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Abstract

In the natural and engineering sciences the equations which model physical systems with sym-
metry often exhibit an invariance with respect to a particular group G of linear transformations.
G is typically a linear representation of a symmetry group G which characterizes the symmetry
of the physical system. In this work, we will discuss the natural parallelism which arises while
seeking families of solutions to a specific class of nonlinear vector equations which display a special
type of group invariance, referred to as equivariance. The inherent parallelism stems from a global
de-coupling, due to symmetry, of the full nonlinear equations which effectively splits the original
problem into a set of smaller problems. Numerical results from a symmetry-adapted numerical
procedure, (MMcontcm.m), written in MultiMATLAB! are discussed.

1 Introduction

Consider the task of finding solutions to the following vector equilibrium equation

f(u,\) = o0,
f:R"xR — R (1)
In eq. (1) u € R*, A € R is a free parameter and f € C™,m > 3. The task of computing

the solution paths of eq. (1) falls under the framework of the well developed field of nonlinear
bifurcation analysis and continuation [1]-[4].
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If eq. (1) is an equilibrium equation for a physical system with symmetry, it is well known that
the symmetry will be reflected in (1). It is further well known that group theoretic techniques
can greatly facilitate the nonlinear bifurcation analysis of eq.(1). Over the past fifteen years,
there has been a quite a bit of activity within the mechanics and mathematical community on the
application of group theoretic methods to aid in the computation of the global bifurcation diagrams
of symmetric structures [1],[5]-[27]. Within the context of a numerical continuation procedure,
group theory helps one systematically find an “optimal” set of basis vectors which reflect the
symmetry of a given problem. The immediate payoff in formulating the numerical procedure
with respect to the symmetry-adapted basis is a global de-coupling of the equilibrium equations
which in turn leads to: (1) a dimensional reduction in the problem size; (2) improved numerical
conditioning while computing solutions in the vicinity of singular points; (3) a systematic method
for detecting and diagnosing for symmetry-breaking bifurcations. Thus, group theory, or more
specifically group representation theory [28]-[31], provides the tools for a well-conditioned and
efficient numerical algorithm for computing the global bifurcation diagram of symmetric problems
by taking “optimal” advantage of the inherent symmetry.

In the field of nonlinear structural mechanics, a group theoretic approach to the buckling and
post-buckling analysis of imperfection-sensitive shell structures has proved to be an invaluable
tool. As discussed in [24] and [32], it is often the case that the global solution curves for imper-
fection sensitive shell structures are riddled with closely-packed singular points. The existence
of these singular points, coupled with the need for large degree-of-freedom systems, render stan-
dard numerical continuation routines extremely ill-conditioned, e.g., [33]-[37]. As a result of the
numerical ill-conditioning, computing the global response of these types of structures requires a
group theoretic approach.

From a safety point-of-view, being able to accurately compute the buckling and post-buckling
response of shell structures is critical in predicting the ultimate load-carrying capacity of structures
and structural components in aerospace, civil, mechanical and nuclear engineering — it also has
applications in others fields such as understanding the phenomena of fabric drape in textiles [38]
and predicting the equilibrium shapes of biological structures such as red blood cells [39]. However,
as noted in [32] even with the numerical stability and reduction in problem size offered by a group
theoretic approach, the extremely rich global behavior of imperfection-sensitive shell structures
necessitates the use of parallel computers to make a complete global analysis computationally
feasible.

In this work, it will be discussed how the global de-coupling of nonlinear equilibrium equations
sets the stage for a conceptually straight forward implementation in a distributed-memory MIMD
(multiple instruction multiple data) computational environment. It will further be discussed how
the a priori information provided by a group analysis aids in developing a coarse-grained load-
balanced parallel algorithm. The goal of this work is to demonstrate an efficient and systematic
parallel approach to an important class of nonlinear equilibrium equations in engineering and
science.

The outline of this paper is as follows. In §2, a brief review of a computational approach to
the nonlinear continuation and bifurcation analysis of one-parameter vector equilibrium equations
of the form shown in eq. (1) is given. The purpose of §2 is to familiarize the reader with some
basic concepts and terminology from nonlinear bifurcation analysis. An introduction to a group
theoretic approach to nonlinear bifurcation analysis is given in §3. After some introductory
remarks on group theory, it is discussed how group theoretic techniques may be used to construct
a dimensionally-reduced problem based upon the symmetry of a given system. This reduced
problem captures ezact solutions of the full problem of a specific symmetry type. The discussion



then turns to describing how results from group representation theory can be used to partition
the solution space into a set of mutually orthogonal subspaces. This global partitioning of the
solution space is the key to a systematic and efficient diagnosis of symmetry breaking bifurcations.
84 outlines a general group theoretic continuation/bifurcation algorithm. In §4 it is pointed out
how the global de-coupling of the equilibrium equations leads to a coarse-grained multi-processor
algorithm for the nonlinear bifurcation analysis of problems with symmetry. The pseudo code for
two MATLAB-based symmetry-adapted nonlinear continuation/bifurcation codes contcm, (single-
processor code), and MMcontcm, (multi-processor code), are presented. Numerical results and a
discussion about different aspects of MMcontcm are presented in §5. It it shown how the a prior:
information about the structure of the symmetry-adapted equations provides the analyst with
valuable information which allows for a load-balanced procedure. We end the paper in §6 with a
brief summary of the important points of this work and discuss some possible directions for future
research.

2 Nonlinear Bifurcation Analysis and Continuation

A solution point of eq. (1) is a point (u*,\*) € V x R such that f(u*,\*) = 0. The solution set
of eq. (1) is the set of all solution points

(W) eV xR:f(u*,)\) = 0}. (2)

With a single free parameter A, the solution set of eq.(1) generically consists of a set of 1-
dimensional curves (manifolds) contained within the (n 4 1)-dimensional space V' x R. Thus one
may view the solution set of eq. (1) to be a collection of smooth solution branches(paths) x(s),

x(s) = [u(s),A(s)] s1<s<s2 (3)

parameterized by an (as of yet) unspecified path parameter s.

In this work it is assumed that (u, A) = (0,0) is a solution point and the solution branch which
contains (0,0) is referred to as the primary solution branch. At certain points in the solution
space V x R two or more distinct solution branches may intersect one another. These points of
intersection reveal a local loss of uniqueness in the solutions to eq. (1) and are called bifurcation
points. A point which is common to two distinct transverse solution branches is referred to as a
stmple bifurcation point while a point which is shared by three or more distinct solution branches
is known as a multiple bifurcation point. A solution branch which intersects the primary solution
path is called a primary bifurcation path. Similarly, a solution branch which intersects a primary
bifurcation path is referred to as a secondary bifurcation path. Tertiary, quaternary and higher
order branches are defined analogously. A typical bifurcation diagram is shown in Fig.1. Since a
solution branch x(s) is contained in an (n+1)-dimensional vector space Fig. 1 necessarily depicts a
projection of x(s) onto a two-dimensional space where ||ul| is some appropriately defined measure
of u.

For problems of the form described in eq. (1) it is not difficult to derive a necessary condition for
bifurcation to occur. Consider the primary solution branch x(s) shown in Fig.1. Since f(u,A\) =0
everywhere on a solution branch differentiating eq. (1) with respect to s along x(s) gives

d : -
E[u(s), A()] = TJa(s) + HA(s) = 0. (4)

The Jacobian J = f,, = % is the Frechet derivative of f with respect to u, () = % and f\ = %.
In this work the notation f,, and J are used interchangeably.
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Figure 1: Typical Bifurcation Diagram.

Suppose (u,, Ao) = [u(s,), A(So)] is a solution point to eq. (1). If J, = J(u,, A,) is invertible,
then (u,, A,) is called a regular solution point. If J, is not invertible, (u,,A,) is referred to as a
singular point. It is well known that at a regular solution point, the solution to eq.(4) uniquely
defines a tangent vector to the solution curve at (u,, A,) and the Implicit Function Theorem (IFT)
[2] guarantees the existence of a unique solution [u(s), A(s)] in a neighborhood of s,,

SE[so—€,8,+¢€, €>0.

At asingular point the IFT is not valid. Therefore, the occurrence of a singular point is a necessary,
though not sufficient, condition for bifurcation to occur. An important example of when a singular
J does not lead to a bifurcation is at a simple limit point (points A and B in Fig.1). A point
(1o, o) is a simple (normal) limit point of eq. (1) if dim Null(J,) = dim Null (JZ) = 1 and
fy = fi(u,, o) ¢ Range(J,).

Computing the solution set of eq. (1) is the fundamental goal of a continuation/bifurcation
procedure. To carry out this task, a practical procedure must be able to do the following:

e compute solution branches through both regular points as well as singular points;
e detect and diagnose bifurcation points;

e switch branches at bifurcation points.

2.1 Continuation

In practice it is rare that an analytical solution to eq. (1) can be found, although it is commonly
assumed that at least one solution point (u,,,) is known a priori. Due to the difficulty in
finding analytical solutions, a great deal of work in the technical literature has been directed



towards developing efficient and accurate numerical continuation schemes to compute approximate
solutions to (1). A numerical continuation scheme is an algorithm which begins with a known
solution point (u,,\,) and proceeds to compute discrete points along the solution branch which
contains (u,,\,). The two basic steps of a continuation scheme are:

1. A predictor step to generate an initial guess of a new solution point X1 = (U1, Ag4+1) near
the last converged solution point xj. Two common techniques for computing a prediction
step are Euler’s method (a first order Taylor expansion) to compute an approximate tangent
to the solution curve or by using a polynomial interpolation from previous solution points. A
popular prediction scheme in the structural analysis community is a three-point (quadratic)
Lagrangian interpolation formula,

X1 = N1(Aspy1)Xp—2 + No(Aspi1)Xp—1 + N3(ASkr1)Xk

where N1, N2 and N3 are quadratic Lagrangian polynomials. In practice, it has been found
that a quadratic predictor is fairly robust and is a good compromise between stability and
economy. The quantity Asg41 is defined as the step length, which is a measure of how “far”
Xp+1 will be from xg.

2. The second step of a continuation scheme is an iterative correction algorithm designed
to successively update and improve the initial guess until a convergence criteria is met.
Standard iterative correction schemes generally fall under the category of either Newton’s
method or a Secant method, e.g., Broyden updates [40].

With regard to generating an initial prediction step, an issue of some importance is controlling
the size of the step length Asg,1. Since the convergence characteristics of the correction procedure
varies along different parts of a solution curve it is important to have an adaptive step length
control strategy to ensure reasonable performance of the continuation procedure. For example,
in regions of strong curvature or near singular points of interest, relatively small step sizes may
be necessary to accurately resolve details of the solution branch and to ensure convergence of
the correction scheme in a reasonable number of iterations. In other less interesting parts of
the solution curve, it may be more prudent from a computational expense point of view to use
larger step sizes. Many step length control procedures have been developed and choosing one
is dependent on the type of problems being studied. Two common design goals for developing
step length control procedures are choosing As to maintain a certain user-defined target iteration
count and to control the maximum angle between any two successive prediction steps, which
is important in regions of strong curvature. For more information on step length control, the
interested reader is referred to [3], [41] and [42].

The capabilities of any practical continuation scheme must include the ability to compute
solution branches through singular points. One of the inherent difficulties of computing a solution
branch through a singular point lies in the fact that in the vicinity of a singular point the Jacobian
matrix J becomes ill-conditioned. Furthermore, at a bifurcation point the continuation scheme
must also be able to contend with multiple solution branches and pick out the desired path. The
above notwithstanding, under “mild smoothness conditions” [2] a given continuation procedure
can jump over bifurcation points. On the other hand, a continuation algorithm might not be
able to get past a simple limit point unless special care is taken in choosing an appropriate
parametrization for the solution curve [2], [3], [43].



The importance of limit points? has prompted numerous investigations aimed at overcoming
the difficulties associated with computing a solution path through a limit point. Perhaps the
most popular solution algorithm with this capability is the pseudo arc-length continuation scheme
[1]-[4]. In an pseudo arc-length continuation procedure, an iterative nonlinear equation solver is
applied to an extended system of equations of the form

F [x(s),s] = [ Nf[[;;g);;gj?s]] =0 (5)

where F: V X R xR +— V xR. N[u(s), \(s),s] =0 is a scalar constraint equation which defines
the path parameter s in terms of unknowns of the problem. The objective of the constraint
equation is to maintain a well defined parametrization for the solution path.

A simple geometrical interpretation of the constraint equation, as discussed in [3], can be had
if we assume that N is of the form

Nlu(s),A(s),s] = Glu(s),A(s)] =5 = G[x(s)] =5 =0. (6)
Since G[x(s)] — s equals zero every along a solution curve, differentiating G’ with respect to s gives

d dG dx do do

E(G[x(s)]—s):d—x-%E—lz(n-x’)a—lzo (7)
gl

where o is the true arc-length from differential geometry, (See [45] p.245). By definition ‘j—ff =x
is the unit tangent along the solution curve and Gx = n is the normal to the hypersurface
defined by eq.(6), (Fig.2). An “allowable” path parameter s, ([46], pp.17-29), must locally
satisfy the condition j—i # 0, which according to eq. (7) is equivalent to saying that n - x' # 0.
Therefore, to maintain a well defined parametrization for the solution path the constraint equation
Nu(s), A(s), s] = 0 must define an adaptive hypersurface whose normal at the point of intersection

with the solution curve x(s) is never orthogonal to x’'.

A
fx(s)]1=0

G[x(s)] -s=0

Iull

Figure 2: Relationship between a solution path and the constraint equation G[x(s)] — s = 0.

*In structural stability problems, the existence of limit points often indicates the occurrence of a snap-through
phenomena [44].



From (5) it can be shown that along a solution branch

e 13 801 (3]} o
Ju O 0s
Fx x F.

The salient feature of eq. (5) is that with a properly chosen constraint equation N(u,A,s) = 0,
the Jacobian of the extended system Fyx is of full rank at a simple limit point even though J has
a null space of dimension one. Solving (8) for x defines the tangent vector to a solution branch
x(s). A particularly useful definition for the constraint equation is [43]

Nu(s),A(s),s] = o+ [u(s) —uo] + Ao - [A(s) = Ao] — (s — 50) = 0. (9)
By enforcing the path constraint displayed in eq. (9), the tangent vector X, is constrained such

that || %o ||~ 1.

2.1.1 Bordering Algorithm: A Practical Path Following Method

Beginning with equations (5) and (9), the following “Bordering Algorithm” (Fig.3), has been
developed as a practical and efficient continuation procedure which can effectively compute a
solution branch through a limit point [1], [43].

Bordering Algorithm Assuming a solution point [ug_1,Ag—1] is known, a new solution point
[ug, Ax] located by s = sk—1 + Asy is sought where Asy, is a sufficiently small step length.
1. Define an initial guess for (ug, Ag)

2. Refine the initial guess by successive updates (ug, Ax) = (ugx + Aug, A\ + A)g) where
Auy and A)\ are defined as

N — g1 yi

A = =
Up_1 -2k — Ao

» Aug = —yg — 2 A, (10)
and R .
Np=tg_1 - [ug —up_1] + M1 Mk — Ap_1] — As.

The vectors y; and z are the respective solutions to the so-called incremental equations
J(ug, An)yr = f(ug, Ax) and J(ug, Ag)zi = 2 (uk, Ae) (11)
and the derivatives u;_; and Xk_l are approximated as

Up_1 — Up—2 : Ak—1 — Ak—2
—————= and A1 —=.

12
Asp Asp (12)

ﬁk—l ~

Continue step 2 until a convergence criteria, e.g., || F(x, sk) ||< ¢, is satisfied.

3. Once a new solution point (ug, A, sg) is located, the above algorithm may be repeated
to search for the next solution point or the procedure may be terminated.




2.2 Bifurcation Detection and Branch Switching

As a solution branch is being computed, the continuation algorithm should be checking for the
occurrence of singular points. In general, detecting a singular point amounts to noting the oc-
currence of a zero eigenvalue in the Jacobian matrix J. Common methods of detecting a zero
eigenvalue in numerical computation include: (1) a partial spectral analysis of J; (2) looking for a
sign change in the determinant of J; (3) counting the number of negative entries on the diagonal
of the matrix U from an LU decomposition of J [47].

Once a singular point is detected, it is necessary to determine whether or not a bifurcation has
occurred. This refers to the previous note that the existence of a singular point is a necessary but
not sufficient condition for bifurcation to occur. A well known statement and proof of sufficiency,
taken from [2], is included here for completeness. Assume that (u,, ),) is a singular solution point
of (1) along a smooth solution branch such that u, = u(s,), Ao = A(Ss),

dim Null(J,) = dim Null (37) = m

and
f), € Range (J,) .

Now define the sets

{p1,0s,...,0,,} = span Null (J,)
{¢Y1,¢9,...,%,,} = span Null (JZ) } Vit b = b (13)
and ¢, as the unique solution to
Jop, = —f5 such that ¢, ;=0 (j =1,2,...,m). (14)
It follows from eqs. (4), (13) and (14) that
U(so) = o = Y aj; (15)
j=0
where a, = Ao Differentiating eq. (4) with respect to s, and rearranging terms gives
211, + ff N, = —£3,1,11, — 2£3, Aot1, — £3 A0, (16)

Since both fgi, and fj\’s\o are in the range of f] it follows that expression on the right hand side of
eq. (16) is also in the range of £3. Using results from the Fredholm alternative, ([7], pp. 290-292),
it can be shown that

W [fauitoit + 265 Aotto + Fy Aoho| =0, (i=1,2,...,m). (17)

Equations (15) and (17) lead to the well known result from bifurcation theory that if a transverse
bifurcating branch at the point (u,, \,) exists, it must have a local form

u(s) = u,+s (i ajqb]-) + o(s)
j=0

A(s) = Ao+ aps+o(s) (18)



where aq, a1, ..., a, are isolated roots to the quadratic bifurcation equations

SN Ao +2) ) Bijojag+ Ciag = 0, 1<i<m (19)
j=1k=1 j=1
where
A = ¥ 10D dr,
Bij = ;- [fqu®o + firl 95
Ci = ¢ [fquPodo + 2fqnde + £,
. d’f
fow = 55 ‘(uo,Ao) : (20)
If a solution to eq. (19) exists, the coefficients ag, a1, ...,an can be substituted into eq. (18) to

get a prediction step for a branch switching routine. Note that solving eq. (19) involves computing
the third order tensor fyu which can be prohibitively expensive. Therefore, instead of using the
“exact” tangent which can be had by solving eq. (19) it is often more prudent to use less exact but
more economical approximations for a prediction step onto a bifurcation branch, (see for example
3], pp.251-253).

Of particular importance in practical applications is the case of a simple bifurcation point
(m = 1). At a simple bifurcation point the tangent vectors to the two independent solution
branches through (u,, \,) are given by

W, = a0y + 11, Ao = (21)
where [ag, 1] are the roots to
Allla% + 2Bjia1aqg + C’lag = 0. (22)

Due to the strongly convergent nature of Newton’s and Newton-like methods, instead of solving
for ag and a3 exactly it is often sufficient to use a simple prediction step of the form

1, = Aspy, Ao =0. (23)

to switch branches at a simple bifurcation point.

2.3 Bifurcation in One-Parameter Problems

As discussed earlier, a necessary condition for bifurcation to occur at a solution point (u,,A,) is
that the Jacobian matrix J, be singular. We present here a simple well-known heuristic argument
which implies that bifurcation in one-parameter problems of the form shown in eq. (1) is a non-
generic occurrence.

Consider solving eq. (4) at a singular point (u,, A,) when J, has a one-dimensional null space
which satisfies

Jop1 =0 and JTep; =0 (24)

with ¢;,%; # 0. Using the Fredholm alternative, we can classify the singular point (u,, \,) as
either a limit point or bifurcation point depending on whether or not fy is in the range of Jo.



e Limit Point

£y ¢ Range(J,) & ¥ -f) #0 = A, = 0,11, = ag,

e Bifurcation Point )
fy € Range(J,) & ¢, -fy =0 = 0, = A\, + a1¢; where ¢, is the unique solution to
Jop, = —13 such that ¢, - 9; = 0.

For a bifurcation to occur in eq.(1), the loading vector fy must be orthogonal to the null vector
of JT. Unless there is something special about eq. (1) that would enforce this requirement one
would generically expect that 9, - fy # 0 in which case (u,,\,) would be a limit point. In §3, we
will show how bifurcation points can become generic if there is symmetry in the problem.

3 Group Theory Applied to Nonlinear Bifurcation Problems

Before discussing how group theory can be applied to the nonlinear bifurcation analysis of prob-
lems with symmetry, it is helpful to first to have at our disposal a few definitions and basic
concepts from group representation theory. We begin by giving a definition of a group [30].

Definition 3.1 A group G is a set of objects {g,h,k,...} (not necessarily countable) together
with a binary operation which associates with any ordered pair of elements g, h € G a third
element gh € G. The order of a group is the number of elements in the group. The binary
operation (called group multiplication) is subject to the following requirements:

1. there exists an identity element e in G such that ge = eg = g for all g € G;

1 1 -1

2. for every g € G there exists in G an inverse element g~ such that gg= =g g = ¢;

3. the identity (gh)k = g(hk) is satisfied for g,h,k € G.

A subgroup ‘H of G is a set H C G, including the possibility that H = G, such that H is a group.

Consider the deformation of the three-bar truss depicted in Fig.4. The truss is composed of
three identical uniform one-dimensional elastic rods of length L. The rods are pinned together
at point Ap and simply supported at points Aj, Ay and Az. H is the height of the truss. Let
(E1, Eo, E3) represent the standard orthonormal basis in Euclidean three space FE2and define a
three-dimensional vector (configuration) space Viruss = span(Eq, Eo, E3). The truss is deformed
by a simple dead load —AE3 and the deflection of point Ag with respect to the initial configuration
of the truss is determined by the displacement vector

u= uE; +uEs +uzE3 = (ug, ug, u3). (25)

If one assumes that the rods can only deform in extension or compression, ¢.e., the rods cannot
shear or bend, then locating point Ag provides a complete kinematic description of the deformed
truss. The nonlinear equilibrium equations for the truss can be abstractly written as

ftruss(u, )\) = fl(ua A)1?11 + f2(u, A)EZ + fg('l_l, A)EI3 =0 (26)

where firuss @ Viruss X R — Viuss- Equation (26) represents a set of three nonlinear algebraic
equations whose solution (u, \) represents an equilibrium configuration of the truss.

Let € represent the three-bar truss in the initial, undeformed configuration. The body or
structural symmetry [48] of Q is that of an equilateral triangle, which implies that Q is unchanged
by rotations of %’r and %’r radians about the E3 axis, as well as reflections across the E; — E3 plane.
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Start with xg = (ug, A\g) and As
stepcut=0; contflag=0; £ =1
while contflag = 0
compute initial prediction x;
corrflag = 0
while corrflag = 0
solve Jpz, = f},
solve Jryr = (1)
compute Ny,
Xk = Xk + Ax(Zg, Y&, Vi)
check corrector stopping criterial
end
if corrflag=1
k =k +1; stepcut=0; adjust As
diagnose J for bifurcations
else
As = As/2; stepcut=stepcut+1
end
check continuation stopping criteriat
end

f (corrflag=1) convergence attained ||fy|| < ¢
(corrflag=2) divergence detected
(corrflag=3) maximum number of iterations exceeded

! (contflag=1) k > maximum number of allowable steps
(contflag=2) stepcut > maximum number of allowable step cuts
(contflag=3) ||Ak|| > maximum allowable load factor

Figure 3: Pseudo code for the standard continuation/bifurcation procedure using the “Bordering
Algorithm.”
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Elevation

Figure 4: Three-Bar Truss.

In the language of group theory, the symmetry of 2 and the loading in Fig. 4 is characterized by
the dihedral group D3 [30], [31].

D3 is the group of rotations and reflections which mathematically describe the symmetry of
an equilateral triangle. The group D3 is generated by two elements r and s. r is a rotation
through an angle of %’r radians and s is a reflection. D3 is a symmetry group of order 6 and can
be represented by the set

D3 = {e,r,rQ,s,sr, srz} (27)

where e = r3 = s? is the identity operator and srs = r~!. Figure 5 illustrates a geometrical

interpretation of the action of the elements of D3 on an equilateral triangle.

/\

3 22 11 32 31 23 1

Figure 5: Action of D3 on an Equilateral Triangle.

The symmetry group Ds3 is an example of the dihedral group D,. D, is the group of rotations
r* through an angle 2*k (£ =1,2,...,n) and reflections s which characterize the symmetry of a,

n
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regular, n-sided polygon such that e = ™ = s? and srs = r~1. D, is a group of order 2n and can
be abstractly represented by the set

D, = {e,r, P2, s s, sr?, . ..sr"_l} . (28)

A symmetry group which is closely related to D,, is the cyclic group Cn. C, is the n*® order
group of rotations r* through an angle 22—"’ (k=1,2,...,n) such that e = r™. C, is a subgroup

of D, and can be represented by the set
Cn = {e,r,r2, .. ,r”fl} . (29)

A key step in applying the abstract ideas and concepts of group theory to nonlinear structural
mechanics is devising a method to “represent” the action of the elements of an abstract group G on
a configuration space V. Before precisely defining what is meant by “representing the action of a
group on a vector space,” consider the action of the following specific orthogonal transformations
on the displacement vector u € Viiyuss.

With respect to the orthonormal basis in Fig.4, a clockwise rotation of 2”7" radians, n € Z,
of the displacement field u about the Ej3 axis has a matrix representation

2nn 27n

CO8 3 sin 3 0
szTn = | —sinZ® cosZ2 0 |. (30)
0 0 1

Similarly, a reflection of u across the E; — E3 plane is represented by

1 0 O
J=1]0-10 (31)
0 01
We can now define a new set
Dy = {I,R%,R%,J,JR%,JR%} (32)

where I = Ry, is the identity matrix. A special characteristic of the elements of D3 is that they
represent rigid motions of the truss which leave the truss “unchanged.” In other words, “
no mechanical experiment is capable of detecting a difference between the body(truss) and the
transformed body (truss)” [48].

An isomorphism may be defined between elements of D3 acting on u and elements of D3
“acting” on an equilateral triangle, i.e., for every element of D3 which rotates and/or reflects the
equilateral triangle in Fig. 5, there is a corresponding element of D3 which performs a “similar”
transformation on the vector field u. The following definition makes this correspondence precise
[30].

Definition 3.2 Let V be a real, n-dimensional vector space and identify (O, as the space of all
orthogonal n x n matrices such that O, : V +— V. An orthogonal, linear representation of
a group G on V is a homomorphism 7 : G — O,. In other words for each element g € G
there exist a 7, = 7(g) € O, such that T(g91)7 (92) = T(g192) = T(97") = T'(g) and
T(e)=1.
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As an example of Definition 3.2, consider an operator 7 : D3 — Ds, such that the following
isometries exist between elements of D3 and Ds,

6) =1, 'j’(,,.) = R27r/37 T(TQ) = R47r/37

s)=J, ’f'(sr) = JRgq/3, ’j'(srz) = JRy,/3. (33)

(

T(
From Definition 3.2 and eq. (33) it can be shown that 7 is an orthogonal, linear representation
on Viuss Of the symmetry group Ds.

3.1 Nonlinear Reduction

It is reasonable that in developing a mathematical model of a physical system with symmetry, one
should require that the equilibrium equations of that model reflect the same symmetry found in
the physical system. For example, the equilibrium eq. (26) should reflect the D3-symmetry of the
three-bar truss. The equilibrium equations for a broad class of symmetric problems in engineering
and science frequently reflect the symmetry of the physical system through a property known as
equivariance [5], [12].

Definition 3.3 Let 7 € O, be an orthogonal, linear representation of a group G with 7, = 7 (g).
An operator f(u, ), f:V x R — V, is said to be equivariant under the action of 7 if

%f(u’ A) = f('];u, A) Vgeg. (34)

Equivariance allows one to systematically find proper subspaces of V' which contain global
solution paths to (1) of a specific symmetry type. The symmetry of a vector u € V is characterized
by its usotropy subgroup H of G defined as

H={9€G:Tyu=u} (35)

where 7 is a representation of the group G on V. Complimenting the idea of an isotropy subgroup
is the fixed point set. Let H be a subgroup of G, including the possibility that H = G. The
‘H-fized-point set Vi is defined as

Vi={ueV:Tju=uVg e H}. (36)

Vi is a linear subspace of V' which is invariant under the action of H.
Assume that H is the isotropy group of a vector u and V3 is the corresponding fixed point
set of H. From the results in egs. (34) and (36), it follows that

T,f(u,\) = £(Tpu, ) = £(u, ) (37)

V (u,A) € Viy x R and Vg € Hy. It is clear from (37) that f : V3y X R +— V3. In other words f
has V3 as an invariant subspace.

3.2 Nonlinear Reduction and Block Diagonalization

Let G represent the isotropy group which characterizes the symmetry of a solution path to eq. (1).
Group representation theory offers a systematic methodology for choosing an “optimal” set of
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basis vectors, or symmetry modes, which resolve the configuration space V into a set of p mutually
orthogonal subspaces V(®) such that

p
V=Y avi. (38)
p=1

The parameter p is determined by the symmetry group G. It can be shown that each one of
these subspaces V(# reflects part of the symmetry of the original system. The subspace v s
typically designated as the G-invariant subspace which implies that the elements of V@ reflect
the symmetry of G. For problems with circular symmetry, V(1) might represent the set of all
axisymmetric solutions. The G-reduced problem

fO(u,)) = 0
fO.vO xR - v (39)

is defined by restricting f(u, \) to V(1). Solutions to (39) are exact, global solutions to (1) which
lie in the subspace V(). Note that eq. (39) represents a dimensional reduction in problem size.
Once the decomposition of V in eq.(38) is carried out, an orthonormal basis of symmetry
modes is chosen for each one of the subspaces. A remarkable result from group representation
theory states that if the symmetry modes are used as basis vectors for V' the Jacobian matrix,
defined as J = 4f block diagonalizes, and the incremental equations for a Newton step in

du UEV(l) ?
a continuation procedure take the form

0 J® 0 v | 0 | o
. | = . (40)
0 o 3@ | |y | 4@ 0o | o

where y(#) z(#) € V() It can be shown generically that f (u, ), fy (u,\) € V() for all (u,)) €
V(1) x R. Thus, to trace out a G-symmetric solution path with an continuation procedure it is
only necessary to assemble the matrix J() and solve

JOy® = fil)
0 1) (41)

A group theoretic based, nonlinear continuation/bifurcation procedure would consist of 2 parts:

1. The reduced problem f(!) with its associated Jacobian matrix J() are used to calculate the
G-symmetric solution paths;

2. As solution points along a G-symmetric path are found, bifurcation points can be diagnosed
by assembling the matrices J(u) (1 = 2,3,...,p) and checking for the occurrence of zero
eigenvalues.

The block diagonalization of J is the key to circumventing the numerical ill-conditioning
frequently encountered in problems such as shell stability analysis. It can be generically shown
that the only type of singularity which occurs in J™) along a G-symmetric solution branch is a.
limit point, which does not represent a loss of uniqueness of the solution and therefore poses little
difficulty for an pseudo arc-length continuation procedure. The singular points encountered along
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a solution curve which could cause severe convergence problems for the correction algorithm are
not an issue because they generically only occur in the orthogonal blocks J(*) which are never used
in the continuation process. To see this, recall the results in §2.3 which showed that at singular
point with a one-dimensional null space satisfying eq. (24) a necessary condition for bifurcation
to occur was shown to be 9, - fy = 0.

e Suppose Jf,l) is singular with a one-dimensional null space satisfying Jf,l)qb(ll) = 0 and
T
(J ((,1)> 1/)(11) = 0. Since both f} and w(ll) are elements of V(1) one would generically expect
that zp(ll) -7 # 0 in which case (u,, Ao) must be a limit point.

e Suppose JS,’L ), (b = 2,3,...,p), is singular with a one-dimensional null space satisfying
IW e = 0 and (Jf,”))T ") = 0. In this case £2 € V() but 4 € V¥, By definition
every vector contained in V{#) is orthogonal to every vector contained in V{1, therefore
111(1” ). 2 = 0 and (u,, \,) would generically be a bifurcation point.

It is important to keep in mind that the above argument is not rigorous but only holds in a generic
sense.

If a singular point along the G-symmetric primary solution path turns out to be a bifurcation
point, the isotropy group H of the primary bifurcating branch is generically not equivalent to
G and is referred to as a symmetry breaking bifurcation. It generically turns out that H is a
proper subgroup of G and the primary bifurcation branch typically exhibits less symmetry than
the primary solution branch.®> The block structure of the incremental equations along branches
with different symmetry will in general be different. As one passes from a branch with more
symmetry to less symmetry, the number of blocks decreases while the size of the individual blocks
increases. Therefore, as one moves to branches associated with smaller symmetry groups, the
advantages of a group theoretic approach diminishes.

3.3 Dg-Symmetric Dome

An instructive vehicle for demonstrating a group theoretic approach to nonlinear bifurcation
analysis is the static-deformation of the hexagonal, i.e., Dg-symmetric, lattice-dome structure
which was originally analyzed in [1],[11] and further discussed in [17] and [18]. The details of the
group analysis and finite element formulation for this problem can be found in [11] and will only
be summarized here.

The governing equations of the lattice-dome discussed in [1] were cast in the form

f(U,)) = o,
f: Viome X R Vdome (42)
where Viome € R?Y, U € Viome and X € R was a loading parameter. Solving what will be referred

to in this section as the dome-problem, entailed finding solutions to (42) which were connected to
the zero state (U, ) = (0,0).

3Though as noted in [11], it is often the case that some of the original symmetry is preserved on the bifurcating
branch.

16



3.3.1 Dome Equations in a Standard Basis

The first coordinate system in which the dome-problem could be formulated is referred to as the
“standard basis”. Let the displacement vector U be represented by a column vector of components
written as

Uz (ul,UQ,U3,’LL4,...,ulg,’LLzo,UQl)T. (43)

In eq. (43), the displacement components (u1,us, ..., us1) are the displacement components with
respect to the standard orthonormal basis

123 1 20 21 i
e; =(0,0,0,...,1,...,0,0)7, (i=1,2,...,21). (44)

The coordinate system described above would be a natural choice for a standard commercial
nonlinear finite element package. Figure 6 depicts the structure of the incremental equations
in the standard basis and visually demonstrates that all twenty-one degrees of freedom in the
standard coordinate system are coupled together.

J AZ,AY f,f7L

123456789 1011121314151617 18192021 -
1 000000000000 0OCGEOIEOGINOGIOSNOISIOSOIO ([ ]
2000000000 00000000O0O0CKC0C° [ ]
3000000000000 000000000 [ ] [ ]
11000000000 [ N J [ ]
51000000000 o0 0 ([ ]
6000000000 [ N N ] [ ] [ ]
770 00000000000 [ ]
I 00000000 OOOS [ ]
9000000000000 [ ] [ ]
1006 ee 00000000 [ ]
11000 00000000 e
2000 000000000 [ ] [ ]
3000 00000000 [ ]
4000 00000000 [ ]
5000 00000000 [ ] [ ]
16 @ ®@ @ 000000000 [ ]
170 0@ 00000000 [ ]
300 e 000000000 [ ] [ ]
NVeeeeee o000 O0O0 [ ]
20000000 o000 00O [ ]
20 000000 0000006 O Ld

® - Nonzero Element

Figure 6: Incremental equations — standard coordinate system

3.3.2 Dome Equations in a Symmetry-Adapted Basis

In [14] a detailed algorithm is presented, which can be used to automatically compute a symmetry-
adapted basis for lattice-dome structures with D,, symmetry. Making use of this algorithm, the set
of basis vectors displayed in Table 1 was computed for a Dg-symmetric solution path. Note that
Viome has been partitioned into a set of eight mutually orthogonal subspaces and may represented
as

6
Vdome = Z@V(#) (45)
p=1
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Table 1: Symmetry-Adapted Basis for the Hexagonal Dome

Basisfor VA &, es

& % [es + €9 + e12 + e15 + e + e21]

&3 \/lﬁ [2(64 —e13)+ V3(es +e11 —e1r —ex) +er —eo — eig + e19]
BasisforV® &, \/lﬁ [2(e5 —e1s) +V3(—er —eio +eis +e10) + € — e —err + ezo]
Basisfor V®) &g % [es — eg + €12 — e15 + €13 — ea1]

& \/ﬁ [2(84 +e13) + V3(—es + e11 —e17 +ex) —er —e1g — e1g — e19]
M &7 \/lﬁ [2(05 +ews)+ \/5(07 —e19+ e —€1g) — €3 — €11 — €17 — 920]
Basis for V§5) ég ey

&g \/% [2e6 + €9 — €12 — 2e15 — €15 + €21]

é10 % [es + e7 + e10 + €13 + €15 + e19]

e o [2(eq + e13) + V3(es — e11 + 17 — ex) — €7 — e1g — €15 — exg
Basis fOI‘ Vgs) élg €

é13 % [es + €12 — €15 — €21]

&14 % [es + es + €11 + e1s + €17 + eq]

é1s \/lﬁ [2(—65 —eus)+ \/3(97 — e +es —eg)+es+er +er+ 620]
Basis fOI‘Vga) @16 \/IT [2e6 —eg —e1s + 2e15 — e15 — 621]

é17 \/% [2(94 —e13)+ \/g(—es —e11+eir+ey)ter —e —es+ 919]

é1g % [es —er + e1p — e13 + e15 — exg]
Basis fOI‘ Vge) élg % [eg —e12 + e1g — 821]

&0 vors [2(es — e14) + V/3(er + 10 — e1 — e10) + €5 — €11 — e1r + exq]

&1 % [es —es + €11 — €14 + €17 — €3]
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where V) = V1(5) &3] V2(5) and V6 = Vl(e) &) V2(6). The set of symmetry-adapted basis vec-
tors, or symmetry-modes, {€1,&2,...,€21} displayed in Table 1 is an orthonormal basis for the
configuration space Viome-

As was done with the standard coordinate system in the previous section, the dome equations
can be recast with respect to this new coordinate system. For an arbitrary deformed configuration,
the incremental equations expressed in the symmetry-adapted coordinate system lead to a coupled
system of twenty-one equations. However, the configuration of the deformed dome along the
primary solution branch is not arbitrary, it maintains its original Dg symmetry. It has been
shown [11] that the exact global Dg-symmetric solutions of eq. (42) lie entirely within the three-
dimensional subspace v ¢ Viome- The incremental equations expressed in the symmetry-
adapted coordinate system has the special block-diagonal structure shown in Fig.7.

N N A NN
J Az, Ay ,fx
1 234567 89 101112131415161718192021 -
1| o0 ® [ ] ([ ]
2000 [ ] [ ]
31000 [ ] [ ]
4 [ ]
5 [ N J
6 [ N J
7 [ ]
8 o000
9 o000
10 o000
11 o000 _
12 o000
13 o000
14 o000
15 o000
16 o000
17 o000
18 [ N
19 o000
20 (N N ]
21 eeo | | |

® - Nonzero Element

Figure 7: Incremental equations: Symmetry-adapted coordinate system

3.4 Symmetry Transformation

For reasons of programming efficiency and flexibility of use, most general PDE solvers and algo-
rithms are set up to solve equations with respect to “standard” Euclidean, Cartesian or orthogonal
curvilinear coordinate systems. The result of this is that while the Jacobian matrix J written with
respect to the standard basis is easily computed the symmetry-adapted Jacobian blocks J(*) are
generally only available via similarity transformations. For example, referring back to the dome
problem, suppose one were to define an orthogonal matrix

Q = [Q1Q2Q3 Qs Qs Q] e R*?' Q"Q=QQ" =1

where Qu, (1 =1,2,...,6),is a 21 x |V ()| matrix whose columns are made up of the symmetry-
adapted basis vectors for V(#) in Table 1. Once Q is defined, the transformation of the incremental
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equations in the standard basis, (Fig.6), to the incremental equations in the symmetry-adapted
basis, (Fig.7), can be simply accomplished as shown in eq. (46).

QTIQQTy = QTfy = Jy=*
—— ——r

J 9 f,
Q1IQQ%z= Q'f = Ji=f (46)
i z f

The reduced problem, (eq.(41)), which can be used to compute the Dg-symmetric path of the
dome is similarly formulated as

Qf1Q,QTy= Qff = JWyM — ¢V

JO 4 £
Qf1Q,:QT:= Qft = JW M =¢O) (47)

J@) 2(1) £(1)

while the orthogonal Jacobian blocks are computed as

3w =QrI1qQ, (48)

An important feature of the transformations in eqgs. (46)-(48) is that J and Q are typically sparse
matrices. Taking advantage of the inherent sparsity leads to very eflicient coordinate transforma-
tions, which is crucial in large problems.

To use the above approach, the transformation matrix Q must be available to the solution
procedure in one form or another. Computing Q entails a group analysis of the problem at hand
— a detailed discussion of which is beyond the scope of this work. It suffices to say that it is
often possible to develop efficient algorithms which allow specified columns of Q to be computed
as needed [16]. For more information about group analyses of symmetric systems, the reader is
referred to [5]-[27].

4 Group Theoretic Algorithms

The group theoretic ideas discussed in the previous section have been implemented in two new
MATLAB-based symmetry-adapted nonlinear continuation codes contcm.m, (pseudo code Fig. 8),
and MMcontcm.m, (pseudo code Fig.9). The only significant difference between these two codes
is that contcm.m was written for a single-processor environment in MATLAB while MMcontcm.m
was written for a multi-processor environment in MultiMATLAB. Both codes are based on the
following algorithm:

Symmetry Adapted Continuation/Bifurcation Algorithm From the beginning, it is as-
sumed that a solution point [ug_1, Ax—1], with respect to the standard computational coor-
dinate system, is known. A new solution point [ug, \g] is sought.

1. Define an initial guess for (ug, Ag)

2. Compute the Jacobian matrix J, equilibrium equation f and the load vector f, with
respect to the standard computational coordinate system.
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3. Assemble and solve the dimensionally-reduced set of linear equations, by computing
JO_ £1) and fil), as shown in eq. (47) and ug) = QT u,.

4. Using an iterative nonlinear solution method, such as Newton-Rhapson, refine the
initial guess for (uf), /\k) by successive updates, transforming between the standard
computational and symmetry-adapted coordinate systems as needed, until an appro-
priate convergence criteria is satisfied.

5. Once a new solution point (ug),)\k) in the symmetry-adapted coordinate system is

found, transform the solution to the standard computational coordinate system via
u; = Qlugcl).

6. If desired, one or more of the “orthogonal” blocks may now be evaluated at the con-
verged solution point (ug, A\x) to check for the occurrence of an orthogonal bifurcation,
e.g., J = Q;";JQH where Q,, € RIVIxIV®y,

7. The above algorithm may be repeated to search for the next solution point or the
procedure may be terminated.

While contcm.m enjoys the improved numerical conditioning and reduction in problem size
offered by a group theoretic approach, further computational advantage can be found in a par-
allel environment. To see this, consider that in contcm.m after a solution point is computed
an orthogonal bifurcation analysis is performed and the continuation process is halted until the
bifurcation analysis is complete. However, computing successive points along a solution branch
is independent of the bifurcation analysis. Furthermore, the bifurcation analysis of the various
blocks J(¥ (pw=2,3,...,p) are also independent of one another. Therefore, assuming that one
processor is dedicated to the continuation portion of the computation and one or more processors
to the bifurcation analysis, a parallel version of contcm.m would partition the work as follows:

1. Continuation Processor 1 The reduced problem f(!) with its associated Jacobian matrix
J() are used to calculate the G-symmetric solution paths. When a solution point x; has
been found, it can be sent to the bifurcation processors and the computation of the next
solution point xj41 can begin without waiting for the bifurcation analysis to be completed.

2. Bifurcation Processor(s) (2:NP) Once the solution point x; has been received from the
continuation procedure, G-symmetry breaking singular points can be diagnosed by assem-
bling the matrices J® (1 = 2,3,...,p) and checking for the occurrence of zero eigenvalues.
Once the bifurcation analysis is complete, the bifurcation processor is ready to receive the
next solution point Xgy1.

MMcontcm.m is based on the above partitioning of work. It is important to note that a key
element in an efficient implementation of the parallel algorithm in Fig.9 is to make sure that the
time needed by the processor 1 to compute successive solution points is less than the time needed
by processors 2:NP to perform the bifurcation analysis. This is to avoid the situation of having
processors 2:NP sitting idle while waiting for the next solution point.

The potential difficulty which arises is that the continuation part of the procedure is iterative
and will not always converge in a predetermined number of steps. Furthermore, in the region
of high curvature in the solution path, several adjustments to the step length may be needed to
attain convergence.

It is appropriate to note here that two parallel algorithms very similar in spirit to what is dis-
played in Fig.9, respectively designed for the linear static and vibration analysis of rotationally
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Start with xg = (ug, Ag) and As

define p

stepcut=0; contflag=0; k =1

while contflag = 0
compute initial prediction xy
corrflag = 0
while corrflag = 0

transform chl) =Q7%J.Qq, f,ﬁ” = Qff;, (fil))k =Qf (B )k
solve chl)zgcl) = f,gl), Jg)yg) = (f,&l))k

transform z; = Q1Z§cl), Ye = Qlyz(gl)

compute Ny
X = X + AX(Zk,yk, Nk)
check corrector stopping criterial
end
if corrflag=1
k =k +1; stepcut=0; adjust As
diagnose orthogonal blocks QZJ £Q for bifurcations
else
As = As/2; stepcut=stepcut+1
end
check continuation stopping criteriat
end

t (corrflag=1) convergence attained ||fy|| < €
(corrflag=2) divergence detected
(corrflag=3) maximum number of iterations exceeded

! (contflag=1) k& > maximum number of allowable steps
(contflag=2) stepcut > maximum number of allowable step cuts
(contflag=3) ||Ag|| > maximum allowable load factor

Figure 8: Pseudo code for contcm.m
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periodic, i.e., C,-symmetric, structures have been discussed in [49]. The block diagonalization
of the Jacobian (stiffness) and mass matrices in [49] appears to be a generalization of the well
known de-coupling which occurs while solving linear axisymmetric problems with non-symmetric
loads using a semi-analytical (Fourier discretization) technique ([50], pp.195-202). A more sys-
tematic and general approach to the linear analysis of symmetric structures, within the context of
group representation theory, can be found in [25] (linear static analysis) and [13] (linear vibration
analysis).

A very important distinction between what was done in [49] and what is done in this work is
that the techniques discussed in [49] are limited to the linear analysis of only rotationally periodic
structures. The techniques used in this work, based on a rigorous group theoretic analysis, are
valid for the global nonlinear analysis of any type of symmetric structure, e.g., spherical shells,
cubic structures, etc.

5 Numerical Example: Axially-Loaded Cylindrical Shell

The numerical results discussed in this section are based upon a nonlinear bifurcation analysis
of an axially-compressed cylindrical shell. The example of a cylindrical shell was chosen for a
number of reasons: it is a historically important problem; it is a numerically challenging problem
and; the group analysis for the cylinder can with little effort be extended to a wide range of other
engineering problems. Thus, it is a good representation of the types of problems which will benefit
from a group theoretic approach. The intent of this section is not to do a complete analysis of
the cylindrical shell problem, rather it is to demonstrate and discuss different aspects of such an
analysis using MMcontcm.m.

5.1 Group Analysis of the Discrete FE Model of the Cylindrical Shell

The cylindrical shell was modeled with four-node nonlinear shell elements with six degrees of
freedom per node. The finite element discretization of the cylinder considered in this analysis
consisted of N nodes about the circumference and M nodes along the length — resulting in a
model with 6M N degrees of freedom, (DOF), i.e., V € ROM¥, To demonstrate the performance
of MMcontcm.m four different FE meshes (M x N) will be looked at: 21 x 80 (10080 DOF), 41 x 80
(19680 DOF), 41 x 128 (31488 DOF) and 51 x 144 (44064 DOF).

For a uniform (M x N) mesh, the system of nonlinear equations which model the discretized
cylindrical shell are invariant with respect to a representation of the dihedral symmetry group
Dy .* In [32] a group analysis of the FE model of the cylindrical shell was carried out, the results of
which are displayed in Tables 2 and 3. Tables 2 and 3 can be used to determine both the number
and sizes of orthogonal subspaces |V(")| for D, and C, symmetric solution paths respectively
once the FE mesh is chosen and the symmetry of a solution path is identified.

For example, suppose the cylindrical shell was modeled with a uniform FE mesh which con-
sisted of M = 41 nodes along the length and N = 128 nodes around the circumference, leading
to a FE model with Djog-symmetry. The isotropy subgroup of primary solution path would be
Dssg, i.e., n = 128. Thus, % =1 is odd, n = 128 is even and Table 2 shows that |V(1)| = 164,
V)| =82, |VO)| =164, V¥ =88, |V\!)| = 246, (j = 1,2,...,63). Thus, the Jacobian block
JM) is a 164 x 164 matrix with an average bandwidth of 6, and a complete orthogonal bifurcation
analysis would require assembling 66 orthogonal blocks of dimensions no larger than 246 x 246

*Actually, due to the reflection symmetry about the mid-section the PDE’s which model the cylindrical shell
possess Dy @ Zi; symmetry. However, we will restrict our attention to the Dy symmetry.
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Start with xg = (ug, Ag) and As
define NP and u(ID),(ID=1,2,...,NP —1)
stepcut=0; contflag=0; £ =1
if ID = 0 (Continuation Processor ID=0)
while contflag = 0
compute initial prediction x;
corrflag = 0
while corrflag = 0

transform JS) =Q7J.Qq, f,gl) = QT (f)(\l))k =Qf
solve J;cl)zgcl) = f,gl), chl)yg) = (fil))k

transform z; = Q1Z§gl), Y = Q1y§f)

compute Ng
X = Xg + AX(Zk,yk,Nk)
check corrector stopping criterial
end
if corrflag=1
k =k +1; stepcut=0; adjust As
Send(1:NP-1,’u;’); Send(1:NP-1,’contflag’)
else
As = As/2; stepcut=stepcut+1
end
check continuation stopping criteriat
end
else (Bifurcation Processor ID=1:NP-1)
u; = Recv; contflag = Recv
while contflag = 0
diagnose orthogonal blocks Q;":(ID)J k Q) for bifurcations
end
end
ifID=0
Send(1:NP-1,’u;’); Send(1:NP-1,’contflag’)
end

()

t (corrflag=1) convergence attained ||fy|| < €
(corrflag=2) divergence detected
(corrflag=3) maximum number of iterations exceeded

! (contflag=1) k > maximum number of allowable steps
(contflag=2) stepcut > maximum number of allowable step cuts
(contflag=3) ||Ag|| > maximum allowable load factor

Figure 9: Pseudo code for MMcontcm.m using NP processors
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with average bandwidths less than or equal to 9. Besides leading to a well-conditioned numer-
ical procedure, the a priori information given by Tables 2 and 3 about the size and number of
blocks are of great benefit in evenly distributing work among the bifurcation processors for a
load-balanced code.

A group theoretic analysis also provides the following generic “bifurcation hierarchy” which
govern the types of bifurcations which can occur along a D,-symmetric solution branch:

e if n is even, the symmetry of the bifurcation branches can be: Cy, Dy /2 or Dy /m where
m € [3,n] and - is an integer;

e if n is odd, the symmetry of the bifurcation branches can be: Cy, or D, where m € [3,7]
and ;- is an integer.

For example, the expected isotropy subgroups of bifurcation branches along a Djsg-symmetric
branch are Dgy, D32, D1g, Dg, D4, D2, D1 and Cyog. Of course, which symmetries actually occur
in the analysis is dependent upon the physics in the problem. Table 4 displays the block structure
for all generic solution branches with dihedral symmetry expected with a 41 x 128 mesh. As is
evident in Table 4, the less symmetry a solution branch has the less benefit a group theoretic
approach offers as far as allowing computation to be done in dimensionally-reduced subspaces.
However, the group theoretic approach still allows one to avoid numerical ill-conditioning due to
closely space bifurcation points which is crucial in some problems [32].

continuation bifurcation
processor processor(s)
| " [Vt V2| V3 VA I [i=12,
even | even || M (% + 2) M (% - 2) % % % nT_2
even | odd || M (% + 2) M (% — 2) — _ 6MN n1
odd | even || M <% + 1) M (% - 1) M (% + 1) M <% _ 1) % nT_2
odd | odd | M (& +1) || M (Z 1) — — 6MN n1

Table 2: Stiffness block information for D, -symmetric solution paths for the axially-compressed
cylindrical shell with N four-node nonlinear shell elements used about the circumference and

M —1 elements along the length. Average bandwidth for each block is bw ~ %
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continuation bifurcation

processor processor(s)

N 1 2 ' .

r n |V [V VI i =12,...

6MN 6MN | 12MN n—2
odd/even | even P o . 5
odd/even | odd SMN — | 124N n-1
n n 2

Table 3: Stiffness block information for C,-symmetric solution paths for the axially-compressed
cylindrical shell with N four-node nonlinear shell elements used about the circumference and
3|V¢|
oM °

M — 1 elements along the length. Average bandwidth for each block is bw ~

5.2 Computing the Jacobian matrix

The first major computational task for both the continuation and bifurcation processors is to
compute the Jacobian matrix. As is typical of medium-to-large scale FE models in nonlinear
structural mechanics, the Jacobian matrix J for the cylindrical shell is symmetric, indefinite
and sparse. The number of non-zero components goes as ~ 330M N. In both contcm.m and
MMcontcm.m, only the lower triangular part of the Jacobian matrix is computed and stored.
Table 5 displays the size and sparsity of J as well as the approximate CPU time to compute it.
As was expected, the CPU time to compute the Jacobian for the cases shown here is directly
proportional to the DOF, i.e., assembly time ~ DOF /1570.

In this implementation of MMcontcm.m the Jacobian matrix is computed on a single processor
with most of the computation being done by fortran MEX-files. It would not be difficult in future
versions of the code to have a parallel assembly procedure which might lead to a speed-up for the
larger DOF problems.

5.3 Transformation to Symmetry Coordinates

Once the Jacobian matrix has been assembled, the orthogonal blocks Ik, (p=1,2,...,p) can
be computed via similarity transformations as discussed in §3.4. For the overall group theoretic
approach to be feasible, these transformations must done quickly and efficiently.

The structure and sparsity of the transformation matrices Q, € RIVI*IV*I varies from problem
to problem. However, experience has shown that the number of nonzero components in Q, is
usually relatively small. For the cylindrical shell problem it can be shown that the maximum
number of nonzeros in Q is bounded by 20M N. It is interesting to note that the number 20M N
is independent of the symmetry of the solution path which is being computed, even though the
number of columns in Q,, is equal to the dimension of the symmetry subspace V#, whose dimension
depends on the symmetry of the solution path.

The relatively small number of nonzeros in Q, and the sparsity of the Jacobian matrix J
leads to very efficient transformation routines. Table 6 displays the timing results for computing
the orthogonal block J*), with p = 5, for the four different meshes along the primary solution
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continuation bifurcation
processor processor(s)
isotropy group |V (V2 V3L VE VI 5=1,2,...

D1og 204 102 204 102 306 63
Dgy 408 204 306 306 612 31
D3o 714 510 612 612 1224 15
D1g 1326 1122 | 1224 | 1224 | 2448 7
Dy 2050 1886 | 1968 | 1968 | 3936 3
Dy 4018 3854 | 3936 | 3936 | 7872 1
D, 7954 7790 | 7872 | 7872 — —
D, 15826 15662 — — — —

Table 4: Expected block structure for D,-symmetric primary and higher order bifurcation
branches off and including a Djsg-symmetric solution path. Axially compressed cylindrical shell

with: N=128, M=41. Average bandwidth for each block is bw = 31|TV0il'

sparsity | assembly time
mesh size | DOF J (sec)
21 x 80 | 10080 | 0.0054 6.3
41 x 80 | 19680 | 0.0027 12.5
41 x 128 | 31488 | 0.0018 20.3
51 x 144 | 44064 | 0.0012 28.3

Table 5: Jacobian size, typical sparsity and approximate CPU assembly time.
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branch. The case u = 5 was chosen because it represents an upper bound with regard to size and
computation for the orthogonal blocks. As is clearly demonstrated, along the primary solution
branch, the time needed to compute J®) is an order of magnitude less than the time needed to
compute J. The matrices Q, are computed using fortran MEX-files, but the actual similarity
transformation is perform with MATLAB’s sparse multiplication capabilities.

Table 7 is more detailed study of the CPU time needed to perform symmetry transformations
along all the possible D, -symmetric solution branches for the 41x128 mesh. As expected, the time
needed to perform the transformations increases as the symmetry of the branch, (D,), decreases.

J J®)
mesh size | D, | (sec) ‘V(E’)‘ (sec)
21 x 80 80 6.3 126 0.6
41 x 80 80 | 12.5 246 1.2
41 x 128 | 128 | 20.3 246 1.8
51 x 144 | 144 | 28.3 306 2.8

Table 6: Typical block Jacobian size (x = 5) and approximate CPU time to compute J and
Jw) = Q;—’:J Q. along the primary D,-symmetric solution branch. Note that the reported CPU
time for J®) includes the time to compute Qs as well as the time needed to carry out the matrix
multiplication.

continuation bifurcation processors
processor 5<p< 22
D, |V(1)| Jm |V(2)| 3@ |V(3)| J® ‘V(4)| 4 |V(#)| g Number
(sec) (sec) (sec) (sec) (sec) | of Blocks
128 164 1.3 82 1.0 164 1.3 82 1.0 246 1.8 66
64 328 1.9 164 1.2 246 1.6 246 1.6 492 2.9 34
32 574 2.8 410 2.2 492 2.6 492 2.6 984 5.3 18
16 1066 3.5 902 3.4 984 3.5 984 3.5 1968 7.9 10
8 2050 4.2 1886 4.1 1968 4.2 1968 4.2 3936 10.7 6
4 4018 5.2 3854 5.2 3936 5.2 3936 5.2 7872 15.0 4
2 7954 7.0 7790 7.0 7872 6.8 7872 6.8 — — 3
1 15826 | 10.5 15662 | 10.5 — — — — — — 1

Table 7: Block Jacobian size and approximate CPU time to transform the full Jacobian matrix
J to symmetry coordinates: 41 x 128 mesh.

5.3.1 Direct Computation of J*) via Automatic Differentiation

While using similarity transformations to compute the orthogonal blocks J* has worked well in
this and previous studies, the procedure does require that the full Jacobian matrix J be assembled
first. When m,, = [V(#)| < n this is somewhat of a brute force approach. For example, in the
case of the 51 x 144 mesh in Table 6, computing the 306 x 306 Jacobian block J®) (average
bandwidth of 10), required that we first assemble the 44064 x 44064 Jacobian matrix J.
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A very promising topic for future research is to make use of recent advances in using automatic
differentiation (AD) [51], [52], to compute the symmetry-adapted Jacobian blocks J(*) in a much
more direct manner. It can be shown that the orthogonal blocks J(*) can be “directly” computed
as

of
) — o7 4
where a% is an n X m, matrix whose columns are defined as
of . flu+hrQu(:,7) — f(u) .
=1 RO =1,2,... )
<8ﬁ#>z hli)I%) h (7‘ < ’mﬂ) (50)

Note that eq. (50) only requires that f be computed in the standard coordinate system. Equations
(49) and (50) can be used for the basis of a numerical differentiation procedure, as discussed in
[51] and [52], to efficiently compute the orthogonal blocks J(*).

5.4 Symmetry Boundary Conditions

As discussed above, the symmetry-adapted Jacobian matrices are found by first computing the
Jacobian of the full matrix and then performing similarity transformations. For large problems,
computing the full Jacobian can be relatively expensive and it may be necessary to compute it
several times per solution step. In an effort to speed-up the continuation portion of the procedure,
it is often possible to define a separate problem for the continuation process which can lessen the
overall amount of work.

To understand this, consider that if the discrete model of a physical system has symmetry,
the model is by definition composed of a finite number of “repeating” substructures. A well
known technique to simplify the computations in an analysis of a structure with symmetry is
to model a single substructure or an assemblage of several substructures. The analysis on the
substructure(s) leads to a dimensionally reduced problem which lessens computational effort. As
part of the solution process special linear constraints, known as symmetry boundary conditions,
must be applied to the reduced problem. These constraints ensure that the reduced problem
captures solutions which “correspond” to solutions of the full problem and generally take the
form ciui + coug + ... + crun = cg.

It is often the case that the solutions which can be obtained by using symmetry boundary
conditions are in 1-1 correspondence with solutions obtained by restricting the analysis of the
“whole” structure to one or more of the symmetry-adapted subspaces [32]. For example, the three-
bar truss in Fig.4 can be thought of as an assemblage of three substructures: bars AgAj, AgAa
and AgA3. When the load is first applied the deformed truss will maintain its original equilateral
triangular shape, i.e., D3-symmetry. Using a group theoretic approach the Ds-symmetric primary
solution path would be computed by first assembling the global 3 x 3 Jacobian matrix associated
with all three bars and all three degrees-of-freedom (u1,us2,u3) and transforming to the one-
dimensional Ds-invariant subspace which is spanned by the vector (0,0,1) [53]. On the other
hand, the exact same D3-symmetric primary solution path could be computed by performing an
analysis on the single bar AgA; by enforcing the boundary conditions u; = ug = 0.

