Solving Nonlinear Matrix Equations
on a Hypercube

Dingju Chen*
Yizhong Wu*

TR 90-1161
October 1990

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*Department of Applied Mathematics, Cornell University.

Solving Nonlinear Matrix Equations On A
Hypercube

Dingju Chen, Yizhong Wu
The Center for Applied Mathematics
Cornell University

July 1990

Abstract

Nonlinear matrix equations arise frequently in applied probabil-
ity, especially in the numerical solution of many stochastic models
in queueing , inventory, communications, and dam theories. Due to
the huge amount of computations involved in these nolinear matrix
equations, the existing algorithms for the solutions have not been sat-
isfactory. With the advent of parallel computers, the door is open
for efficient parallel algorithms to tackle the problem. This paper is
an effort in this direction. A parallel algorithm on distributed com-
puter systems is devised, and numerical experiment is done on the
hypercube.

Key Words. nonlinear matrix equations, parallel algorithms, hy-
percube.

1 Introduction

The following problem is under our consideration.

PROBLEM. Given the sequence {A; : 7 > 0} of m x m nonnegative
matrices such that A = 32, A; is stochastic, that is, Ae = e, where € is a
vector of 1’s, compute the matrix R > 0 that satisfies the nonlinear matrix
equation

o0
X =) XA (1)
i=0
which in addition, is minimal in the sense that for any X > 0 satisfying (1),
then X > R.
This equation is orginated from the analysis of queues with phase-type
service times, as well as in queues that can be represented as quasi-birth-

and-death processes. For more details on the background of this problem,
refer to Neuts [1].

2 Solution Techniques

A straightforward iterative scheme is

Roy=0, Riyi=) RiA, k>0 (2)
1=0

It was shown (see [2]) to be such that 0 < Ry T R as k — oo and the
convergence is r — linear. Numerical experience shows that this scheme can
be very slow and is not recommended as the solution method.

It is easy to see that the solution of (1) is equivalent to the solution of
F(X) = 0, where FI(X) = X — Y2, X'A;. With each m x m matrix X
we may uniquely associate the vector which is the m2-vector formed by the
successive columns of X. In this way, F(X) can be regarded as a function

from R™ to R™. The application of standard functional analysis shows (see
[3]) that F'(X) has for its Gateaux derivative F'(X) the linear map

oo t—1
F'(X):H— H-=-Y Y X'HX"17i 4, (3)

=1 j=0

The Newton-Kantorovich scheme for (1) is then given by

Reyr = Ry — (F'(Ri)) ™ F(Ry) (4)

Denote Sy = —(F'(Ry))™'F(Ry), or equivalently F'(R:)S, = —F(Ry). If we
substitute (3) for F'(Ry) then Sk can be solved by

oo t—1) .) 0o)
Se— D D RiSkRTT A =) RLA; — Ry (5)
i=15=0 =0

It then follows that to solve for Sy, m linear systems must be solved at every
iteration, which is unacceptable numerically. To circumvent this difficulty,
several variations of Newton-Kantorovich scheme are proposed, based on
truncating the second term on the left hand side of (5). If it is truncated at
¢ =1 and j = 0 respectively, the following schemes emerge

Ripn=), R(I-A)~! (6)
i>0,i£1
and
Ry = Ao(I = Y R A (7)

i=1

which also correspond respectively, to successive substitution schemes for the
equations X = ¥;501 X' (1 — A1) ™' and X = Ao(I -2, X1 A4;)~" which
are equivalent to (1). Scheme (7) also suffers from doing a large number of
matrix-matrix multiplications and solving systems of linear equations every
iteration, hence it is slower even than the direct scheme (2). However, scheme
(6) improves greatly over the direct scheme and has the advantage that the
matrix (I — A;)™! needs to be computed only once. Numerical experience
also shows that scheme (6) has about 20 percent reduction of CPU time and
number of iterations to those of the direct scheme.

However, a disadvantage of (6) is that it dose not incorperate any of
the information contained in the current iterate into the construction of the
appoximation of F'(Ry). To tackle this problem, V. Ramaswami [3] proposed
a new scheme by truncating the second term on the left hand side of (5) at
¢ = 2, and obtained the following equation

Sk = [Z R;cAz - Rz} + SkAl + (RkSk + SkRk)A2 (8)

1=0
Using this equation to solve for S still suffers from the need to solve a
large linear system at every iteration. Therefore, instead of solving (8),

Ramaswami estimated Z, = —F(R;)(I — A;)™"! of Sk on the right side of (8),
thus

Sk = —F(Ri) + Zy Ay + (RkZi + Zk Ri) Az (9)

which gives a new scheme as follows

Algorithm 1

Ro=0

Bl = (I - Al)_l

Repeat
Zk = —F(Rk)Bl
Sk = —F(Ri) + Zx A1 + (RiZx + ZiRi) A,
Riy1 = Ri + Sk

Untill

Fig.1

This algorithm is proved by Ramaswami to be such that it provides a mono-
tonically increasing sequence of iterates converging to R. Numerical experi-
cence also shows that this algorithm results in a 50 to 70 percent of reduction
in CPU time over the direct scheme. It is the recommended scheme for the
solution of (1), also a basis upon which our parallel algorithm is to be devel-
oped.

3 Hypercube Distrbuted Memory Systems

Distributed memory systems are one type of parallel computer systems. They
are so called because they have several identical processors, each of which
having a significant local memory. The processors are connected with a
communication network and they coordinate their computations by sending

and receiving messages through the network. A specific topology of the net-
work corresponds to a specific kind of distributed memory parallel comput-
ers. Each of the processors supports two communication primitives send and
recv. A processor executes a send to transfer information to other prosessors.
A processor executes a recv to receive infomation sent by other processors.
When a message is sent by a processor, the message remains in a buffer un-
til the designated processor executes a recv. If a processor executes a recv
and no message is available, it waits for one to come. T'wo processors want
to communicate don’t have to be directly connected since processors will
automatically forward messages.

Hypercube is a popular type of topology for the communication network.
An n-cube contains 2" processors, where each processor is linked to n proces-
sors. A 0-cube consits of a single processor. A 1-cube is obtained by linking
two 0-cubes tegether. In general, to construct a n + 1-cube, take two n-cubes
and find a one-to-one mapping between the two cubes. Then, connect each
pair of corresponding processors by a communication link. Usually, an ad-
ditional processor, called host, is attached to at least one processor in the
cube. The host is uaually used by the user to send data to the processors of
the cube and collect results from the cube.

In an n-cube, the diameter or the shortest path between any two proces-
sors is at most n, and for any processor proc a spanning tree rooted at proc
with depth n can be constructed. Processor proc can use this spanning tree
to broadcast a message to every other processors in time proportional to that
required to sequentially send n messages between two adjacent processors.
This is refered to as a fan out broadcast. Similarly, a fan in can be used
to collect information from all other processors onto a single processor. For
more topological properties of the hypercube, refer to Saad and Schultz [4].

4 Parallel Algorithms

As pointed out in section 2, our parallel algorithm will be based upon al-
gorithm 1. In that algorithm, the most time consumming computation is
the evaluation of G(R;) = Y32, Ri A;. In the practical implementation, the
sum is truncated at some finite number N, which is determined by some
practical criteria. Thus, we need to devise an efficient algorithm for evaluat-
ing Gn(R) = ©N, RiA;, which is just a matrix polynomial. A well known

sequential algorithm is Horner’s scheme:

Algorithm 2 (HEVAL) Given matrices R and A;, : = 0, N,
the following algorithm computes Gy (R)
F = RAN + ANy
fork=N-2:-1:0
F = RF + A,
end

Gn(R) = F
Fig.2 HEVAL

This algorithm requires N matrix multiplications and the same number of
matrix additions. It is easy to see that Horner’s scheme is optimal in the
sense that it minimizes the number of matrix multiplies. However, it is not
trivial to parallelize Horner’s rule since the reccursion in it. It is because of
this difficulty that makes us try to find some other approaches which have
more parallelism.

To this end, let us first give an efficient procedure to compute the power of
a matrix. Let’s look at an example, where AcR™*™ and we want to compute
A5. The trivial way for this is to multiply A 5 times, hence 5 matrix-matrix
multiplications are needed. On the other hand, since A° = A*A, if A? is
computed, then A* = (A?)2, A® can be computed using only 3 matrix-matrix
mutiplications. Formalizing this idea for any N we have

Algorithm 3 (BINEV) Given A and N, this algorithm com-
putes AV and stores it in P.
Let N = Y} _, Bx2* be the binary expansion of N with §, # 0.

S=A4,4q=0
while g, =0
S=8%q¢g=q+1
end
P=S
fork=q+1:t
S =52
if B #0
P=PS

endif
end

Fig3 BINEV

This algorithm can be found in Golub and Van Loan [7] (p. 553). This
algorithm requires at most 2[logz(N)] matrix multiplies, and if N is a power
of 2, it requires only logy(/N) matrix multiplies.

Next, the idea involved in BINEV is used to devise a sequential algo-
rithm for evaluating Gy(R), which is just a combination of matrix pow-
ers. Let us assume that N is a power of 2 from here on. Note that R?
J = 0,---,logy(N) are sufficient to form all the powers R', : = 1,---, N if
we utilize the binary representations of 1 to N. The following algorithm is
designed so that it fully reuses the powers computed, hence reduces the num-
ber of matrix multiplies. In the algorithm, f; is the array to store the binary
representation of ¢, P; is used to store R'A;, and binary(:) is a function which
returns the binary representation of :.

Algorithm 4 (FEVAL) Given R, A;, ¢ = 0 : N, this algorithm
computes Gn(R).
{ Initialization }
P = Ao
fore=1:N
Bi — binary(7)
P; — A;
end
{ ComputePowers }
for 7 = 1: logy(N)
for:=1:N
if 6(7) # 0
P; — RP;
endif
end
R — R?
end
{ Collect Powers }
fori=1:N

P— P+ P
end

Gn(R) =P
Fig4 FEVAL

Note that exactly half of the numbers 1 : N have 1’s in the jth bit of
their binary representations (j = 1 : loga(N)), so it is easy to see that this
algorithm needs 1Nlogy(N) + logy(N) matrix multiplications. Apparently,
FEV AL is inferior to HEV AL on a sequential machine, but there are more
parallelism in FEV AL than in HEV AL.

To design an efficient parallel algorithm on a hypecube type architecture,
several issues like data distrubution, node communication and load balancing
have to be put into consideration.

Suppose we have a hypercube system with p processors, each of which has
a unique name myid. Without loss of generality, we can assume that there
are 2! + 1 terms in Gy(R), i.e., N = 2'. Let us also assume that N > p.

We would like to arrange the storage for all A;’s such that an efficient
parallel algorithm for evaluating Gn(R) can be obtained. It turns out that
storing A;’s in wraped fashion meets our goal, that is

A; is assigned to node j ,where 1 =j mod(p), j=0:p—1. (10)

It is also assumed that a copy of R is stored in node 0.

The following is an outline of our algorithm:

(1) node j, j = 0 : p — 1 is responsible for computing terms S; =
Y kes R Ay, where J denotes the index set of A;’s stored in node j;

(2) these partial sums S; are then routed to node 0 through a fan-in
procedure and final result Gy(R) = Y% S; is thus obtained at node 0.

Part (1) can be further divided into four steps, except for step (a), all
three other steps are done in parallel:

(a) node 0 broadcast R to all other nodes;

(b) node j, j = 0: p—1 computes R’ and RP, using the idea of algo-
rithm BINEV, only log,(p) number of matrix multiplications are required.
Communications between nodes are needed in this step;

(c) each node j employes a Horner’s type procedure and computes its own
matrix polynomial S;/R? = A; + RPA,,; +--- + RP(N/p‘l)Ap(N/p_1)+J- using

8

the matrix power R? computed in step (b). The main computations of the
algorithm are concentrated in this step and no commucations between nodes
are needed;

(d) multiplying the resulting matrix S;/R’ with the matrix power R’
that has been calculated in step (b) completes the calculation of S; in node
Jy3=0:p—1

Finally, the fan-in of S; in part (2) is achieved through the spanning tree
rooted at node 0.

The detailed algorithm is given on next page.

Algorithm 5 (PEVAL) If each node executes the following node
program, then G (R) is computed in node 0.
h = N/p {number of sweeps}
{initialization}
P=1, S=Aph-1)yptmyia (S = Ap, for node 0)
node 0: broadcast(R)
{sweep 1, compute matrices R™¢ and RP}
for j =1: loga(p)
if binary(myid)(s) = 0 then

R — R?
send(R) — myid + 2771
else
P — RP
recv(R)
endif
end
{other sweeps, compute Spyid/ R™}
fork=2:h

if myid = 0 then
S« RS+ Ah—k-1)p
else
S RS+ Ah—kypsmyid
endif
end
{final sweep, compute Sp,yia}
if myid = 0 then
S «— RS+ A
else
S« PS
endif
{collect results to node 0}
fan-in(S)

Fig5 PEVAL

10

It is easy to see that the time PEVAL spends in computation is
N 3 2
Tcomp ~ [; + logg(p)](m +m)
and the time it spends in communication is

Teomm = 3loga(p)(a + Bm?)

the total time for PEVAL is then

N N
Trevat & [; + logy(p)lm® + [; + (38 + 1)log, (p)Jm®
Hence the speedup of PEVAL over HEVAL is approximately

Theval (N
Sp = ~
P Tpeval P N + Plogz(P)

)

From this formula we can see that the speedup is always greater than one,
and increases with NV as well as p. When N tends to infinite, the speedup
tends to p, the best we could hope for. Furthermore, the efficiency of the
algorithm is N/[N + plog,(p)], which increases with N and tends to one as
N goes to infinite. But, the efficiency decreases with p, which is a general
phenomenon in parallel computations.

Communications between nodes are essentially eliminated except in the
first sweep and fan-in/fan-out parts of the algorithm. Again, this is almost
the ideal situation in designing a parallel algorithm as far as communications
are concerned.

Finally, load balancing among nodes is also achieved in our algorithm
since essentially each node has the same amount of work load.

In conclusion, our parallel algorithm PEV AL is very efficient and is op-
timal in the sense that it achieves a linear speedup.

The next expensive computation in Algorithm 1 is the computation of (1—
A;)7! at the start. It is quite straightforward to design a parallel algorithm
for this purpose. To compute the inverse, the Gaussian elimination of I —
A; = LU is first computed in parallel by all the processors. There have been
several efficient parallel algorithms on hypercubes for Gaussian elimination
which can achieve near linear speedup, for example, see [5], [6]. Then, node

11

0 broadcast a copy of L,U to node j, j = 0: p — 1, which in turn computes
columns ¢, ¢ = j (mod p)of the inverse. And then all the node fan-in their
results to node 0. The following is the detail of the algorithm.

Algorithm 6 (PINV) if all nodes execute the following node
program, then (I — A;)™! is computed at node 0 upon termination.
compute L U
if myid = 0 then
broadcast(L,U)

else
recv(L,U) — S
endif
fori=myid:p:m
solve Ly = ¢;

solve Uz =y
fan-in(z) to node 0
end

Fig.6 PINV

An easy computation gives the time for PINV is

Since the time of an efficient sequential algorithm for computing (I —Ay)?
via Gaussian elimination is approximately §m3, it is evident that the speedup
of PINV is almost linear.

Putting together all the ingradients, we have the following parallel version
of Ramaswami’s algorithm for nonlinear matrix equations.

Algorithm 7 Given A; and N, if each node executes the following
node program, the solution R to the matrix equation X = TR0 XA, is
computed at node 0.

{initialization}

R=0

{compute (I — A;)~! in parallel}
call PINV

12

Repeat
{evaluate Gn(R) in parallel}
call PEV AL
{some lower order work}
node 0,1 and 2: compute step length matrix S
{node 0 updates next iterate R}
ifmyid=0: R~ R+ S
Until

Fig.T

As we have discussed before, the speedup of Algorithm 7 can be linear when
N and m are large. Hence we can conclude that we have achieved the goal
of designing an efficient parallel algorithm for the matrix equation (1).

5 Numerical Experiments

Since PEV AL is the dominant work in algorithm 7 and since PINV has
been extensively analyzed and experimented by other researchers, we have
only performed some numerical experiments with PEV AL on the 32-node
Intel iPSC2 hypercube at Cornell Theory Center, running version 3.1 iPSC2
system software. The numerical results are listed in Tables 1-4.

In Table 1, we list the results of the speedup of algorithm PEV AL run
on different cube sizes ranging from 2 nodes to the full cube (32 nodes).
As expected, the ideal speedup are achieved (or almost) for runs on small
cubes since the communication overheads are very small compared with the
computation times. In order to achieve the same speedup on large cubes, we
need to increase polynomial degree N so that the same low ratio of (com-
munication overhead)/(computation time) observed on small cubes can be
achieved. However, this is impractical for the hypecube machine we used
since it would take too long for the sequential algorithm HEV AL to fin-
ish. Instead, we have ploted the projected speedup curves in Fig.8. Also,
it is observed in Table 1 that as matrix size m incerases, the corresponding
speedup also increases. This is what we have expected. Since as matrix size
increases, the communication/computation time ratio drops (see Table 2,3),
this results an increase in the speedup.

13

In Table 2 and Table 3, the computation and communication timing re-
sults and their ratio for runs on 2 nodes and 32 nodes are listed. As we
mentioned before, while these ratios are extremely low, the ratio for 32 nodes
for any combination of m, N is noticeably higher than that for 2 nodes. We
also notice that this ratio drops as matrix size increases, although it becomes
less and less noticeable.

Finally, in Table 4, the individual node timing is listed for run on 16 nodes
with matrix size and polynomial degree equal 64 and 1024 respectively. For
reference purposes, the individual node fan-in time is also included there. It
is clear from this table that load balancing is achieved among all nodes of
the cube.

In conclusion, these numerical results have comfirmed all of our theri-
cal analysis/results about algorithm PEV AL of the last section, hence our
goal of designing an efficient algorithm for the nonlinear matrix equation on
hypecube is achieved.

6 Acknowledgement

We thank Cornell University’s Theory Center and Advanced Computing Re-
search Institute for the use of the Intel iPSC2 hypercube computer and in
particular their staff members Roslyn Leibensperger and Douglas Elias for
their help in the programming of this algorithm.

14

References

1]

[2]

[3]

[4]

[5]

[7]

M. F. Neuts, “Matrix-analytic methods in queueing theory,” FEuropean
J. Oper. Res., 15 (1984), pp. 2-12.

M. F. Neuts, “Matrix-Geometric Solutions in Stochastic Models - An Al-
gorithmic Approach,” The Johns Hopkins Univ. Press, Baltimore, Lon-
don, 1981.

V. Ramaswami, “Nonlinear matrix equations in applied probability-
solution techniques and open problems. ” SIAM Review, Vol. 30, Num.
2, June 1988.

Youcef Saad and Martin H. Schultz. “Topological Properties of Hyper-
cubes,” Research Report YALEU/DCS/RR-389, June 1985.

E. Chu and A. George, “Gaussian elimination with partial piviting
and load balancing on a multiprocessor”, Tech. Rept., Department of
Computer Science, University of Waterloo, Waterloo, Ontario, Canada,
1986.

G. A. Geist, “Efficient parallel LU factorization with piviting on a hy-
percube multiprocessor”, Tech. Rept. ORNL-6211, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, 1985.

G.H.Golub and C. Van Loan. Matriz Computations, The Johns Hopkins
University Press, Baltimore,MD.,1989.

15

matrix polynomial 2 4 8 16 32
size (m) degree (N) | (nodes) (nodes) (nodes) (nodes) (nodes)
8 64 1.86 3.11 4.33 4.90 4.82
8 128 1.93 3.51 5.60 7.49 8.40
8 256 1.96 3.73 6.60 10.22 13.20
8 512 1.98 3.86 7.23 12.49 18.79
8 1024 1.99 3.93 7.59 14.03 23.65
16 64 1.92 3.40 5.24 6.65 7.09
16 128 1.96 3.68 6.33 9.38 11.60
16 256 1.98 3.83 7.07 11.85 17.02
16 512 1.99 3.92 7.51 13.61 22.74
16 1024 2.00 3.96 7.75 14.71 26.25
32 64 1.94 3.51 5.60 7.45 8.25
32 128 1.97 3.714 6.60 10.17 13.13
32 256 1.99 3.88 7.24 12.46 18.64
32 512 2.00 3.94 7.62 14.03 23.56
32 1024 2.00 3.98 7.82 14.98 27.20
64 64 1.94 3.53 5.70 7.69 8.65
64 128 1.97 3.75 6.66 10.39 13.62
64 256 1.98 3.87 7.27 12.60 19.11
64 512 1.99 3.94 7.62 14.10 23.94
64 1024 2.00 3.97 7.81 15.00 27.39

Table 1: SPEEDUP OF ALGORITHM PEVAL

16

matrix polynomial total comp. comm. comm./comp.
size (m) degree (N) | time(ms) time(ms) time(ms) ratio

8 64 298 288 10 0.034722
8 128 575 566 9 0.015901
8 256 1129 1118 11 0.009839
8 512 2237 2227 10 0.004490
8 1024 4454 4444 10 0.002250
16 64 1945 1928 17 0.008817
16 128 3808 3790 18 0.004749
16 256 7534 7516 18 0.002395
16 512 14984 14966 18 0.001203
16 1024 29886 29870 16 0.000536
32 64 14111 14077 34 0.002415
32 128 27729 27695 34 0.001228
32 256 54965 54932 33 0.000601
32 512 109436 109402 34 0.000311
32 1024 218379 218349 30 0.000137
64 64 108153 108098 55 0.000509
64 128 212771 212715 56 0.000263
64 256 422007 421951 56 0.000133
64 512 840468 840412 56 0.000067
64 1024 1677413 1677356 57 0.000034

Table 2: TIME AND RATIO OF PEVAL RUN ON 2 NODES

17

matrix polynomial total comp. comm. comm./comp.
size (m) degree (N) | time(ms) time(ms) time(ms) ratio
8 64 115 68 47 0.691136
8 128 132 83 49 0.590361
8 256 168 119 49 0.411765
8 512 236 189 47 0.248677
8 1024 375 326 49 0.150307
16 64 526 431 95 0.220418
16 128 643 545 98 0.179817
16 256 876 779 97 0.124519
16 512 1341 1244 97 0.077974
16 1024 2272 2178 94 0.043159
32 64 3314 3128 186 0.059463
32 128 4164 3977 187 0.047020
32 256 5867 5679 188 0.033104
32 512 9272 9085 187 0.020583
32 1024 16081 15893 188 0.011829
64 64 24205 23855 350 0.014672
64 128 30744 30390 354 0.011649
64 256 43821 43470 351 0.008075
64 512 69974 69619 355 0.005099
64 1024 122281 121929 352 0.002887

Table 3: TIME AND RATIO OF PEVAL RUN ON 32 NODES

18

node total comp. comm. fanin.
number | time(ms) time(ms) time(ms) time(ms)
0 222545 222273 272 212
1 222526 222210 316 211
2 222464 222182 282 150
3 222467 222181 286 149
4 222399 222138 261 92
5 222409 222163 246 84
6 222410 222160 250 86
7 222412 222161 251 85
8 222338 222123 215 25
9 222341 222117 224 24
10 222341 222114 227 24
11 222351 222128 223 24
12 222343 222130 213 24
13 222353 222128 225 24
14 2223543 222129 225 24
15 222358 222137 221 24

Table 4: INDIVIDUAL NODE TIME OF PEVAL RUN ON 16 NODES
(matrix size = 64, polynomial degree = 1024)

19

PEVAL Performance on Intel iPSC2
Matrix dimension m = 64

=4 =l _
spesdup of PEVAL over HEVAL E-@—-—-- E—E—EZ——
30
-
-/
25 -
0/
/7 d
20
/0
15— 9 - wm Wm Ll
- -
-
8 ’ - -
’, P

ol

'~ ’_“——_———-_

/

7
5 -

m
0 T T l T T

0 200 400 600 800 1000 1200

polynomial degree: N
F1g.8

20

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif

