"PARTITIONS AND PRINCIPLES FOR
SECURE OPERATING SYSTEMS

Gregory R. Andrews

TR 75-228

February 1975

Department of Computer Science
Cornell University
Ithaca, NY 14853






PARTITIONS AND PRINCIPLES FOR
SECURE OPERATING SYSTEMS

Gregory R. Andrews

ABSTRACT °

As part of the general goal of providing secure computer
systems, the design of verifiably secure operating systems is one
0% the most important tasks. This paper addresses the problem
by defining security in terms of a model and proposing a set of
principles which we feel should bé satisfied in a secure operating
systenm. Informally, an operating system is secure if its users
completely control the use of all information which they introduce.
Four Xey partitions are identified: user interface functions,
user invoked services, background services, and the security
kernel. Principles are then defined to insure that interface
functions provide a safe initial environment for executing user
programns, user called services are confined, background services
have no access to user information, and the security kernel
adeguately protects information storage.



PARTITIONS AND PRINCIPLES FOR
SECURE OPERATING SYSTEMS

Gregory R. Andrews

INTRODUCTION

As more information has been placed in computer systems,
society's concern for controlling its use has greatly increased.
In' response to this concern, numerous groups are actively engaged
in various aspects of identifying security goals and designing
secure computer systems [4,10,13,14,15,16,18,19]. Providing securit;
requires both that system software carries out the intent of users
as expressed in programming languages and that the hardware and
physical environment do not introduce errors or provide paths
for information to leak (e.g. via wiretapping). This paper will
focus on the first problem by describing an approach to the design
of secure operating systems. ’

We view an operating system as having four distinct components
with respect to security:

(1) interface functions, such as job management or user identi-
fication, which communicate directly with the external user;

(2) user invoked services, such as the file system; -

(3) background services, such as storage managers or checkpoint
generators; and

(4) the protection system (security kernel) which provides
mechanisms for controlling access to stored information.

Informally, we consider such a system to be secure if its users
completely control the use of all information which they introduce
into the system. Our specific aim in this paper is to present a
model and definition of operating system security and then to
propose a set of principles for the above partitions which might



lead to a provably secure system.1 In particular, we are concerned
with safely interfacing users to the system, confining services
they invoke, isolating other services from their information and
insuring the adequacy of the system's protection mechanisms. The
ideas presented are a synthesis and extension of previous work and
are intended to illustrate our approach; preliminary results
indicate that this approach looks promising.

A MODEL OF SOFTWARE SECURITY

The role of any software system is to interpret and carry
out the commands of its users. For this purpose an operating system
(0S) provides a job control (command) language and a variety of
programming languages. In these languages, users describe the
actions they wish to perform and also describe actions which
they will allow other users to take on their programs or data.
The first component of our security model is a characterization
of the control a user might express in a language; we call this
our external model. The role of the OS is to carry out the user's
actions by mapping his information into physical resources and
providing services for him to use. In order to control access to
stored information, an OS employs a variety of protection mechanisms.
The second component of our model is therefore a security kernel
consisting of data structures and primitive operations used for
protection. = The role of the.operating system is to accurately
translate and obey the access restrictions expressed in a language
and implemented by the security kernel.

External Model

Three types of external objects are of interest with respect
to security: users, user information, and job control statements.
Users are individuals having a unique name or other means of identi-
fication. User information consists of the programs and data which
a user wants processed; part of the information he submits is a
set of rights specifying the actions which other users can take
on his information. A right in our model is a triple, (user name,
information specification, action); it states that the named user
can take the action (e.g. execute an operation) on the specified
information. For example, a user might say that a subroutine
is to be made accessible to all who want to use it or that a collec-
tion of research data is to be readable by his colleague named
SMITH. The final component of the external model is the set of job
control statements by which a user specifies the tasks (job-steps)
which the 0S is to initiate on his behalf.

!The presentation is semi-formal, omitting much of the detail
needed for actually proving security; when appropriate, relevant
formalisms are referenced.



Security Kernel

Externally specified user rights are implemented by
the mechanisms of the security kernel. 1Its role is to con-
trol the actions of computations by limiting their access
to stored information. Any protection kernel {2,10520,22,23]
can be abstractly characterized by four components:

(1) The set of objects to be protected.

(2) The protection state containing object descriptors
and capabilities which define authorized actions.

(3) A set of monitors (enforcers) which determine the legality
of every action by consulting the protection state.

(4) " A set of protection primitives used to change the protection
state. ’ : -

With respect to protection, three classes of objects exist:

actors, information structures, and physical resources. Actors

as the name implies are the objects who take actions; examples

are processes and procedures. Information structures are logical
collections of information, analagous to segments; examples are data
segments, code segments, process descriptors, argument lists,
messages, files, and file directories. Finally, the resources are
the hardware addressable objects such as memory blocks, pages,

disk sectors, and devices.

The protection state at any point in time contains
descriptors describing each object and capabilities which are
associated with actors and define the authorized actions. A
capability has the general form: (object name, access attributes,
control attributes); it authorizes a set of access actions on
© the named object and a set of control actions (protection
primitives) on capabilities for the object. The access actions
are dependent on the type of the object; examples are Call a
procedure, Read a segment, or Input from a device. The control
actions are type independent and consist of some subset of the
protection primitives implemented by the kernel (see below).

The third comporent of the security kernel, the enforcement .
mechanism or monitors, is a set of hardware and/or sofiware procedure
which validate actions by consulting the capabilities in the
protection state. In particular, a monitor consults the domain
of the executing actor which contains his local capabilities
(ones he always has, such as for local variables in a procedure)
and his dynamic capabilities (such as those for objects in an
argument list). Examples of monitors are the hardware segment

2This model is described in detail in [l]; other protection
models [6,8,9,11,21] contain similar components.



access validation in segmented machines and the software checks
performed when a file is opened.

Because computer systems are dynamic, some means to change
the protection state must exist. For this purpose the security
kernel contains protection primitives such as Grant a capability,
Allocate memory, Create an object or Load a program status word.

OPERATING SYSTEM PARTITIONS

The function of a secure operating system is to correctly
map components of the external model into the security kernel.
In agreement with others [10,13,14,15,16,22] we feel that it is
important that the system's protection mechanisms are collected
together in a kernel rather than distributed throughout the O0S.
In this way, the kernel can be used to provide protection in the
rest of the system and the implementation of the kernel itself
can hopefully be certified since it is small. Because a typical
OS is large and complex,- proving it to be correct is beyond our
forseeable ability. Therefore it appears necessary to partition
the 0S, by functions, into smaller components; we can then define
the requirements for security and develop provable assertions for
each partition (as long as they are disjoint with respect to
security). We now expand upon the nature of the three partitions
which we feel are appropriate; interface functions, user-invoked
services, and background services. Their role in mapping external
objects into kernel objects is summarized in Figure 1. ’

‘Through job control or command language statements, the
external user interacts with four basic interface processes of an
0S. The first is the computation which identifies users upon
receipt of a job card or log-on statement; it has the crucial
role of associating a user with his and only his internally stored
capabilities. Second is the job manager or terminal listener which
translates command language statements and invokes the requested
tasks. The third component, at least in most batch systems, is
the spooling subsystem which transfers user information into in-
ternal information structures. And the fourth component is the
set of language translators which produce executable code from
user source code and translate user rights into kernel capabllltles.
The relevance of these interface processes to security is that each
maps some part of the external, user model into internal objects
and this mapping must be performed in a way which enables user
securlty to be preserved.

Once a user process (task) has been initiated, it generally
invokes a variety of operating system services. These services
exist to make it easier for users to compute and to enable them
3

Language translators are not really part of an operating system
but are included here< because their translation role is crucial
to security; this point will be developed further.



to cooperate; examples. are the file system, page managers and
inter-process communication primitives. This type of operating
system computation is either explicitly called (e.g. file access)
or implicitly invoked (e.g. a page fault) by an executing process
and is invariably passed some user information. For security,

we want to insure that these services do not erroneously or
maliciously divulge the information of their caller, except by
his explicit request. -

The final group of operating system computations we call
background services. This class includes system measurement,
storage coallescing, and checkpoint generation. These services
operate in the background in an attempt to keep the system running
reliably and.efficiently. They are not directly invoked by users
but have an existence of their own. For security, we want to
insure that they cannot possibly give information of one user to
another.

DEFINITION OF SECURITY

In terms of our model, we can now define our view of
security. First, an operating system is secure if each of its
users is secure. A user is in turn secure if his information
is secure. Let U be the set of users of a system, let each
user, U., have sets of data, denoted Di," which he wishes to
protect; and, finally, let R be the set of rights which Uj submits
to the system.' With this notation, information security is defined
as follows:

Definition: Information Di 5 of Ui is secure if usér Uk can take

’
- . . , € R.
action a on Di if and only if (bk,Di,j,a) R

’

Our intent here is not to present a rigorous definition of security
but only to use enough precision to give a clear idea of what we
mean; a formal definition is contained in [4] and relevant Air
Force work is referenced in (4] and [19]. In words, this defini-
tion says that no user, Ux, should be able to operate on the
information of another user, U;, unless Uj explicitly says that

Uy has permission. To verify that an operating system is secure,
we must prove that no component provides a means by which this
definition can be violated.

INTERFACE PRINCIPLES

To insure that the user interface processes are secure,
verifying three principles appears sufficient: identification,
task initiation, and program translation. It is quite obviously
imperative that no user be able to masquerade as another for
otherwise the masquerader could exercise rights not given to him.
This necessitates our first principle.

"
Recall that each right names a user, some information and an
action allowed on the information.



Identification: Each user, Ui’ of the 0S, is identified uniquely
whenever he signs on.

Numerous researchers have examined this problem and advanced
possible solutions; for example, see [7,17]. If the code and
data of the identification process are isolated from all other
computations, then it currently is p0551ble to certify a high
degree of effectiveness.

The second crucial operation performed by interface pro-
cesses is commané@ language translation and the resulting initiation
of user requested tasks (job-steps) such as COMPILE or EXECUTE.

It is imperative that tasks initiated for one user do not have
capabilities for objects of any other user; in short, the initial
environment of a user task should be correct. For example, a
spoolin task accessing a card reader containing information of U,
should only have access to a drum (disk) file if it belongs to U:.
In addition, any rights retrieved by the task initiator (such as
for a program or data file) should in fact belong to the user.
"This leads to our second principle.

Initiation: If task T is initiated on behalf of Ui’ then T has
no access to external or stored user information Dj " unless
.y o . ’
j = 1i.

Verification of this principle should be fairly easy because it only
entails looking at the domain of the initiated task (i.e. his
capabilities) and the implementation of user data.

The final critical interface operation is the translation
of user source programs. Here our concern is twofold: first, the
translator should not give away a copy of the translated program
and, second, he must correctly translate any rights in the program.
This problem has not, to our knowledge, been addressed but it seems
crucial to security. For if a translated program contains an in-
struction to, say, grant access to a file and the user did not
specify that he wanted access granted, then his security has been
violated. We summarize this principle as follows:

Program Translation: Suppose translator T is given a source
program Si of user Ui and produces object program Oi.

Then no Uk, k # i, has a right (capability) to access Oi
and all rights and right manipulations in Si have been

correctly translated into capabilities and protection
primitives by T.

Adherence to this principle does not require that T be completely
correct, only that it translate rights correctly. Taken together,
the identification, initiation, and translation principles should
insure that the 1nterface processes do not violate security.



KERNEL PRINCIPLES

Many protection mechanisms with varying degrees of "robustness"
or "completeness" have been proposed [2,6,9,18,20,21,22,23}. Regard-
less of the level cf sophistication, however, we feel that three
principles must minimally be adhered to if the kernel is to be
adequate for security. First, the mechanism must be logically
correct in that every action by every computation, whether user or
operating system, is enforced and all changes to the protection
state used by the enforcement mechanism are controlled.

Enforcement: An action a on object O by actor A is allowed if
and only if there exists a capability (0,a) in the domain
of A when a is attempted.

Integrity: Execution of a kernel protection primitive is the only
way in which the protection state changes.

Subject to verification of the implementation, several existing

protection mechanisms satisfy both of these principles [2,21,23].
Another basic property which a kernel should have is that

no actor can give another more capabilities than he himself

has. 1In addition, it has been recognized that explicit authori-

zation should be required to Grant (copy) a capability [1,2,8,9,11,

21,23]). Without these properties, the kernel would hardly provide

tools for ‘controlled information sharing. We summarize this property

by the following principle: :

Propogation: Suppose actor A has a capability (O, (a,c)) where O
is an object, a is the access A has to O and ¢ is the control
A has over O. Then A can grant (copy) a capability (O, (a',c'))
to another actor only if:

(1) a' is a subset of a and c¢' is a subset of ¢, and
(2) "grant" ("copy") control is one of the attributes 'in c.

As with integrity and enforcement, many mechanisms satisfy this
principle [2,21,23].

SERVICE PRINCIPLES

Having examined security reguirements for interface processes
and the protection kernel, it remains to have some way of insuring
that user-invecked and background services are secure. For this
purpose, confinement of user invoked services and isolation of
background services appears to be sufficient. A service is a set
of connected actors (e.g. nested procedures or ccmmunicating
processes) which performs a computation on the parameters passed
by its customer. The file access procedures (or processes) in a
file system are one example of a service; another is the page swapping
procedures invokxed on a page fault in a paged system. An actor in
a service is engaged by the customer if he was called (sent a message)
either by the customer or by an actor engaged by the customer.



wWhen an interface process requests operating system services
on behalf of a user or when the user himself invokes services,
it is important that the actors engaged by the user are confined.
A service is totally confined if it is necessary to have
authorizing capabilities in the parameters passed by the customer
for any engagod actor to transmit information to another actor
not in the service [1,3]. A confined service cannot therefore
give information of one user to another. For the security of
user invoked services, we want the following principle to hold.

Confinement: Any operating system service invoked by a user or
on his behalf by a task initiator is confined.

This problem has been examined elsewhere [1,3,5,12] and a
workable solution has been proposed which determines if a service
is confined by examining its capabilities [3]. Since a large
proportion of any OS is user-invoked services, this technique
should greatly help in certifying security.

The final principle we advocate relates to background
services performing system wide functions such as performance
measurement.

Isolation: Every actor in an OS who is not engaged by an actor
associated with a user is isolated from the information
of every user.

Isolation has also been examined elsewhere [1,8,9] and requires.
that an actor not be able to examine or alter memory containing
user information. An isolated actor can, however, be allowed
to move information about or keep reference counts provided

he does not change any capabilities or object mappings in an .
insecure way; two kernel primitives for manipulating memory

and mappings without destroying isolation have been proposed
[1]. Wwhile we advocate isolating background services from user
information, it is not necessary to do so for security. What
is required is to prove that these services do not divulge

any information they examine; this condition is harder to prove
than isolation, however.

CONCLUSION

We have attempted to present a workable definition of
security and an approach to its verification. Some of the
proposed principles have been examined and provable conditions
have resulted. The approach of partitioning an operating system
into small parts which can either be proven to be correct or
at least can be proven to be secure without examining their code,
in our opinion, holds the key to constructing a truly secure
system. Much work remains to be done, however, to bring this
hope to fruition. In particular, the concepts presented here
need to be formalized and applied.



BIBLIOGRAPHY

1.

10.

11.

12.

13.

14.

Andrews, G.R., COPS - A protection mechanism for computer
systems. Tech. Report 74-07-12 (Ph.D. Thesis), Computer
Science Group, University of Washington, 1974.

Andrews, G.R., COPS - A mechanism for computer protection.
Proc. Int. Workshop on Protection, IRIA, Rocquencourt, -
France, August 1974, 5-25.

Andrews, G.R., Concepts and conditions for confinement.
Tech. Report, Dept. of Computer Science, Cornell University,
1975. In preparation.

Burke, E.L., Synthesis of a software security system. Proc.
ACM 1974 Annual Conference, San Diego, 648-658.

Denning, D.E., Denning, P.J. and Graham, G.S., Selectively
confined subsystems. Proc. Int. Workshop on Protection,
IRIA, Rocquencourt, France, August 1974, 55-61.

Dennis, J.B. and Van Horn, E.C., Programming semantics for
multiprogrammed computations. Comm. ACM 9, 3 (March 1966),
143-155. '

Evans, A., Kantrowitz, W. and Weiss, E., A user authentication
scheme not requiring secrecy in the computer. Comm. ACM 17,
8 (August 1974), 437-442.

Graham, G.S. and Denning, P.J., Protection - principles and
practice. AFIPS Conf Proc. 40 (1972 SJCC), 417-429.°

Jones, A.K., Protection in programmed systems. Ph.D. Thesis,
Dept. of Computer Science, Carnegie-Mellon University,
June 1973.

Jones, A.K. and Wulf, W.A., Towards the design of secure
systems. Proc. Int. Conf. on Protection, IRIA,
Rocquencourt, France, August 1974, 121-135.

Lampson, B.W., Protection. Proc. Fifth Princeton Conf. on
Info. Sciences and Systems (March 1971), 437-443. Reprinted
In Operating Systems Review 8, l(Jan. 1974), 18-24.

Lampson, B.W., A note on the confinement problem. Comm. ACM 16,
10 (Oct. 1973), 613-615.

Lipner, S.B. et. al., A panel session - security kernels.
AFIPS Conf. Proc. 43 (1974 NCC), 973-980.

Neumann, P.G. et. al., On the design of a provably secure
operating system. Proc. Int. Workshop on Protection,
IRIA, Rocquencourt, France, August 1974, 161-175.




15.

16.

17.

18.

19.

20.

21.

22,

- 23.

10

Popek, G.J. and Kline, C.S., Verifiable secure operating
system software. AFIPS Conf. Proc. 43 (1974 NCC),

145-151.

Popek, G.J. and Kline,
protection system.
IRIA, Rocquencourt,

C.S., The design of a verified
Proc. Int. Workshop on Protection,
France, August 1974, 183-196.

Purdy, G.B., A high security log-in procedure. Comm. ACM 17,
8 (August 1974), 442-445.

Saltzer, J.H., Protection and the control of information

sharing in Multics.

Comm. ACHM 17, 7(July 1974), 388-402.

Saltzer, J.H., Ongoing research and development on infor-

mation protection.
(July 1974), 8-24.

Operating Systems Review 8, 3

Schroeder, M.D. and Saltzer, J.H., A hardware architecture
.for implementing protection rings. Comm. ACM. 15, 3

(V

March 1972), 157-170.

Spier, M.J., A model.implementation for protective domains.
Int. Journal of Computer and Infor. Sciences 2, 3

(Sept. 1973), 201-229.

Spier, M.J., Hastings,

mental implementati

T.N. and Cutler, D.N., An experi-
on of the kernel/domain architecture.

Proc. 4th Symposium on Operating System Principles,

Yorktown Heights, N.Y., October 1973. Reprinted in
Operating Systems Review 7, 4 (October 1973), 8-21.

Wulf, W.A. et. al., Hydra: the -kernel of a multiprocessor -

operating system.

Comm. ACM 17, 6(June 1974), 337-345.



13,

Figure 1

OPERATING SYSTEM PARTITIONS AND FLOW

User Job control Source Input
name statements Program Data
A V2
USER JOB MANAGEMENT | TRANSLATORS
IDENTIFICATION AND INITIATION| ‘

BACKGROUND
SERVICES

EXECUTING
USER

PROCESS

SERVICES

USER-INVOKED

All of these partitions are implemented by using the

SECURITY KERNEL.



	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif

