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Abstract

We treat the following control problems: the process X1(t) with values in

the interval (~=,0] (or [0,=)) is given by the stochastic differential equation

dX1(t) = y(t)dt + c(t)dwt. X1(0) = x1
where the non-anticipative controls uy and ¢ are to be chosen so that (u(t),oc(t))
remains in a given set S and the object is to minimize (or maximize) the
expected time to reach the origin, The minimization problem had been discuésed
earlier by Heath, Pestien, and Sudderth under various restrictions on the set S.
Here an improved verification lemma is established which is used to solve the
minimization and maximization problems for any S. An application to a portfolio

problem is discussed.
Key words: Stochastic control, portfolio selection, gambling theory.
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1. Introduction.

Consider a real-valued process {Xx(t)} given by a stochastic differential

equation

dX1(t) = pu(t)dt + o(t)dwt, XI(O) = x1
where {wt} is standard Brownian motion and u(t) and o(t) are non-anticipative
controls to be chosen so that (u(t),o(t)) remains in a specified set S. The
problems of minimizing or maximizing the expected time to reach the origin are
treated in section 3. The minimization problem has been studied in [6] and [Zj,
though with an exponential change of variables putting the problem on (0,1].

For a more detailed discussion, see Remark 2 in section 3.

The solution of these control problems uses a new refinement of the
verification lemma of [6], which is proved in section 2. This result should be
of independent interest.

Section 4 deals with a portfolio planning problem which turns out to be a
special case of the minimization problem. This portfolio problem was originally

solved in [2].

2. Continuous-time stochastic control.

The formulation of stochastic control problems given here is adapted from
Pestien and Sudderth [6]. Our notation and terminology is the same as theirs,
but we consider a more general class of processes and establish a verification

lemma more suited to the present applications.



A continuous-time gambling problem is a triple (F,I,u) where

(2.1)

(2.2)

(2.3)

the state space F is Polish (we shall use a Borel subset of ordinary

Euclidean space),

the gambling house I is a mapping which assigns to each x € F a non-empty

collection L(x) of processes X = {Xt, £ 2 0} with state space F such that

XO « x and X has right-continuous paths with left-limits,

the utility function u is a Borel function from F to the real line.

A process X € I(x) is said to be available at x. Each available X is defined on

some probability space (@,F,P) and is adapted to an increasing filtration

(Ft, t 2 0} of complete sub-sigma fields of F. The probability space and

filtration may depend on X.

A player, starting at position x € F, selects a process X € I(x) and

receives payoff u(X) defined by

(2.4)

u(X) = E[1lim sup u(X
t—>ew

g3

The expectation occurring on the right is assumed to be well-defined for every

available process X.

The value function V is defined by




V(x) = supf{u(X): X € (x)}
for every x € F. A process X € I{x) is optimal at x if
u(X) = v(x).

From now on we shall require that F be a Borel subset of the Euclidean space
Bd having non-empty interior, and each process X = {Xt} under consideration will

be an Ito process of the form

t t
(2.5) X, = x + [ a(s)ds + J B(s)dws
0
where W = {wt} is a standard m~dimensional Brownian motion process on (2,F,P)
adapted to increasing, right-continuocus o-fields {Ft}. and Ft is independent of
{wt+s-wt, s 2 0}. The function a = a(t,w) is to be?md~valued, progressively

measurable, adapted to {Ft} and such that

t
(2.6) J la(s)|ds < » a.s. for all t.
0

The function B = B{(t,w) has as values real dxm matrices, is progressively

measurable, adapted to {Ft}, and satisfies



t
(2.7) J ]B(s)}zds ¢ = a.,s. for all t.
0

For each pair (a,b), where a G'Bd is a dx1 vector and b is a dxm real-valued
matrix, define the differential operator D(a,b) for sufficiently smooth

functions Q:Bd -> R by

d d
D(a,b)Q(y) = Q (y)a * -‘2- I Ta,, oo,
f=1 =1 7175

where

aQ aQ
Qx(y) = ('é"x";poo-t '5_)?;):

0 .20
Xixj Sxiax\j

and b' is the transpose of b.

