SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NY 14853-7501

TECHNICAL REPORT NO. 1001

April, 1992

Scheduling Unrelated Parallel Machines with Costs

By

David B. Shmoys!, Eva Tardos®

18chool of Operations Research, Cornell University, Ithaca NY. Research partially supported by an NSF PYI
award CCR-89-96272 with matching support from UPS, and Sun Microsystems, and by the National Science
Foundation, the Air Force Office of Scientific Research, and the Office of Naval Research, through NSF grant
DMS-8920550.

2School of Operations Research, Cornell University, Ithaca NY. Research supported in part by a Packard
Fellowship, an NSF PYI award, a Sloan Fellowship, and by the National Science Foundation, the Air Force
Office of Scientific Research, and the Office of Naval Research, through NSF grant DMS-8920550.

Abstract

We consider the problem of scheduling unrelated parallel machines with costs. Each job
is to be processed by exactly one machine; processing job j on machine ¢ requires time p;;
and incurs a cost of ¢;;. There are two optimization criteria: minimizing the makespan of
the schedule, i.e., the maximum job completion time; and minimizing the total cost. Our
main result is as follows. There is a polynomial-time algorithm that, given values C and
T, finds a schedule of cost at most C' and makespan at most 9T, if there exists a schedule
of cost C and makespan T'. We also extend this result to a variant of the problem where,
instead of a fixed processing time p;;, there is a range of possible processing times for each
machine—job pair, and the cost linearly increases as the processing time decreases. Finally,
we show that these results imply a polynomial-time 2-approximation algorithm to minimize
a weighted sum of the cost and the makespan.

1 Introduction

Consider the following scheduling problem: each of n independent jobs is to be processed by
exactly one of m unrelated parallel machines; job j takes p;; time units when processed by
machine i, and incurs a cost ¢;5, ¢ = 1,...,m, j = 1,...,n. For notational simplicity, we
shall assume that n > m. We are interested in two optimization criteria: minimizing the
makespan of the schedule, i.e., the maximum job completion time; and minimizing the total
cost. Lenstra, Shmoys, and Tardos [2] give a polynomial-time 2-approximation algorithm for
the single criterion problem of minimizing the makespan, where a p-approzimation algorithm is
one that is guaranteed to produce a solution with objective function value at most p times the
optimum. In this paper, we generalize that result to the bicriteria problem mentioned above.

Trick [6, 7] and Lin & Vitter [3] consider variants of this bicriteria problem. Lin and
Vitter [3] give a polynomial-time algorithm that, given cost C', makespan 7', and € > 0, finds a
solution of cost at most (1 4 €)C' and makespan at most (2 + 1/€)T, if there exists a schedule
of cost at most C and makespan at most T. In the variant considered by Trick [6, 7], there is
an interval of possible processing times, rather than a fixed time p;;, and the cost of processing
job j on machine ¢ linearly increases as the processing time decreases. Trick [7] focuses on the
single criterion problem of minimizing a linear objective function that is a weighted sum of the
cost and the makespan, and gives a polynomial-time 2.618-approximation algorithm.

The main result of our paper is as follows. We present a polynomial-time algorithm that,
given values C and T, finds a schedule of cost at most C' and makespan at most 2T',if a schedule
of cost C and makespan T exists. As a corollary, we give a polynomial-time 2-approximation
algorithm for the variant considered by Trick.

All of the above algorithms are based on solving linear relaxations of a particular integer
programming formulation, and then rounding the fractional solution to a nearby integer solu-
tion. Whereas the results of Trick [6, 7] and Lin & Vitter [3] invoke the rounding theorem of
Lenstra, Shmoys & Tardos [2], the main contribution of this paper is the introduction of a new
rounding technique. The technique used in [2] requires that the solution to be rounded must
be a vertex of the linear relaxation. One interesting aspect of the new technique is that it does
not have this restriction.

The most time-consuming part of our approximation algorithms is the solution of the linear
relaxations. For our results that separately treat the two criteria, we observe that these linear
programs fall into the class of fractional packing problems considered in [5], and therefore a
slightly further relaxed schedule can be found by a randomized algorithm in O(n?log n) expected
time, or deterministically, in O(mn?logn) time.

Approximation algorithms for special cases of the scheduling problems considered in this
paper have been studied over the last twenty-five years, and for a survey of this literature, the
reader is referred to [1]. Finally, we note that it is likely that our results cannot be too substan-
tially improved upon, since Lenstra, Shmoys & Tardos [2] have shown the following result for
the single criterion problem of minimizing the makespan: for any € < 1/2, no polynomial-time
(1 4+ €)-approximation algorithm exists, unless P = N P.

2 The main result

We first consider the simplest version of our scheduling problem, when there is a fixed processing
time p;; and a cost ¢;; associated with each machine i = 1,...,m, and each job j =1,...,n.
For any t > T, integer solutions to the following linear program, LP(t), are in one-to-one
correspondence with schedules of cost at most C and makespan at most 7T'.

iz <00,
Sz = 1, forj=1,...,n,
Ej pijri; < T, fori=1,...,m, LP(t)
z; > 0, fori=1,...,m, j=1,...,m,
zi; = 0, if pi; > 1, i=1,...,m, j=1,...,n

Theorem 2.1 If LP(t) has a feasible solution, then there exists a schedule with makespan at most
T + t and cost at most C.

We will prove the theorem by providing an algorithm that converts a feasible solution = of
LP(t) to the required schedule. We will construct a bipartite graph B(z) = (V,W, E) and a
value z'(v, w) for each edge (v,w) € E. One side of the bipartite graph consists of job nodes
W = {w;:j =1,...,n}. The other side consists of machine nodesV = {vi; :i=1,...,m, s =
1,...,k;}, where k; = [2; z;j]; the k; nodes {vis 1 8 = 1,...,k;} correspond to machine ¢,
t=1,...,m.

Edges of the graph B(z) will correspond to machine—job pairs (i,) such that z;; > 0. For
each positive coordinate of z, there will be one or two corresponding edges in B(z). The vector
' defined on the edges of B(z) will have the property that

/ . -
T = Z z'(vis, wj), forali=1,...,m, j=1,...,n.
s:(vig,w;)EE

The cost of each edge (vis, w;) € E is ¢;j.

The graph B(z) and the vector ¢’ are constructed in the following way. To construct the
edges incident to the nodes corresponding to machine %, sort the jobs in order of nonincreasing
processing time p;;; for simplicity of notation, assume for the moment that p;1 > pi2 2 * -+ 2 Pin-
If 3°;zi; < 1, then there is only one node v;; € V corresponding to machine 4: in this case, for
each z;; > 0, include (vi1,w;) € E, and set z'(vi1, wj) := z;;. Otherwise, find the minimum
index j; such that Z}“___l z;; > 1; let E contain those edges (vi1,wj), J = 1,..., 1, for which
z;; > 0, and for each of these except (vi1, w;,), set &' (vir, w;) = Tij; set z'(vig,wyy) = 1 —
Z;‘;ll #'(v;1,w;). This ensures that the sum of the components of z’ for edges incident to vy
is exactly 1. If 371, i; > 1, then a fraction of the value z;;, is still unassigned, and so create
an edge (viz, wj,), and set

I
& (vigy wj,) 1= zijy — ' (vin, wiy) = (D_wij) — L.
=1

V31 U3z2 Us3

/3110000 NN
X=|13001100 C\
1/3 0000 11 N

weg W7

For solid edges, z'(vik, wj) = 2/3
For dashed edges, z'(vik, w;) = 1/3

Figure 1: Constructing B(z)

We then proceed with jobs j > 71, i.e., those with smaller processing times on machine 7, and
assign edges to iz, until a total of exactly one job is assigned to it, and so forth. More precisely,
foreach k = 2,...,k;—1, find the minimum index j; such that E;’;l z;j > k;let E contain those
edges (vik,w;), j = k-1 + 1,...,]k, for which z;; > 0, and for each of these except (vik,w;j,),
set o' (vik, w;) := xij; set &' (vig, wj,) = 1-2;:';;:_1+1 z'(vig, w;). If Zj'_‘__l z;j > k, then also put
edge (vi k41, w;,) € E, and set o'(v; k11, w5,) = Tij, — ' (Vik, wj,) = (32, zij)—Fk. Let j' be the
last job assigned in this way; i.e., j = jk,—1. For each j > j', create an edge (vik;, w;) and set
z'(vig;, w;) = z;;. For each machine node vy, let pj;>* denote the maximum of the processing

times p;; corresponding to edges (v;s, w;) € E; let pIin denote the analogous minimum.

We shall use the following instance to give an example of this construction: m = 3; n =
mm—-1D)+1Lpa=mi=1,....mp;=11i= 1,....m3=2,...,n5¢; =0, =1,...,m,
j=1,...,n; C = 0; T = m. Figure 1 gives a feasible solution X = (zi;) to LP(T), and the
corresponding graph B(z).

A non-negative vector z on the edges of a graph is a fractional matching if, for each node
v, the sum of the components of z corresponding to the edges incident to v is at most 1. The
fractional matching ezactly matches a node u if the corresponding sum is exactly 1. A fractional
matching v is a matching if each component of v is an integer. The following lemma summarizes
some simple properties of the above construction.

Lemma 2.2 The vector 2’ is a fractional matching in B(z) of cost at most C. Except possibly
for vg,, ¢ = 1,...,m, each node is exactly matched by z'. Finally, po™ > piex, for each s =

1,... ki—1,i=1,...,m.

The algorithm to construct a schedule from a feasible solution z of LP(t) is as follows.

THE ALGORITHM
1. Form the bipartite graph B(z) with costs on its edges.

4

2. Find a minimum-cost (integer) matching M that exactly matches all job nodes in B(z).

3. For each edge (vis, w;) € M, schedule job j on machine z.

Proof of Theorem 2.1: We shall prove that the schedule produced by the algorithm satisfies the
requirements of the theorem. By Lemma 2.2, ¢’ is a fractional matching in B(z) of cost at most
C, which matches all job nodes exactly. This implies there exists an (integral) matching M in
B(z) of cost at most C that exactly matches all job nodes (see, for example, [4]). Therefore,
the matching required in Step 2 exists and has cost at most C. The cost of the matching is the
same as the cost of the schedule constructed. Therefore, the cost of the schedule constructed
is at most C.

Next we show that the makespan of the schedule constructed is at most T + t. Consider
the time required by machine i, 7 = 1,...,m. There are k; nodes corresponding to machine ¢ in
B(z), and for each of these, there will be at most one job scheduled on machine ¢ corresponding
to some incident edge. Therefore, the length of the time required by machine ¢ is at most
sk pmax_ Clearly, p** < t. Lemma 2.2 implies that the sum of the remaining terms,

s=1

k; ki—1 . ki—1 ki n
Sy Rt s oo Y piE(vis,ws) < SN e (vis,wy) = > pijai; < T,

8=2 s=1 s=1 j:(vi,,w;)EE s=1 ji(visw;)EE j=1

which proves the theorem.

Observe that the algorithm ensures that if z;; = 1, then job j is assigned to be scheduled on
machine 4, since each edge incident to w; in B(z) is of the form (vis, w;) for some s. Also note
that the obvious m-machine generalization of the example given in Figure 1 shows that the
analysis of this algorithm is asymptotically tight.

Corollary 2.3 In the problem with fixed processing times p;j, i=1,....,m,j=1,...,m, for any
given cost C' and makespan T', we can find, in polynomial time, a schedule of cost C' and makespan
at most 27T, if one of cost C and makespan T exists.

Proof: Tf there exists a schedule of cost at most C' and makespan at most T', then LP(T) must
have a feasible solution. We can use any polynomial-time linear programming algorithm to find
a feasible solution to this linear program. The algorithm used to prove Theorem 2.1 can be
implemented to run in polynomial time, and this implies the claim.

Corollary 2.4 In the problem with fixed processing times p;j, i = 1,...,m, j = 1,...,m, and
non-negative costs, for any given cost C' and makespan T', and for any fixed ¢ > 0, we can find a
schedule of cost at most (1 + €)C and makespan at most (2 + €)T', using a randomized algorithm
that runs in expected O(n*logn) time.

Proof: Plotkin, Shmoys and Tardos [5] developed an algorithm that efficiently finds approx-
imate solutions to a wide class of linear programming problems, known as fractional packing

problems. If the costs in LP(T) are nonnegative, then this linear program is a fractional pack-
ing problem of the form considered in [5]. The techniques of [5] can be used to determine that
LP(T) is infeasible, or else produce a solution that is nearly feasible, in the sense that it is
feasible if the right-hand sides of the cost constraint and machine load constraints are relaxed
by a factor of (1 + €). Thus, if this algorithm produces such a fractional solution, we can then
use Theorem 2.1 to find the claimed schedule.

To view the linear program LP(T) as a fractional packing problem, we partition the con-
straints into two categories: the m machine load constraints and the cost constraint are the
packing constraints, and the remaining constraints are the job assignment constraints. The
algorithms of [5] work by maintaining a solution that satisfies the latter, and iteratively moving
towards a solution that also satisfies the former. An important parameter of a fractional pack-
ing problem is its width, which is the maximum ratio of the right-hand side to the left-hand side
of any packing constraint for any solution z that satisfies the remaining constraints. The width
of the above formulation can be as high as }_; max;¢;;/C. This can be improved as follows:
add constraints that set z;; = 0 if ¢;; > C. As a consequence, the width is reduced to at most
n. If there exists a schedule of makespan at most T and cost at most C' then this modified
linear program has a feasible solution. Furthermore, we can use the algorithm of Theorem 2.1
to round a feasible solution to this linear program to a schedule.

Since the width is at most n and there are m + 1 packing constraints, the packing algorithm
of [5] finds an approximate solution in O(nlogn) iterations (see Theorem 2.7 of [5]). In each
iteration, the algorithm first computes a dual variable corresponding to each packing constraint,
which is completely determined by the current primal solution; let y denote the dual variable
corresponding to the cost constraint, and let y; correspond to the load constraint for machine
i,i=1,...,m. The algorithm then selects a job j uniformly at random, and finds the machine
i on which job j may be scheduled (i.e., p;; <tand ¢;j <C) for which yc;; + yipi; is minimum.
A small fraction of job j is rescheduled on this machine. Each iteration takes O(m) time.
Therefore, the packing algorithm terminates in O(mnlogn) expected time. The resulting vector
z has O(nlogn) nonzero coordinates. Therefore, the graph B(z) has at most 2n + m = O(n)
nodes and O(nlogn) edges. The minimum-cost matching that exactly matches the n job nodes
can be found via n shortest path computations; using the Fredman-Tarjan implementation of
Dijkstra’s algorithm, the algorithm runs in O(n?logn) time. 1

There is also a deterministic version of the algorithm of [5] that yields a running time of
O(mn?logn).

Next consider the version of the problem where job j can be processed by machine 7 in ;;
time units, where l;; < t;; < u;; and the cost linearly increases as the processing time decreases.
In this model, we are given the minimum cost ¢ and the maximum cost cf-j of assigning job j to
machine i. The cost associated with processing job j on machine ¢ in time ¢;; is pcﬁj + (1= p)cg;
if the time can be written as t;; = plij + (1 — p)uij, where 0 < pt < 1.

In the linear programming relaxation LP;peca(T) of this problem there are two variables
f-j and z¥; associated with each machine-job pair (3,7),i=1,...,m,j=1,...,n. A feasible

solution to the linear program directly corresponds to a feasible schedule if mﬁj + z¥; is integral

T

for each machine-job pair (4,5),i = 1,...,m,j =1,...,n. Job jis assigned to machine ¢ if
Tl + :cﬁj = 1, where the assigned time is #;; = ¢3ui; + zi-jl,-j at a cost of ¢f;z; + cﬁjmi-j. In the
linear program LP(t), we forced a variable z;; to zero if pi; > 1. Similarly, we want to make
sure that no job is processed on a machine at a speed on which it would require more than ¢
time units to process the whole job. To do this, we revise the upper bound of the processing
times to i;; = min{t, u;;}. The revised cost é; associated with the revised upper bound is the
cost of processing job j on machine ¢ in time 4;j, i.e., if 4 = pui; + (1 = p)l;; then we set
& = pc + (1- u)cﬁj. The resulting linear program is as follows.

i Ti(@el + ciel) <G,
iz + xij) = 1, forj=1,...,n,
¥tz + l,-jarﬁj) < T, fori=1,...,m, LPspeed(t)
a:}‘j,xﬁj > 0,fori=1,...,m, j=1,...,m,
g =z; = 0, ifly >t i=1,...,m,j=1,...,n

Theorem 2.5 If the linear program L Pypc.4(t) has a feasible solution, then there exists a schedule
with makespan at most T + ¢ and cost at most C.

Proof: We will prove this theorem by constructing a feasible solution to a related linear program
LP(t) and then applying Theorem 2.1. Consider a feasible solution z' and z* to LPjpeed(1).
Define the corresponding feasible solution z, scheduling times p, and costs ¢ as follows. Let
z; = oy + xf-j; that is, z;; is the fraction of job j that is scheduled on machine ¢. For any
machine—job pair (i, j) such that z;; > 0, define its processing time as p;; = (@i +il?£jl{j)/$ij;
that is, p;; is the time it would take to process all of job j on machine ¢ at the speed used in
the fractional schedule; the corresponding cost is defined to be ¢;; = (3¢ + xgjcﬁj) /z;;. For
machine-job pairs (i,7) such that z;; = 0, set p;; = +oo (where any value greater than T +
will suffice) and ¢;; = 0.

Observe that z;; > 0 implies that p;; < ¢, li; < pi; < wij, and c;; is the cost of assigning job
j to machine ¢ for time p;;. Notice that z is a solution to the linear program L P(t) defined by
T, C, and p;; and ¢;; for i = 1,...,m, j = 1,...,n. Therefore, Theorem 2.1 implies that the
claimed schedule exists. |

Notice that the algorithm ensures that integral assignments (i-e., pairs (i,7) with mﬁj +
integral) are used in the schedule constructed.

Corollary 2.6 In the problem with variable processing times, for any given cost C' and makespan
T, we can find, in polynomial time, a schedule of cost C and makespan at most 2T, if one of cost
C and makespan T exists.

Proof: If there exists a schedule of cost at most C and makespan at most 7', then LPypeed(T)
must have a feasible solution. We can use any polynomial-time linear programming algorithm
to find a feasible solution to this linear program. By applying Theorem 2.5, we obtain the
corollary. |

Corollary 2.7 In the problem with variable processing times p;;, i = 1,...,m, j=1,...,m, and
non-negative costs, for any given cost C' and makespan T', and for any fixed € > 0, we can find a
schedule of cost at most (1 + €)C' and makespan at most (2 + €)T', using a randomized algorithm
that runs in expected O(n%logn) time.

Proof: This proof of this result relies on techniques from [5] in a way analogous to the proof of
Corollary 2.4. To make the width of the corresponding packing problem small, we must further
restrict the allowed speeds for the assignments. We increase the lower bounds /;; to a modified
lower bound l},‘, if necessary, to ensure that the corresponding cost éﬁ-j is at most C. 1

3 Minimizing a combined objective function

In this section, we consider the problem of minimizing the objective function consisting of a
weighted sum of the makespan and the operating cost, pT" + Z,-j(cfjxfij + cf;zy;), for some
parameter g > 0. We assume that the operating costs cﬁj and cf; are nonnegative for each
i=1,...,m,j = 1,...,n. We shall also assume that the lower and upper bounds on the
processing times, I;; and u;j, respectively, are integral, for each machine—job pair (7,j). Let
P denote the maximum of the upper bounds on the processing times. Trick [7] gave a p-
approximation algorithm for this problem, where p is roughly 2.618. Here we use Theorem 2.5

to give a 2-approximation algorithm.

