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Abstract

To date, the implementation of message passing languages have required
the communications variables (sometimes called ports) either to be limited
to the number of physical communications registers in the machine, or to
be mapped to memory. Neither solution is satisfactory. Limiting the
number of variables decreases modularity and efficiency of parallel pro-
grams. Mapping variables to memory increases the cost of communications
and the granularity of parallelism. We present here a new programming
language construct called epochs.

Epochs are a scoping mechanism within which the programmer can declare
communications variables, which are live only during the scope of that
epoch. To limit the range of time a register has to be allocated for a com-
munications variable, the compiler ensures that all processors enter an
epoch simultaneously. The programming style engendered fits somewhere
between the SIMD data parallel and MIMD process spawning models.

We describe an implementation for epochs including an efficient synchroni-
zation mechanism, means of statically binding registers to communications

variables and a method of fusing epochs to reduce synchronization over-
head.

1. Introduction

An important class of parallel processors is that of message passing com-
puters, which perform interprocessor communication and synchronization by
exchanging messages. Sending a message takes place in two steps: the mes-

sage is routed on a communications medium, and then stored in a location

IThis work was supported in part under ONR grant number N00014-86-K-0215 and under NSF grant
number DCR-8503610. :



which is readable by the receiving processor. In a high-level language these
locations are abstracted into a name space of communications variables

(sometimes called ports).

The communications variables in a program must be mapped to physical
locations. If communications variables are mapped to the receiver’s
memory, there can exist as many communications variables as there are
variable names in the program. While elegant, this method has two draw-

backs:
(1) Data stored in memory requires more time to access, and
(2) Messages may be requested before they arrive.

The asynchronous nature of the message arrival specified in (2) requires
some mechanism for synchronizing senders and receivers of messages. This
is the well known producer-consumer operating system problem (see
[PeS83]). Several hardware implementations of the standard software solu-
tions have been proposed. On the Denelcor HEP [Smi81] each location con-
tains a valid bit which is turned on when the message arrives. A read of a
location not yet valid is repeated until the message arrives. Thus, the HEP
busy waits when the receiver is ready before the message arrives. An alter-
native method called I-structures, proposed by Arvind [ArT80], does not
require busy waiting. However, I-structures require significant hardware
expense to implement. In either case, the use of memory-based communica-

tions variables adds a significant overhead to the cost of message passing



architectures. We estimate that for one architecture, Microflow [SoN85], the
overhead of buffering a message in memory would be a factor of four over
the cost of sending the message, not including the additional cost of syn-
chronization. The overhead results not only in increased computation time,
but in reduced effectiveness of fine-grain parallelism since the theoretical

performance improvement from parallelization must exceed the overhead.

Communications variables can be mapped to registers instead of
memory. Registers are not only significantly faster than memory cells, but
dedicated hardware, such as on the Cray I’s registers, can block the receiv-
ing process until the message arrives [Rus78]. When there are more com-
munications variables than registers, this mechanism requires the overload-
ing of registers —several different communications variables must be
mapped to the same register. Since the processor that reads the value is
normally not the one that wrote it, both sending and receiving processors
must agree on the mapping of communications variables to registers. More-
over, to preserve the performance advantages of such a scheme we shall

insist that this mapping be static.

A simple method of overloading the registers is to have one communica-
tions variable per node for each processor which can write to it. This is
feasible for systems with small number of processors, such as the Alliant
[Al185], or for systems supporting a small number of logical connections such

as the INMOS Transputer [Whi85]. However, in computers containing



thousands of processors, this technique would be expensive, since the
number of registers on the processor chip is limited, and since off-chip
storage would incur extra cost per access. Moreover, this method requires
that the sender produces messages in the same order that the receiver
receives them —this has performance implications which we shall discuss

latter.

An alternative method is for the compiler to map variables to different
registers according to the requirements of the algorithm. We have coded
about a dozen parallel algorithms in the context of the Microflow Project
including FFT, quicksort, bitonic sorting, B-trees, breadth-first search and
L-U decomposition. All the algorithms we have examined require, at most,
the number of communications variables to be proportional to the logarithm
of the number of processors [HNS87]. This seems to indicate that the
number of communication variables per algorithm is quite small on average;
however, a typical applications program would contain many algorithms
each with its own set of communications variables. As is shown later, the
liveness properties of these variables differs from those of regular variables,
and hence an unbounded number of registers could be required. Given this
finding, are there methods of mapping communications variables to registers
which are both effective and efficient? We present a mechanism to do just

this in the rest of the paper.



2. Assumptions

The proposed mechanism will exploit several assumptions we shall

make about parallel programs.

(1) Parallelism is derived from the parallel execution of a single program,

and hence the total program is available at compile time.

(2) Parallelism is often the result of executing the same code on different

data.

Property (2) often results in fine-grain parallelism (especially for non-
numeric computation), hence it is necessary to reduce the overheads of
invoking this parallelism. The primary way of doing this is by statically
analyzing the program and allocating resources. Property (1) makes that

analysis possible.

3. The problem

Consider the case of different processors executing a single code and
communicating via messages. In what follows, the processor numbered :
(processor;) communicates with processor; by sending messages to a

J

register-mapped communications variable on processor;. We shall examine
the consequences of asynchronous execution of the processors to the com-

munications variable mapping.

One way to synchronize the sender with receiver is to have synchronous

message passing, i.e. a message is only sent when the receiver is ready to
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consume it. This is the method used by CSP [Hoa78]. Unfortunately, syn-
chronous message passing both requires bi-directional communication and
prohibits the pipelining of messages on stochastic networks. Bidirectional
communication increases memory bandwidth requirements and doubles
latency. However, a far worse effect is the prohibition of message pipelin-
ing. Since a routing network will have at least O(log(P)) diameter, the lack
of message pipelining imposes a logarithmic latency on random message

addresses. Hence, we will consider only asynchronous message passing.

To maximize efficiency of register utilization, it is desirable that
processor; sends a message only when processor; is ready to receive that
message. Unfortunately, processor; has only local state information and
hence cannot determine when processor; would be ready to receive the mes-
sage. So processor; must allocate a register for that communications vari-
able the entire period during which it could receive a message from
processor;. During this period the communications variable is said to be live.
Since processors operate independently, the only constraint with which to
limit this period are the data dependencies. This is illustrated in figure 1.
We have found that compile-time analysis of data dependencies is unlikely

to yield a mapping of the communications variables to a succinct set of regis-

ters.
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Figure 1 — Time (¢) during which processor; can receive message a
from processor;.

Another consequence of this asynchrony is that communications vari-
ables which are assigned to registers do not follow normal scoping mechan-
isms. For example, assume x is an ordinary variable declared in procedure p
and p calls procedure q. A compiler would assign x to a register reg.x and,
immediately before the call to ¢ would generate code to save reg.x in the
memory location assigned to x. This is called spilling the value of the regis-
ter [AhU77]. It is the synchronous execution of code which allows x to be
spilled. If, instead of being an ordinary variable, x were a communications
variable, then spilling could not occur without (expensive) synchronization

with the sending process since the receiving process could not know whether



a value for x would arrive when ¢ is executing. Hence, communications

variables are bound to registers for the entire time that they are live.

This has important consequences for compilation as well as register
allocation. Compilation cannot be performed for procedures individually,
but must be done for the sequerfce of procedure calls. With non-recursive
procedures there are a bounded n:umber of such sequences. However, recur-

sive procedures present special problems.

To improve the quality of register mapping we must limit the range of
time during which the message could arrive at processor;. This can be done
by increasing the level of synchrony in the machine. In the limit, an SIMD

-strategy can be employed (since execution is derived from a single code).
However, our definition of message passing does not require the messages to
. be sent (or to arrive) in the same order that they are consumed. Hence,
multiple registers must be allocated for message passing — in fact it might
not be possible to bound this number at compile time. So SIMD execution
does not solve the register allocation problem. Moreover, SIMD computa-

tions are not always efficient. A preferable strategy is to allow processor

execution to be no more tightly bound than the sends and receives allow.

We define skew to be the degree of asynchrony of different processors
executing the same code. In general, too small a skew results in idling pro-
cessor resources, and too large a skew results in potentially unbounded

number of registers. We would like to tune the skew to allow maximum



execution speed while limiting register use to the number of registers in the
machine. We shall say that a program has a natural (minimum) skew based

on the patterns of sends and receives.

One approach is to allow the compiler, given the natural skew inherent
in the program, to maximize speed by increasing skew until all registers are
use. Different communications variables can be mapped to the same regis-
ter only if the messages are guaranteed to arrive at the receiver in a specific
order or if they are mutually exclusive in time. Our examination of several
algorithms show that compile-time analysis would be unlikely to achieve

significant reduction in the number of registers required.

An alternative approach is to allow the programmer to insert explicit
synchronization code to ensure that communications variable use will be
temporally separated. This solution requires the programmer to explicitly
allocate and release communications registers, even when programming in a
high-level language. This increases the programmer burden by forcing him
to deal with low-level issues. As discussed in [HNS87] this also reduces the

modularity or the code.

4. Model of parallel programming

Our model of parallel programming fits somewhere in between the data
parallel model of Connection Machine [HiS86] and the dynamic spawning of
processes as in the Ultracomputer [GGK84]. As in the data parallel model,

we begin with a single program which runs on all the processors. This



means that all the parallelism is available at the start of execution and as

the execution proceeds some elements get "masked out".

However, the execution model is not SIMD. Processors which are not
used on one branch of the computation are available for use on another. The
result is that the set of processors can be recursively subdivided to work in

parallel, allowing greater asynchrony (and hopefully greater efficiency) than

SIMD models.

To implement this model, a program runs independently at each pro-
cessing node. Picture the run-time stack for a processor as representing the
execution of the program. The stack grows and shrinks vertically. Interpro-
cessor communication takes place horizontally between processors at nearly
the same stack configuration. Figure 2 shows the stack configuration of
processor; sending a message to processor;. The solid part of the stack
represents the point at which processor; must have reached. The dotted
lines represent procedures and scopes called by processor; during which time

it is still legal for it to receive a message. In succeeding sections, we shall

make these statements more precise.
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processor, processorj

..............

Figure 2 — Stack configuration of processors i and j when
processor; is receiving a message from processor;

5. Epochs

The method we propose for managing communications variables is to
have periods of time during which communications variables could be live
called epochs. An epoch spans multiple processors. As a programming
language construct, epochs both declare communications variables and
define their lscope. Communications variables must be referenced only
within the epoch in which they are lexically scoped. If processor; sends a
message to processor; via communications variable x, then both processor,
and processor; must be executing within the epoch where x is declared when

x is sent, and processor, must be executing within the epoch when the mes-

]
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sage is received. Therefore, the only communications variables which are
live at a given point of execution are those within the current (dynamically
opened) epochs. Two further requirements are that a processor exits an
epoch only after all the messages that will ever be sent to it during that
epoch have been received, and that messages are not sent to processors that

do not enter the epoch.

Epochs limit skew to a range within the dynamic execution of an epoch.
We shall latter show how the compiler can merge epoch synchronizations to
reduce overheads. To enable these optimizations, it is not permitted to use

epoch entrance as an explicit synchronization point.

An example of epoch use is shown in Figure 3. Epoch A has two com-
munications variables (x and y), and contains a call to px;ocedure p, which
also contains epoch C. When p is called from epoch A and epoch C is
entered, there are 4 communications variables which are live — Epoch A

variables x and y, and Epoch C variables x and y.

12



int
main()
epoch A do
com int x;
com float y;

p(2); .
< some code with sends and receives of x and y >
end;

epoch B do
com int x;
com int z;

< some code with sends and receives of x and z >
end;
end;

int
p(a)
int a;

epoch C do
com int x;
com int q;

<sends and receives of x and q>
end;

end;
Figure 3 - an epoch example

5.1. Notation

We describe the notation used in programs by an annotated BNF.

13



A program is composed of variable declarations and one or more

threads.
program « variable_decl program |
thread_decl program
thread_decl « compute_thread_decl server_thread_decl*

A thread is a single code executed independently on each of the P processors
in the system and can be thought of as P processes. (Processing is custom-
ized only because each processor knows its own processor number).
Although a program is composed of possibly many threads, one is dis-
tinguished as the computation thread — the others are all known as server
threads. The computation thread is the main focus of control, while a server

thread, as the name indicates, provides a service to the computation thread.

compute_thread_decl « thread thread_name do
inside_compute_thread
end;

inside_compute_thread < procedure_decl inside_compute_thread |
variable_decl inside_compute_thread |

€
server_thread_decl « thread thread_name do
inside_server_thread
end;
inside_server_thread « epoch_decl inside_server_thread |

procedure_decl inside_server_thread |
variable_decl inside_server_thread |

€

In the computation thread, procedures and variables are declared. Pro-A

gram execution begins at a distinguished procedure called main in the

14



computation thread. A server thread consists of a number of epochs, pro-
cedures, and variables. At any time during the execution of the program,
only one outer epoch per server thread can be active. A computational
epoch can send to a server epoch only if the server epoch is in the outermost
scope of the server thread. A server thread can send to the computational

thread which instantiates it.

epoch_decl - epoch epoch_name do
cv_decl*
epoch_instantiate*
statement*
end

where cv_decl is a communications variable declaration, and statement* con-
tains sends and receives corresponding to the communications declared with-

ing the epoch scope.
cv_decl - com type var;

declares var as a communications variable of data type type.
epoch_instantiate < instantiate epoch_name;

Declares that the current epoch will send values to a server epoch called
epoch_name (a server epoch is an epoch which is directly inside a server
thread scope). Hence, epoch_name’s communication variables are available
as targets of sends. Moreover, the entrance of the computation epoch also

creates the server epoch in a different thread.

send(value, var, epoch_name, proc)

15



sends a value to an epoch_name at proc. Var is a communications variable

declared in the epoch to which the value is sent.
receive(var);

Although different semantics are possible, we follow in our example the
semantics of receive used in MFL® [HNS87]. Associated with every com-
munications variable is a queue. The head of that queue is removed and
assigned to variable. If the queue is empty, the next operation on the vari-

able will block until the data arrives at the queue and is removed.

Finally, there is a keyword proc which specifies the number of the pro-

cessor (from 0...P —1) which is executing the code.

5.2. Epoch use

Now that the notation has been given, we wish to show an example of

epoch use in a program. Our example is a parallel breadth-first search.

Figure 4(a) shows the main thread to compute a breadth-first search
(bfs) of a graph. The outer (synchronized) loop iterates through each level of
the breadth-first search. The inner loops iterate through the list of nodes
which are adjacent to nodes in the current set on that processor and com-
putes the set of nodes to search for the next level of the bfs. To ensure that
a node shows up on the visited set at most once, access to a given node is
always through a particular processor (on the server thread node_enqueue).

The search starts with a seed node.

16



thread main do
bfs(seed)

epoch round do v
com boolean done;
com ptr queue;
instantiate node_enqueue;
instantiate boolean_tree;

done := false;

if VertexToProc(seed) = proc then
send(seed, elmt, node_enqueue, VertexToProc(seed));
send(ENDMARK, elmt, node_enqueue, proc);

end;

while not done do
receive(queue);
local_done := true;
forall v € queue do
forall a € adjacency(v) do
send(a, elmt, node_enqueue, VertexToProc(a))
local_done := false;
end;
end;

— synchronize end-of-round
send(local_done, term, boolean_tree, parent(proc));
receive(done);
send(ENDMARK, elmt, node_enqueue, proc);
end;
end;
end;
end;

Figure 4(a) Main computation thread for breadth-first search

The main thread contains a single procedure called bfs. Within that

procedure, an epoch is declared that will make use of two server epochs

17



(node_enqueue and boolean_tree). The procedure begins by initializing each

processor’s queue: exactly one will contain the seed, all others will be empty.

