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This thesis concerns the spectral theory of the Laplacian on Riemann surfaces of
finite type, with emphasis on the quotients of the upper half plane by congruence
subgroups.

In a first part we show, following Otal, that on a Riemann surface M of genus
g with n punctures there are at most 2g — 2 + n eigenvalues A with A\ < 1/4.

In a second part, we focus on arithmetic surfaces. This subject is treated by
Maass in a paper that is difficult to read. We work out some examples of his

construction of Maass forms.
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CHAPTER 1
THE HYPERBOLIC LAPLACIAN AND BESSEL FUNCTIONS

Let M be a finite area hyperbolic surface; that is, M is a 2 dimensional, ori-
ented, complete Riemannian manifold with constant curvature —1. The hyperbolic
surface M can be identified with the quotient surface H/T" where H is the Poincaré
upper half-plane and I' is a subgroup of PSL(2,R) acting freely and properly

discontinously on H. We consider H with the metric and measure defined as

dxdy

y?

2 _ dz? + dy?

ds )2

and dug =

In the above, PSL(2,R) is the group of orientation preserving isometries of H, and

I' is the group of deck transformations of the universal cover p : H — M.

A complex manifold X of complex dimension one is called a Riemann surface,
or equivalently X is called a Riemann surface if it is a real two dimensional oriented
manifold equipped with a conformal structure. All Riemann surfaces are orientable
since all complex manifolds are orientable when considered as real manifolds. By
the Uniformization theorem, any simply connected Riemann surface is conformally
equivalent to either the Riemann sphere, or the complex plane C or the upper
half plane H. According to their universal covers, Riemann surfaces are called
elliptic, parabolic and hyperbolic respectively. The only example of an elliptic
Rimeann surface is the Riemann sphere itself. The parabolic Riemann surfaces are
the complex plane C, the cylinder R?/Z, and the tori R?/T" where T' is a lattice
isomorhic to Z2. The remaining Riemann surfaces are hyperbolic. The hyperbolic
Riemann surfaces have constant curvature -1. Hence, almost all Riemann surfaces

are hyperbolic surfaces.

For any n-dimensional Riemannian manifold (M, g), the Laplace-Beltrami op-



erator on C*(M), k > 2, is defined as

Ay f = divy(grad,, f)

for any f € C*(M) where divy, grad,, are with respect to the Riemannian metric

g. Moreover, if the manifold (M, g) is oriented then
Ay f =divy(grad,, f) = «d = df

where * is the Hodge star operator depending also on the metric g. A complex

number A is called an eigenvalue of the Laplace-Beltrami operator if

Auf=Af

for some non-zero f € CF(M) where k > 2; and such an f is called the
eigenfunction of the Laplacian. By the regularity theorems for elliptic operators, it
follows that f € C°°(M). Furthermore, since Ay, is a symmetric and nonnegative
operator, A is real. We will give a more geometric and intuitive definition of the

Laplace-Beltrami operator in the next section.
1.1 The hyperbolic Laplacian

There is a Laplacian Aj; acting on the functions on any Riemannian manifold M.
The Laplacian A, f(x) associates to a function f the difference between f(z) and

the average of its values on a small ball around z:

Apf() = lim <2 (ﬁ /B ) - f<x>) |

where n = dim M, C, is a constant depending on n and iy, is the Riemannian

measure on M.



On all oriented Riemannian manifolds there is a Hodge * operator, which takes
k-forms on M to n — k forms. In terms of the Hodge operator, we have Ay (f) =

*d * d.

This is especially easy to use for conformal metrics on Riemann surfaces, for
then for 1-forms ¢ we have (x¢)(v) = ¢(—iv) so that on 1-forms the Hodge
depends only on the conformal structure and not on the metric. For 2-forms, the

star operator divides by the metric.

In particular, on H with the metric

da? + dy? , [P O
T we have AH:y (@+8_y2)

This differential is invariant under Aut H: if o € Aut H, i.e., if a is a Moebius

transformation, then

Au(a’f) = o (Auf).

So all Riemann surfaces uniformized by H carry a natural hyperbolic Laplacian.

We will be interested in the spectral theory of Ay and of Ay for various hy-

perbolic Riemann surfaces X.

1.2 The hyperbolic Laplacian and Bessel functions

Let us apply separation of variables to the equation Agf = Af. Separation of

variables is always a bit unmotivated: we will look for solutions of the form

f(@,y) = Vyg(z)h(y).



If we substitute the expression for f in the equation for eigenfunctions of the

Laplacian, after a bit of manipulation we find

9" (x) L Wy Ry A
" (_@ T unly) " hly) ) Ty

In the standard way, we see that x — ¢”(z)/g(z) is a function of y alone, hence a

constant which we call —/2. Multiplying through by 2, we are led to the differential
equation

) + ) = 1) (5 43+ 27 ) o

This is a perfectly good differential equation, but if we want to turn it into a
“standard” equation with tabulated solutions, set au = y, and k(u) = h(au); we
find
1
Wk (u) + uk'(u) — k(u) (4_1 + A+ l2oz2u2) =0.
Thus if we choose @ = 1/] and set 1/4 + A = v?, we find the modified Bessel
equation
WK (u) + uk' (u) — (u* + v*)k(u) = 0.
If w+— k(u) is a solution of this equation, then for any [ > 0 we have

1

Aw (Vyek(ly)) = Aye™k(ly) where A = v° — 7 (1.1)
1.3 Modified Bessel functions
We have seen that the modified Bessel equation
2w’ + 20 — (2 +v)w =0 (1.2)

appears when looking for solutions of Ay f = Af in the upper half-plane. Here we
will find solutions to this equation that are especially interesting because for these

solutions, z +— w(x + iy) tends to 0 as x tends to oo for fixed y.



1.4 The formal power series

In this section we will assume that v is not a half-integer. As in every elementary

differential equations class, write
w(z) = 2*(ag + a1z +agz® +...), ag #0,

and substitute the series in the equation (1.2). Examining the lowest degree terms

yields © = £v, and then to the recurrence relation
m(m + 2v)a,, = apm_o when p=v, m(m —2v)a, = ay_o when = —v

leading to a; = 0 when ¢ is odd in both cases, and

B I'l+v)
AR T(k+v+1)

B I —v)
CAREIT(k—v+1)

ok ao when p =v, ag ap when = —v

leading to the power series

, S 1 2\ 2k
wi(z) = aol'(1 +v)z ; KT(k4+v+1) (5)

and

e 1 2\ 2k
wa(z) = aol(1 =)z § K T(k—v+1) (5) '

1.5 A first integral representation

Define the function K, by the formula

1 & Z 1 dt 1 &
K,(z) = —/ e sl ) = —/ emFeoshsers g, (1.3)
2 J, t 2

The change of variables t = e° leads from the first integral to the second. The

integral converges (extremely rapidly) for Rez > 0, and for all complex values of

V.



The change of variables u = —s shows that K, = K_,,. We will be particularly

interested in the case where v is purely imaginary: v = ¢7. Then

K—iT = Ki'r - K—ir,

so K, 1s a real function.

Let us check that K, does satisfy equation (1.2); this is easier in the second

form of the equation. We have

oo
/ — cosh se”*e7hs g

[\3|,_. [\:>|>—t

K// / COShS 2 Vse—zcoshsd

o0

S0, using cosh? s — sinh?s = 1, we get
1 o0
2K!(2) 42K (2)— (241K, (2) = = / (2%(sinh s)* — z cosh s — 1?) 72" e ds
(1.4)

Now a miracle happens: we have

((v + zsinhs) e”se’ZCOShS) = (zcosh s + v* — 2*(sinh s)?) eVs ez coshs

ds
and hence the integral on the right of equation (1.4) vanishes identically, since

vs _—zcoshs

(v + zsinh s) e”’e
vanishes at +oo.

Thus K, is some superposition of w; and wsy; suppose that Rev > 0 so that wy

is dominant as z — 0; let us compute the coefficient of wy by computing

v oo . 1 dt
lim 2" K, (z) = lim Z—/ eiﬁ(Hf)t”?.
0

z—0 z—0 2



Note that we know that the limit exists, at least if v ¢ %Z. Make the change of

variables zt = 2u to find

1 [ (w2 d
K,(z) = 5/0 e ( +4")z”(2u)”7u
that can be simply evaluated at z = 0 to find
2V [ d
lim 2" K, (z) = —/ eur L = 2710 (v).
20 2 Jo u

1.6 Some reminders about the ['-function

In this section it will be helpful to remember that the I'-function has poles at the
(=™

negative integers 0, —1, —2,... with residue *— — at —m, and that
()T - 2) = — (15)
z —z)= : .
sinmz
One of the things one can derive from this is
1 m
L(=+it)|=
‘ (2+Z)‘ cosh 7t
when t € R, so decreases very rapidly as t — +o00. Then the functional equation
'(z)
MNz—1)=——=
(z=1)=_—"75
easily shows that on lines Re 2 = —n+1/2 the function |I'(z)| decreases (exponen-

tially fast) for each n and decreases with n (like 1/n!).

1.7 Another integral representation

We will now find another integral representation of the Bessel K-function:

K, (2) = % /CCHOOP <3 ; ”> r (S } ”) (3) "as (1.6)

—1300




when ¢ > |Rev|. This integral is defined and converges when Rez > 0, and the

s = e¢*l%e2  For instance, we can

difficulty in extending it consists of defining 2~
define log z in the complement of the negative real axis; the function is then defined

there.

Suppose v ¢ Z. The 1-form

e () () ()

has poles at the points v,v — 2, v —4,... and —v,—v —2,—v —4,....

At the point s = v — 2k the residue of w is

2 s z\2k—v 2 1 2\ 2k—v
~DFM (v — k)= (= = =
(=)T )k! (2) siny KII'(1 — v+ k) (2)

by (1.5) and at the point —v — 2k the residue of w is

2 z 2k+l/ 271‘ 1 z 2k5+u
D0 (—v — k)= (= = — 5 :
(=) T(=v )k! (2) siny KIT(1 4+ v+ k) (2)

Thus the integral on a path ~ going from —oo to itself, surrounding all the
poles counterclockwise (The bound for |I'| on lines Re z = —n + 1/2 justifies this)

will give

% T 2sizm <_ (%)kzzo k!F(l—:u—Hc) G)%Jr <§>_kzzo kIT(1 —11/+l<;) <§>2k> '

Furthermore, it is not difficult to deform the contour to go from ¢ — 700 to ¢+ i0co

so long as ¢ > | Rev|. This shows that the integral does satisfy the modified Bessel

function for v ¢ Z.

To check that it coincides with the function defined by (1.3), it is enough to com-
pute the coefficient of 27" since both functions are elements of the 1-dimensional
vector space of solutions of (1.2) that decrease at infinity. We find

7r
2 h d 2"7'I'(v) there.
Ysn T (1= 7) ere, an (v) ere




These are indeed equal by (1.5).

1.8 The asymptotic development

The function K, satisfies the asymptotic development as x — oo

K, (z) = \/g e~ (14 o(1)). (1.7)

This is a case of Laplace’s method, applied to the formula

K, (z) = l/oo i)t
2/ t

We will split the integral into two integrals, one is from 0 to 1, and the other is from
l1tooo. Let g(t) =t" " thenatt =1, g(t) = (1+t—1)"" ' =1+(r-1)(t—-1)+...,
giving g(t) ~ 1. Now, let h(t) = —% <t + %) which has the following Taylor series
at t = 1:

1
h(1+u):—1—§u2+...

Then the integral

1/ 6_%(t+%)t'jﬂ
1 t

has the asymptotic development

1 1\ /N2 1 |7m _,
-I'(=)e (—) =/ —e "
4 \2 2 2V 2z
If we make the change of variables s = 1/, the integral from 0 to 1 becomes an

integral from 1 to oo,

1 o)
S Gy s N
0 1 S

2 t 2

The Laplace method again also yields the same aymptotic development for this

integral. Therefore, we obtain

K, (x) = \/g e “(1+o0(1)), z— oo.



1.9 Fourier series and Bessel functions

Let f: H — C be a function growing at most polynomially and satisfying

f(z+T)=f(z) and AHf:—(i—l—ﬁ)f

where z = x + iy and r > 0. Then f can be written as a Fourier series of the form

. A 9 A
fla+iy) = aoy" ™" + by 4D /YK (—Wﬂn‘) e2ima/T
n#0

1/2-+ir 1/2—ir

In order to see this, first we note that both y and y are eigenfunctions

of Ag. Moreover, we know that the solutions of Ay are given by (1.1) as

1

A (Vye™ K, (ly)) = \Wye" K, (ly) where A = v — 1

and K, is the solution of the modified Bessel equation. Solving for v in terms of
r > 0 yields v = ir. Since f is periodic with period T, we get | = 27/T. Taking

all possible superpositions of these solutions leads to the Fourier expansion of f.

10



CHAPTER 2
THE SPECTRAL THEOREM

Let M be a Riemann surface with finite area and of type (g,n) i.e. M is ob-
tained from a compact Riemann surface of genus g by removing n points. Starting
from this chapter, we will consider —A;; so that the eigenvalues are contained in
the interval [0,00). That is, a real number A\ > 0 is called an eigenvalue of the
Laplace-Beltrami operator if

Ayuf+Af=0

for some non-zero f € C*°(M); and such an f is called the eigenfunction of the

Laplacian.

If M is a compact, connected Riemann surface, then the spectrum of the Lapla-
cian is a discrete set {0 =X g < A\ < Ay < -+ < \; < ...} with finite dimensional
eigenspaces, and L?(M) is the direct sum of these eigenspaces. However, if M is
noncompact i.e. n > 0, then the Laplacian also has continuous spectrum [1/4, o).

Moreover, this spectrum can be described completely in terms of Eisenstein series.
2.1 Continuous Spectrum and Eisenstein Series

The function y* satisfies Agy®+ s(1 —s)y® = 0. Let ¢ be a cusp of M, and identify
M with H/T', where z — z + 1 belongs to I and represents a loop surrounding c.

Let I'y be the subgroup generated by z — 2z + 1.

Definition 1. The Fisentein series corresponding to c is defined as

Euzs)= Y (Imy(2))"

’YEF/FOO

11



Theorem 1. (i) E.(z,s) converges locally uniformly for Res > 1 and is invariant

under I'.
(ii) For each s, E.(z,s) satisfies AE.(z,s) + s(1 — s)E.(z,s) = 0.

(iii) E.(z,s) admits a meromorphic continuation to the whole complex plane
C. It has finitely many simple poles in the interval (1/2,1] and has no poles on

the line Res = %

(iv) For each s, E.(z,1 — s) can be written as a sum of Eisenstein series cor-

responding to other cusps with coefficients depending on s.

In particular, we can consider the function
IR
ger(2) = E. | 2, g Tir) so that

1
_AMgc,T(Z) - (Z + T2) gc,r(z)'
where r € R. Even though the functions g., are eigenfunctions of the Laplacian,
they are not in L?(M). For each cusp c define a subspace E.(M) of L*(M) as

follows: For each ¢ € C§°(R), consider

| o cyar

such a function is in L2(M). Let €.(M) be the closure of the span of all such
integrals. For distinct cusps, the spaces E.(M) are orthogonal. Now consider the

inverse of Laplacian restricted to the orthogonal complement of the direct sum of

Ec(M) and C, i.e.

1
(—Amli@.ecomeor) -

This operator is compact, so (_AM|((€BC E.(M)) @(C)J_) " has a discrete spectrum

in the interval [0, 00) accumulating at 0. Therefore, —A|(g, e.(ar)) has a discrete

12



spectrum in the interval [0, 00) accumulating at oco. A very detailed discussion of

the spectral theory of the Laplacian on M can be found in [7].

As a summary, for a Riemann surface with finite area and of type (g,n) the
Laplacian has a discrete spectrum in the interval [0, 0o) and has continous spectrum
[1/4, 00) with spectral density equal to the number of cusps. An element of L?(M)
such that —Aj;f = Af is called a cusp form if it vanishes at all cusps. Phillips and
Sarnak conjecture that the space of cusp forms is trivial for generic groups i.e. of a
countable union of real-analytic hypersurfaces in moduli space [11]. However, for
arithmetic surfaces H/I'(N) the space of cusp forms is not empty. We will show

how they are constructed in the following chapters.

13



CHAPTER 3
SMALL EIGENVALUES

Let M be a hyperbolic Riemann surface with finite area and of type (g,n). By
the Uniformization theorem H is the universal cover of M and let A\o(H) be the
bottom of the spectrum of the Laplacian on H. It is characterized as the infimum

of the Rayleigh quotients of g

J | grady g2 dpm
S l9Pdpm

inf

where the infimum can be taken over all the functions g : H — R that are
compactly supported and C*°. It is known that the bottom of the spectrum of the

Laplacian for the hyperbolic plane and for the annulus is equal to 1/4 [9].

In the spectrum of the Laplacian for M, the eigenvalues are called small if
0 < A < 1/4. Small eigenvalues are important since they have a significant role on
how the closed geodesics behave asymptotically on a compact Riemann surface.
Therefore, the study of the existence and the number of these eigenvalues have
gained a considerable amount of attraction over years. A detailed history of the
subject can be found in Buser [2] and Chavel [3]. Let us give a brief summary about
small eigenvalues here. Randol [12] proves that any compact Riemann surface
has a finite covering space possessing arbitrarily many small eigenvalues. This
article uses the Selberg trace formula; and Randol shows the existence of the
eigenfunctions corresponding to these small eigenvalues without constructing them.
Buser [1] actually constructs compact Riemann surfaces with g > 2 for which the
first 2g — 2 eigenvalues are less than e. In the same article, he also proves that
Agg—2 > 1/4 for any Riemann surface with ¢ > 2. Buser proves the following

theorems in [1].

14



Theorem 1. For any 6 > 0, there exists a compact Riemann surface with g > 2
such that

)\29_3 < 0.

Theorem 2. For any n € N and for any arbitrarily small € > 0, there exists a

compact Riemann surface M with genus g > 2 such that

A< = +e

-

Theorem 3. For any compact Riemann surface with g > 2,

1

)\49_2 > 4_1

Randol also shows [13] that for a compact Riemann surface with genus g > 2

if A1, A2, ..., Ayy—3 are sufficently small, then Ag;_5 > 1/4. This result was known
to Buser though it was not published. Moreover, Schmutz [15] conjectured that
a closed Riemann surface of genus g has at most 2g — 2 small eigenvalues and he

proved the conjecture for g = 2. Finally, Otal and Rosas [10] proved this conjecture

in 2009. They actually proved the following theorem:

Theorem 4. Let M be a hyperbolic surface with finite area and of type (g,n), i.e.
with genus g and n punctures. Then the (2g — 2 4+ n)-th eigenvalue Agg_o4y, S

1
greater than T

In the proof of the above theorem, Otal and Rosas used topological methods:
a version of Borsuk-Ulam theorem whereas the previous theorems were proven by

using the Minimax principles and Cheeger’s inequality in general.

Now we will give a proof of a slightly different version of Theorem 1.

15



Proof. For any given 1 > ¢ > 0, we can choose a Riemann surface M of genus
g with n punctures such that all the geodesics of the maximal multicurve I' have
length e. Note that |I'| = 3g — 3 4+ n [6]; let 8 be the set of components of the

complement of T', then note that |8| =29 — 2+ n.
Let B be the band model for the hyperbolic plane, i.e.
B = {z € C such that |Im z| < 7/2}

with the hyperbolic metric (|dz|/ cosIm z). Each curve 7 € T" has a neighbourhood

A, isomorphic to the subset
T €
{y € B such that |y| < 5 5} /€2

of the cylinder B/eZ. Furthermore, denote by Sy, (S thick) the component of

M — U, A, corresponding to S € 8.

Now, consider the functions in L?(M) which are equal to some constants on the
components M —U, A, and on each A, they interpolate linearly between the values
at the ends. In other words, for each a € R® associate an element of f, € L?(M)

constructed as follows where a: 8§ — R, a(S) = ag :

as, p e Sth
fa(p) =

ay+ By, peA,

where the real constants «., and 3, are chosen to make f, continuous. Denote by
E. the space of functions f,. The elements of E, have distributional derivatives in

L2(M).
Claim 5. We will prove that as ¢ — 0,

[y | grad fdpas
fEE~{0} fM |f|2dNM

16



Proof.

/ ’gradfaIQdﬂM:/ dfa/\*dfa
M

w/2—€/2
a,dy A (—a.,dz)
—7/2+¢€/2

< Z elay |2 (m — €) — 0 with e.

.
Furthermore, we will show that [, |fa|*dpas is bounded below and does not depend
on € leading to the proof of the claim.

w/2—€/2 a
y+p
/ | fal?dpins >Z/ / | Vc052y7| dxdy

w/2+€/2

w/2—€/2

2
y —7/2+4¢€/2 Cos™ Yy

Since the integrand on the interval (—7/2+¢/2,7/2 — €/2) is positive, at least for
one 7, then the value of the integral only depends on the behaviour of the integrand
at the lower and the upper limits of the integral. By substituting u = 7/2 — y and

splitting the integral into two integrals for a € (¢/2, ™ — €/2), the integral becomes
T Jay (n/2 — u) + By
. d > 2l a2 d
/ fal g Z / cos?(m/2 — u) “
_Z / oy (/2 —u) + B, du
/2 sin®(u)

+Z /7r /2 oy ( W/Q_U)+ﬁv|2 du

sin?(u)

17



Now let u = m — v in the second integral, then we have

A~ |\ TT 2
/|fa2duM>Z/ 2 LB,

+Z /Tr a|047U—7T/2)—|—ﬂ7|2dv

sin?(7 — v)

|O"v /2 — )"‘ﬁvP
_Z //2 ) du
+ZE/H o0 =T/ + By,

2
— Je sin®(v)
2> 2l
By using sinx = = — 3 + ST + ... and letting a = 7/2, we have

w/2 o 2
/ |fa| dNM>Z / |OC'Y 7-‘_/2 u)—i_ﬂ’Y’
+Ze/ " ay(v - 7/2) + B,

/2 v?

¥
|CLS|2 Jas/?
= +0(1
=Sl iey) row
where ag and ag are the end values for each v. Each ag contributes three times
in the above sum, so we have

[ Vfalduss = 3 olasf +00

Se8

Then the result follows from the following generality from functional analysis:
Min-max principle: If () is a positive semi-definite quadratic form on a Hilbert

space H, and E C H is an m-dimensional subspace such that

Q)]

[of?

<A

for all v # 0 in F, then @ has at least m eigenvalues < \. O

18



Now we will give the outline of the proof of Theorem 4 in the case n = 0.

Sketch of the proof of theorem /:

Proof. Let M be a compact Riemann surface with ¢ > 2. Denote by E the real
vector space spanned by the eigenfunctions of the Laplacian with eigenvalue < 1/4.

Let m be the dimension of E. For f € E '\ {0}, let

Z(f) ={p € M|f(p) = 0}

be the nodal set of f. Otal and Rosas [10] describe the topology of Z(f). The

functions f € E \ {0} are real-analytic, so

Proposition 6. The nodal set Z(f) is the union of a locally finite graph with

vertices of even multiplicity and of some isolated points.

When M is compact, Z(f) is the union of a compact graph and a finite set of
isolated points. Then to each f € E \ {0}, they associate a compact and incom-
pressible subsurface of M which is called the characteristic surface of f described

as follows.

The nodal graph of f, denoted by N(f), is defined as the union of the connected
components of its nodal set. If f changes sign, then N(f) # (). Moreover, the
sign of f is well-defined on each connected component of M \ N(f). We view
the components of N(f) that are contained in discs embedded in M as trivial
(including isolated points). Let N'(f) be the subset of N(f) obtained by removing
the trivial components of N(f). We notice that each connected component of
M\ N'(f) is the union of an essential component of M \ N(f) and a finite number
of pairwise disjoint discs. Each component of M \ N’(f) is given the sign of f on

the essential components of M \ N(f). The union of components of M \ N'(f)
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on which f has a positive sign (respectively a negative sign) is denoted by C*(f)
(respectively C~(f)). If f does not change sign, then we define C*(f) or C~(f)
to be M according to the sign of f. Notice that if each component of N(f) is
contained in a disc, then either C*(f) or C~(f) is empty. Furthermore, we see
that the surfaces C*(f) and C'~(f) are incompressible by construction. Now, let
ST(f) (resp. S™(f)) be the union of the components of C*(f) (resp. C~(f))

which are not discs or annuli. The sets ST(f) and S~(f) are still incompressible.

Claim 7. For all f € E\ {0}, 2—2g < x(ST(f)) +x(S~(f)) <O.

Proof. We use the convention that x (@) = 0. First of all, 2 — 29 < x(ST(f)) +
x(S7(f)) is implied by the incompressibility of the surfaces ST(f) and S~(f). In
order to prove x(ST(f)) + x(S7(f)) < 0, we notice that if N(f) = 0, then either
ST(f) = M or S=(f) = M and we are done. If N(f) # 0, then we would like to
show that S*(f)US~(f) # 0. Let f € E'\ {0}, then

[oy lgrad fI2du
fM |f‘2d:uM

The Rayleigh quotient is equal to 1/4 if and only if f is an eigenfunction with

<

1
1

eigenvalue 1/4. If we denote the components of M \ N'(f) by Y;, 1 <i < k, then
35 € {1,2,...,k} such that the Rayleigh quotient of f on Yj is

Jy, | rad f[2dyiss
fyj ‘f’Qd,UM

since both quantities in the numerator and denominator of the Rayleigh quotient

<

1
4

for the surface M equal the sum of the corresponding quantities over each Y; by
the disjointness of the components Y;’s. Assume Y; is either a disc or an annulus
and let 7 (Y;) be its fundamental group. Since the components of M — N'(f) are
incompressible, there is an injection from 7 (Y;) into m(M). If we view m(Y;) as

a subgroup of (M), then there exists a cover Y; of M corresponding to m(Y;).
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This cover is either the universal cover M of M or a cylinder. In both cases, it is
well known that the bottom of the spectrum of Laplacian is 1/4. Now, we embed
Y; into };} and we extend fly; on }7] by defining it to be 0 on the complement of the
image of the embedding, call this function g. Since g has distributional derivatives
in L?(Y;), it is in the domain of the Laplacian for Yj. On the other hand, the
Rayleigh quotient of g is < 1/4 on Y] If its Rayleigh quotient is < 1/4, then we
have a contradiction since the bottom of the spectrum of the Laplacian is 1/4 for
17]-. If the Rayleigh quotient of g is equal to 1/4, then it means an eigenfunction of
the Laplacian on }7] with the eigenvalue 1/4. This is a contradiction also since g is

clearly not an eigenfunction. Therefore, Y; cannot be a disc or an annulus. Hence,

STHUS(f) #0. O

We previously defined E as the real vector space spanned by the eigenfunctions
of the Laplacian with eigenvalue < 1/4. Let m be the dimension of E and our goal
is to show that m < 2g — 2. Let S(E) be the unit sphere of E for an arbitrary
norm and P(F) be the projective space of E, i.e. P(E) = S(E)/ ~, where a is the

antipodal map sending f to —f.

In the previous claim, we showed that 2 — 29 < x(ST(f)) + x(S~(f)) < 0.
Now we will partition S(E) according to x(ST(f)) + x(S™(f)). For each i, where
2 —2¢g <i < —1, define

Si={f €S(E) [ x(ST(f) + x(S™(f)) = i}.

Then we have S(E) = U;_lzg S; and P(E) = U;_lzg P; where P; = §;/ ~ a since

each §; contains — f whenever it contains f.

Claim 8. For each i, 2 —2g < i < —1, the covering map p; : 8; — P; is trivial.
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Proof. Since each component S € ST(f) U S™(f) has negative Euler characteris-
tic, it contains a figure eight which cannot be isotoped to be disjoint from itself.
Assume that p; : §; — P; is not trivial, then there is an isotopy f; in 8; joining
fo=f to fi = —f. Choose a figure eight v contained in one of the components
of ST(f). Then this figure eight is moved by the isotopy to another figure eight
contained in some component of ST(—f) = S7(f). This gives a contradiction since

ST(f) and S~(f) are disjoint. O

We will complete the proof of the theorem by showing that m < 2g—2 where m
is the dimension of the space E. Consider the double covering p : S(E) — P(E).
Denote its class in H'(P(E), Zy) by a. The Cech cohomolgy class corresponding
to p; : 8; — P; is afp, = 0 since these coverings are trivial. Since we have at most
2g — 2 P;, then @?9~2 = 0 by Lemma 8 in [16]. On the other hand, the order of «

in the Zs cohomology ring of P(E) is m, m < 2g — 2.
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CHAPTER 4
BACKGROUND ON ALGEBRAIC NUMBER THEORY

In this chapter, we will give some background information about quadratic

fields and in general we will follow [14], [5].

4.1 Quadratic number fields

Definition 2. A degree two extension K over the field Q is called a quadratic
number field.

Every quadratic field K can be written as

where d is a squarefree integer. We call K a real quadratic field if d > 0 and an
imaginary quadratic field if d < 0. In this chapter, we will only work with real
quadratic fields. Therefore, we assume d > 0 from now on. We can view K as a
subfield of the complex numbers C. Let v/d denote the positive square root of d.
Then, there are two embeddings i.e. two injective homomorphisms from K into C

defined as

o1(a+bx) = a+ bVd,

oa(a+bzx) = a—bVd.

We note that since d is positive, the images of these embeddings lie in R and

where Q(vd) = {a +bVd | a,b € Q}.
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Let « = a + bx € K, the norm and trace of o are defined as

N(a) = o1(a)oy(a) = a* — db* and Tr(a) = o1(a) + 02(a) = 2a.

4.2 Ring of integers

Let O denote the subset of K consisting of elements of K which are integral over
Z. It is easy to show that Ok is a ring and it is called the ring of integers of K.
Moreover, Ok is a free Z-submodule of K with rank 2. We can precisely describe

its integral basis which depends on d.

Theorem 9. Let K = @(\/E) be a quadratic field where d is a squarefree integer.
Then

(i) If d=2 ord =3 (mod 4), then
O = Z[d) = {a +bVd | a,b € Z}

(i1) If d =1 (mod 4),

Ok = Z[(1+ Vd)/2] = {a+b<1+\/a) |a,b€Z}

2

Note that if K is a real quadratic field, we can embed K into R? by using the

embeddings o1 and o, as

o: K — R?

o(a+by/z) = (01(a+bVx),02(a + by/x))
= (a+ bVd,a — bVd).

Remark 10. The image of Ok under o is a lattice in R%. Moreover, if we consider

an ideal a of Ok, the image of a under o becomes a sublattice of o(Oy) in R2.
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4.3 The norm of an ideal

Let K be a field over Q with degree n and Ok be its ring of integers.

Definition 3. Suppose a is a nonzero integral ideal of Og. Then the norm of a is

defined to be the cardinality of Ok /a and it is denoted by N(a).

Proposition 11. Let a and b be nonzero integral ideals of Og. Then

(i) N(a) is finite,

(1)N(ab) = N(a) N(b),

(i1i) Let a be a nonzero element of Ok and a = (a) be the principal ideal generated

by a. Then |N(a)| = N(a).

4.4 Units of a real quadratic field

In this section we will describe the group Uk of units of the ring of integers Oy
of a real quadratic field K. We first note that an element o € O is a unit if and

only if N(a) = F1.

By Dirichlet’s unit theorem, Ux = Z x {F1}. An element u € Uk is called a
fundamental unit if every element in Uy can be written of the form Fu" for n € Z.
Now, consider the embedding of K into R via oy, i.e. oy(a -+ by/Z) = a + bv/d and
we identify the elements of K with their images under o,. Then each unit except

1 and —1 lies in one of the intervals (—oo, —1), (—1,0), (0,1), and (1,00). If u

1 1

is a fundamental unit lying in one of these interval then v=, —u, and —u™" are
also fundamental units. It is easy to see that all these fundamental units lie in
only one of the above intervals. Therefore, there is one u € (1,00). It is called the

fundamental unit and let us denote it by €. Hence, every element of Ug except
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1 and -1 can be written as F¢™" where n is a positive integer. Since £ > 1, then
e"tl > g for any positive integer implying that ¢ is the smallest positive unit in

(1,00). Finding units is equivalent to solving
N(a + bVd) = F1,

where a + bv/d € Ok. Given any quadratic number field we can always find the

fundamental unit explicitly; for example by using the continued fraction expansion

of V/d.

Finally, let us give the definition of a totally positive unit. A unit § € Uk is
called a totally positive unit if its image under the both embeddings o1 and o5 is

positive. The totally positive elements of Uy form a subgroup.

4.5 The splitting of prime ideals in real quadratic fields

In an algebraic number field K i.e. the degree of K over Q is finite, every element
of Ok can be factored into a finite number of irreducible elements; however, this
factorization is not necessarily unique. It is unique if and only if every irreducible
element is a prime in Og. On the other hand, unique factorization holds for the

ideals of O.

Theorem 2. Every nonzero ideal of Ok can be written as a product of prime ideals

uniquely up to the order of the factors.

In this section, our goal is to give a complete description of the set of all prime
ideals of Ok for a quadratic field K = Q(\/E) For this purpose, it is enough to
show how each ideal generated by a rational prime can be decomposed into prime

ideals since each prime ideal can only divide one rational prime number.
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Let p be a prime number, consider the ideal pOg. This ideal is not necessarily
a prime ideal in Ox. However, it splits into prime ideals of O uniquely by the
unique factorization theorem. From general theory, we know that only three cases

can occur:

e pOx =pp’, N(p) = N(p') = p, p # p’ (in this case, we say p splits in O)
e pOx = p, N(p) = p? (in this case, we say p remains prime in O)

e pOx = p%, N(p) = p (in this case, we say p ramifies in O)

where p’ is the conjugate of the ideal p. We can determine explicitly when each

case occurs depending on p and d.

Theorem 3. Let K = Q(\/E) be a quadratic field with squarefree positive integer
d. Then,

(i) The odd primes p for which d is a quadratic residue mod p split in K. So
does 2, if d =1 mod 8.

(i) The odd primes p for which d is not a quadratic residue mod p remain prime
i K. So does 2, ifd =5 mod 8

(#ii) The odd prime divisors of d ramify in K. So does 2, if d =2 or3 mod 4.

We will follow [14] for the proof of this theorem.

Proof. First we assume that p is odd. We know that Ox = Z[V/d] if d = 2 or

3 (mod 4), and Ok = Z[(1 + v/d)/2] if d = 1 (mod 4). Consider the element
1 d

a=a-+b ( +2\/_ in Z[(1++/d)/2]. If b is even, then a € Z[V/d]. If b is odd,

1+d
9

then a + (b + p) ( ) in Z[+/d]. Hence, for any square free d,
Ox /PO = Z[Vd]/(p).

27



By sending = to V/d, it is also clear that

Therefore, we have

1
N
=,
P
=
<

8

(3]
|
&

1%

=
=
=,
~
—~

&

[\
|
2

Ok /pOx = Z[z]/(p,2* — d)
where d = d (mod p) i.e. we have
Orc/pOx = Fla)/(a* - d).

From the above isomorphism, we see that p splits in Ox means O /pOk is a

product of two fields i.e. 22 — d has two distinct linear factors in F,[z]/(2? — d).

This is equivalent to saying d is a quadratic residue mod p. Similarly, p remains

prime in O means O /pOy is a field i.e. 2° —d is irreducible in F,[z] /(2% —d) i.e.

d is a quadratic non-residue in mod p. Finally, p ramifies in Oy means O /pO
2

contains a nilpotent elements i.e. 22 — d is a square in F,[z]/(22 — d) i.e. d =0

mod p.

Now consider the case where p = 2. If d =2 or 3 mod 4, then we have either
Ok /20 = Fylx]/(2?) or O /20k = Fylz]/(2? + 1) = Fylz]/(x + 1),
meaning that 2 ramifies in Ox. If d =1 mod 4, then
Ox /20K 2 Fylx)/(2? — 2 — (d—1)/4).

Ifd=1 mod 8, then 22 —x + (d — 1)/4 = 2> + z = x(x + 1) in Fy[z]. Hence, 2
splitsif d =1 mod 8. If d =5 mod 8, then z? —z+ (d—1)/4 = 2> + z + 1 which

is irreducible in Fy[z], therefore 2 remains prime. O

Now we would like to determine which positive integers occur as norms in

K =Q(Vd).
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Theorem 12. Let K = Q(V/d) and assume that the narrow class number hj. of
K is1. Then

(i) A prime number p occur as the norm of an element in Ok if and only if either
p splits in K or p ramifies in K.

(i) Let n = [, = pi* be a positive integer. Then n is the norm of an element in

Ok if and only if p; is the norm of an element in O when k; is odd.

For the proof of this theorem, see [5].

Let us close this chapter with a few more definitions. The set of 2 x 2 matrices
with integer entries and determinant 1 forms a group. It is called the modular

group and denoted by SL(2,7Z) i.e.

a b
SL(2,Z) = ca,b,e,d € Zyad —be=1
c d

Let N be a positive integer. The principal cogruence subgroup of level N is defined

as

a b a b 10
['(N) = € SL(2,7) :
c d c d 01

(mod N)

A subgroup I" of SL(2,7Z) is called the congruence subgroup of level N if I' D I'(N)

for some positive integer N.

The surface I'(IV) /H is a finite area Riemann surface with genus g and n cusps.
The numbers g and n can be computed in terms of N. The number of cusps ¢(N)

of T'(N) is given by

(/2N T n(1—1/p?) N >2
3 if N =2.

O(N) =
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The genus ¢ is given by

where

d(N)=1/2N* [ -1/p*) ifn>2.

p|N

The proofs can be found in [4].
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CHAPTER 5
CONSTRUCTION OF WAVE-FORMS AND EIGENFUNCTIONS IN
A SPECIAL CASE

Hans Maass introduced Maass wave forms in his article “Uber eine neue Art von
nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher
Reihen durch Funktionalgleichungen” in 1949 [8]. Maass wave forms are complex
valued nonanalytic automorphic functions which satisfy the Hyperbolic Laplacian.
He gave examples of wave forms associated to the zeta functions of real quadratic
fields. In this chapter, we will explain the details of the construction of such wave

forms explicitly.

The paper of Maass is quite difficult to read, and it seems it has not been widely
read. A translation appears in the appendix. In this chapter we will carry out the
central construction of Maass’s paper in a specific case: the quadratic number field
Q(+/5), which leads to wave forms on the modular surface H/T'(5), where T'(5) is

the principal congrence subgroup of level 5 i.e. the following subgroup of SL(2,7Z):

I'(5)={MeSL2,Z)|M=1 mod 5}.

Our main goal is to prove the following theorem.

Theorem 13. There are at least three linearly independent functions go(z), g1(2)
and ga(z) on X5 = H/I'(5) satisfying —Anf = }lf and having at most polynomial

growth at the cusps. They satisfy the additional symmetries

9p (—%) = Ui%cpaga(Z)
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with
1 2 2

1

Cos) = —F4= 11 2 -2
(,0) \/g w* +w

w4 wt

1 w+w!t w4+w?

2mi

where w = €5 and

27

9oz +1) =€ g,(2)

5.0.1 The field Q(v/5) and its ring of integers

Consider the real quadratic field K = Q(v/5) = {a + b5 | a,b € Q} and let O
denote the ring of integers of K. We know that O is a free Z-submodule of K of

rank 2 with an integral basis {1, (14 v/5)/2}, i.e.

OK:{Hb(HQ‘/g) \a,bEZ}.

The embeddings of K into C are

o1(a+bV5) = a+ bV5,
oa(a+bV5) = a— bV/b.

Since K is a real quadratic field, we can embed K into R? via the canonical
embedding o : K — R? which is given by
o(a+bV5) = (o1(a + bV5),045(a + bV5)) = (a + bV5,a — bV/5).

Note that o(1) = (1,1) and o((1 +v/5)/2) = (1 +v/5)/2, (1 — v/5)/2). By using

the canonical embedding of K into R?, we get a lattice of O with rank 2 in R2.
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5.0.2 The ideal (1/5)

Consider the principal ideal of Ok which is generated by v/5,

(\/g)z{r\/gHGOK}:{a\/g+b<5+2\/g) |a,b€Z}.

The set {v/5,(5 + v/5)/2} forms an integral basis for (v/5) and we see that
o(v/B) = (5. —v/5) and o((5 + v/5)/2) = (5 + v/5)/2, (5 — v/5)/2).

We note that Ox/(v/5) is a field with five elements and we choose the set

{—2,-1,0,1,2} C Ok to represent each class in O /(v/5).

Let us denote the group of units of Ox by Ux = {£e" | n € Z} where ¢ is the
fundamental unit of O. The fundamental unit ¢ is (1 4+ v/5)/2, which has norm
—1. The group of totally positive units of O is generated by €2 = (3 4+ v/5)/2.

Now let

5 5 = 1 mod (V/5).

. <3+\/3)2:7+3¢5

It is the smallest totally positive unit bigger than one and congruent to 1 modulo

the ideal (v/5)). Now let us consider the equivalence relation ~, on O where

1~y po if and only if Jk € Z such that pu; = uk/@.

Note that O/ ~, = H (0% ~u) where 0% consists of elements of

pEVK /(VE)
O which are equivalent to p modulo (v/5). This is true because if ji; ~, o and

p1 = p mod (v/5) then py = p mod (v/5) since u =1 mod (v/5). Moreover, the

norm on Ok induces a map N : Og/ ~,— Z.
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ments in the set {1,—1,¢, —¢,&2 —¢2, &3 —e3} are congruent to the elements

{1,-1,-2,2,—1,1,2, -2} respectively modulo the ideal (v/5).

5.0.3 The (-functions ((s, p)

Now let us define the following zeta functions that are associated to each p where

p€0k/(V5) =1{0,1,2,—1,-2}.

1 1
Cols, p) = > NO Gls,p) = > sgn(N(a))|N(a)|s

a€ (05 —{0})/~u a€ (0% —{0})/~u

Remark 14. Since Ok is a principal ideal domain, each ideal in Ok is generated by
an element of O. Note that the norm of a principal ideal (a) is N((a)) = | N(a)|.
Hence, we can think of the sums in the definition of the (-functions as sums over

the ideals of O with some additional properties.

Theorem 15. The (-functions defined above can be written as Dirichlet series

which converge absolutely on some half-plane as

CO(SHO) _ Z ap,n7 Cl(&ﬂ) _ Z %7

n|*

n=b, (5) n=b, (5)

n#0 n+#0
where b, is 0,1 and —1 respectively for p = 0,1,2 and we can determine a,y

explicitly.

In order to express the (-functions as in Theorem 15 (i.e. to find the coef-

ficients in the Dirichlet series), first we need to determine which integers occur
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as norms of elements in Og; this is equivalent to finding the norms of principal
ideals in O by the Remark 14. Since every ideal can be written as products of
prime ideals, we first give a complete description of the set of all prime ideals Og.
For this purpose, it is enough to show how each rational prime can be decomposed

into prime ideals since each prime ideal can only divide one rational prime number.

Remark 16. Consider K = @(\/5) Assume p is an odd prime. By using Theorem
3, we see that if p =1 or4 mod 5, then p splits in Og. If p=2 or3 mod 5 then
p remains prime in Ox. The only prime which ramifies in Ok is p = 5 and the

prime number 2 remains prime in Og.

For n > 0, let A(n) = |{a: ais an ideal of O with N(a) = n}|
Lemma 17. Let n = plf .. .pﬁf where each p; is a distinct prime number. Then

0 if any p; is inert and l; is odd, otherwise
A(n) =

[LGL+1) where p; splits
Claim 18. We claim that

Ck(87 i) = Ck(sa__l)a Ck(svi) = Ck(sa__Q) fOT’ k= 07 1
and

C1(57 i) = _Cl(sv i)

5.0.4 The f-functions

The Fourier Transform

Consider the real vector space R" with the standard inner product x -y = x1y; +

s Ty, for x = (4,00 ,20), Yy = (Y1, ,yn) € R™. Suppose f € LYR")
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for the measure | d" x| induced by the standard inner product. Then the Fourier

transform f :R™ — C of f is defined by

f(}’) _ s f(X)€727rix-y’ qr X‘

Now, let §(R™) denote the Schwartz space on R™.

Poisson Summation Formula

Let I" be a full rank lattice in R™ and I'* C R” be its dual lattice i.e.

I"={peR"st. A pu e Zfor every X € I'}.

Let g : R® — C be a [-periodic function and of class C! i.e. g(x+ A) = g(x)
for every x € R™ and A € I". Then the Fourier coefficient of g for p € I'* is defined
by

1 —2iTX- | qn
cul9) = = [ 9(x)e [ d" x|
Tl Js
where |I'| is the volume of the lattice and F is a fundamental domain of R"/I".

Then
g(x) =) culg)e’™*

per*
Theorem 19. (Poisson Summation Formula) Let f € S(R™) and T" be a full rank

lattice in R™. Then for any x € R"

DSt ) = g D Fmene
per*

Aerl

Proof. Define a function g : R — C as

g(x) =D flx+A).

aerl’
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Since f is Schwartz class, g is C*° and a I'-periodic function. Thus by using

the Fourier inversion formula we get

per*
1 — 4T, n TIX
= % | [ote ey
per* F
1 — 27y - n TIX-
AE ) el
pelr* Ael’

{
|
{
{

1 n TiX-
=mz Z/fyH 2my+wdy|}2 ﬂ
s Ael
1 —2miy- n TIX"
= S [ sy f s
“er* n
1 £ 2miX-
:m f(p)e

The #-series

For each p € Ok /(v/5), we define two 6- series as

Oolt,top) = 3o e B,
n=p (V5)

(ttp)= D0 e suHE
p=p (V/5)

where p/ is the conjugate of u. We would like to prove the following two relations:

Z €2i7rTr(%)90 (%, %,a) (5.2)

Oo(t,t', p) = 7
aEOK/(f)
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and

’ —1 1 Qiﬂ-Tr<M) 1 ]_
0,(t,t = — 501 =, - . .
R PG CHOR

Now, consider f:R? — R,
Flay, wo) = e 5@+t (@24b)7] (5.4)

for t, ¢’ > 0. Let us compute the Fourier transform of f.

j:(yl’ Yo) = /OO (/OO e—rr(t/5)(:v1+a)2€_2z‘7m1y1dx1> 6—7r(t//5)(x2+b)26_2iﬂx2y2d$2

—00

Let u = \/t/5(x1 + a), then du = \/t/5dx; and x; = u+/5/t — a. Similarly, let
v = 4/t/5(xg + a), then dv = \/t/5dxy and xo = v4/5/t — b. We see that

/OO efﬂ(t/5)(1‘1+a,)2672i7r$1y1 dx _ \/5_/t/oo eiﬂu2€f2iﬂ'y1(u 5/t7a)du

—00
00
€

= 4 /5/te2iwy1a/ f7r(u+’iy1\/5/t)27(57ry%)/tdu
— /5 te?imiae )/t / i /A2 gy,

—0o0

_ 5/t62i7ry1a6—(57ry%)/t

Therefore,

~ 5 —57 (ﬁ + yi2>
y 7
eZzﬂ'(yl a+yab) e t Tt

fyi,2) = i

Now, we will apply the Poisson summation formula to the pair f and f . We
know that the images of O and the ideal (1/5) under the canonical embedding o

are full rank lattices in R?. Let I' = o((v/5)). We know that as lattices in R?,
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We also need to know the dual lattice of I' to compute the right hand sight of
the Poisson summation formula. Let B be the matrix whose columns are the basis

vectors of I'. Then we know that the columns of (B~1)” will span I'*. Let

5
b V5 +2\/5
5—5
-5 =52
Then, we see that
v5—1
| o
—V5-1 15
o 1/
which means
1/5 V6-1
=27 / +z| "
—/B-1
1/5 i

Also, note that |T'| = det(B) = 5v/5. Consider the map ¢ : %OK — I, given
by
¢((1/5)A) = o((1/5)A, (1/5)X) = ((1/5)X, (1/5)A)

where )\ is the conjugate of A. Clearly, this map is an isomorphism.

Now, by Poisson summation formula
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2t (u))?

DI B

n=p (V5) Ber

7r(t(B+p)2+t/<zﬁ’+p’)2)
5

—57 (V)2+<Vl>2 +2i7r(l/ +( AYN)
7 7 p+(")p")

1 5
= — —c€
5\/5;@

SENEES o 33 i (2)

\/5 \/ﬁ Ae0k
11 Z 2i7rTr<aT,p) Z _%<A72+(A;)2)
- e .

V5 \/ﬁaeox/(\/g) A=a (V5)

This completes the proof of (5.2).

By one of the properties of Fourier transform, we know that

T ( ai aj;l) (y1,y2) = (2imyy) (2imys) f (y1, y2)

We apply this property to the function given in (5.4), and we get

F (42%#/(1'2 +b) (21 + @)f) (11, 92) = —472192.f (Y1, v2) (5.5)

Now, we apply the Poisson Summation Formula and the relation in (5.5):

40



/ _ (t(ﬁ+p>2+5’(ﬁ’+p’>2)
o5 2B+ p)(E"+ e ’
Ber

tt/ Z Mlue (tu2+ts’(u')2>

_ ( ’) ()\) (AP ) im0 ) )
\/_ /\EO

N2 /
ff (7* 9! >+2i7r T{%)

>/

AEOK

(aH?

1 1 / 5 %’2+ t
:_ﬁ(\/ﬁ)s Z Z Me ( )

anK/(\[) A=a (v/5)
This completes the proof of (5.3).

Corollary 20. Notice that for fixed v,
Oo(ue®, ue™", p) — 6(p) decays exponentially asu — oo
from the definition and by the relation (5.2)
2 —2

1
Oo(ue=,ue =", p) ~ — asu — 0
u

where

5.0.5 The &¢-functions

Let us define & and & by
s = (£(3))"(2) atewn)
aton = (r(5)) (2) aton

Note that (-functions are absolutely convergent in a half plane.
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Proposition 21. The &-functions have the following integral representations:

3 p = 2/ / 6—%u(,u eV+(u')2e?) dU,dU’
-l Ju=0 U

—p(@)
p#0
_27‘— : > s+1 Y- ( +(N 2—u dudv
Gi(s.p) = = /U_l/uou > mped -
p=p(V5)

p#0

Proof. We know that

hence we get
r <f) - /OO e~ts/2 14y,
2 0

Let t = g,uzx, then dt = gp?dx. Therefore,

o0 n s/2—1
()= [ Gy

7T dx
— —(7/5)ulx s/2
(5" ur / -

By a similar computation above, we have

(é) B / / o~ & (WPat(u)?y) s/2ys/2d$dy
x) i vy

2v

Let 2 = ue®, y = ue=2 which give us zy = u? and z/y = e®. Also, 2udu =

dr — xd
xdy + ydz, and 4e*dv = yy# from which we get
drdy 4dudv
ry  ou
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Hence,

° 1 oo [e’¢) - 3 20y d
> (I'(s/2))* =4/ / e Fuler e A G
m) |l e 2\ ”
E 1 (F(S/Q))Q — 4/ / use_%u(ﬂze%-&-(u')%’%)d_u o
m) [N o \Us ”

In order to get the &-function above we need to add 1/|N (u)|* for p € (OF —

{0})/ ~. on the left side of the integral. However, this is a sum over a pretty
complicated quotient of a sublattice of Ox. We want to write the {-function as an
integral involving a f#-function and this requires us to have a sum over all elements
p € 0% —{0}. For this purpose, we first change the order of the integration in the

above integral and then we write the integral with respect to v that is from —oo

to oo as a sum of integrals from —[ to [ where [ = %1ogu where u = <1+2\/5>

the first totally positive unit which is congruent to 1 modulo the ideal (v/5).

_ / ( Z / _7U(M2e2(v+2nl)+ (1 "2e 72(v+2nl))d ) du

_ / ( Z / 2nl)2 2v+(ul 2nl)2 —2v)dv> d_u
n=—oo u

_ / < Z / ,uun)2 21)_’_(” un)Z 721) dv) @
n=—oo u

In the last integral, we replaced [ by %logu so that e? becomes u. Now we add

1/|N (w)]® for p € (0% — {0}) ~, on the left side of the integral.

™

1 n 00
/ / o= Fu((uum e umyev) g | A
u

n=-00 (0 —{0}>/~u

(E)S (T(5/2))%olp. 5) = £(s. )

We see that if p € (0% — {0})/ ~u, then pu™ runs through all the elements 7 of
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the set 0% — {0} when n is an integer. Therefore, we have

l 00
s 2 2v N2 ,—2v dudv
o=t [ [Tu X e
—1Jo Z Uu

n=p (V5), n#0

Similarly, we can prove the integral representation for & (s, p).

In the above sum, p can take 5 values. If p # 0, then the sum is over a translate
of a sublattice of Ok and is equal to the 6y(t,t', p) by definition. However, when
p = 0 the above sum does not include a term for n = 0. Hence, it is equal to

Oo(t,t',0) — 1. As a result,

oo ! B dvdu
(s, ) = 4 /0 w [ (Bl ue > p) = 5()
where
1 p=20
o(p) =
0 p#0

Now, we would like to prove £-functions are meromorphic and they satisfy a

functional equation.

Proposition 22. The &-functions defined above are meromorphic functions on C

with simple poles at s =0 and s = 1. They also satisfy

&o(l—s,p) = = Z eZiﬂﬂ(aT%>§o(s,a)

a mod V5

Proof. We will prove this by considering two cases:
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Case 1: In this case, p # 0. First, we break the integral representation of &
into two integrals from 0 to 1 and from 1 to co. In the first integral, we make the

change of variable u <+ 1/u. Then we get

(s, p / (/ Oo(ue®  ue ", p )dv)%u
:4/1 - </_590< T p)dv> d_+4/1°°us (/_lleo(ue%’ue?v’p)dv) d—j

Now we will apply the following relation for the #y-function

Z €2i7rTr(¥)00 (l)l’a)
't

aGOK/(\f)

eo(ta t,7 p) =

7

in the first integral.

2z7rT&"<T’)) o o dvdu
\/_/ / Oo(ue’, ue™", a) "

GOK/(\[
s 2v du
4 u Go(ue ,ue” =Y p)dv
1 1 u
In the above sum, the cases a = 0 and o # 0 are quite different. Since

Oo(ue ue *’a) — 6 <%) is exponentially decreasing at infinity, the integrals

2 ue?" ) define entire functions except when o = 0. The

above involving 6y (ue
function 6y(ue®’, ue2",0) leads to a pole at s = 1. In order to get this pole, we

will add and subtract 1 to the function 6y (ue?’, ue=2,0).

\/_/ / Z 2 Te (% )00( v e, a)dvudu

€0k /(V5), a0

/ (/ ol 2v,ue—2v,o)—1+1)]dv)%
T
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After integrating the second integral above, we have

4 1= /l 2im Tr (232 % 9 dvdu
= — u e 5 /0o (ue®, ue ", «
\/5/1 l Z of ) u

€0k /(V5), a0
8l 4 > (/l oo o )du
-+ — w® Op(ue’,ue =",0) — 1)dv | —
\/5(1—3) \/3/1 —z( of ) ) U

[} l d
+ 4/ u’ (/ Go(ue%,ue%,p)dv> o
1 1 u

Therefore, we have just shown that (s, p) where p # 0 is a meromorphic function

whose only pole is at s = 1 with residue

81 _ 8log((3+ Vv5)/2)

V5 V5 '

Case 2: In this case, p = 0. First, we write the integral representation of &,(s, 0)
and then split the integral into two integrals from 0 to 1 and from 1 to co. In the
first integral, we make the substitution u <+ 1/u. Then we get

Sols,0) = /OOO u’ (/l (Oo(ue® , ue™?",0) — 1)dv> d—s

-l

- 4/100 u’ (/ll(00(62”/u,e‘2“/u,0) - l)dv) %“
+4/100u8 (/_ll(Go(uez”,ue%,o) _ 1)dv> dgu

The second integral above defines an entire function since 6y(ue®”,ue=2",0) — 1
decays exponentially at infinity. However, the first integral converges only for
Re s > 1 since Oy(e* /u, e /u, 0) behaves like u at infinity. First, we will integrate
—1 in the first integral and then we will apply the relation

1 e2z‘7rTr<%,p)60 (1 1 04)

1
NGV 0t
\/5 it a€0k /(V5)

90(t7 t/> /O) =
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to p(e®” /u, e’ /u,0).

0o l
== _1_4/ / 0o(e*" Ju,e " Ju, O)dvdu 4/ u’ (/ (Bo(ue®”, ue 2", 0) — 1)dv> du
1 -1 u

8l 1- / 2'LTrTr(—”) 9 9 dvdu
:———I—— T e 5 )0g(ue™, ue” ", «
\/5/ —1 Z of ) u

a€0k /(V5), a0

dvd
+4/ / (0o(ue®”, ue=",0) — 1) v
u

As in the previous case, since fy(ue*’, ue ?",0) — 1 is exponentially decreasing at

infinity, the integrals above involving y(ue?’, ue™2’, ) define entire functions ex-

cept when o = 0 whereas the function 6y(ue?’, ue=2?,0) leads to a pole at s = 1. In
order to get this pole, we will add and subtract 1 to the function 0y(ue?”, ue=2v,0).

_ f / / 3 J2imTe(%5e )90( ,e%’&)dvju

a€0k /(V/5), a0

dvdu > ! dvdu
+ — ul_s/ O (ue, ue ,0) —1+1 +4/ us/ 0o (ue®, ue=2",0) — 1
ﬁ/ o R -

By integrating 1 in the second integral, we have

8l 2im Tr (22 2% 9 dvdu
= —— g e 5 )0g(ue™, ue” ", o
§ \/_ 1—5s) \/_/ / of ) u

€0k /(V5), a0

4 1 / 9 5 dvdu / /l 9 L dvdu
+ — u° Og(ue* ue =",0) — 1 +4 u’® Og(ue , ue ",0) — 1
= [ [ el e A Y -

Remark 23. Since 0y(ue, ue *"p) — 6(p) is exponentially decreasing at infinity,
the integrals above on the right hand side of the &-functions define entire functions.
As a result, we have just proven that &-functions are meromorphic functions with

poles at most at s =0 and s = 1.

Now, we would like to prove

£0<1 - Sap) - % Z eZW’H(Tﬂ)&J(Sa Oé)

a0k /(V5)
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Casel: p # 0 We already have an integral representation for &(s,p). We
substitute s <+ 1 — s in this representation and get

V5&(1—s,p) = —— + 4/ / Z eZmﬂ(Tp)Ho(ue%,ue’zv,&)dvdu

u
a€0 /(V5), a0

dvd
+4/ us/ (0o (ue®, ue ?",0) — 1) vuu
1 -1

) l
dvd
_|_4\/6/ ul—s/ 90(U62U,U€_2U7p> vau
1 —1

u

Now substitute u with 1/u in the last integral above resulting in

) l dud 1 l dod
4\/5/ ul—s / eo(u€2v’ U6—2v7 p) vau _ 4\/5/ w! / 60(62”/u, u€—2v/u7 p) val
1 —1 U 0 1 U

In the relation

il (b

a€0k /(V/5)

let t = €?/u and ¢ = 72 /u. Then we have
—2v u i ap v —2v
(e fue g = S AT (et e, )
a€0x /(V5)

By applying the relation to y(e?" /u, ue2" /u, p), the third integral in v/5&,(1—s, p)

becomes

/ / Z emjy(%)@ow@%? ue ", a) dvud -

7a€(‘)/

Now we can combine the first integral in v/5&(1 — s, p) which is from 1 to co with

the last integral above to get an integral from 0 to oo for a # 0. Therefore,

wrr—p _o dvdu
Ve -sp= 3 A [T [ e e o™

a€0g /(V5),a#0

— —+4/ / Oo(u “,ue_%,O)dvdu
u
dvd

+4/ us/ (0o(ue®”  ue=",0) — 1) v
1 -1 u
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u

dvd
Note that &(s,0) = / / (0o(ue®, ue ",0) — 1) " In order to get
€o(s,0), we will first add and subtract 1 in the second integral above and then
integrate 1. The integral of 1 over the given region is just 8//s, and then we will

combine the remaining integrals to get

wrr—p o2 dvdu
V5&(1 —s,p) = Z s / /90 Jue ™, a) "

a€0g /(V5),a#0

+4/ / (0o(ue®, ue=2",0) — 1)dvdu
u

Note that when a = 0, e Tr(%) = 1 leading to

£0<1 - Sap) - % Z 62“%(%‘7)&](57 Oé)

a0k /(V5)

Similar computations give the same relation for p = 0.

Remark 24. Notice that we had defined &y (s, p) as

s = (£ (3))"(2) atewn)

then
1

[(s/2)>

We have just proven that &y(s, p) is a meromorphic function on the entire complex

Gls.0) = &ls:0) (5) 773

plane except simple poles at s =1 and s = 0. Since 15 an entire function

1
I'(s/2)

of s with simple zeroes at s = 0,—1/2,—1,--- and it vanishes nowhere else, then

Co(s, p) is a meromorphic function with a simple pole at s = 1.
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5.1 Construction of wave forms

In this section, we will construct the wave forms corresponding the (-functions
which we have defined before in (15). For each p, 0 < p < 2, define a function
9,(2) where z = x + iy € H as follows:

4
1++5 21|n 2imn
9o(2) = log ( 5 ) Spy P+ ) ahy K, ( ; |y) =

n#0, n=b, (5)

By definition, we know that §(p) = 0 only when p = 0, i.e. we have a constant

term only if p = 0.

Claim 25. We will show that

9p (—%) = icpoga(z)

p=0

Proof. Consider

4
1++5 2m|n
e :10g< ) o S e ()

n#0, n=b, (5)

= up(y) + Fp(y)

First we want to prove
2
1
9p (_) = Z Cpaga(y)
Y '—0

for y > 0. By using the integral representation of K-Bessel function, we have
27 |n 1ot s s\ [ 27in|y\ "’
Ko (Z20My) = = T (—) T (—) d
0(5 @ =F R OLIE @6)) ©
1 et 57 1
S M) (2) L
8mi 2/ \n /) |nlsy*

c—100

where ¢ > 0. Then we see that

1 c+ico
B =g [ 2

B 8i —ico Y

20



leading to

1 c+i00
9o(y) = up(y) + —— / ff_(f )2 ds.

8mi —ico Y

From the above representation,

1 1 1 c+ioco gp(s)
o (3) = () e L e

Now we use the identity

2

&ols) = ZCPU§U(1 —5)

o=0

1 C—i—zoos(7 1—3
(3) =0 () o [ S

Now we make the substitution s <+ 1 — s in the integral and obtain

1 L-ctioo ¢ (g
%Q)ﬁ4)+2%wJ}mwu~
c+i00
( ) Z ol 8i / Y~ 1/2

__Z f’(’z = 1/2

res

to get

In the above, we can replace the integral from 1 — ¢ — 400 to 1 — ¢ + 700 by the
integral from ¢ — 700 to ¢ 4 100 and by taking the residues of the integrand into

account via the Phragmén-Lindelof theorem.

& (s)

ys—1/2

We know that has simple poles at s = 0 when ¢ = 0 and at s = 1

3+v5
3++/5 8l 810g( >
+2\/_> 2 and Y12

for all o with residues —8l = —8log ( —
V5 Vb
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respectively. Also, first row of the matrix (c,) is [1/v/5,2/v/5,2/v/5]. Then
1 1+V5\ ), /C““ §o(5)
go| — ) =log + Co 0o g ds
(5) (5] e B [
1 1
——|—= | —8log 3+\/_ 1/2—i-—log 345 y /2
4 5 V5 2
1( 2 2
JR— _ilog 3+—\/5 y_1/2 + 8 1 M y_1/2
4 5\/3 2 V55 2
B 1 + \/_ _1/2 c+ioo
_log( 5 +Z 8m/ 31/2
4
—l—ylﬂilog L5
V5 2
4 4
e[y L+vB) 1, (1445
Y 5%\ 2 55\ 2
c+ioco
= 1/2i10g 1 + \/_ Z Co
\/g ‘7 3 T 1/2
2
1 c+ioo 50(8)
— ZCQJUO(y) + ZCOJ%/C ' y5*1/2 dS

—100

We know that for p = 1,2, u,(1/y) = u,(y) = 0. Hence, we need to show that

2
__Z P"Z Y- 1/2 - Zcpf’up

res o=0

for p = 1,2 where

1 2 2

(Cpa):ﬁ 1 wW+w? w4w?

1 wH+w!t w4w?

and w = e’5 . We will show the computation for p = 1 since the computation for
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p = 2 is similar.

I e ] ) LA T o) P
Tres s 1/2 4\/5 2 \/5 2
1 8 3+V5
———w +wt+tw+w)—=lo —1/2
1 ! 2
5 ( > y1/2 = Z Claua(y)
o=0

5.1.1 The ¢-functions

Let us define &, and & by
S~ loge \ o [ S T Hoae | (B
5o<s,p>=r< o )r< o ) (2) s
s—i—l—’;"i s—i-l—i-gm6 5\°
gl(‘s’p):F( 92 8 >F< 92 g ) (;) Cl(svp)'

Note that (-functions are absolutely convergent in a half plane.

Proposition 26. The &-functions have the following integral representations:

5 p = 2/ / efsu(‘u e +(u! )26—1)) dudv7
-l Ju=0 U

—,0(\/5)

p#0

27T ! & _,’_1 / 2 71} d'LLd'U
_ s § —Fu(p?e’+(u')
£1(s, p) 5 /v:—l/u:()u ppe 5 ”
n=p (V5)

p# 0
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Proof. We know that

Let ¢ = mmi/loge. Then we get

F(S_C> :/ e*tt%ﬁ.
2 0 t

d d
Let t = Z,uQx, then & = &%, Therefore,
> t x

- < 5 d
P(5) = [ G T
0 x
() e [T
) 0 x

By a similar computation above, we have

(5)5 1 ]- (|M|)CF< ) <8+C) / / 67%NI+N)2) SECys;rcd./L'dy
il [ \ o] 2 Ty

Let © = ue?, y = ue 2" which give us xy = v? and z/y = e*. Also, 2udu =

dr — xd
xdy + ydz, and 4e*’dv = yy# from which we get
drdy 4dudv
ry  ou

Hence,

(§)5 1 1 (M)cf (8 _ C) r (S * c) - 4/00 (/oo use—%uwzemr(u’)?e*?”)d_u
T ) |ul s\ 2 2 —s \Jo u

(E) #Al(ﬂ)mr <s — c) r <s + c) _ 4/00 (/oo useQU(MQSQ”JF(#')Q@_%)d—u) 20,
™ |N(:u)|s 2 2 — 0 0 u

In order to get the ¢-function above we need to add Ay (u)™/|N (u)|® for p €
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(0% — {0})/ ~, on the left side of the integral. However, this is a sum over
a pretty complicated quotient of a sublattice of Ox. We want to write the &-
function as an integral involving a f#-function and this requires to have a sum over
all elements u € 0% — {0}. For this purpose, we first change the order of the
integration in the above integral and then we write the integral with respect to v
that is from —oo to oo as a sum of integrals from —[ to [ where [ = %logu where

4
u = <%5) is the first totally positive unit which is congruent to 1 modulo the

ideal ( \/3)

_ 4 / u Z / e~ Fuln?eX A4 (u )%2<U+2””>6—20<v+2"”dv> du
0 n=—00 '
= ; Rt U
o0 ) 2e2v 4 (p/un)2e *21)) —2cv du
_y u Z K dv | —
0 n=—00 !

In the last integral, we replaced [ by %logu so that e? becomes u. Now we add

1/IN ()| for p € (0% — {0}) ~, on the left side of the integral.
5\° 9
; (F<S/2)) CO(pa 8) = 5(57 p)
1 n 0o
/ / o= Zul(m 2+ (e ) 200 g, | D
n==50 u€(0 —{0}>/~u !

We see that if u € (0% — {0})/ ~u, then pu™ runs through all the elements 7 of

the set 0% — {0} when n is an integer. Therefore, we have

™ v /—vdd
sp—4// we Y e—su(n262+(n)2e2)1;“

n=p (V5), n#0

In the above sum, p can take 5 values. If p # 0, then the sum is over a translate

of a sublattice of Ok and is equal to the 6y(t,t', p) by definition. However, when
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p = 0 the above sum does not include a term for n = 0. Hence, it is equal to

Oo(t,t',0) — 1. As a result,

00 !
O A N R N T
0 -1
where
o(p) =
0 p#0
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APPENDIX A

This appendix consists of the translation of Hans Maass’s article titled as “About a
New Class of Nonanalytic Automorphic Functions and Determination of Dirichlet
Series by Functional Equations” which was published in Math. Ann .121, 1949.

The translation of the article was not available before.
Translated by: Yasemin Kara (Department of Mathematics, Cornell University)

I would like to thank Janna Lierl(Department of Mathematics, Cornell

University) for her invaluable help.

Zeta functions of rational and quadratic number fields have two important
properties. On the one hand, they satisfy certain functional equations; on the
other hand, they are linear combinations of special Dirichlet series with an Euler
product development or they admit such a development themselves. The extend to
which these zeta functions are defined by their functional equations is the starting
point of a more general theory which is developed by E.Hecke!) using the Mellin

transform

U = [ ey (A1)
0
and its inverse

o+100
O(y) = L/ y W (s)ds. (A.2)

2 J, i
This reversible integral transform establishes a remarkable relationship between

solutions of Riemann functional equations, that can be developed into Dirichlet

o7



series, and automorphic functions. To apply the Hecke theory, the I'-factors ap-

pearing in the functional equation must be of the form

I'(s) orI’(%)I‘(s—;l);

thus the zeta functions of real quadratic fields are not covered by the theory. This

limitation is offset by the extraordinary importance of what the Hecke theory
has achieved for the theory of functional equations of zeta functions for rational
and imaginary quadratic number fields and culminates in an algebraic formulation
of the problem of Euler product developments. So the question which arises is
whether the functional equations of zeta functions of real quadratic fields can be
treated in a similar way i.e. whether real quadratic zeta functions admit analogues
of the modular functions associated to the zeta functions of real and imaginary
quadratic fields. This is indeed the case and it is the class of functions g, satisfying

the wave equation

g 1 g + 1
oz Oy? Y2

g =0 (r=Parameter) (A.3)

and that are invariant under certain noneuclidean transformations on the hyper-
bolic plane y > 0 with respect to the metric y~?(dz? + dy?). The Mellin tranform
and its inverse are the connection between the Dirichlet series and the automor-
phic wave functions so that we have a far-reaching analogue of the Hecke theory.
This connection becomes apparent when we notice that the wave function ¢ turns
into a potential function when we formally replace the parameter r with ! in the
series for g. The Dirichlet series do not transform directly into the wave func-
tions, instead they are known by the equation (2) only on the line z = 0. We get
the full knowledge of the wave functions only after a process similar to analytic
continuation; for this we first construct a wave function g which coincides with

the given values on the line x = 0. However, g is uniquely determined only when
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0 : . . .
both g and (9_9 are known on the line = 0. This means every wave function g is
x
associated with a pair of Dirichlet series. The functional equations corresponding
to these series, which show an invariance under the substitution s — 1 — s, differ

in a crucial way by the I'-factors, which are given by

F(s—l—zr)r(s—zr) Orr<s+1+zr)r(s+1—zr). (A4)
2 2 2 2

This pairing of functional equations can indeed be observed in known examples?)

and is explained by its relationship to the wave functions. As a variable of g we
choose the complex number

T=x4+1y

because the setting in which it is easiest to write noneuclidean motions is the upper
half plane y > 0 where such motions are fractional linear transformations with
real coefficients. So in the following we will consider complex valued nonanalytic
automorphic functions g(7) which satisfy the wave equation (3). We sometimes

call the Hecke theory?) the “analytic case”.

After this general introduction we give an overview of the main results of this

article.

First we prove a general theorem about systems of functional equations which
we will write down in full detail because it brings out the key features that underlie

the entire theory.

Theorem 27. Fiz real numbers A > 0 and r 2 0, a positive integer q, an N x N

matriz C = (cy) with C* = Id, and integers by, by, ..., by.

1. We want to know all systems of 2N functions

©1(5), 02(5), .. on(8); Pi(s), ¥a(s), ..., Yn(s)
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with the following properties:

1. The functions (s —1 —ir)(s — 1 +ir)pi(s) and Pp(s) (k =1,2,...,N)
are entire functions of s of finite genus.

2. The following functional equations hold

§e(l—s) = chl£l<s)a

m(l—s)==> cum(s), (k=12 N) (A.5)

if we set

at) - (2) T (S55)r (S50 ) e,
(s) = (5) () (T e e

3. In an appropriate half-plane the functions vi(s) and r(s) can be writ-

ten as Dirichlet series

n = by (q)
n#0
Uk(s) = Y (Sgrls)’f’(f), (k=12...N). (A7)
n = b (q)
n#0

4. The following equation holds

27ribk 27r7lbk
Qk(l—e i ):0k<1—e i ):0, (k=1,2,..N)  (AS8)

if we put
N N
Ok = chlal, O = Z CrB (A.Q)
I=1 =1
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and if we determine oy, B so that

673 ﬁk
— — >0
Pk s—1—4r s—1+4+ar for or
Ok — aw_ _ _ B forr =0, (A.10)

s—1 (s—1)2

are entire functions of s.

II. Every system of functions with these properties corresponds bijectively to a

system of N functions
91(7—)7 92<T)7 Y gN<T)7

with the following properties via the integral transforms (1) and (2):

1. They satisfy the wave equation

(82 O ri4a

52 + I + /2 ) ge(t) =0 (k=1,2,...,N) (A.11)

and they are regular at every point in the upper half plane as functions

of real variables x and y.

2. There exist ki1, ko, A1 and Ay such that
| gr(7) |< Ay™ asy — oo, | gr(7) |< Asy™™ asy — 0 (A.12)

with positive constants s and 5 (k=1,2,...,N).

3. The functions gi satisfy

A 2miby,
Gk (T_I_E) =€ 1 gk(T)a (k:17277N) (Alg)
4. The transformation formula
1 N
— ) = k=1,2,..,N A.14
9k ( 7_) lzlcklgl<7-)7 ( P PIERE) ) ( )
holds.
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A.0.2 Construction of the g

Starting from the Dirichlet series (7) we find the following representation for the

system of functions I1.

1 2 2min
) =)+ X i, ()T )
n = by (q)
n#0
with
Mopyz " + Moygyz " for r > 0,
ur(y) = : (A.16)

M{Qk+0k (logﬁ —C’)}y% +Maky% logy forr =0.

Here C is the Euler constant and

= (e (L), A7

The Bessel function K, (z) which comes up in (15) satisfies the following differential
equation if z is purely imaginary

d*w dw
2 2, o\
o + a (z*+v)w=0 (A.18)

and as z — oo it has the following asymptotic behaviour?®)

K,(z) ~ ]/ —€e". (A.19)

A.0.3 Group invariance

A
Among all discontinous groups G (—), which are generated by the two substitu-
q

tions

A 1
T—=T7T+ —and 7+ ——,
q T
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G(1) and G(2) are special because they are subgroups of the modular group M.

They are either M or so called the Theta group T. In general, the transformation
A

formulas 3. and 4. of the system II. define a homomorphism from the group G (—)
q

to the group generated by the matrices

27ib

(cr) and <(5kle 1 k) (0x; = Kronecker symbol) (A.20)

if the system of functions II. is linearly independent. The substitutions of G | —

q

A
that get mapped to the identity matrix build a normal subgroup N of G (—)

q

Apparently, for all wave functions of the system II. we have

gr(ST) = gi(7) for S € N. (A.21)

In particular, this invariance is important if N has finite index in G (2) i.e. if the
group generated by the substitutions (20) is finite and if A = ¢ or A = 2¢. In this
case, by using the Siegel method we prove that there are only finitely many linearly
independent automorphic wave functions for the group N, which behave like g (7)
as y — oo in all parabolic cusps of the fundamental domain of N. Therefore,
we get an important theorem that says the dimension of the linearly equivalent
families of systems of functions I and II is finite. In particular, for the modular
group M and the Thetagroup T we can find explicitly all wave functions for r = 0

that have the same behaviour in the parabolic cusps described above. This result

corresponds to Theorem 2.

Theorem 28. All solutions ¢(s) of the functional equation

6= (2) (£(2)) et - e1-) (A2

™

which can be written as a Dirichlet series and for which (s — 1)%¢(s) is an entire

function of finite genus, form a linear family which is generated by C*(s) in the case
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of A =1 and by 27°C*(s) and (1+2'72%)(?(s) in the case of A\ = 2 (((s) =Riemann
zeta function). By contrast, for neither X =1 nor for A = 2 is there a non trivial
entire function @(s) of finite genus that can be developed in a Dirichlet series and

which satisfies

A.0.4 Real quadratic fields

An important example of Theorem 1 is the class of zeta functions of the real

quadratic field R(v/D) with discriminat D, formed with any GroBen character \7:

A* AT (1)
C 37Q>a7>\n7Q D)= n ;
O VI
n = e (aQVD)

k70, (W) g vBpoay

A AT
Gi(s, 0,0, 27,QVD) = T E) > sgn(vp) |§r£f|?' (A.23)
n = e (aQVD)

70, (W) g Bpoy

Here we sum over a complete system of non-vanishing, non-mod Qv/Dp., asso-
ciated residue classes ¢ mod aQ+v/D where Q is an arbitrary non-negative integer,
a is an arbitrary ideal, o is an arbitrary element of a and we set Na = A. The
Groflen character \; is defined by

s’
log e

A = ﬁ/ , €= fundamental unit of R(v'D), € > 1 (A.24)
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The functional equations

&(1—s,0a, N, Q\/B) = 22_71)5” Z e%is(%ky(s,a, a, A7, Q\/E) (A.25)

o mod aQV D

o =0 (a)

D\? 5 — i s+ ™
(Q—) F (%) F (%) QO(Sa 0, a, >‘7117Q v D)
™

D\t [s+1-I% s+ 1+ 22
(QT) r (Tlg> r (Tlg> gl(saga a, A?)Q\/B%

for v = 0,1 with

60(37 0, a, )\7117 Q\/E)

&1(s, 0,0, X7, QVD)

(A.26)

which are proved for n = 0 in 2), allow us to apply Theorem 1 to the system of

zeta function in (23) with

™

N=@Q?D, \=q=QD, cn. (A.27)

T = =
log e
One chooses the appropriate residue class ¢ mod aQv' D, o = 0 (a) as an index

instead of k so that the matrices in (20) coincide in our case with

1 1 T e’ 2miN e
(Q—\/ﬁ) &t () and ((5906 AQD > . (A.28)

Hecke?) showed that the principal congruence subgroup M(QD) of level QD gets
mapped to the identity by the map from M to the group that is generated by the

matrices (28), so that the wave functions corresponding to (23)

g(1, 0,0, X", QV'D) = 2i6, (an@> Y

1 1 27| Ny 2mitly
E A Kien AQD” A.29
n = e (aQVD)

w70, (W) g Bpos
are invariant with respect to substitutions of M(QD). Here lg = 3 logeq if eg(> 1)

generates the group of units in R(v/D), which are congruent to 1 mod Qv/Dps
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and

1 for n=0 an integral ideal b

5,(b) =

0 otherwise.

If we take into account the linear relations between the series (29), then in the case
D=5 Q=1 a=(1)

we are left with three linearly independent functions corresponding to the values
0= 0,1,2. Moreover, if n = 0 then the series are uniquely determined by part II,

(1 to 4) of Theorem 27 up to a common constant factor.

Theorem 29. The system of zeta functions

901(8) - <0<S7 0, (1)7 L, \/5)7 ¢1(3) - <1<S7 0, (1)7 L, \/5)7
902(8) = <0(87 1, (1)7 1, \/5)7 ¢2(3) = C1(87 1, (1)7 L, \/S),
903<S) = C0(3a27(1)717\/5)7 ¢3(S) = C1(3a27(1)717\/5) (ASO)

is uniquely determined by the conditions in part I. (1 to 4) of Theorem 27 with
N:?), )\:q:5, T:O, b1:0, bgzl, b3:—1 and
1 2 2
1
crl) = —F= 24072 1 -1 A.31
(ki) Nl R (A.31)
L ¢+t ¢+

s

where ( = e

Theorem 27 can be applied to the linear collection of wave functions of level
(@ since using the normal subgroup property of M((Q), one can determine a basis
for the collection of the wave functions as in the analytic case. The basis consists
of eigenfunctions of the substitutions 7 — 7 + 1. Therefore, it is reasonable to

associate a pair of Dirichlet series

P =3 uts = 3 e (A.32)
n#0

66



to each wavefunction of level @)

1 2m|n 2min
g(r) =uly) + > any? K ( Q|2 |y) e (A.33)
n#0

by the method mentioned above because it is a linear process. The determination

of u(y) in terms of ¢ and ¢ is done by using the residues of these functions.

Of particular interest is the collection of series that is analogous to the Eisentein

series®)

N|w

Y
E(7,s;(a1,a2),Q) = > Tt +ma

m; = a; (Q)

(m17 mQ) 7é (Ov O)

which are at first only defined Res > 2 but they have analytic continuation as

(A.34)

functions of s. The function values E(7,1 + 2ir; (a1, az2), @), which we also want
to call Eisenstein series, exist for all real » and represent the solutions of the wave
equation which are invariant under the substitutions of M(Q). This can be easily

seen by using the translation formulas
E(S7,14 2ir; (a1, a9), Q) = E(7,1 + 2ir; (a1, a9)S, Q) for S € M. (A.35)

Using the series E(7, 14 2ir; (a1, as), Q) we can, if r > 0, reduce an arbitrary wave
function of level @), which has a Fourier series similar to (33) in the parabolic cusps
of a fundamendal domain of M(Q), to a cusp function i.e. to such a function which
vanishes in all parabolic cusps. This is proved using the Hecke method, by passing
to the series E*(7,1 + 2ir; (a1, az), @) that comes from E(7,1 + 2ir; (a1, az2), @),
if we introduce the additional summation condition (m,mse) = 1. This case is
more complicated than the analytic case because in the reduction we have to
notice that 20 constants must be set to equal to 0, where ¢ denotes the number

of the parabolic cusps of the fundamental domain of M(Q); because the terms
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u(y) in the o Fourier series(of the kind (33)) of the given wave function on the
parabolic points depend on two parameters. On the other hand, there are only o
linearly independent Eisenstein series E(7, 1+ 2ir; (a1, as), Q). These are sufficient
because according to the certain bilinear relations we can only choose o out of 20
constants. In the case r = 0 the number of linearly independent Eisenstein series
is in general smaller than o and takes this value only for Q) = 1,2, 3,4,6. For other
values of () the applied methods above to solve the reduction problem are not
sufficient. A more detailed investigation shows that among the Eisenstein series
E*(1,1;(a1,az2),5) of level 5 there are exactly three that are linearly independent.
Certain linear combinations of the series are identical with the wave functions of
the system (30). Their behaviour with respect to the substitution 7 — —% can be
determined because of the known relations of the Eisenstein series at () = 5. So

for the functional eqautions of the zeta functions (30) there is a new proof which

does not use the theta series of the two variables.

The Eisenstein series of level QD and the wave functions g(7, 0, a, \¥, Qv/D)
are not linearly independent of each other. For example
Z 9(7,0,a,1,vD)
{a}
can be represented by the Eisenstein series of level D where we sum over a complete
system of representatives a of the narrow ideal class of R(v/D). The proof of the
identity provides the Dirichlet class number formula for the real quadratic fields

as a side result, as it comes out in the analytic case for the quadratic fields?).

The Hecke theory of T,,-operators, which is closely related to the problem of
writing Dirichlet series as Euler products, can be translated into the wave func-
tions of level () without any significant modifications. In order to understand

T! -operators(s. T, I1) also for m that are not relatively prime to @ it is necessary
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to split the collection of all wave functions into subspaces which are characterized

by their behaviour with respect to the operators U, R, € M and K defined by

U

I
&
I

(Q) foraa=1(Q), g(r) | K =g(—7). (A.36)

Similar to the analytic case we first build the subspaces §,(,x, @) of the wave
functions of the character y of the divisor t. The subspaces are the eigenfunctions

g(T) corresponding to the group of operators R, with the eigenvalues x(a):

9(7) | Ra = x(a)g(7) (A.37)

Moreover these have the property that in their Fourier series there are only expo-
nents whose greatest common divisor with () is t. The fact that K commutes with
the operators R,, and T allows us to split §, into two subspaces that consist of

eigenfunctions of K corresponding to the eigenvalues 1 and—1:

-t Q) =3 (tx. Q)+ 5, (t.x. Q). (A.38)

The wave function g(7) of level @ is an eigenfunction of the operator K corre-
sponding to the eigenvalues 1 or —1 if and only if either the Dirichlet series 1 (s)
or ¢(s), corresponding to the function g(7) in (32), vanishes identically. Every
function in one of the subfamilies §, (¢, x, Q) and F, (¢, x, Q) corresponds to only
one Dirichlet series. The linear families of the Dirichlet series that correspond to
the families § (¢, x, Q) and F, (¢, x, Q) are characterized by the fact that they

belong to the system of functional equations with the I'-factors

r s+ r r s —ar or T s+ 1+4r r s+1—ar '
2 2 2 2

The purpose of the decomposition (38) is to separate these two types. We can do

the same thing for the linear family &(Q) of the Eisenstein series of level Q:

¢(Q) = €(Q) + € H(Q). (A.39)
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The family of Dirichlet series corresponding to €™(Q) or ¢71(Q) is linearly

equaivalent to the set of all L-series products
(t1t2)"L(s +ir, x1)L(s — ir, x2), (A.40)

where t; is an arbitrary divisor of () and y; is an arbitrary character mod Q with
the restriction that x; and y, are both even or odd. l

The operator theory applied to F (¢, x, Q), §, (¢, x, Q) or any subspace which
is invariant under operators T, leads to the same result as in the analytic case.
Basically it is the explanation of the following fact. Let F'(7), F?(r),..., F*(7) be
a basis of the invariant family &,, which coincides with F (¢, x, Q) or F, (¢, x, Q)
or is contained in F (¢, x, Q) or I (¢, x, Q). The matrices A\(m) that are built

from the coefficients of the linear forms

)| Tt = Z Ao (M (A.41)

satisfy the rule

AmAmz) = S A (mclg‘?) X(d), (A.42)
d ‘ my, Mo
d>0

the matrix function

B(5) = (o) = Y Alm)(tm) ™ (A.43)

has the Euler product

o(s) =t JTOMQ) = A)p~ + AWx(p)p~>) " (A.44)

p

From several relations between coefficients we obtain that the linear space gen-
erated by s? Dirichlet series ¢ has rank s and is identical to a space ® which is as-

sociated to the space €,. The “principal axes theorem” says that matrices A(p) are
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diagonalizable matrices if we make a clever choice of basis F?(7), (0 = 1,2,...,K)
and if the prime number p is relatively prime to ). The so called “principal
axes theorem” can be proved in our case by applying the Petersson Principle of
Metrization®)to the wave functions. A certain normalization in the Euler prod-
ucts appearing on the prime factors that divide ) works by an elementary method
that is also developed by Petersson(s.K III). New aspects in this study do not
appear any longer so that the proofs can be described succinctly with regard to

the detailed representations 7,, I.11 and K [, 11, I11.

A.1 Systems of Functional Equations

For the proof of Theorem 1 and for later considerations we need estimates of the
Bessel function Kj,.(z) for real r > 0 and positive z, which we want to derive first.

We start with the integral representation W,6.15(4):

L) ()" 1
K (z) = M/ e (t? — 1) 2dt. (A.45)
r (5 + Z?”) 1
Here we substitute z(t — 1) = s and obtain
K (2) e 1 /OO —sgir—} (1+ S>”_%d (A.46)
w(2) = —e F—— e ’s — S. :
2z T (5+1r) Jo 2z

With the help of the integral represenation of the I'-function we get the following

limit from (46)

lim K;.(2) Q—Zez =1 (A.47)

2Z—00 T
and for arbitrary positive z the estimate is

| Kip(2) |[< Chz2e™” (A.48)

with the constant C; which only depends on r, where

3

Cy (A.49)

V2T (L) |
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For r = 0, the expression for K;,(z)y/2¢ is by (46) clearly a monotone increasing

function of z, which explains

Ko(a)e“\/ge_z < Ko(z) < 1/27(—26_2 for0 <a < z. (A.50)

Now let @i(s), ¥r(s) (k =1,2,...N) be a system of functions which satisfies the
conditions I, (1 to 4) of Theorem 1. We prove that the system of functions defined
by (15) has the properties I, (1 to 4). The convergences of the Dirichlet series (7)
for at least one value of s is equivalent to the statement that for proper choice of

constants Cy and » we get
|a® < Cy|n|* (k=1,2,..N). (A.51)

Using (48) we conclude that

2) - m
[ 9n(r) —u(y) |< 4/ O3 ke 5

holds. Hence for y — 0 we have:
9i(7) — uk(y) = O (/ t”_ée_QKytdt) =0 (y‘(”%))
0

if s+ % > 0 which we may assume. The conditions (12) are satisfied with s > %
and s = x+ % The partial derivatives of the Fourier series of gx(7) all exist and
can be computed by term by term differentiation because the formal derivatives
of any order converge uniformly for 0 < ¢ < y which can be seen easily. Hence
we find that gx(7) satisfies the wave equation (11) and (13) is obvious due to the
Fourier series of gx(7) and the condition (8). It only remains to prove (14). For
this we need the integral representation

1 o+100 t+ 7 t+ Vs Y ,t,%
Kulfv - F F <_) dt A 2
nge(y) = g5 /C, ( 2 ) ( 2 2 (A-52)

—100
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where y > 0, 0 > —Rery, 0 > —Rewy, which easily follows from the formula

W.6.5(6) and their relation W,3.7(8) from which we conclude

. vi+vo
Lot ) 1 o+ico A +— r t+uy T t+vo
y+5+2Kw(”‘”’y):_/ <_) () (5 )dt (A.53)
2

A 8mi s In |t+% yt—%

If we choose o > 1 and big enough such that the line of integration lies inside the

half plane of the absolute convergence of the Dirichlet series (7), then we have

1 2 1 04100
Fi(y) = Z alPy? K;, ( W/|\n |y> = —/U gkgs)ds (A.54)

8T Jo—ioo yS%
n = b (q)
n#0
o+i00
_ (8 p (271nl :L/ (s) A
G = X malyin, (Fy) - o [T M (ass)

n = by (q)
n#0

In both identities we replace the integral variable s by 1—s and apply the functional

equation (5), then we obtain

N l1—o+ioco
1 &(s)
=5 i d
& =1 o 8 /1 =

o—ico Y2

1— cr+zoo

Gry) = kl—

8mi 1—o—ioco y25

After translating the line of integration by 1 — o to all positions and after taking

into account the residues in the right way, similar to the analytic case we finally

obtain
Fy; (é) - ;Ckzﬂ*(y), G (5) = _;Clel(y) (k=1,2,..,N) (A.56)
with
Fi(y) = un(y) + Fi(y), (A.57)



where uy(y) is defined by (16). To justify this method consider the condition 7,1

of Theorem 1. The functions

%(é):—E)MMﬂ (k=1,2,..,N) (A.58)

have now the following properties. They are solutions of the wave equation because
in general if g(7) is a solution then ¢g(S7) is also a solution if S is any unimodular
substitution, and they and their first partial derivatives in x vanish at x = 0. This

follows immediately from

a(reo= . (1) =F (5],

0 2w 1 0 1 21 1 1
%Qk(ﬂz:o = T;Gk(y)’ L (—;)mzo = _TQG’“ <g> (A.59)

and the functional equations (56). Every solution g(7) of the wave equation

829 62g 7‘2+l
(m¢+mﬂ+ f4)“ﬂ:0

with the initial values
0
=0 — F_ = =0
9(T)z=0 or (T)e=0

vanishes identically because g(7) can be written as a power seires in x

g(r) = caly)a™,

as a solution of elliptic differential equations and for the coefficients that depend
on y we have the recursion formula
r? + zll

y2

(n+2)(n + Densa(y) + cp(y) + ca(y) =0forn=0,1,2,...,

which in general implies ¢,(y) = 0 because ¢o(y) and ¢1(y) vanish by assumption.
With the functional equations (14) we proved one direction of the equaivalence in

Theorem 1.
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Vice versa let now gx(7) be a system of functions with the properties 17, (1 to 4)
of Theorem 1. By I1,3 the functions gi(7) are periodic in x with the period A and
therefore can be written as a Fourier series which necessarily takes the form

a((]/f)yéﬂr + bék)y%—ir

gk(T)Z o1 o 1
aly? logy + b y2

2 2 Tin
> {aﬁ“)y%Kir ( WL” |y> + Py, (—W’An ‘y) } e (AL60)

n#0

for r > 0 and r = 0 respectively. Here K, (z) and I,(z) are independent solutions

of the differential equation (18). From the coefficient formula
it (T3] et (Py) = 3 [ e e 0
0

it can be seen b = 0 for n # 0 because gx(7) increases as y — oo at most like a

2m|n|
A

power of y while I, < y) increase exponentially. The coefficients a%k), b (n >
0) can be different than 0 by (13) only if n = by, (¢). The Fourier series of g (7) is
also of the form (15) and the numbers gy and o4 which are defined by (16) satisfy

the conditions (8). In the formula

2 1 A Tin
a';k)y%Kir ( mln ‘?J) = —/ gk(T)€_2/\ Tdx (A.61)
0

A A

we plug in y = —°_ and conclude by (12) that as | n |— oo

|7 |
a® =0 <| n |”2+%> : (A.62)

n

2
holds by choosing a positive constant ¢ so that K, (;C) # 0. The Dirichlet
series (7) therefore have a half plane convergence and can be used to define the
functions ¢ (s) and ¥, (s). In order to verify the properties 7,1 and 2 we use the

following integral formula W,13.21(8) which is inverse to (52)

/ K, ()t~ 1dt = 27T <S 3 ”) r (3 ; ”) for Res >|Rev |,  (A.63)
0
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and after doing an easy substitution we obtain

vi+vg

14t 2 A\ STz (st (s
4/ R, ( W|”|t) 5t = (—) (5%) V(j ) (A.64)
0 2 A 7T ‘n|s+%

The representation

4/000 Fk(t)ts_%dt = fk(3>, 4/000 Gk(t)ts_%dt = nk(s) (A65)

follows immediately by term by term integration of the series in the integrand. We

may do this because for Res > s + > since (62) implies
Fi(y) = O(y™™"), Gily) =0y ") fory — 0. (A.66)

To get the representations for & (s) and 7 (k) which are true in the whole s-plane,

we split the integral (65) into subintegrals over the intervals from (0,1) to (1, 00)
1

as in the analytical case. In the finite integrals we substitute t — n and take into

account the functional equations (56), which are equivalent to (14) after replacing

1 1 1
F}, (—) by Fj <—> — Uy, <—> These substitutions lead to the results
Y

) Yy
1 oo .3 N oo 1,
26s) = [ By rdy+ ) [ Fily)y 2 dy (A.67)
1 = J1
( Moy Mpy, Mo, — Moy
s—1—iwr s—14wr s+ir s—ar
+
M(ak—l—ﬂk (logﬁ—C)) M Sy, M(Qk+ak (logﬁ—C)) Moy,
- - +
L s—1 (s —1)? s 52

for r > 0 or r = 0 respectively, and

N
1 > _3 > 1
e = [t =Y [Caria. (e
1 = J1

The analytic properties of the functions ¢ (s) and ¥ (s) that we assume in I, 1

in Theorem 1 can be seen immediately from (67) and (68). Also we can easily
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verify the functional equations (5). This proves Theorem 1. For the linear family
of systems of functions with the properties of Theorem 1, one can prove under

certain conditions a theorem about finiteness which says the following:

Theorem 30. The mazimal number of linearly independent systems of functions
Ok, Ur (k,1,2,..,N) or gi(7) (k = 1,2, ..., N) which satisfy the conditions of The-
orem 1 is finite if we assume X\ = q or A = 2q and if the group generated by the

matrices

<5kle%;bk) and C = (cy)

18 finite.

Proof. In the case of A = ¢ or A\ = 2¢ the translation formulas (13) and (14)
define a representation of order N of the modular group M and the theta group T
respectively. The wave functions gx(7) are clearly invariant under the substitutions
that get mapped to the identity by this representation and that build a normal
sungroup NN of finite index in M or T respectively if the group generated by

matrices (20) is finite. Therefore, Theorem 4 follows from Theorem 5. O

Theorem 31. Let G be a subgroup of the modular group of finite index. Let
51, S2, .., 8o be a complete system of nonequivalent parabolic cusps of a fundamental
domain of G and let A, be an appropriate real unimodular substitution which sends
s to 00. Then there are only finitely many linearly independent wave functions
g(T) which are invariant under the substitutions of G and which can be written as

a series of the form

2 ﬂ"Ln
9(A0™'7) = uply) + 3 a(n)y? KW( min] ) (A.69)
n#0 QQ

in the parabolic cusps (0 =1,2,...,0).
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We did a proof using a method developed by C.L.Siegel”). First of all we may
assume that u,(y) = 0 (0 = 1,2,...,0) because these terms are of the form (16)
hence they only depend linearly on 20 parameters. In all parabolic cusps ¢(7)
vanishes, hence it is so-called a cusp function. Let 7 — 7 4+ Q, (Q, > 0) be the
generating group of the translations contained in AQGAEI. The Fourier series (69)

shows the invariance of g(7) with respect to substitutions

1 Q
At “1 A,
0 1

We denote by B, the set of points which get sent by A, to the domain

1 1
_§Qg§x< 5@97 yZ%

For sufficiently large s we can turn the set of points

=D %, (A.70)
o=1
into the fundamental domain
§=P+D (A.71)

by adding a set of points 8 such that the closure of ®8 lies in the upper half-plane.
After we decide to pick a fixed value of s, we split B into subsets of ‘B, in the

following way:
B=) B, (A.72)
o=1
such that for any point 7 =z + iy € A,(PB, + B,) the inequality

y > >0 (A.73)

is satisfied with 3¢y being as large as possible for p = 1,2,...,0. Let M be the
maximum of the absolute value of g(7) in §. Because of the invariance of ¢g(7) in
G

[ g(r) |< M (A.74)
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holds in general. The equality is achieved at a point 7" € § which does not lie on
the boundary circle y = 0 since g(7) should vanish in the parabolic cusps. And 7*

may lie in B, + B, so that for 1) = xo + iyg = A, 7*
o = 0. | 9(A; o) |= M. (A.75)
We now prove that M = 0 under the assumption
a,(n)=0for |n|<m, o=1,2 .0 (A.76)

for a sufficiently large m. With 7 = x + %yo we obviously have

1 27 | n | 1 [@ 2min Ky (229'”'?90)
a.ys Ky (Tyo) = a/ g(A7 e xdmﬁK—
L L Jo .

which implies the estimate

M =|g(A7 ') | < Z

[n|>m

1 T|n
ab(n)yoz Kir ( | ‘y0> ’

K, (25—7?90>
< 2\/§M§n W . (A.77)

Due to asymptotic behaviour (19) of Bessel function K, (z) for large z we can

conclude that

M < 4M Z e" QY < 4M Z TR0 < eMem Q@

n>m n>m

holds for sufficiently large m where c is a positive constant depending only on the

decomposition §. If m also satisfies

. Q,logc (

0=1,2,...,0)
W)

then we have M =0, q.e.d.
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In the case r = 0, using the estimate (50) we can give explicitly a sufficient
condition for the identical vanishing of a cusp function for G. From (77), it follows

that for m = 0 we have

Ky <27myo) n
M<WIMY, I < VS
>0 KO <7672_7ij> \/ELKO(GL)e . —~

- V2r M
~ Va,Ko(a,)ew (e — 1)

T4
if we generally set a, = 2 In order to conclude that M = 0 we must assume
4

(A.78)

V2r < \JaKo(ag)e (e — 1) (0=1,2,...,0) (A.79)

On the right hand side of (79) there is a monotone increasing function of a,. The

3
inequality is satisfied for a, = 3 because by W, S.699 we have

Ko(2)ez = 0,9582101,,,, e2 — 1 = 3,4816891...

NNV

The identical vanishing of a cusp function for G hence follows from

Ty 3
—>= (0=1,2,...,0). A.80
o>y ) (A.50)

We apply this result to the modular group and the theta group.

1. G =M. We have 0 = 1. As a fundamental domain § we choose | 7+7 |< 1,
| 7 |> 1 and A; = Id(identity matrix). Then @ =1, s¢ = % 3 and (80) is
satisfied.

2. G =T. Here 0 = 2. A fundamental domain § is given by | 7+ 7 — 2 |<
2, | 7> 1, | 7—2|> 1. Let Py + B; be the intersection of §F with
|7 —1|> V2. Then this also determines By + Bo. Let A; = Id and A, be
the noneuclidean rotation of order 2 with the fixed point 1+ iv2. Obviously
we have Ay(Pa + Bo) = P + By so that @ = Q2 = 2 and 3¢ = 1. Again

condition (80) is satisfied. We obtain the following result:
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Theorem 32. There is no cusp function for the Theta group T and r = 0 which

does not vanish identically.

For M the theorem is obviously trivial if it holds for T because T is a subgroup of
M. In order to explain Theorem 3 we need a similar statement for special systems

of cusp functions of level 5.

Theorem 33. A system of cusp functions g1(7), g2(7), 93(T) for the congruence
group M(5) and r = 0 vanish identically if for S € M the transformation formulas

of the form ,
gi(ST) = Zaik(s)gk(T) (Z =1,2, 3) <A81)
k=1

hold and the representation (a;,(S)) of the modular group M/M(5) is unitary.

For the proof we may assume that the matrix
Qi

is a diagonal matrix. Otherwise, apply a unitary transformation to the system

gi(7), (k=1,2,3). Hence,
gr(T+1) = Gegr(r)  (k=1,2,3) (A.82)
with certain 5th roots of unity

2miby,

Ck:e 5, 0<b,<b.

The Fourier series of the functions are then of the form

1 b
gi(1) = Z ax(n)y2 Ko (27T n+ Ek

n+b?k7é0

y) ()2 1.9,3). (A.83)
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Because we assume that the representation (a;;(S)) is unitary, the function

X(7) = 4| D ge(T)gn(7) (A.84)

is invariant under the substitutions of M. Furthermore, it vanishes in the parabolic
cusp of the fundamental domain | 7+ 7 |[< 1, | 7 |> 1 of M. Let M be the
maximum of x(7) in the fundamental domain. It is achieved at a finite point 7y in

the fundamental domain. Obviously x(7) < M holds for all 7. If we let

| 9x(0) |<[ g1(m0) [, (k=1,2,3) (A.85)

then

1
M < V3| gi(m) | and y > Qﬁ, (A.86)

if we set 79 = xg+1iyy. Using the coefficient formula for the Fourier series we derive
an estimate for ¢;(7p) which implies M = 0 i.e. x(7) = 0. Let 7 = x + iy where

¥ is determined later and it is in the interval 0 < ¢ < 1. From the formula

by
5 Yo

n+ —
/5 91(7)672”(”“?1)%&79_% Ko (27T |n i %1| yo) (A.87)
1 KO (27'("71"’%‘19:1/0)

1
ay(n)ys Ko (27T

we get the estimate

y> <%K0(27r‘n+bgl}yo)
) = V5 Fa e nt 2 om)

Ly Ko (27 [n + 2| o)
V3 N Ko (2 |n + 2| dyo)

IA
S
B
N
=
]
=

since by

™3
5




and (50) we can conclude that

7S \[ V[t (1-0)
Ve A.88
\/_ \/_Ko bzl (A.88)
#0
3
holds if we set a = %19. The infinite series in (88) has the value
2 5—b1 + b1
g)—_lforblz() and %—_fforbl>0
with
In any case we get
M M T+ &
<« - A.89
V3 T VaKy(a)er 265 —1 ( )
3, ¢2 _ ¢4 ™3
because we have 2 < £° 4 & < £*4&. If we can find a in the interval 0 < a < &
so that
o [3TEHE
VaKy(a)e STE 1 (A.90)

holds then M = 0. For a = 0.16 it follows from W. page 698 that Ky(a)e® =
2,3087874... and we conclude that

Imér €

VaKy(a)e® > 0,9235 > 0,9199 > e

indeed holds. This proves Theorem 7.

A.2 The Zeta Functions of Real Quadratic Fields

We apply the general result of the first paragraph to the =zeta functions
Co(s,0,a, N7, Q(D)) (v =0,1), defined by (23), of the real quadratic field R(v/D).

We prove the functional equations (25) using the classical method that Hecke?)
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applied to the special case n = 0. Using the ['-integrals, we can write the functions

(26) in terms of the theta series

190 (t7 t/a o, a, Q\/B) = Z 6714(2%(#2754#/%/)7
p=o (aQv'D)

h(t,t,0,0,QVD)= Y e man i (A.91)
p=e (aQVD)

We use the same notation in (91) as before. We set

1 for an integral ideal b,
i(b) =

0 otherwise

SO

50(37 o, a, A?7 Q\/B)

- : ) ? v e 4 —2incv S—
= Xf(a)/o [/_lQ {ﬁo(ue2 , Ue 2 0, a,Q\/E) -9 (aQﬁ)}e 2 dv] uw—Ldu

(A.92)

4 o) lg )
51(87 o, a, A?7 Q\/B> - )\n—(a) / [/ 191 (UGQ”U’ ue_m)Q? a, Q\/B)G—ancvdvl u’du
1 0 —lg

for Re(s) > 1. We get representations of ,, that hold for all s, by decomposing
the integrals over v from 0 to 1 and 1 to oo and by applying the transformation

formulas

(e (11
190(1;7t,7 o, Q,Q\/B) = 62 B (AQD>190 ( ;’ava,Q\/ﬁ)

?7

1
ovDviE 2

amodaQ\/B
a =0 (a)
-1 2mi Tr (222 11
191(t,t/,Q,ﬂ,Q\/5):m > (AQD)ﬁl (P,?O@a,Q\/B)

a mod aQV D

a =0 (a)

(A.93)
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to the integrands of the finite subintegrals and making the substitution u — 1/u.

So we get

Sobi (G75) 1 Slga(0) 1
At (a) s QVDN(a)l—s

4 - o 2v —2v 4 —2incv s—1
+W/1 [/_ZQ{ﬁg(ue ,ue g,a,Q@)—é(aQ\/ﬁ)}e dv]u du

4 amis(28) [ o % %
+—Q\/5)\§L(a) Z e Q /1 [/_ZQ{ﬁo(ue Jue” a0, QVD)

a mod aQvV D

&o(s, 0,0, A?,Q\/ﬁ) =—

a =0 (a)

S A%

and

4 00 lg )
&1(s, 0,a, AT, Q\/ﬁ) = @) / [ V1 (ue*”, ue " g, a, Q\/Ee2mcvdv] udu
1 1 -

4 27riS< o' ) /Oo e 2 -2 —2i 1—
- e AQD M (ue™  ue™ ", a,a, Qv D)e " dv| u " *du.
D@ 2 e )

a mod aQvV D

a =0 (a)

(A.95)

Properties I, (1 to 4) of Theorem 1 with special data (27) can be now easily ver-
ified for the zeta function (,(s, o, a, A7, Q\/E) For the associated wave function

g(7,0,a, A, Q\/E) we have the relations

g(7+a,0,a,\,QVD) = ezm%g(r, 0,0, A", QV'D) (a is whole rational), (A.96)

1 1 2mi v (£55)
—Z, 0,0, \",QVD) = —— e 4@D) g(7,0,a,\", QV' D). (A.97
o mod aQvVD
o =0 (a)

Moreover, for an arbitrary positive integer m

g(T, 0,0, )\?,Q\/ﬁ) = \/%3 . Z g(mr,0,a, )\?,mQ\/E) (A.98)

o mod amQV D

o =o (aQVD)
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which we can see from the Fourier series (29). With these three translation formulas
we can determine, by method of Hecke?), the behaviour of g(7, o, a, A}, Qv/D)
under arbitrary modular substitution S € M. Here we do not use any linear

relations between ¢(7, 0, a, A7, Qv/D). For

a b
S = eM
c d
we get the translation formula
g(ST 0,0, X}, QVD) = > cp(S)g(r. 0,0, X}, QVD) (A.99)
o mod aQvVD
o =0 (a)
with coefficients
( 1 Z ecﬁg’b (aNa+Sao’+dNo) for ¢ > O,
cQvVD
Cou(S) = @ mod e VD (A.100)
a = (aQVD)
kégge% forc=0,d=1

The unit root sums above were discussed by Hecke. For S € M(QD) we get in

particular ¢,,(S) = 0,0, that is
9(S7, 0,0, X}, QVD) = g(7, 0,0, \},QVD) for S € M(QD). (A.101)

The full family of wave functions g(7, o, a, A7, Q\/ﬁ) with fixed n, @, D is obtained
if a runs through a full system of representatives of narrow ideal classes in Rv/D

and o runs through the cosets mod aQ+v/D, which are contained in a; because
g(7, 08,08, \7,QVD) = g(7, 0,0, A\, QVD) for N3 > 0. (A.102)

The question about linear relations between the considered wave functions, besides

the trivial ones
9(7, 0,0, X7, QVD) = g(7, 0,0, \},QVD), (A.103)
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is answered fully at this point only in cases that are given numerically. Since the
maximum number of linearly independent series with fixed arguments a,n, @, D is
less than Q?D, we can apply Theorem 1 to this system of functions with N < Q?D.
Theorem 4 still holds. In particular we consider D = 5, ) = 1. Because the
number of narrow ideal classes in R(v/5) is 1, it is sufficient to assume that a = 1

and in view of (103) then ¢ = 0,1,2. The three series

gn(7,0) = g(7,0,(1),A},V5) (0=0,1,2)

are linearly independent. Denoting the Fourier coefficients of these functions with

exponent m by a,(m) then we have by (26) for m # 0
(o = Z )‘?(:u)v
n=o (V5)

(N)\/BpwaN,U =m
in particular

o |0 1 2

a,(1) |0 2 0
a,(~1) [0 0 2

a,(5) |4 0 0
2mi

and the determinant of this coefficient scheme is different than 0. Let ( = e™5 ,

then (96) and (97) become the translation formulas

9u(T+1,0) = g,(7,0), gn(7 4+ 1,1) = Cgn(7,1), gu(T+1,2) = (" gu(7,2),

gn (—1,0) 1 2 2 gn(7,0)
gn (=7:1) :% 1 CHC? ¢+ | galn 1) (A.104)
gn (—1,2) L ¢+¢t C+¢?) \ga(r,2)

The corresponding translation formulas for the functions

Q:L(Tv 0) = %gn(ﬂ O)? g:L(T? 1) - gn(T> 1)7 g;(T, 2) - gn<7-= 2) (A105)
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define a unitary representation of the modular group M/M(5) as we can easily
check. This is important for the application of Theorem 7 to the system of func-

tional equations (104).

A.3 The Eisenstein Series of Level ()

The question of all automorphic wave functions of level () is significant for the the-
ory of Dirichlet series, but it is also interesting itself. The easiest way to construct

such functions is to build the Eisenstein series

[ SIS

E(r,s:(a1,a2), Q) = > Y (A.106)

| maT + may ¢

(m1, mz) # (0,0)
where we sum over all nonvanishing pairs of rational integers (my, ms) of the residue
classes (ay,az) mod ). The series are absolutely convergent for Res > 2. The
general term and hence E are the solutions of the wave equation

< 2 8 s2—s)

Ox? - 0y? * 42

)E:O, (1 =2 +1y) (A.107)
and the translation formula
E(ST,s;(a1,a9), Q) = E(1,5s; (a1,a2)S,Q) for S € M (A.108)

holds which implies in particular the invariance under the substitutions of M(Q).
First we have to prove that the functions £ are regular for Re s > 2 can be extended
analytically to the half plane for Res < 2 and on the vertical line Res = 1 they

are regular. For this purpose we write the Eisenstein series as a Fourier series.
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After a simple modification we get
a S
Bl (0n,00.Q) =0 () €502,

ys 1 T
o > T > f<é+%,s) (A.109)

my =a; (Q) j =az (Q)
my £ 0 j mod Qmy
with
(o)=Y nlys and  f(7,s) = 7?:; ﬁ (A.110)
n=a (Q)
n 40

The Fourier series of a function f(7,s) that is periodic in 7 is

f(r.s) = Z {/ | u+iy|~° 6—2Winudu} 2mine

Here for n # 0, by W,6.16(1) we have

00 . *° cos 2mnudu 212 (|n ]\ 2
ui —s e—27rmudu — 2/ — = < ) K.s;l 2| n
f e | G T G inly

and forn =0

f(r,s) = \/EF () y' T+ am? Z <m> ) Ks;21(27'r | n | y)e*™™  (A.111)
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holds. We plug the above series into (109) and get

E(Ta S (a17&2)7 Q) = 5 (%) y%C(Saa% Q) +

27-(-% 2minag 1— s—1 1 27T|TL| 2min
+—_ e em |m|—*° nl|z yzKs. e e’
oy = o L 2 e (T

(A.112)

Now the analytic continuation is done. In order to prove that the poles of the zeta
and Gamma functions, which appear formally in (112), do not occur in Res = 1,

we must use the translation formulas of the (s, a, @) function. It is known that

to0.2)= (3) 1§ t0@=5(5) T~ iy

s _ min? 1 o s _ min?
+/1 tzl{ S Q}dt+ﬁ > Cb/1t2 1{ > o« Q}dt

n =a (Q) rmode n=b(Q)
n #0 n #0
(A.113)
if we set ( = e and therefore
£(1—s,a,Q) = % > (s, b,Q). (A.114)
»mod @

Using the functional equations we can put the sum of the terms in the Fourier

series (112) that are independent of z

a1

Q

u(y, s; (a1, a2),Q) = 6 ( ) y2((s, a2, Q)+~ ((s—1,a1,Q)y' "% (A.115)
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in a form which the regularity of this expression at s = 1 can be seen immediately.

Namely,
u(y,s;wl,az),@):Z%Q—ﬁ{mc;y)s?r(1;5)¢<1—8>+<w@y>l?r(5;1)<<s—1>}
Q=T (3)
yi (my\T o (1= 8 -
(@) Ty T oen(F)a e mouzo@
b mod @)
b#£0(Q)
(A.116)
and
s—1
u(y,s;(al,ag),Q):grr((z))g(s—l,al,Q)yl5 for a3 £0(Q) (A.117)
2

The following power seires at s — 1

g(st)—LjLE C—Qig—ablo <2sinﬂ) +
Q-1 Q : Q

a=1

with the relation (114) allow us to compute the following limit:

IimT <
s—1

A simple computation gives

1—s

)Q(l —5,0,Q) = —2log (2

. b
Slna‘) for b#0(Q). (A.118)

u(y, 1; (a1, az), Q) (A.119)
Q-1
2 1 2 Q —a9b ( . CL’/T) 1
—y2logy + = | C 4+ log = — 2% Jog | 2sin — 2 fora; =0
gyt lesyt o ( . b§:1§ g y 1 (Q)

Q
— %log (2 2

sin %D y? for a; # 0 (Q)
and for r > 0 we get the following from (115):

u(y, 1+ 2ir; (a1, a2),Q) =06 (%) %“’”C(l + 2ir, as, Q)

ﬁ F(ZT) . %—ir
5WC(QW7 ap, Q)yz"". (A.120)
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In order to determine the maximum number of linearly independent Eisenstein

series, we consider the series

N|w

E*(7,5:(a1,02),Q) = Y / (A.121)

| myT + mgy |3
(ml, mg) =1
which vanishes identically for (aj,as,@) > 1 if we set as usual that an empty

sum has the value zero. Between the primitive series, which are charactarized by

(a1, as2,Q) = 1, we have the linear relations

E*(1,s;(a1,a:),Q) = Z E(1,s; (tay, tas),Q)c(s, t, Q) (A.122)
tmod @
and
E(r,s1(a1,02),Q) = Y E*(7,5:(tay, taz), Q)d(s, £, Q) (A.123)
tmod @
with

(o,,Q) = 3 “T(g), i6Q = Y~ (A.124)

where p(n) is the Mobius function. The proof can be done as in the analytic

case(see °)). The non-primitive series E(7,s; (a1, as), Q) with (a1, a2, Q) =d > 1

E(1,s;(a1,a2),Q) =d°F (T, s; (%, %) , %) (A.125)

can be written in terms of E* of level ()/d and these can be written again in terms

of E* of level () because

E*(7,5i(a1,00),Q) = Y E*(7,s(b1,b2),QQ) (A.126)
b; mod QQ’
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in general. The linear equivalence of the series E and E*, which can be seen from
the identities (122) and (123) which are analytic in s, can be lost for special values
of s if the coefficients d(s,t, Q) become singular. On the line Res = 1 this is the
case for s = 1. Indeed, the maximum number of linearly independent series E*
is less than the maximum number of linearly independent series E as we can see
from the following considerations. The regularity of the function c(s,t, Q) on the

line Re s = 1 including s = 1 follows from

c(5,£,Q) = Z x(t (A.127)

where we sum over all characters x mod @) and ¢ is the Euler function and from

the fact that the L-series

— x(n)

nS

L(s, x) =

n=1

does not vanish for Res = 1. On the line Res = 1 the functions
d(s,t,Q) = ZL S, X)X (A.128)

are singular only for (¢,()) = 1 at the point s. Now we compute the
term u*(y,s; (a1, as),Q), which is independent of z, in the Fouruer series of

E*(1,s;(a1,a2),Q). By (115), we have

U*<y75; (a17a2)7Q) = Z u(ya3;<ta17ta2) Q) (S t Q)

tmod Q

( ) §Y (s tan Q)els 1, Q) + %F((Q YT (s Ltar, Qels 1.Q).

tmod Q

If we assume (aj,az,@Q)) = 1 then we may assume that (az,Q) = 1 when

we compute the coefficients of 32 in (129) because this term appears only for
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a; =0 (Q). However, for (a,Q) = 1 we have

Z C(S,ta,Q)C(S,t,Q) = Z Z Z |¢r52)|5
tmod Q tmod Q n=1(Q) m=ta (Q)
n >0
_ p(n) _ (a—l) (a—l—l)
D e S R
n>0 m
n|m,m=a(Q)
so that
u*(y, i (a1,a2),Q) = & <%> (5 (ﬂ; 1) +6 <a2$ 1)) yE +n(s,a1,Q)y'

(A.130)
with some function n(s,a;, Q) which is regualar on the line Res = 1. We notice
that the function y% logy does not appear in u*(y,1; (a1, az), Q. The maximum
number of linearly independent series E*(7,1; (a1, as), @) is therefore less than or
equal to for the series F(1,1; (a1, a2), Q). Moreover, for r > 0, it follows from (130)
that yéﬂr appears in u*(y, 1 + 2ir; (a1, a2), Q) if and only if a; =0 and ay; =1 or
—1 mod Q.

a b
Now let r > 0, (a1,a2) = 1 and S = be a substitution of M so

c d

that S~'oo is a given parabolic cusp of a fundamental domain of M(Q). Then

E*(1,1+ 2ir; (a1, as), Q) behaves at 7 = S~ 1o as
E*(S7'7, 14 2ir5 (a1, 02), Q) = E"(7,1 + 2ir; (a1,02) 5™, Q)

at 7 = oo. In the Fourier series of E*(7,1 + 2ir; (a1, a2)S™ !, Q), y%”” appears if
and only if

ard —asc =0, —a1h+ aa = +1 (Q),
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e
a; = +e, ay = +d (Q)

a
or equivalently, if the parabolic cusps —=2 and S7'oo = —— are equivalant in
aq C

M(Q®). Let o(Q) be the number of non-equivalent parabolic cusps of M(Q). In

the case of » > 0 we prove that there are o(Q) linearly independent Eisenstein

series F*. It is known that the following formula holds:

/

1 for Q=1
7(Q) = 3 for @=2 (A.131)
Q° 1
\ plQ p

Between the primitive series E*(7, 1+ 2ir; (a1, as), Q),that are linearly equivalent
to the collection of all Eisenstein series of level (), there are only the following

relations.

E*(Ta 1 + 22’/“, (a17a2)7Q) = E*(7-7 1 + Qer (b17b2)7Q)

for ar =0, (Q) or ar=—b; (Q) (k=1,2) (A.132)

Moreover, any linear combination of Eisenstein series vanishes identically if it is
a cusp function. These facts follow immediately from the behaivour of the series
E* in the parabolic cusps if we notice in addition that two cusps —Z—j and —2—2
with relatively prime numerators and denominators are equivalent in M(Q) if an(li
only if ap = +b; (Q) (K = 1,2). Apparently, o(Q) is the maximal number of the

linearly independent Eisenstein series .

The case r = 0 is much more complicated. If ¢(Q) = 1 or 2, then there are o(Q)
linearly independent series among the primitive Eisenstein series E(7, 1; (a1, as), Q)
because by (119) y2 log y appears in the Fouruer series of E(7,1; (a1, a2), Q) if and

only if a; =0, as = £1 (Q). Then the same considerations as in the case of r > 0
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holds. Later we will see that for » = 0 and ¢(Q) > 2 that is for @ # 1,2,3,4,6

the maximum number of linearly independent Eisenstein series is less than o(Q).

Now we formulate this subresult.

Theorem 34. Let r > 0, Q arbitrary or r = 0, ¢(Q) < 2(ie. Q =
1,2,3,4,6). Then the mazimal number of linearly independent Eisenstein series
E(1,1+ 2ir; (a1, az2),Q) is equal to o(Q). Furthermore, in the linear collection of

FEisenstein series, there are no cusp functions that do not vanish identically.

To find the linear relations between the Eisenstein series in the case r = 0, it

is useful to introduce the series

G(t,s;a1,a9,Q) = é Z (T2 E(7, 55 (ay,b), Q) (A.133)

vmod Q

which are linaerly equivalent to the Eisenstein series and have important symmetry

properties for s = 1(see )*). By (112),

: YIRS az\ VT (:57) -3
Gt sonen @) =5 () g0 S+ (5) g gy < b

271'% 1—s s—1 1 271' | n ’ 2min .
+ 1 d 2 | d 2 2 Koo (——— Q 7,
Qs”<)2{ ) DERNEA A VT CTAo

(A.134)

Using (119), we obtain

G(1,1a1,0a2,Q) = 2 Z { Z 1}y5KO(My)ezg% (A.135)




;

2 1 2 Q 1 _ _
éy logy+6(0+logg)y fora; =0, ax =0 (Q),
—zlog (2 sin%D y% fora; =0, as Z 0 (Q),
2 T 1
—@log (2 sinaD Y2 fora; Z0, as =0 (Q),
0 fora; Z0, as Z 0 (Q)

\

which leads to the symmetry relations

G(Ta 1) a17a27Q) = G(T7 1) g, Ay, Q)

G(Tal;alva%Q) = G(T71;_ala_a27Q)' (A136>

In order to capture all G-series that differ from each other, it is sufficient to restrict

ourselves to

a; =0, 0<a; < {%} anda; =k, k<ay, <Q —k (k:zl,Q,..., [%})

(A.137)
A simple counting argument for the number A(Q) of the specified pairs (aq, az)

gives the value
B Ql|1Q+3
AQ) =1+ b] {—3 } :

A(Q) is an upper bound for the maximal number of linearly independent Eisenstein

(A.138)

series. Due to

o(Q) for@Q=1,2,3
o(@Q)+1 for@Q =4,6
AQ) <o(Q) for@Q #1,2,3,4,6 (A.139)

AQ) =

as one can easily see, by Theorem 8 there are no more relations besides (136) in
the case @ = 1,2,3. For ) = 4,6 there is exactly one relation (in each case Q) =4
and ) = 6) that does not appear in the symmetry relations. There are many such

additional relations, in general, unless () is a prime number. Because for any two
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positive integers t; and t, we have

Y G Liar+ by hag, tity) = Y G(r,1itar, a5 + tav, hats).  (A.140)

vmod #, vmod
The proof follows easily by comparing the coefficients in the Fourier series of

each side of the equation (140). Let A,(ai1,a2) be the Fourier coefficient of

%G(T,l;al,ag,Q) of the exponent n # 0. By (135), A,(a1,as) is the number

that solves the system
di = a1, dy = a3 (Q), dids = n.

Therefore, the relation (140) is equivalent to

Z A (ay + tav, tiag) = Z A, (tiar, ag +tov)  (Q = tits)

v mod v mod

The left hand side of the above equation is the number which solves the system
di = ay (tg), dy = tias (t1ta), dida =n

and the right hand side is the solution of
di = tiay (t1ta), do = as (ta), didy = n.

These numbers are clearly the same which proves (140). Let 1o = @, then relation
(140) is independent of the symmetry relations unless t; = 1 or ay = a; (t2). The
proof of this is simple and omitted. Especially for t; =t =2, a1 =0, ay =1 and

ty =2, t9 =3, a1 =0,a, = 1 we obtain

2G(7,1;0,1,4) = G(1,1;0,2,4) + G(7,1;2,2,4)

G(7,1;0,1,6) = G(T,1;2,3,6). (A.141)

In general, for each composed level () = tt5, there is at least one relation among

the relations in (140) which is independent of the symmetry relations. On the
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other hand for any prime level () = ¢, we have a complete system of relations in
(136). At most one of the four series, that comes from G(7,1;aq,az, @) through
replacing ai,as by +ai,£as or +as, +aq, appears in the relation. To simplify
notation we set [a1,as] = G(7,1;a1,a2,Q). Let p be an arbitrary prime number.
The Fourier coefficient of the exponent p is clearly different from zero only for the
series [1,p]. So [1,p] must not appear in the relation. By the Dirichlet Theorem
about prime numbers in arithmetic progressions, p can represent an arbitrary coset
that is relatively prime to q. Of course, p = ¢ is allowed. This explains that all
series [1,a](a arbitrary) do not appeaar in the relation. The Fourier coefficient of
the exponent pp’ is different than zero only for the series [1,