LOOP SCHEMATA

by

Robert L Constable

Cornell University
Ithaca, New York

Tech Report 71-94

Department of Computer Science
Cornell University
Ithaca, New York 14850

Loop Schemata!

Robert L Constable
Cornell University
Ithaca, New York

ABSTRACT

We define a class of program schemata arising from the subrecursive
programming language Loop. In this preliminary report on Loop

schemata we show how to assign functional expressions to these

schemata (as one aspect of the problem of assigning meaning to

these programs), and we outline a solution to the schemata equivalence

problem. Schemata equivalence is reduced to questions about formal
expressions. Certain subcases of the problem are easily shown
solvable, and although we claim that-the general problem is solvable,

we do not present the complete solution here because of its complexity.

KEY WORDS & PHRASES

program, program schemata, Algol, universal programming language,
Loop language, subrecursive language, computable function, primitive
recursive function, functional, general recursive functional,

equivalence problem, unsolvability.

C.R. CATEGORIES
4.20, 4.22, 5.22, 5.24

!This work was supported in part by NSF Grant GJ-579.

§ Introduction

Consider the simple. programming language having only assignment
statements, "v+f(w)", and conditional statemeﬁts, "if T(v) then
go to 4", where v,w are variables, % is a label, f is a function
symbol and T is a predicéte symbol. By giving f and T specific
values, say fl(v)=v+l, fz(v)=vll and T(v) i1ff v#0, a specific
language base results (called Gs)‘ The programming language pro-
duced from this base (also called Gs) is defined to be the set of

all finite sequences of uniquely labelled statements.

If instead of specifying f1'f2'T we left them as variables, then the
finite sequences of uniquely labelled instructions are called program
schemata?. Vaguely speaking, such schemata can be defined for any
language with a base consisting of assignments and conditionals

using simple variables, n-ary functions and n-ary predicates. (We

shall be precise about scheme in §2.

One program scheme represents a whole class of programs, those
obtained by supplying values for the function and predicate variables.
These programs share the same "control structure". The class of

all program schemata can be said to characterize the conFrol

structure of the language. We might say that this control structure
defines the type of the language. So for instance, the type of G3

is given by the base: v+f1(v), v+f2(v), if T1(V) then %.

We say that two program schemata, say S ,S , are (strongly)
1 2
equivalent iff they produce the same output for all values of

their function, predicate and number wvariables. The equivalehce

2The terms "schema" or "scheme" both seem appropriate for the
singular with the corresponding plurals "schemata" and "schemes",
(but not schemas). We shall use both for the sake of variety and
indecisiveness, but schemata will often connote .a collective use
of the term.

of two program schemata therefore implies the equivalence of
program having these schemata but not conversely. So even if
equivalence of programs is undecidable for a language, equivalence

6f schemata might be decidable.

If there were a decision procedure for schemata equivalence,

it may have practical as well as theorectical interest. However,
if the programming language is of sufficiently general type, then
Paterson [6] (or [71) has shown that schemata equivalence is
unsolvable (but of degree Zi where program equivalence is of

degree HZ).

In the face of this unsolvability, it is natural to seek subcases
which might be solvable. Paterson [6] discusses several interesting
cases (including the pioneering work by Ianov [2]), but as he and
Milner [4] point out there is a need to see more examples before

interesting general principles emerge.

One natural place to look for interesting schemata is the realm
of subrecursive programming languages (see [1] and {3]1). These
provide an example of a new type of programming language; one more

restrictive than the universal type for which Paterson's results

hold. The restrictions suggest that schemata eguivalence is solvable.

We present in §2 one class of subrecursive program schemata, namely
Loop schemata. Their syntax is given first and then they are inter-
preted as general recursive functionals. 1In §3 we provide a function
theoretic notation for Loop schemata and an interesting sufficient
condition for schemata equivalence. This condition has some nominal

bearing on guestions about code optimization and parallelism.

In §4 we extract a critical feature of the notation in §3 and use it

to define calling sequences and calling expressions for Loop schemata.

The schemata equivalence problem is formulated in terms of these

expressions. We examine some easily solved but interesting subcases

of this problem and illustrate some ‘deeper forms of equivalence

than those detectable by the methods of §3.

We leave the solution of the necessary questions about calling
expressions, hence the complete solution of Loop equivalence
problem, to a complete report because at pfesent it requires a
considerable technical effort. The report concludes with a few

untested open problems.

§2 Basic Definitions

(2.1) Loop schemata syntax

We describe first the class of Loop schemata syntactically.
<variable>:: = V|V<variable>

<function variable>:: = F|F<function variable>

<term>:: = <function variable>(<variable>)

<assignment scheme>:: = <variable><«<term>

<iterative scheme>:

= DO <variable>;<program>;END

<program scheme>:: <statement scheme>|<statement scheme>;<program

scheme>

As abbreviations we use Vn for Vv ... V n-times and Fn for F ... F

n-times. We also use ui, Vi' wi, to denote individual variables

and hi to denote function variables. Also Si denote program

schemata. With these abbreviations, the two statement schemes are
v <« h(w) and

DO v; S; END.

The program schemata defined above are called Loop schemata. The

collection of them is denoted ia.

Example 2.1 The following are examples of Loop schemes
vV « F(V) Vv <« F (v) . DO V
1 11 1
DO V vV <« F (V)
1 2 1 1
vV <« F (V) DO V
1 2 1 2
V +« F (Vv) V. €« F (V)
2 1 1 1 1 2
VvV <« F (V) END
1 2 2
END V <« F (V)
1 2 1

. A specific programming language of the Loop-type is obtained by
replacing function variables with function constants. The Loop
language of Meyer & Ritchie (3] is obtained by fixing three

function constants.

(2.2) Loop language

Let +1, 0, and () be names for the following functions from

integers, {0,1,2,...}, to integers.

(1) £(x)=x+1 successor

(ii) £(x)=0 for all x zero
(iii) £(x)=x for all x identity

The Loop language usually comes with the added restriction that

+1 can be used only in schemes of the form v<h(v).

Notation: We shall denote Loop Erogiams by ai, the set of them

by L, the integers {o0,1,2,...} by Fﬂ, variables over Fﬁ by xi,

over the cartisian product ij...xpj=F3n by X,functions from
integers to integers by f() or £():Rﬂn+ﬁj, vector valued functions

by <£()> or £():N" K% The set of functions

Fﬁn +Fﬂp is denoted \ﬂ n.o" The subset of (general) recursive

4
functions is denotedj?_n p
4

The intended use of programs in theoretical investigations is the
i~ [

computation of functions from }jn to fﬂp. The input/output. (I/0)

conditions on programs and the precise conventions which associate

a function to a program vary slightly from author to author.

We shall use the convention that all variables w which appear first
(in the order of statements in a program) in the form w+h(w) or

v<h(w) are called right variables or input variables. All variables

v which appear on the left hand side (lhs), as in v¢h(w), are

output variables. Usually the output variables are thought of as

some subcollection of these,designated by a statement like

"QUT vl,...,vp". This convention would also be acceptable here.

It is also customary to define input variables as a subset of

the right variables, using a statement like "IN V1""'vn"' The
difficulty with this approach is that the remaining right variables
are undefined unless some convention is made about initial condition
of such variables. If we assume they were all O} then this alternate

input convention would also be acceptable here.

Notice that the Loop schemata, hence the Loop type languages, do
not have labels, conditional statements or predicates. There is
no mechanism for testing or branching. We now discuss the details
of the interpretation, or semantics, of Loop programs and program

schemata.
(2.3) semantics
The mathematical interpretation of a loop scheme Si having function

variables hl""’ht' input variables V1"°"Vn and output variables

w ,...,wp is a functional
1

. t n o, ~GP
si[].jixR/ N
The value is denoted Si[fl(),...,ft(),xl,...,x 1. 3J=1,...,p

where fi() E QLI, xisfy, or more simpley, Si[<f()>,X1.

A functional is simply a function which can take both function and

number inputs and having number values. The class of all functionals

A] N Y
(over cv,Fd) is denoted Ej. The class of Loop schemata, i: ’

defines a subclass, ZL of the general recursive functionals (denoted

Jfﬁ:). (See Roger's [8] for a discussion of functionals.)

(2.4)

To be precise about the interpretation in (2.4) we must see how a

Loop program scheme, Si' can be regarded as a functional computing
program. First each function variable is regarded as an input

variable as are the right individual variables. Under these circum-

means, put into variable v the value of fi() applied to

the contents of variable w.

The iterative,
Do v; S; END

is interpreted by the following code

v v
1 if v = 0 then go to 2
o
vev <l
go to 1
L

where v is a variable not occurring in the program containing this

iterative; v is called the loop-control variable.?

A precise formal semantics could be given for these informal

definitions by selecting a formal machine model such as the RASP.
In the context of a RASP-based theory of functionals one could then

prove that each Loop scheme Si computes a general recursive functional,

s. [1.

1

Such a precise account would include a definition of a scheme-

computation on inputs fi() x;, @ terminating computation, and the

notion of the flow of control from statement scheme to statement

%It is noteworthy that Loop schemata can not be translated into G
type schemata (discussed in §1) whereas Loop programs can be trans?
lated to G; programs. This is because the semantics for Loop schemata
require the specific function v>1 and predicate v=0. Therefore Loop
schemata are not precisely a subset of the G; type schemata. They

are actually quasi-schemata.

" scheme. We do not need such a formal account here. It suffices
to notice that each Loop scheme computation on inputs from < t
and Fﬁ % halts leaving an output in Rﬂp. The flow of control is
always downward except in loops where it cycles. The reader seeking

a precise account of this is referred to Paterson [71.

(2.5) eguivalence of schemes

Given any two shcemes Sl,s2 we can assume they have the same
number of inputs and outputs by adding dummy variables to the

functional description. Thus assume

s; [1: j:’ x N© - Np . for i=1,2.

We say that the two schemes are strongly equivalent, S s , iff
1 2

.o e : j <
Vfl() . Vft() Vx1 Vxn ¥ji<p

s _[f PPINPS <
1[1() N

():xlr---:xn]j = SZ[_fl()r---rft(),xl,...lxn]j.

Thus two schemes are egquivalent iff they compute the same functional.

The following example gives two equivalent schemes.

Example 2.2

S S
1 2
v « £ (V) DO V
1 1 1 2
DO V v <« £ (V)
2 3 2 Y
v <« £ (V
v « £ (V) 3 2(2)
1 2
*..
END v3 fl(vz)
END

v <« f (V)
1 11

Both schemes compute the same functional

N N
2 % N2 - RN
1

although S2 appears to have both fz() and V“ as additional

inputs. The functional can be described mathematically as

(v,)
1 1 2 1 1 2 1 2

In the next section we describe this "mathematical description"
in detail and see how it can be obtained systematically from

the scheme.
\J

§3 Assigning Mathematical Notation to Schemes

(3.1) function names in mathematics

The standard mathematical notation for the Loop program
DO X; X+X+1; END is 2.x and for DO X; DO X; X¥X+1l; END; END is

2x-x. If one is being careful to distinguish function names

(functors) from integer names, then the usual convention has

Ax[2.x] or fz() with fl(x)=2-x for 2-x, and kx[zx-x] or f2()

with fz(x)=2x'x for 2¥.x.

If the two Loop programs, al and az, compute functions Rﬁ - Fﬂ,

then the program al;a2 is usually denoted by El(aé)) where

EI,EZ are the functors for aland a . Thus
D 2
DO X; X<«X+1l; END; DO X; DO X; X<«X+1l; END; END is denoted

2(2'x)

by «(2.x) or by fz(fl(). We see informally that con-

'junction of programs corresponds to composition of the corresponding

functions.

The "application of DO v; ; END to a program a" resulting in
DO v; O; END, also has a standard mathematical form. Again suppose
N

that a(): Rﬁ +§j. Then for any function £(): D{+‘Q, define

its iteration by

(i) f(o)(x)=x
(1) £ e ™) ()
(x)

Now it is easy to see that DO v; &; END 1is represented by G ()

where x is the wvalue of v.

We shall exploit this correspondence between programs and functors.

To do so we must define it carefully and carry it over to schemes.

.10.

The only difficulty is providing a smooth mechanism for the

iteration of vector functions.

There is also a small matter of terminology. If programs compute
functions which are denoted mathematically by functors, then what
do we call the mathematical names for functionals, which program

schemes compute? We shall call them functorials and then avoid
(x)

the term whenever possible. An example of one is H[f,x,y]l=f (),

it is the mathematical notation for

DO x; y*«f(y); END

Notice that to simplify life, we have allowed the same letters

to name both program variables and the values they can assume,
numbers; and function variables and the values they can assume,
functions. Notice that the A-expression for this functorials would

be (x)

AfAx,yI[£f (y)].

We shall use the first form with the following explicit conventions.

Notation: Capital Latin letters, Fi, Gi' Hi denote functorials

and Fi[1, Gi[1, Hi[] denote the corresponding functionals.

To simplify the connection between schemes, Si' and their functorials,
we use number and function variables (xi,fi) for variables and

function variables (vi,hi) in schemes.