For each value ¢ > 0, let f(t) denote the optimal value of the following linear program,

where ¢, as in the previous section, is the cost of scheduling job j on machine ¢ at speed

i = min{z, ’u,,fj}.
min ZZ(&:‘J:E:‘J + cfjxfj) + uT
i

subject to

izl + 2l 1, forj=1,...,n,

Zj(&ij$%+lijm£j) < T,fori=1,...,m, LP,(t)
"E?ﬁwij > 07 fori:lw",m?j:l""?n’ ort
m}fj:xij = 0, ifl,'j>t,i:l,...,m,j:l,...,n.

To find a schedule with objective function value at most twice optimal, we will perform a
bisection search on the range of possible makespan values, and maintain the following invariant:
all schedules with objective function value less than half the objective function value of the best
schedule found thus far must have makespan within the current range. The number of iterations
of this bisection search can be bounded by using the following lemma of Trick [7], which follows
from a simple perturbation argument.

Lemma 3.1 Among all schedules with minimum objective function value, consider one with min-
imum makespan; the makespan of this schedule is integral.

8

Since the makespan of any plausible schedule is at most nP, it follows that we can initialize
the search by setting the interval to [0,nP]. The core of the bisection search is given by the
following lemma.

Lemma 3.2 For each value ¢ > 0, one can, in polynomial time, find a schedule with objective
function value f, and conclude that one of the following holds: (i) each schedule with objective
function value less than f/2 has makespan less than ¢, or (ii) each schedule with objective function
value less than f/2 has makespan greater than t.

Proof: The algorithm works as follows. First find an optimal solution to LP,p(t) and compute
f(t). Let C and T denote the cost and makespan of this fractional solution; that is, f@®) =
C + pT. Since z is a feasible solution to LPjpeca(t) for these values C and T', we can apply
Theorem 2.5 to obtain a schedule. The objective function value of this schedule is at most
C+uT +1) = f(t)+ p.

We consider two cases: f(t) < ut or f(t) > pt. Suppose that f(t) < put. The schedule
obtained has objective function value f < f(t) + put < 2ut. Any schedule with objective
function value less than f/2 < pt must clearly have makespan below ¢. Hence, we can conclude
that alternative (i) holds. Suppose instead that f(t) > pt. We will show that each schedule
with makespan at most ¢ has objective function value at least f/2. The schedule constructed
has objective function value f < f(t) + pt < 2f(t). Since f(t) is the optimal value of LP,y(t),
each integral schedule with makespan at most ¢ must have objective function value at least
f(t) > f/2. Hence, we can conclude that alternative (ii) applies. |l

Observe that if f(t) = ut, then the algorithm can halt, since (i) and (ii) together imply

that there does not exist a schedule with objective function value less than f/2. By combining
Lemma 3.1 and Lemma 3.2, we obtain the following theorem.

Theorem 3.3 For the problem of minimizing a weighted sum of the cost and the makespan in
scheduling with variable speeds, there exists a 2-approximation algorithm, which needs to solve the
linear program LP,,;(t) at most lognP times.

Acknowledgments

We would like to thank Leslie Hall for prompting this research. Her discovery of an error in a
trivial but fallacious proof of Corollary 2.3 led us to find this more interesting, correct solution.

References
[1] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Sequencing and

Scheduling: Algorithms and Complezity. Designing Decision Support Systems Notes NFI
11.89/03, Eindhoven University of Technology, 1989.

9

[2] J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming A, 46:259-271, 1990.

[3] J.-H.Lin and J. S. Vitter. ¢-approximations with minimum packing constraint violation. To
appear in Proceedings of the 2{th Annual ACM Symposium on the Theory of Computing,
1992.

[4] L. Lovdsz and M. Plummer. Maiching Theory. Akademiai Kiado, Budapest and North-
Holland, Amsterdam, 1986.

[5] S. A. Plotkin, D. B. Shmoys, and E. Tardos. Fast approzimation algorithms for fractional
packing and covering problems. Technical Report 999, School of Operations Research and
Industrial Engineering, Cornell University, Ithaca, 1992.

[6] M. A. Trick. Scheduling multiple variable-speed machines. In Proceedings of the 1st Con-
ference on Integer Programming and Combinatorial Optimization, pages 485-494, 1990.

[7] M. A. Trick. Scheduling multiple variable-speed machines. Unpublished manuscript, 1991.

10

