a matrix of random Va_riablés having mean value
M= [ml mc], with columns Xj each having variance-covariance matrix V, and all

~ ~

pairs of columns uncorrelated. We summarize this as

X has uncorrelated columns Xy~ (mj, V), for j =1, +++, c. (56)

~
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A question arises as to the distribution of transformed variables BX and XC for

~eo ~ee

some matrices B and C. The case of BX is easy: .

~ ~ ~re

BX has uncorrelated columns BxJ ~ (BmJ, BVB ), for j =1, -+, c. (57)

~r

For XC, first observe that from the uncorrelated and variance properties of the

columns of X in (56)

VvV 0+ 0
var(vecX) = |0 V.- 0| =(I®V), (58)
9 O.’. X

and so (57) is vec(BX) ~ [vec(BM), I ® BVB']. Then with E(XC) = MC we also have

var[vec(XC)] = var[(C' @ I)vecX] = (C' ® I)(I® V)(C® I)=C'CRV

and so

vec (XC) ~ [vec(MC), S’C @v]. (59)

The dispersion matrix here, C'C ® V, summerizes the result given in Anderson [1958,

penultimate equation following (2) on p. 52]. We also have the derivation, for

X
~PXq

]

var[vec(%'é)] var[(é' ®E)vec}£‘] = var[(A ® I)I p)Vec()()], from (13)

d,

@O DlenT® Dleat el

(A'vA®I), - (60)

~ e

after using (7), (5) and (4). Many useful special cases can be derived from these

results, when features such as M = pul', M = pii', BVB' = E, S'S I and A'VA = I ‘

~ ~ ~n~ ~~os ~ ~ e

arise, either with or without normality.
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(b) The multivariate lineay model
Under normality assumptions, the traditional univariate linear model y = Xb + e

can be denoted as

¥ ~ H(Xb, o2I) (61)

where Xb is the expected value of y and 0°I is its variance, It is showm in

~ro

Searle [1978] how the customary multivariate linear model z wxp = X anf XD + g Xp

can easily be formulated in a similar manner as the univariate model
vecY ~ N[(Ip ® X)vecB, = ® In] (62)

where the rows of E are n, independently and identically, normally distributed

random vectors having zero mean and variance-covariance matrix I,

The formulation (62) provides ready opportunity for considering the multi-
variate linear model in a univariate framework. For example, testing the hypothesis

H:K'b = m in the model (61) can be done by way of the statistic F = Q/s0° where K'

~ ~

"

has full row rank s, vhere 8© = y'Py/f for P = I - X(X'X) X' and f

~ N

n-r(X), and

where

Q= (5% - m)' (K" (X'%) KT (5'b° - m) (63)

~

for b° = (X'X)™X'y. Through the use of (62), Searle [1978] shows how adaptation

of (63) leads to Hotelling's T%-statistic for testing, in the multivariate model

Y = XB + E, the hypothesis that some rows of B have pre-assigned values.

(¢c) Fourth moments in a general linear model

A more general representation of the linear model is y = XB + Zu where B
represents fixed effects and u represents random effects having zero mean and
variance-covariance matrix D. Then var(y) = V = ZDZ'. A common form of D is the

folloving function of the elements of ¢© = {o"i} ,i=1, -, Kk,
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D =D{c?} = ds{o’;‘gol-'- 2T} . N (6x)

o

Under these conditions Anderson et al. [1977] show, using the tools discussed here,

that a matrix involving fourth moments of y, namely

F = var[(z - 2.(.?.) ® (z - E’B.)] = var[vec(g - )fg)(z - )SE)'] (65)

is

h

= (V@ DLz + I ) + @ © 27 Y aglvee YD) (P2 © 1°27),  (66)

vhere dg[x] is a diegonal matrix of the elements of x and D{Y¥} has the same form

as (64), using the kurtosis parameters Y, in place of the variances o‘i In the

case of normality, (66) reduces to F = (V® V)[Inz + I(n n)]' Analogous results
~ ~ - ~ "~ ’

are given by Pukelsheim [1977, p. 327] and Rao [1971, p. Lui7].

(d) The Wishart Distribution

Suppose the colums of X

Xn are independently, identically normally dis- .

tributed with mean O and dispersion matrix V. We write, similar to (56),

-~

X has uncorrelated columns X, ~ i.i.d, N(0, V), for j =1, +--, n. (67)
Then S = XX' follows the p-dimensional Wishart distribution with scale matrix V
~ ~ n ~
and n degrees of freedom. Because XX' = I x jx' the mean value of S is readily
~ey ...l~ ~ -~
obtainable from (67) as
n .
E(S) = £ E(x,xx') =nV, (68)

a well-known result. Second moments of elements of S come from

~

var (vecS) = var[ b vec (x x! )] Z var[vec (x X X3 1,
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using the independence of the x.'s given in (67). Then, by having X play the

. part of y - XB in (65), the consequent normality applied to (66) gives
va:r(vec§) = n(y ® ,Y)[Eng + E(n,n)] . (69)

These succinct matrix representations, (68) and (69), correspond to the scalar

expressions of, for example, Anderson [1958, p. 161].
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