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This thesis concerns the spectral theory of the Laplacian on Riemann surfaces of

finite type, with emphasis on the quotients of the upper half plane by congruence

subgroups.

In a first part we show, following Otal, that on a Riemann surface M of genus

g with n punctures there are at most 2g − 2 + n eigenvalues λ with λ ≤ 1/4.

In a second part, we focus on arithmetic surfaces. This subject is treated by

Maass in a paper that is difficult to read. We work out some examples of his

construction of Maass forms.
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CHAPTER 1

THE HYPERBOLIC LAPLACIAN AND BESSEL FUNCTIONS

Let M be a finite area hyperbolic surface; that is, M is a 2 dimensional, ori-

ented, complete Riemannian manifold with constant curvature −1. The hyperbolic

surface M can be identified with the quotient surface H/Γ where H is the Poincaré

upper half-plane and Γ is a subgroup of PSL(2,R) acting freely and properly

discontinously on H. We consider H with the metric and measure defined as

ds2 =
dx2 + dy2

y2
and dµH =

dxdy

y2
.

In the above, PSL(2,R) is the group of orientation preserving isometries of H, and

Γ is the group of deck transformations of the universal cover p : H −→M .

A complex manifold X of complex dimension one is called a Riemann surface,

or equivalently X is called a Riemann surface if it is a real two dimensional oriented

manifold equipped with a conformal structure. All Riemann surfaces are orientable

since all complex manifolds are orientable when considered as real manifolds. By

the Uniformization theorem, any simply connected Riemann surface is conformally

equivalent to either the Riemann sphere, or the complex plane C or the upper

half plane H. According to their universal covers, Riemann surfaces are called

elliptic, parabolic and hyperbolic respectively. The only example of an elliptic

Rimeann surface is the Riemann sphere itself. The parabolic Riemann surfaces are

the complex plane C, the cylinder R2/Z, and the tori R2/Γ where Γ is a lattice

isomorhic to Z2. The remaining Riemann surfaces are hyperbolic. The hyperbolic

Riemann surfaces have constant curvature -1. Hence, almost all Riemann surfaces

are hyperbolic surfaces.

For any n-dimensional Riemannian manifold (M, g), the Laplace-Beltrami op-
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erator on Ck(M), k ≥ 2, is defined as

∆Mf = divM(gradM f)

for any f ∈ Ck(M) where divM , gradM are with respect to the Riemannian metric

g. Moreover, if the manifold (M, g) is oriented then

∆Mf = divM(gradM f) = ∗d ∗ df

where ∗ is the Hodge star operator depending also on the metric g. A complex

number λ is called an eigenvalue of the Laplace-Beltrami operator if

∆Mf = λf

for some non-zero f ∈ Ck(M) where k ≥ 2; and such an f is called the

eigenfunction of the Laplacian. By the regularity theorems for elliptic operators, it

follows that f ∈ C∞(M). Furthermore, since ∆M is a symmetric and nonnegative

operator, λ is real. We will give a more geometric and intuitive definition of the

Laplace-Beltrami operator in the next section.

1.1 The hyperbolic Laplacian

There is a Laplacian ∆M acting on the functions on any Riemannian manifold M .

The Laplacian ∆Mf(x) associates to a function f the difference between f(x) and

the average of its values on a small ball around x:

∆Mf(x) = lim
r→0

Cn
r2

(
1

volBr(x)

∫
Br(x)

f(y)µM(dy)− f(x)

)
,

where n = dimM , Cn is a constant depending on n and µM is the Riemannian

measure on M .
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On all oriented Riemannian manifolds there is a Hodge ∗ operator, which takes

k-forms on M to n− k forms. In terms of the Hodge operator, we have ∆M(f) =

∗d ∗ d.

This is especially easy to use for conformal metrics on Riemann surfaces, for

then for 1-forms φ we have (∗φ)(v) = φ(−iv) so that on 1-forms the Hodge ∗

depends only on the conformal structure and not on the metric. For 2-forms, the

star operator divides by the metric.

In particular, on H with the metric

dx2 + dy2

y2
we have ∆H = y2

(
∂2

∂x2
+

∂2

∂y2

)
.

This differential is invariant under AutH: if α ∈ AutH, i.e., if α is a Moebius

transformation, then

∆H(α∗f) = α∗(∆Hf).

So all Riemann surfaces uniformized by H carry a natural hyperbolic Laplacian.

We will be interested in the spectral theory of ∆H and of ∆X for various hy-

perbolic Riemann surfaces X.

1.2 The hyperbolic Laplacian and Bessel functions

Let us apply separation of variables to the equation ∆Hf = λf . Separation of

variables is always a bit unmotivated: we will look for solutions of the form

f(x, y) =
√
yg(x)h(y).
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If we substitute the expression for f in the equation for eigenfunctions of the

Laplacian, after a bit of manipulation we find

g′′(x)

g(x)
+

(
− 1

4y2
+
h′(y)

yh(y)
+
h′′(y)

h(y)

)
=

λ

y2
.

In the standard way, we see that x 7→ g′′(x)/g(x) is a function of y alone, hence a

constant which we call−l2. Multiplying through by y2, we are led to the differential

equation

y2h′′(y) + yh′(y)− h(y)

(
1

4
+ λ+ l2y2

)
= 0.

This is a perfectly good differential equation, but if we want to turn it into a

“standard” equation with tabulated solutions, set αu = y, and k(u) = h(αu); we

find

u2k′′(u) + uk′(u)− k(u)

(
1

4
+ λ+ l2α2u2

)
= 0.

Thus if we choose α = 1/l and set 1/4 + λ = ν2, we find the modified Bessel

equation

u2k′′(u) + uk′(u)− (u2 + ν2)k(u) = 0.

If u 7→ k(u) is a solution of this equation, then for any l > 0 we have

∆H
(√

yeilxk(ly)
)

= λ
√
yeilxk(ly) where λ = ν2 − 1

4
. (1.1)

1.3 Modified Bessel functions

We have seen that the modified Bessel equation

z2w′′ + zw′ − (z2 + ν2)w = 0 (1.2)

appears when looking for solutions of ∆Hf = λf in the upper half-plane. Here we

will find solutions to this equation that are especially interesting because for these

solutions, x 7→ w(x+ iy) tends to 0 as x tends to ∞ for fixed y.
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1.4 The formal power series

In this section we will assume that ν is not a half-integer. As in every elementary

differential equations class, write

w(z) = zµ(a0 + a1z + a2z
2 + . . . ), a0 6= 0,

and substitute the series in the equation (1.2). Examining the lowest degree terms

yields µ = ±ν, and then to the recurrence relation

m(m+ 2ν)am = am−2 when µ = ν, m(m− 2ν)am = am−2 when µ = −ν

leading to ai = 0 when i is odd in both cases, and

a2k =
Γ(1 + ν)

4k k! Γ(k + ν + 1)
a0 when µ = ν, a2k =

Γ(1− ν)

4k k! Γ(k − ν + 1)
a0 when µ = −ν

leading to the power series

w1(z) = a0Γ(1 + ν)zν
∞∑
k=0

1

k! Γ(k + ν + 1)

(z
2

)2k

and

w2(z) = a0Γ(1− ν)z−ν
∞∑
k=0

1

k! Γ(k − ν + 1)

(z
2

)2k

.

1.5 A first integral representation

Define the function Kν by the formula

Kν(z) =
1

2

∫ ∞
0

e−
z
2(t+ 1

t )tν
dt

t
=

1

2

∫ ∞
−∞

e−z cosh seνsds. (1.3)

The change of variables t = es leads from the first integral to the second. The

integral converges (extremely rapidly) for Re z > 0, and for all complex values of

ν.
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The change of variables u = −s shows that Kν = K−ν . We will be particularly

interested in the case where ν is purely imaginary: ν = iτ . Then

K−iτ = Kiτ = K−iτ ,

so Kiτ is a real function.

Let us check that Kν does satisfy equation (1.2); this is easier in the second

form of the equation. We have

K ′ν(z) =
1

2

∫ ∞
−∞
− cosh seνse−z cosh sds

K ′′ν (z) =
1

2

∫ ∞
−∞

(cosh s)2eνse−z cosh sds

so, using cosh2 s− sinh2 s = 1, we get

z2K ′′ν (z)+zK ′ν(z)−(z2+ν2)Kν(z) =
1

2

∫ ∞
−∞

(
z2(sinh s)2 − z cosh s− ν2

)
e−z cosh seνsds

(1.4)

Now a miracle happens: we have

∂

∂s

(
(ν + z sinh s) eνse−z cosh s

)
=
(
z cosh s+ ν2 − z2(sinh s)2

)
eνse−z cosh s

and hence the integral on the right of equation (1.4) vanishes identically, since

(ν + z sinh s) eνse−z cosh s

vanishes at ±∞.

Thus Kν is some superposition of w1 and w2; suppose that Re ν > 0 so that w2

is dominant as z → 0; let us compute the coefficient of w2 by computing

lim
z→0

zνKν(z) = lim
z→0

zν

2

∫ ∞
0

e−
z
2(t+ 1

t )tν
dt

t
.
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Note that we know that the limit exists, at least if ν /∈ 1
2
Z. Make the change of

variables zt = 2u to find

Kν(z) =
1

2

∫ ∞
0

e
−
(
u+ z2

4u

)
z−ν(2u)ν

du

u

that can be simply evaluated at z = 0 to find

lim
z→0

zνKν(z) =
2ν

2

∫ ∞
0

e−uuν
du

u
= 2ν−1Γ(ν).

1.6 Some reminders about the Γ-function

In this section it will be helpful to remember that the Γ-function has poles at the

negative integers 0,−1,−2, . . . with residue (−1)m

m!
at −m, and that

Γ(z)Γ(1− z) =
π

sin πz
. (1.5)

One of the things one can derive from this is∣∣∣∣Γ(1

2
+ it

)∣∣∣∣ =

√
π

cosh πt

when t ∈ R, so decreases very rapidly as t→ ±∞. Then the functional equation

Γ(z − 1) =
Γ(z)

z − 1

easily shows that on lines Re z = −n+ 1/2 the function |Γ(z)| decreases (exponen-

tially fast) for each n and decreases with n (like 1/n!).

1.7 Another integral representation

We will now find another integral representation of the Bessel K-function:

Kν(z) =
1

8πi

∫ c+i∞

c−i∞
Γ

(
s+ ν

2

)
Γ

(
s− ν

2

)(z
2

)−s
ds, (1.6)

7



when c > |Re ν|. This integral is defined and converges when Re z > 0, and the

difficulty in extending it consists of defining z−s = e−s log z. For instance, we can

define log z in the complement of the negative real axis; the function is then defined

there.

Suppose ν /∈ Z. The 1-form

ω := Γ

(
s+ ν

2

)
Γ

(
s− ν

2

)(z
2

)−s
ds

has poles at the points ν, ν − 2, ν − 4, . . . and −ν,−ν − 2,−ν − 4, . . . .

At the point s = ν − 2k the residue of ω is

(−1)kΓ(ν − k)
2

k!

(z
2

)2k−ν
=

2π

sin πν

1

k!Γ(1− ν + k)

(z
2

)2k−ν

by (1.5) and at the point −ν − 2k the residue of ω is

(−1)kΓ(−ν − k)
2

k!

(z
2

)2k+ν

= − 2π

sin πν

1

k!Γ(1 + ν + k)

(z
2

)2k+ν

.

Thus the integral on a path γ going from −∞ to itself, surrounding all the

poles counterclockwise (The bound for |Γ| on lines Re z = −n+ 1/2 justifies this)

will give

1

8πi

∫
γ

ω =
π

2 sinπν

(
−
(z

2

)ν ∞∑
k=0

1

k!Γ(1 + ν + k)

(z
2

)2k

+
(z

2

)−ν ∞∑
k=0

1

k!Γ(1− ν + k)

(z
2

)2k
)
.

Furthermore, it is not difficult to deform the contour to go from c− i∞ to c+ i∞

so long as c > |Re ν|. This shows that the integral does satisfy the modified Bessel

function for ν /∈ Z.

To check that it coincides with the function defined by (1.3), it is enough to com-

pute the coefficient of z−ν since both functions are elements of the 1-dimensional

vector space of solutions of (1.2) that decrease at infinity. We find

2ν
π

2 sinπνΓ(1− ν)
here, and 2ν−1Γ(ν) there.
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These are indeed equal by (1.5).

1.8 The asymptotic development

The function Kν satisfies the asymptotic development as x→∞

Kν(x) =

√
π

2x
e−x(1 + o(1)). (1.7)

This is a case of Laplace’s method, applied to the formula

Kν(x) =
1

2

∫ ∞
0

e−
x
2 (t+ 1

t )tν
dt

t
.

We will split the integral into two integrals, one is from 0 to 1, and the other is from

1 to∞. Let g(t) = tν−1, then at t = 1, g(t) = (1+t−1)ν−1 = 1+(ν−1)(t−1)+. . . ,

giving g(t) ∼ 1. Now, let h(t) = −1

2

(
t+

1

t

)
which has the following Taylor series

at t = 1:

h(1 + u) = −1− 1

2
u2 + . . .

Then the integral

1

2

∫ ∞
1

e−
x
2 (t+ 1

t )tν
dt

t

has the asymptotic development

1

4
Γ

(
1

2

)
e−x

(x
2

)−1/2

=
1

2

√
π

2x
e−x.

If we make the change of variables s = 1/t, the integral from 0 to 1 becomes an

integral from 1 to ∞,

1

2

∫ 1

0

e−
x
2 (t+ 1

t )tν
dt

t
=

1

2

∫ ∞
1

e−
x
2 (s+ 1

s)s−ν
ds

s
.

The Laplace method again also yields the same aymptotic development for this

integral. Therefore, we obtain

Kν(x) =

√
π

2x
e−x(1 + o(1)), x→∞.
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1.9 Fourier series and Bessel functions

Let f : H −→ C be a function growing at most polynomially and satisfying

f(z + T ) = f(z) and ∆Hf = −
(

1

4
+ r2

)
f

where z = x+ iy and r > 0. Then f can be written as a Fourier series of the form

f(x+ iy) = a0y
1/2+ir + b0y

1/2−ir +
∑
n6=0

an
√
yKir

(
2πy|n|
T

)
e2iπnx/T .

In order to see this, first we note that both y1/2+ir and y1/2−ir are eigenfunctions

of ∆H. Moreover, we know that the solutions of ∆H are given by (1.1) as

∆H
(√

yeilxKν(ly)
)

= λ
√
yeilxKν(ly) where λ = ν2 − 1

4

and Kν is the solution of the modified Bessel equation. Solving for ν in terms of

r > 0 yields ν = ir. Since f is periodic with period T , we get l = 2π/T . Taking

all possible superpositions of these solutions leads to the Fourier expansion of f .
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CHAPTER 2

THE SPECTRAL THEOREM

Let M be a Riemann surface with finite area and of type (g, n) i.e. M is ob-

tained from a compact Riemann surface of genus g by removing n points. Starting

from this chapter, we will consider −∆M so that the eigenvalues are contained in

the interval [0,∞). That is, a real number λ ≥ 0 is called an eigenvalue of the

Laplace-Beltrami operator if

∆Mf + λf = 0

for some non-zero f ∈ C∞(M); and such an f is called the eigenfunction of the

Laplacian.

If M is a compact, connected Riemann surface, then the spectrum of the Lapla-

cian is a discrete set {0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λi ≤ . . . } with finite dimensional

eigenspaces, and L2(M) is the direct sum of these eigenspaces. However, if M is

noncompact i.e. n > 0, then the Laplacian also has continuous spectrum [1/4,∞).

Moreover, this spectrum can be described completely in terms of Eisenstein series.

2.1 Continuous Spectrum and Eisenstein Series

The function ys satisfies ∆Hy
s + s(1− s)ys = 0. Let c be a cusp of M , and identify

M with H/Γ, where z 7−→ z+ 1 belongs to Γ and represents a loop surrounding c.

Let Γ∞ be the subgroup generated by z 7−→ z + 1.

Definition 1. The Eisentein series corresponding to c is defined as

Ec(z, s) =
∑

γ∈Γ/Γ∞

(Im γ(z))s.

11



Theorem 1. (i) Ec(z, s) converges locally uniformly for Re s > 1 and is invariant

under Γ.

(ii) For each s, Ec(z, s) satisfies ∆Ec(z, s) + s(1− s)Ec(z, s) = 0.

(iii) Ec(z, s) admits a meromorphic continuation to the whole complex plane

C. It has finitely many simple poles in the interval (1/2, 1] and has no poles on

the line Re s = 1
2
.

(iv) For each s, Ec(z, 1 − s) can be written as a sum of Eisenstein series cor-

responding to other cusps with coefficients depending on s.

In particular, we can consider the function

gc,r(z) = Ec

(
z,

1

2
+ ir

)
so that

−∆Mgc,r(z) =

(
1

4
+ r2

)
gc,r(z).

where r ∈ R. Even though the functions gc,r are eigenfunctions of the Laplacian,

they are not in L2(M). For each cusp c define a subspace Ec(M) of L2(M) as

follows: For each φ ∈ C∞0 (R), consider∫ ∞
−∞

φ(r)gc,r(z)dr;

such a function is in L2(M). Let Ec(M) be the closure of the span of all such

integrals. For distinct cusps, the spaces Ec(M) are orthogonal. Now consider the

inverse of Laplacian restricted to the orthogonal complement of the direct sum of

Ec(M) and C, i.e. (
−∆M |((⊕c Ec(M))

⊕
C)⊥
)−1

.

This operator is compact, so
(
−∆M |((⊕c Ec(M))

⊕
C)⊥
)−1

has a discrete spectrum

in the interval [0,∞) accumulating at 0. Therefore, −∆M |(⊕c Ec(M)) has a discrete

12



spectrum in the interval [0,∞) accumulating at ∞. A very detailed discussion of

the spectral theory of the Laplacian on M can be found in [7].

As a summary, for a Riemann surface with finite area and of type (g, n) the

Laplacian has a discrete spectrum in the interval [0,∞) and has continous spectrum

[1/4,∞) with spectral density equal to the number of cusps. An element of L2(M)

such that −∆Mf = λf is called a cusp form if it vanishes at all cusps. Phillips and

Sarnak conjecture that the space of cusp forms is trivial for generic groups i.e. of a

countable union of real-analytic hypersurfaces in moduli space [11]. However, for

arithmetic surfaces H/Γ(N) the space of cusp forms is not empty. We will show

how they are constructed in the following chapters.
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CHAPTER 3

SMALL EIGENVALUES

Let M be a hyperbolic Riemann surface with finite area and of type (g, n). By

the Uniformization theorem H is the universal cover of M and let λ0(H) be the

bottom of the spectrum of the Laplacian on H. It is characterized as the infimum

of the Rayleigh quotients of g

inf

∫
H | gradH g|2dµH∫

H |g|2dµH
,

where the infimum can be taken over all the functions g : H −→ R that are

compactly supported and C∞. It is known that the bottom of the spectrum of the

Laplacian for the hyperbolic plane and for the annulus is equal to 1/4 [9].

In the spectrum of the Laplacian for M , the eigenvalues are called small if

0 < λ ≤ 1/4. Small eigenvalues are important since they have a significant role on

how the closed geodesics behave asymptotically on a compact Riemann surface.

Therefore, the study of the existence and the number of these eigenvalues have

gained a considerable amount of attraction over years. A detailed history of the

subject can be found in Buser [2] and Chavel [3]. Let us give a brief summary about

small eigenvalues here. Randol [12] proves that any compact Riemann surface

has a finite covering space possessing arbitrarily many small eigenvalues. This

article uses the Selberg trace formula; and Randol shows the existence of the

eigenfunctions corresponding to these small eigenvalues without constructing them.

Buser [1] actually constructs compact Riemann surfaces with g ≥ 2 for which the

first 2g − 2 eigenvalues are less than ε. In the same article, he also proves that

λ4g−2 > 1/4 for any Riemann surface with g ≥ 2. Buser proves the following

theorems in [1].
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Theorem 1. For any δ > 0, there exists a compact Riemann surface with g ≥ 2

such that

λ2g−3 < δ.

Theorem 2. For any n ∈ N and for any arbitrarily small ε > 0, there exists a

compact Riemann surface M with genus g ≥ 2 such that

λn ≤
1

4
+ ε.

Theorem 3. For any compact Riemann surface with g ≥ 2,

λ4g−2 >
1

4
.

Randol also shows [13] that for a compact Riemann surface with genus g ≥ 2

if λ1, λ2, . . . , λ2g−3 are sufficently small, then λ2g−2 > 1/4. This result was known

to Buser though it was not published. Moreover, Schmutz [15] conjectured that

a closed Riemann surface of genus g has at most 2g − 2 small eigenvalues and he

proved the conjecture for g = 2. Finally, Otal and Rosas [10] proved this conjecture

in 2009. They actually proved the following theorem:

Theorem 4. Let M be a hyperbolic surface with finite area and of type (g, n), i.e.

with genus g and n punctures. Then the (2g − 2 + n)-th eigenvalue λ2g−2+n is

greater than
1

4
.

In the proof of the above theorem, Otal and Rosas used topological methods:

a version of Borsuk-Ulam theorem whereas the previous theorems were proven by

using the Minimax principles and Cheeger’s inequality in general.

Now we will give a proof of a slightly different version of Theorem 1.
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Proof. For any given 1 > ε > 0, we can choose a Riemann surface M of genus

g with n punctures such that all the geodesics of the maximal multicurve Γ have

length ε. Note that |Γ| = 3g − 3 + n [6]; let S be the set of components of the

complement of Γ, then note that |S| = 2g − 2 + n.

Let B be the band model for the hyperbolic plane, i.e.

B = {z ∈ C such that | Im z| < π/2}

with the hyperbolic metric (|dz|/ cos Im z). Each curve γ ∈ Γ has a neighbourhood

Aγ isomorphic to the subset

{
y ∈ B such that |y| < π

2
− ε

2

}
/εZ

of the cylinder B/εZ. Furthermore, denote by Sth(S thick) the component of

M − ∪γAγ corresponding to S ∈ S.

Now, consider the functions in L2(M) which are equal to some constants on the

components M−∪γAγ and on each Aγ they interpolate linearly between the values

at the ends. In other words, for each a ∈ RS associate an element of fa ∈ L2(M)

constructed as follows where a : S −→ R, a(S) = aS :

fa(p) =

 aS, p ∈ Sth

αγy + βγ, p ∈ Aγ

where the real constants αγ and βγ are chosen to make fa continuous. Denote by

Eε the space of functions fa. The elements of Eε have distributional derivatives in

L2(M).

Claim 5. We will prove that as ε −→ 0,

sup
f∈Eε−{0}

∫
M
| grad f |2dµM∫
M
|f |2dµM

−→ 0.
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Proof. ∫
M

| grad fa|2dµM =

∫
M

dfa ∧ ∗dfa

=

∣∣∣∣∣∑
γ

∫ ε

0

∫ π/2−ε/2

−π/2+ε/2

αγdy ∧ (−αγdx)

∣∣∣∣∣
≤
∑
γ

ε|αγ|2(π − ε) −→ 0 with ε.

Furthermore, we will show that
∫
M
|fa|2dµM is bounded below and does not depend

on ε leading to the proof of the claim.∫
M

|fa|2dµM ≥
∑
γ

∫ ε

0

∫ π/2−ε/2

−π/2+ε/2

|αγy + βγ|2

cos2 y
dxdy

=
∑
γ

ε

∫ π/2−ε/2

−π/2+ε/2

|αγy + βγ|2

cos2 y
dy

Since the integrand on the interval (−π/2 + ε/2, π/2− ε/2) is positive, at least for

one γ, then the value of the integral only depends on the behaviour of the integrand

at the lower and the upper limits of the integral. By substituting u = π/2− y and

splitting the integral into two integrals for a ∈ (ε/2, π− ε/2), the integral becomes∫
M

|fa|2dµM ≥
∑
γ

ε

∫ π−ε/2

ε/2

|αγ(π/2− u) + βγ|2

cos2(π/2− u)
du

=
∑
γ

ε

∫ a

ε/2

|αγ(π/2− u) + βγ|2

sin2(u)
du

+
∑
γ

ε

∫ π−ε/2

a

|αγ(π/2− u) + βγ|2

sin2(u)
du
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Now let u = π − v in the second integral, then we have∫
M

|fa|2dµM ≥
∑
γ

ε

∫ a

ε/2

|αγ(π/2− u) + βγ|2

sin2(u)
du

+
∑
γ

ε

∫ π−a

ε/2

|αγ(v − π/2) + βγ|2

sin2(π − v)
dv

=
∑
γ

ε

∫ a

ε/2

|αγ(π/2− u) + βγ|2

sin2(u)
du

+
∑
γ

ε

∫ π−a

ε/2

|αγ(v − π/2) + βγ|2

sin2(v)
dv

By using sinx = x− x3

3!
+
x5

5!
− x7

7!
+ . . . and letting a = π/2, we have

∫
M

|fa|2dµM ≥
∑
γ

ε

∫ π/2

ε/2

|αγ(π/2− u) + βγ|2

u2
du

+
∑
γ

ε

∫ π/2

ε/2

|αγ(v − π/2) + βγ|2

v2
dv

=
∑
γ

ε

(
|aS|2

ε/2
+
|aS′ |2

ε/2

)
+O(1)

where aS and aS′ are the end values for each γ. Each aS contributes three times

in the above sum, so we have∫
M

|fa|2dµM ≥
∑
S∈S

6|aS|2 +O(1)

Then the result follows from the following generality from functional analysis:

Min-max principle: If Q is a positive semi-definite quadratic form on a Hilbert

space H, and E ⊂ H is an m-dimensional subspace such that

|Q(v)|
|v|2

< λ

for all v 6= 0 in E, then Q has at least m eigenvalues ≤ λ.
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Now we will give the outline of the proof of Theorem 4 in the case n = 0.

Sketch of the proof of theorem 4:

Proof. Let M be a compact Riemann surface with g ≥ 2. Denote by E the real

vector space spanned by the eigenfunctions of the Laplacian with eigenvalue ≤ 1/4.

Let m be the dimension of E. For f ∈ E \ {0}, let

Z(f) = {p ∈M |f(p) = 0}

be the nodal set of f . Otal and Rosas [10] describe the topology of Z(f). The

functions f ∈ E \ {0} are real-analytic, so

Proposition 6. The nodal set Z(f) is the union of a locally finite graph with

vertices of even multiplicity and of some isolated points.

When M is compact, Z(f) is the union of a compact graph and a finite set of

isolated points. Then to each f ∈ E \ {0}, they associate a compact and incom-

pressible subsurface of M which is called the characteristic surface of f described

as follows.

The nodal graph of f , denoted by N(f), is defined as the union of the connected

components of its nodal set. If f changes sign, then N(f) 6= ∅. Moreover, the

sign of f is well-defined on each connected component of M \ N(f). We view

the components of N(f) that are contained in discs embedded in M as trivial

(including isolated points). Let N ′(f) be the subset of N(f) obtained by removing

the trivial components of N(f). We notice that each connected component of

M \N ′(f) is the union of an essential component of M \N(f) and a finite number

of pairwise disjoint discs. Each component of M \N ′(f) is given the sign of f on

the essential components of M \ N(f). The union of components of M \ N ′(f)

19



on which f has a positive sign (respectively a negative sign) is denoted by C+(f)

(respectively C−(f)). If f does not change sign, then we define C+(f) or C−(f)

to be M according to the sign of f . Notice that if each component of N(f) is

contained in a disc, then either C+(f) or C−(f) is empty. Furthermore, we see

that the surfaces C+(f) and C−(f) are incompressible by construction. Now, let

S+(f) (resp. S−(f)) be the union of the components of C+(f) (resp. C−(f))

which are not discs or annuli. The sets S+(f) and S−(f) are still incompressible.

Claim 7. For all f ∈ E \ {0}, 2− 2g ≤ χ(S+(f)) + χ(S−(f)) < 0.

Proof. We use the convention that χ(∅) = 0. First of all, 2 − 2g ≤ χ(S+(f)) +

χ(S−(f)) is implied by the incompressibility of the surfaces S+(f) and S−(f). In

order to prove χ(S+(f)) + χ(S−(f)) < 0, we notice that if N(f) = ∅, then either

S+(f) = M or S−(f) = M and we are done. If N(f) 6= ∅, then we would like to

show that S+(f) ∪ S−(f) 6= ∅. Let f ∈ E \ {0}, then∫
M
| grad f |2dµM∫
M
|f |2dµM

≤ 1

4
.

The Rayleigh quotient is equal to 1/4 if and only if f is an eigenfunction with

eigenvalue 1/4. If we denote the components of M \N ′(f) by Yi, 1 ≤ i ≤ k, then

∃j ∈ {1, 2, . . . , k} such that the Rayleigh quotient of f on Yj is∫
Yj
| grad f |2dµM∫
Yj
|f |2dµM

≤ 1

4

since both quantities in the numerator and denominator of the Rayleigh quotient

for the surface M equal the sum of the corresponding quantities over each Yi by

the disjointness of the components Yi’s. Assume Yj is either a disc or an annulus

and let π1(Yj) be its fundamental group. Since the components of M −N ′(f) are

incompressible, there is an injection from π1(Yj) into π1(M). If we view π1(Yj) as

a subgroup of π1(M), then there exists a cover Ỹj of M corresponding to π1(Yj).
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This cover is either the universal cover M̃ of M or a cylinder. In both cases, it is

well known that the bottom of the spectrum of Laplacian is 1/4. Now, we embed

Yj into Ỹj and we extend f |Yj on Ỹj by defining it to be 0 on the complement of the

image of the embedding, call this function g. Since g has distributional derivatives

in L2(Yj), it is in the domain of the Laplacian for Ỹj. On the other hand, the

Rayleigh quotient of g is ≤ 1/4 on Ỹj. If its Rayleigh quotient is < 1/4, then we

have a contradiction since the bottom of the spectrum of the Laplacian is 1/4 for

Ỹj. If the Rayleigh quotient of g is equal to 1/4, then it means an eigenfunction of

the Laplacian on Ỹj with the eigenvalue 1/4. This is a contradiction also since g is

clearly not an eigenfunction. Therefore, Yj cannot be a disc or an annulus. Hence,

S+(f) ∪ S−(f) 6= ∅.

We previously defined E as the real vector space spanned by the eigenfunctions

of the Laplacian with eigenvalue ≤ 1/4. Let m be the dimension of E and our goal

is to show that m ≤ 2g − 2. Let S(E) be the unit sphere of E for an arbitrary

norm and P(E) be the projective space of E, i.e. P(E) = S(E)/ ∼a where a is the

antipodal map sending f to −f .

In the previous claim, we showed that 2 − 2g ≤ χ(S+(f)) + χ(S−(f)) < 0.

Now we will partition S(E) according to χ(S+(f)) + χ(S−(f)). For each i, where

2− 2g ≤ i ≤ −1, define

Si = {f ∈ S(E) | χ(S+(f)) + χ(S−(f)) = i}.

Then we have S(E) =
⋃−1

2−2g Si and P(E) =
⋃−1

2−2g Pi where Pi = Si/ ∼ a since

each Si contains −f whenever it contains f .

Claim 8. For each i, 2− 2g ≤ i ≤ −1, the covering map pi : Si 7→ Pi is trivial.
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Proof. Since each component S ∈ S+(f) ∪ S−(f) has negative Euler characteris-

tic, it contains a figure eight which cannot be isotoped to be disjoint from itself.

Assume that pi : Si −→ Pi is not trivial, then there is an isotopy ft in Si joining

f0 = f to f1 = −f . Choose a figure eight γ contained in one of the components

of S+(f). Then this figure eight is moved by the isotopy to another figure eight

contained in some component of S+(−f) = S−(f). This gives a contradiction since

S+(f) and S−(f) are disjoint.

We will complete the proof of the theorem by showing that m ≤ 2g−2 where m

is the dimension of the space E. Consider the double covering p : S(E) −→ P(E).

Denote its class in H1(P(E),Z2) by α. The Čech cohomolgy class corresponding

to pi : Si 7→ Pi is α|Pi = 0 since these coverings are trivial. Since we have at most

2g − 2 Pi, then α2g−2 = 0 by Lemma 8 in [16]. On the other hand, the order of α

in the Z2 cohomology ring of P(E) is m, m ≤ 2g − 2.
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CHAPTER 4

BACKGROUND ON ALGEBRAIC NUMBER THEORY

In this chapter, we will give some background information about quadratic

fields and in general we will follow [14], [5].

4.1 Quadratic number fields

Definition 2. A degree two extension K over the field Q is called a quadratic

number field.

Every quadratic field K can be written as

K = Q[x]/(x2 − d)

where d is a squarefree integer. We call K a real quadratic field if d > 0 and an

imaginary quadratic field if d < 0. In this chapter, we will only work with real

quadratic fields. Therefore, we assume d > 0 from now on. We can view K as a

subfield of the complex numbers C. Let
√
d denote the positive square root of d.

Then, there are two embeddings i.e. two injective homomorphisms from K into C

defined as

σ1(a+ bx) = a+ b
√
d,

σ2(a+ bx) = a− b
√
d.

We note that since d is positive, the images of these embeddings lie in R and

K = Q[x]/(x2 − d) ∼= Q(
√
d)

where Q(
√
d) = {a+ b

√
d | a, b ∈ Q}.
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Let α = a+ bx ∈ K, the norm and trace of α are defined as

N(α) = σ1(α)σ2(α) = a2 − db2 and Tr(α) = σ1(α) + σ2(α) = 2a.

4.2 Ring of integers

Let OK denote the subset of K consisting of elements of K which are integral over

Z. It is easy to show that OK is a ring and it is called the ring of integers of K.

Moreover, OK is a free Z-submodule of K with rank 2. We can precisely describe

its integral basis which depends on d.

Theorem 9. Let K = Q(
√
d) be a quadratic field where d is a squarefree integer.

Then

(i) If d ≡ 2 or d ≡ 3 (mod 4), then

OK = Z[d] = {a+ b
√
d | a, b ∈ Z}

(ii) If d ≡ 1 (mod 4),

OK = Z[(1 +
√
d)/2] =

{
a+ b

(
1 +
√
d

2

)
| a, b ∈ Z

}

Note that if K is a real quadratic field, we can embed K into R2 by using the

embeddings σ1 and σ2 as

σ : K −→ R2

σ(a+ b
√
x) = (σ1(a+ b

√
x), σ2(a+ b

√
x))

= (a+ b
√
d, a− b

√
d).

Remark 10. The image of OK under σ is a lattice in R2. Moreover, if we consider

an ideal a of OK, the image of a under σ becomes a sublattice of σ(Ok) in R2.
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4.3 The norm of an ideal

Let K be a field over Q with degree n and OK be its ring of integers.

Definition 3. Suppose a is a nonzero integral ideal of OK. Then the norm of a is

defined to be the cardinality of OK/a and it is denoted by N(a).

Proposition 11. Let a and b be nonzero integral ideals of OK. Then

(i) N(a) is finite,

(ii)N(ab) = N(a) N(b),

(iii) Let a be a nonzero element of OK and a = (a) be the principal ideal generated

by a. Then |N(a)| = N(a).

4.4 Units of a real quadratic field

In this section we will describe the group UK of units of the ring of integers OK

of a real quadratic field K. We first note that an element α ∈ OK is a unit if and

only if N(α) = ∓1.

By Dirichlet’s unit theorem, UK ∼= Z × {∓1}. An element u ∈ UK is called a

fundamental unit if every element in UK can be written of the form ∓un for n ∈ Z.

Now, consider the embedding of K into R via σ1, i.e. σ1(a+ b
√
x) = a+ b

√
d and

we identify the elements of K with their images under σ1. Then each unit except

1 and −1 lies in one of the intervals (−∞,−1), (−1, 0), (0, 1), and (1,∞). If u

is a fundamental unit lying in one of these interval then u−1, −u, and −u−1 are

also fundamental units. It is easy to see that all these fundamental units lie in

only one of the above intervals. Therefore, there is one u ∈ (1,∞). It is called the

fundamental unit and let us denote it by ε. Hence, every element of UK except
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1 and -1 can be written as ∓ε∓n where n is a positive integer. Since ε > 1, then

εn+1 > εn for any positive integer implying that ε is the smallest positive unit in

(1,∞). Finding units is equivalent to solving

N(a+ b
√
d) = ∓1,

where a + b
√
d ∈ OK . Given any quadratic number field we can always find the

fundamental unit explicitly; for example by using the continued fraction expansion

of
√
d.

Finally, let us give the definition of a totally positive unit. A unit β ∈ UK is

called a totally positive unit if its image under the both embeddings σ1 and σ2 is

positive. The totally positive elements of UK form a subgroup.

4.5 The splitting of prime ideals in real quadratic fields

In an algebraic number field K i.e. the degree of K over Q is finite, every element

of OK can be factored into a finite number of irreducible elements; however, this

factorization is not necessarily unique. It is unique if and only if every irreducible

element is a prime in OK . On the other hand, unique factorization holds for the

ideals of OK .

Theorem 2. Every nonzero ideal of OK can be written as a product of prime ideals

uniquely up to the order of the factors.

In this section, our goal is to give a complete description of the set of all prime

ideals of OK for a quadratic field K = Q(
√
d). For this purpose, it is enough to

show how each ideal generated by a rational prime can be decomposed into prime

ideals since each prime ideal can only divide one rational prime number.

26



Let p be a prime number, consider the ideal pOK . This ideal is not necessarily

a prime ideal in OK . However, it splits into prime ideals of OK uniquely by the

unique factorization theorem. From general theory, we know that only three cases

can occur:

• pOK = pp′, N(p) = N(p′) = p, p 6= p′ ( in this case, we say p splits in OK)

• pOK = p, N(p) = p2 (in this case, we say p remains prime in OK)

• pOK = p2, N(p) = p ( in this case, we say p ramifies in OK)

where p′ is the conjugate of the ideal p. We can determine explicitly when each

case occurs depending on p and d.

Theorem 3. Let K = Q(
√
d) be a quadratic field with squarefree positive integer

d. Then,

(i) The odd primes p for which d is a quadratic residue mod p split in K. So

does 2, if d ≡ 1 mod 8.

(ii) The odd primes p for which d is not a quadratic residue mod p remain prime

in K. So does 2, if d ≡ 5 mod 8

(iii) The odd prime divisors of d ramify in K. So does 2, if d ≡ 2 or 3 mod 4.

We will follow [14] for the proof of this theorem.

Proof. First we assume that p is odd. We know that OK
∼= Z[

√
d] if d ≡ 2 or

3 (mod 4), and OK = Z[(1 +
√
d)/2] if d ≡ 1 (mod 4). Consider the element

α = a + b

(
1 +
√
d

2

)
in Z[(1 +

√
d)/2]. If b is even, then α ∈ Z[

√
d]. If b is odd,

then a+ (b+ p)

(
1 +
√
d

2

)
in Z[

√
d]. Hence, for any square free d,

OK/pOK
∼= Z[
√
d]/(p).
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By sending x to
√
d, it is also clear that

Z[
√
d] ∼= Z[x]/(x2 − d).

Therefore, we have

OK/pOk
∼= Z[x]/(p, x2 − d) ∼= (Z[x]/(p))/(x2 − d) ∼= Fp[x]/(x2 − d̄)

where d̄ ≡ d (mod p) i.e. we have

OK/pOK
∼= Fp[x]/(x2 − d̄).

From the above isomorphism, we see that p splits in OK means OK/pOK is a

product of two fields i.e. x2 − d has two distinct linear factors in Fp[x]/(x2 − d̄).

This is equivalent to saying d is a quadratic residue mod p. Similarly, p remains

prime in OK means OK/pOK is a field i.e. x2−d is irreducible in Fp[x]/(x2− d̄) i.e.

d is a quadratic non-residue in mod p. Finally, p ramifies in OK means OK/pOK

contains a nilpotent elements i.e. x2 − d is a square in Fp[x]/(x2 − d̄) i.e. d ≡ 0

mod p.

Now consider the case where p = 2. If d ≡ 2 or 3 mod 4, then we have either

OK/2OK
∼= F2[x]/(x2) or OK/2OK

∼= F2[x]/(x2 + 1) ∼= F2[x]/(x+ 1)2,

meaning that 2 ramifies in OK . If d ≡ 1 mod 4, then

OK/2OK
∼= F2[x]/(x2 − x− (d− 1)/4).

If d ≡ 1 mod 8, then x2 − x + (d − 1)/4 ≡ x2 + x ≡ x(x + 1) in F2[x]. Hence, 2

splits if d ≡ 1 mod 8. If d ≡ 5 mod 8, then x2−x+ (d− 1)/4 ≡ x2 +x+ 1 which

is irreducible in F2[x], therefore 2 remains prime.

Now we would like to determine which positive integers occur as norms in

K = Q(
√
d).
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Theorem 12. Let K = Q(
√
d) and assume that the narrow class number h+

K of

K is 1. Then

(i) A prime number p occur as the norm of an element in OK if and only if either

p splits in K or p ramifies in K.

(ii) Let n =
∏

i = pkii be a positive integer. Then n is the norm of an element in

OK if and only if pi is the norm of an element in OK when ki is odd.

For the proof of this theorem, see [5].

Let us close this chapter with a few more definitions. The set of 2× 2 matrices

with integer entries and determinant 1 forms a group. It is called the modular

group and denoted by SL(2,Z) i.e.

SL(2,Z) =


a b

c d

 : a, b, c, d ∈ Z, ad− bc = 1

 .

Let N be a positive integer. The principal cogruence subgroup of level N is defined

as

Γ(N) =


a b

c d

 ∈ SL(2,Z) :

a b

c d

 ≡
1 0

0 1

 (mod N)

 .

A subgroup Γ of SL(2,Z) is called the congruence subgroup of level N if Γ ⊃ Γ(N)

for some positive integer N .

The surface Γ(N)/H is a finite area Riemann surface with genus g and n cusps.

The numbers g and n can be computed in terms of N . The number of cusps c(N)

of Γ(N) is given by

C(N) =

 (1/2)N2
∏

p|N(1− 1/p2) if N > 2,

3 if N = 2.
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The genus g is given by

g(N) =

 1 + d(N)(N−6)
12N

if N > 2,

0 if N = 2

where

d(N) = (1/2)N3
∏
p|N

(1− 1/p2) if n > 2.

The proofs can be found in [4].
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CHAPTER 5

CONSTRUCTION OF WAVE-FORMS AND EIGENFUNCTIONS IN

A SPECIAL CASE

Hans Maass introduced Maass wave forms in his article “Über eine neue Art von

nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher

Reihen durch Funktionalgleichungen” in 1949 [8]. Maass wave forms are complex

valued nonanalytic automorphic functions which satisfy the Hyperbolic Laplacian.

He gave examples of wave forms associated to the zeta functions of real quadratic

fields. In this chapter, we will explain the details of the construction of such wave

forms explicitly.

The paper of Maass is quite difficult to read, and it seems it has not been widely

read. A translation appears in the appendix. In this chapter we will carry out the

central construction of Maass’s paper in a specific case: the quadratic number field

Q(
√

5), which leads to wave forms on the modular surface H/Γ(5), where Γ(5) is

the principal congrence subgroup of level 5 i.e. the following subgroup of SL(2,Z):

Γ(5) = {M ∈ SL(2,Z) |M ≡ I mod 5} .

Our main goal is to prove the following theorem.

Theorem 13. There are at least three linearly independent functions g0(z), g1(z)

and g2(z) on X5 = H/Γ(5) satisfying −∆Hf = 1
4
f and having at most polynomial

growth at the cusps. They satisfy the additional symmetries

gρ

(
−1

z

)
=

2∑
σ=0

cρσgσ(z)
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with

(cρσ) =
1√
5


1 2 2

1 w2 + w−2 w + w−1

1 w + w−1 w2 + w−2


where w = e

2πi
5 and

gρ(z + 1) = e
2πi
5 gρ(z)

5.0.1 The field Q(
√

5) and its ring of integers

Consider the real quadratic field K = Q(
√

5) = {a + b
√

5 | a, b ∈ Q} and let OK

denote the ring of integers of K. We know that OK is a free Z-submodule of K of

rank 2 with an integral basis {1, (1 +
√

5)/2}, i.e.

OK =

{
a+ b

(
1 +
√

5

2

)
| a, b ∈ Z

}
.

The embeddings of K into C are

σ1(a+ b
√

5) = a+ b
√

5,

σ2(a+ b
√

5) = a− b
√

5.

Since K is a real quadratic field, we can embed K into R2 via the canonical

embedding σ : K −→ R2 which is given by

σ(a+ b
√

5) = (σ1(a+ b
√

5), σ2(a+ b
√

5)) = (a+ b
√

5, a− b
√

5).

Note that σ(1) = (1, 1) and σ((1 +
√

5)/2) = ((1 +
√

5)/2, (1−
√

5)/2). By using

the canonical embedding of K into R2, we get a lattice of OK with rank 2 in R2.
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5.0.2 The ideal (
√

5)

Consider the principal ideal of OK which is generated by
√

5,

(
√

5) = {r
√

5 | r ∈ OK} =

{
a
√

5 + b

(
5 +
√

5

2

)
| a, b ∈ Z

}
.

The set {
√

5, (5 +
√

5)/2} forms an integral basis for (
√

5) and we see that

σ(
√

5) = (
√

5,−
√

5) and σ((5 +
√

5)/2) = ((5 +
√

5)/2, (5−
√

5)/2).

We note that OK/(
√

5) is a field with five elements and we choose the set

{−2,−1, 0, 1, 2} ⊂ OK to represent each class in OK/(
√

5).

Let us denote the group of units of OK by UK = {±εn | n ∈ Z} where ε is the

fundamental unit of OK . The fundamental unit ε is (1 +
√

5)/2, which has norm

−1. The group of totally positive units of OK is generated by ε2 = (3 +
√

5)/2.

Now let

u =

(
3 +
√

5

2

)2

=
7 + 3

√
5

2
≡ 1 mod (

√
5).

It is the smallest totally positive unit bigger than one and congruent to 1 modulo

the ideal (
√

5)). Now let us consider the equivalence relation ∼u on OK where

µ1 ∼u µ2 if and only if ∃k ∈ Z such that µ1 = ukµ2.

Note that OK/ ∼u =
∐

ρ∈OK/(
√

5)

(Oρ
K/ ∼u) where O

ρ
K consists of elements of

OK which are equivalent to ρ modulo (
√

5). This is true because if µ1 ∼u µ2 and

µ1 ≡ ρ mod (
√

5) then µ2 ≡ ρ mod (
√

5) since u ≡ 1 mod (
√

5). Moreover, the

norm on OK induces a map N : OK/ ∼u−→ Z.
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We also notice that UK/ ∼u = {−1, 1, ε,−ε, ε2,−ε2, ε3,−ε3} and the ele-

ments in the set {1,−1, ε,−ε, ε2,−ε2, ε3,−ε3} are congruent to the elements

{1,−1,−2, 2,−1, 1, 2,−2} respectively modulo the ideal (
√

5).

5.0.3 The ζ-functions ζ(s, ρ)

Now let us define the following zeta functions that are associated to each ρ where

ρ ∈ OK/(
√

5) = {0, 1, 2,−1,−2}.

ζ0(s, ρ) =
∑

a∈(OρK−{0})/∼u

1

|N(a)|s
, ζ1(s, ρ) =

∑
a∈(OρK−{0})/∼u

sgn(N(a))
1

|N(a)|s

Remark 14. Since OK is a principal ideal domain, each ideal in OK is generated by

an element of OK. Note that the norm of a principal ideal (a) is N((a)) = |N(a)|.

Hence, we can think of the sums in the definition of the ζ-functions as sums over

the ideals of OK with some additional properties.

Theorem 15. The ζ-functions defined above can be written as Dirichlet series

which converge absolutely on some half-plane as

ζ0(s, ρ) =
∑

n ≡ bρ (5)

n 6= 0

aρ,n
|n|s

, ζ1(s, ρ) =
∑

n ≡ bρ (5)

n 6= 0

(sgnn)aρ,n
|n|s

,

where bρ is 0, 1 and −1 respectively for ρ = 0, 1, 2 and we can determine aρ,n

explicitly.

In order to express the ζ-functions as in Theorem 15 (i.e. to find the coef-

ficients in the Dirichlet series), first we need to determine which integers occur
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as norms of elements in OK ; this is equivalent to finding the norms of principal

ideals in OK by the Remark 14. Since every ideal can be written as products of

prime ideals, we first give a complete description of the set of all prime ideals OK .

For this purpose, it is enough to show how each rational prime can be decomposed

into prime ideals since each prime ideal can only divide one rational prime number.

Remark 16. Consider K = Q(
√

5). Assume p is an odd prime. By using Theorem

3, we see that if p ≡ 1 or 4 mod 5, then p splits in OK. If p ≡ 2 or 3 mod 5 then

p remains prime in OK. The only prime which ramifies in OK is p = 5 and the

prime number 2 remains prime in OK.

For n > 0, let A(n) = |{a : a is an ideal of OK with N(a) = n}|

Lemma 17. Let n = pl11 . . . p
lk
k where each pi is a distinct prime number. Then

A(n) =

 0 if any pi is inert and li is odd, otherwise∏
i(li + 1) where pi splits

Claim 18. We claim that

ζk(s, 1̄) = ζk(s,−1), ζk(s, 2̄) = ζk(s,−2) for k = 0, 1

and

ζ1(s, 1̄) = −ζ1(s, 2̄).

5.0.4 The θ-functions

The Fourier Transform

Consider the real vector space Rn with the standard inner product x · y = x1y1 +

· · · + xnyn for x = (x1, · · · , xn), y = (y1, · · · , yn) ∈ Rn. Suppose f ∈ L1(Rn)
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for the measure | dn x| induced by the standard inner product. Then the Fourier

transform f̂ : Rn → C of f is defined by

f̂(y) =

∫
Rn
f(x)e−2πix·y| dn x|

Now, let S(Rn) denote the Schwartz space on Rn.

Poisson Summation Formula

Let Γ be a full rank lattice in Rn and Γ∗ ⊆ Rn be its dual lattice i.e.

Γ∗ = {µ ∈ Rn s.t. λ · µ ∈ Z for every λ ∈ Γ}.

Let g : Rn → C be a Γ-periodic function and of class C1 i.e. g(x + λ) = g(x)

for every x ∈ Rn and λ ∈ Γ. Then the Fourier coefficient of g for µ ∈ Γ∗ is defined

by

cµ(g) =
1

|Γ|

∫
F

g(x)e−2iπx·µ| dn x|

where |Γ| is the volume of the lattice and F is a fundamental domain of Rn/Γ.

Then

g(x) =
∑
µ∈Γ∗

cµ(g)e2πix·µ

Theorem 19. (Poisson Summation Formula) Let f ∈ S(Rn) and Γ be a full rank

lattice in Rn. Then for any x ∈ Rn

∑
λ∈Γ

f(x + λ) =
1

|Γ|
∑
µ∈Γ∗

f̂(µ)e2πix·µ

Proof. Define a function g : Rn → C as

g(x) =
∑
λ∈Γ

f(x + λ).
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Since f is Schwartz class, g is C∞ and a Γ-periodic function. Thus by using

the Fourier inversion formula we get

g(x) =
∑
µ∈Γ∗

cµ(g)e2πix·µµµ (5.1)

=
∑
µ∈Γ∗

1

|Γ|

{∫
F

g(y)e−2πiy·µ| dn y|
}
e2πix·µµµ

=
1

|Γ|
∑
µ∈Γ∗

{∫
F

(∑
λ∈Γ

f(y + λ)

)
e−2πiy·µ| dn y|

}
e2πix·µµµ

=
1

|Γ|
∑
µ∈Γ∗

{∑
λ∈Γ

∫
F

f(y + λ)e−2πiy·µ| dn y|

}
e2πix·µµµ

=
1

|Γ|
∑
µ∈Γ∗

{∑
λ∈Γ

∫
F

f(y + λ)e−2πi(y+λλλ)·µ| dn y|

}
e2πix·µµµ

=
1

|Γ|
∑
µ∈Γ∗

{∫
Rn
f(y)e−2πiy·µµµ| dn y|

}
e2πix·µµµ

=
1

|Γ|
∑
µ∈Γ∗

f̂(µ)e2πix·µ

The θ-series

For each ρ ∈ OK/(
√

5), we define two θ- series as

θ0(t, t′, ρ) =
∑

µ≡ρ (
√

5)

e−
π
5

(µ2t+µ′2t′),

θ1(t, t′, ρ) =
∑

µ≡ρ (
√

5)

µµ′e−
π
5

(µ2t+µ′2t′)

where µ′ is the conjugate of µ. We would like to prove the following two relations:

θ0(t, t′, ρ) =
1√
5

1√
tt′

∑
α∈OK/(

√
5)

e
2iπTr

(
α′ρ
5

)
θ0

(
1

t′
,
1

t
, α

)
(5.2)
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and

θ1(t, t′, ρ) =
−1√

5

1

(
√
tt′)3

∑
α∈OK/(

√
5)

e
2iπTr

(
α′ρ
5

)
θ1

(
1

t′
,
1

t
, α

)
. (5.3)

Now, consider f : R2 → R,

f(x1, x2) = e−
π
5

[t(x1+a)2+t′(x2+b)2] (5.4)

for t, t′ > 0. Let us compute the Fourier transform of f .

f̂(y1, y2) =

∫ ∞
−∞

(∫ ∞
−∞

e−π(t/5)(x1+a)2e−2iπx1y1dx1

)
e−π(t′/5)(x2+b)2e−2iπx2y2dx2

Let u =
√
t/5(x1 + a), then du =

√
t/5dx1 and x1 = u

√
5/t− a. Similarly, let

v =
√
t/5(x2 + a), then dv =

√
t/5dx2 and x2 = v

√
5/t− b. We see that

∫ ∞
−∞

e−π(t/5)(x1+a)2e−2iπx1y1dx =
√

5/t

∫ ∞
−∞

e−πu
2

e−2iπy1(u
√

5/t−a)du

=
√

5/te2iπy1a

∫ ∞
−∞

e−π(u+iy1
√

5/t)2−(5πy21)/tdu

=
√

5/te2iπy1ae−(5πy21)/t

∫ ∞
−∞

e−π(u+iy1
√

5/t)2du

=
√

5/te2iπy1ae−(5πy21)/t

Therefore,

f̂(y1, y2) =
5√
tt′
e2iπ(y1a+y2b)e

−5π

(
y21
t

+
y22
t′

)

Now, we will apply the Poisson summation formula to the pair f and f̂ . We

know that the images of OK and the ideal (
√

5) under the canonical embedding σ

are full rank lattices in R2. Let Γ = σ((
√

5)). We know that as lattices in R2,
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OK = Z

1

1

+ Z

1+
√

5
2

1−
√

5
2


and

Γ = Z

 √5

−
√

5

+ Z

5+
√

5
2

5−
√

5
2

 .

We also need to know the dual lattice of Γ to compute the right hand sight of

the Poisson summation formula. Let B be the matrix whose columns are the basis

vectors of Γ. Then we know that the columns of (B−1)T will span Γ∗. Let

B =

 √5 5+
√

5
2

−
√

5 5−
√

5
2


Then, we see that

(B−1)T =


√

5−1
10

1/5

−
√

5−1
10

1/5


which means

Γ∗ = Z

1/5

1/5

+ Z


√

5−1
10

−
√

5−1
10



Also, note that |Γ| = det(B) = 5
√

5. Consider the map φ :
1

5
OK → Γ∗, given

by

φ((1/5)λλλ) = φ((1/5)λ, (1/5)λ′) = ((1/5)λ′, (1/5)λ)

where λ′ is the conjugate of λ. Clearly, this map is an isomorphism.

Now, by Poisson summation formula
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∑
µµµ≡ρρρ (

√
5)

e
−π
(
tµ2+t′(µ′)2

5

)
=
∑
βββ∈Γ

e
−π
(
t(β+ρ)2+t′(β′+ρ′)2

5

)

=
1

5
√

5

∑
ννν∈Γ∗

5√
tt′
e
−5π

(
(ν)2

t
+

(ν′)2
t′

)
+2iπ(νρ+(ν′)ρ′)

=
1√
5

1√
tt′

∑
λλλ∈OK

e
−π

5

(
λ2

t′ +
(λ′)2
t

)
+2iπTr

(
λ′ρ
5

)

=
1√
5

1√
tt′

∑
ααα∈OK/(

√
5)

e
2iπTr

(
α′ρ
5

) ∑
λλλ≡ααα (

√
5)

e
−π

5

(
λ2

t′ +
(λ′)2
t

)

This completes the proof of (5.2).

By one of the properties of Fourier transform, we know that

F

(
∂2f

∂x2∂x1

)
(y1, y2) = (2iπy1)(2iπy2)f̂(y1, y2)

We apply this property to the function given in (5.4), and we get

F

(
4π2

25
tt′(x2 + b)(x1 + a)f

)
(y1, y2) = −4π2y1y2f̂(y1, y2) (5.5)

Now, we apply the Poisson Summation Formula and the relation in (5.5):
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tt′

25

∑
βββ∈Γ

(β + ρ)(β′ + ρ′)e
−π
(
t(β+ρ)2+t′(β′+ρ′)2

5

)

=
tt′

25

∑
µµµ≡ρρρ (

√
5)

µµ′e
−π
(
tµ2+t′(µ′)2

5

)

= −
(
λ′

5

)(
λ

5

)
1√
5

1√
tt′

∑
λλλ∈OK

e
−5π

(
(λ′/5)2

t
+

(λ/5)2

t′

)
+2iπ((λ′/5)ρ+(λ/5)ρ′)

= − 1√
5

1

(
√
tt′)3

∑
λλλ∈OK

λλ′e
−π

5

(
λ2

t′ +
(λ′)2
t

)
+2iπTr

(
λ′ρ
5

)

= − 1√
5

1

(
√
tt′)3

∑
ααα∈OK/(

√
5)

e
2iπTr

(
α′ρ
5

) ∑
λλλ≡ααα (

√
5)

λλ′e
−π

5

(
λ2

t′ +
(λ′)2
t

)

This completes the proof of (5.3).

Corollary 20. Notice that for fixed v,

θ0(ue2v, ue−2v, ρ)− δ(ρ) decays exponentially as u→∞

from the definition and by the relation (5.2)

θ0(ue2v, ue−2v, ρ) ∼ 1

u
as u→ 0

where

δ(ρ) =


1 ρ = 0

0 ρ 6= 0

5.0.5 The ξ-functions

Let us define ξ0 and ξ1 by

ξ0(s, ρ) =
(

Γ
(s

2

))2
(

5

π

)s
ζ0(s, ρ),

ξ1(s, ρ) =

(
Γ

(
s+ 1

2

))2(
5

π

)s
ζ1(s, ρ).

Note that ζ-functions are absolutely convergent in a half plane.
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Proposition 21. The ξ-functions have the following integral representations:

ξ0(s, ρ) = 2

∫ l

v=−l

∫ ∞
u=0

us
∑

µ ≡ ρ (
√

5)

µ 6= 0

e−
π
5
u(µ2ev+(µ′)2e−v)dudv

u
,

ξ1(s, ρ) =
2π

5

∫ l

v=−l

∫ ∞
u=0

us+1
∑

µ ≡ ρ (
√

5)

µ 6= 0

µµ′e−
π
5
u(µ2ev+(µ′)2e−v)dudv

u
.

Proof. We know that

Γ(s) =

∫ ∞
0

e−tts−1dt,

hence we get

Γ
(s

2

)
=

∫ ∞
0

e−tts/2−1dt.

Let t =
π

5
µ2x, then dt =

π

5
µ2dx. Therefore,

Γ
(s

2

)
=

∫ ∞
0

e−
π
5
µ2x
(π

5
µ2x
)s/2−1 π

5
µ2dx

=
(π

5

)s/2
|µ|s

∫ ∞
0

e−(π/5)µ2xxs/2
dx

x

By a similar computation above, we have(
5

π

)s
1

|µ|s
1

|µ′|s
(Γ(s/2))2 =

∫ ∞
0

∫ ∞
0

e−
π
5

(µ2x+(µ′)2y)xs/2ys/2
dxdy

xy

Let x = ue2v, y = ue−2v which give us xy = u2 and x/y = e4v. Also, 2udu =

xdy + ydx, and 4e4vdv =
ydx− xdy

y2
from which we get

dxdy

xy
= 4

dudv

u
.
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Hence,(
5

π

)s
1

|µ|s
1

|µ′|s
(Γ(s/2))2 = 4

∫ ∞
−∞

(∫ ∞
0

use−
π
5
u(µ2e2v+(µ′)2e−2v)du

u

)
dv, i.e.

(
5

π

)s
1

|N(µ)|s
(Γ(s/2))2 = 4

∫ ∞
−∞

(∫ ∞
0

use−
π
5
u(µ2e2v+(µ′)2e−2v)du

u

)
dv

In order to get the ξ-function above we need to add 1/|N (µ)|s for µ ∈ (Oρ
K −

{0})/ ∼u on the left side of the integral. However, this is a sum over a pretty

complicated quotient of a sublattice of OK . We want to write the ξ-function as an

integral involving a θ-function and this requires us to have a sum over all elements

µ ∈ O
ρ
K −{0}. For this purpose, we first change the order of the integration in the

above integral and then we write the integral with respect to v that is from −∞

to ∞ as a sum of integrals from −l to l where l = 1
2

log u where u =
(

1+
√

5
2

)4

is

the first totally positive unit which is congruent to 1 modulo the ideal (
√

5).

= 4

∫ ∞
0

us

(
n=∞∑
n=−∞

∫ l

−l
e−

π
5
u(µ2e2(v+2nl)+(µ′)2e−2(v+2nl))dv

)
du

u

= 4

∫ ∞
0

us

(
n=∞∑
n=−∞

∫ l

−l
e−

π
5
u((µe2nl)2e2v+(µ′e2nl)2e−2v)dv

)
du

u

= 4

∫ ∞
0

us

(
n=∞∑
n=−∞

∫ l

−l
e−

π
5
u((µun)2e2v+(µ′un)2e−2v)dv

)
du

u

In the last integral, we replaced l by 1
2

log u so that e2l becomes u. Now we add

1/|N (µ)|s for µ ∈ (Oρ
K − {0}) ∼u on the left side of the integral.(

5

π

)s
(Γ(s/2))2ζ0(ρ, s) = ξ(s, ρ)

= 4

∫ ∞
0

us

∫ l

−l

n=∞∑
n=−∞

∑
µ∈(OρK−{0})/∼u

e−
π
5
u((µun)2e2v+(µ′un)e−2v)dv

 du

u

We see that if µ ∈ (Oρ
K − {0})/ ∼u, then µun runs through all the elements η of
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the set O
ρ
K − {0} when n is an integer. Therefore, we have

ξ0(s, ρ) = 4

∫ l

−l

∫ ∞
0

us
∑

η≡ρ (
√

5), η 6=0

e−
π
5
u(η2e2v+(η′)2e−2v)dudv

u

Similarly, we can prove the integral representation for ξ1(s, ρ).

In the above sum, ρ can take 5 values. If ρ 6= 0, then the sum is over a translate

of a sublattice of OK and is equal to the θ0(t, t′, ρ) by definition. However, when

ρ = 0 the above sum does not include a term for η = 0. Hence, it is equal to

θ0(t, t′, 0)− 1. As a result,

ξ0(s, ρ) = 4

∫ ∞
0

us
∫ l

−l

(
θ0(ue2v, ue−2v, ρ)− δ(ρ)

) dvdu
u

where

δ(ρ) =


1 ρ = 0

0 ρ 6= 0

Now, we would like to prove ξ-functions are meromorphic and they satisfy a

functional equation.

Proposition 22. The ξ-functions defined above are meromorphic functions on C

with simple poles at s = 0 and s = 1. They also satisfy

ξ0(1− s, ρ) =
1√
5

∑
α mod

√
5

e
2iπTr

(
α′ρ
5

)
ξ0(s, α)

Proof. We will prove this by considering two cases:
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Case 1: In this case, ρ 6= 0. First, we break the integral representation of ξ0

into two integrals from 0 to 1 and from 1 to ∞. In the first integral, we make the

change of variable u↔ 1/u. Then we get

ξ0(s, ρ) = 4

∫ ∞
0

us
(∫ l

−l
θ0(ue2v, ue−2v, ρ)dv

)
du

u

= 4

∫ ∞
1

u−s
(∫ l

−l
θ0(e2v/u, e−2v/u, ρ)dv

)
du

u
+ 4

∫ ∞
1

us
(∫ l

−l
θ0(ue2v, ue−2v, ρ)dv

)
du

u

Now we will apply the following relation for the θ0-function

θ0(t, t′, ρ) =
1√
5

1√
tt′

∑
α∈OK/(

√
5)

e
2iπTr

(
λ′ρ
5

)
θ0

(
1

t′
,
1

t
, α

)

in the first integral.

=
4√
5

∫ ∞
1

u1−s
∫ l

−l

 ∑
α∈OK/(

√
5)

e
2iπTr

(
α′ρ
5

)
θ0(ue2v, ue−2v, α)

 dvdu

u

+ 4

∫ ∞
1

us
(∫ l

−l
θ0(ue2v, ue−2v, ρ)dv

)
du

u

In the above sum, the cases α = 0 and α 6= 0 are quite different. Since

θ0(ue2v, ue−2vα) − δ

(
α√
5

)
is exponentially decreasing at infinity, the integrals

above involving θ0(ue2v, ue−2v, α) define entire functions except when α = 0. The

function θ0(ue2v, ue−2v, 0) leads to a pole at s = 1. In order to get this pole, we

will add and subtract 1 to the function θ0(ue2v, ue−2v, 0).

=
4√
5

∫ ∞
1

u1−s
∫ l

−l

∑
α∈OK/(

√
5), α 6=0

e
2iπTr

(
α′ρ
5

)
θ0(ue2v, ue−2v, α)

dvdu

u

+
4√
5

∫ ∞
1

u1−s
(∫ l

−l
[(θ0(ue2v, ue−2v, 0)− 1 + 1)]dv

)
du

u

+ 4

∫ ∞
1

us
(∫ l

−l
θ0(ue2v, ue−2v, ρ)dv

)
du

u
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After integrating the second integral above, we have

=
4√
5

∫ ∞
1

u1−s
∫ l

−l

∑
α∈OK/(

√
5), α 6=0

e
2iπTr

(
α′ρ
5

)
θ0(ue2v, ue−2v, α)

dvdu

u

− 8l√
5(1− s)

+
4√
5

∫ ∞
1

u1−s
(∫ l

−l
(θ0(ue2v, ue−2v, 0)− 1)dv

)
du

u

+ 4

∫ ∞
1

us
(∫ l

−l
θ0(ue2v, ue−2v, ρ)dv

)
du

u

Therefore, we have just shown that ξ0(s, ρ) where ρ 6= 0 is a meromorphic function

whose only pole is at s = 1 with residue

8l√
5

=
8 log((3 +

√
5)/2)√

5
.

Case 2: In this case, ρ = 0. First, we write the integral representation of ξ0(s, 0)

and then split the integral into two integrals from 0 to 1 and from 1 to ∞. In the

first integral, we make the substitution u↔ 1/u. Then we get

ξ0(s, 0) = 4

∫ ∞
0

us
(∫ l

−l
(θ0(ue2v, ue−2v, 0)− 1)dv

)
du

u

= 4

∫ ∞
1

u−s
(∫ l

−l
(θ0(e2v/u, e−2v/u, 0)− 1)dv

)
du

u

+ 4

∫ ∞
1

us
(∫ l

−l
(θ0(ue2v, ue−2v, 0)− 1)dv

)
du

u

The second integral above defines an entire function since θ0(ue2v, ue−2v, 0) − 1

decays exponentially at infinity. However, the first integral converges only for

Re s > 1 since θ0(e2v/u, e−2v/u, 0) behaves like u at infinity. First, we will integrate

−1 in the first integral and then we will apply the relation

θ0(t, t′, ρ) =
1√
5

1√
tt′

∑
α∈OK/(

√
5)

e
2iπTr

(
λ′ρ
5

)
θ0

(
1

t′
,
1

t
, α

)
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to θ0(e2v/u, e−2v/u, 0).

= −8l

s
+ 4

∫ ∞
1

u−s
∫ l

−l
θ0(e2v/u, e−2v/u, 0)

dvdu

u
+ 4

∫ ∞
1

us
(∫ l

−l
(θ0(ue2v, ue−2v, 0)− 1)dv

)
du

u

= −8l

s
+

4√
5

∫ ∞
1

u1−s
∫ l

−l

 ∑
α∈OK/(

√
5), α 6=0

e
2iπTr

(
α′ρ
5

)
θ0(ue2v, ue−2v, α)

 dvdu

u

+ 4

∫ ∞
1

us
∫ l

−l
(θ0(ue2v, ue−2v, 0)− 1)

dvdu

u

As in the previous case, since θ0(ue2v, ue−2v, 0) − 1 is exponentially decreasing at

infinity, the integrals above involving θ0(ue2v, ue−2v, α) define entire functions ex-

cept when α = 0 whereas the function θ0(ue2v, ue−2v, 0) leads to a pole at s = 1. In

order to get this pole, we will add and subtract 1 to the function θ0(ue2v, ue−2v, 0).

= −8l

s
+

4√
5

∫ ∞
1

u1−s
∫ l

−l

∑
α∈OK/(

√
5), α 6=0

e
2iπTr

(
α′ρ
5

)
θ0(ue2v, ue−2v, α)

dvdu

u

+
4√
5

∫ ∞
1

u1−s
∫ l

−l
(θ0(ue2v, ue−2v, 0)− 1 + 1)

dvdu

u
+ 4

∫ ∞
1

us
∫ l

−l
(θ0(ue2v, ue−2v, 0)− 1)

dvdu

u

By integrating 1 in the second integral, we have

= −8l

s
− 8l√

5(1− s)
+

4√
5

∫ ∞
1

u1−s
∫ l

−l

∑
α∈OK/(

√
5), α 6=0

e
2iπTr

(
α′ρ
5

)
θ0(ue2v, ue−2v, α)

dvdu

u

+
4√
5

∫ ∞
1

u1−s
∫ l

−l
(θ0(ue2v, ue−2v, 0)− 1)

dvdu

u
+ 4

∫ ∞
1

us
∫ l

−l
(θ0(ue2v, ue−2v, 0)− 1)

dvdu

u

Remark 23. Since θ0(ue2v, ue−2vρ)− δ(ρ) is exponentially decreasing at infinity,

the integrals above on the right hand side of the ξ-functions define entire functions.

As a result, we have just proven that ξ-functions are meromorphic functions with

poles at most at s = 0 and s = 1.

Now, we would like to prove

ξ0(1− s, ρ) =
1√
5

∑
α∈OK/(

√
5)

e
2iπTr

(
α′ρ
5

)
ξ0(s, α)
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Case1: ρ 6= 0 We already have an integral representation for ξ0(s, ρ). We

substitute s↔ 1− s in this representation and get

√
5ξ0(1− s, ρ) = −8l

s
+ 4

∫ ∞
1

us
∫ l

−l

∑
α∈OK/(

√
5), α 6=0

e
2iπTr

(
α′ρ
5

)
θ0(ue2v, ue−2v, α)

dvdu

u

+ 4

∫ ∞
1

us
∫ l

−l
(θ0(ue2v, ue−2v, 0)− 1)

dvdu

u

+ 4
√

5

∫ ∞
1

u1−s
∫ l

−l
θ0(ue2v, ue−2v, ρ)

dvdu

u

Now substitute u with 1/u in the last integral above resulting in

4
√

5

∫ ∞
1

u1−s
∫ l

−l
θ0(ue2v, ue−2v, ρ)

dvdu

u
= 4
√

5

∫ 1

0

us−1

∫ l

−l
θ0(e2v/u, ue−2v/u, ρ)

dvdu

u

In the relation

θ0(t, t′, ρ) =
1√

5
√
tt′

∑
α∈OK/(

√
5)

e
2iπTr

(
α′ρ
5

)
θ0

(
1

t′
,
1

t
, α

)

let t = e2v/u and t′ = e−2v/u. Then we have

θ0(e2v/u, e−2v/u, ρ) =
u√
5

∑
α∈OK/(

√
5)

e
2iπTr

(
α′ρ
5

)
θ0

(
ue2v, ue−2v, α

)
By applying the relation to θ0(e2v/u, ue−2v/u, ρ), the third integral in

√
5ξ0(1−s, ρ)

becomes

4

∫ 1

0

us
∫ l

−l

∑
α∈OK/(

√
5)

e
2iπTr

(
α′ρ
5

)
θ0(ue2v, ue−2v, α)

dvdu

u

Now we can combine the first integral in
√

5ξ0(1− s, ρ) which is from 1 to ∞ with

the last integral above to get an integral from 0 to ∞ for α 6= 0. Therefore,

√
5ξ0(1− s, ρ) =

∑
α∈OK/(

√
5),α 6=0

e
2iπTr

(
α′ρ
5

)
4

∫ ∞
0

us
∫ l

−l
θ0(ue2v, ue−2v, α)

dvdu

u

− 8l

s
+ 4

∫ 1

0

us
∫ l

−l
θ0(ue2v, ue−2v, 0)

dvdu

u

+ 4

∫ ∞
1

us
∫ l

−l
(θ0(ue2v, ue−2v, 0)− 1)

dvdu

u
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Note that ξ0(s, 0) = 4

∫ ∞
0

us
∫ l

−l
(θ0(ue2v, ue−2v, 0) − 1)

dvdu

u
. In order to get

ξ0(s, 0), we will first add and subtract 1 in the second integral above and then

integrate 1. The integral of 1 over the given region is just 8l/s, and then we will

combine the remaining integrals to get

√
5ξ0(1− s, ρ) =

∑
α∈OK/(

√
5),α 6=0

e
2iπTr

(
α′ρ
5

)
4

∫ ∞
0

us
∫ l

−l
θ0(ue2v, ue−2v, α)

dvdu

u

+ 4

∫ ∞
0

us
∫ l

−l
(θ0(ue2v, ue−2v, 0)− 1)

dvdu

u

Note that when α = 0, e
2iπTr

(
α′ρ
5

)
= 1 leading to

ξ0(1− s, ρ) =
1√
5

∑
α∈OK/(

√
5)

e
2iπTr

(
α′ρ
5

)
ξ0(s, α)

Similar computations give the same relation for ρ = 0.

Remark 24. Notice that we had defined ξ0(s, ρ) as

ξ0(s, ρ) =
(

Γ
(s

2

))2
(

5

π

)s
ζ0(s, ρ),

then

ζ0(s, ρ) = ξ0(s, ρ)
(π

5

)s 1

Γ(s/2)2
.

We have just proven that ξ0(s, ρ) is a meromorphic function on the entire complex

plane except simple poles at s = 1 and s = 0. Since
1

Γ(s/2)
is an entire function

of s with simple zeroes at s = 0,−1/2,−1, · · · and it vanishes nowhere else, then

ζ0(s, ρ) is a meromorphic function with a simple pole at s = 1.
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5.1 Construction of wave forms

In this section, we will construct the wave forms corresponding the ζ-functions

which we have defined before in (15). For each ρ, 0 ≤ ρ ≤ 2, define a function

gρ(z) where z = x+ iy ∈ H as follows:

gρ(z) = log

(
1 +
√

5

2

)4

δ(ρ)y1/2 +
∑

n 6=0, n≡bρ (5)

aρny
1/2K0

(
2π|n|

5
y

)
e

2iπn
5
x

By definition, we know that δ(ρ) = 0 only when ρ = 0, i.e. we have a constant

term only if ρ = 0.

Claim 25. We will show that

gρ

(
−1

z

)
=

2∑
ρ=0

cρσgσ(z)

Proof. Consider

gρ(y) = log

(
1 +
√

5

2

)4

δ(ρ)y1/2 +
∑

n 6=0, n≡bρ (5)

aρny
1/2K0

(
2π|n|

5
y

)
= uρ(y) + Fρ(y)

First we want to prove

gρ

(
1

y

)
=

2∑
ρ=0

cρσgσ(y)

for y > 0. By using the integral representation of K-Bessel function, we have

K0

(
2π|n|

5
y

)
=

1

8πi

∫ c+i∞

c−i∞
Γ
(s

2

)
Γ
(s

2

)(2π|n|y
(2)(5)

)−s
ds

=
1

8πi

∫ c+i∞

c−i∞
Γ2
(s

2

)( 5

π

)s
1

|n|sys
ds

where c > 0. Then we see that

Fρ(y) =
1

8πi

∫ c+i∞

c−i∞

ξρ(s)

ys−1/2
ds
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leading to

gρ(y) = uρ(y) +
1

8πi

∫ c+i∞

c−i∞

ξρ(s)

ys−1/2
ds.

From the above representation,

gρ

(
1

y

)
= uρ

(
1

y

)
+

1

8πi

∫ c+i∞

c−i∞

ξρ(s)

y1/2−sds

Now we use the identity

ξρ(s) =
2∑

σ=0

cρσξσ(1− s)

to get

gρ

(
1

y

)
= uρ

(
1

y

)
+

2∑
σ=0

cρσ
1

8πi

∫ c+i∞

c−i∞

ξσ(1− s)
y1/2−s ds.

Now we make the substitution s↔ 1− s in the integral and obtain

gρ

(
1

y

)
= uρ

(
1

y

)
+

2∑
σ=0

cρσ
1

8πi

∫ 1−c+i∞

1−c−i∞

ξσ(s)

ys−1/2
ds

= uρ

(
1

y

)
+

2∑
σ=0

cρl
1

8πi

∫ c+i∞

c−i∞

ξσ(s)

ys−1/2
ds

− 1

4

2∑
σ=0

cρσ
∑
res

ξσ(s)

ys−1/2

In the above, we can replace the integral from 1 − c − i∞ to 1 − c + i∞ by the

integral from c − i∞ to c + i∞ and by taking the residues of the integrand into

account via the Phragmén-Lindelöf theorem.

We know that
ξσ(s)

ys−1/2
has simple poles at s = 0 when σ = 0 and at s = 1

for all σ with residues −8l = −8 log

(
3 +
√

5

2

)
y1/2 and

8l√
5

=
8 log

(
3+
√

5
2

)
√

5
y−1/2
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respectively. Also, first row of the matrix (cρσ) is [1/
√

5, 2/
√

5, 2/
√

5]. Then

g0

(
1

y

)
= log

(
1 +
√

5

2

)4

y−1/2 +
2∑

lσ=0

c0σ
1

8πi

∫ c+i∞

c−i∞

ξσ(s)

ys−1/2
ds

− 1

4

(
1√
5

(
−8 log

(
3 +
√

5

2

)
y1/2 +

8√
5

log

(
3 +
√

5

2

)
y−1/2

))

− 1

4

(
2√
5

8√
5

log

(
3 +
√

5

2

)
y−1/2 +

2√
5

8√
5

log

(
3 +
√

5

2

)
y−1/2

)

= log

(
1 +
√

5

2

)4

y−1/2 +
2∑

σ=0

c0σ
1

8πi

∫ c+i∞

c−i∞

ξl(s)

ys−1/2
ds

+ y1/2 1√
5

log

(
1 +
√

5

2

)4

+ y−1/2

−4

5
log

(
1 +
√

5

2

)4

− 1

5
log

(
1 +
√

5

2

)4


= y1/2 1√
5

log

(
1 +
√

5

2

)4

+
2∑

σ=0

c0σ
1

8πi

∫ c+i∞

c−i∞

ξσ(s)

ys−1/2
ds

=
2∑

σ=0

c0σu0(y) +
2∑

σ=0

c0σ
1

8πi

∫ c+i∞

c−i∞

ξσ(s)

ys−1/2
ds

=
2∑

σ=0

c0σg0(y)

We know that for ρ = 1, 2, uρ(1/y) = uρ(y) = 0. Hence, we need to show that

−1

4

2∑
σ=0

cρσ
∑
res

ξσ(s)

ys−1/2
=

1√
5
u0(y) =

2∑
σ=0

cρσuρ(y)

for ρ = 1, 2 where

(cρσ) =
1√
5


1 2 2

1 w2 + w−2 w + w−1

1 w + w−1 w2 + w−2


and w = e

2iπ
5 . We will show the computation for ρ = 1 since the computation for
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ρ = 2 is similar.

−1

4

2∑
l=0

cρσ
∑
res

ξσ(s)

ys−1/2
= −1

4

1√
5

(
−8 log

(
3 +
√

5

2

)
y1/2 +

8√
5

log

(
3 +
√

5

2

)
y−1/2

)

− 1

4

1√
5

(w2 + w−2 + w + w−1)
8√
5

log

(
3 +
√

5

2

)
y−1/2

=
1√
5

log

(
1 +
√

5

2

)4

y1/2 =
2∑

σ=0

c1σuσ(y).

5.1.1 The ξ-functions

Let us define ξ0 and ξ1 by

ξ0(s, ρ) = Γ

(
s− πni

log ε

2

)
Γ

(
s+ πni

log ε

2

)(
5

π

)s
ζ0(s, ρ),

ξ1(s, ρ) = Γ

(
s+ 1− πni

log ε

2

)
Γ

(
s+ 1 + πni

log ε

2

)(
5

π

)s
ζ1(s, ρ).

Note that ζ-functions are absolutely convergent in a half plane.

Proposition 26. The ξ-functions have the following integral representations:

ξ0(s, ρ) = 2

∫ l

v=−l

∫ ∞
u=0

us
∑

µ ≡ ρ (
√

5)

µ 6= 0

e−
π
5
u(µ2ev+(µ′)2e−v)dudv

u
,

ξ1(s, ρ) =
2π

5

∫ l

v=−l

∫ ∞
u=0

us+1
∑

µ ≡ ρ (
√

5)

µ 6= 0

µµ′e−
π
5
u(µ2ev+(µ′)2e−v)dudv

u
.
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Proof. We know that

Γ(s) =

∫ ∞
0

e−tts−1dt,

Let c = πmi/ log ε. Then we get

Γ

(
s− c

2

)
=

∫ ∞
0

e−tt
s−c
2
dt

t
.

Let t =
π

5
µ2x, then

dt

t
=
dx

x
. Therefore,

Γ

(
s− c

2

)
=

∫ ∞
0

e−
π
5
µ2x
(π

5
µ2x
) s−c

2 dx

x

=
(π

5

) s−c
2 |µ|s−c

∫ ∞
0

e−(π/5)µ2xx
s−c
2
dx

x

By a similar computation above, we have(
5

π

)s
1

|µ|s
1

|µ′|s

(
|µ|
|µ′|

)c
Γ

(
s− c

2

)
Γ

(
s+ c

2

)
=

∫ ∞
0

∫ ∞
0

e−
π
5

(µ2x+(µ′)2y)x
s−c
2 y

s+c
2
dxdy

xy

Let x = ue2v, y = ue−2v which give us xy = u2 and x/y = e4v. Also, 2udu =

xdy + ydx, and 4e4vdv =
ydx− xdy

y2
from which we get

dxdy

xy
= 4

dudv

u
.

Hence,(
5

π

)s
1

|µ|s
1

|µ′|s

(
|µ|
|µ′|

)c
Γ

(
s− c

2

)
Γ

(
s+ c

2

)
= 4

∫ ∞
−∞

(∫ ∞
0

use−
π
5
u(µ2e2v+(µ′)2e−2v)du

u

)
e−2vcdv, i.e.

(
5

π

)s
1

|N(µ)|s
λ1(µ)mΓ

(
s− c

2

)
Γ

(
s+ c

2

)
= 4

∫ ∞
−∞

(∫ ∞
0

use−
π
5
u(µ2e2v+(µ′)2e−2v)du

u

)
e−2vcdv

In order to get the ξ-function above we need to add λ1(µ)m/|N (µ)|s for µ ∈
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(Oρ
K − {0})/ ∼u on the left side of the integral. However, this is a sum over

a pretty complicated quotient of a sublattice of OK . We want to write the ξ-

function as an integral involving a θ-function and this requires to have a sum over

all elements µ ∈ O
ρ
K − {0}. For this purpose, we first change the order of the

integration in the above integral and then we write the integral with respect to v

that is from −∞ to ∞ as a sum of integrals from −l to l where l = 1
2

log u where

u =
(

1+
√

5
2

)4

is the first totally positive unit which is congruent to 1 modulo the

ideal (
√

5).

= 4

∫ ∞
0

us

(
n=∞∑
n=−∞

∫ l

−l
e−

π
5
u(µ2e2(v+2nl)+(µ′)2e−2(v+2nl))e−2c(v+2nl)dv

)
du

u

= 4

∫ ∞
0

us

(
n=∞∑
n=−∞

∫ l

−l
e−

π
5
u((µe2nl)2e2v+(µ′e2nl)2e−2v)e−2cvdv

)
du

u

= 4

∫ ∞
0

us

(
n=∞∑
n=−∞

∫ l

−l
e−

π
5
u((µun)2e2v+(µ′un)2e−2v)e−2cvdv

)
du

u

In the last integral, we replaced l by 1
2

log u so that e2l becomes u. Now we add

1/|N (µ)|s for µ ∈ (Oρ
K − {0}) ∼u on the left side of the integral.(

5

π

)s
(Γ(s/2))2ζ0(ρ, s) = ξ(s, ρ)

= 4

∫ ∞
0

us

∫ l

−l

n=∞∑
n=−∞

∑
µ∈(OρK−{0})/∼u

e−
π
5
u((µun)2e2v+(µ′un)e−2v)e−2cvdv

 du

u

We see that if µ ∈ (Oρ
K − {0})/ ∼u, then µun runs through all the elements η of

the set O
ρ
K − {0} when n is an integer. Therefore, we have

ξ(s, ρ) = 4

∫ l

−l

∫ ∞
0

use−2cv
∑

η≡ρ (
√

5), η 6=0

e−
π
5
u(η2e2v+(η′)2e−2v)dudv

u

In the above sum, ρ can take 5 values. If ρ 6= 0, then the sum is over a translate

of a sublattice of OK and is equal to the θ0(t, t′, ρ) by definition. However, when
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ρ = 0 the above sum does not include a term for η = 0. Hence, it is equal to

θ0(t, t′, 0)− 1. As a result,

ξ(s, ρ) = 4

∫ ∞
0

us
∫ l

−l

(
θ0(ue2v, ue−2v, ρ)− δ(ρ)

)
e−2cv dvdu

u

where

δ(ρ) =


1 ρ = 0

0 ρ 6= 0
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APPENDIX A

This appendix consists of the translation of Hans Maass’s article titled as “About a

New Class of Nonanalytic Automorphic Functions and Determination of Dirichlet

Series by Functional Equations” which was published in Math. Ann .121, 1949.

The translation of the article was not available before.

Translated by: Yasemin Kara (Department of Mathematics, Cornell University)

I would like to thank Janna Lierl(Department of Mathematics, Cornell

University) for her invaluable help.

Zeta functions of rational and quadratic number fields have two important

properties. On the one hand, they satisfy certain functional equations; on the

other hand, they are linear combinations of special Dirichlet series with an Euler

product development or they admit such a development themselves. The extend to

which these zeta functions are defined by their functional equations is the starting

point of a more general theory which is developed by E.Hecke1) using the Mellin

transform

Ψ(s) =

∫ ∞
0

ys−1Φ(y)dy (A.1)

and its inverse

Φ(y) =
1

2πi

∫ σ+i∞

σ−i∞
y−sΨ(s)ds. (A.2)

This reversible integral transform establishes a remarkable relationship between

solutions of Riemann functional equations, that can be developed into Dirichlet
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series, and automorphic functions. To apply the Hecke theory, the Γ-factors ap-

pearing in the functional equation must be of the form

Γ(s) or Γ
(s

2

)
Γ

(
s+ 1

2

)
;

thus the zeta functions of real quadratic fields are not covered by the theory. This

limitation is offset by the extraordinary importance of what the Hecke theory

has achieved for the theory of functional equations of zeta functions for rational

and imaginary quadratic number fields and culminates in an algebraic formulation

of the problem of Euler product developments. So the question which arises is

whether the functional equations of zeta functions of real quadratic fields can be

treated in a similar way i.e. whether real quadratic zeta functions admit analogues

of the modular functions associated to the zeta functions of real and imaginary

quadratic fields. This is indeed the case and it is the class of functions g, satisfying

the wave equation

∂2g

∂x2
+
∂2g

∂y2
+
r2 + 1

4

y2
g = 0 (r=Parameter) (A.3)

and that are invariant under certain noneuclidean transformations on the hyper-

bolic plane y > 0 with respect to the metric y−2(dx2 + dy2). The Mellin tranform

and its inverse are the connection between the Dirichlet series and the automor-

phic wave functions so that we have a far-reaching analogue of the Hecke theory.

This connection becomes apparent when we notice that the wave function g turns

into a potential function when we formally replace the parameter r with
i

2
in the

series for g. The Dirichlet series do not transform directly into the wave func-

tions, instead they are known by the equation (2) only on the line x = 0. We get

the full knowledge of the wave functions only after a process similar to analytic

continuation; for this we first construct a wave function g which coincides with

the given values on the line x = 0. However, g is uniquely determined only when
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both g and
∂g

∂x
are known on the line x = 0. This means every wave function g is

associated with a pair of Dirichlet series. The functional equations corresponding

to these series, which show an invariance under the substitution s 7→ 1− s, differ

in a crucial way by the Γ-factors, which are given by

Γ

(
s+ ir

2

)
Γ

(
s− ir

2

)
or Γ

(
s+ 1 + ir

2

)
Γ

(
s+ 1− ir

2

)
. (A.4)

This pairing of functional equations can indeed be observed in known examples2)

and is explained by its relationship to the wave functions. As a variable of g we

choose the complex number

τ = x+ iy

because the setting in which it is easiest to write noneuclidean motions is the upper

half plane y > 0 where such motions are fractional linear transformations with

real coefficients. So in the following we will consider complex valued nonanalytic

automorphic functions g(τ) which satisfy the wave equation (3). We sometimes

call the Hecke theory2) the “analytic case”.

After this general introduction we give an overview of the main results of this

article.

First we prove a general theorem about systems of functional equations which

we will write down in full detail because it brings out the key features that underlie

the entire theory.

Theorem 27. Fix real numbers λ > 0 and r = 0, a positive integer q, an N ×N

matrix C = (ckl) with C2 = Id, and integers b1, b2, ..., bN .

I. We want to know all systems of 2N functions

ϕ1(s), ϕ2(s), ..., ϕN(s); ψ1(s), ψ2(s), ..., ψN(s)
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with the following properties:

1. The functions (s − 1 − ir)(s − 1 + ir)ϕk(s) and ψk(s) (k = 1, 2, ..., N)

are entire functions of s of finite genus.

2. The following functional equations hold

ξk(1− s) =
N∑
l=1

cklξl(s),

ηk(1− s) = −
N∑
l=1

cklηl(s), (k = 1, 2, ..., N) (A.5)

if we set

ξk(s) =

(
λ

π

)s
Γ

(
s− ir

2

)
Γ

(
s+ ir

2

)
ϕk(s),

ηk(s) =

(
λ

π

)s+1

Γ

(
s+ 1− ir

2

)
Γ

(
s+ 1 + ir

2

)
ψk(s). (A.6)

3. In an appropriate half-plane the functions ϕk(s) and ψk(s) can be writ-

ten as Dirichlet series

ϕk(s) =
∑

n ≡ bk (q)

n 6= 0

a
(k)
n

| n |s
,

ψk(s) =
∑

n ≡ bk (q)

n 6= 0

(sgnn)a
(k)
n

| n |s
, (k = 1, 2, ..., N). (A.7)

.

4. The following equation holds

%k

(
1− e

2πibk
q

)
= σk

(
1− e

2πibk
q

)
= 0, (k = 1, 2, ..., N) (A.8)

if we put

%k =
N∑
l=1

cklαl, σk =
N∑
l=1

cklβl (A.9)
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and if we determine αk, βk so that

ϕk −
αk

s− 1− ir
− βk
s− 1 + ir

for r > 0 or

ϕk −
αk
s− 1

− βk
(s− 1)2

for r = 0, (A.10)

are entire functions of s.

II. Every system of functions with these properties corresponds bijectively to a

system of N functions

g1(τ), g2(τ), ..., gN(τ),

with the following properties via the integral transforms (1) and (2):

1. They satisfy the wave equation(
∂2

∂x2
+

∂2

∂y2
+
r2 + 1

4

y2

)
gk(τ) = 0 (k = 1, 2, ..., N) (A.11)

and they are regular at every point in the upper half plane as functions

of real variables x and y.

2. There exist κ1, κ2, A1 and A2 such that

| gk(τ) |≤ A1y
κ1 as y →∞, | gk(τ) |≤ A2y

−κ2 as y → 0 (A.12)

with positive constants κ1 and κ2 (k = 1, 2, ..., N).

3. The functions gk satisfy

gk

(
τ +

λ

q

)
= e

2πibk
q gk(τ), (k = 1, 2, ..., N) (A.13)

4. The transformation formula

gk

(
−1

τ

)
=

N∑
l=1

cklgl(τ), (k = 1, 2, ..., N) (A.14)

holds.
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A.0.2 Construction of the gk

Starting from the Dirichlet series (7) we find the following representation for the

system of functions II.

gk(τ) = uk(y) +
∑

n ≡ bk (q)

n 6= 0

a(k)
n y

1
2Kir

(
2π|n|
λ

y

)
e

2πin
λ

x (A.15)

with

uk(y) =


M%ky

1
2

+ir +Mσky
1
2
−ir for r > 0,

M
{
%k + σk

(
log λ

4π
− C

)}
y

1
2 +Mσky

1
2 log y for r = 0.

. (A.16)

Here C is the Euler constant and

M =

√
λ

4

(
λ

π

) 1
2

+ir

Γ

(
1

2
+ ir

)
. (A.17)

The Bessel function Kν(z) which comes up in (15) satisfies the following differential

equation if z is purely imaginary

z2d
2w

dz2
+ z

dw

dz
− (z2 + ν2)w = 0 (A.18)

and as z →∞ it has the following asymptotic behaviour3)

Kν(z) ∼
√

π

2z
e−z. (A.19)

A.0.3 Group invariance

Among all discontinous groups G

(
λ

q

)
, which are generated by the two substitu-

tions

τ 7→ τ +
λ

q
and τ 7→ −1

τ
,
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G(1) and G(2) are special because they are subgroups of the modular group M.

They are either M or so called the Theta group T. In general, the transformation

formulas 3. and 4. of the system II. define a homomorphism from the group G

(
λ

q

)
to the group generated by the matrices

(ckl) and
(
δkle

2πibk
q

)
(δkl = Kronecker symbol) (A.20)

if the system of functions II. is linearly independent. The substitutions of G

(
λ

q

)
that get mapped to the identity matrix build a normal subgroup N of G

(
λ

q

)
.

Apparently, for all wave functions of the system II. we have

gk(Sτ) = gk(τ) for S ∈ N. (A.21)

In particular, this invariance is important if N has finite index in G

(
λ

q

)
i.e. if the

group generated by the substitutions (20) is finite and if λ = q or λ = 2q. In this

case, by using the Siegel method we prove that there are only finitely many linearly

independent automorphic wave functions for the group N, which behave like gk(τ)

as y → ∞ in all parabolic cusps of the fundamental domain of N. Therefore,

we get an important theorem that says the dimension of the linearly equivalent

families of systems of functions I and II is finite. In particular, for the modular

group M and the Thetagroup T we can find explicitly all wave functions for r = 0

that have the same behaviour in the parabolic cusps described above. This result

corresponds to Theorem 2.

Theorem 28. All solutions ϕ(s) of the functional equation

ξ(s) =

(
λ

π

)s (
Γ
(s

2

))2

ϕ(s) = ξ(1− s), (A.22)

which can be written as a Dirichlet series and for which (s − 1)2ϕ(s) is an entire

function of finite genus, form a linear family which is generated by ζ2(s) in the case
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of λ = 1 and by 2−sζ2(s) and (1+21−2s)ζ2(s) in the case of λ = 2 (ζ(s) =Riemann

zeta function). By contrast, for neither λ = 1 nor for λ = 2 is there a non trivial

entire function ϕ(s) of finite genus that can be developed in a Dirichlet series and

which satisfies

η(s) =

(
λ

π

)s+1(
Γ

(
s+ 1

2

))2

ϕ(s) = −η(1− s)

A.0.4 Real quadratic fields

An important example of Theorem 1 is the class of zeta functions of the real

quadratic field R(
√
D) with discriminat D, formed with any Größen character λn1 :

ζ0(s, %, a, λn1 , Q
√
D) =

As

λn1 (a)

∑
µ ≡ % (aQ

√
D)

µ 6= 0, (µ)
Q

√
Dp∞

λn1 (µ)

|Nµ|s

ζ1(s, %, a, λn1 , Q
√
D) =

As

λn1 (a)

∑
µ ≡ % (aQ

√
D)

µ 6= 0, (µ)
Q

√
Dp∞

sgn(Nµ)
λn1 (µ)

|Nµ|s
. (A.23)

Here we sum over a complete system of non-vanishing, non-mod Q
√
Dp∞ asso-

ciated residue classes % mod aQ
√
D where Q is an arbitrary non-negative integer,

a is an arbitrary ideal, % is an arbitrary element of a and we set Na = A. The

Größen character λ1 is defined by

λ1 =

∣∣∣∣ µµ′
∣∣∣∣ πi
log ε

, ε = fundamental unit of R(
√
D), ε > 1 (A.24)
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The functional equations

ξν(1− s, %, a, λn1 , Q
√
D) =

(−1)ν

Q
√
D

∑
σ mod aQ

√
D

σ ≡ 0 (a)

e
2πiS

(
%σ′
AQD

)
ξν(s, σ, a, λ

n
1 , Q
√
D) (A.25)

for ν = 0, 1 with

ξ0(s, %, a, λn1 , Q
√
D) =

(
QD

π

)s
Γ

(
s− πni

log ε

2

)
Γ

(
s+ πni

log ε

2

)
ζ0(s, %, a, λn1 , Q

√
D)

ξ1(s, %, a, λn1 , Q
√
D) =

(
QD

π

)s+1

Γ

(
s+ 1− πni

log ε

2

)
Γ

(
s+ 1 + πni

log ε

2

)
ζ1(s, %, a, λn1 , Q

√
D),

(A.26)

which are proved for n = 0 in 2), allow us to apply Theorem 1 to the system of

zeta function in (23) with

N = Q2D, λ = q = QD, r =
πn

log ε
= cn. (A.27)

One chooses the appropriate residue class % mod aQ
√
D, % ≡ 0 (a) as an index

instead of k so that the matrices in (20) coincide in our case with(
1

Q
√
D

)
e

2πiTr
(
%σ′
AQD

)
and

(
δ%σe

2πiN %
AQD

)
. (A.28)

Hecke4) showed that the principal congruence subgroup M(QD) of level QD gets

mapped to the identity by the map from M to the group that is generated by the

matrices (28), so that the wave functions corresponding to (23)

g(τ, %,a, λn1 , Q
√
D) = 2lQδn

(
%

aQ
√
D

)
y

1
2

+
1

λn1 (a)

∑
µ ≡ % (aQ

√
D)

µ 6= 0, (µ)
Q

√
Dp∞

λn1 (µ)y
1
2Kicn

(
2π|Nµ|
AQD

y

)
e

2πiNµ
AQD

x (A.29)

are invariant with respect to substitutions of M(QD). Here lQ = 1
2

log εQ if εQ(> 1)

generates the group of units in R(
√
D), which are congruent to 1 mod Q

√
Dp∞
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and

δn(b) =


1 for n = 0 an integral ideal b

0 otherwise.

If we take into account the linear relations between the series (29), then in the case

D = 5, Q = 1, a = (1)

we are left with three linearly independent functions corresponding to the values

% = 0, 1, 2. Moreover, if n = 0 then the series are uniquely determined by part II,

(1 to 4) of Theorem 27 up to a common constant factor.

Theorem 29. The system of zeta functions

ϕ1(s) = ζ0(s, 0, (1), 1,
√

5), ψ1(s) = ζ1(s, 0, (1), 1,
√

5),

ϕ2(s) = ζ0(s, 1, (1), 1,
√

5), ψ2(s) = ζ1(s, 1, (1), 1,
√

5),

ϕ3(s) = ζ0(s, 2, (1), 1,
√

5), ψ3(s) = ζ1(s, 2, (1), 1,
√

5) (A.30)

is uniquely determined by the conditions in part I. (1 to 4) of Theorem 27 with

N = 3, λ = q = 5, r = 0, b1 = 0, b2 = 1, b3 = −1 and

(ckl) =
1√
5


1 2 2

1 ζ2 + ζ−2 ζ1 + ζ−1

1 ζ1 + ζ−1 ζ2 + ζ−2

 (A.31)

where ζ = e
2πi
5 .

Theorem 27 can be applied to the linear collection of wave functions of level

Q since using the normal subgroup property of M(Q), one can determine a basis

for the collection of the wave functions as in the analytic case. The basis consists

of eigenfunctions of the substitutions τ 7→ τ + 1. Therefore, it is reasonable to

associate a pair of Dirichlet series

ϕ(s) =
∑
n6=0

an
|n|s

, ψ(s) =
∑
n6=0

(sgnn)an
|n|s

(A.32)
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to each wavefunction of level Q

g(τ) = u(y) +
∑
n6=0

any
1
2Kir

(
2π|n|
Q

y

)
e

2πin
Q

x (A.33)

by the method mentioned above because it is a linear process. The determination

of u(y) in terms of ϕ and ψ is done by using the residues of these functions.

Of particular interest is the collection of series that is analogous to the Eisentein

series5)

E(τ, s; (a1, a2), Q) =
∑

mi ≡ ai (Q)

(m1,m2) 6= (0, 0)

y
s
2

| m1τ +m2 |s
(A.34)

which are at first only defined Re s > 2 but they have analytic continuation as

functions of s. The function values E(τ, 1 + 2ir; (a1, a2), Q), which we also want

to call Eisenstein series, exist for all real r and represent the solutions of the wave

equation which are invariant under the substitutions of M(Q). This can be easily

seen by using the translation formulas

E(Sτ, 1 + 2ir; (a1, a2), Q) = E(τ, 1 + 2ir; (a1, a2)S,Q) for S ∈M. (A.35)

Using the series E(τ, 1 + 2ir; (a1, a2), Q) we can, if r > 0, reduce an arbitrary wave

function of level Q, which has a Fourier series similar to (33) in the parabolic cusps

of a fundamendal domain of M(Q), to a cusp function i.e. to such a function which

vanishes in all parabolic cusps. This is proved using the Hecke method, by passing

to the series E∗(τ, 1 + 2ir; (a1, a2), Q) that comes from E(τ, 1 + 2ir; (a1, a2), Q),

if we introduce the additional summation condition (m1,m2) = 1. This case is

more complicated than the analytic case because in the reduction we have to

notice that 2σ constants must be set to equal to 0, where σ denotes the number

of the parabolic cusps of the fundamental domain of M(Q); because the terms
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u(y) in the σ Fourier series(of the kind (33)) of the given wave function on the

parabolic points depend on two parameters. On the other hand, there are only σ

linearly independent Eisenstein series E(τ, 1+2ir; (a1, a2), Q). These are sufficient

because according to the certain bilinear relations we can only choose σ out of 2σ

constants. In the case r = 0 the number of linearly independent Eisenstein series

is in general smaller than σ and takes this value only for Q = 1, 2, 3, 4, 6. For other

values of Q the applied methods above to solve the reduction problem are not

sufficient. A more detailed investigation shows that among the Eisenstein series

E∗(τ, 1; (a1, a2), 5) of level 5 there are exactly three that are linearly independent.

Certain linear combinations of the series are identical with the wave functions of

the system (30). Their behaviour with respect to the substitution τ 7→ −1

τ
can be

determined because of the known relations of the Eisenstein series at Q = 5. So

for the functional eqautions of the zeta functions (30) there is a new proof which

does not use the theta series of the two variables.

The Eisenstein series of level QD and the wave functions g(τ, %, a, λn1 , Q
√
D)

are not linearly independent of each other. For example

∑
{a}

g(τ, 0, a, 1,
√
D)

can be represented by the Eisenstein series of level D where we sum over a complete

system of representatives a of the narrow ideal class of R(
√
D). The proof of the

identity provides the Dirichlet class number formula for the real quadratic fields

as a side result, as it comes out in the analytic case for the quadratic fields4).

The Hecke theory of Tn-operators, which is closely related to the problem of

writing Dirichlet series as Euler products, can be translated into the wave func-

tions of level Q without any significant modifications. In order to understand

T tm-operators(s. Tn II) also for m that are not relatively prime to Q it is necessary
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to split the collection of all wave functions into subspaces which are characterized

by their behaviour with respect to the operators U,Ra ∈M and K defined by

U ≡

1 1

0 1

 , Ra ≡

ā 0

0 a

 (Q) for aā ≡ 1 (Q), g(τ) | K = g(−τ̄). (A.36)

Similar to the analytic case we first build the subspaces Fr(t, χ,Q) of the wave

functions of the character χ of the divisor t. The subspaces are the eigenfunctions

g(τ) corresponding to the group of operators Ra with the eigenvalues χ(a):

g(τ) | Ra = χ(a)g(τ) (A.37)

Moreover these have the property that in their Fourier series there are only expo-

nents whose greatest common divisor with Q is t. The fact that K commutes with

the operators Rn and T tm allows us to split Fr into two subspaces that consist of

eigenfunctions of K corresponding to the eigenvalues 1 and−1:

Fr(t, χ,Q) = F+1
r (t, χ,Q) + F−1

r (t, χ,Q). (A.38)

The wave function g(τ) of level Q is an eigenfunction of the operator K corre-

sponding to the eigenvalues 1 or −1 if and only if either the Dirichlet series ψ(s)

or ϕ(s), corresponding to the function g(τ) in (32), vanishes identically. Every

function in one of the subfamilies F+1
r (t, χ,Q) and F−1

r (t, χ,Q) corresponds to only

one Dirichlet series. The linear families of the Dirichlet series that correspond to

the families F+1
r (t, χ,Q) and F−1

r (t, χ,Q) are characterized by the fact that they

belong to the system of functional equations with the Γ-factors

Γ

(
s+ ir

2

)
Γ

(
s− ir

2

)
or Γ

(
s+ 1 + ir

2

)
Γ

(
s+ 1− ir

2

)
.

The purpose of the decomposition (38) is to separate these two types. We can do

the same thing for the linear family E(Q) of the Eisenstein series of level Q:

E(Q) = E+1(Q) + E−1(Q). (A.39)
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The family of Dirichlet series corresponding to E+1(Q) or E−1(Q) is linearly

equaivalent to the set of all L-series products

(t1t2)−sL(s+ ir, χ1)L(s− ir, χ2), (A.40)

where ti is an arbitrary divisor of Q and χi is an arbitrary character mod
Q

ti
with

the restriction that χ1 and χ2 are both even or odd.

The operator theory applied to F+1
r (t, χ,Q), F−1

r (t, χ,Q) or any subspace which

is invariant under operators T tm leads to the same result as in the analytic case.

Basically it is the explanation of the following fact. Let F 1(τ), F 2(τ), ..., F κ(τ) be

a basis of the invariant family Er, which coincides with F+1
r (t, χ,Q) or F−1

r (t, χ,Q)

or is contained in F+1
r (t, χ,Q) or F−1

r (t, χ,Q). The matrices λ(m) that are built

from the coefficients of the linear forms

F %(τ) | T tm =
κ∑
σ=1

λ%σ(m)F σ(τ) (A.41)

satisfy the rule

λ(m1)λ(m2) =
∑

d | m1,m2

d > 0

λ
(m1m2

d2

)
χ(d), (A.42)

the matrix function

Φ(s) = (ϕ%σ(s)) =
∞∑
m=1

λ(m)(tm)−s (A.43)

has the Euler product

Φ(s) = t−s
∏
p

(λ(1)− λ(p)p−s + λ(1)χ(p)p−2s)−1. (A.44)

From several relations between coefficients we obtain that the linear space gen-

erated by κ2 Dirichlet series ϕ has rank κ and is identical to a space D which is as-

sociated to the space Er. The “principal axes theorem” says that matrices λ(p) are
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diagonalizable matrices if we make a clever choice of basis F %(τ), (% = 1, 2, ..., κ)

and if the prime number p is relatively prime to Q. The so called “principal

axes theorem” can be proved in our case by applying the Petersson Principle of

Metrization6)to the wave functions. A certain normalization in the Euler prod-

ucts appearing on the prime factors that divide Q works by an elementary method

that is also developed by Petersson(s.K III). New aspects in this study do not

appear any longer so that the proofs can be described succinctly with regard to

the detailed representations Tn I.II and K I, II, III.

A.1 Systems of Functional Equations

For the proof of Theorem 1 and for later considerations we need estimates of the

Bessel function Kir(z) for real r > 0 and positive z, which we want to derive first.

We start with the integral representation W,6.15(4):

Kir(z) =
Γ
(

1
2

) (
1
2
z
)ir

Γ
(

1
2

+ ir
) ∫ ∞

1

e−zt(t2 − 1)ir−
1
2dt. (A.45)

Here we substitute z(t− 1) = s and obtain

Kir(z) =

√
π

2z
e−z

1

Γ
(

1
2

+ ir
) ∫ ∞

0

e−ssir−
1
2

(
1 +

s

2z

)ir− 1
2
ds. (A.46)

With the help of the integral represenation of the Γ-function we get the following

limit from (46)

lim
z→∞

Kir(z)

√
2z

π
ez = 1 (A.47)

and for arbitrary positive z the estimate is

| Kir(z) |≤ C1z
− 1

2 e−z (A.48)

with the constant C1 which only depends on r, where

C1 =
π√

2 | Γ
(

1
2

+ ir
)
|
. (A.49)
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For r = 0, the expression for Kir(z)
√

2z
π
ez is by (46) clearly a monotone increasing

function of z, which explains

K0(a)ea
√
a

z
e−z ≤ K0(z) <

√
π

2z
e−z for 0 < a ≤ z. (A.50)

Now let ϕk(s), ψk(s) (k = 1, 2, ...N) be a system of functions which satisfies the

conditions I, (1 to 4) of Theorem 1. We prove that the system of functions defined

by (15) has the properties II, (1 to 4). The convergences of the Dirichlet series (7)

for at least one value of s is equivalent to the statement that for proper choice of

constants C2 and κ we get

| a(k)
n |≤ C2 | n |κ (k = 1, 2, ...N). (A.51)

Using (48) we conclude that

| gk(τ)− uk(y) |≤
√

2λ

π
C1C2

∞∑
n=1

nκ− 1
2 e−

2πn
λ
y

holds. Hence for y → 0 we have:

gk(τ)− uk(y) = O

(∫ ∞
0

tκ−
1
2 e−

2πy
λ
tdt

)
= O

(
y−(κ+ 1

2)
)

if κ +
1

2
> 0 which we may assume. The conditions (12) are satisfied with κ1 >

1

2

and κ2 = κ +
1

2
. The partial derivatives of the Fourier series of gk(τ) all exist and

can be computed by term by term differentiation because the formal derivatives

of any order converge uniformly for 0 < δ ≤ y which can be seen easily. Hence

we find that gk(τ) satisfies the wave equation (11) and (13) is obvious due to the

Fourier series of gk(τ) and the condition (8). It only remains to prove (14). For

this we need the integral representation

K ν1−ν2
2

(y) =
1

8πi

∫ σ+i∞

σ−i∞
Γ

(
t+ ν1

2

)
Γ

(
t+ ν2

2

)(y
2

)−t− ν1+ν2
2

dt (A.52)
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where y > 0, σ > −Re ν1, σ > −Re ν2, which easily follows from the formula

W,6.5(6) and their relation W,3.7(8) from which we conclude

y
1+ν1+ν2

2 K ν1−ν2
2

(
2π | n |
λ

y

)
=

1

8πi

∫ σ+i∞

σ−i∞

(
λ

π

)t+ ν1+ν2
2 Γ

(
t+ν1

2

)
Γ
(
t+ν2

2

)
| n |t+

ν1+ν2
2 yt−

1
2

dt (A.53)

If we choose σ > 1 and big enough such that the line of integration lies inside the

half plane of the absolute convergence of the Dirichlet series (7), then we have

Fk(y) =
∑

n ≡ bk (q)

n 6= 0

a(k)
n y

1
2Kir

(
2π | n |
λ

y

)
=

1

8πi

∫ σ+i∞

σ−i∞

ξk(s)

ys−
1
2

ds (A.54)

Gk(y) =
∑

n ≡ bk (q)

n 6= 0

n a(k)
n y

3
2Kir

(
2π | n |
λ

y

)
=

1

8πi

∫ σ+i∞

σ−i∞

ηk(s)

ys−
1
2

ds (A.55)

In both identities we replace the integral variable s by 1−s and apply the functional

equation (5), then we obtain

Fk(y) =
N∑
l=1

ckl
1

8πi

∫ 1−σ+i∞

1−σ−i∞

ξl(s)

y
1
2
−s
ds,

Gk(y) = −
N∑
l=1

ckl
1

8πi

∫ 1−σ+i∞

1−σ−i∞

ηl(s)

y
1
2
−s
ds

After translating the line of integration by 1− σ to all positions and after taking

into account the residues in the right way, similar to the analytic case we finally

obtain

F ∗k

(
1

y

)
=

N∑
l=1

cklF
∗
l (y), Gk

(
1

y

)
= −

N∑
l=1

cklGl(y) (k = 1, 2, ..., N) (A.56)

with

F ∗k (y) = uk(y) + Fk(y), (A.57)
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where uk(y) is defined by (16). To justify this method consider the condition I, 1

of Theorem 1. The functions

gk

(
−1

τ

)
= −

N∑
l=1

cklgl(τ) (k = 1, 2, ..., N) (A.58)

have now the following properties. They are solutions of the wave equation because

in general if g(τ) is a solution then g(Sτ) is also a solution if S is any unimodular

substitution, and they and their first partial derivatives in x vanish at x = 0. This

follows immediately from

gk(τ)x=0 = F ∗k (y), gk

(
−1

τ

)
x=0

= F ∗k

(
1

y

)
,

∂

∂x
gk(τ)x=0 =

2πi

λ

1

y
Gk(y),

∂

∂x
gk

(
−1

τ

)
x=0

= −2πi

λ

1

y
Gk

(
1

y

)
(A.59)

and the functional equations (56). Every solution g(τ) of the wave equation(
∂2g

∂x2
+
∂2g

∂y2
+
r2 + 1

4

y2

)
g(τ) = 0

with the initial values

g(τ)x=0 =
∂

∂x
g(τ)x=0 = 0

vanishes identically because g(τ) can be written as a power seires in x

g(τ) =
∞∑
n=0

cn(y)xn,

as a solution of elliptic differential equations and for the coefficients that depend

on y we have the recursion formula

(n+ 2)(n+ 1)cn+2(y) + c′′n(y) +
r2 + 1

4

y2
cn(y) = 0 for n = 0, 1, 2, ...,

which in general implies cn(y) = 0 because c0(y) and c1(y) vanish by assumption.

With the functional equations (14) we proved one direction of the equaivalence in

Theorem 1.
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Vice versa let now gk(τ) be a system of functions with the properties II, (1 to 4)

of Theorem 1. By II, 3 the functions gk(τ) are periodic in x with the period λ and

therefore can be written as a Fourier series which necessarily takes the form

gk(τ) =


a

(k)
0 y

1
2

+ir + b
(k)
0 y

1
2
−ir

a
(k)
0 y

1
2 log y + b

(k)
0 y

1
2


∑
n 6=0

{
a(k)
n y

1
2Kir

(
2π | n |
λ

y

)
+ b(k)

n y
1
2 Iir

(
2π | n |
λ

y

)}
e

2πin
λ

x (A.60)

for r > 0 and r = 0 respectively. Here Kν(z) and Iν(z) are independent solutions

of the differential equation (18). From the coefficient formula

a(k)
n y

1
2Kir

(
2π | n |
λ

y

)
+ b(k)

n y
1
2 Iir

(
2π | n |
λ

y

)
=

1

λ

∫ λ

0

gk(τ)e−
2πin
λ

xdx (n 6= 0)

it can be seen b
(k)
n = 0 for n 6= 0 because gk(τ) increases as y →∞ at most like a

power of y while Iir

(
2π|n|
λ
y
)

increase exponentially. The coefficients a
(k)
n , b

(k)
n (n ≥

0) can be different than 0 by (13) only if n ≡ bk (q). The Fourier series of gk(τ) is

also of the form (15) and the numbers %k and σk which are defined by (16) satisfy

the conditions (8). In the formula

a(k)
n y

1
2Kir

(
2π | n |
λ

y

)
=

1

λ

∫ λ

0

gk(τ)e−
2πin
λ

xdx (A.61)

we plug in y =
c

| n |
and conclude by (12) that as | n |→ ∞

a(k)
n = O

(
| n |κ2+ 1

2

)
, (A.62)

holds by choosing a positive constant c so that Kir

(
2π

λ
c

)
6= 0. The Dirichlet

series (7) therefore have a half plane convergence and can be used to define the

functions ϕk(s) and ψk(s). In order to verify the properties I, 1 and 2 we use the

following integral formula W,13.21(8) which is inverse to (52)∫ ∞
0

Kν(t)t
s−1dt = 2s−2Γ

(
s− ν

2

)
Γ

(
s+ ν

2

)
for Re s >| Re ν |, (A.63)
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and after doing an easy substitution we obtain

4

∫ ∞
0

t
1+ν1+ν2

2 K ν1−ν2
2

(
2π | n |
λ

t

)
ts−

3
2dt =

(
λ

π

)s+ ν1+ν2
2 Γ

(
s+ν1

2

)
Γ
(
s+ν2

2

)
| n |s+

ν1+ν2
2

(A.64)

The representation

4

∫ ∞
0

Fk(t)t
s− 3

2dt = ξk(s), 4

∫ ∞
0

Gk(t)t
s− 3

2dt = ηk(s) (A.65)

follows immediately by term by term integration of the series in the integrand. We

may do this because for Re s > κ2 +
5

2
since (62) implies

Fk(y) = O(y−κ2−1), Gk(y) = O(y−κ2−1) for y → 0. (A.66)

To get the representations for ξk(s) and ηk(k) which are true in the whole s-plane,

we split the integral (65) into subintegrals over the intervals from (0, 1) to (1,∞)

as in the analytical case. In the finite integrals we substitute t 7→ 1

t
and take into

account the functional equations (56), which are equivalent to (14) after replacing

Fk

(
1

y

)
by F ∗k

(
1

y

)
− uk

(
1

y

)
. These substitutions lead to the results

1

4
ξk(s) =

∫ ∞
1

Fk(y)ys−
3
2dy +

N∑
l=1

∫ ∞
1

Fl(y)y−
1
2
−sdy (A.67)

+



Mαk
s− 1− ir

+
Mβk

s− 1 + ir
− M%k
s+ ir

− Mσk
s− ir

M
(
αk + βk

(
log λ

4π
− C

))
s− 1

+
Mβk

(s− 1)2
−
M
(
%k + σk

(
log λ

4π
− C

))
s

+
Mσk
s2

for r > 0 or r = 0 respectively, and

1

4
ηk(s) =

∫ ∞
1

Gk(y)ys−
3
2dy −

N∑
l=1

∫ ∞
1

Gl(y)y−
1
2
−sdy. (A.68)

The analytic properties of the functions ϕk(s) and ψk(s) that we assume in I, 1

in Theorem 1 can be seen immediately from (67) and (68). Also we can easily
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verify the functional equations (5). This proves Theorem 1. For the linear family

of systems of functions with the properties of Theorem 1, one can prove under

certain conditions a theorem about finiteness which says the following:

Theorem 30. The maximal number of linearly independent systems of functions

ϕk, ψk (k, 1, 2, .., N) or gk(τ) (k = 1, 2, ..., N) which satisfy the conditions of The-

orem 1 is finite if we assume λ = q or λ = 2q and if the group generated by the

matrices (
δkle

2πibk
q

)
and C = (ckl)

is finite.

Proof. In the case of λ = q or λ = 2q the translation formulas (13) and (14)

define a representation of order N of the modular group M and the theta group T

respectively. The wave functions gk(τ) are clearly invariant under the substitutions

that get mapped to the identity by this representation and that build a normal

sungroup N of finite index in M or T respectively if the group generated by

matrices (20) is finite. Therefore, Theorem 4 follows from Theorem 5.

Theorem 31. Let G be a subgroup of the modular group of finite index. Let

s1, s2, .., sσ be a complete system of nonequivalent parabolic cusps of a fundamental

domain of G and let A% be an appropriate real unimodular substitution which sends

s% to ∞. Then there are only finitely many linearly independent wave functions

g(τ) which are invariant under the substitutions of G and which can be written as

a series of the form

g(A%−1τ) = u%(y) +
∑
n6=0

a%(n)y
1
2Kir

(
2π | n |
Q%

y

)
e

2πin
Q%

x
(A.69)

in the parabolic cusps (% = 1, 2, ..., σ).
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We did a proof using a method developed by C.L.Siegel7). First of all we may

assume that u%(y) = 0 (% = 1, 2, ..., σ) because these terms are of the form (16)

hence they only depend linearly on 2σ parameters. In all parabolic cusps g(τ)

vanishes, hence it is so-called a cusp function. Let τ 7→ τ + Q% (Q% > 0) be the

generating group of the translations contained in A%GA
−1
% . The Fourier series (69)

shows the invariance of g(τ) with respect to substitutions

A−1
%

1 Q%

0 1

A%

We denote by P% the set of points which get sent by A% to the domain

−1

2
Q% ≤ x <

1

2
Q%, y ≥ κ.

For sufficiently large κ we can turn the set of points

P =
σ∑
%=1

P% (A.70)

into the fundamental domain

F = P + B (A.71)

by adding a set of points B such that the closure of B lies in the upper half-plane.

After we decide to pick a fixed value of κ, we split B into subsets of B% in the

following way:

B =
σ∑
%=1

B%, (A.72)

such that for any point τ = x+ iy ∈ A%(P% + B%) the inequality

y ≥ κ0 > 0 (A.73)

is satisfied with κ0 being as large as possible for % = 1, 2, ..., σ. Let M be the

maximum of the absolute value of g(τ) in F. Because of the invariance of g(τ) in

G

| g(τ) |≤M (A.74)

78



holds in general. The equality is achieved at a point τ ∗ ∈ F which does not lie on

the boundary circle y = 0 since g(τ) should vanish in the parabolic cusps. And τ ∗

may lie in Pι + Bι so that for τ0 = x0 + iy0 = Aιτ
∗

y0 ≥ κ0, | g(A−1
ι τ0) |= M. (A.75)

We now prove that M = 0 under the assumption

a%(n) = 0 for | n |≤ m, % = 1, 2, ..., σ (A.76)

for a sufficiently large m. With τ = x+
i

2
y0 we obviously have

aιy
1
2
0 Kir

(
2π | n |
Qι

y0

)
=

1

Qι

∫ Qι

0

g(A−1
ι τ)e−

2πin
Qι

xdx
√

2
Kir

(
2π|n|
Qι

y0

)
Kir

(
π|n|
Qι
y0

) ,
which implies the estimate

M =| g(A−1
ι τ0) | ≤

∑
|n|>m

∣∣∣∣aι(n)y
1
2
0 Kir

(
π | n |
Qι

y0

)∣∣∣∣
≤ 2
√

2M
∑
n>m

∣∣∣∣∣∣
Kir

(
2πn
Qι
y0

)
Kir

(
πn
Qι
y0

)
∣∣∣∣∣∣ . (A.77)

Due to asymptotic behaviour (19) of Bessel function Kν(z) for large z we can

conclude that

M ≤ 4M
∑
n>m

e−
πn
Qι
y0 ≤ 4M

∑
n>m

e−
πn
Qι

κ0 ≤ cMe−
πn
Qι

κ0

holds for sufficiently large m where c is a positive constant depending only on the

decomposition F. If m also satisfies

m >
Q% log c

πκ0

(% = 1, 2, ..., σ)

then we have M = 0, q.e.d.
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In the case r = 0, using the estimate (50) we can give explicitly a sufficient

condition for the identical vanishing of a cusp function for G. From (77), it follows

that for m = 0 we have

M ≤ 2
√

2M
∑
n>0

K0

(
2πn
Qι
y0

)
K0

(
πn
Qι
y0

) ≤ √
2πM

√
aιK0(aι)eaι

∑
n>0

e−
πn
Qι
y0

≤
√

2πM
√
aιK0(aι)eaι(eaι − 1)

. (A.78)

if we generally set a% =
πκ0

Q%

. In order to conclude that M = 0 we must assume

√
2π <

√
a%K0(a%)e

a%(ea% − 1) (% = 1, 2, ..., σ) (A.79)

On the right hand side of (79) there is a monotone increasing function of a%. The

inequality is satisfied for a% =
3

2
because by W,S.699 we have

K0(
3

2
)e

3
2 = 0, 9582101, , , , e

3
2 − 1 = 3, 4816891...

The identical vanishing of a cusp function for G hence follows from

πκ0

Q%

>
3

2
(% = 1, 2, ..., σ). (A.80)

We apply this result to the modular group and the theta group.

1. G = M. We have σ = 1. As a fundamental domain F we choose | τ + τ̄ |≤ 1,

| τ |≥ 1 and A1 = Id(identity matrix). Then Q1 = 1, κ0 =
1

2

√
3 and (80) is

satisfied.

2. G = T. Here σ = 2. A fundamental domain F is given by | τ + τ̄ − 2 |≤

2, | τ |≥ 1, | τ − 2 |≥ 1. Let P1 + B1 be the intersection of F with

| τ − 1 |≥
√

2. Then this also determines P2 + B2. Let A1 = Id and A2 be

the noneuclidean rotation of order 2 with the fixed point 1 + i
√

2. Obviously

we have A2(P2 + B2) = P1 + B1 so that Q1 = Q2 = 2 and κ0 = 1. Again

condition (80) is satisfied. We obtain the following result:
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Theorem 32. There is no cusp function for the Theta group T and r = 0 which

does not vanish identically.

For M the theorem is obviously trivial if it holds for T because T is a subgroup of

M. In order to explain Theorem 3 we need a similar statement for special systems

of cusp functions of level 5.

Theorem 33. A system of cusp functions g1(τ), g2(τ), g3(τ) for the congruence

group M(5) and r = 0 vanish identically if for S ∈M the transformation formulas

of the form

gi(Sτ) =
3∑

k=1

aik(S)gk(τ) (i = 1, 2, 3) (A.81)

hold and the representation (aik(S)) of the modular group M/M(5) is unitary.

For the proof we may assume that the matrixaik

1 1

0 1





is a diagonal matrix. Otherwise, apply a unitary transformation to the system

gk(τ), (k = 1, 2, 3). Hence,

gk(τ + 1) = ζkgk(τ) (k = 1, 2, 3) (A.82)

with certain 5th roots of unity

ζk = e
2πibk

5 , 0 ≤ bk < 5.

The Fourier series of the functions are then of the form

gk(τ) =
∑

n+
bk
5
6=0

ak(n)y
1
2K0

(
2π

∣∣∣∣n+
bk
5

∣∣∣∣ y) e2πi
(
n+

bk
5

)
x
, (k = 1, 2, 3). (A.83)
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Because we assume that the representation (aik(S)) is unitary, the function

χ(τ) =

√√√√ 3∑
k=1

gk(τ)gk(τ) (A.84)

is invariant under the substitutions of M. Furthermore, it vanishes in the parabolic

cusp of the fundamental domain | τ + τ̄ |≤ 1, | τ |≥ 1 of M. Let M be the

maximum of χ(τ) in the fundamental domain. It is achieved at a finite point τ0 in

the fundamental domain. Obviously χ(τ) ≤M holds for all τ . If we let

| gk(τ0) |≤| g1(τ0) |, (k = 1, 2, 3) (A.85)

then

M ≤
√

3 | g1(τ0) | and y ≥ 1

2

√
3, (A.86)

if we set τ0 = x0 + iy0. Using the coefficient formula for the Fourier series we derive

an estimate for g1(τ0) which implies M = 0 i.e. χ(τ) = 0. Let τ = x+ iϑy0 where

ϑ is determined later and it is in the interval 0 < ϑ < 1. From the formula

a1(n)y
1
2
0 K0

(
2π

∣∣∣∣n+
b1

5

∣∣∣∣ y0

)
=

1

5

∫ 5

1

g1(τ)e−2πi(n+
b1
5 )xdxϑ−

1
2
K0

(
2π
∣∣n+ b1

5

∣∣ y0

)
K0

(
2π
∣∣n+ b1

5

∣∣ϑy0

) (A.87)

we get the estimate

| a1(n) | y
1
2
0 K0

(
2π

∣∣∣∣n+
b1

5

∣∣∣∣ y0

)
≤ M√

ϑ

K0

(
2π
∣∣n+ b1

5

∣∣ y0

)
K0

(
2π
∣∣n+ b1

5

∣∣ϑy0

)
thus we obtain

M√
3
≤| g1(τ0) |≤ M√

ϑ

∑
n+

b1
5
6=0

ak(n)
K0

(
2π
∣∣n+ b1

5

∣∣ y0

)
K0

(
2π
∣∣n+ b1

5

∣∣ϑy0

)
since by

2π

∣∣∣∣n+
b1

5

∣∣∣∣ϑy0 ≥
π
√

3

5
ϑ
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and (50) we can conclude that

M√
3
≤ M√

aK0(a)ea

√
π

2

∑
n+

b1
5
6=0

e−π
√

3|n+
b1
5 |(1−ϑ) (A.88)

holds if we set a =
π
√

3

5
ϑ. The infinite series in (88) has the value

2

ξ5 − 1
for b1 = 0 and

ξ5−b1 + ξb1

ξ5 − 1
for b1 > 0

with

ξ = e
π
√

3
5

(1−ϑ) = e
π
√
3

5
−a.

In any case we get

M√
3
≤ M√

aK0(a)ea

√
π

2

ξ4 + ξ

ξ5 − 1
(A.89)

because we have 2 < ξ3 + ξ2 < ξ4 + ξ. If we can find a in the interval 0 < a <
π
√

3

5

so that
√
aK0(a)ea >

√
3π

2

ξ4 + ξ

ξ5 − 1
(A.90)

holds then M = 0. For a = 0.16 it follows from W. page 698 that K0(a)ea =

2, 3087874... and we conclude that

√
aK0(a)ea > 0, 9235 > 0, 9199 >

√
3π

2

ξ4 + ξ

ξ5 − 1

indeed holds. This proves Theorem 7.

A.2 The Zeta Functions of Real Quadratic Fields

We apply the general result of the first paragraph to the zeta functions

ζν(s, %, a, λ
n
1 , Q(D)) (ν = 0, 1), defined by (23), of the real quadratic field R(

√
D).

We prove the functional equations (25) using the classical method that Hecke2)
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applied to the special case n = 0. Using the Γ-integrals, we can write the functions

(26) in terms of the theta series

ϑ0(t, t′, %, a, Q
√
D) =

∑
µ≡% (aQ

√
D)

e−
π

AQD
(µ2t+µ′2t′),

ϑ1(t, t′, %, a, Q
√
D) =

∑
µ≡% (aQ

√
D)

µµ′e−
π

AQD
(µ2t+µ′2t′) (A.91)

We use the same notation in (91) as before. We set

δ(b) =


1 for an integral ideal b,

0 otherwise

so

ξ0(s, %, a, λn1 , Q
√
D)

=
4

λn1 (a)

∫ ∞
0

[∫ lQ

−lQ

{
ϑ0(ue2v, ue−2v%, a, Q

√
D)− δ

(
%

aQ
√
D

)}
e−2incvdv

]
us−1du

(A.92)

ξ1(s, %, a, λn1 , Q
√
D) =

4

λn1 (a)

∫ ∞
0

[∫ lQ

−lQ
ϑ1(ue2v, ue−2v%, a, Q

√
D)e−2incvdv

]
usdu

for Re(s) > 1. We get representations of ξν , that hold for all s, by decomposing

the integrals over u from 0 to 1 and 1 to ∞ and by applying the transformation

formulas

ϑ0(t, t′, %, a, Q
√
D) =

1

Q
√
D
√
tt′

∑
α mod aQ

√
D

α ≡0 (a)

e
2πiTr

(
α′%
AQD

)
ϑ0

(
1

t′
,
1

t
, α, a, Q

√
D

)

ϑ1(t, t′, %, a, Q
√
D) =

−1

Q
√
D(
√
tt′)?

∑
α mod aQ

√
D

α ≡0 (a)

e
2πiTr

(
α′%
AQD

)
ϑ1

(
1

t′
,
1

t
, α, a, Q

√
D

)

(A.93)
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to the integrands of the finite subintegrals and making the substitution u 7→ 1/u.

So we get

ξ0(s, %, a, λn1 , Q
√
D) = −

8lQδn

(
%

aQ
√
D

)
λn1 (a)

1

s
− 8lQδn(0)

Q
√
Dλn1 (a)

1

1− s

+
4

λn1 (a)

∫ ∞
1

[∫ lQ

−lQ

{
ϑ0(ue2v, ue−2v%, a, Q

√
D)− δ

(
%

aQ
√
D

)}
e−2incvdv

]
us−1du

+
4

Q
√
Dλn1 (a)

∑
α mod aQ

√
D

α ≡0 (a)

e
2πiS

(
α′%
AQD

) ∫ ∞
1

[∫ lQ

−lQ

{
ϑ0(ue2v, ue−2v, α, a, Q

√
D)

−δ
(

α

aQ
√
D

)}
e−2incvdv

]
u−sdu (A.94)

and

ξ1(s, %, a, λn1 , Q
√
D) =

4

λn1 (a)

∫ ∞
1

[∫ lQ

−lQ
ϑ1(ue2v, ue−2v%, a, Q

√
De−2incvdv

]
usdu

− 4

Q
√
Dλn1 (a)

∑
α mod aQ

√
D

α ≡0 (a)

e
2πiS

(
α′%
AQD

) ∫ ∞
1

[∫ lQ

−lQ
ϑ1(ue2v, ue−2v, α, a, Q

√
D)e−2incvdv

]
u1−sdu.

(A.95)

Properties I, (1 to 4) of Theorem 1 with special data (27) can be now easily ver-

ified for the zeta function ζν(s, %, a, λ
n
1 , Q
√
D). For the associated wave function

g(τ, %, a, λn1 , Q
√
D) we have the relations

g(τ+a, %, a, λn1 , Q
√
D) = e2πi aN%

AQD g(τ, %, a, λn1 , Q
√
D) (a is whole rational), (A.96)

g(−1

τ
, %, a, λn1 , Q

√
D) =

1

Q
√
D

∑
σ mod aQ

√
D

σ ≡0 (a)

e
2πiTr

(
%σ′
AQD

)
g(τ, σ, a, λn1 , Q

√
D). (A.97)

Moreover, for an arbitrary positive integer m

g(τ, %, a, λn1 , Q
√
D) =

lQ√
mlmQ

∑
σ mod amQ

√
D

σ ≡% (aQ
√
D)

g(mτ, σ, a, λn1 ,mQ
√
D) (A.98)
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which we can see from the Fourier series (29). With these three translation formulas

we can determine, by method of Hecke4), the behaviour of g(τ, %, a, λn1 , Q
√
D)

under arbitrary modular substitution S ∈ M. Here we do not use any linear

relations between g(τ, %, a, λn1 , Q
√
D). For

S =

a b

c d

 ∈M

we get the translation formula

g(Sτ, %, a, λn1 , Q
√
D) =

∑
σ mod aQ

√
D

σ ≡0 (a)

c%σ(S)g(τ, σ, a, λn1 , Q
√
D) (A.99)

with coefficients

c%σ(S) =



1

cQ
√
D

∑
α mod acQ

√
D

α ≡% (aQ
√
D)

e
2πi

cAQD
(aNα+Sασ′+dNσ) for c > 0,

δ%σe
bN%
AQD for c = 0, d = 1

(A.100)

The unit root sums above were discussed by Hecke. For S ∈ M(QD) we get in

particular c%σ(S) = δ%σ, that is

g(Sτ, %, a, λn1 , Q
√
D) = g(τ, %, a, λn1 , Q

√
D) for S ∈M(QD). (A.101)

The full family of wave functions g(τ, %, a, λn1 , Q
√
D) with fixed n,Q,D is obtained

if a runs through a full system of representatives of narrow ideal classes in R
√
D

and % runs through the cosets mod aQ
√
D, which are contained in a; because

g(τ, %β, aβ, λn1 , Q
√
D) = g(τ, %, a, λn1 , Q

√
D) for Nβ > 0. (A.102)

The question about linear relations between the considered wave functions, besides

the trivial ones

g(τ, %, a, λn1 , Q
√
D) = g(τ,−%, a, λn1 , Q

√
D), (A.103)
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is answered fully at this point only in cases that are given numerically. Since the

maximum number of linearly independent series with fixed arguments a, n,Q,D is

less than Q2D, we can apply Theorem 1 to this system of functions with N < Q2D.

Theorem 4 still holds. In particular we consider D = 5, Q = 1. Because the

number of narrow ideal classes in R(
√

5) is 1, it is sufficient to assume that a = 1

and in view of (103) then % = 0, 1, 2. The three series

gn(τ, %) = g(τ, %, (1), λn1 ,
√

5) (% = 0, 1, 2)

are linearly independent. Denoting the Fourier coefficients of these functions with

exponent m by a%(m) then we have by (26) for m 6= 0

a% =
∑

µ ≡% (
√

5)

(µ)√5p∞
,Nµ = m

λn1 (µ),

in particular

% 0 1 2

a%(1) 0 2 0

a%(−1) 0 0 2

a%(5) 4 0 0

and the determinant of this coefficient scheme is different than 0. Let ζ = e
2πi
5 ,

then (96) and (97) become the translation formulas

gn(τ + 1, 0) = gn(τ, 0), gn(τ + 1, 1) = ζgn(τ, 1), gn(τ + 1, 2) = ζ−1gn(τ, 2),
gn
(
− 1
τ
, 0
)

gn
(
− 1
τ
, 1
)

gn
(
− 1
τ
, 2
)
 =

1√
5


1 2 2

1 ζ2 + ζ−2 ζ + ζ−1

1 ζ + ζ−1 ζ2 + ζ−2



gn(τ, 0)

gn(τ, 1)

gn(τ, 2)

 (A.104)

The corresponding translation formulas for the functions

g∗n(τ, 0) =
1√
2
gn(τ, 0), g∗n(τ, 1) = gn(τ, 1), g∗n(τ, 2) = gn(τ, 2) (A.105)
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define a unitary representation of the modular group M/M(5) as we can easily

check. This is important for the application of Theorem 7 to the system of func-

tional equations (104).

A.3 The Eisenstein Series of Level Q

The question of all automorphic wave functions of level Q is significant for the the-

ory of Dirichlet series, but it is also interesting itself. The easiest way to construct

such functions is to build the Eisenstein series

E(τ, s; (a1, a2), Q) =
∑

mi ≡ai (Q)

(m1,m2) 6= (0, 0)

y
s
2

| m1τ +m2 |s
(A.106)

where we sum over all nonvanishing pairs of rational integers (m1,m2) of the residue

classes (a1, a2) mod Q. The series are absolutely convergent for Re s > 2. The

general term and hence E are the solutions of the wave equation(
∂2

∂x2
+

∂2

∂y2
+
s(2− s)

4y2

)
E = 0, (τ = x+ iy) (A.107)

and the translation formula

E(Sτ, s; (a1, a2), Q) = E(τ, s; (a1, a2)S,Q) for S ∈M (A.108)

holds which implies in particular the invariance under the substitutions of M(Q).

First we have to prove that the functions E are regular for Re s > 2 can be extended

analytically to the half plane for Re s < 2 and on the vertical line Re s = 1 they

are regular. For this purpose we write the Eisenstein series as a Fourier series.
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After a simple modification we get

E(τ,s; (a1, a2), Q) = δ

(
a1

Q

)
y
s
2 ζ(s, a2, Q)

+
y
s
2

Qs

∑
m1 ≡a1 (Q)

m1 6= 0

1

| m1 |s
∑

j ≡a2 (Q)

j mod Qm1

f

(
τ

Q
+

j

Qm1

, s

)
(A.109)

with

ζ(s, a,Q) =
∑

n ≡a (Q)

n 6=0

1

| n |s
and f(τ, s) =

n=∞∑
n+−∞

1

| τ + n |s
. (A.110)

The Fourier series of a function f(τ, s) that is periodic in τ is

f(τ, s) =
n=∞∑
n=−∞

{∫ ∞
−∞
| u+ iy |−s e−2πinudu

}
e2πinx.

Here for n 6= 0, by W,6.16(1) we have∫ ∞
−∞
| u+iy |−s e−2πinudu = 2

∫ ∞
0

cos 2πnudu

(u2 + y2)
s
2

=
2π

s
2

Γ
(
s
2

) ( | n |
y

) s−1
2

K s−1
2

(2π | n | y)

and for n = 0∫ ∞
−∞
| u+ iy |−s du = 2

∫ ∞
0

du

(u2 + y2)
s
2

=
Γ
(

1
2

)
Γ
(
s−1

2

)
Γ
(
s
2

) y1−s

so that

f(τ, s) =
√
π

Γ
(
s−1

2

)
Γ
(
s
2

) y1−s +
2π

s
2

Γ
(
s
2

)∑
n6=0

(
| n |
y

) s−1
2

K s−1
2

(2π | n | y)e2πinx (A.111)
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holds. We plug the above series into (109) and get

E(τ, s; (a1, a2), Q) = δ

(
a1

Q

)
y
s
2 ζ(s, a2, Q) +

√
π

Q

Γ
(
s−1

2

)
Γ
(
s
2

) ζ(s− 1, a1, Q)y1− s
2

+
2π

s
2

Q
s+1
2 Γ

(
s
2

)∑
n6=0

{ ∑
m ≡a1 (Q)

m |n

e
2πina2
Qm | m |1−s

}
| n |

s−1
2 y

1
2K s−1

2
(
2π | n |
Q

y)e
2πin
Q

x.

(A.112)

Now the analytic continuation is done. In order to prove that the poles of the zeta

and Gamma functions, which appear formally in (112), do not occur in Re s = 1,

we must use the translation formulas of the ζ(s, a,Q) function. It is known that

ξ(s, a,Q) =

(
Q

π

) s
2

Γ
(s

2

)
ζ(s, a,Q) = −δ

(
a

Q

)
2

s
− 2√

Q(1− s)

+

∫ ∞
1

t
s
2
−1

{ ∑
n ≡a (Q)

n 6=0

e−
πin2

Q

}
dt+

1√
Q

∑
b mod Q

ζab
∫ ∞

1

t
1−s
2
−1

{ ∑
n ≡b (Q)

n 6=0

e−
πin2

Q

}
dt

(A.113)

if we set ζ = e
2πi
Q and therefore

ξ(1− s, a,Q) =
1

Q

∑
b mod Q

ζabξ(s, b,Q). (A.114)

Using the functional equations we can put the sum of the terms in the Fourier

series (112) that are independent of x

u(y, s; (a1, a2), Q) = δ

(
a1

Q

)
y
s
2 ζ(s, a2, Q)+

√
π

Q

Γ
(
s−1

2

)
Γ
(
s
2

) ζ(s−1, a1, Q)y1− s
2 (A.115)
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in a form which the regularity of this expression at s = 1 can be seen immediately.

Namely,

u(y, s; (a1, a2), Q) =
2y

1
2π

s
2

Q
s+1
2 Γ

(
s
2

){(πQy)
s−1
2 Γ

(
1− s

2

)
ζ(1− s) + (πQy)

1−s
2 Γ

(
s− 1

2

)
ζ(s− 1)

}

+
y

1
2

Q

(
πy

Q2

) s−1
2 π

s
2

Γ
(
s
2

) ∑
b mod Q

b 6≡ 0 (Q)

ζa2bΓ

(
1− s

2

)
ζ(1− s, b,Q) for a1 ≡ 0 (Q)

(A.116)

and

u(y, s; (a1, a2), Q) =

√
π

Q

Γ
(
s−1

2

)
Γ
(
s
2

) ζ(s− 1, a1, Q)y1− s
2 for a1 6≡ 0 (Q) (A.117)

The following power seires at s− 1

ζ(s, b,Q) =
2

Q(s− 1)
+

2

Q

(
C −

Q−1∑
a=1

ζ−ab log

(
2 sin

aπ

Q

))
+ ...

with the relation (114) allow us to compute the following limit:

lim
s→1

Γ

(
1− s

2

)
ζ(1− s, b,Q) = −2 log

(
2

∣∣∣∣sin bπQ
∣∣∣∣) for b 6≡ 0 (Q). (A.118)

A simple computation gives

u(y, 1; (a1, a2), Q) (A.119)

=


2

Q
y

1
2 log y +

2

Q

(
C + log

Q

4π
−

Q−1∑
b=1

ζ−a2b log

(
2 sin

aπ

Q

))
y

1
2 for a1 ≡ 0 (Q)

− 2

Q
log

(
2

∣∣∣∣sin a1π

Q

∣∣∣∣) y 1
2 for a1 6≡ 0 (Q)

and for r > 0 we get the following from (115):

u(y, 1 + 2ir; (a1, a2), Q) =δ

(
a1

Q

)
y

1
2

+irζ(1 + 2ir, a2, Q)

+

√
π

Q

Γ(ir)

Γ
(

1
2

+ ir
)ζ(2ir, a1, Q)y

1
2
−ir. (A.120)
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In order to determine the maximum number of linearly independent Eisenstein

series, we consider the series

E∗(τ, s; (a1, a2), Q) =
∑

mi ≡ ai (Q)

(m1,m2) = 1

y
s
2

| m1τ +m2 |s
(A.121)

which vanishes identically for (a1, a2, Q) > 1 if we set as usual that an empty

sum has the value zero. Between the primitive series, which are charactarized by

(a1, a2, Q) = 1, we have the linear relations

E∗(τ, s; (a1, a2), Q) =
∑

t mod Q

E(τ, s; (ta1, ta2), Q)c(s, t, Q) (A.122)

and

E(τ, s; (a1, a2), Q) =
∑

t mod Q

E∗(τ, s; (ta1, ta2), Q)d(s, t, Q) (A.123)

with

c(s, t, Q) =
∑

tn ≡ 1 (Q)

n > 0

µ(n)

ns
, d(s, t, Q) =

∑
tn ≡ 1 (Q)

n > 0

1

ns
(A.124)

where µ(n) is the Möbius function. The proof can be done as in the analytic

case(see 5)). The non-primitive series E(τ, s; (a1, a2), Q) with (a1, a2, Q) = d > 1

E(τ, s; (a1, a2), Q) = d−sE

(
τ, s;

(a1

d
,
a2

d

)
,
Q

d

)
(A.125)

can be written in terms of E∗ of level Q/d and these can be written again in terms

of E∗ of level Q because

E∗(τ, s; (a1, a2), Q) =
∑

bi mod QQ′

bi ≡ ai (Q)

E∗(τ, s; (b1, b2), QQ′) (A.126)
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in general. The linear equivalence of the series E and E∗, which can be seen from

the identities (122) and (123) which are analytic in s, can be lost for special values

of s if the coefficients d(s, t, Q) become singular. On the line Re s = 1 this is the

case for s = 1. Indeed, the maximum number of linearly independent series E∗

is less than the maximum number of linearly independent series E as we can see

from the following considerations. The regularity of the function c(s, t, Q) on the

line Re s = 1 including s = 1 follows from

c(s, t, Q) =
1

ϕ(Q)

∑
χ

χ(t)

L(s, χ)
(A.127)

where we sum over all characters χ mod Q and ϕ is the Euler function and from

the fact that the L-series

L(s, χ) =
∞∑
n=1

χ(n)

ns

does not vanish for Re s = 1. On the line Re s = 1 the functions

d(s, t, Q) =
1

ϕ(Q)

∑
χ

L(s, χ)χ(t) (A.128)

are singular only for (t, Q) = 1 at the point s. Now we compute the

term u∗(y, s; (a1, a2), Q), which is independent of x, in the Fouruer series of

E∗(τ, s; (a1, a2), Q). By (115), we have

u∗(y, s; (a1, a2), Q) =
∑

t mod Q

u(y, s; (ta1, ta2), Q)c(s, t, Q)

= δ

(
a1

Q

)
y
s
2

∑
t mod Q

ζ(s, ta2, Q)c(s, t, Q) +

√
π

Q

Γ
(
s−1

2

)
Γ
(
s
2

) y1− s
2

∑
t mod Q

ζ(s− 1, ta1, Q)c(s, t, Q).

(A.129)

If we assume (a1, a2, Q) = 1 then we may assume that (a2, Q) = 1 when

we compute the coefficients of y
s
2 in (129) because this term appears only for
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a1 ≡ 0 (Q). However, for (a,Q) = 1 we have

∑
t mod Q

ζ(s, ta,Q)c(s, t, Q) =
∑

t mod Q

∑
tn ≡ 1 (Q)

n > 0

∑
m≡ta (Q)

µ(n)

| mn |s

=
∑

n > 0, m

n | m, m ≡ a (Q)

µ(n)

| m |s
= δ

(
a− 1

Q

)
+ δ

(
a+ 1

Q

)

so that

u∗(y, s; (a1, a2), Q) = δ

(
a1

Q

)(
δ

(
a2 − 1

Q

)
+ δ

(
a2 + 1

Q

))
y
s
2 + η(s, a1, Q)y1− s

2

(A.130)

with some function n(s, a1, Q) which is regualar on the line Re s = 1. We notice

that the function y
1
2 log y does not appear in u∗(y, 1; (a1, a2), Q. The maximum

number of linearly independent series E∗(τ, 1; (a1, a2), Q) is therefore less than or

equal to for the series E(τ, 1; (a1, a2), Q). Moreover, for r > 0, it follows from (130)

that y
1
2

+ir appears in u∗(y, 1 + 2ir; (a1, a2), Q) if and only if a1 ≡ 0 and a2 ≡ 1 or

−1 mod Q.

Now let r > 0, (a1, a2) = 1 and S =

a b

c d

 be a substitution of M so

that S−1∞ is a given parabolic cusp of a fundamental domain of M(Q). Then

E∗(τ, 1 + 2ir; (a1, a2), Q) behaves at τ = S−1∞ as

E∗(S−1τ, 1 + 2ir; (a1, a2), Q) = E∗(τ, 1 + 2ir; (a1, a2)S−1, Q)

at τ = ∞. In the Fourier series of E∗(τ, 1 + 2ir; (a1, a2)S−1, Q), y
1
2

+ir appears if

and only if

a1d− a2c ≡ 0, −a1b+ a2a ≡ ±1 (Q),
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i.e

a1 ≡ ±c, a2 ≡ ±d (Q)

or equivalently, if the parabolic cusps −a2

a1

and S−1∞ = −d
c

are equivalant in

M(Q). Let σ(Q) be the number of non-equivalent parabolic cusps of M(Q). In

the case of r > 0 we prove that there are σ(Q) linearly independent Eisenstein

series E∗. It is known that the following formula holds:

σ(Q) =



1 for Q = 1

3 for Q = 2

Q2

2

∏
p|Q

(
1− 1

p2

)
for Q > 2.

(A.131)

Between the primitive series E∗(τ, 1 + 2ir; (a1, a2), Q),that are linearly equivalent

to the collection of all Eisenstein series of level Q, there are only the following

relations.

E∗(τ, 1 + 2ir; (a1, a2), Q) = E∗(τ, 1 + 2ir; (b1, b2), Q)

for ak ≡ bk (Q) or ak ≡ −bk (Q) (k = 1, 2) (A.132)

Moreover, any linear combination of Eisenstein series vanishes identically if it is

a cusp function. These facts follow immediately from the behaivour of the series

E∗ in the parabolic cusps if we notice in addition that two cusps −a2

a1

and −b2

b1

with relatively prime numerators and denominators are equivalent in M(Q) if and

only if ak ≡ ±bk (Q) (k = 1, 2). Apparently, σ(Q) is the maximal number of the

linearly independent Eisenstein series .

The case r = 0 is much more complicated. If ϕ(Q) = 1 or 2, then there are σ(Q)

linearly independent series among the primitive Eisenstein series E(τ, 1; (a1, a2), Q)

because by (119) y
1
2 log y appears in the Fouruer series of E(τ, 1; (a1, a2), Q) if and

only if a1 ≡ 0, a2 ≡ ±1 (Q). Then the same considerations as in the case of r > 0
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holds. Later we will see that for r = 0 and ϕ(Q) > 2 that is for Q 6= 1, 2, 3, 4, 6

the maximum number of linearly independent Eisenstein series is less than σ(Q).

Now we formulate this subresult.

Theorem 34. Let r > 0, Q arbitrary or r = 0, ϕ(Q) ≤ 2(i.e. Q =

1, 2, 3, 4, 6). Then the maximal number of linearly independent Eisenstein series

E(τ, 1 + 2ir; (a1, a2), Q) is equal to σ(Q). Furthermore, in the linear collection of

Eisenstein series, there are no cusp functions that do not vanish identically.

To find the linear relations between the Eisenstein series in the case r = 0, it

is useful to introduce the series

G(τ, s; a1, a2, Q) =
1

Q

∑
b mod Q

ζ−a2bE(τ, s; (a1, b), Q) (A.133)

which are linaerly equivalent to the Eisenstein series and have important symmetry

properties for s = 1(see )4). By (112),

G(τ, s; a1, a2, Q) = δ

(
a1

Q

)
1

Q
y
s
2

∑
n6=0

ζ−a2n

| n |s
+ δ

(
a2

Q

) √
π

Q

Γ
(
s−1

2

)
Γ
(
s
2

) ζ(s− 1, a1, Q)y1− s
2

+
2π

s
2

Q
s+1
2 Γ

(
s
2

)∑
n6=0

{ ∑
di ≡ai (Q)

d1d2 =n

| d1 |
1−s
2 | d2 |

s−1
2

}
y

1
2K s−1

2
(
2π | n |
Q

y)e
2πin
Q

x.

(A.134)

Using (119), we obtain

G(τ, 1; a1, a2, Q) =
2

Q

∑
n6=0

{ ∑
di ≡ai (Q)

d1d2 =n

1

}
y

1
2K0(

2π | n |
Q

y)e
2πin
Q

x (A.135)
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+



2

Q
y

1
2 log y +

2

Q

(
C + log

Q

4π

)
y

1
2 for a1 ≡ 0, a2 ≡ 0 (Q),

− 2

Q
log

(
2

∣∣∣∣sin a2π

Q

∣∣∣∣) y 1
2 for a1 ≡ 0, a2 6≡ 0 (Q),

− 2

Q
log

(
2

∣∣∣∣sin a1π

Q

∣∣∣∣) y 1
2 for a1 6≡ 0, a2 ≡ 0 (Q),

0 for a1 6≡ 0, a2 6≡ 0 (Q)

which leads to the symmetry relations

G(τ, 1; a1, a2, Q) = G(τ, 1; a2, a1, Q)

G(τ, 1; a1, a2, Q) = G(τ, 1;−a1,−a2, Q). (A.136)

In order to capture all G-series that differ from each other, it is sufficient to restrict

ourselves to

a1 = 0, 0 ≤ a2 ≤
[
Q

2

]
and a1 = k, k ≤ a2 ≤ Q− k

(
k = 1, 2, ...,

[
Q

2

])
.

(A.137)

A simple counting argument for the number A(Q) of the specified pairs (a1, a2)

gives the value

A(Q) = 1 +

[
Q

2

] [
Q+ 3

3

]
. (A.138)

A(Q) is an upper bound for the maximal number of linearly independent Eisenstein

series. Due to

A(Q) =


σ(Q) for Q = 1, 2, 3

σ(Q) + 1 for Q = 4, 6

A(Q) < σ(Q) for Q 6= 1, 2, 3, 4, 6 (A.139)

as one can easily see, by Theorem 8 there are no more relations besides (136) in

the case Q = 1, 2, 3. For Q = 4, 6 there is exactly one relation (in each case Q = 4

and Q = 6) that does not appear in the symmetry relations. There are many such

additional relations, in general, unless Q is a prime number. Because for any two
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positive integers t1 and t2 we have

∑
ν mod t1

G(τ, 1; a1 + t2ν, t1a2, t1t2) =
∑

ν mod t1

G(τ, 1; t1a1, a2 + t2ν, t1t2). (A.140)

The proof follows easily by comparing the coefficients in the Fourier series of

each side of the equation (140). Let An(a1, a2) be the Fourier coefficient of

Q

2
G(τ, 1; a1, a2, Q) of the exponent n 6= 0. By (135), An(a1, a2) is the number

that solves the system

d1 ≡ a1, d2 ≡ a2 (Q), d1d2 = n.

Therefore, the relation (140) is equivalent to

∑
ν mod t1

An(a1 + t2ν, t1a2) =
∑

ν mod t1

An(t1a1, a2 + t2ν) (Q = t1t2)

The left hand side of the above equation is the number which solves the system

d1 ≡ a1 (t2), d2 ≡ t1a2 (t1t2), d1d2 = n

and the right hand side is the solution of

d1 ≡ t1a1 (t1t2), d2 ≡ a2 (t2), d1d2 = n.

These numbers are clearly the same which proves (140). Let t1t2 = Q, then relation

(140) is independent of the symmetry relations unless t1 = 1 or a2 ≡ a1 (t2). The

proof of this is simple and omitted. Especially for t1 = t2 = 2, a1 = 0, a2 = 1 and

t1 = 2, t2 = 3, a1 = 0, a2 = 1 we obtain

2G(τ, 1; 0, 1, 4) = G(τ, 1; 0, 2, 4) +G(τ, 1; 2, 2, 4)

G(τ, 1; 0, 1, 6) = G(τ, 1; 2, 3, 6). (A.141)

In general, for each composed level Q = t1t2, there is at least one relation among

the relations in (140) which is independent of the symmetry relations. On the
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other hand for any prime level Q = q, we have a complete system of relations in

(136). At most one of the four series, that comes from G(τ, 1; a1, a2, Q) through

replacing a1, a2 by ±a1,±a2 or ±a2,±a1, appears in the relation. To simplify

notation we set [a1, a2] = G(τ, 1; a1, a2, Q). Let p be an arbitrary prime number.

The Fourier coefficient of the exponent p is clearly different from zero only for the

series [1, p]. So [1, p] must not appear in the relation. By the Dirichlet Theorem

about prime numbers in arithmetic progressions, p can represent an arbitrary coset

that is relatively prime to q. Of course, p = q is allowed. This explains that all

series [1, a](a arbitrary) do not appeaar in the relation. The Fourier coefficient of

the exponent pp′ is different than zero only for the series [1, pp′] if p and p′ are

arbitrary prime numbers. Because [1, pp′] does not appear in the relation, [pp′]

cannot appear either. For a choice of p and p′, [p, p′] is a given G-series. Our

relation is empty, hence the completeness of the system of relations (136) is proved

for Q = q. Therefore, Theorem 9 holds.

Theorem 35. The maximal number of linearly independent Einsenstein series

E(τ, 1; (a1, a2), Q) is equal to σ(Q) for Q = 1, 2, 3, 4, 6 and less than σ(Q) for all

other Q, in particular equal to

(
Q+ 1

2

)2

for the prime level Q ≥ 3 and less than

or eqaul to

[
Q

2

] [
Q+ 3

2

]
for all composed levels Q ≥ 4.

The question, whether a given function of level Q can be reduced to a cusp

function using the Eisenstein series, has the answer ”yes” under the assumptions

of Theorem 8. The proof of this so called Reduction Theorem is based on Theorem

10.

Theorem 36. Let G be a subgroup of the modular group M of finite index. Let

the substitutions A% ∈M (% = 1, 2, ...σ) be such that A−1
1 ∞, A−1

2 ∞, ..., A−1
σ ∞ is a

complete system of nonequivalent parabolic cusps of a fundamental domain of G.
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To each wave function g(τ), which is invariant under the substitutions of G, with

σ power series

g(A−1
% τ) = u%(y) +

∑
n6=0

a%(n)y
1
2Kir

(
2π | n |
Q%

y

)
e

2πin
Q%

x
(A.142)

we assign the vector u = {u1(y), u2(y), ..., u%(y)}. In the linear collection of these

vectors, there are at most σ vectors that are linearly independent.

Proof. We assume a second automorphic function h(τ) with the power series

h(A−1
% τ) = v%(y) +

∑
n6=0

b%(n)y
1
2Kir

(
2π | n |
Q%

y

)
e

2πin
Q%

x
(A.143)

is given, and we apply the Green Theorem∫∫
B

(V (τ)4U(τ)− U(τ)4V (τ))dxdy =

∫
R

(
V (τ)

∂U(tau)

∂n
− U(τ)

∂V (τ)

∂n

)
ds,

(A.144)

where R is the boundary of a domain B and n is the outside normal vector on

the boundary of B. Especially, let B be the domain that originates from the

fundamental domain (71), if we cut the σ parabolic cusps along certain cross

section. In P%, choose such a cross section that transforms by A% into the line

| x |≤ 1

2
Q%, y = y%(≥ κ). Since g(τ) and h(τ) are wave functions, the surface

integral vanishes in (144). In the contour integral, only the contributions to the

cross section is left since the boundary R consists(if we neglect the cross sections)

of pairwise equivalent pieces and the cross sections apparently cancel each other

out. If we do a transformation of variables τ → A−1
% τ in the integral over the %th

cross section, then we obtain

0 =
σ∑
%=1

∫ 1
2
Q%

− 1
2
Q%

(
h(A−1

% τ)
∂g(A−1

% τ)

∂y
− g(A−1

% τ)
∂h(A−1

% τ)

∂y

)
y=y%

dx

If we plug the Fourier series (142) and (143) into th the previous equation, then
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the integral reletion simplifies significantly. It becomes

0 =
σ∑
%=1

∫ 1
2
Q%

− 1
2
Q%

(
v%(y%)

du%(y%)

dy%
− u%(y%)

dv%(y%)

dy%

)
dx,

that is

0 =
σ∑
%=1

Q%

(
v%(y%)

du%(y%)

dy%
− u%(y%)

dv%(y%)

dy%

)
.

Since the positions of the cross sections i.e. the coordinates
1

%
, are independent of

each other

c% = v%(y%)
du%(y)

dy
− u%(y%)

dv%(y)

dy
(A.145)

must be constant. The c% satisfies the relation

σ∑
%=1

Q%c% = 0. (A.146)

The fact that c%’s are constant also follows immediately from the fact that u%(y)

and v%(y) satisfy the differential equation

d2w

dy2
+
r2 + 1

4

y2
w = 0.

From the representation

u%(y) =


a′%y

1
2

+ir + a′′%y
1
2
−ir for r > 0,

a′%y
1
2 log y + a′′%y

1
2 for r = 0

(A.147)

v%(y) =


b′%y

1
2

+ir + b′′%y
1
2
−ir for r > 0,

b′%y
1
2 log y + b′′%y

1
2 for r = 0

it follows indeed that

c% =


2ir(a′%b

′′
% − a′′%b′%) for r > 0,

a′%b
′′
% − a′′%b′% for r = 0.

(A.148)
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So in general,
σ∑
%=1

Q%a
′
%b
′′
% − a′′%b′%) = 0 (A.149)

holds. Denoting the column vectors with components

a′1, a
′
2, ..., a

′
%, a
′′
1, a
′′
2, ..., a

′′
%

and

b′1, b
′
2, ..., b

′
%, b
′′
1, b
′′
2, ..., b

′′
%

by a and b, respectively, and introducing the matrix

X =



Q1

Q2

. . .

Q%

−Q1

−Q2

. . .

−Q%



(A.150)

where one has to put zeroes into the empty spaces, the bilinear relation (149)

becomes

a′Xb = 0 (A.151)

Now let g1(τ), g2(τ), ..., gµ(τ) be a maximal system of automorphic wave functions

for which the associated constant vectors a1, a2, ..., aµ are linearly independent,

then all a%’s solve the system of equations

a′ιXξ = 0 (ι = 1, 2, ..., σ). (A.152)

The rank of this system is µ, on the one hand side. On the other hand, the

dimension of the space of solutions is at least µ, so that µ ≤ 2σ−µ or µ ≤ σ. This

proves Theorem 10.
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Under the assumption of Theorem 8, there are σ(Q) linearly independent Eisen-

stein series E1, E2, ..., Eσ(Q). The vectors u1, u2, ..., uσ(Q) that are associated with

the Eisenstein series in the sense of Theorem 10 are linearly independent, since

the linear collection of the E% (% = 1, 2, ..., σ(Q)) contains no cusp function that

vanishes identically. By Theorem 10, the vectors u% (% = 1, 2, ..., σ(Q)) form a

basis of the linear collection of the possible vectors of this kind. This implies the

following reduction theorem:

Theorem 37. Let either r > 0, Q arbitrary, or r = 0, ϕ(Q) ≤ 2 (i.e. Q =

1, 2, 3, 4 or 6). Then for every wave function g(τ) that is invariant under M(Q)

and has a Fourier series of type (142) in the parabolic cusps, there is a linear

combination Λ(τ) of Eisenstein series of level Q, so that g(τ) − Λ(τ) is a cusp

function.

For r = 0 we can determine the automorphic wave functions for the modular

group and for the Theta group immediately, because by Theorem 6 there are no

cusp functions for these groups and r = 0. Due to Theorem 11, every automorphic

function of level 1 coincides with E(τ, 1; (0, 0), 1) up to a constant factor. Nowe let

g(τ) be a wave function for r = 0 that is invariant under T. Because M(2) ⊂ T,

there exists by Theorem 11, a linear combination Λ(τ) of Eisenstein series of level

2 , so that f(τ) = g(τ) − Λ(τ) is a cusp function of level 2. Since T admits the

decomposition

T = M(2) + M(2)

 0 1

−1 0


the cusp function f(τ) + f

(
−1

τ

)
is invariant under T, hence identically 0. It

follows that g(τ) =
1

2

(
Λ(τ) + Λ

(
−1

τ

))
. The automorphic function for T hence
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consists of linear combinations of the series sums

E(τ, 1; (a1, a2), 2) + E(τ, 1; (a2, a1), 2),

where (a1, a2, 2) = 1 may be assumed. The linearly independent functions

E1(τ) = E(τ, 1; (0, 1), 2) + E(τ, 1; (1, 0), 2), E2(τ) = E(τ, 1; (1, 1), 2) (A.153)

form therefore a basis of the linear collection of all g(τ). Let d(n) be the number

of positive divisors of n. Then by (112) and (119), one finds the series

E1(τ) + E2(τ) =
1

2
E(τ, 1; (0, 0), 1) = y

1
2 log y + (C − log 4π)y

1
2

+ 2
∑
n6=0

d(n)y
1
2K0(π | n | y)e2πinx

(A.154)

3E1(τ) + 2E2(τ) = 3y
1
2 log y + (3(C − log 4π) + log 2)y

1
2

+ 2
∑
n6=0

d(n)y
1
2K0(π | n | y)eπinx + 4

∑
n6=0

d(n)y
1
2K0(π | n | y)e4πinx.

The ϕ-series that are assigned to the functions E(τ, 1; (0, 0), 1), E1(τ) +

E2(τ), 3E1(τ) + 2E2(τ) by the rules (32) and (33) are

8ζ2(s), 4(2−s)ζ2(s), 4(1 + 21−2s)ζ2(s), (A.155)

while all ψ-series vanish. This proves Theorem 2. Before we go into the special

conditions of the caseQ = 5, r = 0, we make some general considerations. Between

the primitive Eisenstein series E and E∗ of level Q there are by (122) and (127),

the identities

∑
t mod Q

(t, Q) = 1

E∗(τ, s; (ta1, ta2), Q) =
1

L(s, χ1)

∑
t mod Q

(t, Q) = 1

E∗(τ, s; (ta1, ta2), Q)

(A.156)
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where χ1 denotes the unit character mod Q. For s = 1 we get∑
t mod Q

(t, Q) = 1

E∗(τ, 1; (ta1, ta2), Q) = 0 (A.157)

We say that two parabolic cusps −a2

a1

and − b2

b1

, with relatively prime nu-

merators and denominators, are mod Q associated, if there is a number k that is

relatively prime to Q so that

ai ≡ kbi (Q) for i = 1, 2 (A.158)

holds. The number of parabolic cusps, which are not equivalent with respect to

M(Q), in a class of mod Q associated cusps is apparently equal to 1 for Q = 1, 2

and
1

2
ϕ(Q) for Q > 2, so that for the number of classes of mod Q non-associated

parabolic cusps, we get the expression

σ0(Q) = Q
∏
p|Q

(
1 +

1

p

)
(A.159)

by (131). Let A and B be two substitutions in M with second rows (a1, a2) and

(b1, b2). A−1
∞ and B−1

∞ are mod Q associated if and only if (158) is satisfied with

(k,Q) = 1. In the Fourier series of the primitive series E(τ, 1; (a1, a2), Q) with

(a1, a2) = 1 for the cusp B−1
∞ , B ∈ M the function y

1
2 log y appears if and only

if B−1
∞ and −a2

a1

are mod Q are assoiciated, because E(τ, 1; (a1, a2), Q) behaves,

as τ → B−1
∞ , like E(τ, 1; (a1, a2)B−1, Q) as τ → ∞ and in the Fourier series for

the cusp ∞, y
1
2 log y appears if and only if (a1, a2B

−1) ≡ (0, k) (Q) or (a1, a2) ≡

(0, k)B (Q) holds with (k,Q) = 1. Now we determine σ0(Q) substitutions B% ∈M

in such a way that B−1
% ∞ (% = 1, 2, ..., σ0(Q)) are not mod Q associated. If we

denote the second row of B% by B%, then the series

E(τ, 1;B%, Q) (% = 1, 2, ..., σ0(Q)) (A.160)
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are linearly independent, as one can see from their behaviour in the parabolic

cusps. Among the σ(Q) series

E∗(τ, 1; kB%, Q)

(
k = 1 for Q = 1, 2 and 1 ≤ k <

Q

2
, (k,Q) = 1 for Q > 2

)
there are at most σ(Q) − σ0(Q) which are linearly independent, by the relation

(157). Since the function y
1
2 log y does not appear in the Fourier series of E∗, the

E∗’s are linearly independent of the series (160).

We now restrict our attention to level Q = 5. Then we have σ = 12 and σ0 = 6.

The substitutions1 0

0 1

 ,

0 −1

1 0

 ,

1 0

1 1

 ,

1 1

1 2

 ,

1 2

1 3

 ,

1 3

1 4

 , (A.161)

are denoted in the same order by B1, ..., B6. Such a choice is allowed because

indeed the parabolic cusps B−1
% ∞ are not associated in mod 5. The system of

relations (157) takes the form

E∗(τ, 1;B%, 5) + E∗(τ, 1; 2B%, 5) (% = 1, 2, ..., 6). (A.162)

Since there are exactly nine linearly independent Eisenstein series for level 5, and

since the six series in (160) are linearly independent, among the functions

F%(τ) = E∗(τ, 1;B%, 5) (% = 1, 2, ..., 6) (A.163)

we can have at most three that are linearly independent. The determination of

the linear relations between the F%(τ) can be done in the following way. We write

these functions in terms of G-series and notice that the system of relations (136)

for the G-series of the prime level is complete. To do this computation, we need

the values

c(1, k, 5) + c(1,−k, 5) =

(
k

5

)
1

2L
(
1,
(
x
5

)) =

(
k

5

) √
5

4 log ε

(
ε =

1 +
√

5

2

)
,

(A.164)
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which we plug into the representation

E∗(τ, 1;B%, 5) = E(τ, 1;B%, 5) (c(1, 1, 5) + c(1,−1, 5))

+E(τ, 1; 2B%, 5) (c(1, 2, 5) + c(1,−2, 5)) ,

so that we get

F%(τ) =

√
5

4 log ε

(
E(τ, 1;B%, 5)− E(τ, 1; 2B%, 5)

)
. (A.165)

Finally we notice that the functions F1(τ), F2(τ), F3(τ) are linearly independent

and the relations

F4(τ) =

√
5− 1

2
(F1(τ) + F3(τ))− F2(τ)

F5(τ) =

√
5− 1

2
(F2(τ) + F3(τ)) + F2(τ) (A.166)

F6(τ) =

√
5− 1

2
(F1(τ) + F2(τ))− F3(τ)

hold. Due to the translation formulas (107), which also hold for the E∗-series, we

get

F1(τ + 1) = F1(τ), F2(τ + 1) = F3(τ), F3(τ + 1) = F4(τ),

F1(−1

τ
) = F2(τ), F2(−1

τ
) = F1(τ), F3(−1

τ
) = F6(τ)

Hence, by (166),

(F%(τ + 1)) =


1 0 0

0 0 1

−ε′ −1 −ε′

 (F%(τ)) ,

(
F%

(
−1

τ

))
=


0 1 0

1 0 0

−ε′ −ε′ −1

 (F%(τ)) ,

(A.167)

with ε′ =
1−
√

5

2
and % = 1, 2, 3.The eigenfunctions of the linear collection of

the F%(τ) for the substitution τ → τ + 1 coincide up to constant factors with the
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functions

(G%(τ)) =


2(ζ − ζ−1) 0 0

ζ−1 − 1 −
√

5ζ−1
√

5

1− ζ
√

5ζ −
√

5

 (F%(τ))
(
ζ = e

2πi
5

)
(A.168)

and transform by (167) according to the formulas

(G%(τ + 1)) =


1 0 0

0 ζ 0

0 0 ζ−1

 (G%(τ)) ,

(
G%

(
−1

τ

))
=

1√
5


1 2 2

1 ζ2 + ζ−2 ζ1 + ζ−1

1 ζ1 + ζ−1 ζ2 + ζ−2

 (G%(τ))

(A.169)

The wave functions g(τ, %, (1), 1,
√

5) (% = 0, 1, 2) for the system of the zeta func-

tions ζν(τ, %, (1), 1,
√

5) (ν = 0, 1; % = 0, 1, 2) also satisfy the functional equations

and one conjectures that they coincide with G%(τ) (% = 1, 2, 3) up to a common

constant factor. Indeed, this is true and we will prove it now. The translation

formulas for the system of functions

G∗1(τ) =
1√
2
G1(τ), G∗2(τ) = G2(τ), G∗3(τ) = G3(τ) (A.170)

read

(
G∗%(τ + 1)

)
=


1 0 0

0 ζ 0

0 0 ζ−1

 (G%(τ)) ,

(
G∗%

(
−1

τ

))
=

1√
5


1

√
2

√
2

√
2 ζ2 + ζ−2 ζ1 + ζ−1

√
2 ζ1 + ζ−1 ζ2 + ζ−2

(G∗%(τ)
)

(A.171)

and define apparently a unitary representation

(G∗%(Sτ)) = AS(G∗%(τ), AsA
′
S = E for S ∈M (A.172)

of the modular group M/M(5). Now let g1(τ), g2(τ), g3(τ) be any system of solu-

tions of the functional equations (171). The column vector g(τ) with components

g%(τ) satisfies the translation formulas

g(Sτ) = ASg(τ) for S ∈M (A.173)
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and admits a sereis representation of the form

g(τ) = u(y) +
∑
n6=0

any
1
2K0

(
2π | n |

5
y

)
e

2πin
5
x. (A.174)

Let column vector h(τ) with series

h(τ) = v(y) +
∑
n6=0

bny
1
2K0

(
2π | n |

5
y

)
e

2πin
5
x. (A.175)

be another solution of (173). Since the representation matrices AS are unitary,

g′(τ)dh(τ) is invariant under S ∈ M. In order to verify that u(y) and v(y) differ

by only a constant factor, we use the Green theorem (144) in the form∫∫
B

(g′4h− h′4g)dxdy =

∫
R

(
g′
∂h

∂n
− h′

∂g

∂n

)
ds. (A.176)

We form B out of the modul figure by cutting off the parabolic cusp so that B is

described by the inequalities (x2 + y2) ≥ 1, | x |≤ 1

2
, y ≤ y0. The surface integral

vanishes, since the components of g and h are wave functions with equal numbers

of waves. In the countor integral over R the subintegrals over equivalent pieces of

the boundary single out, due to the invariance property of g′dh that we mentioned

above. Thus, it remains ∫ 1

0

(
g′
∂h

∂y
− h′

∂g

∂y

)
dx = 0.

Taking into account the Fourier series (174) and (175), we obtain

u′
dv

dy
− v′

du

dy
= 0. (A.177)

Because of the two diagonal elements in the substitution AS for S =

1 1

0 1

,

which are different from 1, we may assume a priori that

u(y) =


u1(y)

0

0

 , and v(y) =


v1(y)

0

0

 ,
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so that (177) becomes the condition

u1(y)
dv1(y)

dy
− v1(y)

du1(y)

dy
= 0. (A.178)

Under the condition u1(y) 6= 0, we have

(
v1(y)

u1(y)

)
is constant. In particular,

for g(τ) = h(τ), this means that

(
u1(y)

u1(y)

)
is constant, hence

(
v1(y)

u1(y)

)
is also

constant, .q.e.d. By Theorem 7, g(τ) is determined unambigously as a solution of

the functional equation (173) by u(y) and is determined therefore generally up to

a constant factor. An analogous result holds for G%(τ) (% = 1, 2, 3). This proves

Teorem 3. In particular, we obtain the representation

g(τ, 0, (1), 1,
√

5) = C0G1(τ),

g(τ, 1, (1), 1,
√

5) = C0G2(τ), (A.179)

g(τ, 2, (1), 1,
√

5) = C0G3(τ),

with some constant C0. Comparing the Fourier series of the functions(to each

other), we see that C0 has the value

C0 =
4 log ε

ζ − ζ−1
. (A.180)

If we check the identities (179) explicitly in this way, then we obtain a new proof of

the functional equation of the system of functions g(τ, %, (1), 1,
√

5), (% = 0, 1, 2, ).

The new proof does not use the theta series in two variables, but the relation

∑
Na=n

1 =
∑

d|n, d>0

(
D

d

)
(n > 0) (A.181)

which is equivalent to the decomposition rule for the prime ideals in R(
√
D) for

D = 5. Here a runs through all integral ideals in R(
√
D) with norm n. Linear

relation of the kind (179) can be proved also for arbitrary discriminants D > 0,
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with the help of (181). In general,

∑
{a}

g(τ, 0, a, 1,
√
D) =

Dl1
2l0

D−1∑
a=1

(
D

a

)
G(τ, 1; 0, a,D), (A.182)

holds, where a runs through a full system of representatives of the narrow ideal

classes in R(
√
D) and

l1
l0

is the number of strictly(totally) positive, mod
√
D non-

congruent units in R(
√
D). The proof of this identity is of particular interest, since

it also provides us with the Dirichlet class number formula

h = − 1

2 log ε

D−1∑
a=1

log sin
aπ

D
. (A.183)

On the one hand side, we get

D−1∑
a=1

(
D

a

)
G(τ, 1; 0, a,D) =− 2

D

D−1∑
a=1

(
D

a

)(
log sin

aπ

D

)
y

1
2

+
8

D

∞∑
n=1

 ∑
d|n, d>0

(
D

d

) y
1
2K0(2πny) cos(2πnx),

(A.184)

from (135). On the other hand,

g(τ, 0, a, 1,
√
D) = 2l1y

1
2 +

l1
l0

∑
µ ≡0 (a)

(µ)p∞ , µ 6= 0

y
1
2K0

(
2π | Nµ |

A
y

)
e−

2πiNµ
A

x, (A.185)

holds by (29). Here l0 = 1
2

log ε0 and ε0, (> 1) generate the group of totally

positive units in R(
√
D). In general, let Ka be the narrow ideal class in R(

√
D),

which is represented by a. If the norm of the base unit is Nε = −1, then we can

put the series (185) into the form

g(τ, 0, a, 1,
√
D) = 2l1y

1
2 +

4l1
l0

∑
b∈Ka−1

y
1
2K0(2πNby) cos(2πNbx). (A.186)
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In the case, Nε = 1, we get

g(τ, 0, a, 1,
√
D) =2l1y

1
2 − 2l1

l0

 ∑
b∈Ka−1

y
1
2K0(2πNby)e2πiNbx

+
∑

b∈Ka−1

√
D

y
1
2K0(2πNby)e−2πiNbx

 . (A.187)

Thus, in both cases, we get∑
{a}

g(τ, 0, a, 1,
√
D) =

2l1
l0

{
hy

1
2 log ε+ 2

∞∑
n=1

(∑
Nb=n

1

)
y

1
2K0(2πny) cos(2πnx)

}
,

(A.188)

if we denote the number of ordinary ideal classes by h, so that, by (184),∑
{a}

g(τ, 0, a, 1,
√
D) =

2l1
l0

{(
h log ε+

1

2

D−1∑
a=1

(
D

a

)
log sin

aπ

D

)
y

1
2

+
D

4

D−1∑
a=1

(
D

a

)
G(τ, 1; 0, a,D)

}
(A.189)

holds. This relation decomposes into the equations (182) and (183), since

g(τ, 0, a, 1,
√
D) and G(τ, 1; 0, a,D) are automorphic functions of level D.

Finally, we determine the linear collection of the pairs of Dirichlet series that

are associated with the Eisenstein series for r ≥ 0. The series G(τ, 1+2ir; a1, a2, Q)

corresponds by (134) to the pairs of functions∑
n6=0

{ ∑
dk ≡ak (Q)

d1d2 = n

| d1 |−ir| d2 |ir
}
| n |−s,

∑
n6=0

sgnn

{ ∑
dk ≡ak (Q)

d1d2 = n

| d1 |−ir| d2 |ir
}
| n |−s,

up to a constant factor. This can be written as∑
n ≡a1 (Q)

n 6= 0

1

| n |s+ir
∑

n ≡a2 (Q)

n 6= 0

1

| n |s−ir
,

∑
n ≡a1 (Q)

n 6= 0

sgnn

| n |s+ir
∑

n ≡a2 (Q)

n 6= 0

sgnn

| n |s−ir
.

(A.190)
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Now let (ai, Q) = ti > 0, ai = tibi and χi be an arbitrary character mod
Q

ti
, (i =

1, 2). Multiplying the products (190) by χ1(b1)χ2(b2) and summing over the bi

mod
Q

ti
, (i = 1, 2), we obtain

1

(t1t2)s

∑
n 6=0

χ1(n)

| n |s+ir
∑
n 6=0

χ2(n)

| n |s−ir
,

1

(t1t2)s

∑
n6=0

(sgnn)χ1(n)

| n |s+ir
∑
n6=0

(sgnn)χ2(n)

| n |s−ir
,

(A.191)

up to a constant factor. All feasible pairs of functions of this sort are apparently

linearly equivalent to the pairs (190). The functions (191) are identical with the

L-series products

(1 + χ1(−1))(1 + χ2(−1))

(t1t2)s
L(s+ ir, χ1)L(s− ir, χ2),

(A.192)

(1− χ1(−1))(1− χ2(−1))

(t1t2)s
L(s+ ir, χ1)L(s− ir, χ2).

A.4 The Theory of Tn Opereators

Let On be the set of all substitutionsa b

c d


with integer entries and ad − bc = n > 0. Under the assumption (n,Q) = 1, we

can choose the representatives S of the decomposition

On =
∑
S

MS

so that

S ≡

1 0

0 n

 (Q)
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holds. Such a system of coset representatives is denoted by Vn and define the

operator Tn for automorphic wave functions F (τ) of level Q by setting

F (τ)Tn =
1√
n

∑
S∈Vn

F (τ) | S =
1√
n

∑
S∈Vn

F (Sτ). (A.193)

This function is independent of the choice of the system Vn and belongs again to

the level Q. Let Ra be the operator defined by (36). Then the transformations

Ra

a bQ

0 d

 , (A.194)

where a runs through all positive divisors of n, b mod d varies and ad = n,which

is a special system of representatives for Vn, become suitable for carrying out the

computations. As in the analytic case, one can prove the commutativity of the

operators Ra and Tn = T (n) as well as the multiplication rule

T (n)T (m) =
∑

d | n,m

d > 0

T
(nm
d2

)
Rd for (n,Q) = 1, (m,Q) = 1. (A.195)

To define the Tn-operators for those n which are not relatively prime to the level

Q, we decompose the linear space of automorphic functions into F+1
r (t, χ,Q) and

F−1
r (t, χ,Q) for divisor t and character χ. As mentioned above, these consist of

functions F (τ), which are multiplied by χ(n) under the operator Rn:

F (τ) | Rn = χ(n)F (τ) for (n,Q) = 1, (A.196)

and allows a Fourier type development of the form

F (τ) = δ

(
t

Q

)
u(y) +

∑
(n,Qt )=1

a(n)y
1
2K0

(
2π | nt |

Q
y

)
e

2πint
Q

x. (A.197)

Moreover, for the operator K defined by 36

F (τ) | K =


F (τ) for F (τ) ∈ F+1

r (t, χ,Q),

−F (τ) for F (τ) ∈ F−1
r (t, χ,Q).

(A.198)
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holds. Now let Q = tt1 and q be a power product of prime divisors of level Q. Then

we define the operator T tq corresponding to the divisor t for the function F (τ) by

F (τ) | T tq =
1
√
q

∑
l mod q

F

(
τ + lt1
q

)
; (A.199)

which disappears for (q, t1) > 1, commutes with Rn and Tn for (n,Q) = 1 and

maps F±1
r (t, χ,Q) to itself like Tn with (n,Q) = 1,. For any natural number m

T tm = T tqTn, if m = qn, (n,Q) = 1 (A.200)

and q contains only prime factors of Q. The operator T tm = T t(m) applied to an

arbitrary function F (τ) ∈ F±1
r (t, χ,Q) has the effect:

F (τ) | T tm =
1√
m

∑
ad = m

b mod d, d > 0

χ(a)F

(
aτ + bt1

d

)
(A.201)

and satisfies the multiplication rule again

T t(m1)T t(m2) =
∑

d |m1,m2

d > 0

T t
(m1m2

d2

)
χ(d). (A.202)

We now consider an arbitrary subspace Gr of F1
r(t, χ,Q) or F−1

r (t, χ,Q), which is

invariant with respect to the operators T tm.The functions F %(τ), (% = 1, 2, ...,κ)

with the Fourier expansion

F %(τ) = u%(y) +
∑

(n,Qt )=1

a%(n)y
1
2Kir

(
2π | nt |

Q
y

)
e

2πint
Q

x (A.203)

may form a basis of Gr. The term u%(y), which is independent of x, occurs only

for t = Q really, and of the form

u%(y) =


a%1(0)y

1
2

+ir + a%2(0)y
1
2
−ir for r > 0,

a%1(0)y
1
2 log y + a%2(0)y

1
2 for r = 0.

(A.204)
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By (201), one finds immediately

F %(τ) | T tm = v%(y) +
∑

(N,Qt )=1

b%(N)y
1
2Kir

(
2π | Nt |

Q
y

)
e

2πiNt
Q

x (A.205)

with

b%(N) =
∑

d | N,m

d > 0

a%
(
Nm

d2

)
χ(d) for

(
N,

Q

t

)
=

(
m,

Q

t

)
= 1. (A.206)

The limitations for N and m are dropped if it is assumed a%(n) = b%(n) =

0 for
(
N, Q

t

)
> 1 at the beginning. If we make this assumption, then we have

v%(y) =


b%1(0)y

1
2

+ir + b%2(0)y
1
2
−ir for r > 0,

b%1(0)y
1
2 log y + b%2(0)y

1
2 for r = 0.

(A.207)

when we set

b%1(0) = m−irσ2ir(m,χ)a%1(0) for r ≥ 0,

b%2(0) =



mirσ−2ir(m,χ)a%2(0) for r > 0,( ∑
d | m

d > 0

χ(d) log
d2

m

)
a%1(0) + σ0(m,χ)a%2(0) for r = 0

(A.208)

and generally

σk(m,χ) =
∑
d | m

d > 0

χ(d)dk (A.209)

is set. The claim (198) is expressed in the coefficient relations as

a%(−n) = ±a%(n), (A.210)
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where the upper or lower sign respectively holds when Gr is in F+1
r (t, χ,Q) or

F−1
r (t, χ,Q). Because of the assumed invariance of the subspace Gr regarding the

operators T tm, there is a representation

F %|(τ)T tm =
κ∑
σ=1

λ%σ(m)F σ(τ) (% = 1, 2, ...,κ) (A.211)

with some constant coefficients λ%σ(m). One gets the important relationship

∑
d | N,m

d > 0

a%
(
Nm

d2

)
χ(d) =

κ∑
σ=1

λ%σ(m)aσ(N)

m > 0, N 6= 0,

% = 1, 2, ...,κ

 (A.212)

by comparing the Fourier coefficients in the expansion of both sides of (211). Ap-

parently, we have

κ∑
σ=1

λ%σ(m)aσ(N) =
κ∑
σ=1

λ%σ(N)aσ(m) (m > 0, N > 0) , (A.213)

from which

a%(m) =
κ∑
σ=1

λ%σ(m)aσ(1) (m > 0) (A.214)

follows for N = 1. Because the functions F σ(τ) are linearly independent,there are

whole rational numbers N1, N2, ..., Nκ such that the determinant is

|a%(Nσ)| 6= 0.

All Nσ may be supposed to be positive according to (210), so that a solution of the

system (213) is possible after that of λ%σ(m), if one lets the N values pass through

N1, N2, ..., Nκ:

λ%σ(m) =
κ∑
ν=1

bν%σa
ν(m) for m > 0. (A.215)

We use these equations to define λ%σ(m) for m < 0. By suitable choices of u%σ(y),

the κ2 functions

f%σ(τ) = u%σ(y) +
∑
m6=0

λ%σ(m)y
1
2Kir

(
2π | mt |

Q
y

)
e

2πimt
Q

x (A.216)
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then represent a linearly equivalent system with the basis F %(τ) (% = 1, 2, ...,κ).

The linear equivalence carries over the functions F %(τ) and f%σ(τ) associated with

the Dirichlet series

ϕ%(s) =
∞∑
m=1

a%(m)

(mt)s
, ϕ%σ(s) =

∞∑
m=1

λ%σ
(mt)s

. (A.217)

For the matrix λ(m) formed with the coefficients λ%σ(m),

λ(m1)λ(m2) =
∑

d |m1,m2

d > 0

λ
(m1m2

d2

)
χ(d). (A.218)

As in the analytic case, for the function matrix

Φ(s) = (ϕ%σ(s)) =
∞∑
m=1

λ(m)(mt)−s (A.219)

we obtain the Euler product

Φ(s) = t−s
∏
p

(λ(1)− λ(p)p−s + χ(p)λ(1)p−2s)−1. (A.220)

A number of important theorems can now literally be proved as in the theory of

Hecke operators. In particular, we obtain: The characteristic roots of the function

matrix

B(τ) = (f%σ(τ)) (A.221)

belong even to the linear space of F %(τ) and correspond to Dirichlet series with

a product development of the kind (220) if one replaces herein λ(1) and λ(p) by

matrices of first degree. Conversely, every function in Gr associated to a Dirichlet

series with a product development is a characteristic root of B(τ). The question

whether it gives a system of κ linearly independent functions in Gr, to which a

Dirichlet series with an Euler product development corresponds, is equivalent to the

fact that B(τ) can be transformed to a diagonal form by using a constant matrix.
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Necessary and sufficient condition is that there are κ different eigenfunctions of

the operator ring produced by T tm, which do not differ each other only by constant

factors. These eigenfunctions agree up to constant factors with the characteristic

roots of B(τ). A satisfactory solution to this problem is available currently for

t = 1 and r > 0. The families F±(t, χ,Q) namely in the case of r > 0 decompose

into two invariant subspaces of Eisenstein series and cusp functions. The Eisenstein

series in F+1(t, χ,Q) or F−1(t, χ,Q) of the divisor t = 1 corresponds to the linear

space of L− product series L(s+ir, χ1)×L(s−ir, χ2) by (192), where χ1 and χ2 are

characters mod Q mean, χ = χ1χ2 and χ1(−1) = χ2(−1) = 1 or −1 holds. Since

the Dirichlet series for these functions have an Euler product development, the

associated Eisenstein series occur among the characteristic roots of B(τ). We can

therefore look at only the cusp functions. Now let Gr be permenantly an invariant

subspace of cusp functions. By means of Petersson Metrization Principle we prove

that all matrices λ(n) with (n,Q) = 1 can be simultaneously transformed into a

diagonal shape. So then the problem for the subspaces Gr of the divisor t = 1 is

completely solved since λ(n) vanishes for (n,Q) > 1, where t = 1 is assumed.

Let F1(τ) and F2(τ) be two cusp functions and let F be a fundamental domain

for the group M(Q). The integral

(F1(τ), F2(τ)) = (F1(τ), F2(τ))M(Q) =

∫∫
F

F1(τ)F2(τ)
dxdy

y2
(A.222)

does not depend on the choice of F and is called the scalar product of F1(τ) and

F2(τ). Furthermore F1(τ) and F2(τ) are functions of the same character χ, then

(F1(τ)|Tn, F2(τ)) = χ(n)(F1(τ), F2(τ)|Tn) for (n,Q) = 1. (A.223)

Petersson’s proof (KII) of the corresponding formula for the modular functions

can be transferred verbatim to the existing case. Somewhat more shortly, one can

proceed in this case if one notes that the left and right classes from On to M
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possess a common system Vn of representatives S:

On =
∑
S∈Vn

MS =
∑
S∈Vn

SM with S ≡

1 0

0 n

 (Q).

The reduction of the formula (223) in the case (n = p)(prime number) becomes

then non-essential. H.Petersson proves and uses the existence of such a represen-

tative system Vn only for n = p. For any n, one can construct such a system in

the following manner. Let On,g be the set of all substitutionsa b

c d

 with (a, b, c, d) = g, ad− bc = n.

It is obvious that

On,g =

g 0

0 g

O n
g2
,1 for g2|n and On =

∑
g2|n, g>0

On,g. (A.224)

The representation

On,1 = MSnM with Sn =

1 0

0 n

 (A.225)

gives rise to a decomposition

On,1 =

%(n)∑
i=1

MSnL
∗
i with L∗i ∈M. (A.226)

Because of SnM(n) ⊂MSn it applies to any Qi ∈M(n)

On,1 =

%(n)∑
i=1

MSnLi, Li = QiL
∗
i . (A.227)

With suitable choice of substitutions Qi, Li ∈M(Q) can be achieved because the

congruences

Qi ≡

1 0

0 1

 (n), Qi ≡ L∗i
−1(Q)
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are compatible each other since (n,Q) = 1. Denote the transpose matrix of Li by

L′i and set Ai = L′iSnLi, then it follows obviously

On,1 =

%(n)∑
i=1

MAi =

%(n)∑
i=1

AiM, Ai ≡ Sn (Q); (A.228)

because On,1 does not change when all the matrices are replaced by the tansposes,

moreover A′i = Ai. In general (g2|n)

O n
g2
,1 =

%( n
g2

)∑
i=1

MA
(g)
i =

%( n
g2

)∑
i=1

A
(g)
i M, A

(g)
i ≡

1 0

0 n
g2

 (Q), (A.229)

so that with

B
(g)
i =

g 0

0 g

RgA
(g)
i , Rg ≡

g 0

0 g

 (Q), Rg ∈M (A.230)

finally we get

On,g =

%( n
g2

)∑
i=1

B
(g)
i M =

%( n
g2

)∑
i=1

MB
(g)
i , B

(g)
i ≡ Sn (Q). (A.231)

We now choose a normalized orthogonal basis F %(τ) (% = 1, 2, ...,κ) in Gr:

(F %(τ), F σ(τ)) = δ%σ (= Kronecker symbol)

and by (223) for (n,Q) = 1 we get

λ%σ(n) = (F %(τ)|Tn, F σ(τ)) = χ(n)(F %(τ), F σ(τ)|Tn) = χ(n)λσ%(n),

so

λ(n) = χ(n)λ(n)
′
. (A.232)

Thus, there are the commutation relations

λ(n)λ(n)
′
= λ(n)

′
λ(n)

λ(n)λ(m) = λ(m)λ(n)

 for (n,Q) = (m,Q) = 1 (A.233)
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The necessary and sufficient condition is that λ(n) can be transformed simulta-

neously to a diagonal form by using a single unitary matrix. We thus obtain the

following result:

Theorem 38. In the linear space F±1
r (1, χ,Q) associated to the divisor 1 and char-

acter χ, in the case of r > 0 there exists a basis F %(τ) (% = 1, 2, ...,κ) consisting

of eigenfunctions of the ring generated by the operators Tn with (n,Q) = 1. The

functions F %(τ) with the Fourier expansion

F %(τ) = δ

(
1

Q

)
u%(y) +

∑
(n,Q) = 1

n 6= 0

a%(n)y
1
2Kir

(
2π | n |
Q

y

)
e

2πin
Q

x. (A.234)

associated to the Dirichlet series

ϕ%(s) =
∑
n = 1

(n,Q) = 1

a%(n)

ns
(A.235)

have the Euler product development

ϕ%(s) =
∏

(p,Q)=1

(1− a%(p)p−s + χ(p)p−2s)−1, (A.236)

if we assume a%(1) = 1 (% = 1, 2, ...,κ), which means no restriction.

The investigation of subspaces F±1
r (t, χ,Q) for any divisor t and r ≥ 0 leads to

similar results as in the analytic case with the method developed by H.Petersson.

However, it must be noted that the theory of Eisenstein series for r = 0 yet in no

satisfying condition.
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[1] Peter Buser. Riemannsche Flächen mit Eigenwerten in (0, 1/4). Comment.
Math. Helv., 52(1):25–34, 1977.

[2] Peter Buser. Geometry and spectra of compact Riemann surfaces, volume 106
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