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Pair formation or social mixing has become one of the central problems in the study of the 

dynamics of sexually-transmitted diseases. In this paper we outline a unified approach to pair 

formation for one- and two-sex populations by means of an axiomatic mixing framework. We also 

illustrate numerically the effects of the structural covariance or preference function (a measure of 

deviation from proportionate mixing) on the mixing or pair formation function for homosexual 

populations. In addition, a two-sex demographic model that follows pairs is formulated and briefly 

analyzed. 

1. Introduction 

The grim scenario created by the AIDS epidemic has driven researchers to develop mathematical 

models to improve our understanding of the mechanisms responsible for HIV (the etiological agent for 

AIDS) transmission and of the evaluation of possible intervention measures. Recent reviews of the 

literature on models include those of Anderson (1988, 1989), Castillo-Chavez (1989a,b), and Schwager 

et a/. (1989). Some of the important conclusions generated by mathematical models include the clear 
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identification of three key mechanisms: variable infectivity, mixing or pair formation, and long, 

variable periods of infectiousness, which have the greatest effect on HIV transmission at the population 

level. For an extensive in depth study of some of the most recent mathematical and statistical work in 

these and other areas related to AIDS epidemiology see Castilla-Chavez (1989b). 

This paper is organized as follows: in Section 2, we outline a unified axiomatic approach to the 

problem of mixing which extends and generalizes the one-sex framework of Blythe and Castilla-Chavez 

(1989) and ,Castilla-Chavez and Blythe (1989) and provide an expression for the general solution as 

well as some numerical illustrations; in Section 3, we formulate a two-sex mixing or pair formation 

framework that is a natural generalization of the one-sex framework, and construct some explicit 

solutions; in Section 4 we formulate a demographic model that follows pairs and provides some 

preliminary analysis. 

2. Mixing framework 

The formulation described in this section can be used in the modeling of social or sexual mbcing 

interactions. The mixing or pair formation function can describe the proportion of "dates" between 

individuals in distinct groups, or it can represent the proportion of sexual partnerships or sexual 

contacts between these individuals. In addition, the mixing function can be generalized to include the 

geographical distribution or the geographical movement of individuals through the use of "localized" 

mixing functions, i.e., functions that represent the proportion of partnerships formed between 

individuals from clearly defined groups (social, demographic, etc.) at a particular geographical 

location. The local geographical heterogeneities can then be linked through the specification of 

migration or movement matrices (see Sattenspiel 1987a, b, Sattenspiel and Simon 1988). Therefore, our 

approach allows for the specification of a spatial mixing framework. In this paper, however, we 

concentrate in the study of localized mixing functions. 

Since our work has been motivated by HIV dynamics, we concentrate on the study of mixing 

functions in the context of SIR models where S represents the class of susceptible individuals, I the 

class of infected individuals, and R the class of removed or recovered individuals. We consider first the 

interactions of a single, socially-homogeneous group of individuals who are structured according to the 

following variables: a = age; r = time (or age) since infection; r = activity or risk level. We let 

N(r,a,r,t) denote the total population density per unit age, activity, and time since infection, at time 

t. This population is divided into the following epidemiological classes: S = susceptible; I = 
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asymptomatic or slightly symptomatic infective; A = highly symptomatic infective. This classification 

is fairly general and includes implicitly the traditional exposed, but not infected, class E (see Busenberg 

and Castillo-Chavez 1989). In our discussion, T is a hidden internal variable that does not distinguish 

individuals other than through their level of infectivity, and perhaps mortality. When modeling the 

sexual transmission of AIDS, we assume that A-individuals (i.e. individuals with severe symptoms or 

"full-blown" AIDS) are sexually inactive (i.e. this class represents the "removed" individuals) and 

hence that 

T(r,a,t) = S(r,a,t) + J~ I(r,a,r,t)dr 

represents the total age and activity-level density of a population active in disease transmission 

contacts. Sexual mixing (or pair formation) is defined through the mixing function p. Specifically, 

p(r,a,r',a',t) = the proportion of partners of an (r,a) individual 

(i.e., a person of activity level r at age a), with (r' ,a') 

individuals at time t. 

C(r,a,t) = the expected or average number of partners per unit time 

of an (r,a) individual given at time t. We assume C ~ 0. 

The following natural conditions characterize the mixing function: 

(i) p ~ 0, 

(ii) J~ J~ p(r, a, r', a', t)dr'da' = 1, 

(iii) p(r,a,r',a', t)C(r,a,t)T(r,a,t) = p(r',a',r,a,t)C(r',a',t)T(r',a',t), 

(iv) C(r,a,t)T(r,a,t)C(r',a', t)T(r',a',t) = 0 => p(r,a,r',a',t) = 0. 

Condition (ii) simply says that p is a proportion. Condition (iii) states that the total number 

of pairs of (r,a) individuals with (r',a') individuals equals the total number of pairs of (r',a') 

individuals with (r,a) individuals (all this is per unit time, age, and time since infection). Condition 

(iv) says that there is no mixing in the age and activity levels at which there are no active individuals; 

i.e., on the set 

'J = {(r,a,r',a'): C(r,a,t)T(r,a,t)C(r',a',t)T{r',a',t) = 0}, 

where there is no mixing. Condition (iv) arises naturally in the study of the solutions of the above 

framework (see Busenberg and Castilla-Chavez 1990). 

In some situations it is necessary to consider mixing functions p, which are Dirac delta functions 

or, more generally, distributions or generalized functions. Hence, we are forced to consider solutions to 

this axiomatic framework in the space of distributions or generalized functions (see Schwartz 1966, 
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Gel'fand and Shilov 1964). To accomodate this possibility the following modification to the 

interpretation of axioms (i) and (iv) is necessary: 

(i') p ~ 0 in the sense of distributions; i.e., 
00 

J J p(r,a,r',a',t)f{r',a ',t)dr'da' ~ 0 for all f~O, and 
0 

(iv') p{r,a,r',a',t) = 0 on a set F, which means 

J J p{r,a,r',a',t)f{r,a',t)drda' = 0 for all f. 

F 

Pair formations can involve selectivity by individuals according to age or activity level, they can 

be random pairings without regard to these variables, or they can be any combination or mixture of 

the two extremes. A detailed discussion of these possibilities and of the restrictions they place on the 

mixing function p is found in Dusenberg and Castillo-Chavez {1990). 

A solution of critical importance to the mixing framework is that of total (i.e. in age and risk) 

proportionate mixing: 

C(r',a' ,t)T(r' ,a',t) 
p(r,a,r',a',t) = 00 (1) 

J JC(r',a',t)T(r',a',t)da'dr' 
0 

This solution plays an important role in the determination of all possible solutions to the 

mixing framework (i)-(iv). Note that proportionate mixing vacuously satisfies condition (iv). This 

condition prevents us from accidentally dividing by zero, and hence prevents us from arbitrarily 

defining a mixing function for subpopulations that either are not sexually active or that have been 

depleted of individuals by disease dynamics. Further examples of specific mixing functions can be found 

in Castillo-Chavez and Blythe (1989) and Dusenberg and Castillo-Chavez (1990). We further observe 

that convex linear combinations of mixing functions are mixing functions. Specifically, if a1' ... aN are 
N N 

positive constants such that E a 1• = 1 and p1, ..• ,pN are mixing functions, then E a. P· is a mixing 
. 1 . 1 1 1 

function. This last observati~~ provides a recipe for the construction of a variety ~f mixing functions. 

Furthermore, it clearly shows that preferred mixing (a convex combination of two mixing functions), 

contrary to the suggestions of some researchers, does not contain all reasonable possibilities. 

