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Abstract 

 Viral infection can cause changes to a plant’s morphology or chemical composition 

that may alter its desirability to the insect vector.  In combination with viral persistence in the 

vector, prevalence of the disease, and the spatial distribution of infected plants, vector 

preference for virus-infected or uninfected individuals can strongly influence the rate of 

disease spread in plant communities (McElhany et al. 1995).  Although it is known that the 

presence of a virus in the host plant can lead to a change in feeding behavior and an increase 

in fecundity (Fereres et al. 1990, Fereres et al. 1989, Montllor and Gildow 1986), there is 

little evidence that vectors prefer infected hosts over uninfected hosts.  In this study, I 

examined host preference of the grass-feeding aphids Rhopalosiphum maidis, R. padi and 

Sitobion avenae when offered a variety of grasses infected or uninfected with the PAV 

species of barley yellow dwarf virus (BYDV).  The eight grass species used in the preference 

tests are commonly found in New York State and are known hosts of BYDV.  Preference 

tests were carried out in cages, where adult aphids were allowed to choose among grass 

seedlings.  To determine whether infection altered preference, aphids were offered either 

uninfected grass communities or communities that contained a mixture of infected and 

uninfected grass seedlings.  Results from these trials indicated strong species-specific 

preferences by aphids for particular grasses.  Although there was some indication that 

infection could alter preference, I found no evidence that infection caused a significant shift 

in preference ranking among grasses. 



Introduction 

 For a vector-transmitted plant pathogen, the distribution of disease in a population is 

determined by the interaction of three factors: host plant, vector, and virus. The host 

preference of the vector determines which plant the vector chooses to feed on and this in turn 

determines which plants become infected.  The host preference of a vector can be influenced 

by the nutritional quality of the host plant, as well as less obvious factors, such as the 

presence of natural enemies, the chemical composition of the plant caused by induced 

resistance, and the presence of disease.  Often, plants that are infected by a pathogen are 

preferentially attacked by the insect vectors of the disease (Maris et al. 2004, Johnson et al. 

2003, Eigenbrode et al. 2002).  This vector host preference is not only important for 

determining the individual host plant that will become infected, but is also important from a 

community ecology perspective when in combination with two other factors related to 

disease: prevalence and persistence.  Prevalence is the amount of disease present in the 

population and persistence is the amount of time that the disease remains in the population; 

these two factors in combination with vector host preference can strongly determine the 

distribution of disease in a population (McElhany et al. 1995). 

Barley yellow dwarf virus (BYDV) is a phloem-limited luteovirus that is obligately 

transmitted by grass-feeding aphids (Power and Gray 1995).  BYDV infects important grain 

crops such as corn, barley, and wheat and often causes significant economic losses in the 

cereal grain industry.  Symptoms of BYDV include a yellowing discoloration of the leaves, 

reductions in growth, and decreased seed production of grasses; however, these symptoms 

are not always visible and enzyme linked immunoassorbent assay (ELISA) tests must be 

conducted to confirm the presence of BYDV.  
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Aphids are effective vectors of BYDV that move to host plants by crawling or flight, 

especially under environmental pressures such as crowding or depleted nutrition in which 

aphids become alate (develop wings).  Aphid population size can be high, because they can 

reproduce rapidly through clonal parthenogenesis; aphids also occasionally reproduce 

sexually (Halbert and Voegtlin 1995).  In New York State, there are three generalist grass 

feeding aphid species that are primarily responsible for transmitting BYDV, Rhopalosiphum 

padi, R. maidis, and Sitobion avenae (Power and Gray 1995).   

In the late 1950s, four BYDV viral strains were identified in New York State: RPV, 

PAV, MAV, and RMV (Rochow 1958).  Each viral strain can be transmitted by a restricted 

number of aphid species due to the specific virus transport mechanisms in the aphid that 

control the efficiency of virus transmission to the host plant (Gildow and Gray 1993).  MAV 

is transmitted primarily by S. avenae, RPV is transmitted by R. padi, RMV is transmitted by 

R. maidis, and PAV is transmitted efficiently by both R. padi and S. avenae (Power and Gray 

1995).   

Currently, it is unclear which host plant species aphids prefer in upstate New York 

and if they prefer infected hosts over uninfected hosts.  In general, insect vectors may 

preferentially attack infected plants because the presence of the pathogen results in a higher 

quality host (Belliure et al. 2004).  The BYDV system appears to follow this trend (Fereres et 

al. 1990, Fereres et al. 1989, Montllor and Gildow 1986).  For BYDV-infected host plants, 

levels of sucrose and amino acids are increased, which appears to affect aphid feeding 

behavior and performance.  For example, PAV susceptible host plants were probed less often 

by aphid vectors (which indicates a shorter exploration time and greater likelihood to feed) 

than PAV resistant host plants.  Furthermore, aphids that fed on PAV infected host plants 
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showed higher fecundity than those that fed on uninfected plants (Fereres et al. 1990, Fereres 

et al. 1989).  The finding of fewer probes has also been correlated to the suitability of the 

host plants.  Schizaphis granimium aphids appeared to have longer ingestion periods and 

fewer probes on infected oats than uninfected oats.  Additionally, S. granimium aphids had a 

larger population and higher fecundity on infected oats, indicating that it is more suitable 

host as a host than uninfected oats (Montllor and Gildow 1986). 

Although it appears that infection makes a plant a more suitable host, it is not clear 

whether aphid vectors show preference for host plants infected with BYDV.  Some studies 

have found that aphids prefer host plants that are infected with virus (Ajayi and Dewar 1983).  

In a laboratory experiment, alate aphids were more attracted to infected oats and barley.  This 

finding appears to be correlated with the yellowing of BYDV infected leaves (Ajayi and 

Dewar 1983). Additionally, field studies with BYDV infected wheat showed that the aphid 

species, R. padi was attracted to the yellowing of infected leaves (Power unpublished data).  

However, other studies have found that aphids preferred healthy hosts versus infected host 

plants (Power et al. 1994, Kieckhefer et al. 1976, Power unpublished data).  Laboratory 

experiments with two different species of aphids, S. avenae and R. padi, found that aphids 

preferred healthy host plants to PAV infected host plants (Power et al. 1994a).  Furthermore, 

other studies with alate R. padi and S. avenae provided with cut leaves (Kieckhefer et al. 

1976) and field studies with R. padi aphids on oats (Power, unpublished data) found parallel 

results in which aphids preferred healthy host plants to infected host plants.  Similarly, 

fecundity studies found higher fecundity on healthy plants when compared to BYDV infected 

plants, suggesting that infection lowers the quality of the plant host (Power et al. 1994b, 

Mowry 1990).  These contradictory results concerning the benefits of infection status may 
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arise because the BYDV strain, aphid species, life-stage of aphids, and virulence of infection 

used in these studies often varied and were sometimes not specified.   

In this study, I examined the host preference of aphid species, R. padi, R. maidis, and 

S. avenae, for several wild grass species that are common in New York State and either 

infected or uninfected with BYDV.  There were two main goals of this study.  First, I 

investigated the host preference of BYDV-vectoring aphids for eight common grass species 

when they were not infected with BYDV.  Second, I tested whether aphid host preference for 

several grass species, including Avena fatua, Bromus tectorum, Lolium multiflorum, and 

Setaria viridis, changed in the presence of BYDV. 

 
Materials and Methods 

Experiment 1- Host plant preference in the absence of virus 

The objective of Experiment 1 was to determine the host plant preference of three 

aphid species when presented with uninfected seedlings of eight grass species.  The three 

different aphid species used in this experiment were R. padi, R. maidis, S. avenae, and a 

genetic variant called S. avenae (gray).  For this study, eight annual wild grass species that 

are common in New York State and known to be susceptible to BYDV were tested; these 

included Avena fatua, Bromus tectorum, Digitaria sanguinalis, Echinochloa cru-galli, 

Lolium multiflorum, Panicum capillare, Setaria lutescens, and S. viridis. Previous BYDV 

preference studies have focused on crop grasses; the preference of aphids for these wild 

grasses has not been tested.        

Host plant preference was determined by allowing aphids to choose among the eight 

grass species.  The experimental design consisted of five pots for each aphid species with 

each pot containing an individual seedling from each of the eight grass species.  The 
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seedlings were planted in a circle at equally spaced, randomized positions in an eight inch 

pot.  To ensure that all seedlings were approximately two inches tall by the time of the 

experiment and to account for different species’ growth rates, seeds of the eight grass species 

were planted at different times approximately two to three weeks before initiation of the 

experiment.  Prior to the experiment, aphids were raised on barley in plant growth chambers 

at 20°C under a 16:8 light dark cycle (Power 1991).  At the initiation of the experiment, 

twenty-four individual non-winged aphids were placed in the center of the pot and then caged 

with an eight-inch clear plexiglass cage with a mesh covered top that allowed sufficient air 

and light to infiltrate.  At two, four, eight, and twenty-four hours after adding the aphids, the 

number of aphids on each seedling was counted to determine the grass species preference of 

each aphid species. At the twenty-four and forty-eight hours, the number of aphid nymphs on 

each seedling was counted to determine aphid fecundity on the different host species. 

Statistics 

Statistical analyses were measured using the statistical program, JMP4.1.  Data on the 

number of aphids on each grass species over time was analyzed using a repeated measures 

analysis of variance.  At twenty-four hours, the number of aphids on each grass species was 

analyzed using a two-way ANOVA (aphid species × grass species).  Because of a significant 

interaction between aphid species and grass species, one-way ANOVAs (with grass as the 

factor) were then run for each aphid species separately to determine if there was a significant 

difference in preference for grass species.  For each aphid species there was a significant 

difference in grass species, so Tukey HSD analyses were performed to determine differences 

among grass species in ranking. The same analyses were performed on the number of 

nymphs to determine aphid fecundity on the different grass species. 
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Experiment 2, 3, 4- Host plant preference (virus) 

I used similar methods for Experiments 2, 3, and 4, except that grasses infected with 

virus were added into the system to investigate whether aphid preference changed in the 

presence of virus.  In this case only two aphid species, R. padi and S. avenae were tested 

because they both vector the BYDV strain of interest, PAV.  Experiments 2, 3, and 4 are 

differentiated by the grass species used in each experiment.  In Experiment 2, only two grass 

species, A. fatua and B. tectorum, were tested.  In Experiment 3, A. fatua, B. tectorum, and L. 

multiflorum were tested.  In Experiment 4, A. fatua, B. tectorum, and S. viridis were tested.   

Again, seedlings differed in age to achieve similar heights; however, by the time of 

the experiment, seedlings had to be trimmed from about six inches to two inches to contain 

the seedlings in the cage.  Seedlings designated as infected were inoculated with the PAV 

strain of BYDV using aphids.  Aphids were fed on infected leaf tissue and then were 

individually transferred to experimental seedlings by paintbrush and allowed to feed on the 

host plant for up to one week to ensure successful transmission of the virus.  After 

inoculation, cages were removed and seedlings were sprayed with horticultural oil to remove 

remaining aphids.  Approximately one week after spraying, seedlings were tested for the 

presence of BYDV by ELISA to ensure the correct infection status for the experiments 

(Rochow 1986).   

The experimental design consisted of uninfected and infected seedlings.  Similar to 

Experiment 1, each pot contained only one aphid species, but the number of replicate pots 

varied among the three experiments. Experiments 2, 3, and 4 included nine pots per aphid 

species, three pots per species and five pots per species, respectively.  In experiment 2, 

uninfected seedlings were not subject to aphid feeding and horticultural oil.  This caveat in 
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experiment 2 was corrected in experiments 3 and 4, in which both infected and uninfected 

seedlings were subject to aphid feeding and horticultural oil.  Uninfected and infected 

seedlings of each species were planted in eight-inch pots as described above.  Aphids were 

raised on barley, and twenty-four non-winged aphids were released into the pots as in 

Experiment 1.  At two, four, eight, and twenty-four hours, the number of aphids on each 

seedling was counted to determine host preference.  

Statistics 

For Experiments 2, 3, and 4, data on the percentage of aphids on each grass species 

over time was analyzed using a repeated measures analysis of variance. At the twenty-four 

hour interval, in Experiment 2 and the four hour interval in Experiments 3 and 4, the 

percentage of aphids on each grass species was analyzed using a three-way ANOVA (aphid 

species × grass species × infection) and all two-way interactions were included in the model.  

Since the interaction between aphid species and grass species was significant, a two-way 

ANOVA (grass species × infection) was run for each aphid species separately.  If there was a 

significant difference among grass species, I used the post-hoc Tukey HSD analysis to 

determine if significant pair-wise differences occurred. 

 

Results 

Experiment 1- Host plant preference in the absence of virus 

When all plants were healthy, aphids showed strong preferences for particular grass 

species and these preferences differed among aphid species over time according to repeated 

measures ANOVA (F=7.2408, p<0.0001).  At twenty-four hours, aphid species exhibited 

significant preferences for different grass species (Figure 1A, 2 way ANOVA, aphid species 
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×grass species interaction effect: F=1.9113, p=0.0055).  The aphid species S. avenae 

preferred A. fatua to the other seven grasses (Figure 1B, 1 way ANOVA: F=6.3442, 

p=0.0002, Tukey’s HSD: p=0.05).   The same preference was exhibited by the gray variant of 

S. avenae (Figure 1C, 1 way ANOVA: F=3.4153, p=0.0091, Tukey’s HSD: p=0.05).  There 

was no significant difference in preference between S. avenae and the S. avenae gray variant 

(2 way ANOVA, aphid species × grass species interaction effect: F=0.3844, p=0.8817).  In 

contrast, R. maidis preferred the grass species P. capillare to the remaining seven grass 

species (Figure 1D, 1 way ANOVA: F=3.4153, p=0.0091, Tukey’s HSD: p=0.05).  Finally, 

R. padi preferred A. fatua to the other grasses (Figure 5, 1 way ANOVA: F=6.3988, 

p=0.0002, Tukey’s HSD: p=0.05). 

The fecundity of different aphid species on the eight wild grass species differed 

significantly and mirrored aphid species preference at twenty-four hours (2 way ANOVA: 

aphid species ×grass species interaction effect: F=2.0563, p=0.0022).  S. avenae had highest 

fecundity on the grass species, A. fatua (Figure 2A, 1 way ANOVA: F=5.4756, p=0.0005, 

Tukey’s HSD: p=0.05).  The gray variant of S. avenae also had highest fecundity on the grass 

species, A. fatua (Figure 2B, 1 way ANOVA: F=18.7721, p<0.0001, Tukey’s HSD: p=0.05).  

R. padi had highest fecundity on A. fatua and L. multiflorum compared to the other grass 

species (Figure 2C, 1 way ANOVA: F= 17.7494, p<0.0001, Tukey’s HSD: p=0.05).  In 

contrast, the results for the aphid species, R. maidis, differed from the preference analysis 

because there were no significant differences in its fecundity on the host plants (1 way 

ANOVA: F=1.9402, p= 0.1004). 

Experiment 2- Host plant preference for A. fatua and B. tectorum (virus) 
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Aphid species showed strong preferences between host species. At twenty-four hours, 

S. avenae and R. padi differed in their preference for the grasses, A. fatua and B. tectorum (3-

way ANOVA, aphid species ×grass species interaction effect: F=14.4294, p= 0.0003).  

Similar to experiment 1, S. avenae most preferred A. fatua (Figure 3A, 1-way ANOVA: 

F=6.7222, p=0.0142, Tukey’s HSD: p=0.05).  Additionally, R. padi most preferred A. fatua 

(Figure 3B, 1-way ANOVA: F=8.0808, p=0.0077, Tukey’s HSD: p=0.05).  At the two hour 

interval, both aphid species significantly preferred uninfected seedlings to infected seedlings 

(2-way ANOVA, grass species × infection interaction effect: F=19.0826, p<0.0001).  By 

twenty-four hours, however, there was no significant difference in aphid species preference 

with respect to the infection status of the grass seedlings (2-way ANOVA, aphid species × 

infection: F=1.2162, p=0.2742). 

Experiment 3- Host plant preference of A. fatua, B. tectorum, and L. multiflorum (virus) 

 Experiment 3 revealed species-specific preferences by aphids for particular grasses, 

but little indication of any effect of infection status on preference.  At four hours, S. avenae 

and R. padi differed in their preference for the wild grass species, A. fatua, B. tectorum, and 

L. multiflorum (3-way ANOVA, aphid species ×grass species interaction effect: F= 5.8800, 

p= 0.0078), but there was no significant difference in their preference for uninfected versus 

infected grass species (3-way ANOVA, aphid species ×infection interaction effect: F= 

1.2141, p= 0.2806).  Separate analyses of the two aphids indicated that R. padi showed a 

significant difference in its preference for grass species (Figure 4A, 1-way ANOVA: 

F=4.3556, p= 0.0378) and preferred L. multiflorum (Tukey’s HSD: p=0.05).  In contrast, S. 

avenae did not show any significant difference in its preference for different grass species 

(Figure 4B, 1-way ANOVA: F= 1.5416, p= 0.2609). 
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Experiment 4- Host plant preference of A. fatua, B tectorum, and S. viridis (virus) 

 Experiment 4 did not indicate species specific preference by aphids for particular 

grasses; furthermore, there was no evidence to suggest that BYDV infection may affect aphid 

host preference.  The aphid species, S. avenae and R. padi showed no difference in 

preference for the wild grass species, A. fatua, B. tectorum, and S. viridis, whether infected or 

not.    

 

Discussion 

Aphid species vary in their host preference for different grass hosts.  Within four 

hours, most aphids find and settle on their preferred host species. Among the aphid species 

tested here, the most commonly favored grass species was A. fatua.  Aphid fecundity on host 

grasses followed the same trend as preference, with aphids showing the highest fecundity on 

A. fatua (Figure 5).  This trend suggests that A. fatua is both the most preferred and the most 

suitable host, since aphids had greatest reproduction on it. 

Although R. padi and S. avenae preferred A. fatua, one aphid species, R. maidis, did 

not follow this trend and instead favored the grass P. capillare.  The differing preference of 

R. maidis in comparison to the other two aphid species is consistent with these aphids’ status 

as pests of different crops.  The common name of R. maidis is the corn leaf aphid, and it is 

considered a pest of corn.   Therefore, its preference for P. capillare is logical because P. 

capillare is related to corn.  Conversely, the common names of S. avenae and R. padi are the 

grain aphid and the bird cherry-oat aphid, respectively.  Corn is not closely related to oats or 

other small grains, whereas A. fatua is in the same genus as cultivated oats, A. sativa. 
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Furthermore, R. padi and S. avenae are known as pests of oats and other small grains and 

strongly prefer A. fatua. 

Although the taxonomic relatedness of the grass species was important in host 

preference, I did not detect any effect of genetic variation within an aphid vector species.  In 

the uninfected host preference experiment (Experiment 1), the typical green aphid variant of 

S. avenae from Rochow’s experimental system and a brown genetic variant of this species 

found by Stewart Gray were tested.  Some studies have suggested that the brown variety has 

larger populations on barley than the green variety (Weber 1985), which leads one to 

question whether preference differs between the two variants.  Since neither the preference 

nor the fecundity of the two variants was significantly different, it appears that this genetic 

variation in an aphid species may not be important in determining host grass preference or 

suitability. 

Vector host preference is important when determining distribution, prevalence, and 

persistence of a plant virus (McElhany et al. 1995).  The preferences of the different aphid 

species tested here for uninfected wild grass seedlings suggest that aphid species strongly 

differ in their host preference, but experiments with infected grass seedlings indicated that 

these preferences were not usually modified by infection status of the host.  In the uninfected 

host preference test, aphid species S. avenae and R. padi most favored A. fatua and L. 

multiflorum, but showed lesser preference towards B. tectorum and S. viridis.  In 

Experiments 2 and 3, grass seedlings were infected with BYDV, but aphids showed a similar 

host preference ranking of grass species when compared to the uninfected test.  These similar 

preference rankings suggest that infection status may be irrelevant for vector host preference, 

since the uninfected host preference ranking is not altered in the presence of BYDV.  
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Therefore the composition of the grass species in a plant community appears to be more 

important than the infection status of the plants in determining the severity of a BYDV 

outbreak.  

Although most of the evidence indicated that infection did not shift the preference 

ranking among grasses, there was some indication that infection could alter preference.  In 

Experiment 2, aphid species showed a significantly smaller preference for seedlings infected 

with BYDV compared to uninfected seedlings at two hours.  This finding suggests that the 

introduction of BYDV to the grass seedlings has some potential to affect the preference of 

aphid species; however, the trend in Experiment 1 showed that preference was established at 

the four hour interval.  Hence, at two hours, aphids may still be exhibiting random 

exploration.  Nevertheless, this inconsistency may be a result of the flawed experimental 

design in Experiment 2, in which aphid feeding and horticultural oil was not applied to both 

uninfected and infected seedlings.  However, this early two-hour result does not seem 

considerable since infection status did not affect preference for all other time intervals, which 

is consistent with the latter experiments. 

The inconsistency in the results of Experiment 2 could be a consequence of additional 

limitations in the experimental design.  In the last three experiments in which seedlings were 

infected with BYDV, the number of replicates was limited due to the inability to successfully 

infect all of the grass samples with BYDV.  Furthermore, the introduction of BYDV to grass 

seedlings affected the experiments because there was a lower survival rate (and number) of 

aphids due to exposure to residual pesticide.  In a broader context, the use of a single BYDV 

strain, PAV, rather than the entire suite of BYDV species may be significant in determining 

aphid host preference because the remaining BYDV species may have influenced aphid 
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preference differently.  Moreover, the other BYDV species would have allowed for the 

examination of other aphid vector species, such as R. maidis.  Thus, greater sample size, the 

use of different BYDV strains, and different aphid species vectors may have altered results. 

Despite such inconsistencies, it appears that infection did not cause a significant shift 

in the preference ranking among grasses.  In the context of aphid host preference, knowledge 

of the makeup of a plant community may aid in determining BYDV spread and prevalence 

among grass species.  The prevalence of a virus in a plant community can be increased by the 

presence of a reservoir host species that is highly susceptible to the virus through pathogen 

spillover, which may lead to infection in less susceptible host species in that community.  For 

example, plant communities of D. sanguinalis, E. crus-galli, and P. capillare showed an 

increase in BYDV prevalence as the proportion of the reservoir species A. fatua increased in 

the community (Power and Mitchell 2004).  My finding that A. fatua was the most preferred 

grass species among aphid species suggests that grass communities that have high 

proportions of A. fatua may have increased prevalence of BYDV.  It is likely that the high 

preference of aphid species for A. fatua strongly affects the number of aphids that immigrates 

to a high density A. fatua community and can transmit BYDV. 

Pathogen spillover is not only notable by increasing the presence of viral infection but 

can also lead to multi-species interactions through apparent competition among the grass 

species in a community.  In an infected grassland community, apparent competition occurs 

when the presence of a viral disease in one population leads to the reduction or exclusion of 

other populations in that community.  In plant communities of D. sanguinalis, L. multiflorum, 

and S. lutescens, the presence of A. fatua not only led to pathogen spillover but also apparent 

competition between A. fatua and L. multiflorum and D. sanguinalis (Power and Mitchell 
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2004).  Apparent competition was evident through a relative decrease in biomass for L. 

multiflorum and D. sanguinalis in BYDV infected communities when compared to 

uninfected communities (Power and Mitchell 2004).  In the context of aphid host plant 

preference, apparent competition is important because a grass species that is the most 

preferred host plant and strongest competitor in the presence of disease could out-compete 

and possibly exclude its weaker competitors from the community.  For instance, A. fatua is 

considered effective in BYDV transmission due to its high virus titer such that aphids can 

acquire BYDV very efficiently (A. Power, personal communication).  In combination with 

the high level of BYDV transmission, role as a strong competitor, and high host preference 

among aphid species, it is possible that the presence of A. fatua, BYDV infection, and 

apparent competition could lead to the exclusion of other grass species from the community. 

Pathogen spillover and apparent competition may alter the composition of a native 

grassland community when an exotic reservoir species is introduced.  In a California 

grassland community, the introduction of A. fatua greatly increased the proportion of native 

Elymus glaucus grasses that were infected with BYDV.  The increased infection prevalence 

in E. glaucus corresponded with an increasing density of aphids as the proportion of A. fatua 

increased.  It is likely that the introduction of A. fatua led to greater aphid density since aphid 

species were found to prefer it to native species in laboratory preference experiments 

(Malmstrom et al. 2005a).  The grass species E. glaucus is one of many native California 

bunchgrasses that are inclined to BYDV infection in the presence of exotic grasses.  This 

infection can lead to a reduction in growth and seedling establishment, which is an outcome 

of apparent competition by exotic introduced species (Malmstrom et al. 2006, Malmstrom et 

al. 2005a). Consequently, the increased prevalence of BYDV among native grass species 
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may lead to the replacement of these species by exotic grasses, thus altering the grassland 

community composition (Malmstrom et al. 2005b).  Therefore, the modification of grassland 

community structure may be strongly mediated by the immigration of aphids to the 

community, which is largely due to the high host plant preference of aphids for preferred host 

plants, such as A. fatua. 

Vector host preference of aphid species is one dynamic in the multi-species 

interactions that affect the composition of a grassland community.  Aphid vector preference 

may be important in the distribution and prevalence of BYDV in a wild grass community.  In 

the absence of infection, aphid species showed strong host preference for, and modified 

fecundity on, different wild grass species.  There was some indication that infection could 

alter preference; however, I found no evidence that infection caused a significant shift in 

preference ranking among grass species.   
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Figure 1A. Preference of aphid species Sitobion avenae (SA), S. avenae variant gray (SA- 
Gr), Rhopalosiphum maidis (RM), R. padi (RP) for uninfected wild grass species at the 
twenty-four hour interval.  The eight wild grass species include Avena fatua, Bromus 
tectorum, Digitaria sanguinalis, Echinochloa cru-galli, Lolium multiflorum, Panicum 
capillare, Setaria lutescens, and S. viridis. 
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Figure 1B.  Preference of aphid species Sitobion avenae for eight uninfected wild grass 
species over a two to forty-eight hour period.  The eight wild grass species include Avena 
fatua, Bromus tectorum, Digitaria sanguinalis, Echinochloa cru-galli, Lolium multiflorum, 
Panicum capillare, Setaria lutescens, and S. viridis. 
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Figure 1C.  Preference of aphid species Sitobion avenae variant gray for eight uninfected 
wild grass species over a two to forty-eight hour period.  The eight wild grass species include 
Avena fatua, Bromus tectorum, Digitaria sanguinalis, Echinochloa crus-galli, Lolium 
multiflorum, Panicum capillare, Setaria lutescens, and S. viridis. 
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Figure 1D.  Preference of aphid species Rhopalosiphum maidis for eight uninfected wild 
grass species over a two to forty-eight hour period.  The eight wild grass species include 
Avena fatua, Bromus tectorum, Digitaria sanguinalis, Echinochloa cru-galli, Lolium 
multiflorum, Panicum capillare, Setaria lutescens, and S. viridis. 
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Figure 5.  Preference of aphid species Rhopalosiphum padi for eight uninfected wild grass 
species over a two to forty-eight hour period.  The eight wild grass species include Avena 
fatua, Bromus tectorum, Digitaria sanguinalis, Echinochloa cru-galli, Lolium multiflorum, 
Panicum capillare, Setaria lutescens, and S. viridis. 
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Figure 2A.  Fecundity of aphid species S. avenae on eight uninfected wild grass species at a 
twenty-four hour period.  The eight wild grass species include Avena fatua, Bromus 
tectorum, Digitaria sanguinalis, Echinochloa cru-galli, Lolium multiflorum, Panicum 
capillare, Setaria lutescens, and S. viridis.  Means followed by the same letters do not differ 
in significance. 
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Figure 2B.  Fecundity of aphid species S. avenae variant gray on eight uninfected wild grass 
species at a twenty-four hour period.  The eight wild grass species include Avena fatua, 
Bromus tectorum, Digitaria sanguinalis, Echinochloa cru-galli, Lolium multiflorum, 
Panicum capillare, Setaria lutescens, and S. viridis. Means followed by the same letters do 
not differ in significance. 
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Figure 2C.  Fecundity of aphid species R. maidis on eight uninfected wild grass species at a 
twenty-four hour period.  The eight wild grass species include Avena fatua, Bromus 
tectorum, Digitaria sanguinalis, Echinochloa cru-galli, Lolium multiflorum, Panicum 
capillare, Setaria lutescens, and S. viridis. Means followed by the same letters do not differ 
in significance. 
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Figure 3A.  Preference of aphid species Sitobion avenae for infected and uninfected seedlings 
of Avena fatua and Bromus tectorum over a two to twenty-four hour period. 
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Figure 3B.  Preference of aphid species Rhopalosiphum padi for infected and uninfected 
seedlings of Avena fatua and Bromus tectorum over a two to twenty-four hour period. 
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Figure 4A. Preference of aphid species Rhopalosiphum padi for infected and uninfected 
seedlings of Avena fatua, Bromus tectorum, and Lolium multiflorum over a two to four hour 
period. 
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Figure 4B. Preference of aphid species Sitobion avenae for infected and uninfected seedlings 
of Avena fatua, Bromus tectorum, and Lolium multiflorum over a two to four hour period. 
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Figure 5.  Total combined preference and fecundity of aphid species Sitobion avenae (SA), S. 
avenae variant gray (SA- Gr), Rhopalosiphum maidis (RM), R. padi (RP) for eight wild grass 
species at the twenty-four hour interval.  The eight wild grass species are Avena fatua, 
Bromus tectorum, Digitaria sanguinalis, Echinochloa cru-galli, Lolium multiflorum, 
Panicum capillare, Setaria lutescens, and S. viridis. 
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