The advantage of using symmetry boundary conditions as opposed to similarity transforma-
tions is that a dimensionally reduced Jacobian matrix used in the continuation process can be
computed directly without having to first compute the Jacobian of the full problem and then
transforming to symmetry coordinates — for problems associated with a “large” symmetry group
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this can lead to substantial savings. On the other hand, this method does entail extra work for
the user because the proper symmetry boundary conditions must be determined.

As an example of the potential speed-up, Table 8 compares the time needed to compute a
Newton step using the standard symmetry transformations and using a constrained system for
the cylindrical shell problem. A 41 x 128 mesh mesh was used in both cases and the linear
constraints are exactly enforced using the method of Lagrange multipliers. While both methods
give identical numerical results, the procedure with the constrained system is quicker than the
procedure with the symmetry transformations in almost all cases. The speed-up along branches
with Dqsg, Dg4a, D32 and Dig-symmetry is substantial. The results for the Dj9g-symmetric branch
is very significant because this represents an analysis along the primary solution branch which
provides important information needed to understand the axially compressed cylindrical shell. In
fact, it is often the case in the technical literature that a partial analysis of the primary solution
branch represents a significant portion of the numerical work.

symmetry constrained
transformations system
D, J JM 1 IO\ £ | Newton Step || (J.) | (J) \ f. | Newton Step
(sec) | (sec) (sec) (sec) (sec) | (sec) (sec)
128 || 20.3 1.3 0.03 21.6 0.3 0.3 0.6
64 20.3 1.9 0.1 22.3 0.2 0.3 0.5
32 20.3 2.8 04 23.5 04 0.8 1.2
16 || 20.3 | 3.5 1.6 254 0.7 4.4 5.2
8 20.3 4.2 5.4 29.9 14 17.7 19.2
4 20.3 5.2 14.3 39.8 2.9 67.0 69.9
2 20.3 7.0 64.0 91.3 5.2 66.0 71.2
1 20.3 | 10.5 — — 10.3 — —

Table 8: Comparison of CPU time needed to compute a Newton step for the continuation process
using symmetry transformations versus using a constrained system of equations: 41 x 128 mesh.

5.5 Example Run: Primary Solution Branch

To demonstrate the efficiency of MMcontcm.m we will present results from a typical nonlinear
bifurcation analysis of the primary solution branch of an axially compressed cylindrical shell. The
cylinder considered in this analysis was modeled with simple-support (SS-3) boundary conditions
on both ends and the following geometric and material parameters: L=200 in., R=100 in., t=1 in.,
E=10° psi and v = 0.3. Four different meshes were used: 21 x 80, 41 x 80, 41 x 128 and 51 x 144.

The bifurcation analyses were done for a normalized load range of A = 0.8\t and A = Acrit.
where At is the “classical” critical buckling load

2rEt?
V3(1 —1v?)

This range of the loading was chosen because it is well known that this is where most of the
important symmetry breaking bifurcations along the primary solution branch will occur.

Aerit = =114 - 10° 1bs.
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MMcontcm.m has several features which were designed to help the user make efficient use of
the available processors:

e For the continuation part of the process, MMcontcm.m allows the user to choose either
symmetry transformations or a constrained system of equations as discussed in §5.4. By
choosing the fastest of the two approaches for a given branch one can minimize or even
eliminate the amount of time the bifurcation processors are idle.

e The user can choose the number of processors which will be used for bifurcation analysis.

e In physical problems the analyst can sometimes rule out certain blocks as a potential source
for bifurcation based upon physics and the symmetry associated with a given block. MMcon-
tcm.m lets the analysts choose which blocks will be assembled and diagnosed for bifurcation.

e MMcontcm.m lets the user choose which blocks will be assembled on what processors. Given
the a priori information about the size of individual blocks, e.g., Tables 2, 3 and 4, the
capability to assign individual processors specific blocks allows for a load-balanced process.

For a given analysis, the number of processors used and how the work is distributed among
the available processors is problem dependent. For each mesh analyzed in this example, the
continuation processor used a constrained system of equations to compute the primary solution
branch. Twenty-five solution points were computed between A = 0.8\t and A = A, giving a
relatively detailed look at the solution curve. For the bifurcation analysis, six processors were used
for assembling and diagnosing blocks J (5) — J(16) with two blocks per processor. The approximate
size and assembly time for blocks J(®) — J(16) for each mesh can be found in Table 6.

Table 9 and Fig.10 display important timing and load balancing information from the four
analyses. In Table 9 it is clear that for this example, the continuation part of the procedure
is significantly faster than the bifurcation analysis — the end result being that the bifurcation
processors are idle for an insignificant amount of time. The percent idle time in Table 9 is primarily
a measure of the communication time between the continuation processor and the bifurcation
processors. Figure 10 is a plot of the CPU time needed by each bifurcation processor to complete
its particular analysis for the four cases run. Clearly, there was very good load balancing achieved
in all four analyses.

continuation processor average bifurcation Maximum
mesh size CPU time (sec) processor CPU time (sec) | % Idle Time
21 x 80 8.8 235 0.02
41 x 80 244 593 0.04
41 x 128 24.2 833 0.01
51 x 144 314 1263 0.08

Table 9: Timing results for the nonlinear bifurcation analysis of the cylindrical shell for four
different meshes.

Finally, to demonstrate why problems such as the axially loaded cylindrical shell are numeri-
cally intractable without a group theoretic approach, the forty-two smallest eigenvalues for blocks
J(®) — J(16) a5 function of the normalized axial load for the 144 x 51 mesh are plotted in Fig.11.
Each crossing of the y-axis in Fig.11 represents a bifurcation point and a singularity in the full
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Figure 10: CPU time for each bifurcation processor for four different meshes.

Jacobian. With a group theoretic approach the continuation processor never sees any of the
bifurcation points and has no difficulty is computing the primary solution branch.

6 Conclusions

In this work, a parallel group theoretic nonlinear continuation/bifurcation analysis code MMcon-
tcm has been discussed. With MMcontcm, we have demonstrated that a parallel computational
environment is a natural setting for the bifurcation analysis of a very important class of nonlinear
equilibrium equations which display group invariance due to symmetry. The natural parallelism
stems from a global de-coupling of the governing equilibrium equations made possible by the
proper choice of a symmetry-adapted basis — which is systematically derived using well known
results from group representation theory.

A key element in a group theoretic approach to a nonlinear continuation/bifurcation analysis
is the reduced problem, (eq. (39)). The reduced problem is defined by restricting the full problem
onto a proper subspace V(1) which contains exact global solutions of a specific symmetry type.
This restriction leads to a well-conditioned continuation procedure which generically only needs
to be able to compute solution branches through limit points. The bifurcation points which
could cause severe ill-conditioning, e.g., Fig.11, are associated with the orthogonal J®, (4 =
2,3,...,p), which are never used by the continuation processor.

The fact that the continuation procedure is independent of the bifurcation analysis and that
the bifurcation analyses of the individual orthogonal blocks J(*) are independent of each other led
to the parallel algorithm MMcontcm which is summarized in Fig.9. Some important observations
about the general group theoretic approach and its implementation in a parallel computational
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Figure 11: Forty-two smallest eigenvalues for blocks J(®) — J(16) a5 a function of the normalized
axial load. (144 x 51 mesh)

environment are:

e The only significant communication between processors occurs when the continuation pro-
cessor converges to a solution point x; and sends it to the bifurcation processors. The
minimal communication guarantees a coarse-grained application.

e A group analysis of the problem being studied provides complete information on the number
and sizes of the Jacobian blocks J®), e.g., Tables 2-4. This a priori information allows the
analyst to assign individual processors specific blocks in order to achieve a load-balanced
process, (Fig.10).

e It is sometimes possible to define an “equivalent” constrained set of dimensionally-reduced
equations, as opposed to using the symmetry transformations, which can lead to dramatic
speed-up in computing the Newton step for the continuation procedure, (Table 8). This
helps to insure that the bifurcation processors are idle for a minimum amount of time.

In MMcontcm, we have laid a solid foundation upon which further research topics can be
pursued. One very promising topic for future research, discussed in §5.3.1, is the use of auto-
matic differentiation to “directly” compute the orthogonal blocks J(*). Another promising area.
of research is developing symmetry-motivated preconditioners for iterative solution methods for
problems with little or no symmetry. As discussed earlier, the more symmetry that a solution
path has the greater the benefits of a group analysis. On the other hand, in a structural mechanics
context the static/dynamic response of a structure with very little symmetry is often dominated
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by terms which come from a larger symmetry group. For example, while the underlying symme-
try of an aircraft fuselage is that of a body of revolution, which is associated with the “large”
symmetry group O(2), the interior and exterior components such as decks and wings reduce the
symmetry of the whole structure to perhaps a simple reflection, which represents a “small” sym-
metry group. However, the dominant terms in the Jacobian matrix would be strongly tied to the
underlying O(2)-symmetry. Therefore, it is reasonable to expect that the dimensionally reduced
Jacobian blocks associated with the O(2)-symmetry, or some small subset of them, could serve as
a physically meaningful basis for assembling an efficient preconditioner for a conjugate gradient
method.
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