Specifically, (omitting age) preferred mixing is given by 

p(s, r) = (1-a) oo C(r)T(r) + a 6(s-r), J 0 C(u)T(u)du 
(2) 

where 6 denotes the Dirac delta (see Blythe and Castillo-Chavez 1989), i.e., it is the convex linear 

combination of the Dirac delta (a mixing function) and proportionate mixing. The two extreme points 
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of this particular convex linear combination (when a = 0 or 1) do not obviously represent sociological 

or mathematical mixing extremes-this was pointed out to us by S. Gupta and R. Anderson. 

A mixing function p is called separable if it can be written in the form 

p(r,a,r',a',t) = p1(r,a,t)p2(r',a',t) . (3) 

The total proportionate mixing function p is separable, and our first result states that there are no 

other separable pairing functions. 

Theorem 2.1 The only separable pairing function p satisfying conditions (i)-(ii)-(iii) is the total 

proportionate mixing function p given by (5). 

Proof: This result can be easily obtained by direct substitution of (3) into the mixing axioms. Since 

the proof of this result is similar to that of Theorem 3.1 (included later) we omit the details .. 

All other solutions to the mixing framework are given by multiplicative perturbations of total 

proportionate mixing. The nature of the perturbations is specified in the following theorem: 

Theorem 2.2 Let </1: c:R:.+ -+ c:R:. be measurable and jointly symmetric: <fo(r,a,r',a') = <fo(r',a',r,a), and 

suppose that 

and 

Let 

so that 

00 

f f p(r',a')<fo(r,a,r',a')dr'da' ~ 1, 
0 

D p(' ,a>( D P( ,, ,a')ol( '•"•" ,a')<k'da' )dMa < !. 
00 

p1(r,a) = 1 - f f p(r',a')<fo(r,a,r',a')dr'da', 
0 

p1(r,a)p1(r',a') 
p(r,a, r',a') = p(r',a') [ 00 + <fo(r,a,r',a')] 

If p(r',a')p1(r',a')dr'da' 
0 

(4) 

(5) 

is a mixing function. Conversely, for every mixing function p there exists a </J that satisfies the 

hypotheses of the theorem such that pis given by (5) with p1 defined by (4). 

Proof: That the expression given by Equation (5) is a mixing function is immediate. For the 

proof of the converse, see Busenberg and Castillo-Chavez (1990). 

The function </1 provides us with a measure of the deviation from proportionate mixing and 

therefore it is a measure of preference. We call this perturbation the structural covariance or preference 

function (note that this covariance is alwayspositive). To illustrate the effects of </J on the shape of the 
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mixing or pair formation function, we look at some examples for situations in which the mixing 

function is only a function of the age or risk (related to frequency and type of sexual activity) of the 

individuals but not of both. The version that is illustrated in our numerical simulations corresponds to 

the following version of Theorem 2.2: 

Theorem 2.3 Let 4»:!R2 -+!R+ be a measurable and jointly symmetric function, and suppose that 
+ 

Defining p1 (r) by 

00 

J p(r)4»(r,r')dr ::::; 1 and 

0 

00 00 

J p(r){f p(u)4»(u)du }dr < 1. 

0 0 

00 

P1 (r) = 1 - J p(u)4»(r,u)du 

0 

we obtain the following representation formula for a two dimensional one-sex mixing function: 

where 

[ 
P1(r)p1 (r') J p(r,r') = p(r) 00 + 4»(r,r') , 

J p(r)p1 (r)dr 

0 

p(r) = 00 C(r)T(r) 1 J 0 C(u)T(u)du 

(6) 

(7) 

(8) 

i.e., we have a multiplicative perturbation of proportionate mixing. Also for every mixing function p, 

there exists a structural covariance or preference function 4» satisfying the hypotheses of the theorem 

such that pis given by (7) with p1 defined by (6). 

We now proceed to illustrate the effects of preference on the shape of the mixing function. As a 

model for the distribution of activity levels in a population, the lognormal distribution has appeal due 

to its flexibility. Formally, if ln(R) has a normal distribution with mean I' and variance u 2, then R 

has a two-parameter lognormal distribution with parameters J', and u. For convenience, define b == 

e11• The probability density function for the lognormal may be written as 
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T(r) = u.kex{- 2~,(1n(i} ) 2] = Prob [ ln(R) = '], r > 0. 

The mean and variance of R are 

E(R) = Jl R = bexp( 22), 
and 

Var(R) = u~ = b2eu2(eu2
- 1). 

A more natural parameterization for our modeling purposes is to describe the distribution in terms of 

p R and u~. Given values of these two population parameters (either arbitrarily, or as suggested by 

data), we can easily determine that 

u 2 = ln[u~p1 + 1], 
and 

b = p Rexp( -0.5u2). 

We may further simplify our model prescription if we accept the empirical "power law" of Anderson 

and May (1988): 

whence 

and 

b = p Rexp( -0.5u2 ) • 

With C( r) = r, then (8) becomes 
_( ') _ r'T(r') 
pr - oo ' L uT(u)du 

where the denominator is the expected value of a lognormal random variable, i.e., 

(9) 

T(r) is really a function of t, i.e., T=T(r,t), and its behavior is governed by an appropriate 

partial differential equation (see Busenberg and Castillo-Chavez, 1989). Note however, that the "power 

law" of Anderson and May (1988) suggests that the mean and variance of T(r,t) (regardless of how we 

model it) has to satisfy Equation (9). Further, since our purpose is to illustrate the effects of the 

structural covariance or preference function on the shape of p(r,r',t), we "bypass" the dynamic model 

and concentrate on the effects of ¢ on p when J-l R and u R satisfy (9). Finally, we observe that a 
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population that is experiencing a decrease in sexual activity will have to do it in a resticted fashion, 

i.e., by moving down along the line (in log-log scale) defined by Equation (9). 

In our numerical illustrations we take a fairly general ¢, namely: 

¢( r, r') = exp[ -( c1( r2 + r'2) + c2rr' )]. (10) 

Recall that p1(r) = 1 - J~ p(r')¢(r, r')dr' must be ::; 1; and note that for our current choices forT 

and ¢, this condition is met for a wide range of I' R• c1 and c2, including values which may be 

reasonable for human populations. The denominator term of p(r, r') is fairly cumbersome, but can be 

cleaned up a little: 

oo oo -lnr'/b 2 . [ ( ( ))2 J J p(r)p1(r)dr = J - 1-exp 2 ( 2 ) dr-
0 0 ub...J2; 2u 

· The second term can be reduced to a one-dimensional integral by use of the change of variable defined 

by u = ~2c1r + ~· Then we have 
"12c1 

Joo c1 exp[-((ln(r'/b)))2- o-2- r'2(c1- c~ )'l(1- ~(c2r'))dr', where 
0 2u2b2 ..Jc1?r u 4c1 J ~ 

~( ·) is the standardized Gaussian cumulative distribution function. 

In our set of simulations, we use all six combinations of two choices for T(r) (determined by the 

Anderson and May's (1988) power law, with values of 2 and 8 for I'R) and three choices for¢: ¢1 with 

a well-defined narrow ridge along the line r = r' (determined by the pair (ell c2) = (0.3, -0.6) ), ¢ 2 

with a somewhat broader profile ( (ell c2) = (0.05, -0.08) ), and ¢ 3 = 0, representing proportional 

mixing. We have plots also of the corresponding structural covariance functions ¢1 and </J2 • 

The plots illustrate the interaction between the structural covariance function and the degree to 

which the population exhibits proportionate mixing. For a given mean activity level (2 and 8 in these 

simulations) the preference function exhibiting the sharpest degree of preference ( ¢1, plot 1) has the 

mixing function which is (visually, at least) furthest removed from proportionate mixing (plots 2, 3). 

As the preference function gets less sharply peaked ( ¢ 2, plot 4), the mixing function (plots 5, 6) is more 

similar to proportionate mixing (plot 7, 8). Also, for a given ¢, as the population mean activity level 
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increases, the mixing function looks more and more like a simple additive combination of ¢ with 

proportionate mixing (plots 2--+-3, 5--+6). 

3. Two-sex mixing framework 

In this section we provide an outline of our two-sex framework. Since an extensive account will be 

provided later (see Castillo-Chavez and Busenberg, 1990), we look exclusively at our mixing framework 

in the context of a two-sex age-structured population. We further concentrate on a framework suitable 

for a two-sex demographic model. The modifications needed to transform this demographic model into 

an epidemiological model for sexually-transmitted diseases are straightforward and can be found in 

Castillo-Chavez and Busenberg (1990). 

We let M(a,t) denote the density of males of age a who are not in pairs at timet, and let F(a',t) 

denote the density of females of age a' who are not in pairs at time t. Pairing is defined through the 

mixing functions: 

and we let 

p(a,a',t) = proportion of partnerships of males of age a with 

females of age a' at time t, 

q(a,a',t) =proportion of partnerships of females of age a' with 

males of age a at time t, 

C(a,t) = expected or average number of partners of a male of 

age a at time t per unit time, 

D(a',t) = expected or average number of partners of a female of 

age a' at time t per unit time, 

The following natural conditions characterize these mixing functions: 

(a) p, q ~ 0, 

(b) J~ p(a, a',t)da' = 1 = J~ q(a', a,t)da = 1, 

(c) p(a,a', t)C(a,t)M(a,t) = q(a',a,t)D(a',t)F(a',t), 

(d) C(a,t)M(a,t)D(a',t)F(a',t) = 0 => p(a,a',t) = q(a',a,t) = 0, 

Condition (ii) is due to the fact that p and q are proportions. Condition (iii) simply states 



-10-

that the total number of pairs of males of age a with females of age a' equals the total number of 

pairs of females of age a' with males of age a (all per unit time and ~ge). Condition (iv) says that 

there is no mixing in the age and activity levels where there are no active individuals; i.e., on the set 

:f(t) = {(a,a',t): C(r,a,t)M(a,t)D(a',t)F(a',t) = 0}. 

The pair (p,q) is called a two-sex mixing function iff it satisfies axioms (a-d). Further, 

a two-sex mixing function is called separable iff 

p(a,a',t) = p1(a,t) p2(a',t) and q(a,a',t) = q1(a,t) q2(a',t). 

If we let 

hp(a,t) = C(a,t)M(a,t) (11) 

and 

hq(a,t) = D(a,t)F(a,t), (12) 

then, omitting t to simplify the notation, we establish the following result: 

Theorem 3.1 The only two-sex separable mixing function satisfying conditions (a-d) is given by 

(p,q), where 

_( ') _ hq(a') 
pa- oo ' J hp(n)dn 

q(a) = ~ hp(a) 

J0 hq(n)dn 

(13) 

(14) 

Proof: It is clear that the expressions given by Equations (13-14) satisfy the axioms (a-d), and hence, 

(p,q) is a two-sex mixing function. Let's now assume that (p,q) is separable, then using Axiom (b), 

we see that 

P1(a) = Joo 1 = e, 
p2(n)dn 

0 

(a constant) 

and 

q(a') = 00 1 = k, (a constant); J 0 q2(n)dn 

therefore, 

p(a,a') = e p2(a') and q(a,a') = k q2(a) . 
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If we substitute the above expressions into Axiom (c) and integrate over all ages a, then we arrive at 

l p2(a') J~ hp(n)dn = hq(a) 

from which (13) follows. Equation (14) is obtained similarly. 

Castillo-Chavez and Dusenberg (1990), have established that all two-sex mixing functions are 

multiplicative perturbations (with appropriate structural covariance functions) of the only separable 

two-sex mixing function given by (13-14). Although, the general solution may prove to be quite useful 

in theoretical considerations, it is still of practical importance to provide modelers and theoreticians 

with flexible families of two-sex mixing functions. The following two-sex biased mixing family for N­

interacting subpopulations may fulfill this need. To introduce it, we let ui (vi) denote the proportion 

of partnerships by males (females) of group i reserved for mixing with females (males) in group i; 

necessarily 0 :5 ui, vi :5 1. If Fi(t) ( Mi(t)) denote the number of males (females) in group i at timet, 

and Ci (Di) denote the average number of female (male) sexual partners of males (females) in group 

i, and pij(t) (qij(t)) denote the proportion of partnerships of males (females) in group i with females 

(males) in group j. Then 

p .. (t) = u.c5 .. + (1-u.) 
1J 1 1J 1 

q .. (t) = v.c5 .. + (1-v.) 
J1 J J1 J 

where 

(1-v.)D.F. 
J J J 

if i=j 
if i:;fj. 

(15) 

(16) 

The above family of two-sex biased mixing functions is easily incorporated into classical 

epidemiological models as well as into models that follow pairs. This is the topic of the next section 

where we introduce the simplest demographic model that follows pairs and that makes use of the 

framework of this section. 

4. Demographic pair formation models 

Demographic models that consider pairs and follow the dynamics of pairs have been studied 
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by Kendall (1949), Fredrickson (1971), Dietz and Hadeler (1988), Dietz (1988), Hadeler (1989a,b), 

and Waldstatter (1989). Their approach is based on the use of a nonlinear function 1/J to model the 

process (rate) of pair formation. This mixing/pair formation function is assumed to satisfy the 

Fredrickson/McFarland {1971,1972) properties: 

(e) 1/J(O,F) = 1/J(M,O) = 0 

In the absence of either males or females there will be not heterosexual pair formation. 

(f) 1/J( aM,aF) = at/J(M,F) for all a, M, F ~ 0. 

If the sex ratio remains constant, then the increase in the rate of pair formation is 

assumed to be proportional to total population size. 

(g) 1/J(M + u, F + v) ~ 1/J(M,F) for all u, v, F, M~O. 

Increases in the number of males and/or females does not decrease the rate of 

pair formation. 

Condition (f) implies that all mixing functions are of the form 

,P(M,F) = M g ( ~) = F h ( w). 
where h and g are functions of one-variable. 

Mixing functions satisfying the above axioms, and that have been used in demographic 

studies, include: 

1/J(M,F) = k min (M,F), k is a constant 

1/J(M,F) = k ~MF , 

and 

1/J(M,F) = 2k ::F . 
Let u denote the rate of pair dissolution, J.' denote the natural mortality rate, A denote the 

"recruitment" rate, and W denote the number of (heterosexual) pairs. Then a simple demographic 

model is given by the following set of equations: 

~~ = A - JJM + (u+JJ)W- 1/J(M,F) 

~r = A - JJF + (u+JJ)W- 1/J(M,F) 
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d: = (o+ 2p.)W + 1/J(M,F). 

If A, p., and u, are constant, then there is always a globally stationary solution (M,F,W), where W is 

determined by the equation 

1/J(~- W, ~ + W) = (u+2p.)W. 

(for references to this and related results see Waldstatter, 1989). 

If we now let f(a',t) and m(a,t) denote the age-specific densities for single males and single 

females respectively, and assume that D (as defined in Section 3) and JJm and P.f are functions of age 

(the mortality rates for males and females), and assume that W(a,a',t) denotes the age-specific 

density of heterosexual pairs (where a denotes the age of the male and a' the age of the female), then 

using the two-sex mixing functions p and q of Section 3, we arrive at the following demographic 

model for heterosexual populations: 

00 

~~ + ~r;: = -C(a)m(a,t) J p(a,a',t)da' 

0 
00 

- JJm(a)m(a,t) + J [JJr(a') + u)W(a,a',t)da' , 

0 
00 

~~ + S!, = -D(a')f(a',t) J q(a',a,t)da 

0 
00 

- P.f(a')f(a',t) + J [JJm(a) + u)W(a,a',t)da, 

0 

oW + oW + oW = D(a')fi(a't)q(a a' t) ot oa oa' ' ' 

- [l'f(a') + JJm(a) + u]W(a,a',t) . 

(17) 

(18) 

(19) 

To complete this model we need to specify the initial and boundary conditions. To this effect 

we let ..\m and ,\f denote the female-age-specific fertility rates, and let m0 , fo, and w0 denote the 

intial age densities. Hence, the initial and boundary conditions are given by 

00 

m(O,t) = J ..\m(a')W(a,a',t)da' , 

0 
00 

f(O,t) = J ,\f(a')W(a,a',t)da' , 

0 

(20) 

(21) 
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W(O,O,t) = 0 

f(a,O) = fo(a), m(a,O) = m0 (a), W(a,a',O) = W0 (a,a'). 

00 

Nf(a',t) = J W (a,a',t)da, 

0 

and observe that Nf and f + Nf satisfy the following set of equations: 

and 

(St + cf!.,) Nf = D(a')f(a',t) 

- (l'f(a') + u]Nf 

00 -J JJm(a) Q(a,a',t)da. 

0 

If we assume that JJm1 Pf and Dare constants and look for solutions of the form 

and 

f(a',t) = ertf(a), 

then in the usual fashion, we arrive at a characteristic equation for r of the the form 

H(r) = 1 

where 
00 

H(r) = J-' (a) D e -(r+pf)a[1- e -(JJm+u+D)a]da. 
f JJm+D+u 

0 

Since H(r) is decreasing, then (25) has a unique real root r*. Clearly 

H{O) > 0 ¢> r* > 0 , 

(22) 

(23) 

(24) 

(26) 

and if r = a+iP is a complex root then one easily sees that a< r*. We observe further that the above 

analysis is independent of p, however, note that in order to recover W or to study the stability of 
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product solutions we need to have specific knowledge of the mixing function p. 

Although further analysis is possible, we will not present it here, as one of the main purposes of 

this article is to show an alternative approach to that of Fredrickson/McFarland/Dietz/Hadeler for 

the formulation of demographic models that follow the dynamics of pairs. Epidemiological models 

that fit into our framework are easily formulated and the appropriate details will be discussed 

elsewhere. 

5. Conclusions 

In this article we have presented a general solution to the one sex mixing/pair formation 

problem. Our representation theorem states that any mixing function can be represented as a 

multiplicative perturbation of proportionate mixing. This perturbation, through its structural 

covariance or preference function, provides us with a measure of divergence from proportionate 

mixing. Simulations based on the "power law" of Anderson and May (1988) were provided to 

illustrate the role of preference in the shape of the mixing function. Our discussion of the simulation 

results, combined with our previous studies (see Blythe and Castillo-Chavez 1989, Castillo-Chavez 

and Blythe 1989, Busenberg and Castillo-Chavez 1989), show that to understand the role of 

preference in disease dynamics we need to develop methods of estimating the effects of the structural 

covariance function on the shape of the basic mixing function (i.e. proportionate mixing). Knowledge 

of "realistic" mixing structures is needed in the evaluation of possible intervention programs aimed at 

disease prevention. 

We have also introduced a two-sex mixing framework and constructed a variety of solutions 

that may prove useful in applications. Finally, we have introduced a demographic model that follows 

pairs based on our mixing/pair-formation framework, and have shown that this model has nontrivial 

solutions. Further analysis of this model is being carried out and will be published elsewhere. 
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Legends for Plots 

Plot 1: t/J, with c1 = 0.3 , c2 = -0.6 . 

Plot 2: p, with J.'R =:= 2, c1 = 0.3, c2 = -0.6 . 

Plot 3: p, with J.'R = 8, c1 = 0.3, c2 = -0.6 . 

Plot 4: t/J, with c1 = 0.05 , c2 = -0.08 . 

Plot 5: p, with J.'R = 2, c1 = 0.05, c2 = -0.08 • 

Plot 6: p, with J.'R = 8, c1 = 0.05, c2 = -0.08 . 

Plot 7: p, with J.'R = 2, t/J = 0 . 

Plot 8: p, with J.'R = 4, t/J = 0 • 
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