We now specify I(x) by specifying the possible values of a and 8. To this
end, let C(x) be, for each x € F, a non-empty set of pairs (a,b), where a € Bd
and b is a real dxm matrix. (The idea is that C(x) is the set from which a
player at state x may choose the value of (a,B).) Assume also that every
available process X is absorbed at the time Tx of its first exit from Fo, the
interior of F. These conditions define a function ZC on F where Zc(x) is the

collection of all processes X having paths in F and satisfying (2.5), (2.6), and

(2.7) together with



(2.8) (alt,w),B(t,w)) € C(Xt(w)) for all (t,w),
(2.9) (alt,w),B(t,w)) = (0,0) for t 2 Ty (w),
(2.10) C(x) = {(0,0)} for x € F - F°,

Let I be a gambling house such that I{x) < Ic(x) for every x € F.
The following proposition, which is related to Lemmas 2 and 3 of [6], will

be applied in the next two sections.

Proposition. Let G be an open subset ofﬁRd which contains F. Suppose Q:G —> R
and Qn:G ~>® forn=1,2,... . Suppose also that each Qn has continuous

second-order derivatives on G and that

(i) 1lim Qn(x) = Q(x) for every x € F.
n—>eo

Assume the following conditions for every x € F° and every X € I{(x):

(ii) QM) 2 u(X) where

Q(X) = E[1lim sup Q(Xt)] is assumed to be well-defined,
t—>w
(iii) there exists a sequence {kn} of non-negative constants such that

lim kn = 0 and with probability one, for all n and all t 2 o,
n—>m

D(a(t).B(t))Qn(Xt) < k.



(Here o and 8 are related to X by (2.5).)

(iv) there exist integrable random variables Z, Y1, YZ,... such that, for

all nand all ¢t 2 O,

Then Q 2 V.

The following lemma is the chief tool for the proof of the proposition.

Lemma. Suppose Q:G —> R has continuous second-order derivatives, xo € FO,
X € Z(xo), and 1 is an almost surely finite {Ft} - stopping time. Also assume

(i) there is a non-negative constant k such that with probability one, for

all s z O,
plals),f(s))Q(x ) s k,

(ii) there exist integrable random variables Y and Z such that for all

t 20,

Then

EQ(X_) s Q(x_) + KET,
1 o



Proof: Apply Ito's Lemma to write
(2.11) Q(Xt) = Q(xo) - At + Mt = Q(xo) - (kt+At) + kt + Mt

where

t
A, = - [ b(a(s),8(s))a(x,)ds,

't
M, = jo Q, (X)8(s)dW_.

(Here o and 8 are related to X by (2.5) and satisfy (2.6) and (2.7).)

Assume without loss of generality that Et < =. Hence,

(2.12) EQ(X ) = Q{x.) + kEt + E[M - (k1+A )].
1 0 T 1

It suffices to show that the final expectation in (2.12) is less than or
equal to zero. By condition (i), =~(kt + AT) £ 0, We will show that EMT s 0.
(Notice that EMT is well-defined by the first equality in (2.11) and condition
(ii).)

Let Tj be a sequence of stopping times such that {MtAT.’FL} is a uniformly

integrable martingale for every j and Tj -> » a,s. Let Bj = [1> Tj]' Then

c
MT = MTATJ on Bj’ and



J e Mo ™ [ L JB. My
B B J j j

=0 - [B.[Q(XT.) * Ay - Qlxg)]
J J J

HA

[Bj[~2 + kT v Qx ) ].

That is,

WA

f Mt - j " f [-Z + kt + Q(x.)]
g T Jgt T B 0

+ —
EM = J M - f M s I [-Z + kTt + Q(x )] = 0. ©
Q g ) s

proof of the proposition: Let X € F and X € X(XO). By condition (ii) and

Lemma 1 of [6], it suffices to show

(2.13) EQ(XT) b3 Q(XO)

for every almost surely finite stopping time T.

Assume first that t is bounded. Then, by the Lemma and Fatou's inequality,



EQ(X ) € 1lim inf EQ (X )
1 n 1t

n-—->eo
< 3 3 "
< lim Qn(xo) + (lim kn)ET
n—>o n—>w
= Q(xo).

If 1 is unbounded, use Fatou again:

EQ(X ) € lim inf EQ(X )
T N> TAn

< Q(XO). 0

3. Minimizing or maximizing the expected time to reach zero.

The problems described in the introduction will now be formulated as
continuous~time gambling problems in 32. Consider first the problem of
minimizing expected time. The first coordinate, x , of the state vector x will
correspond to the playe~'s position on (-»,0], while the second coordinate, x2,
will represent time.

It is convenient to allow negative as well as positive times and define

Because the object is to minimize expected time, let

u(x) = ~x,

Recall the notation from section 2. The interior of F is ro - (==,0)x (==, )

10



and by our conventions each available process X will be absorbed at

=
#

TX = inf{t: X1(t) = 0}.

In the present example the set C(x) will not depend on Xx for x € FO. Let

S € Rx[0,=),

(3.0 c, = (), (3)): (o) € sl

and let C(x) = CO for x € F. Every X € Zc(x) can be specified by stochastic

differential equations

(3.1) dX1(t) = p(t)dt + o(t)dwt
dxz(t) = dt
Xj(O) = X X2(O) = X,

where p and o are progressively measurable and (u(t),o(t)) e §, t < T; and Xt =

XT for t 2 T. Note that for every X € Xc(x) the second coordinate process

{Xg(t)} inereases deterministically at rate 1 up to time T, and by (2.4) and the

definition of u

(3.2) u(X) = -x, - ET

Now let

11



(3.3) 2{x)

it

X € zc(x): u(Xx) » ==}

i

{X € EC(X): ET < o},

From (3.2) and (3.3) one sees that

(3.4) V(X1,X2) = V(x1) - X,

1

where V(Xw) = V(x],O). Furthermore, for X, < Y, < 0, a strategy starting at Xx

and minimizing the time to 0 must first minimize the time to y1 and, having
gotten there, minimize the time to 0. This argument leads to V(X1) = (V(x1—y1)
+ V(y1). Since V is also continuous and vanishes at the origin, one may

conclude

V(X1) = Ax1
where X 2 0 depends on S. (We omit a formal proof because we will not rely on
this formula below.)

Ir in (3.1) p(t) = u(Xl(t)) and o(t) = G(Xl(t))’ where y and ¢ are
measurable real valued functions on (-=,0). We say that X 1is given by a

stationary Markovian strategy. For given functions y and o then X as defined by

(3.1) depends only on the initial conditions, so we may write u(X) = V(XW’XZ)

and from (3.2)

12



(3.5) v(x1,x2) = v(x1) - X,
where v(xw) = v(x1,0). -Now u can be obtained explicitly. Assume for simplicity
that v and ¢ are piecewise continuous functions, and c(x1) 2 00 > 0 for all x1.
By definition v(x1) is simply the negative of the expected time it takes the
diffusion to reach the origin if it is started at X, If X € Z(x), then T is
finite with probability one and v(x1) is the limit as M -> = of 'VM(X1), where

VM(X1) is the expected time to exit the interval [-M,0]. Let us set
a(x) = oz(x).

Then iy is determi-ed by

uvy + %avg + 1 = 0; vM(O) - VM(*N) = 0,

M

Solving for vq and letting M —> = gives

(3.6) v'(x1) = e

where

13



and r is an arbitrary point in (-=,0]. Of course

X

(3.7) vix,) -‘[ " vi(yay.
0

Recall (see e.g. [3]) that the diffusion determined by u and a has a scale

function and speed measure determined respectively by

~B(x1) 5 B(xI)
(3.8) dp(x1) = e dx,, dm(xT) - 5??:7 e dxj.

Consider now u(t) = o(t) = ¢, where Mo and ¢, are constants.

Moo 0 0
determine a diffusion with ET < « if and only if p_ > 0, and then

0
*
(3.9 V(x1) = —
Yo
which is a special case of (3.6) if % > 0 and obvious if 0y = 0.

This will

It is natural, especially in the light of (3.9), to conjecture that an

optimal strategy is to choose the drift u to achieve the supremum

M = sup{u: (u,0) € § for some ¢}.

As is explained in remark 2 below, a similar strategy was propcsed by Kelly [4]

for certain discrete-time problems. However, these 'Kelly strategies' need not

be optimal if the set of possible o's is unbounded. The exact criterion for our

14



continuous~time problem involves another quantity

I = inf sup{y + 502: (v,0) € S}.
e>0
o)

Theorem 1. Let x € F~.

(a) If 0<M< =and I < » then V(x) = x1/M - X,
If in addition (M,oo) € S, then the process X € I(x) with u(t) = M and o(t) = %
is optimal.

(b) If MSO0and I < = then V(x) = ==,

(c) IfM==o0r I =®then V(x) = X, (i.e. the origin can be reached in an

arbitrarily small expected time.)

Proof. (a) Let Q(x) = X /M - X,. It is clear from formulas (3.5) and (3.9)
that Q £ V. It remains to verify that Q 2 V. (Once this is done, the final
assertion of (a) will follow from (3.5) and (3.9).) This inequality will be
proved by an application of the proposition of section 2.

Let {én} be a sequence of positive numbers decreasing to zero, each of which

is small enough so that the quantity

6n 2
In = sup{p + 5= 0 (p,0) € S}

satisfies In < =, (Condition (a) guarantees the existence of the 6n's.) Notice

that In ->Masn - =,

15



Define

Now verify the conditions of the proposition. Conditions (1), (11), and (iii)
follow easily. As to condition (iv), observe that in the formula for Qn(x) the

first term on the right is bounded uniformly in x. for each fixed n. So Qn(xt)

1

1s bounded above and below by a constant plus X2(t), and since x

+

<
5 & Xz(t) S x

T and X € I(x) implies that T is integrable, the proof of (a) is complete,

2

(b). We reduce the result to (a). Let € > 0 and consider a new problem

based on the set
S_=Su {te,0].

The quantity corresponding to M for the new problem is ME = £, Thus part (a)

can be applied to obtain the value function

X

1
Ve(x) =T )(2

Clearly V(x) s Vg(x) ~> ~®» as g -> 0,
(c) If M = = the desired conclusion, V(x) = -x, follows easily from (3.9).

So assume now that M < » and I = =, Then there exists a sequence (“i'oi)' with

16



> 0, and o, ¢+ = and

(ui,oi) €S, ¢ i

i

2 - =
u, 2 h(ai)ai, i Ty 2oscs

i
where a; = Ui2 and h(s) is a non-negative function on [0,») which decreases to
zero as s —> », Let

U(X1) = ci(x1). u(x1) =y

i(x,)

1

where 1 is a function from (-=,0) to the positive integers with i(x1) increasing
rapidly to = as x1 decreases to -», Now use the expression for v'(x1) given in
(3.6). Substituting into the expression for B given after (3.6), with 1 taken

to be O,

X 0 2y, (y)
1 2uly) i
B(x. ) = j - dy f ——— dy
1 0 a(y) « ai(y)

1

0
2 f h[ai(y))dy .

X

So for any € > 0 we can arrange B(x1) < ¢ for all X, € (-=,0) by choosing the
function i1 appropriately. It follows from (3.6) that 1 can be chosen to make
V’(XI) as small as desired and then (3.7) gives the desired conclusion. (Notice

T < = with probability one because p(~®) = -w by (3.8) and o is bounded below by

01.) o

17



For the maximization problem it seems natural to work on [0,=) rather than
(-=,0] and to think of maximizing the expected time until bankruptcy occurs.

Here is the formal definition of the gambling problem:

F = {x EIRZ: 0 < X, < =},

u(x) = x2,

C(x) = C, for x € F°
where C0 is given by (3.0},
I(x) = Zc(x).
Then, for x € F and X € I(x),
u{x) = x, + ET
where T = inf{t: X1(t) = 0}. As before
V(x1.x2) = Vix,) + x,

where

V(x1) = V(xl.O).

18



It is natural, as it was for the minimization problem to conjecture that on

optimal strategy will choose u to achieve

M = sup{u: (u,0) € S for some ¢}.

This time the conjecture is essentially correct.

Theorem 2. Let x € F°.

(a) If M < 0, then V(x) = ~x1/M * X, If in addition (M,oo) € S, then the

1]

process X € I(x) with u(t) =M and o(t) = o_ is optimal.

0
(b) If M 20, then V(x) = =,

Proof: Suppose X is given by a stationary Markov strategy u(t) = Mg o(t) = %
where Mo and 0, are constants. Because we have changed from (-=,0] to [0,=),

formulas (3.5) and (3.9) now imply

X

1
(3.10) u(X) = " * X, if Mo < 0,
0
= » if ug 2 0.

Part (b) of the theorem is immediate. For (a), let Q(x) = - x1/M + X5e By

(3.10), Q < V. The reverse inequality will be proved by another application of

the Proposition of section 2.

Let {Bn} be a sequence of numbers in the interval (0,1) which increase up to

19



1. Define

where

and % > 0. (The first term on the right-hand-side in the definition of Qn(x)
is equal to the expectation of fg (Bn)sds for a process u{t) = M, o(t) = % and
thus corresponds to a discounted payoff.)

Condition (i) of the Proposition is easily verified, and (ii) is obvious

because Q 2 u. For (iii) let (a,b) € C(x) where a = (u). b = [G

1 O} and calculate

(with 8 = 8 )
n

A(B)x1 ,
Y(B)e 1 2 2
D(a,b)Qn(x) = Tog ¥ (p + sA(B)o7) + 8 T(1 + x,log 8)
g %
b Tog B + B (1 + x210g B).

The inequality holds because y $ M and A(R) < 0. Now recall that Xz(s) is an
increasing process and (iii) will follow after some calculus. Condition (iv) is

an easy consequence of the definition of Qn together with the facts that X1(s) 2

20



>
0 and X2(s) 2 X2(O). al

Remark 1. Since the set S is not assumed to be bounded, and the ¢ with {(p,0) €
S are not bounded away from zero, the usual approach via Bellman's equation for
the value function V could not be used above. For a continuous time gambling
problem as defined in section 2 the Bellman's equation can be written in the

form
(3.11) sup D(a,b)V(x) = 0

where the supremum is taken over all (a,b) € C(x). For the minimization problem

of this section (3.4) applies and (3.11) becomes

(3.12) sup [wV'(x,) + 50°V"(x,) = 1] = O.

{u,0)€S
nder condition {c) of Theorem 1 the value function V(x1) = 0 does not satisfy
(3.12). Furthermore if I = « and M < =, with (M,co) € S the function x1/M does
solve (3.12), but does not represent the value function. Under condition (a) of
the theorem the value function V(x1) = x1/M is a solution of (3.12), but this

fact does not follow from standard theorems.

Remark 2. Consider the problem of a process on the interval 0 < il £ 1

determined by the equation

21



(3.13) )'(‘(o> - X di1(t) - il(t)[;(t)dt + E(t)dwt]

1’

where ﬂ(t), o(t) are non-anticipating controls required to satisfy (;(t),a(t)) €
S and the object is to minimize T = inf{t: iI(t) = 1}, This problem reduces to
that of Theorem 1 by the change of variables Xl(t) = log 21(t). This follows
from Ito's formula, and one finds u(t) = p(t) - cz(t)/Z, o(t) = g(t). So one

can formulate the theorem to apply to the X process. Note that the role of M

1

is assumed by

- ~2 PO -~
M = sup{y - ¢ /2: (u,0) € S}
and the role of I is taken by

I = inf sup{p - (% - 6)82: (n,0) € S}.

>0
The problem for the i1 process was considered in [6] and [2] and solved under
some restrictions on S. In (6] it was assumed that A§ 5}§ for all x 2 0, while
in [2] this assumption was needed only for 0 § A S 1.

As discussed In [6] and [2] various models lead to the problem on [0,1].
One of these, the "portfolio problem," will be explained in section 4. In [4]
Kelly introduced a plan in discrete time, based on the criterion of maximizing,
at each stage, the expected value of the logarithm. This "Kelly criterion" was
further studied by Breiman [3] who established certain asymptotic optimality

properties. Our theorem may be interpreted to imply that a continuous time

22



Kelly criterion is in fact optimal under the hypotheses of (a), but not under
those of {c).

4, A portfolio problem.,

Consider the problem of managing a portfolio of stocks, bonds, and cash so
as to minimize the expected time to reach a given total worth. For a simple

model, suppose that there is one bond where price Bt at time t satisfies

dBt = rBBtdt,

and one stock whose price St at time t satisfies

dSt = rSStdt + oSStht

where rB, rs and OS are positive constants and {wt} is a standard Brownian
motion. A recent paper by Malliaris [5] explains the use of stochastic
differential models in finance, and has numerous references to the financial
literature, Let i1(t) be the total fortune of an investor at time t, let fs(t)

be the fraction of that fortune invested in the stock, and let fB(t) be the

fraction invested in the bond. Then f1 satisfies

(u.1) dX1(t) - X1(t)[rsfs(t) + rBfB(t)]dt + osfs(t)dwt

Let

23



S = {(y,0): u = rofg*rplys 0 = 0gfg, Fp2 0, £.2 0, fo+ S 1),

Then (4.1) and i1(0) = x, is equivalent to (3.13) and (u(t),o(t)) € S. We are

1

in the situation of Remark 2 of section 3. Theorem 1 applies, and one is in

i

<
case (a). If rg > ry obviously rB(t) 1. 1If ry & rg one finds

(r_-r )2
r. o+ S B ifr, Ssr_+ ¢ 2
B 2 S B S
- 2oS
M =
r.=-a 2/2 otherwise,
S S

The corresponding optimal policies are given by fB = 1 - fS and

if this is less than 1

1 otherwise.

In particular the Kelly strategy is optimal.
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