The function of the inner and outer loop of bfs has already been

described. Now the servers will be described.

thread node do
epoch node_enqueue do
com ptr elmt;
Local next_queue;

do
next_queue := nil;

receive(elmt);
repeat until eimt=ENDMARK do
if not elmt->visited then
next_queue : = append(next_queue, elmt);
elmt- >visited : = true;
process(elmt);
end;
receive(elmt);
end;

send(next_queue, queue, round, proc);
end;
end;
end;

Figure 4(b) node server thread (ensures that node is put on queue at most once)

Node_enqueue (Figure 4(b)) builds a queue of elements that are adjacent

to elements in the current round and that have not been encountered before

18



in the search. Each processor considers only those elements which are phy-

sically located at the processor’s node. The queue built by the processor in

the node_enqueue thread will be used by the thread in the next round.

thread bt do
epoch boolean_tree do

end;
end;

com boolean term;
com boolean result;
boolean partial_or;

receive(term); — receive from computation thread
partial_or := term;

— receive from sons in boolean_tree thread
forall s € sons do

receive(term);

partial_or := partial_or or term;
end;

if proc=root then
result : = partial_or;

else
send(partial_or, term, boolean_tree, parent(proc));
receive(result);

end;

send(result, done, round, proc);
forall s € sons(proc) do

send(result, result, boolean_tree, s);
end;

Figure 4(c) boolean tree server thread (returns the or of all values).

The second server thread, boolean_tree (Figure 4(c)), implements a or-

tree which returns true if any of its leaves are true, and also synchronizes

19



the completion signal for the next round.

5.3. Programming-in-the-large

Now that we have given a small but detailed example of epochs, we
would like to describe how epochs could be combined to build large parallel

programs.

20



thread computation do

main()
input(); — read in the data structure
g := graph_create(); — create a graph
bfs(g); — breadth-first search creates list
sort(list); — sort list
end; {
bfs() ... end;
process(node)

epoch linear do
instantiate add_linear;
end;
end;
end
— node_enqueue and sort_server must operate as disjoint times
thread node do

epoch node_enqueue do ... end

epoch sort_server do ... end;
end

thread bt do
end;
thread make_linear do
epoch parallel_to_linear do

end;
end;

Figure 5 — Programming-in-the-large
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This program in figure 5 contains four series procedures at the main
level to read in the data, construct the graph, produce a linear sequence
from the breadth-first search and to sort that sequence. The communica-
tions variables for each of those four procedures are guaranteed to be live at
disjoint times. Hence, the same set of communications registers can be used

for each of the four procedures.

Also of interest is that the thread node contains two epochs at its top-
most level. However, since those epochs will operate at disjoint time periods

they can share one processor context.

6. Implementing epochs

In this section we show basic properties of epochs and show how to

implement them.

6.1. Epoch match

In order to send a message to a communications variable declared in an
epoch we need to ensure that both sender and receiver are executing within
that epoch. There are two issues: the first is to define what it means for two
processors to be in the same epoch, and the second is how to synchronize two
processors that will enter the same epoch. The solution of these two issues
form what we call epoch match. We will define the property of two proces-
sors executing in the same epoch in terms of an operational semantics on an

abstract run-time stack.

22



Without loss of generality, we can treat loops as recursive procedures by
the obvious transformation. Hence, we shall only consider procedures and

conditionals as altering the control flow of the program.

A procedure definition or epoch defines a scope. Let N be the number of
scopes occurring statically in the text of the program. Each scope is labeled
with an integer between 1 and N, with the main procedure (the first one

called) being given the label 1.

We will call procedure calls and epochs objects of interest. We number
the objects of interest within a scope in the order that they appear in the
text of the scope, and ignoring for the purposes of numbering objects which
are interior to the scope of epochs. We denote the jth object of interest in ith

scope as elmt, ;.

That completes the description of the static structure of the program.
We model the run-time behavior of the program by an abstract stack. Every
time a new scope is entered via elm¢, ; the pair <i, j> is pushed onto the

stack. When a scope is exited, the top element is removed from the stack.

We shall say that processor; and processor; are executing in the same
epoch iff some initial segment (starting at the bottom) of the abstract stacks
are equal, and at least one of the <i,j> pairs in that initial segment

represents an epoch.

It follows from this definition that two processors which are executing in

the same scope are executing within a single textual occurrence of the epoch.

23



Moreover, each processor dynamically reached that epoch by the same

sequence of procedure calls and loop iterations.
Theorem Each epoch on a given processor occurs at most once.

proof If an abstract stack stack = <<i,,j;>,<igjg>, - <igJg>>
(where the Sth element is the top of the stack) then let
Lex(stack)=<ji,q, - - - Jg>. We define a relation on stacks, s; =, s, which
is true iff Lex(s;) is lexically greater than (;r equal to Lex(sy). If we can

show that for all successor states, the relationship =, holds, then we have

shown that each epoch can be entered on a given processor at most once.

Let stack([1..k] represent the k bottommost elements of the stack. We
wish to consider each successor stack succ. If succ[l.k-1] = stack[1..k-1]
and stack, o = succ,, we need to show that stack,; = succ,;. But how
could stack;,, < succ, fail to hold? only if control was transferred to an
earlier point in the scope. However, this is only possible with loops, which

we have transformed out of the program.

6.2. Epoch synchronization

An epoch which is spread across multiple processors must be synchron-
ized in order to ensure the receiving processor is ready. It is also necessary
to verify that the epochs which are being synchronized are the same. The
definition of epoch match can be implemented directly but this is likely to be

expensive since it means constructing an abstract stack, and comparing it

24



with other processors’ stack.

A second issue is whether to match epochs pairwise (when processor,
wants to send to processor;), or to match epochs for all processors simultane-
ously. Clearly, skew arguments favor pairwise match, but synchronization
costs would in practice be high because of the large number of synchroniza-
tions per epoch. Alternatively, all of the processors could enter the epoch
simultaneously. Synchronization on a PRAM [Sni85] would require
O(log(P)) time, where P is the number of processors. Simultaneous syn-
chronization appears desirable, but we need to know what is the set of pro-
cessors which will gnter an epoch. This is an undecidable problem at com-

pile time since epochs can be on branches of conditional statements.

We will first describe the algorithm used by the compiler to automati-
cally insert synchronization code. It is convenient to assume that we com-
pile in a path specific knowledge, that is we compile each non-recursive

sequence of procedure calls as a single entity.

A program dynamically constructs a mapping from the abstract stack
states to the integers. A variable r at each processor holds the current
integer representation of the abstract stack. (The value r changes each time
a new scope is entered or exited). In fact, we construct a stack of r values
called the r —stack, which is the same size as the abstract stack. The chief
difference is that the r value at a given level of the stack is a representation

of the corresponding abstract stack from the bottom to the level of the r
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value. The following mappings are also defined:

parent(r) The value below r on the r —stack
or 0 if r —stack is a singleton.

new_r(curr_r, scope) The new value of r when scope is entered
with r = curr_r.

reach[r] number of processors which have reached stack
configuration r.

reach(r] number of processors which will never enter
stack configuration r.

Note that for an epoch to be entered:
(reach(s) + reachls]) = reachlparent(s)] s =r,parent(r), - - -
Since the reach counter synchronization is needed only for epoch syn-

chronization, a compiler can remove (or coalesce) many reach computations.

We describe how these functions are implemented. New_r is imple-
mented as a global server which builds a map of <curr_r, scope> pairs to
integers. If <curr_r, scope> has not been seen by the server, a value of r
never before issued is returned and the map is augmented by < <curr_r,
scope>, r>. Otherwise, the mapped value is provided. The implementation
of this server (and several other algorithms) is described in [SXH]. Reach[r]
is computed by each processor calling an increment server for reach right
before the new scope. Reach[r] is computed by calling the increment server
on each execution path which will never reach the corresponding scope.
This code is inserted by the compiler, and is only possible because there are

no goto’s in the code.
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Note that the server ensures that the parent(r) returns the same value
on every processor on which value r is part of the r —stack (and is undefined

on all other processors).

This mechanism will work effectively within our context only if the
number of active r values is quite small. But this is bound by the number of

processors, and in practice will be even smaller.

Lemma R values are equal iff abstract stacks are equal.

proof The pushing and poping of values on the r—stack exactly follows
that on the abstract stack. It follows that a unique r —value is constructed
for each new scope by the definition of new_r. Hence every abstract stack -
on a processor is represented by a unique r. To show that the the same
r —value is use for all equal abstract stack reguardless of the processors we -
use simple induction. Base case is trivial since every processor begins with
abstract stack = <<1,1>> and r = 0. Induction step follows trivially

from the construction of new_r.

Lemma reach and reach synchronize same epochs.

proof We prove by induction that the property holds. The base case
(r = 0) is trivial since execution on all processors begins with and
reach[0] = P (and reach[0] = 0). The induction is on the children of r. Let

s be a child of r. No more processors can enter s then entered r since s can
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only be entered from r. Assume that a processor enters s but does not enter
r. Then, since s is the innermost scope containing r, a processor could only
fail to enter r because it took an alternative execution path and reach[s]
would be incremented. Otherwise, reach[s] will be incremented and execu-
tion will wait until all processors which want to enter s rendezvous here. So
all elements which eventually enter r will increment either reachl[s] or

reach(s]

Theorem Epoch match implements synchronization of the same epoch on

different processors.
proof Follows from above two lemmas.

6.3. Sufficient Conditions

In this section we prove that a bounded number of registers are needed
for communications if there are no cycles in the epoch-proc graph which we
will define. Hence, given sufficient number of registers, the communications
variables can be mapped to registers at compile time. The proof assumes

that procedures are not passed as parameters.

Let us define an epoch-proc graph as a directed graph, with a node in
the graph for each procedure and each epoch in the program. There will be
an edge of type 1 from an epoch; to a procedure; if epoch; encloses a call to
procedure;. There is an type 2 edge from procedure; to epoch; if epoch;

J

occurs within procedure;. Finally, there is an type 3 edge from procedure, to
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procedure; if procedure; is called by procedure;.

Theorem There is a compile-time bound on the number of registers needed
for communications variables if there are no cycles in the graph containing

an epoch.

proof Each epoch declares a finite number of communications variables
and there are only a finite number of epochs. Therefore, the only way to
attain an unbounded number of "live" communications variables is for an
epoch to be reentered without having been exited. The scoping mechanism
of all constructs other than procedures (since there are no goto’s) ensures
that these constructs cannot lead to an unbounded number of live communi-

cations variables.

To complete the proof we show that if there are an unbounded number
of registers then there must be a cycle containing an epoch in the epoch-proc
graph of the form:

procedure;—>epoch;'— - - - procedure;

If there is an unbounded number of communications variables then at
least one particular epoch must be entered an unbounded number of times.
Call that epoch epoch;,’. Let procedure; be the procedure that encloses
epoch;'. Clearly epoch;,’ cannot be reentered unless procedure; is recalled.
Hence, from within epoch,’ there must be a call to a procedure which will

eventually calls procedure,. Hence, the epoch-proc map will have a cycle of
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the above form consisting of the following sequence of edge types: one type 1

edge, one type 2 edge, zero or more type 3 edges culminating at procedure;.

6.4. Epoch Fusion

Epochs within the same thread either occur in series or are nested. Two
epochs are said to be in series if it is not possible for a single processor to be
in the two epochs simultaneously. Two epochs are said to be nested if it is
possible for a single processor to be in them simultaneously. Epochs in
series reduce the number of communications registers needed by ensuring
that the communications variable operate during disjoint times. Nested
epochs, on the other hand, do not decrease the number of communications
variables outstanding. This is because at the inner most nesting level all of

the communications variables are live.

Since the register requirements of communications variables for nested
epochs sum (at the inner-most epoch), and because the parents of the same
epoch are always the same we examine the possibility of fusing epochs.
Epoch fusion is a technique for reducing the number of epoch synchroniza-
tions. In the case of nested epochs, epoch fusion does not increase maximum

number of communications registers required.

Epoch fusion is defined on pairs of epochs. Let e;, e5 be epochs such
that on the path we are compiling ¢; dynamically encloses e, without enclos-
ing any intervening epoch. We wish to coalesce the synchronization for e,
and e; at e¢; and allocate the communications registers for e, when e; is
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entered.

Epoch fusion both reduces the overhead for creating epochs and enables
greater skew (and hence higher processor utilization). Moreover, if epoch
fusion is applied only to nested epochs there is no increase in the worse case

number of communications variables.

Theorem Coalescing epochs does not change the semantics of epoch opera-

tion.

proof Note that the communication of e;’s scope does not change at all.
We are therefore left with examining the consequences of ey’s communica-
tions. Let processor; send a message to processor; within scope ey. Clearly,
processor; will be in e, when the message is sent (since the name cannot
appear outside the static scope of ey). If processor; is executing in e; when
the message arrives, the message will wait at the allocated communications
register. Processorj will be in e, when the message is received, and must
eventually enter the epoch since it would be illegal otherwise to send the
message to processor;. Processor; will not receive messages after it leaves e,
since an epoch cannot exit until all of its messages have been accepted. Of
course, some processors will enter the fused epoch which would not have

entered e,. But since these processors will neither send nor be sent to

within this epoch, their execution is unaffected.
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6.5. Communications variable overflow

There are two cases in which we will not be able to map communica-
tions variables to registers. The first is when the number of registers
required, although bounded, exceeds the number of physical registers in the
machine. The second is when there is a cycle in the epoch-proc graph con-
taining a epoch. In this case there could be unbounded number of communi-

cations variables.

For both of these cases, it is possible to use an auxiliary server thread
which will simulated communications registers using memory [HNSS87].
Thus, these cases can be handled, albeit with a degradation in speed for

those variables which are memory mapped.

7. Summary of epoch requirements

(1) Communications variables are used only in the epoch in which they

have been declared,

(2) A processor within an epoch does not send a message to a processor that

never enters the epoch, and

(3) A processor receives all of the messages sent to it for an epoch before
exiting that epoch.
8. Conclusions and future work

We have described a new programming structure called an epoch which

focuses the time that a communications variable is active between the time
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that an epoch enters and exits. The programming style engendered fits
somewhere between the MIMD process spawning and SIMD data parallel
styles. Epochs also enable an arbitrary number of communications variables

to be mapped to a succinct number of registers.

We have described an implementation for epochs including an efficient
synchronization mechanism, a means of statically binding registers to com-
munications variables and a method of fusing epochs to reduce synchroniza-

tion overhead.

We are currently implementing epochs as part of the MFL3 compiler for
the Microflow computer. This will enable efficient and modular implementa-
tion of message passing on applications. We will also be able to answer the

following questions:

(1) How much time is spent waiting for epoch synchronization over non-
epoch based systems?

(2) How much do epochs reduce the number of communications registers
used?

(3) What is the cost of synchronization and how much is it reduced by
epoch fusion?

For the long term, we are looking at higher level languages which will

compile into message based systems.
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