(3.2) iteration of vector functions

A key piece of notation needed below is that for the iteration of
vector valued functions and functionals. We need iteration only

into number avrguments, so it suffices to treat the case of functions."

“Notation for the iteration of functions f£(): ?jn+i\ is difficult
so one might expect that for £(): NU>RNP it would be terrible.
Happily, it is not. It is easier than the single value case and
in fact, clarifies that case.

‘ ' .11,

Notation for vectors is critical, so we consider it with care. A
vector <x1,...,xn> will be denoted by <x>, or by X when no

confusion results. The number of elements is indicated by writing
<x>€Fin or xekﬂn in the context. The i-th component is denoted

<x>i or 'Xi , thus Xi=xi

A value of a vector valued function is denoted <f(X)>, or £ (X)

when no confusion is possible. The function itself is denoted

<f()> or £(); Thus in the worst case when it is important to avoid-
confusion with number valued functions, fl(), and vector valued
functions, fz(), we can write fl(X) versus <f2(x)> or even <f2(<x>)>.

Now for iteration.

() o+l _,Nn+p

(1) Given £():N" +NP ana xeN" define f N
as follows X, if 3=1,...,n

(1) £ x), =]
] 0 otherwise (ow)
2(n) ~(n) . .
N £f(£f (X) ,e..,Ff (x)). if n<j<p
(ii) f(n+l)(x)j = 1 n’j
~(n) 2(n) .
. reoer <5<
J(f (X)1] (X)P) 1<j<n

The functions gj() are the feedback functions determining which

outputs effect the jth input.

This class of vector iterations is more than adequate for our
purposes. We are concerned only with iterations which occur in
the form DO x; S; END for some scheme S. In such a case the
feedback is built into the scheme S. Conversely given S, the
function corresponding to it has the feedback built in. This

allows for a much simplier notation as we shall see below in (2).

(2) Given £():ﬁjn +de, the required idea of iteration,

f(x)(), 1is DO X where f has n inputs and p outputs. We
£
END

notice that unless some output is also an input, the above fixed

012.

expression is just £() itself. 1In fact, the only outputs of
consequence are those which are also inputs (feedback variables).
Therefore, we assume that p>n and we regard each input as an
output (if it does not appear on the lhs of any assignment, then
it is an implicit output). The definition of iteration given
under these conditions can be seen to be adequate for the first
notion of vector iteration, but we do not need such a result

here. The definition follows:

1 £ = $Ey T
lo ow
11y £ gy = ge™ i L™
J 1 n j

An example showing the connection between these iteration functorials

and iteratives in schemes should be helpful.

Example 3.1 Consider the following scheme

x <« £ (x) S
2
x <« £ (y)
2 3
END

The scheme defines the vector function SI[f ,f ,f ,x ,x 1 =
) 1 2 3 1 2

<f2(x2),f3(f1(x1)),fl(x1)>. The simple function notation for the

function can be

six ,x 1 = <f (x),f (f (x)),f (x)>.
1 2 2 2 31 1 11

The iteration of S, denoted

S(x)[x s X]
1" 72

sk ,x]
172

s(n+l)[x o x

4

is

<x
1

.13.

S(x)[f ;£ ,f ,x ,x'] or more simply
1 2 3 1 2

defined by

/X ,0>
2

(n) (n)

sts ®hx ,x 11 .sis™x ,x 1 ,ss™x ,x 11 >
1 2 1 1 2 2 1 2 3

(3.3) assigning functorials to schemes

The process of assigning a functional expression to a scheme is

simple. The idea is to follow the flow of control backwards from

the output variable.

below.

Given a scheme Si=s ; S

1

-
1 o o

A simple informal routine for this is given

'752' the last occurence of a variable

X in S is its occurrence in S where m=max{i]x occurs in si}.

We now give an algorithm for translating a scheme to a functorial.

Routine A

(1) Locate all input variables of S, i.e. all right variables.

List them as an output vector, <y ,...,yp>.
1

(2) For each yi, find the last occurrence of yi on the left

hand side (lhs) in some statement of S. The occurrence is one of

two types

(a) Y, o fl(wi)

(b) y; occurs on the lhs in the scope of an iterative, say

is DO v; H; END.

Follow a separate procedure for each case.

el

(a) -procedure: Write £ (wi) for Y in the output vector.
1
(b) -procedure: Let sm be the statement of last occurrence.
Select an H, locate inputs and outputs to Sh’ order them and write

H(v)[vi ,...,vi]k

1 q
for Y, in the output vector (where the subscript on the functorial

selects the output yi from the vector of outputs for sm).

(3) For each input in the output vector resulting from (1), apply
the process of step (1l). Continue in this way until only input
variables, xi to Si remain as inputs and none of them occur on the
lhs of any statements sj for j<m where Sh contains the last _

occurrence of X, - Notice that this process must stop after

L steps(lsl=|sl;...;szl=2).

Routine A produces a number of new functorial letters Hi' Each of
them has vector input/output and is associated with an interative
statement scheme of S. Step 2 in the translation from S to a
functcrial is the application of Routine A to each iterative state-
ment scheme si and associated functorial Hi' The result of this
step is a set of functional expressions and a new set of letters
associated with iteratives contained in each iterative of S.
Routine A is applied to these and the process is repeated until
there are no new functorial letters introduced. This procedure
requires only d iterative where d is the maximum depth of nesting

of iteratives in S.

Step 3 of the translation is the substitution of functional express-
ions for functorial letters until only one expression remains. We

provide an illustration of the method below.

.15.

Example 3.1

schema S S=s ;s ;s ;s

vV « F (V) s
1 11

DO V1

VvV <« F (V)
1 2 2
V <« F (V)
2 11
END

VvV <« F (V). s

2 2 :

3

DO V
1

V <« F (V)
2 1 2
DO V
2
vV <« F (V) s
2 1 2
VvV <« F (V)
1 12

END

vV <« F (V)
1 2 1

END

VvV <« F (V) s
3 1 1 5

input Vv ,V
1 2

output Vv ,vVv ,V
1 2 3

output vector after one application of Routine A to S:

<H(v_)([v ,v_ ,v 1 ,BH(V)I[V ,v ,v] ,F (V)>
1 1 2 31 1 1" 2 372 1 1

.16.

Hereafter we present the translation only as it applies to the

first component, Vl.
After two applications of Routine A to S the first component 1is
H(G(V) [V ,v 1)[G(v)I[Vv ,v] ,G(Vv)IVv ,v 1 ,F (V)]
1 1 271 1 1 271 1 17 272 2 2 "1
After three applications of Routine A to § the first component is
H(G(F (V.))I[F (Vv.),v 1 [G(F (V))I[F (V),V] ,G(F (V))IF (V),v 1 ,F (V)
1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 2 2 2
]

Now in step 2, the following statement, s“, of S is reduced.

statement schema s
DO V
1

Vv <« F (V)

DO V

V <« F (V)
1 2

V <« F (V)
1 2

END
V <« F (V)
2 1

END
input v ,v ,V
17 2 3
output Vl,V , (V3 implied output)
, 2
Output vector for s ‘after one application of Routine A
4

<F (V.),H (V.)I[V_] ,v >
2 1 1 2 2 2 3

el / o

After two applications
<F (V.),H (F (V))I[F (V.)],v > .
2 1 1 1 3 13 3

H [V]=<V1,V2> is associated with
1 2

so the expression for H1 is

<F (F_(V_)),F_(V_)>
1 1 2 12

Upon substitution the expression H (V) [V] becomes
1 2 2 2
(KF (F (V)),F (V)>)(V)V]
1 1 2 1 2 2 272

which means that the vector function <F (FI(V)),F (V)> is
1 2 1 2

iterated Vv times.
2

On making the substitutions for letters Hi it is simpler to allow

substitution of inputs directly into the functional expression for Hi' This
renders the terms in square brackets redundant, and they are

dropped. Thus the above form for H 1is simplifed to
1 -
(<F _(F (V)),F (V)>) (V)
1 1 2 1 2 22

Upon substitution for V2 we get the complete H1 expression as it

occurs in translating s .
4

(<F (F _(F (V_))),F (F (V))>)(F (V))
11 1 3 1 1 3 1 3 "2

.18.

(3.4) functional expressions and the equivalence problem

The first step in ahalysing schemes for equivalence is a tranlation
to a functional expression. If two schemes have identical functional
expressions, then they are equivalent. Thus letting Fi be the
functional expression for Si we know Fi=Fj implies SiES.. Although
this test is sufficient, it is not necessary and we shall examine

more subtle forms ol Lschemata eguivalence.

The "functional expression test" described here does
isolate several interesting types of equivalence. For example,
this test will locate schemata which differ for the following

reasons:

(a) one scheme has redundant code (see 52 of Example 2.2)

(b) the schemes differ only in the order of performing

parallel operations (see Example 2.2)

The results of 'this section do not depend on the fact that the
input functions are single argument, but in the next section this

fact is critical.
§4 Calling Expressions for Loop Schemata

We consider now a family of simple formal languages which can be
associated with schemata. In certain special cases the technigues

of language theory give clear decision technigues for the equivalence
problem and finiteness problem for the family. These lead to

conceptionally simple solvable cases of the equivalence problem.

(4.1) calling expressions

From the methods of §3 it should be clear that the output of a
single variable, v, of a Loop scheme S depends on a sequence of

"function calls",

.19.

£, ° £, °. . .°fi (w)
1 2 m
where fi are input functions and where f°g denotes the composition
f(g()).J The calling sequence; il,iz,..., is determined by the
inputs and the schematic structure, but the overall form of such

sequences is determined by a rather simple expression.

Given a finite alphabet E={a1,...,an}' define the following

expressions.

BNF schematic form
. +
<integer>::=NR"={1,2,3,...} C G, rene
2
<variable>::=n _, n ,n . e
<integer> 12!
<superscript>::=<variable>l<integer> sl,s PR
2
<letter>::= a |a ...Ia a ;2 ;...,2
1 2 n 1 2 n
<term>::=<letter>l<term><term> each ai~is a term, and
-<superscript> if t, are a terms then
(<term>) pe P i <
sSo are]
t.), t.t..
i i3

The following are expressions over Z={a,b}:ab,anbn,a2b3(ab)na,

a2 ((a2b)a(aba) 2’bab) "ba.

We say that these expressions are calling expressions, and they denote

+ . : . . .
subsets of £ in the usual manner, i.e., product is concatenation and
exponentation is limited closure. These sets are formal languages

whose elements are calling sequences. The family of all such languages

is the calling family for Loop. _ -

(4.2) calling expressions and combinatorial equivalence

A simple variety of Loop schemata equivalence which is "deeper" than
the equivalence of §3 arises directly from calling expressions. -For
each calling expression E there is a Loop scheme whose behavior is

characterized by E. The general idea should be clear from an example.

.20.

Example 4.1

Given an expression a?p a"p ab™ over £={a,b} the corresponding

scheme is given below where f1 is a and £ 1is b.
2

vV « FI(V)
vV € FI(V)
vV € FZ(V)
DO Vv

2
vV + Fl(V)
END '
vV € FI(V)
vV € FZ(V)
DO V

3
vV « F (V)

2

END

Because of this correspondence, one necessary condition for
recognizing Loop schemata equivalence is recognition of strong’
type of equivalence between calling expressions. In the case of
calling expressions with only one variable, e.g., a™® or

a?b ala"p abn, etc, we need to test whether two formal languages,
L1 and L2, in the calling family satisfr the condition that

LI-LZ) u (Lz—Ll) is finite. In a numbe: os simple cases one can
reduce this to the finiteness problems Zor context-free languages.
It would be nice if the decision problem for the general case of
schemata equivalence could be reduced to known solved problems,

but that is not presently the case.

From the above correspondence the reader can construct examples of
schemata equivalence even when the functional expressions are not
identical. In the next subsection we outline a treatment of these

"combinatorial" equivalence phenomena.

(4.3) strong equivalence of calling expressions

Given two calling expressions E ,E , (and a 1l-1 correspondence T
1 2 ’

.21.

between variables) we form their difference, EI-E2=E2-E1, as
follows. Let ej(nl,...,np)i be the i-th letter in the sequence
from Ej with values nl,...,np for the variables. Then ez(nl,.,.,np)-

e (n ,...,n)=(if e (n ,...,n)=e (n ,...,n_) then 1 else 0) and
2 1 b 1 1 b 2 b b

E -E =1{e (n ee.,n)= (n eee,n) n,ec }.
12{11' 'P)zl' Pllm

We are interested in the problem of finding for any EI,E2 (and any

1-1 correspondence between their variables) the largest k such that

if weEl-E2 and leik, then we{ll}*, i.e. we want the largest k above
which the calling expressions are always equal. If there is no such
finite k, we expect to get the answer, k=», If k<® we say E1 and E2

are strongly eguivalent Dbeyond k.

To apply the concept of a calling sequence to schemata, observe that

a calling sequence f, °...°f, over Z={f1,...,fn} is a functional

Fl 1: 7" x N+ N. 1 P
We then have

Lemma 4.1 Two calling sequences f, °...°f, and £, °...°f,
i, lP 3,]q

are equivalent (as functionals) iff they are identical.

Proof: The proof is by induction on the length of the sequences. 1If
p=1, say fi =f1 then if g=p and fj =f1, then the functionals are
1 1
clearly equivalent. If g=p and fj =fi then pick a value of fj
1 1 1

different than fl, say f(O)#fi (0). In case g>1 and fj =f1,-pick
1 1

f1'fj to be strictly increasing. Then clearly fl(O)#fj °...%f, (0).

2 1 Jq

The case for p>1 is nearly identical to the base step and is left to

the reader.

.22.

Again one uses strictly increasing f()'s to produce values where

the functionals differ. Q.E.D.
"We now state without proof a basic lemma.

Lemma 4.2 There is an algorithm to determine for any two calling
expressions EI,E2 (and correspondence between variables,T) the

largest k (including ®) for which |w|[>k and WEE -E, implies we{ll}~*.

The essential idea behind the lemma is that the behavior of
el(nl,...,np—ez(nl,...,np) is periodic in the length of the sub-
scripted terms and thus any potentially infinite differences can be

detected in a finite set of calling sequences.

Finally, in the next section we need the notion of nested calling

expressions. These arise by allowing substitutions of calling

expressions for variables. The following is a nested calling
expression. n
(a?p) a

N
ba(ba) (2P2")

a(ba)

It is nested to depth two (over the letter a).

(4.4) Loop schemata equivalence

Using the two lemmata of the previous subsection we indicate a method

of solving the schemata equivalence problem. Given two schemes

s [f eea, £ X e and f .o . e .
1[ll ' tlr 1I Ixnll n Sl[1; lftzrxll ran]

we consider all possible correspondences between variables (inputs
and outputs)adding dummy variables if necessary. Without loss of
generality then we consider only one assignment and assume

t =t =t, n =n =n. Thus each S, satisfies
1 2 1 2 1

si[]:é‘txmn-*ldp

For each output variable y, we follow the same plan, so consider only
one variable, say y. We outline a method of testing which at each

stage reduces the length or the depth of nesting of the expressions

.23.

.being tested. Thus eventually the process stops. In a formal

proof we would set up an induction on length and depth.

Equivalence test

In the process of carrying out the "functional indentity test" of
§3, we form nested calling expressions for each input variable in
the obvious manner. For instance, the nested calling expression for
v1 in Example 3.1 is

v v
£ °(f °£) 1 (v) £ (V) v
(£ °(f °£) ! 12 3 of) 2 of o(f °of) (v)
2 1 1 1 1 1 2 2

The first step in the equivalence test 1S to compare the nested
calling expressions in S1 and 82 after one application of Routine A

Three possible cases can occur depending on the form of the expression.

(1) each expression begins with a letter

(2) one expression begins with a letter and one with an iterative, say

the case is as i1llustrated

(3) each begins with an iterative

v v
. (E) Y(w) (E,) %(w)
1 1 2
For example, the first stage expression for Example 3.1 is
£ (v) \Y

(£ °(£ °£) 1 2 o8) (v).
2 1 1 1 2

We consider the cases separately.

.24.

(1) In the first case, if fi #fj the test is complete and
0 0

the schemes are not equivalent. If fi =fj , then continue to the
0 0 v
next stage by producing an expression for the next application of

Routine A.

(2) In the second case, continue applying Routine A to S wuntil

1
an iterative is discovered. Suppose the form is then fi °...fi(E)(wl).
1
0 P

Now apply the equivalence test to the nested calling expressions for
v1 and v2 (causing a recursive call to the procedure but a reduction
in the level of composition). Determine the maximum k for which

they differ. If this k is finite, then check equivalence for each

of the possible values (now the depth of nesting is less). If none
of them produce a non-equivalent interpretation, then consider the

case "v =v " below.
1 2

If vl#v2 infinitely often (i.e., k is infinite), then SI$SZ. We
leave this non-trivial case for the. reader. (Again one needs strict
monotonicity of the fi to have the freedom to choose values for the fi.
after fixing value of v1 and v2 which produce calling segquences of J

different lengths. The argument is a more subtle form of Lemma 4.1).

If v1=v2, then the only way to have equivalence is to have E begin
2

with fi'°...°fi . If it continues, say with nested expression T, then
0 P

E1 must begin with something equivalent to T, and this can be checked
by applying this procedure (again the degree of nesting is lower).

If this happens, then we check whether "T°w25w1 , 1i.e., the expression
for w composed with T is equivalent to the expression for w . This

2 1
is checked by applying this procedure (now the level of composition

has been reduced).

(3) The third case proceeds in a manner similar to case (2),

and its outline is left to the reader.

end of procedure

.25.

§5 Conclusion and open problems

We have defined a new class of program schemata based on subrecursive
programming languages. These Loop schemata are fundamentally different
than program schemata as defined in Paterson [6] because their
interpretation requires specific functions (-1) and tests (v=0).

They represent a wide énd interesting class of programs, but even

more interesting classes are suggested by the general principle of
defining schemata from subrecursive languages. We consider another

example below.

We are able to uniformly assign mathematical expressions to these
schemata. Such a task is not yet accomplished for more general
program schemata, (and an effort on that task appears worthwhile), but
in the case of Loop, the idea is quite simple and can be applied also

directly to the Loop languages.

Finally, we have outlined a solution to the Loop schemata egqguivalence
problem although the equivalence problem for Loop programs is

unsolvable (of level H:). We have indicated two levels of schemata
equivalence, "functional" and "deep" (or combinatorial) egquivalence.
Carrying over these ideas to a language like Conditional Loop (described
below)and developing a good equivalence algorithm might have practical

merit.

(5.1) more general subrecursive schemata

We can extend Loop schemata to permit nested conditionals. If we
adjoin the following categories to Loop schemata, the resulting

programs are called Conditional Loop Schemes.

<predicate variable>::=P|P<predicate variable>
<predicate>::=<predicate variable>(<yariable>)

<conditional>::= if <predicate> then <program> else <program>

.26.

Example 5.1 (1) if P(V) then V<F (V) else V*FF (V)

(2) DO V1

V. <« F (V)
1 12

if P(Vv) then DO V
1

else DO V

END

vV <« F (V)
2 1 2

If in addition to the functions +1, 0, (), we specify (as in §2)
the predicates Pl(x) iff "x=0" and Pi(X) iff "x#0", in the
Conditional Loop schemata, the resulting language is called the
Conditional Loop language. By the results of Constable and Borodin
[1], this language computes the same class of total functions as
the Loop language. The similarity of this type of language to
interesting subsets of Algol is obvious. 1Investigation of the
schemata equivalence problem for Conditional Loop (allowing n-ary
function inputs) would appear to be an interesting non-trivial

(but tractable) problemn.

(5.2) equivalence over special function domains

One reason for the 501vability of Looﬁ schemata equivalence is our
freedom to choose values for the function inputs, i.e., the schema
does not provide much information. Therefore, one reason that Loop
program equivalence is unsolvable is that specific inputs, like +1,
-1, (), provide too much information. It would be interesting to

consider the effects of a more gradual increase in information.

In this regard, it is noteworthy that +1, -1, are inverse and ()

«27.

is an identity in the function space uz . What is the consegquence

1
for schemata equivalence of requiring the function inputs to come
from a group? Such a restriction presents an increase of information

(we at least know the symmetry but not its exact nature).
These observations suggest an investigation of the schemata equivalence

problem for various algebraic function domains such as groups and

and rings, etc.

Acknowledgements

The author would like to thank John Cherniavsky and Professor Robert
Wagner of Cornell for their helpful discussions cn the topics in

this paper and Diane Goolsby for her excellent typing.

References

(1] Constable, R L and A B Borodin On the efficiency of programs
in subrecursive formalism, IEEE Conference Record, Symposium
in Switching and Automata Theory, 1970, 60-67. (to appear in JACM)

[2] Ianov, I The logical shcemes of algorithms, Problems of
Cybernetics I, 82-140, (English translation), 1960.

(31 Meyer, A and D M Ritchie The complexity of Loop programs,
Procedure 22, National ACM Conference, 1967, 465-470.

[4] Milner, R Program schemes and recursive function theory,
Machine Intelligence, 1970, 39-58.

[5] Minsky, M Computation, finite and infinite, Prentice-Hall,
Englewood Cliffs. :

[6] Paterson, M S Program schemata, Machine Intelligence 3, 1968,
1931.

[7) Paterson, M S Equivalence problems in a model of computation,

Artificial Intelligence, Technical Memo (153 pages) No. 1, 1970.

[8] Rogers, H Theory of Recursive Functions and Effective Computability,
New York, 1967. ' :

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif

