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This thesis investigates two systems in chip-based nonlinear optical micro-

resonators.

First is the generation of broadband frequency combs through parametric

four-wave mixing and the associated phenomenon of cavity soliton formation

in micro-resonators. We begin by investigating the relationship between cavity

soliton based modelocking and traditional saturable absorber based modelock-

ing. We find that a saturable absorber based modelocked laser with stimulated

emission gain on only one cavity mode is dynamically equivalent to a paramet-

rically driven cavity soliton comb. We also study the phase dynamics of the cav-

ity soliton formation process for which we derive a set of phase equations from

the governing Lugiato-Lefever equation which exhibit synchronization mech-

anisms akin to the Kuramoto model for coupled oscillators. These equations

predict that phase anti-symmetrization preceeds phase synchronization in the

cavity soliton formation process and explains the origin of the pump phase off-

set seen in parametrically driven cavity solitons. We then extend the concept

of synchronization to systems of multiple cavity soliton frequency combs. We

show that cavity solitons in evanescently coupled micro-resonators can syn-

chronize to one another, generating synchronized pulses in the time domain

and frequency locked combs lines in the spectral domain.

Second is the demonstration of all-optical switching using nonlinear loss in



micro-resonators. We achieve this through two means. The first is through the

stimulated Raman response of silicon. Here we fabricate a silicon micro-ring

that is co-resonant with both a pump field and the anti-Stokes field of the sili-

con material. The presence of the pump field stimulates optical loss at the anti-

Stokes field, modulating the cavity resonance across all three regimes of cou-

pling and demonstrating a single resonance all-optical switch. Secondly we use

the two-photon absorption process of highly nonlinear organic dye molecules

embedded in a polymer host. We achieve nonlinear loss induced decoupling

of a cavity resonance of more than 7 dB and demonstrate the on-chip nonlinear

loss of 18 cm/GW of the organic polymer.
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CHAPTER 1

INTRODUCTION

Optical resonators enable the modern telecommunications infrastructure and

have key applications in sensing and detection[3], precision time-keeping [4, 5],

and defense [5, 6]. Recently we have witnessed the miniaturization of opti-

cal resonators through the power of nanofabrication, leading to new dynamics,

and enabling new architectures and applications [8, 9]. The reduced volume

of the devices enables nonlinear effects at much lower pump powers than pos-

sible in bulk resonators enabling a wide range of new scientific and techno-

logical applications [10]. My doctoral research can be divided into two major

parts, the first is the development of nonlinear loss-based optical switching in

micro-resonators and the second is the investigation of phase synchronization

and cavity soliton dynamics in micro-resonator frequency combs. With the help

of hindsight it seems appropriate to present the latter part first and the former

part second.

1.1 How I became involved with micro-resonator frequency

combs

In 2011 our group showed that broadband phase-locked frequency combs states

appeared to exist stably inside silicon nitride micro-rings that were parametri-

cally driven by a narrow linewidth and phase stable pump field [10]. However

single pulse states could not be generated repeatably. It is well known that

single pulses can be generated in modelocked lasers which require a saturable
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absorption [11] but it was not clear how modelocked pulses could be generated

in a parametric oscillator without a saturable absorber.

I became personally interested in combs during this time and, inspired by

saturable absorber modelocked laser, I proposed that we introduce a saturable

absorber (graphene evanescently coupled to the cavity) to induce modelock-

ing in the microresonator combs. Around the same time our research group,

and later other groups, demonstrated modelocking in silicon nitride microres-

onators without a saturable absorber [12, 13]. Though at first a surprise, it was

quickly realized that this self-stable pulsing behavior was made possible by the

formation of cavity solitons, a coherently driven localized structure akin to the

classic nonlinear Schrodinger soliton but generalized to include gain and loss.

Cavity solitons had already been observed in parametrically driven fiber-cavity

systems [14] and now in micro-resonators.

However, many facets of the comb dynamics remained unclear such as 1)

the relation between type I (natural mode spacing) and type II (multiple mode

spacing) combs, 2) the role of chaotics states in soliton formation, 3) the obser-

vation of a pump phase offset and of phase steps between various parts of the

comb spectra and 4) the formation dynamics of cavity solitons. In addition there

was the existing literature on cavity solitons which predicted that many cavity

solitons can co-exist in the same cavity and have complex interactions with each

other, effects which had not been considered in microresonators.

Between 2011 and the spring 2013 I was not actively involved in frequency

comb research but kept an interested ear open to the exciting developments in

this field. My curiosity was piqued again in March 2013 when I came across

a seemingly unrelated paper on the synchronization dynamics of power-grid

networks wherein a network of power stations with non-identical oscillations
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of their A.C. voltages would spontaneously phase synchronized for a specific

range of system parameters. It turns out that various types systems of coupled

oscillator ranging from populations of fireflies to arrays of coupled Josephson

junctions to neural networks and chemical oscillators [15, 16] all exhibited simi-

lar synchronization dynamics and which are all described by a set of equations

known as the Kuramoto model. In all these systems oscillators with similar but

unequal resonant frequencies could phase-lock to one another in a fairly abrupt

fashion if their mutual coupling was stronger than a certain threshold. I could

not fail to notice the profound similarities between the phase-locking phenom-

ena occurring in the combs and those described in other systems throughout

nature.

With the encouragement and guidance of my advisor Prof. Alexander Gaeta

and help from Prof. Steven Strogatz, Michael Lamont and Isabel Kloumann I

proceeded on an analytical investigation of the phase dynamics of the mode-

locking process. This led to the derivation of a set of phase equations from the

Lugiato-Lefever equation which provided a link between synchronization the-

ory and cavity soliton modelocking, among other interesting results. As the

synchronization work came to fruition two new ideas arose, the first regarding

the relation between saturable absorber modelocking in lasers and cavity soli-

ton modelocking in OPOs, and the second regarding the interaction and syn-

chronization of multiple cavity soliton frequency combs. These two ideas have

become two additional chapters of this thesis.

I’m very proud and humbled to present this work as the bulk of my the-

sis, especially as it was not my originally assigned area of research. Rather

it came about through a chance encounter, some seemingly wild conjectures,

timely guidance and a good bit of persistence.
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(a) (b) (c)

Figure 1.1: Conceptual schematic of (a) a standing wave optical cavity and
(b) a travelling wave optical cavity. (c) a waveguide travelling
wave cavity. The mirrors/waveguide impose a boundary con-
dition on the electro-magnetic field for beam paths along the
optical axis of the cavity allowing only wavelengths which are
integer fractions of the cavity length to propagate.

1.2 Optical cavities and resonators

An optical resonator is formed by highly reflective boundary conditions along

an optically confined axis which discretizes the modes of the eletromagnetic

field inside the cavity volume. These boundary conditions require that the elec-

tric field parallel to the boundary and the magnetic field perpendicular to the

boundary be null. Generally, this boundary condition can have an arbitrary

geometry, though technologically interesting cavities typically have geometries

that are mathematically tractable such as rectangular boxes, cylinders, spheres

or toroids [7]. We are specifically interested in cavities that are single mode in

the two transverse directions and have a periodic boundary condition in the

longitudinal direction resulting in a comb of travelling wave modes (Fig.1.1),

which includes all waveguide and fiber cavities (Fig.1.1c). The transverse spa-

tial mode profiles have been solved for many waveguide geometries of interest

and will not be developed in this work [21].
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Figure 1.2: Ring-resonator cavity coupled to a bus waveguide. The cou-
pling region can be considered an asymmetric beam splitter
with reflection and transmission coefficients r and t. (inset-
top) Through-port transmission reveals cavity resonances with
a free spectral range (FSR) related to the cavity diameter D
and resonance linewidth related to the intra-cavity loss. (inset-
bottom) The on-resonance transmission shows that the trans-
mission of a resonant field can be tuned between full extinction
to full transmission by adjusting the intra-cavity loss

1.2.1 Micro-ring resonators

Micro-ring resonators are a type of toroidal waveguided travelling wave opti-

cal cavity with cavity lengths typically between 50 µm and 1 mm and guiding is

achieved through index contrast total internal reflection between the waveguide

material and the cladding material. Such micro-resonators have been applied to

modulators [22, 23], routers [24], optical delays [25, 26], detectors [27] and re-

cently to FWM based multiple-wavelength sources [28] and frequency combs

[10].

This type of microresonator has been demonstrate in a variety of material

platforms and all can be described by a general model defined by the cavity
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length L, the effective intra-cavity loss a(ω) and refractive index n(ω), and ex-

ternal coupling t. The through-port transmission spectra can be modelled by

considering a signal delivered through the bus waveguide to the cavity. The

coupling region can be modelled as an asymmetric beam splitter with field am-

plitude transmissivity t1 and reflectivity r1 = i

√

1 − t2
1
. Following the analysis

in [20] we obtain the normalized through-port intensity transmission for the

signal.

TN =
t2 − 2te−a(ω)L/2cos(φ(ω)) + e−a(ω)L

1 − 2te−a(ω)L/2cos(φ(ω)) + t2e−a(ω)L
, (1.1)

where a(ω) is the loss coefficient and φ(ω) = n(ω)ωL/c is round-trip phase, re-

spectively, for a cavity of length L, and n(ω) is the frequency dependent refrac-

tive index. Transmission on resonance (φ(ω) = m2π) can be solved from Eq.1.1

as a function of the waveguide coupling and the intrinsic resonator loss.

TN(ωres) =

[

t − α
1 − αt

]2

, (1.2)

where α = e−a(ω)L/2. We can see that the on-resonance transmission is related to

the difference of the intra-cavity loss (α) and the external coupling rate (t) and

can reach complete extinction when the two are exactly equal, which is referred

to as critical coupling. The on-resonance transmission is plotted in Fig.1.2(c).

The case when t < α is the undercoupled regime and t < α is the overcoupled

regime.

Furthermore the linewidth ∆ω of the resonance feature can be obtained by

solving for the full-width at half-max frequency via the cavity phase φ(ω) from

which we can express the cavity quality factor Q. The FSR is derived from

the cavity length and together with the linewidth we can express the finesse

F = FS R/∆ω of the cavity.
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Parameter symbol expression

linewidth ∆ω(ω) 2a(ω)

quality factor Q(ω) ω
2a(ω)

free spectral range FS R(ω) c
n(ω)L

finesse F(ω) c
2n(ω)a(ω)L

Due to dispersion and frequency dependent loss in the cavity all parameters

will also be frequency dependent. The nearly equidistant spacing of the cavity

resonances makes micro-resonators ideal for generation of frequency combs.

1.2.2 Materials and geometries for microresonators

Micro-ring resonators have been fabricated out a large variety of materials, from

silicon to lithium niobate [34, 29]. In this thesis we are mainly concerned with

material platforms that are capable of generating broadband frequency combs

through nonlinear wave-mixing. These include silica micro-toroids [30], silica

micro-rods [31], silicon nitride micro-rings [28], calcium fluoride (CaF2) and

magnesium fluoride (MgF2) micro-toroids [30, 32], diamond micro-rings [33]

and silicon micro-rings [34](Fig.1.3).

Figure 1.3 compares the major material platforms for frequency comb gener-

ation. Each system has particular strengths and weaknesses making each better

suited for certain applications. Most materials are compatible with operation in

the near-IR with CaF2, MgF2 and silicon having extended range into the mid-

IR [30, 32]. They fall into two categories based on size. The micro-rod systems

have significantly larger cavity size (∼1 mm) and smaller FSR (10’s GHz) than

the micro-ring and micro-toroid systems (∼100’s µm, 100’s GHz). CaF2, MgF2
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Figure 1.3: Overview of microresonator based frequency combs. Blue-
highlight text indicates devices with octave spanning band-
width, red-highlighted text indicates devices that operate in
the mid-IR. Of particular importance are those devices which
are capable of modelocking which include CaF2 micro-rods, sil-
ica micro-rods and silicon nitride microrings.

and silica have weaker nonlinear indices (∼1e-16 cm2/W) than the other mate-

rials but compensate for this with much higher Q factors. Fabrication time is

on the order of a day for most platforms with the notable exception that silica

micro-rods can be fabricated with CO2 laser thermal annealing in just minutes.

Coupling to micro-rod and micro-toroid systems are still performed with ta-

pered fiber which can not be considered monolithic. But this disadvantage can
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eventually be overcome with improved fabrication development and engineer-

ing. But currently only the micro-ring systems have fully integrated coupling

waveguides.

The platform with the largest generated bandwidths are silica micro-toroids

and silicon nitride micro-rings, both having demonstrated octave-spanning

comb spectra. Silicon nitride micro-rings, along with the fluoride micro-rods

have also demonstrated soliton mode-locking, which is scientifically and tech-

nologically important. Silicon nitride’s dual capacity for octave spanning spec-

tra and soliton modelocking gives it an arguable lead over the other platforms.

However, a notable advantage of the micro-rods is the much larger power-per-

mode which makes external amplification and spectral broadening more feasi-

ble in these systems [13].

1.3 Frequency comb generation

A comb of optical frequencies can be generated at the resonances of a microres-

onator through the nonlinear optical process of four-wave mixing (FWM). A

strong pump field initially generates frequency sidebands through the modula-

tional instability (a spontaneous degenerate four-wave mixing process) which

interact with the pump field and each other to generate yet more frequency side-

bands through nondegenerate four-wave mixing [36]. These FWM frequencies

will naturally emerge at the resonances of the cavity due to the cavity’s strong

enhancement of resonant frequencies and suppression of non-resonant wave-

lengths [28]. Due to the phase-matched nature of FWM the dispersion of the

cavity becomes very important to both the dynamics of the comb formation and

to its final bandwidth and stability [37].
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1.3.1 Nonlinear optical effects

Four-wave mixing and other nonlinear optical processes in dielectric material

arise from the anharmonic response of the bound electrons and is described by

the nonlinear polarization,

P = ǫ0

(

χ(1)E + χ(2)EE + χ(3)EEE + · · ·
)

, (1.3)

The coefficients χ( j) parametrizes the strength of the interaction proportional to

the jth order in the driving field E. The second-order interaction is the strongest

but exists only in non-centrosymmetric materials or geometries such as at sur-

faces. The largest universally present interaction is the third-order nonlinear

response represented by χ(3) known as the Kerr nonlinearity. The real part of

χ(3) is proportional to the nonlinear refractive index n2 = 3/8n0Re(χ(3)) while

the imaginary part is proportional to the two-photon absorption coefficient

α2 = 3ω0/4ncIm(χ(3)). The nonlinear parameter is γ = n2ω0/cAe f f where Ae f f

is the effective mode area.

Following the analysis detailed in [35] the basic dynamics of four-wave mix-

ing can be resolved from the third-order polarization by considering a field with

four frequencies ω1, ω2, ω3 and ω4, E = 1

2
x̂
∑4

j=1 E je
i(k jz−ω jt) + c.c.. The component

at ω4 can be expressed as,

P4 =
3ǫ0

4
χ(3)[|E4|2E4+(|E1|2+ |E2|2+ |E3|2)E)4+2E1E2E3eiθ++2E1E2E∗3eiθ−]+···, (1.4)

The first four terms in Eq.1.4 are responsible for the self-phase and cross-phase

modulation processes and are automatically phase-matched where as the last

two terms are the FWM terms whose efficiency depends very sensitively on

their respective phase-mismatch θ+ = (k1 + k2 + k3 − k4) + (ω1 + ω2 +ω3 − ω4) and

θ− = (k1+ k2− k3− k4)+ (ω1 +ω2−ω3−ω4). The highest efficiency occurs when the
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PD PND ND

Figure 1.4: The FWM process relevant to frequency combs generation.
The pump degenerate (PD) process annihilates two pump pho-
tons to generate two symmetrically sidebands. The pump non-
degenerate (PND) process annihilates one pump photon and
one sideband photon to generate two other sideband photons.
The nondegenerate process does not involve the pump and
annihilates two sideband photons and generates two different
sideband photons.

phase-mismatch is zero. The first FWM term, governed by θ+, is responsible for

frequency addition processes (ω4 = ω1 + ω2 + ω3) such as third-harmonic gener-

ation (ω1 = ω2 = ω3). In the photon picture this corresponds to the annihilation

of three photons at the pump wavelength and the creation of one photon at

the third-harmonic wavelength. The second term with a phase-mismatch of θ−

corresponds to the case where two photons are annihilated at the pump wave-

length and one photon each is generated at symmetric frequencies to either side

of the pump, which are referred to as the signal and idler. It is this latter process

that is responsible for the broadband frequency comb generation from a single

strong pump field.

Figure 1.4 shows the three types of FWM (along with their time reversed

processes) that are responsible for the generation of the parametric frequency

comb. The first type, labeled PD for pump-degenerate, involves the annihila-

tion of two pump photons and the creation of two sideband photons who’s en-

ergies add to twice the pump photon energy. As the name suggests, this process
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is degenerate in the pump. Second is the pump-nondegenerate and as the name

suggests involves the annihilation of one pump photon and one non-pump pho-

ton to create two photons at the energetically appropriate sidebands. The third

annihilates two non-pump photons to generate two other non-pump photons.

The phase-matched nature of FWM requires that the cavity waveguide have

anomalous dispersion (β2 < 0) for broadband frequency comb generation. It is

well know from fiber soliton theory that anomalous dispersion is required in

optical fibers to maintain solitons, also in modelocked laser anomalous disper-

sion is required for the stable existence of bright single pulse operation. In the

context of micro-ring resonators the waveguide material typically has normal

dispersion in the wavelength range of interest, but engineering of the waveg-

uide geometric dispersion is sufficient to compensate for normal dispersion of

the material and cause the total dispersion to be anomalous. In particular a

weakly anomalous dispersion results in the broadest frequency combs [37].

Figure 1.5 shows the conceptual schematic for the generation of frequency

combs in a micro-resonator. Experimentally the combs are generated by tun-

ing the pump field into the pump resonance from the blue detuned side of the

resonance. This simultaneously increases the intra-cavity pump power and de-

creases the pump detuning. As the intra-cavity pump power increases the first

process to occur is the PD-FWM process whereby the CW pump spontaneously

generates symmetric sidebands. In the time domain picture this process is re-

ferred to as the modulational instability because it is equivalent to the instabil-

ity of the CW field to the exponential growth of periodic modulations. The gain

spectrum of modulational instability is given by:

g(Ω) = |β2Ω|
√

Ω
2
MI
/2 − Ω2. (1.5)
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where the peak MI gain occurs for ΩMI =
√

2γP0/|β0| =
√

2/|β0|Lnl, P0 is the

power of the CW field and Lnl = γP0 is the nonlinear length.From the expression

of ΩMI it can be seem that the peak of the MI gain depends on the balance be-

tween the phase shifts resulting from nonlinearity and dispersion. This balance

is also at the heart of pulse formation in parametrically driven frequency combs

and certain types of lasers.

The gain spectrum has the shape shown in the dotted gray curve in Figure

1.5(b) where the first sidebands are shown to emerge at the peak of the modu-

lational instability gain. In the temporal domain this leads to modulation of the

CW with a period equivalent to the number of FSRs between the pump and the

first sidebands (Fig.1.5(c)). The new sidebands then mix with the pump through

the PND process to generate sidebands at 2xΩMI . The addition of wider spectral

components leads to a sharpening of the modulations into pulse-like features

(Fig.1.5(d,e)). This extended modulations are commonly called Turing patterns

due to their conceptual equivalence to patterns formed in chemical reactions

which Alan Turing investigated as the source of spotting and stripping on ani-

mal coats [38].

As the pump is tuned yet further in the sideband closer to the main MI peaks

are generated, resulting in mini-combs centered around the main MI peaks.

Each mini-comb has internal phase matching of its oscillating modes but are

not necessarily phase-matched to the modes of adjacent mini-comb. This re-

sults in spectral and phase conflict as the mini-combs merge, leading to chaotic

behavior (Fig.1.5(f,g)) [39, 40, 41].
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1.3.2 Cavity soliton formation

The spectral conflict and the associated spatiotemporal chaos can be resolved if

all the comb lines are constrained to have a fixed phase relationship and equidis-

tant frequency separations. This state corresponds to the cavity soliton regime

(Fig.1.5(h,i)). Cavity solitons in parametric microresonators were first observed

by tuning the pump field further into resonance, past the chaotic stage. Foster,

Okawachi, Saha and co-workers first achieved this in Si3N4 micro-rings where

they observed a sudden reshaping of the spectral profile accompanied by a drop

in the RF noise of the optical intensity [10, 39, 12]. In the temporal domain they

measured 200 fs pulses. Further work by Coen and co-workers [42] and Herr

and co-workers [13] confirm that this was indeed cavity soliton formation.

In all cases the cavity solitons could not be directly accessed by tuning the

pump power and detuning to the values appropriate for supporting cavity soli-

tons [39, 12, 13]. The comb had to pass through a chaotic stage before cavity

solitons could be observed [40]. This has recently been linked to the subcritical

nature of cavity solitons [46, 43]. The pump powers that stably sustain cavity

solitons are below the normal oscillation threshold and unable to generate cav-

ity solitons directly out of the background fluctuations. Thus the system either

requires seeding of the soliton formation or passage through a high intensity

stage out which a pulse can be carved. The region of stability for subcritical

structures greatly expands for system that exhibits bistability at the oscillation

threshold [43]. This correspond to a finite blue detuning of the pump field from

the cavity resonance corresponding to,

2σ

∆ω
>
√

3. (1.6)
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where σ is the frequency detuning of the pump field from the center of the cav-

ity resonance and ∆ω is the linewidth of the resonance.

Conceptually, cavity solitons are disspative structures that arise from the bal-

ance of nonlinearity and dispersion on the one hand and between gain and loss

on the other. They are similar to conservative solitons in that they require the

balance of nonlinearity and dispersion, but unlike conservative solitons which

have a continuous family of solutions for given values of nonlinearity and dis-

persion, the additional balance of gain and loss results in a collection of fixed

point solution which does not depend microscopically on the initial conditions.

Whereas conservative solitons are solutions to integrable equations with ana-

lytic solutions, dissipative solitons are solutions of an non-integrable equation

without an exact analytical form [44].

Specifically, cavity solitons are the parametrically driven subclass of dissipa-

tive solitons which means that the pump drives the system coherently and the

system is sensitive to both the amplitude and phase of the pump field. Thus cav-

ity solitons are a manifestion of an optical parametric oscillator whereas dissi-

pative solitons driven by incoherent pumps, such as stimulated emission, arise

in modelocked lasers. Furthermore, the cavity solitons observed in paramet-

ric microresonators are temporal cavity solitons since they are one-dimensional

structures in the time domain whereas spatial cavity solitons which have trans-

verse degrees of freedom.

The framework of dissipative structures along with bifurcation theory and

stability analysis has elucidated fruitful paths for the design of laser and OPO

cavities that operate in various regimes of interest, ranging from regimes that

optimize stability or power of a single circulating pulse, regimes which exhibit

multi-pulse interaction and bound states and regimes which exhibit spatiotem-
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poral chaos [45]. Often all three categories of phenomena can be achieved

in the same cavity design by tuning the pump power and frequency [46, 43].

Broadly speaking, dissipative structures are a universal concept having mani-

festations in biology, chemistry, physics, hydrodynamics, ecological and social

systems[44]. These ideas were given a thermodynamic framework through the

pioneering work of Ilya Prigogine on self-organization in systems far from equi-

librium where he showed that the internal entropy of a system can decreased or

equilibrated by a constant flow of energy in the system [47].

Cavity solitons were first observed in the spatial domain as localized struc-

tures in planar optical cavities [48]. In this context they were CW beams of

light where the intra-cavity nonlinearity balanced diffraction. Temporal cavity

solitons were first observed in a coherently driven fiber cavity by Leo and co-

workers [14]. In addition to demonstrating isolated cavity solitons they were

able to write and erase individual cavity solitons with an addressing laser and

demonstrate the cavity as an optical buffer for 45,000 bits operating at 25 Gbits

rate.

1.3.3 The Lugiato-Lefever equation

At this point its helpful to integrate all the parameters of the system (Ein, β2,

σ, and γ) into an equation of motion that governs the dynamics of the system.

Here we use A instead of E to represent the field,

Tr

∂A

∂t
= Ain − [

α

2
+ iδo]A + iL

[

3
∑

k≥2

βk

k!

(

i
∂

∂τ

)k

+ γ|A|2
]

A. (1.7)

and α = ∆ω/FS R is the loss coefficient, δ = σ/FS R represented the pump de-

tuning, L is the cavity length and Tr = 1/FS R is the cavity round trip time. The
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sum on βk represents various orders of dispersion.

This equation was first developed by Lugiato and Lefever to describe de-

localized transverse pattern formation in parametrically driven cavities and

is commonly called the Lugiato Lefever equation (LLE)[49]. Evidence that

parametrically driven dissipative solitons (i.e. cavity solitons) could be sus-

tained in such a cavity without a saturable absorber was fully worked out by

Barashenkov and Smirnov [50]. In the context of microresonators a detailed

analysis has been done by Godey [46]. It is similar to the nonlinear Schrödinger

equation (NLSE) in that it describes the time evolution of the field envelope with

effects from chromatic dispersion (βk) and the Kerr nonlinearity (γ). Unlike the

NLSE it has both gain and loss which makes it a dissipative system thus nonin-

tegrable and without analytic solutions.

Nevertheless, the equation can be accurately and efficiently solved using a

split-step Fourier method as described in [35]. The method assumes that on

a short enough time scale the nonlinearity and dispersion effects are separa-

ble. This means they can be separately applied in the temporal and spectral

domains, respectively, with an acceptable upper bound on the error from the

true evolution.

D̂ =
1

Trt

(

iL

2
β2

∂2

∂T 2
− α

2
− iδo + Ain

)

, (1.8)

N̂ =
iγ

Trt

|A|2, (1.9)

A(t + dt, τ) = eD̂dt/2eN̂dteD̂dt/2A(t, τ), (1.10)

where dt is typically on the order of Trt. In the above implementation the dis-

persion operator has been symmetrically applied half way before and after the

nonlinear operator. This allows the error to be reduced to third-order in the

step size dt. This method has been extensively used throughout laser physics

and nonlinear dynamics and recently implemented in microresonators combs
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by [42, 40].

1.4 Thesis outline

This thesis focuses on three facets of the cavity soliton phenomenon in micro-

resonators and on two implementations of nonlinear loss in all-optical switch-

ing using micro-resonators.

In chapter 2 we investigate the relationship between cavity soliton based

modelocking and traditional saturable absorber based modelocking. The two

types of systems have been largely studied independently of each other and

understood through separate frameworks. We bridge this gap by numerically

modelling a silicon nitride microresonator with a strong Kerr nonlinearity sim-

ilar to the one described in [40, 39] driven by a narrowband laser gain rather

than a coherent field. We vary the linewidth of this laser gain and observe the

regimes in which solitonic pulses can be sustained. In particular we show that

as the gain bandwidth is reduced below the modulational instability bandwidth

that the systems enters into a modelocking regime with strong similarities to the

cavity soliton regime of a parametrically driven system.

In chapter 3 we investigate the phase dynamics of the cavity soliton for-

mation process. Much attention has been paid to the initial formation of the

frequency comb, the origin of the Turing patterns, chaos, and the final stable

cavity soliton state. However, there is little understanding of the dynamics as

the system transitions into the soliton state and how various FWM process con-

tribute to this transition. To achieve this goal we focus on the spectral phase.

We find that a set of modal phase equations can be derived from the LLE that
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are amenable to an order parameter formulation akin to the Kuramoto synchro-

nization model of coupled oscillators. These equations provide an intuitive ex-

plaination for the pump phase offset observed in cavity solitons and also pre-

dict the dominance of PD- and PND-FWM processes in cavity soliton formation.

Specifically the PD-FWM process has the effect of anti-symmetrizing the modal

phases which allows the PND-FWM process to synchronize the modal phases

into the cavity soliton state.

In chapter 4 We extend the ideas of synchronization to systems of multi-

ple cavity soliton frequency combs. We find that soliton in weakly coupled mi-

croresonators can synchronize with each other to produced synchronized pulses

in the time domain and phase-locked comb lines in the frequency domain. We

find that the solitons attract each other with dynamics similar to the attraction

of multiple solitons in the same cavity. We develop protocols for highly re-

peatable synchronization of multiple cavities and we test the robustness of the

synchronization to a variety of perturbations. Lastly, we demonstrate interac-

tions between multi-soliton state in two cavities and extend the synchronization

protocols to systems of more than two cavities.

In chapters 5 and 6 I describe a novel approach to all-optical switching and

routing using induced loss in an optical resonator towards the realization of a

wavelength-selective reconfigurable (all-)optical add-drop multiplexer. The ra-

tionale is drawn from the fact that the on-resonance transmission of an optical

cavity (Eq.1.2) depends sensitively on the balance between the evanescent cou-

pling rate and the intra-cavity loss and can be tuned between full extinction to

full transmission by tuning the intra-cavity loss. This approach is conceptually

equivalent to the Zeno effect observed in atomic two-level systems wherein re-

peated measurement or decoherence can inhibit or enhance the transition rate
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between levels depending on the frequency of the measurement or strength of

decoherence. The traditional, and extensively studied, approach for active con-

trol of semiconductor micro-rings is by a refractive index mechanism whereas

the loss-based approach has received very little attention. Additionally, the re-

fractive approach is inherently broadband due to the broadband nature of both

the free-carrier refraction and the Kerr refraction whereas its fairly straight for-

ward to generate narrowband optical loss. Chapter 5 describes the implemen-

tation of Zeno switching using stimulated Raman loss in silicon micro-rings

and chapter 6 describes the implementation using two-photon absorption in

organic-silicon hybrid micro-rings.

Appendix part B provides a detailed derivation of the parametric synchro-

nization equations described in chapter 3 from the Lugiato-Lefever equation.
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CHAPTER 2

MODELOCKING REGIMES AND CAVITY SOLITON FORMATION IS

LASER-GAIN DRIVEN MICRORESONATOR FREQUENCY COMBS

In this chapter our purpose is to understand the relation between saturable ab-

sorber based modelocking in lasers and cavity soliton based modelocking in

parametric oscillators. In the introduction we have discussed the origins of cav-

ity solitons in parametrically driven cavities. Below we briefly discuss the his-

torical origins and understanding of saturable absorber based laser modelock-

ing followed by our investigation of a saturable absorber based micro-resonator

laser. We find that as the laser (stimulated emission) gain bandwidth is tuned

to the width of a single resonance the system generates continues to generate

a stable modelocked pulse where in the single mode acts as pump for the rest

of pulse spectra in close correspondence to parametrically driven cavity soliton

systems.

2.1 Modelocking and dissipative solitons in lasers

Modelocking of lasers has an extensive history with the first demonstrations in

ruby and He-Ne lasers in the early 1960s [51]. Since then it has been demon-

strated in various types of lasers including dye lasers, solid state lasers, semi-

conductor lasers and fiber lasers. Modelocking in each type of laser have devel-

oped into full fledged achieving ever shorter and stronger modelocked pulses.

The chord that unifies laser modelocking is the necessity for a intra-cavity loss

modulator to prefer the high intensity pulse mode over the low-intensity CW

mode [11].
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(a) (b) (c)

slow saturable absorber

w/o gain saturation

slow saturable absorber

with gain saturation
fast saturable absorber

Figure 2.1: Different types of modelocking schemes. (a) Slow saturable
absorbers recover slower than the pulse width of the system.
In such a system the the back of the pulse is prone to insta-
bilities unless soliton formation us strong enough to stabilize
the pulse. (b) Slow saturable absorbers can also be stabilized
by saturation of the gain which can shorten the net gain win-
dow. (c) Fast saturable absorbers respond instantaneously to
the pulse, in which Kerr effects must be considered.

The theory of saturable absorber based modelocking was worked out most

completely by Hermann Haus in a series of also now-classic papers [11]. He dis-

tinguished between the case of a slow saturable absorber wherein the response

time of the saturable absorption is slower than the pulse width and a fast sat-

urable absorber wherein the response time is faster than that of the pulse width.

In both cases the resulting pulse form is a hyperbolic secant. In the case of slow

SA the saturation of the gain compliments the saturation of the absorption to

produce a gain window narrower than could be achieved by saturation of the

absorption alone with the strict requirement that the absorber saturate more

than the gain in order for this gain window to exist.

In the case of the fast saturable absorber consideration must be made for

the effect of chromatic dispersion which introduces the possibility of chirp and

carrier-evelope offset and the Kerr effect which leads to self-phase modulation

and FWM. Haus pointed out that in the case of weak saturable absorption and

anomalous dispersion the solution is chirp-free and is soliton-like (i.e. an ap-

proximate solution of the nonlinear Schrödinger equation). This distinction is
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insightful as it makes clearer that the pulse-shaping process is not the saturable

absorber, rather it is the soliton-process, namely the balance between chromatic

dispersion and temporal self-phase modulation. In this case the role of the sat-

urable absorber is to stabilize the soliton against the growth of noise and of the

CW component.

However, this soliton can not be exactly a conservative soliton in the sense of

being the solution to the lossless and gainless nonlinear Schrödinger equation.

Similar to the cavity soliton, it is also the result of a two-dimensional balance be-

tween dispersion and nonlinearity along one axis and of gain and loss along the

second axis, thus also a dissipative soliton. The concept of dissipative solitons

in lasers has been extensively explored, especially in fiber lasers where various

dispersion, nonlinearity and gain regimes are easier to realize than in free space

cavities[45].

2.2 Cavity solitons in a laser gain driven system

The principle difference between dissipative soliton lasers and cavity soliton op-

tical parametric oscillators(OPOs) arises from their respective gain processes. In

cavity soliton OPOs the parametric pumping is a coherent process. The pump

field is one of the spectral lines and the new spectral lines generated through

FWM are phase-locked to the pump field and to each other. In dissipative soli-

ton lasers the spectral lines arise from a combination of stimulated emission,

which does not impose phase relations between the different spectral lines, and

from FWM, which does.

While it’s clear the two systems are similar it is not clear how the difference

in gain process leads to different dynamics in the two systems, how the two gain
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processes interact in systems that exhibit both and at what level the systems are

conceptually the same and at what point they part ways. Broadly speaking we

wish to understand how fundamental is their relationship by developing a uni-

fied theory that quantitatively describes both systems.

2.2.1 Laser-gain driven nonlinear Si3N4 micro-resonator

To that end we numerically investigate a laser-gain driven Si3N4 microresonator

with anomalous dispersion and strong Kerr nonlinearity similar to those stud-

ied by Levy, Foster, Saha, Okawachi and co-workers [28, 10, 12, 39]. When para-

metrically driven this system is capable of cavity soliton formation. Stimulated

emission gain could be realized in such a system through Erbium doped of sil-

icon nitride waveguides [52, 53]. To study the interaction between paramet-

ric gain and laser gain we tune the bandwidth of the gain between the typical

broadband gain of Erbium (FWHM = 30 nm @ 1550 nm), where a large number

of spectral lines experience gain, to an extremely narrowband gain (FWHM <

1 nm @ 1550 nm) where only a few spectral lines at the gain center experience

gain.

We find that such a system, in the presence of a sufficiently strong fast sat-

urable absorber, is capable of modelocking for a broad range of linewidths and

specifically for gain linewidths as narrow as one spectral mode. In such a case

the central mode, the only mode that sees laser gain, acts as a pump field for

generation of a cavity soliton-like pulse entirely through parametric gain with

no help from laser gain. In fact, we find that there are two distinct modelocking

regimes with respect to the gain bandwidth which are separated by the modu-

lational instability bandwidth of the nonlinear waveguide. We find that in such
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Figure 2.2: Schematic of laser-gain driven microresonator. Optical gain
could be realized through erbium-doped silicon nitride waveg-
uide, which can be optically pumped, or through integrated
photodiodes which can be electrically pumped. A saturable
absorber is necessary to stabilize the system against the growth
of the CW component. This system is conceptually similar
to erbium-fiber lasers but with a larger nonlinear parameter
which enhances the cavity soliton effects.

a system cavity solitons can be generated with bandwidths far exceeding the

laser gain bandwidth.

We use a dynamically symmetrized split-step Fourier method on the

Lugiato-Lefever equation to model the evolution of the device shown in Fig.2.1.

The waveguide material is doped with an optical gain medium and a saturable

absorber is evanescently coupled to the mode of the waveguide. For the gain

medium we use 5.2 cm/GW and 18 pJ for the gain coefficient and saturation

energy, respectively, which are similar to that of erbium doped fiber. For the

saturable absorption we use values of between as = 1.18-5.89 dB/cm, and 1

GW/cm2 for the saturation intensity. As a reference, a strip of evanescently

coupled single-layer graphene covering half of the top of the waveguide at a

height of 1.875 µm above the waveguide center corresponds to 1.12 dB/cm of
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Figure 2.3: Soliton spectra for varying gain bandwidths for saturable ab-
sorption of as = 5.89 dB/cm. (a) δG = 62 GHz, only the center
mode sees gain. a cavity soliton-like pulses is generated en-
tirely from FWM. The bandwidth is simialr to that of a true cav-
ity soliton including the strong central field. (b) δG = 1.12 THz,
more mode see gain and the central peak merges into the main
spectrum. (c) δG = 3.74 THz, The peak is completely smooth
and system is equivalent to a dissipative soliton laser.

saturable loss whereas 3 layers of graphene covering the entirely top surface

of the waveguide corresponds to 6.71 dB/cm of saturable loss. For the waveg-

uide itself we use the nonlinearity (n2 = 25 cm2/GW ) and dispersion (β2 = -62.9

ps2/km) of a Si3N4 microresonator similar to those demonstrated in [39] and

modelled in [40].

We assume a lorentzian gain profile and vary the FWHM between 62 GHz

(0.5 nm) and 3.74 THz (30 nm) and find the maximum pulse energy for which

the cavity can stably support a single soliton state. Figure 2.3 shows for as =

5.89 dB/cm the spectral power for gain bandwidths of 62 GHz, 1.12 GHz and

3.74 THz, which result in soliton-like spectra with -10 dB bandwidths of 11.7

THz, 16.3 THz, and 34.4 THz using pump powers of 0.438 W, 5.6 W, and 12.5 W,

respectively.

Closer inspection of the center of the spectrum reveals qualitatively differ-

ent behaviour of the central wavelength. In the case of 62 GHz gain bandwidth,

which is significantly narrower than the FSR of the cavity, only the central mode

see gains. Yet a soliton-like spectra is generated that matches that of a paramet-
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rically driven cavity soliton (PCS, dotted-red trace) at similar driving powers

(0.42-0.45 W for the parametric cavity soliton). The stable presence of the strong

central mode with has a close correspondence with the coherent pump of the

parametric cavity soliton system. We emphasize that the rest of the soliton spec-

trum is generated entirely through parametric four-wave mixing without help

from stimulated emission gain. We call this soliton a laser cavity soliton (LCS)

in contrast to both the parametric cavity soliton (PCS) found in purely para-

metrically driven cavities and to the laser dissipative soliton (LDS) which are

the modelocked pulse typically found in lasers where the stimulated emission

gain is significantly wider than the modulational instability bandwidth.

Both the parametric cavity soliton and the laser cavity soliton have a strong

central mode and the same spectral shape. The main deviation between the

LCS and PCS spectra is in the area near the pump where in the LCS the fre-

quencies near the central mode are depressed revealing two lobes. These lobes

correspond to the modulational instability (MI) sidebands of the strong central

mode. This suggests what modulational instability plays a dominant role in

sustaining the transfer of power from the central mode to the rest of the soliton

spectrum. As the gain bandwidth is increased more modes experiences gain

and the central peak merges with the main soliton spectrum. The frequencies

near the pump also fill in and the MI sidebands are no longer visible.

2.3 The OPO/CS- and laser/DS-like modelocking regimes

Figure 2.4 shows the maximum stable pulse energy as a function of the gain

bandwidth for several values of the saturable absorption (as = 1.18 dB/cm-red,
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Figure 2.4: Maximum stable pulse energy with respect to gain bandwidth
for several values of saturable absorption (as = 1.18 dB/cm-
red, 3.02 dB/cm-orange, 5.24 dB/cm-green, 5.57 dB/cm-cyan,
5.89 dB/cm-blue). Red region - cavity soliton like modelocking
regime where only a single or very few modes see gain thus
soliton mainly generated through FWM. Gray region - region
of instability where the system does not have a stable single
pulse solution. Red line indicates the modulational instabil-
ity bandwidth. Green region - transition region where more
modes see gain and the central modes merge into main pulse
spectrum. Blue region - laser-like modelocking regime where
pulse formation dynamics are equivalent to disspative soliton
formation.

3.02 dB/cm-orange, 5.24 dB/cm-green, 5.57 dB/cm-cyan, 5.89 dB/cm-blue).

For weaker values of saturable absorption (as ≤ 3.02 dB/cm) the system loses

stability for narrower gain bandwidths. But for stronger saturable absorptions

(as ≥ 5.24 dB/cm) the system is stable for gain bandwidths down to a single

mode.

However, even for stronger values of saturable absorptions the cavity is not

continuously stable over the entire range of bandwidths. The gray region of

Fig. 2.4 indicates a range of bandwidths for which the cavity has no stable so-

lution. Inspection of the spectral power profiles in Figure 2.3 suggests that the
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discontinuity is related to the interaction between the laser-gain spectra and the

modulational instability gain. When the bandwidth axis is plotted for the 1/e4

bandwidth (Fig. 2.4) the frequency corresponding to the peak of the modula-

tional instability bandwidth (red-dotted vertical line) falls within the region of

instability. This suggests that the instability region corresponds to a regime of

finite but weak gain-MI interaction. The cavity stabilizes again once the gain

spectra becomes wider than the MI bandwidth where the strong central mode

merges into the main pulse spectrum and the spectrum becomes identical to a

traditional laser modelocked pulse (Fig.2.3b,c).

These observations suggest the existence of two distinct modelocking

regimes and a transition region in between. In the regime where the gain is

much less than the MI bandwidth corresponds to cavity soliton-like modelock-

ing (red shaded region) wherein the pulse spectra is generated through optical

parametric oscillation (OPO). The regime where the gain bandwidths is wider

than the MI bandwidth corresponds to the more common laser modelocking

regime wherein dissipative solitons (DS) are generated predominantly through

stimulated emission (blue shaded region). In the OPO/CS-like regime the pulse

energy has a relatively flat dependence with the gain bandwidth. Beyond the

instability region the pulse energy increases rapidly with increasing gain band-

width in a transition region and flattens out again into a positive linear depen-

dence in the laser-like regime. The spectra in Figure 2.3 correspond to each of

the three regions.

Likewise, Figure 2.5 plots the spectral power in (a-e)-i, temporal pulse form

in (a-e)-ii and spectral phase in (a-e)-iii for in each of the three regions (OPO/CS

like-red, transition-green, laser/DS like-blue) for each value of saturable ab-

sorption (a-1.18 dB/cm, b-3.02 dB/cm, c-5.24 dB/cm, d-5.57 dB/cm, e-5.89
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Figure 2.5: Spectral power (a-e)-i, temporal power (a-e)-ii, and spectral
phase (a-e)-iii of pulses from the three regions (red, green, blue)
indicated in 2.4, for different values of saturable absorption
(as = (a) 1.18 dB/cm, (b) 3.02 dB/cm, (c) 5.24 dB/cm, (d) 5.57
dB/cm, (e) 5.89 dB/cm)

dB/cm). The phase plots are particular interesting because they show for nar-

row gain bandwidths a characteristic phase offset of the central mode that is

very similar to that of PCS’s. This phase offset is indicative of a detuning of

all populated spectral modes from the center of the cavity resonance to which

they belong. This is remarkable since the system is not constrained externally

to have detuned modes but is self-constrained in order to achieve this CS-like

state. This phase offset is reduced for broader gain bandwidths and becomes

essentially flat phased for broader gain bandwidths. In the temporal domain

the key observation is that for sufficiently strong saturable absorption (as ≥ 5.24
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less than 10x. But for stronger saturable absorptions (as ≥ 5.24
dB/cm) the can be greater than 100x.

dB/cm) the narrow gain bandwidth result has a pulse form similar to that of a

cavity soliton with the constant background corresponding to the central mode.

These results show the connection between traditional laser modelocking

and parametric cavity soliton modelocking. They show, for the first time, that

the dynamics of dissipative laser soliton systems and cavity soliton systems are

qualitatively similar when the laser gain bandwidth is significantly narrower

than the modulational instability bandwidth. Additionally the observation that

for broader gain bandwidths the central peak merges into the main spectrum

and the phase offsets flatten suggests that for narrow gain bandwidths the cen-

tral modes which see greater gain serve as pump fields which generate the rest

of the spectrum through parametric FWM. This also suggests that in the case

of modelocked frequency combs with multiple phase offset modes, which have

32



been observed in parametrically driven silicon micro-rods [], the phase offset

modes serve as secondary pump fields for the rest of the comb spectra.

These results show the connection between traditional laser modelocking

and parametric cavity soliton modelocking. They show, for the first time, that

the dynamics of dissipative laser soliton systems and cavity soliton systems are

qualitatively similar when the laser gain bandwidth is significantly narrower

than the modulational instability bandwidth. Additionally the observation that

for broader gain bandwidths the central peak merges into the main spectrum

and the phase offsets flatten suggests that for narrow gain bandwidths the cen-

tral modes which see greater gain serve as pump fields which generate the rest

of the spectrum through parametric FWM. This also suggests that in the case

of modelocked frequency combs with multiple phase offset modes, which have

been observed in parametrically driven silicon micro-rods [31], the phase offset

modes serve as secondary pump fields for the rest of the comb spectra.

2.4 Ultrabroadband comb formation using narrowband gain

Lastly, we note that the resulting soliton pulse spectra (Fig.2.3) have 10 dB band-

widths exceeding 10 times the gain bandwidths. Figure 2.6 plots the ratio of the

10 dB bandwidth of the resulting solitons to the 3 dB bandwidth of the laser

gain. In particular, for system which are stable in the CS-like regime the ratio

increases significantly such that the soliton bandwidth is more than 100 time the

gain bandwidth. This is to our knowledge the first scheme for the generation of

broadband modelocked combs using ultra-narrowband laser gain. These results

strongly motivate the development of laser-gain medium doped and dispersion

engineered nonlinear waveguide and of sources of strong saturable absorption
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as a path to realizing chip-based modelocked frequency comb generation with-

out a coherent external pump [52, 53].
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CHAPTER 3

SYNCHRONIZATION THEORY OF SOLITON MODELOCKING

In this chapter we investigate the phase dynamics of the soliton formation pro-

cess in the Lugiato-Lefever equation(LLE) through the lens of self-organization.

We find that phase equations derived from the LLE show that the pump-

degenerate four-wave mixing (PD-FWM) and pump-nondegenerate four-wave

mixing (PND-FWM) processes dominate the phase dynamics of soliton forma-

tion and display self-organization features akin to the Kuramoto model for syn-

chronization of coupled oscillators [54], including the existence of meaningful

order parameters and coherence-coupling feedback that describes the soliton

formation process. These equations also predict that the pump phase is offset

from the rest of the modal phase profile in the soliton state.

Additionally our analysis predicts that phase anti-symmetrization, where

the phase profile becomes anti-symmetric about the pump phase, occurs before

phase synchronization and soliton formation can occur. We compare the evolu-

tion of these equations to that of the full LLE system and observe a strong cor-

respondence between the two, indicating that our model captures the dynamics

leading to the cavity soliton formation process.

3.1 The Kuramoto synchronization model of coupled oscilla-

tors

A large collection of coupled oscillators with slightly different natural frequen-

cies can undergo a transition to a phase-locked state with identical frequencies.
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This phenomenon appears in many systems spanning biology, chemistry, neu-

roscience, and physics [54, 16]. Examples include power grid networks, neural

networks, chemical oscillators, and arrays of Josephson junctions and semicon-

ductor lasers [15, 55, 56, 57, 58]. Self-organization in such systems has been

modeled by the Kuramoto model, which describes the time-evolution of the

phase φp(t) of an oscillator p as an interaction between its natural frequency ωp

and its coupling to the phases of all the other N-1 oscillators.

The governing equations are φ̇p = ωp + κ
∑N

m sin(φm − φp), where κ is the cou-

pling strength [16]. This model can be recast in an order-parameter formulation,

where an average phase ψ and a coherence R(t) are defined via R(t)eiψ
=

1

N

∑N
m eiφm

(Fig. 3.1a,b). Then the Kuramoto model becomes φ̇p = ωp + κR(t) sin(ψ − φp).

Viewed this way, φp is no longer coupled to every individual oscillator’s phase,

but only to the average phase ψ. Moreover the effective strength of the coupling

is proportional to the coherence R. This proportionality between coupling and

coherence creates a positive feedback which, for a sufficiently large κ, gives rise

to an abrupt transition in which the frequencies of a macroscopic fraction of the

oscillators spontaneously synchronize.

3.2 Phase-locking in nonlinear optical cavities

In optics an alternative form of phase locking can occur in lasers and paramet-

ric oscillators between a large collection of cavity modes with nearly equidistant

frequency separations. In these systems the nearest-neighbor spacing across the

modes varies due to dispersion within the cavity. In the presence of nonlinear-

ity within the cavity, the system can spontaneously modelock such that the fre-

quency spacings between the oscillating modes become identical (Fig. 3.1c,d).
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Figure 3.1: (a) Synchronization of a population of oscillators with non-
equal natural frequencies to a phase-locked state with an iden-
tical frequency. A large fraction of the oscillator phases lock to
ψ, the average of all phases. (b) Abrupt transition of the coher-
ence R to synchronization. (c) CW-pumped FWM generation of
broadband frequency comb in silicon nitride micro-rings. (d)
Modelocking of cavity modes results in equidistant frequency
spacings between adjacent modes.

This behavior has been studied extensively in the context of ultrashort pulse

generation via dissipative soliton formation in lasers [11, 59] and in fiber and

micro-resonator-based four-wave mixing (FWM) parametric oscillators via cav-

ity soliton formation [12, 13].

While several theoretical [60, 61] and experimental studies [31, 62] have pro-

vided insight into the phase dynamics of the initial formation of parametric

combs, no analysis exists for the phase dynamics of the soliton modelocking

process. Although Kerr-based parametric frequency combs have been sug-

gested as the most fundamental example of self-organization in nonlinear optics
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[63, 14], no direct connection has been made to the concepts of synchronization

and self-organization. Here we develop a theory for the phase dynamics of

cavity soliton formation by deriving a set of phase equations from the Lugiato-

Lefever equations which exhibit features of self-organization akin to the Ku-

ramoto model and which elucidate several aspects of cavity soliton formation.

3.3 Phase equations from the Lugiato-Lefever equation

The governing equation of modelocked parametric frequency combs is the LLE

(a damped, driven nonlinear Schrödinger equation inside a cavity) with peri-

odic boundary conditions [42]:

Tr

∂A

∂t
= Ain − [

α

2
+ iδo]A + iL

[

3
∑

k≥2

βk

k!

(

i
∂

∂τ

)k

+ γ|A|2
]

A. (3.1)

Here A is the intra-cavity field, t and τ are the slow and fast times of the system,

respectively, Ain is the pump field coupled into the cavity at frequency ω0 + δo

where δo is the detuning of the pump field from the center of the cavity reso-

nance, βk are dispersion coefficients, γ is the nonlinear coefficient, α represents

the total linear loss per round trip of the cavity of length L, and Tr = L/vg is

the round trip time. We consider the intra-cavity field as a sum of the discrete

cavity modes and define a phase φp(t) for each mode at the frequency corre-

sponding to the equidistant comb defined by the detuned pump field such that

A(t, τ) =
∑N+1

p Apei(ωp+δo−ω0)t−i(Ωp−Ω0)τeiφp(t). By letting the pump mode index p0 = 0,

where N is even and −N/2 ≤ p ≤ N/2, the slow and fast frequencies of the field

becomeωp = 2πvg p/L+ω0 andΩp = 2πvg p/L+Ω0, whereω0 andΩ0 denote the fre-

quencies at the center of the pump resonance and vg is the corresponding group

velocity. For a sufficiently strong pump field Ain(t, τ) = A0ei(φ0+δot) with appropri-
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ate cavity detuning δo and constant phase φ0, a broadband comb of frequencies

is generated near the modes of the cavity (Fig.3.1c). After an initial build-up

period, the amplitudes of the cavity modes reach a near constant state, thus we

are able to neglect the amplitude variations of the modes and consider only the

phases. By employing a slowly varying envelope approximation for the total

intra-cavity field and normalized dispersion coefficients ξk = (2πvg/L)kvgβk, we

derive the following general dynamical phase equation from the LLE, with time

dependency of the phases made implicit:

φ̇p =
ξ2

2
p2
+
ξ3

3
p3 − Γ

N/2
∑

l,m,n=−N/2

A
ln
mp cos(φl − φm + φn − φp), (3.2)

where Γ = γL/Tr and A
ln
mp = AlAmAn/Ap. This equation has functional similar-

ities to the Kuramoto model wherein each optical mode can be considered an

individual oscillator. The spread in natural frequencies of the oscillators is rep-

resented by the second- and third-order dispersion terms in the right-hand side,

while the nonlinear term gives rise to the coupling among oscillators in the last

term in the right-hand side.

3.4 The parametric synchronization equations

In the absence of a strong pump mode, this equation has no stable solutions.

The cosine coupling term has an equilibrium point at π/2, which results in the

phase mismatch for various FWM processes being pulled to this value. How-

ever, this condition cannot be simultaneously satisfied for all combinations of

modes. For a pump η times stronger than an average comb (non-pump) mode,

the coupling term can be decomposed, via the amplitude factor Aln
mp, into 4 cat-

egories of processes with relative strengths η2, η, 1, η−1. In our analysis we
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keep only the largest coupling terms that scale as η2 and η. The terms that

scale as η2 are a result of the pump-degenerate (PD) FWM processes, where

two pump photons are annihilated to create a photon pair at modes symmetric

about the pump mode. Alternatively, the terms that scale as η are due to the

pump-nondegenerate (PND) FWM processes, in which one pump photon and

one comb photon are annihilated and create two photons at the energetically

appropriate modes. Under this approximation we find that the most natural

variables to describe the system are not the individual phases φp of the modes,

but rather the phase average and difference for pairs of modes symmetric about

the pump mode, that is φ̄p = (φp + φ−p)/2 and θp = (φp − φ−p)/2p, respectively.

We transform to this basis and obtain the following pair of equations, which

we term the parametric synchronization equations (PSE):

˙̄φp =
ξ2

2
p2 − 2Γη2A2

c cos[2(φ0 − φ̄p)] − ΓηA2
c NoR(t) cos(φ0 − φ̄p) cos[p(θp − θo)],(3.3)

θ̇p =
ξ3

3
p2 −

2ΓηA2
c No

p
R(t) sin(φ0 − φ̄p) sin[p(θp − θo)], (3.4)

where we have made the simplifying assumption that modes −No/2 to No/2

have amplitude Ac = A0/η and all other modes have zero amplitude. In this

transformed basis, the symmetric character of the system is separated from the

anti-symmetric character. The phase-average equation describes the symmetric

behavior of the system while the phase-difference equation describes its anti-

symmetric behavior. The pump-degenerate processes manifest themselves only

in the phase-average equation as the second term on the right-hand side of

Eq.(3.3). The pump-nondegenerate processes have both symmetric and anti-

symmetric contributions and appear as the last terms in the phase-average and
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phase-difference equations. R(t) and θo(t) represent the order parameters of the

systems and are given by R(t) = 2

No
|
∑No/2

m=1
eim(θm−θo)| and θo(t) = 8

N2
o

∑No/2

m=1
mθm. Here

θo is the normalized average phase difference. It serves the same role as the av-

erage phase ψ in the Kuramoto model. It also measures the linear slope of the

phase profile which yields a translation of the temporal pulse profile along the

cavity length. R(t) is the coherence; it measures the extent to which the pop-

ulation of the phase differences, θm, aligns to the average phase difference θo.

The triple sum reduces to a single sum since the PND term is only a single sum

and the phase-average and phase-difference parameters are separable due to

the phase symmetry induced by the PD term.

We consider the evolution of the PSE system by introducing an initially ran-

dom phase profile into the equations. Since the PD term scales as η2 it initially

dominates the dynamics, and its presence in the phase-average equation has

the effect of anti-symmetrizing the phase profile about the pump phase φ0. The

PND term does not initially play a role since the coherence R(t) is zero due to

the initially random phases and since it is inherently η/No times smaller than the

PD terms. Eventually anti-symmetrization of the phases occurs and the coher-

ence becomes non-zero, which allows the PND terms to become non-negligible.

This has the effect of synchronizing all the normalized phase differences to their

average. This results in a near-linear spectral phase profile, which is consis-

tent with evolution to a cavity soliton as predicted by the LLE model and il-

lustrates its connection to self-organization behavior. Thus, the PD term en-

trains the phase averages to a fixed input phase, and the PND term employs

the coherence-coupling feedback to self-organize around a non-fixed normal-

ized average phase difference. We numerically model the temporal evolution

of the PSE and the full LLE systems using systems parameters presented in [40]
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Figure 3.2: (a,b) Three stages of evolution of the phase profile of the intra-
cavity field as predicted by (a) the parametric synchronization
equations (PSE) and (b) the Lugiato-Lefever equation (LLE):
The grey curves represent the initial random phase profile. The
red-dotted curves show the phase evolution after 370 (PSE),
308 (LLE) round trips; the phase profiles in both models illus-
trate the anti-symmetrization of the spectral phase due to the
pump degenerate FWM processes. The black curves show the
final phase profile after 3394 (both) round trips in which the
phases have become completely synchronized, which is a re-
sult of the pump non-degenerate terms. In addition, a slight
offset of the phase of the pump from the phases of the other
cavity modes is observed. (c,d) The final spectral phase pro-
files of the PSE and LLE systems showing deviations from a
pure linear profile, including the pump phase offsets. (insets)
Temporal pulse shapes of the PSE and LLE.

42



and verify this prediction through the selected phase profiles in Fig. 3.2(a,b).

Both models show the progression from initially random phase profiles to an

anti-symmetric profile and finally to a fully synchronized profile. We find that

synchronization in the PSE is only stable for 185 > No > 155. Choosing the most

stable No = 170 results in the synchronization of 152 modes, in close correspon-

dence to the LLE where 155 modes are synchronized. Conceptually, synchro-

nization of a nearly equidistant multimode distribution of oscillators can also

be appropriately called a form of optical syncopation.

3.5 The pump phase offset

One of the notable features of the LLE cavity soliton phase profile is a static

offset of the pump phase from the rest of the phase profile and have recently

been measured by Del’Haye and co-workers. As it is a static offset it cannot be

explained by time-constant phase shifts such as the pump field detuning, self-

phase modulation or cross-phase modulation, rather it must be a result of cer-

tain FWM phase matching conditions. This pump phase offset is also predicted

by the PSEs in which it is a explicit result of the co-sinusoidal dependence of

the PD term and arises directly from the real nature of the FWM process. In

order for this term to act as a restoring force on the phase averages, as in the

Kuramoto model, it must have a sinusoidal dependence on the phase averages.

Thus the PSE show that the pump phase offset is fundamentally related to the

stability of the phase averages. The PD term only entrains the phase averages

to the pump phase and no self-organization has yet occurred.

We compare in detail the synchronized spectral phase profiles in Fig.

3.2(c,d). Both systems stabilize to a broadband phase-locked state with an off-
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set of the pump phase from the rest of the phase profile. Due to the factor of

2 in the argument of the PD term, this offset should be 0 < φo f f set < π/2 and

centered at π/4 in order for the cosine to have a significant sine-like contribu-

tion. Both the PSE and the LLE predict pump phase offsets within these bounds.

The LLE system has a slightly larger pump phase offset due to self-phase and

pump-induced cross-phase modulation effects which were not accounted for in

the PSE. This is, to our knowledge, the first theoretical prediction and explana-

tion of the origin of the pump phase offset of the soliton-modelocked states in

a parametric frequency comb. We confirm in Fig. 3.2(c,d insets) that the broad-

band phase-locked state results in a solitary pulse in the time domain. The ex-

act pulse shape for the PSE is not quantitatively meaningful since all the modes

have equal amplitude resulting in a Sinc-like pulse without a CW background.

3.6 Phase symmetry and coherence

The evolution of the order parameters confirm the validity of the two conjec-

tures: 1) amplitude dynamics are, to first order, neglible and 2) the PD-FWM

processes anti-symmetrize the phases prior to the onset of phase synchroniza-

tion. Figure 3.3(a,b) compares the evolution of the the coherence and the nor-

malized average phase difference in the PSE and LLE systems. Despite slight

quantitative differences, both systems exhibit abrupt transitions from a disor-

dered state to an ordered state as indicated by the sharp rise and subsequent

stabilization of the coherence. The normalized average phase difference also ex-

hibits dynamical similarities in the initial rapid increase and subsequent decline

and stabilization to a constant value. Closer inspection of the two parameters

(insets) reveal relaxation behavior on the order of 1 ns, close to the cavity lifetime
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Figure 3.3: (a, b) Coherence R (red-dotted) and normalized average phase
difference θo (green). An abrupt transition to a stable phase-
synchronized state is observed in both systems. (c, d) Coher-
ence R (red-dotted) and phase symmetry Rsym (blue). The close
macroscopic correspondence indicates that PD- and PND-
FWM process dominate the pahse transition dynamics. The
noisiness of the PSE signal indicates that the ND-FWM, which
are not included in the PSE, act to damp out fluctuations.

of 1.42 ns. The remarkable quantitative similarity of dynamics indicates that the

cavity soliton formation process is truly dominated by phase rather than am-

plitude dynamics.Furthermore, figure 3.4 plots the coherence for the PSE for

values of No = 140 (blue), 170 (red), and 200 (orange), showing that the syn-

chronization is only stable for 185> No >155. For No = 170 the PSE result in 152

synchronized modes. The close correspondence to the LLE with 155 synchro-

nized modes indicates that the PSE synchronization bandwidth, just as the LLE

cavity soliton bandwidth, depends on the balance of disorder and coupling and

not simply constrained to N or No. Next we consider the phase symmetry of

the two systems as quantified by Rasym =
2

No
|
∑No/2

m=1
ei(φ̄m−φ0)|. This value is a mea-
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sure of the extent to which the phase profile is anti-symmetric about the pump

phase and is equivalent to a coherence of the phase averages. Figure 3.3(c,d)

compares the coherence and the phase anti-symmetry for the two systems. In

both systems phase anti-symmetry occurs before coherence is achieved, and the

coherence cannot grow until the phase anti-symmetry has reached a high value.

This confirms our initial prediction that the PD term must anti-symmetrize the

phase profile before the PND term can synchronize the phases to a near linear

profile. These dynamics are only observed in cavity soliton formation and not

observed in the Turing pattern states or chaotic states. Furthermore, the phase

symmetry does not fully stabilize until the coherence has reached a high value,

and in turn, the coherence does not stabilize until the phase symmetry has fully

stabilized. These results illustrate the necessity of phase anti-symmetrization to

precede phase synchronization in soliton formation and the complex interplay

between phase symmetry and phase coherence. Additionally, the remarkable

correspondence between the LLE dynamics and the PSE dynamics indicate that

the simplification taken to obtain the PSE retains the majority of the phase dy-

namics.

3.7 Role of chaotic states of soliton formation

Lastly, the phase evolution modeled in the LLE is the stage after it evolves from

the chaotic state and enters a soliton state. Passage through a chaotic state has

been suggested as necessary for soliton modelocking to occur [40, 64]. This has

been linked to the subcritical nature of cavity solitons in they exist for pump

powers for which the system is bistable. Below threshold it must compete with

the flat homogeneous solution while above threshold Turing patterns typically
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Figure 3.4: Phase coherence of the PSE for values of No = 140-blue, 170-
red, 200-orange indicating that the PSE is only stable for a small
range of values 185> No >155. For No =170 results in 152 syn-
chronized modes in close correspondence to the LLE with 155
synchronized modes.

dominate. This means the comb lines which contribute to the cavity soliton can

not have arbitrarity small amplitudes and must be ”excited” by a seed pulse or

through a preexisting pulse in the cavity such as chaotic spikes [46, 43].

From the phase-matching point of view the chaotic stage is necessary in soli-

ton formation for the purpose of randomizing the phase profile to prevent Tur-

ing pattern and mini-comb-related FWM processes from dominating the phase

matching of the comb [60, 13]. Turing states and the associated mini-combs have

phase profiles that inherently lack global symmetry about the pump phase and

thus cannot directly enter into a soliton state.
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CHAPTER 4

SYNCHRONIZATION OF MULTIPLE PARAMETRIC FREQUENCY

COMBS

The concept of many-body interactions and synchronization can be extended

from the phase-locking of spectral lines in single microresonator comb to the

coupling and synchronization of solitons between multiple microresonator

combs. Synchronization of modelocked laser cavities have been demonstrated

in both solid state- and fiber-based systems and has been important to appli-

cations such as time resolved spectroscopy [17], coherent combination of laser

beams and few cycle pulse generation [65]. However the majority of these

demonstrations were achieved using either active feedback or in a master-slave

scheme.

The coupling of mutually-synchronized parametrically-driven cavities have

not been explored and could exhibit dynamics not available with coupled laser-

gain driven system. Additionally, implementation on a chip-based platform

could enable scalable systems with topologies unfeasible with bulk cavities such

as synchronized pulse sources for on-chip time-resolved nonlinear spectroscopy

[17, 19]. Configured in a long-distance fiber-coupled arrangement, such a sys-

tem can provide an integrate solution for synchronization and stabilization of

atomic clocks [18].

We theoretically investigate systems of two and three evanescently-coupled

microresonators under conditions in which parametric frequency combs are be-

ing generated in each microresonator. We observe that each system can exhibit

passive, stable synchronization of their intra-cavity fields which results in time-

locked pulses in the temporal domain and frequency and phase-locked comb

lines in the spectral domain. We find the coupling threshold for synchroniza-
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(a)

(b)

Figure 4.1: Schematic of evanescently coupled microresonators. (a) For
coupling κ less than κc the critical inter-cavity coupling rate, the
solitons cannot synchronize to each other. (b) For inter-cavity
coupling κ greater than κc, the solitons are able to synchronize
to each other if they are within a certain time delay of each
other, resulting in synchronized pulses in the time domain and
phase-locked comb lines in the frequency domain.

tion to occur and develop protocols for achieving this synchronization with high

repeatability. Finally we study the robustness of the synchronization to pertur-

bations.
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4.1 Soliton interactions in nonlinear cavities

In certain regimes cavity solitons in single microresonators can interact with

each other in complex ways such as attraction, repulsion, collision and fusion

of two or more solitons and the formation of stable multi-soliton bound states

(soliton molecules). Also, certain regimes of operation mimic condensation and

precipitation phenomena where solitons emerge spontaneously out of a noisy

background but are eventually condense into a bound state of many solitons

[45].

Of particular interest to this thesis are the attractive interactions between two

or more solitons. It’s reasonable to surmise that solitons in coupled microres-

onators would also attract each other. Akhmediev and co-workers [66] showed

that in the case of a laser-gain driven, saturable absorber stabilized, dissipative

soliton system, that two solitons can either form a bound state or undergo soli-

ton fusion depending on their initial relative phase and temporal distance.

Parametrically-driven systems without saturable absorption also exhibit

both multi-soliton bound states and pair-wise soliton fusion. Barashenkov and

co-workers [50] showed that the parametrically-driven NLSE exhibits stable

complexes of two and more solitons but who’s phase relation now depends also

on the ratio of the strength of the parametric drive and the strength of damp-

ing. Alternatively, Clerc and co-workers [67] showed that “coalescence” (i.e.

fusion) of pair-wise solitons occur in a variety of parametrically-driven systems

including vertically chain of pendula, magnetic wires and troughs of Newto-

nian fluid. However, a general description similar to that of Akhmediev and

co-workers encompassing both the fusion and bound state regimes, to the best

of my knowledge, has not been performed for parametrically driven cavities.
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Such a unifiying analysis would be a valuable contribution to the field of cavity

soliton dynamics.

Nevertheless, Clerc and co-workers, using the dimensionless LLE, were able

to develop the following soliton pair interaction law which shows that interac-

tion for a pair of in-phase solitons is overdamped.

∆̇ ≈ −Rσe−δ∆, (4.1)

where R represents the interaction strength between the two solitons which for

large interaction distances simplifies to R = 8δ3/µ where δ represents the am-

plitude of the solitons, and µ is the damping rate. The factor σ is the rela-

tively polarity of the two soliton, σ = 1 for in-phase solitons and σ = −1 for

out-of-phase solitons. Out of phase solitons will repel until their interactions

becomes neglible whereas in-phase solitons will attract and their distance de-

crease monotonically. In particular they show this decrease is logarithmic as a

function of the instantaneous delay between the two solitons.

∆(τ) ≈ 1

δ
ln[δR(τ0 − τ)], (4.2)

where τ0 = ρeδ∆0(τ=0)/δR is the initial time delay between the two solitons corre-

sponding to the initial distance ∆0(τ = 0).

These results can be directly extended to the interaction between two soli-

tons in two linearly coupled cavities since the the attraction strength R has a

simple dependence on the amplitude of the participating solitons δ. The linear

coupling of the two cavities suggests that the attraction between the two soli-

tons will be qualitatively identical but the strength reduced by the cavity-cavity

coupling rate.
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4.2 Synchronization of evanescently coupled cavities

We first consider the geometry shown in Fig.4.1 with two silicon nitride mi-

croresonators with waveguide cross-sections and dispersion profiles according

to [37] that are evanescently coupled weakly such that coupling does not induce

splitting of degenerate modes. We first consider the case where cavity-A has a

stable single soliton state achieved through the protocol detailed in [40], and

we seek to generate a single soliton in cavity-B that is synchronized to that in

cavity-A.

We find that this can be achieved with near 100% repeatability through a

two-stage protocol wherein cavity-B is first pumped into a brief chaotic stage

followed by reduction of the pump-B power to a level consistent with the single

soliton regime. The coupled field of cavity-A seeds the formation of a synchro-

nized soliton in cavity-B as it transitions from the chaotic regime into the soliton

regime. Figure 4.2(a,b) show the temporal evolution of both cavities where the

initial chaotic stage lasts 500 ps and the coupling coefficient is 0.04%. We find

for pump power of 450 mW in the single soliton regime the cavities must have a

field coupling coefficient of at least 0.02% in order for the synchronization to oc-

cur consistently. A field coupling of 0.01% led to synchronized soliton formation

16 times in a series of 50 trials (32%) whereas 0.02% resulted in synchronization

50 out of 50 times. This lower bound on the coupling rate appears to be set by

the quantum noise amplitude which is equivalent to 0.001% of the intra-cavity

coupled amplitude. For coupling coefficients greater than 0.1% the dynamics of

cavity-A become significantly affected during the initial chaotic stage and the

synchronization process. This leads to greater susceptibility to perturbations.

Figures 1(c) plots the synchronization success rate as a function of the coupling
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Figure 4.2: Success Rate of repeatability with respect to the coupling rate
κ. The critical coupling rate is determined to be κc = 1e-4. Below
the critical inter-cavity coupling

coefficient.

4.3 Robustness to perturbations I: Temporal offset

Next we investigate the robustness of the synchronization to three types of per-

turbations: 1) a single large temporal translation of one soliton with respect to

the other, which tests the maximum temporal reach of the soliton-soliton inter-

action and gives the upper-bound on the timing offsets from which the system

can be expected to recover; 2) a random temporal walk of the two solitons with
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Figure 4.3: Resynchronization of solitons after sudden time delay. (a,b)
The temporal evolution of two initially synchronized solitons
offset by 423 fs. (c) Trajectory of the soliton peaks (soliton A-
blue, soliton B-orange). Black curves are the fit of the logarith-
mic trajectories from [67]. (d) The resynchronization success
rate as a function of the temporal delay.

respect to one another, which models timing jitter due to dynamics noise sources

such as pump field noise and shows the ability of the coupled-cavity system to

reduce the overall noise of the system; and 3) a steady temporal shift of one

soliton with respect to the other, which models variations in static parameters

between the two cavities such as the FSR, group-velocity or pump detuning.

In the first case we begin with two initially synchronized solitons-, A and

B in cavities-A and -B. We shift soliton-B by a time ∆τ and observe the evolu-

tion of the system over the next 300 ns. We find that the two solitons are able

to resynchronize themselves for translations less a delay of the solitons which
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is defined by the width of the trapping potential given by the temporal phase

profile of the solitons and which also corresponds to the temporal translation

for which we get 50% resynchronization success. We term this value ∆τ0 the

interaction delay. For the solitons in consideration the interaction delay is ∆τ0

= 450 fs. This phenomenon is consistent with previous reports that solitons can

be trapped and stabilized to the maxima of the temporal phase profile [68, 69].

Figure 4.3(a,b) shows the evolution of the systems in response to a time delay

of soliton-B of 423 fs, which has a success rate of 80%. Figure 4.3(c) shows a fit

of the logarithmic trajectory for the pair-wise interaction predicted by Clerc and

co-workers which is valid for the majority of the interaction but deviates as the

solitons finally fuse. In part (d) the inset is plotted the resynchronization success

rate for various delays in units of the soliton pulse FWHM τ0. The interaction

delay corresponds to 3.5 times the FWHM.

4.4 Robustness to perturbations II: dynamic noise and long dis-

tance coupling

To model the dynamic noise we introduce a random temporal walk of the two

solitons with respect to each other which can be quantified as timing jitter cor-

responding to a frequency ωt j = 50 MHz. Every round-trip each soliton take

a ±1/ωt j shift with 50% chance either way. Figure 4.4 plots the dependence of

the inter-soliton drift (i.e. the distance between the two initially synchronized

solitons) after 50 ns of evolution under the influence of this dynamic noise. The

plot has two parts. The shaded region shows the effect of the coupling strength
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Figure 4.4: Effect of inter-cavity coupling and inter-cavity delay on dy-
namic noise. (a) (shaded region) Inter-soliton timing drift of
two solitons perturbed by random walks of their temporal lo-
cation in the cavity. Coupling of 4e-4 reduces the average inter-
soliton drift a factor of 4. (unshaded region) Timing drift as
a function of inter-cavity delay. Inter-soliton drift suffers no
degradation. The mean position drift appears to be enhanced
for certain time delays ( 10xTrt) but is unenhanced for shorter
and longer delays. (inset) Temporal evolution of the inter-
soliton drift two zero coupling and 4e-4 coupling. The coupled
drift value is constrained close to zero.

on the inter-soliton timing drift. For no coupling the timing inter-soliton drift is

on average (for 10 trials) greater than 80 fs. For coupling strength κ ≥ 2 the drift

is reduced significantly, to below 20 fs.

The unshaded region of Figure 4.4 plots the timing drift with respect to a

fixed temporal delay between the two cavity. This temporal delay models two

cavities that are far apart from each other and coupled through a length of op-

tical fiber. The inter-cavity delay is given in units of the cavity round trip time.

The inter-soliton drift reduction is maintained for temporally delayed cavities

and does not degrade as the delay is increased. The red curve plots the drift

of the mean position of the two solitons. The coupling does not constrain this

degree of freedom however there is some indication that this drift may be en-
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hanced for delays around 10 (xTrt) which may be due the fact that the coupling

preserves the effect of random fluctuations for more than one round trip of the

cavity. This apparent enhancement is an interesting topic for further investi-

gation. However this effect does not persist for longer or shorter time delays.

4.5 Robustness to perturbations III: FSR, group velocity and

pump frequency offsets

To model a frequency offset between the two cavities we introduce a small trans-

lation every round trip to soliton-B, which can arise from several experimental

parameters such a difference between the FSRs of the two cavities, a difference

between the pump wavelength a difference in the group velocities of the two

cavities or a combination of all three. The result in the time domain is a offset in
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Figure 4.6: Demonstration of pulse selection interaction. Cavity-B under-
goes a soliton generation protocol which results in a stable 4
soliton state. At 25 ns the it is coupled to cavity-A which has a
single soliton state. The interaction selects the left most soliton
in cavity-A and suppresses the other solitons.

the round-trip time of the two cavities leading to unsynchronized pulses (Fig.

4.5(a)). Figure 4.5(b) shows the inter-soliton distance after 100 ns of propaga-

tion as a function of the frequency detuning between the two cavities. For total

frequency offset less than a critical value of 17 MHz we find that the solitons

are able to stay locked to each other with a stable delay between the two soli-

tons whereas for offsets greater than this critical value the two solitons are not

able to stay locked to each other. The inset shows the trajectory for a locked

and unlocked pair of cavity solitons. The critical threshold of 17 MHz is set by

the strength of the inter-cavity coupling and increases for stronger inter-cavity

coupling.
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cavity A cavity B cavity C

Figure 4.7: Synchronization of three cavity solitons. Each cavity is initial-
ized by a brief chaotic stage before being tuned into the soliton
regime at which point the previous cavity seeds the formation
of a synchronized soliton in the new cavity.

4.6 Other coupling protocols

A wide range of interaction are available in the two-cavity system by bringing

together cavites with non-trivial initial states. A simple example of this exten-

sion is shown in figure 4.6 where we show the interaction between a cavity-

B that is allowed to freely evolve into a multi-soliton state and which is then

brought into coupling with a cavity-A that has a single soliton state. The cou-

pling is between the two cavities are turned on at 25 ns. Cavity-A is not notice-

ably affected but the soliton in cavity A has the effect of preferentially support-

ing the soliton with which it overlaps in time and suppressing the other thus

bring cavity-B into a single soliton state that is synchronized with cavity-A. Fig-

ure 4.6 compares the spectral power and phase at initial coupling to the final

spectral power and phase. It is possible to imagine such interactions forming

the basis of various types of multi-bit computational gate with the pulse pattern

in each cavity representing a bit pattern.
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4.7 Synchronization of three or more frequency combs

The scability of the system and the large number of controllable degrees-of-

freedom allows the exploration of an extensive breadth of coupling topologies

and operational regimes. As a first step we extend the protocol to a three-cavity

system and show that synchronized solitons can in principle be generated in an

arbitrary number of neighbor-to-neighbor coupled cavities. Figure 4.7 shows

the temporal evolution of a system with A-to-B-to-C coupling. Here we employ

a 4 stage protocol where cavity B is first synchronized to cavity A as mentioned

above and is allowed to stabilize. Then at the 30 ns mark the pump in cavity C

is turned on in identical fashion to the initialization of cavity B, and likewise the

synchronized soliton is generated as the cavity exits the chaotic stage.

4.8 Topological nonlinear optics and soliton dynamics

We believe that this system is an ideal platform for extending topological pho-

tonics into the nonlinear regime. Several demonstrations have shown the ability

of topologically designed photonic systems to have protected paths and exhibit

novel states of light in the linear regime. Adding nonlinearity may reveal new

paths towards on-chip non-reciprocal propagation and schemes for switching

and routing based on nonlinear mode conversion. In the soliton regime this

system may be amenable to ideas from collision-based computation where the

interactions between solitons with many degrees of freedom become the ba-

sic units of computation. Also, exploitation of the subcritical and ”excitatbil-

ity” dynamics of cavity solitons in a network context could allows models of
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neuro-networking previously unavailable. Experimental demonstration of the

schemes proposed in this chapter could open up many areas of new research.
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CHAPTER 5

ZENO-BASED ALL-OPTICAL CONTROL OF MICRORESONATOR

DEVICES

In this chapter we investigate an approach for wavelength-selective control of

a silicon micro-ring using the narrowband Raman induced optical loss in sil-

icon. We demonstrate theoretically the system as a wavelength-selective re-

configurable all-optical add-drop filter (WS-ROADM) and perform experimen-

tal demonstrations that show strong single resonance control and wavelength-

selective switching capability. We theoretically show that in certain schemes

picojoule control pulses can selectively modulate and “erase” a single cavity

resonance from full extinction to greater than 97% transmission while leaving

adjacent resonances undisturbed. Full switching is achievable in less than 300

ps with only a few hundred femtojoule energy dissipation.

Integrated silicon photonics has for the last 20 years been the leading choice

for chip-based, high-speed optical signal processing due to its compatibility

with CMOS technology, transparency to standard telecommunications wave-

lengths and strong nonlinear optical coefficients[70]. Two of the key compo-

nents to an chip-based optical network are low-loss all-optical switches and

router [71]. Efficient all-optical switching in silicon has been demonstrated pri-

marily in resonant devices using the Kerr nonlinearity or free-carrier refraction

[72, 73, 22, 24]. However, these nonlinear refractive effects are broadband and

simultaneously affect all resonances of a cavity [24]. While this is desirable in

many applications, the full functionality of an all-optical router is realized only

if separate channels can be modulated independently.

Active modulation of on-chip optical cavities is typically achieved via a re-

fractive index shift through free-carrier effects or the Kerr-nonlinearity [24, 22].
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However the broadband nature of such index-shifts alters all of the resonance

wavelengths and does not permit control of individual frequency channels of

the cavity. This limits its full functionality as a multi-channel router and lim-

its access to other important cavity parameters such as cavity Q, linewidth and

on-resonance transmission, which are important for both active operation and

post-fabrication fine-tuning of the cavity properties [74].

5.1 The Zeno effect and classical analogues in optical cavities

In resonant structures it is possible to achieve all-optical switching by chang-

ing the coupling condition through optically induced loss. Increasing the loss

of a critically coupled resonator will significantly increase transmission on-

resonance, and this has been termed “Zeno” switching [20]. It is therefore possi-

ble to achieve wavelength-selective switching and routing using a narrowband

absorption feature in a multi-port resonator.

Raman-induced loss in silicon is ideal for wavelength-selective all-optical

switching. Inverse Raman scattering in silicon produces strong loss at the anti-

Stokes wavelength [75] with a bandwidth much narrower than the free spectral

range of a typical microring cavity but wider than the resonance linewidth. It is

tunable simply by changing the control wavelength. This allows the Raman loss

to modulate a single resonance while leaving adjacent resonances undisturbed.

Loss-based switches have also been proposed using TPA in atomic vapor [20]

or DFG in III-V materials [76] as the loss mechanisms and subsequently demon-

strated.

We proposed that these previously unaccessible functionalities can be
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achieved through all-optical control of a narrowband loss in the cavity at the

signal wavelength by stimulating Raman loss through the inverse Raman scat-

tering (IRS) process [77]. In silicon, IRS produces a 105-GHz-wide (1-nm) spec-

tral loss at the anti-Stokes wavelength which is blue-detuned by 15.6 THz with

respect to the control beam. For a typical micro-resonator, this stimulated Ra-

man loss (SRL) is spectrally wider than the cavity linewidth but narrower than

the free spectral range (FSR), allowing it to alter a single resonance and leaving

the adjacent resonances undisturbed. This resonant interaction enhances the

coupling of the signal into the cavity making it far more efficient than a direct

absorption switch. Furthermore, the coupled signal light continues to circulate

in the ring cavity and can be re-routed with an adjoining drop waveguide [78].

Precision control of optical loss in optical cavities has also attracted recent

interest for fundamental studies of light-matter interactions as coherent perfect

absorption and time-reversed lasing in a fabry-perot cavity [79]. Additionally,

optical resonators provide an optical analog for the quantum Zeno and anti-

Zeno effects wherein the transition between two photonic states can be inhibited

or enhanced through decoherence (i.e. optical loss) of the second state [20, 80].

5.2 Theory: description and predictions

Consider a weak anti-Stokes signal (blue) and strong control (red) both resonant

with the ring and coupled into their respective in-ports (Fig. 5.1). For both the

control and signal to be simultaneously resonant, the ring’s free spectral range

(FSR) must be equal to an integer fraction of the Raman shift ΩR. Transmis-

sion on resonance (φ(λ) = m2π) can be solved from Eq.1.1 as a function of the
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Figure 5.1: Add-drop filter with counter-propagating control (red) and
anti-Stokes signal (blue). Transmission is observed as the sig-
nal through-port. The control in-port also serves as the signal
drop-port.

waveguide coupling and the intrinsic resonator loss.

TN(λres) =

[

t1 − αt2

1 − αt1t2

]2

, (5.1)

where α = e−a(λ)L/2, L is the circumference of the ring, a(λ) and n(λ) are the loss

coefficient and the refractive index, respectively.

In the absence of the control, the total loss is the intrinsic loss of the ring,

a(λ) = al. Critical coupling is obtained for α = |t1|/|t2|, when the round trip loss is

matched by the ratio of the bus waveguide and drop waveguide coupling rates.

The through-port transmission TN(λres) = 0, and the drop-port transmission is

unity. The through-port transmission spectrum of the add-drop filter with Q

= 200,000 is plotted in Fig. 5.2(a). Since the linewidth is extremely narrow the

resonances appear as single lines.

In the presence of the control, the ring becomes lossier due to Raman-

induced loss aR(λ)Ic. The control also introduces a Kerr index shift and generates

free carriers through TPA. The free-carriers lead to free-carrier absorption (FCA)

and free-carrier refraction (FCR). However, all the deleterious effects can be sig-

nificantly reduced by using a p-i-n diode to shorten the carrier lifetime, as we
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will discuss later. The loss and refractive index have the following form, with

the Raman loss being the dominant term:

a(λ) = al + afca + aR(λ)Ic,

n(λ) = n0(λ) + nfcr + n2Ic. (5.2)

As the Raman-induced loss increases (smaller α), the transmission increases

from full extinction to the maximum value of t2
1
. For low intrinsic loss, t2

1
is

nearly unity and TN is a sensitive function of Ic. Thus the transmission on reso-

nance can be modulated for a critically coupled resonator between total extinc-

tion and full transmission (Fig. 5.3 inset), with no change to the transmission of

the other resonances.

The magnitude of the induced Raman loss depends linearly on the intensity

Control Off

40 fJ

2.2 pJ

15.6THza)

b)

anti-Stokes control

Figure 5.2: (a) Passive transmission spectrum of high-Q silicon add-drop
filter. The control and anti-Stokes signal are tuned to reso-
nances 15.6 THz apart. (b) Transmission at the anti-Stokes res-
onance for several control pulse energies. Adjacent resonances
are undisturbed.

of the control field inside the ring, and the loss is blue-shifted from the control
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by the Raman frequency ΩR of the material with a bandwidth of ΓR. For silicon

the Raman frequency ΩR = 15.6 THz and bandwidth ΓR = 105 GHz [75]. The

strength of the Raman loss in silicon is found by normalizing the peak of the

Raman gain at the Stokes wavelength to the experimentally obtained values for

peak Raman gain gR = 76 cm/GW for λc = 1430 nm [81]. The highest Raman

gains were observed for shorter control wavelengths and control pulses longer

than the Raman ring-down time of 10 ps [82]. Here we consider control pulses

in the range of 200-300 ps at 1430 nm and the anti-Stokes signal near 1330 nm.

Close to the anti-Stokes frequency ωa = ωc + ΩR, Raman loss in silicon is

aR(ω) =
gRΓ

2
R

(ω − ωa)2 + Γ
2
R

, (5.3)

We assume a waveguide dimension of 250 nm X 450 nm and ring diameter of

32 µm (L = 100 µm) which corresponds to a FSR equal to an integer fraction of the

Raman shift so that the control and anti-Stokes wavelengths are simultaneously

resonant. We assume linear loss of 1.74 dB/cm which corresponds to an intrin-

sic Q = 400,000. These values have been demonstrated with current fabrication

techniques [83]. An output coupling of t2 = 0.9998 is chosen, corresponding to

t1 = 0.996 resulting in Q = 200, 000. This provides field enhancement to both

the control and anti-Stokes beams in the ring by a nominal factor of F/π where

F = FS R(Q/ν) is the finesse of the cavity. The free-carrier density can be cal-

culated according to the rate equation, ∂Ne/∂t = βTPAI2
c /2~ω0 − Ne/τc [85] where

βTPA = 0.5 cm/GW. We assume a p-i-n diode swept free-carrier lifetime of τc = 12

ps [84], in which case FCA becomes negligible compared to the Raman-induced

loss. FCR is still sufficient to blue-shift the resonance by more than a linewidth,

but this effect becomes comparable to the red-shift from the Kerr nonlinearity.

For the control intensities under consideration, these two effects effectively can-
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Figure 5.3: Control pulse energy and energy dissipation required to
achieve certain transmission. (inset) Transmission as function
of power inside cavity. Switching is most efficient for transmis-
sion values below 90%.

cel out.

The transmission at the anti-Stokes wavelength is plotted for 1427.7 nm

control pulses at several energies (Fig. 5.2b). On-resonance transmission of 50%

(90%) is achievable with control pulse of 40 fJ (340 fJ)/bit with energy dissi-

pation of 18 fJ (154 fJ)/bit. Transmission of >97% (<.1 dB loss) is achievable

with control pulses of 2.2 pJ/bit and energy dissipation of 921 fJ/bit (Fig.5.3).

These values are comparable with carrier and Kerr-based switches in silicon mi-

crorings [22, 72]. It is noteworthy that the narrowband Raman response leaves

adjacent resonances essentially undisturbed, which opens up the possibility of

independent routing or modulation of multiple signals on a single resonator.

Switching is most efficient for transmission below 90% but rolls off for higher

transmission (Fig.5.3). The roll-off value increases for lower intrinsic loss, thus

higher-Q resonators yield better switching performance. At higher control ener-

gies, cavity enhancement decreases due to FCA and TPA. The enhancement F/π

has a nominal value of 250 but decreases with increasing control pulse energy

and is 4 times lower for the 2.2 pJ pulse than for the 40 fJ pulse. Thus, operating
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Figure 5.4: Response of anti-Stokes signal at through-port to 2.2 pJ, 300
ps control pulse. 97% transmission is achieved with adjacent
resonance essentially undisturbed.

below 90% transmission will significantly reduce power consumption.

Time-domain switching dynamics confirm the independent switching of a

single resonance at GHz rates (Fig.5.4). A 2.2-pJ control pulse achieves maxi-

mum transmission of 97%, matching the results of the frequency-domain analy-

sis (Fig.5.4). The adjacent resonance sees an 1% increase in transmission due to

broadband FCA. The switch-on time, defined as the time required for the signal

to be fully switched from the drop-port to the through-port, is less than 300 ps,

and the total response time for a full switching cycle is roughly 1.5 ns. This cor-

responds to data rates of >500 MHz on a single channel with rates of >1 GHz

possible at lower switching contrasts.

A SRL-based add-drop filter would enable the device envisioned in fig-

ure 5.5, a wavelength-selective reconfigurable all-optical add-drop multiplexer

(WS-ROADM). Such device in a compact and chip-based platform would be a

significant technological advanced for datacom application, especially in wide

area and metro area networks that require a large degree of reconfigurability

to be able to respond to change bandwidth demand and unpredictable traffic
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Figure 5.5: Non-reconfigurable vs. reconfigurable add-drop filter. (left)
The data paths of the non-reconfigurable devices are preset
whereas (right) the data paths of the reconfigurable device can
be controlled in real-time allowing dynamis allocation of band-
width resources.

spikes.

5.3 Experiment: Zeno switching using inverse Raman scatter-

ing in silicon micro-rings

In this section we describe the experimental demonstration of the wavelength-

selective control of single resonances described in the previous section in a

singly-coupled micro-rings resonator in the over-coupled regime. A strongly

over-coupled resonance is brought into critical coupling with continuous tuning

of the on-resonance transmission by 9 dB (87%) and reduction of the intrinsic

Q factor by more than a factor of five (from 82,130 to 15,812) via the Raman loss

induced by 13 pJ, 200 ps control pulses. This is achieved without shifting the

resonance wavelength and with minimal disturbance to adjacent resonances.

Adjacent signal resonances are controlled with similar efficiencies by tuning the

control pulse to the adjacent control resonance. Lastly, we show that the reso-

nance can be tuned from the over-coupled regime through the critical coupling

state and into the under-coupling regime.
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Figure 5.6: (a) Schematic for all-optical control of a single resonance. 200
ps control pulses at 1556.1 nm are generated at the rep-rate
of the optical parametric amplifier (OPO) which generates the
broadband signal pulses near 1440 nm. The low power sig-
nal pulse does not cause nonlinear effects. The two pulses
are combined and synchronized in time and injected into the
silicon waveguide using a free-space objective. The through-
port transmission is coupled out using a lens-tipped fiber and
characterized by an optical spectrum analyzer with resolution
of 0.01 nm. (b) Energy level diagram of IRS, (c) SEM image
of ring-resonator, (d) Model of the coupling region using the
scattering matrix formalism (e) simulation of TE mode cross-
section.

A ring resonator coupled to a single bus waveguide [Fig. 5.6(c)] has cou-

pling region modeled by a coupling matrix given in Fig. 5.6(d), with field

coupling-rate of r = i
√

1 − t2 and a field transmittance t, which is close to unity

for a weakly coupled cavity. The on-resonance transmission at the through-port

is given by,

TN(λres) =

[

t − α
1 − αt

]2

, (5.4)
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where α(λ) = e−ai(λ)L/2 is the round-trip field transmission of a ring cavity of cir-

cumference L, and ai(λ) is the intrinsic loss coefficient [77, 86]. The related Q

factors provide an equivalent analysis of the system where Qi,l = λ/(ai,l(λ) ·FS R ·

Rring), FS R is the free-spectral-range and Rring is the ring radius. We define the

loaded loss coefficient al(λ) = ai(λ)−2·ln(t)/L, where the out-coupling is included

as a loss process in the cavity. The on-resonance transmission in terms of the Q

factors is TN(λres) = (1 − 2Ql/Qi)
2. However, the a(λ)-t picture is the more natural

basis with which to analyze the performance of the system since a(λ) and t cor-

respond directly to the controllable parameters of intra-cavity loss and coupling

gap, respectively.

Figure 5.7 (inset) plots Eq. (1.2) as a function of α for t = 0.93 and shows

that the transmission is most sensitive for values of α in the over-coupled

regime, where the round-trip intra-cavity loss is less than the waveguide-cavity

coupling-rate (i.e. α(λ) < |t|). Without the control beam, only the linear loss

contributes to the loss coefficient (i.e. a(λ) = aL). The control beam stimulates

Raman loss aR(λ, I) and generates several undesirable broadband nonlinear ef-

fects. Degenerate two-photon absorption (D-TPA) of the control grows quadrat-

ically with control power and generates free-carriers which causes free-carrier

absorption (FCA). Non-degenerate TPA from control plus anti-Stokes photons

adds to broadband loss of the signal, which grows linearly with control power.

These two losses are represented as a lumped broadband loss aNL(I, I2) such that

a(λ, I) = aL + aR(λ, I)+ aNL(I, I2), where I = Fe f f · Ec/(π · τc · Ae f f ) is the intra-cavity

intensity, Fe f f is the effective finesse at the control wavelength, Ec is the control

pulse energy, τc is the control pulse width and Ae f f is the effective mode area

of the waveguide. D-TPA of the signal is negligible due to the low signal pow-

ers in use. The broadband nonlinear losses and the associated refractive effects
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Figure 5.7: Theoretical transmission of the TE (red) and TM (blue) modes
across the relevant spectral range. Control (TE at 1556.1 nm) is
near critical-coupling, anti-Stokes signal (TM at 1439.5 nm) is in
strongly over-coupled. The two are separated by exactly ΩR of
silicon and are both resonant with the cavity. (Inset) Through-
port transmission for a cavity as a function of the intra-cavity
field transmission.

become a limiting process on the overall control efficiency and wavelength se-

lectivity.

Inverse Raman scattering is a stimulated stokes scattering process wherein

an anti-Stokes photon is scattered into a pump photon and the energy differ-

ence is deposited as an optical phonon in the material. Previously measured

IRS in silicon nanowaveguides is consistent with the known Raman gain coeffi-

cient of gR = 7 cm/GW at the control wavelength 1550 nm [?]. The SRL near the

anti-Stokes frequency ωa is given by,

aR(ω, I) =
gRΓ

2
R

(ω − ωa)2 + Γ
2
R

I, (5.5)

where ΓR = 105 GHz is the Raman loss linewidth for silicon. The FSR is chosen

to be an integer fraction of ΩR=15.6 THz such that the transverse electric (TE)

control beam at 1556.1 nm and the transverse magnetic (TM) anti-Stokes signal

beam at 1439.5 nm are simultaneously resonant with the ring. Figure 5.7 shows
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the theoretical transmission spectra of the TE (red) and TM (blue) modes and

the spectral placement of the control and signal.

Simulations reveal that the cross-sectional dimensions of TE mode at 1439

nm is 15% shorter and 20% narrower than that of the TE mode at 1556 nm. This

mode size difference leads to a significant difference in coupling rates for the

control and signal. Using the more delocalized TM mode for the shorter anti-

Stokes wavelength alleviates this difference for the disparate wavelengths. The

Raman interaction in silicon is also stronger for orthogonally polarized control

and signal beams. For waveguides fabricated on a wafer grown in the [001] di-

rection and traveling in the [110] direction, the Raman interaction for TE-TM or

TM-TE control-signal combination is enhanced by a factor of 3 over the TE-TE

combination. In a circular ring cavity the control and signal fields sample all

2π of lattice directions which reduces the enhancement to a factor of 1.5 for the

TE-TM combination over the TE-TE combination [87, 82]. This suggests that the

Raman interaction can be increased by using racetrack cavities that extend the

portions of waveguide which prefer the TE-TM combination.

The ring-resonators are fabricated on a 250-nm SOI wafer with 3 µm of

buried oxide using standard CMOS fabrication processes. The rings have a ra-

dius of 50 µm, and are coupled to a straight waveguide separated by a gap of

230 nm. All waveguides have cross-section of 450-nm wide by 250-nm tall and

have an effective mode area Ae f f = 0.25 µm2. The anti-Stokes wavelength the

field coupling rate is estimated to be r = 0.55 (t = 0.83) with an intrinsic loss of aL

= 10.77 dB/cm, which results in cavity resonances with an intrinsic Qi = 82,130

but a loaded Ql = 12,613. The large linear loss is due to the delocalized nature of

the TM polarized mode and the large field coupling rate achieves initial over-

coupling for the signal resonance. The control pulses are 200 ps which is close
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to the lifetime of the cavity. This reduces the effective finesse (Fe f f ) from the

steady-state value of 63 to 36. The optical transmission of the cavity was char-

acterized using a low-power broadband pulse near the anti-Stokes wavelength

(Fig. 5.6).

Figure 5.8 shows the narrowband SRL acting on single resonances. The af-

fected resonance is exactly 15.6 THz blue-shifted from the control wavelength.

The adjacent signal resonances can likewise be controlled by tuning the control

wavelength to an adjacent control resonance such that the anti-Stokes loss shifts

to the corresponding signal resonance [Figs. 5.8(b) and 5.8(c)]. This indicates

that Raman loss is the dominant process affecting the resonances. The non-anti-

Stokes resonances are not affected by the Raman loss, however the broadband

TPA and FCA loss does result in modulation of their transmission by 1-2 dB for

a 13-pJ control pulse. The contribution of the nonlinear losses to the system is

further discussed in Fig. 5.10. A micro-resonator with flat dispersion can have
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cent resonance to increasing control pulse energy.

100’s of doubly resonant pairs [39].

From Fig. 5.8 alone it is not conclusive whether the modulation is due to loss-

induced resonant coupling, as we claim, or to SRL of the signal in the straight

waveguide. Figure 5.9 shows the power dependance of the central resonance.

The on-resonance transmission drops sharply from -4.3 dB to -13.3 dB (blue) for

13-pJ control pulse, equal to 4.7% transmission and >87% switching contrast.

For control pulses greater than 13 pJ, the anti-Stokes transmission increases

(purple, 19.5 pJ control pulse) indicating that the modulation cannot be due to

direct absorption of the signal. Rather, the increase in transmission is consistent

with a resonant cavity as described by Eq. (1.2) (Fig.5.9 left inset). This is further

confirmed by the continued decrease in transmission of the adjacent resonance

(Fig. 5.9 right inset) and by the broadened linewidths of both resonances. Both

observations indicate that the spectra for 19.5 pJ control pulse corresponds to

greater loss, and hence greater power, inside the cavity. The signal loss due to

SRL in the straight waveguide is less than 0.1 dB. An off-resonant measurement

of the Raman absorption at the anti-Stokes frequency in the straight waveguide
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reveals 0.25 dB of loss for a 20-pJ control pulse, but the loss is much less for

resonant control and signal since the signal experiences Raman absorption for

only 5% of the entire length of the straight waveguide.

Additionally, the linewidth, and therefore the Q, can be continuously tuned

with increasing control energy. Figure 5.10 shows the single resonance intra-

cavity loss and Q extracted from the resonance linewidth and extinction [88].

The initial Ql is 6.5 times smaller than the initial Qi of the cavity, but should be

exactly 2 for a critically-coupled cavity. This ratio drops to 2.3 for a 13-pJ con-

trol pulse, indicating that the cavity is tuned close to critical coupling. For a

19.5 pJ control pulse, the Qi decreases by a factor of 5.19, from 82,130 to 15,1812.

Correspondingly, the intra-cavity loss increases by 45.2 dB/cm. Comparing the

intra-cavity loss of the anti-Stokes resonance (Fig. 5.10, blue circle) with that of

an adjacent resonance (green diamond) indicates that TPA and FCA contributes

16% (7.24 dB/cm) of the total loss of the anti-Stokes cavity, the other 84% (38.0

dB/cm) is due to Raman loss. TPA and FCA makes an appreciable contribu-

tion at high control powers due to its quadratic growth with control intensity.

The sub-linear increase of the intra-cavity loss with the control pulse energy is

consistent with broadband TPA and FCA reducing the Q factors for the control

wavelength. The nonlinear losses measured from the adjacent resonance cor-

responds to a 45% decrease in both Ql and Fe f f at the control wavelength, in

agreement with theoretical predictions (Fig. 5.10).

In the current scheme the passive signal transmission can be increased to

greater than -0.2 dB (95%) by using a more over-coupled cavity. Routing appli-

cations require a drop waveguide to couple out the signal from the cavity where

it would be advantageous to use an initially critically-coupled cavity and use

the loss to push the cavity into under-coupled regime as described in [77]. The
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under-coupled regime allows complete isolation of the bus and drop waveg-

uide in the on-state, which is not possible for the over-coupled cavity. For high-

Q cavities (Ql > 200,000), signal routing can be achieved with <0.1 signal loss

(>97% transmission) for picojoule control energies. Selective routing of single

channels dramatically increases the degrees-of-freedom and data density of the

system. Networks of such devices with multiplicative degrees-of-freedom can

easily be envisioned [89].

It was recently noted that a resonant beam coupled into a critically-coupled

cavity is equivalent to a single channel time-reversed laser at threshold [79]. In

a time-reversed laser optical gain is replaced with optical loss, coherent light is

coupled into the cavity, and the equivalent threshold is reached when the net

intra-cavity loss equals the coupling-in rate of the resonant light. Here we use

SRL to match the intra-cavity loss to the coupling-in rate such that the condi-

tions for time-reversed lasing are satisfied and resonant light is fully absorbed
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within the cavity. We reach a lowest transmission of 4.7%, which is compara-

ble to the lowest transmission obtained at the time-reversed lasing threshold in

[79]. Both systems exhibit the counterintuitive behavior that increasing the loss

beyond the “threshold” actually decreases the net absorption, an observation

consistent with the resonant nature of the cavity. Thus, the current system is a

demonstration of the time-reversed process of stimulated Raman lasing in sili-

con micro-rings [70].

The dynamics shown here are also the optical analogue of Zeno effects ob-

served in decoherence-driven atomic ensembles and quantum two-level sys-

tems where the natural evolution of the system is strongly perturbed by fre-

quent measurement or decoherence on the upper state [80, 91]. This relation

has been well established and is a current topic investigation by several groups

[20, 76, 90]. In atomic systems [80, 91] measurement-induced decoherence en-

hances (anti-Zeno) the transition between two states for infrequent measure-

ment and inhibits (Zeno) the transition for more frequent measurement. Here,

the mode of the bus waveguide and the resonant mode of the cavity at the anti-

Stokes wavelength represent the two photonic states, and the stimulated Raman

absorption of anti-Stokes photons constitutes the measurements of the “upper”

cavity state by coupling it to the phonon bath of the waveguide. The strength of

the induced decoherence is directly (inversely) proportional to the frequency of

(delay between) the loss events. For control pulses below 13 pJ, the cavity expe-

riences anti-Zeno enhancement of the photonic transition but for higher control

energies the cavity experiences Zeno inhibition of the transition. The current

scheme provides a robust and sensitive platform for exploring the effects of loss

on the thermodynamics of classical and quantum photonic states.

Stimulated Raman loss in silicon allows the manipulation of single cavity

79



Signals A, B In

No Control In

Signal B Dropped

No Signal Out

Signal A Dropped

Signals A, B In

Control A In

Signal B Dropped

Signal A Out

Signal A Passed

Signals A, B In

Control B In

Signal B Passed

Signal B Out

Signal A Dropped

Signals A, B In

Controls A, B In

Signal B Passed

Signals A, B Out

Signal A Passed

Figure 5.11: Two ring devices where ring resonances are offset slightly
to clarify the individual cavity responses. The left diagram
shows the four output states of the two-ring, two-signal sys-
tem. The right micrographs show the two rings excited by a
resonant pump field.

resonances in silicon micro-resonators. This system enables on-chip optical

micro-cavities to achieve their full potential as multi-channel all-optical routers

on a monolithic, CMOS compatible platform. This dramatically increases the

degrees-of-freedom for design of both hardware and software for on-chip opti-

cal processing. Finally, it also demonstrates the universality of the effects of de-

coherence on resonant systems and their usefulness in controlling the system’s

dynamics.

5.4 Cascaded Raman-Zeno switching in multi-rings systems

In this section we extend the single SRL to a multi-ring system and demonstrate

selective control of individual resonances of two silicon micro-ring resonators
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Figure 5.12: Experimental setup of cascaded Raman-Zeno switching.
Control pulse generate by electro-optic modulation of a CW
1550 nm laser and amplified by EDFA. Control pulse con-
bined with CW signal at the anti-Stokes wavelength and in-
jected into cavity. Signal is lock-in detected at the modulation
frequency of the control pulse

in a cascaded configuration on the same chip, showing the potential of this plat-

form to enable a new class of switching fabrics where the number of unique

output states scales exponentially with the number of signals as (N + 1)s, where

N is the number of resonators and S is the number of signals. This scaling law

far exceeds the data density of refractive index based switches for which the

number of unique output states scale as (N + 1).

The double ring system consists of two silicon micro-ring resonators cou-

pled to a common bus waveguide without drop waveguides (Fig.5.11). The

drop waveguide is excluded to simplify the coupling conditions of the disparate

control and signal wavelengths. This simplified system does not allow add-

drop functionalities but is sufficient for modulation and switching of individual

resonances. The ring circumferences are slightly offset such that the ring reso-

nances are spectrally distinguishable but the free spectral ranges are such that

the control and signal wavelengths are simultaneously resonant.

Control pulses near 1565 nm are co-propagated with a CW signal at the anti-

Stokes wavelength near 1447 nm (Fig. 5.12). The control pulses are 200-ps long

81



and generated from a CW diode laser modulated by an electro-optic modulator

at a repetition rate of 5 GHz and then amplified by an EDFA. The probe signal

is detected using a lock-in amplifier locked to the control pulse repetition rate.

The lock-in signal measures the amplitude of the modulation the signal ex-

periences due to the control pulses mediated through the micro-ring. When the

control is tuned 1565 nm, it is resonant with the left ring and Raman loss is

induced only in the left ring at the anti-Stokes wavelength of 1447.2 nm. Like-

wise, when the control is tuned to 1565.3 nm Raman loss is induced only in the

right ring at the anti-Stokes wavelength of 1447.4 nm. Figure5.13(a) shows the

modulation response of the two cavity system when the control wavelength is

resonant with the left ring (dark green) and the right ring (light green). The

optical isolation of the two cavities is evident from the fact that no crosstalk is

observed in either modulation response.

The Raman loss has been induced at 1447.2 nm, to overlap with the central

resonance at 1447.2 nm. This has the effect of increasing the modulation depth

of the central resonances by 35% compared to the two adjacent resonances. Al-

though modulation due to two-photon absorption and induced free-carrier ef-

fects is present, the anti-Stokes resonance experiences stronger modulation due

to the addition of the stimulated Raman loss, whereas the two adjacent reso-

nances do not (Fig.5.13(a)). Figure 5.13(b) zooms in on the central resonance

and compares its modulation strength due to free-carrier effects alone (red) and

due to the addition of the Raman loss (green). When the control wavelength is

tuned to that adjacent control resonances such that the Raman loss shifts to the

adjacent signal resonances (Fig.5.13(c)). This confirms that the additional mod-

ulation is indeed due to stimulated Raman loss.

This proof-of-concept demonstration can be extended to show that a net-
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Figure 5.13: Response of cavity at anti-Stokes signal. (a)Dark(light) green
traces show lock-in response of the two cavity system when
the pump is resonant with the left(right) cavity. The clear
spectral separation of the resonance response show good op-
tical isolation of the two cavities. The Raman loss is active
at the center resonance of each cavity which experiences a
35% transmission contrast compared to the two adjacent res-
onance which experience modulation due to free-carrier ef-
fects. (b)Red traces shows the response of the central res-
onance when it only experiences free carrier effects while
the green shows response when Raman loss is active. (c)
Red(blue) trace shows response of the three resonances when
the Raman loss is active on the left(right) resonance

work of add-drop filters with control of individual resonances allows each

ring to have as many degrees of freedom as it has number of operable reso-

nances. For example, for two rings with two signals, the Raman switch has

9 distinct output states compared to 3 for a broadband nonlinear-index-based
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Refractive index 

based switch

Raman loss

based switch

Figure 5.14: Comparison of unique output states for a two-ring (N=2),
two-signal (s=2) system based on (left) broadband refractive
index effect and (right) narrowband loss effect. The former
scales as (N+1) while the latter scales at (N+1)s

switch (Fig.5.14). This advantage increases exponentially for increasing number

of resonators.
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CHAPTER 6

ZENO EFFECT USING TWO-PHOTON ABSORPTION IN ORGANIC

POLYMERS

In this chapter we turn to a second approach for resonant loss switching based

on the two-photon absorption process in organic dye molecules engineered to

have large nonlinear susceptibilities. These molecules are embedded into a

transparent polymer such as PMMA and deposited directly onto an unclad or

thinly-clad micro-ring resonator. Figure 6.1 shows in the top inset panels the un-

clad micro-ring resonator with a sample of the nonlinear dye-embedded poly-

mer (green strip) along with its chemical structure. The top right panel shows

the final device where the green strip covers the row on rings on the silicon chip.

6.1 High optical nonlinearities in π-conjugated carbon chains

The dye used in these experiments is call 7C-tricyanofurane (7C-TCF) indicat-

ing that it is formed by 7 carbon pi-conjugated chain terminated tricyanofurane

groups. The long chain which is host to several delocalized electrons in a quan-

tum well-like structure gives rise to the strong nonlinear susceptibility of the

molecule. The in-solution TPA absorption coefficient has a peak of 22 cm/GW

at 1550 nm and is largely maintained once embedded in the polymer (Fig.6.1).

However, the linear loss of the polymer was measured to be 6 dB/cm. The lin-

ear index of the polymer is 1.69 which required the use of high index material

like silicon to ensure guiding of the optical mode. A material such as silicon

nitride would have been preferred on the grounds that it has lower Kerr non-

85



|0>

|1>

|2>

E

E
20

E
10

0 |0>

|1>

|2>

E

E
20

E
10

0

ND-TPA D-TPA

Figure 6.1: (main plot) Two-photon absorption spectrum of the 7C-TCF
molecular system. Red and blue (green) arrows indicate wave-
length for a non-degenerate (degenerate) switching scheme
shown to the left (right) of the main spectrum. (top left) Micro-
graph of the unclad micro-ring. (top center) Molecular struc-
ture of the 7C-TCF molecule and a polymer embedded with
7C-TCF. (top right)Picture of polymer coated chip on the test-
ing platform.

linearity than silicon and intrinsic two-photon absorption and no free-carrier

generation, however the linear index of silicon nitride was too low to guide the

optical mode when clad with the nonlinear polymer.

The two-photon absorption (TPA) process is diagrammed in degenerate (D-

TPA) and nondegnerate (ND-TPA) schemes in the lower right and left insets,

respectively. The degenerate case corresponds to excitation at the peak of the

TPA spectra with a single high peak-power pulse (green arrow). The strong

TPA response will effective make the cavity highly lossy to the pulse thus re-

jecting most the pulse from the cavity. This scheme can be considered a form

of intensity switching where low peak power signals are extracted while high
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Figure 6.2: Diagram of the different coupling regimes. When loss is
less(greater) than the coupling rate the system is over(under)-
coupled indicated by the red(blue) dot. When the loss and
coupling rates are exactly equal the system is critically coupled
(green dot)

peak power signals are passed. The nondegenerate allows the definition of con-

trol (red arrow) and signal (blue arrow) fields where the nonlinear response only

occurs when both control and signal fields are present. This allows the presence

of the control field to switch the response of the micro-ring to the signal field.

The ND-TPA scheme is operationally equivalent to the SRL scheme since they

both have spectral different control and signal fields.
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6.2 Degenerate characterization of organo-silicon hyrbid micro-

resonator

In the current device it was prohibitively difficult to perform the nondegenerate

scheme due to the different coupling rates between two fields that are sepa-

rated by more than 300 nm. The differing coupling rates between disparate

wavelengths is due to the differing sized waveguide optical modes, the volume

of which scales as λ2. If the cavity is optimized to critically couple the signal

the control with be strongly over-coupled, if the control is critically coupled the

signal will be under-coupled.

Figure 6.2 shows the position along the on-resonance transmission curve cor-

responding to various types of coupling and the insets show the qualitative fea-

ture of a resonance in each particular coupling regime. Both under-coupling and

over-coupling of the signal has the effect of setting the initial state of the cavity

at a high transmission state and either reduces the amount of control light that

can be coupled into the cavity or reduces the range over which transmission can

be tuned.

The system was characterized using the degenerate scheme described in

figure 6.3. A tunable CW laser operating at 1550 nm is used as the degenerate

signal. To test the nonlinear response of the organic-silicon device we send the

signal light into the chip first in a low peak power (LP) state and then in a high

peak power (HP) state. The low-peak power state is simply a CW field of 10

mW average power while the high-peak power state is a 200 ps pulse with a

peak power of 600 mW at 80 MHz repitition rate, which correspond to an aver-

age power also of 10 mW given a duty cycle enhancement of 60. The pulses are

carved by a high-speed function generator and an electro-optic modulator. The
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Figure 6.3: Experimental setup of the degenerate switching scheme in the
organic-silicon hybrid devices. High power pulses of 200 ps
and 600 mW peak power are generated by electro-optic modu-
lation of a CW laser and amplified in an EDFA and used to ex-
cite the nonlinear response of the polymer-cavity system. Low
power scan of the linear cavity resonance achieve through a
non-pulsed CW field at 10 mW power.

signal field is sent into an EDFA and amplified to 10 mW average power and

coupled into the chip waveguide using a low-NA objective lens. The device is

characterized by scanning the wavelength of the laser across a resonance of the

micro-ring at the two difference peak powers and compare the responses.

6.3 Evidence of nonlinear decoupling

Evidence of nonlinearity induced decoupling is shown in figure 6.4. The three

resonance traces indicate separate scans of the resonances at the indicated peak

powers and labeled (1), (2), and (3). From the linewidth of trace (2) we can de-

duce the intrinsic linear loss a = 0.58cm−1 which is equivalent to 2.5 dB/cm and

coupling rate t = 0.9927 assuming the resonance is close to critical coupling.

This corresponds to a loaded Q = 19340. Traces (1) and (2) show the HP and LP

responses, respectively and the noticeable on-resonance transmission difference

of 7.26 dB indicates the effect of the nonlinear decoupling.
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Figure 6.4: Comparison of low power (solid red) and high power (dot-
ted blue and green) resonance scans shows total decoupling of
7.26 dB due to nonlinear polymer. Green trace indicates photo-
bleached high powered response which shows decoupling due
to silicon nonlinearities alone. The three scans were taken in
the order shown in the figure legend.

However, this decoupling is necessarily the result of every possible nonlin-

ear interaction occuring in the cavity, including the SPM, TPA and FCA of the

silicon material itself. This contribution from the silicon would normally have

been impossible to resolve experimental since the intra-cavity optical mode is

result of the combination of the silicon waveguide and the polymer cladding.

However, the organic polymer exhibits photobleaching of the nonlinear re-

sponse such that after a few scans the organic polymer is not longer photo-

active. This phenomenon allows us to measure the nonlinear response of the

silicon material alone in trace (3). Comparison of trace (3) with (1) and (2) indi-

cates that 2.47 dB of the decoupling can be attributed to the silicon waveguide

while 4.5 dB of the decoupling can be attributed to the nonlinear polymer.
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6.4 Measurement of on-chip nonlinear optical loss of molecu-

lar system

The absolute intra-cavity nonlinear loss can deduced from the relative decou-

plings using eq.5.4. The 2.47 dB silicon-only decoupling corresponds to 1.81

dB/cm of nonlinear loss while the 4.5 dB organic-only decoupling corresponds

to 7.29 dB/cm of nonlinear loss, giving a ratio of 4.02 between the two. Due

to the photobleaching this is corresponds to a lower bound on the organic TPA

coefficient of βo−T PA ≥18.8 cm/GW assuming a confinement factor of 0.3. We

believe that is remarkable that it is only slightly lower than the previously mea-

sure value of 22 cm/GW in free-standing organic polymer. The fact that the

polymer is almost completely photobleached in the course of one HPP scan sug-

gests that the actual TPA strength is significant greater than the lower bounded

determined here.

6.5 Photo-instability of organic polymers

Next we inspect more closely the photobleaching process by taking and ex-

tended series of alternating LP and HP scans. Figure 6.5(a) shows the full se-

ries of scans taken of the resonance shown in figure 6.4, labeled (1)-(8). The

three traces from figure 6.4 correspond to traces (4), (5) and (7), respectively.

Figure 6.5(a) shows an addition three initial LPP scans (1)-(3), designated as

“Pre-HP*”. The first HP scan is designated HP*. The scans after this are des-

ignated “Post-HP*”. The first observation is a translation of the resonance with

every subsequent scan. The translations are largest after the HPP scans but even
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Figure 6.5: Time series scans of polymer-cavity system and high (dotted)
and low (solid) powers.(a) Series of 8 scans in time order in-
dicated shows photobleaching effects even at low power and
much stronger photobleaching after high power power scan
resulting in change in both the linear and nonlinear indices.
Highest decoupling seen for first high power scan. Subsequent
high power scans see significantly reduced decoupling. (b, c)
Shift of linear resonance with low power scans. Final scan at
low power after 10 minutes indicate thermal changes in poly-
mer cladding.

92



the first three LP scans cause a slight drift. This translation is interpreted as a

nonreversible photobleaching of the organic polymer which changes both the

nonlinear and linear index of the polymer. The nonreversability of the effect is

confirmed by the fact that the resonance does not shift back to it original wave-

length after waiting an extended amount of time. In addition to the translation

of the resonant wavelength, the photobleaching also changes the shape of the

resonance evidences by the 0.88 dB offset between the off-resonant backgrounds

between the Pre-HP* and the Post-HP* scans.

Figure 6.5(a) lends to a fairly straight forward interpretation of the photo-

bleaching process and its effect on the cavity resonance, which is that the pho-

tobleaching changes the nonlinear loss and linear index but doesn’t not change

the linear loss evidenced by the fact that the LP scans if part (a) all have the

same extinction. However this interpretation is not true for every device and

resonance. Figures 6.5(b,c) show two resonances where we have only taken LP

scans. The resonances shift with the same rate as in part (a) but there is also

a associated change in the on-resonance transmission which is not seen in the

LPP scans. This suggest that the linear loss is being altered. The direction of the

on-resonance transmission change in (b) and (c) suggest that the linear loss is

increasing with scans corresponding to the interpretation that in (c) the increas-

ing linear loss is bringing an over-coupled resonance into critical coupling and

in (b) that a critically coupled resonances is sent into the under-coupled regime.

However, the full picture could me far more complicated since the change

in linear index will also change the mode volume which would change the ge-

ometric coupling rate. Finally, the another relevant process is that of heating.

This is deduced from the last trace in (b) that is taken 10 minutes after the first

5, which were taken in quick succession. The noticeable change in the shape
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of the resonance indicates that heating leads to addition linear losses. Heating

may also affect the physical stability of the polymer causing it distort leading to

unpredictable effects on the resonance structure.
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CHAPTER 7

CONCLUSION

This thesis has focused on the implementation of nonlinear optics in micro-

resonator cavities revolving around the two major themes: 1) nonlinear ab-

sorption aided Zeno all-optical switching and 2) the generation of broadband

phase-locked frequency combs and cavity solitons. The miniaturization of op-

tical cavities has enabled nonlinear dynamics at much lower pump powers and

the scalability afforded by integrated fabrication allows complex architectures

and functionalities unavailable with bulk- and fiber-based devices with the po-

tential for chip-based optical computation, simulation and signal processing.

7.1 Zeno-based all-optical switching

The demonstration of Zeno-based all-optical switching opens a new path for ex-

ploring chip-based optical switching using absorptive processes, compliment-

ing the existing refractive index based devices. There are several paths to ex-

plore. For Raman-based Zeno switching first is the integration and simultane-

ous use of both broadband Kerr-refractive and narrowband Raman-absorptive

effects for switching and modulation. Such a device would allow even greater

run-time tailoring of a micro-resonator’s resonance properties. Second, is the

improved implementation of a cascaded multi-ring device. Further engineering

of the fabrication process and increased control over the waveguide loss, dis-

persion and geometric coupling can lead to a new type of compact switching

fabric. Also, investigation of other materials with strong narrowband Raman

features such as diamond may lead to still better performing Raman-based Zeno
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switches.

Organic nonlinear materials, while having much stronger nonlinearities than

crystals and glasses suffers from higher linear losses in addition to the perennial

issue of photo-degradation and thermal effects. However, encapsulation meth-

ods when the polymer is sealed off from oxygen sources may improve stability

significantly. Additionally, use of a more rigid host material may relieve the

thermal distortion of the PMMA host polymer. An important next step is to

demonstrate prolonged stability of nonlinear organic materials in an on-chip

platform. In addition to encapsulation and improved hosting a concerted effort

should be made within the field of organic nonlinear optics to solve the chal-

lenge posed by photo-degradation.

7.2 Micro-resonator comb and cavity solitons

Micro-resonator based frequency combs and cavity soliton is a fairly nascent

field but is quickly gaining momentum. The number of material platforms for

the generation of combs is steadily increasing with the recent introduction of

aluminum nitride, diamond and silicon. Soon we may see combs in silicon

carbide and other electro-optically active materials. Furthermore, in the few

years since temporal cavity solitons have been observed in fiber cavities and

micro-resonator frequency combs they have already demonstrated incredible

potential in a wide range of applications ranging from optical to RF conversion,

on-chip sensing and metrology, multi-wavelength generation and optical mem-

ory functionality. But this likely is only the tip of the iceberg of applications and

devices that may arise from cavity soliton based technologies. Still unexplored

are the various multi-soliton interactions such as soliton collisions, fusion and
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precipitation and condensation processes. The strong phase sensitivity of cavity

solitons may allow more exquisite control of these processes than is possible in

dissipative laser soliton systems.

The work presented in this thesis is even more nascent with respect to the

broader frequency comb and cavity soliton fields. Many of the ideas are still be-

ing distilled and many questions unanswered. The synchronization of multiple

cavity soliton combs presents the most tangible next steps to take, namely the

design and fabrication of two- and three-ring devices to investigate the experi-

mental parameters in which cavity soliton synchronization can occur. Extend-

ing naturally from two- and three-ring devices will be N-ring and NxN-ring

devices in which to explore topological and transport effects in the nonlinear,

chaotic and solitonic regimes.

In particular, it has been shown that cavity solitons are associated with the

homoclinic snaking bifurcation in the Lugiato-Lefever equation [43], a type of

bifurcation that is closely linked with excitable systems including neural net-

works. These systems experience large excursions (firings) in phase space for

above threshold perturbations before returning to the rest state and experience

a refractory period during it cannot fire again. Thus a scalable network of cav-

ity soliton combs is an ideal platform in which to explore neural networks and

neuro-memetic computing.

The work in laser-gain driven cavity soliton formation offers important in-

sight into the relation between traditional saturable absorber based laser mode-

locking and cavity soliton modelocking in parametric oscillators. An important

property of cavity soliton is their addressability, i.e. their ability to be written

and stably persist for an indefinite amount of time. An important question to an-

swer is whether laser-gain cavity solitons have the same kind of addressability
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as parametrically driven cavity solitons. Additionally, our work demonstrates

a micro-resonator based laser capable achieving large bandwidth pulses with

much narrower gain bandwidths. There is already an effort by several groups to

engineer erbium and ytterbium doped silion nitride waveguides with the view

of creating micro-ring based lasers. Our work shows that with proper disper-

sion engineering such a platform can generate even wider spectra that simply

the gain bandwidth of the gain medium.

Finally, perhaps the most nuanced of the results presented in this thesis, the

synchronization theory of cavity soliton formation and the parametric synchro-

nization equations that describe its dynamics offer new insight into the inner

mechanisms of the formation of a cavity soliton. The two key observations, that

the comb phases anti-symmetrize before they synchronize and that the pump

phase is offset from the rest of the comb phase profile, raise questions of how

the system responds when all or select number of modes are perturbed from

their steady state and what roles the phase offset and phase anti-symmetrization

play in the re-stabilization. There are also unanswered questions about the PSEs

themselves, for example the role of the 1/p factor in the phase different equa-

tions and the role of higher order dispersions terms. Generalizing the PSEs we

can add in the effects of the non-pump FWM processes and investigate their

role in the formation and stability of cavity solitons. Furthermore, some pa-

rameter regimes of the PSEs have produced phase profiles with multiple phase-

offset modes and phase-steps, similar to those states that have been measured

by Del’Haye et al. [31], and are the subject of ongoing work.

Looking beyond optical cavity soliton system, in saturable absorption based

modelocked lasers the cosine in Eq.A.6 is replaced by a sine and phase synchro-

nization is possible without a strong coherent pump field. Such a system may
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provide insight into the differing phase dynamics of cavity solitons versus dis-

sipative solitons. Broader still, we believe that given the generality of the root

equation of the LLE, which is the complex Ginzburg-Landau equation and the

intimate link between dissipative solitons with the broader fields of dissipative

structures and nonequilibrium thermodynamics, we expect that this synchro-

nization model may provide insight into the phase transition dynamics in a

wide range of physical systems.

Coming from the mathematical point of view, frequency comb modelock-

ing constitutes a new form of synchronization that has not been studied before,

namely the synchronization of a massively multi-modal distribution of oscilla-

tors, such that it is perhaps more appropriate to call this phenomenon synco-

pation. This observation begs the question whether a generalized multi-modal

population of oscillators with nearly equidistantly spaced natural frequencies

can spontaneously syncopate and whether their couplings will also be con-

strained by energy and momentum conservation as is the case with FWM-based

cavity soliton formation.

7.3 Closing remarks

It is an exciting time to be working in the field of integrated nonlinear optics.

New capabilities in fabrication and numerics is enabling new devices and in-

sights. I trust that this work will be a valuable and timely contribution to the

progress of optical science and technology.
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APPENDIX A

DERIVATION OF THE LLE-PHASE EQUATION

Here I use the notation from Chembo & Menyuk’s [92] paper on the LL-equation

to perform a fully rigorous derivation of a general modal phase equation. From

this phase equation and assuming a strong coherent pump I derive a pair of

equations which we term the parametric synchronization equations which ex-

plained in chapter 3.

The three major insights in the derivation that is not easily seen through the

main text are 1) that the PD term has the effect of symmetrizing the phase profile

about the injected pump phase and 2) this PD induced symmetrization allows

the PND term to be recast in such a way where the two degrees of freedom

become separable, which in turns allows the triple sum to be simplified into a

single sum and 3) that by normalizing the phase-difference δp/p → δp variable

allows us to remove the index dependence of the average phase difference or-

der parameter and allows us to define a global order parameter for the average

phase difference.

Start of with the LL-equation and the field:

∂A

∂t
= −∆ωo

2
A − iσA +

∆ωo

2
Fo − igo|A|2A − ξ1

∂A

∂θ
− i

ξ2

2

∂2A

∂θ2
(A.1)

∂A

∂t
= −
∆ωo

2
A − igo|A|2A − ξ1

∂A

∂θ
− i

ξ2

2

∂2A

∂θ2
(A.2)

∂A
∂t
= −i

ξ2

2

∂2A
∂θ2 − igo|A|2A −∆ωo

2
A (A.3)
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∂A
∂t
= −i

ξ2

2

∂2A
∂θ2 − igo|A|2A −

∆ωo

2
A (A.4)

A(t, θ) =

N
∑

l

Ale
i(ωl−ωo)t−i(l−lo )θeiφ

′
l
(t) (A.5)

(A.6)

θ is the angle around the circumference of the cavity and ξ’s correspond to

the dispersion coefficients. ωo and lo are the frequency and the mode number

of the pumped mode, Fo is the amplitude of the pump, σ is the detuning of the

pump from the center of the pumped resonance and go is the four-wave mixing

gain coefficient.

Since we are interested in the phase dynamics of the discrete modes we ex-

plicitly pull out the phase of each mode as φ
′

l
(t) and assume that Al is a pure

real.

We can transform into the group velocity frame by using θ → θ − ξ1t, and by

expanding the modal frequencies explicitly in terms of the mode number and

dispersion (ωl ≈ ωlo + ξ1(l − lo) + 1

2
ξ2(l − lo)2) we obtain:

∂A

∂t
= −
∆ωo

2
A − iσA +

∆ωo

2
Fo − igo|A|2A − i

ξ2

2

∂2A

∂θ2

∂A

∂t
= −
∆ωo

2
A − igo|A|2A − i

ξ2

2

∂2A

∂θ2
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A(t, θ) =

N
∑

l

Ale
iξ1(l−lo)t+ i

2
ξ2(l−lo)2t−i(l−lo )θeiφ

′
l
(t)

Inject the field into the LEFT HAND SIDE of the LL-equation, we begin to

use different indices to keep the notation clear:

∂A

∂t
=
∂

∂t

















N
∑

p

Apeiξ1(p−lo)t+ i
2
ξ2(p−lo)2t+i(p−lo )θeiφ

′
p(t)

















=

N
∑

p

e−i(p−lo)θeiξ1(p−lo)t+ i
2
ξ2(p−lo)2t+iφ

′
p(t)

[

✓
✓
✓∂Ap

∂t
+ Ap[2iξ1(p − lo) + i

∂

∂t

(

φ
′

p(t) +
1

2
ξ2(p − lo)2t

)

]

]

Here we assume a slowly varying envelope approximation and drop the

time derivative of Ap. We also notice that the dependance on the second order

dispersion can be lumped with the φ
′
(t) term without loosing generality, thus

we make the transformation φ
′

p(t) + 1

2
ξ2(p − lo)2t → φp(t).

LHS =

N
∑

p

Apeiξ1(p−lo)t−i(p−lo)θ+iφp(t)
[

2iξ1(p − lo) + iφ̇p(t)
]

The RIGHT HAND SIDE:

−
∆ωo

2
A−iσA +

∆ωo

2
Fo − igo|A|2A − i

ξ2

2

∂2A

∂θ2

RHS = −
∆ωo

2
A − igo|A|2A − i

ξ2

2

∂2A

∂θ2

We will ignore the pump terms for now. We’ll address each term one by one,

again using different indices for each term:

102



1)

−
∆ωo

2
A = −

∆ωo

2

N
∑

f

A f e
iξ1( f−lo)t+ i

2
ξ2( f−lo)2t−i( f−lo)θe

iφ
′
f
(t)

2)

igo|A|2A = igo

N
∑

l

N
∑

m

N
∑

n

AlAmAne2iξ1[(l−lo)−(m−lo)+(n−lo)]e
i
2
ξ2[(l−lo)2−(m−lo)2

+(n−lo)2]×

e−iθ[(l−lo )−(m−lo)+(n−lo)]ei[φ′
l
−φ′m+φ′n]

We will leave this term unsimplified for now because the simplification will

be much more apparent when we combine the two sides of the equation.

3)

−i
ξ2

2

∂2A

∂θ2
= −i

ξ2

2

N
∑

q

Aqeiξ1(q−lo)t+ i
2
ξ2(q−lo)2teiφ

′
q(t) ∂

2

∂θ2
(e−i(q−lo)θ)

= i
ξ2

2

N
∑

q

Aqeiξ1(q−lo)t+ i
2
ξ2(q−lo)2t−i(q−lo)θeiφ

′
q(t)(q − lo)2

When we combine the LHS and the RHS we notice that we can factor from

each term a quantity equal to the field A(t). This is true even though we used

different indices for each term since the sums are not coupled to each other (i.e.

f , q = p ). The only term we have to be careful with is the kerr terms since the

sums are coupled. Here we “factor” by dividing by the same quantity.

N
∑

p

Apeiξ1(p−lo)t−i(p−lo)θ+ i
2
ξ2(p−lo)2t+iφ′p(t)[2iξ1(p − lo) + iφ̇p(t) = −∆ωo

2
+ i

ξ2

2
(p − lo)2

−igo

|A|2A

Apeiξ1(p−lo)t−i(p−lo )θ+ i
2
ξ2(p−lo)2t+iφ′p(t)

]

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘
N

∑

p

Apeiξ1(p−lo)t−i(p−lo)θ+ i
2
ξ2(p−lo)2t+iφ′p(t)[2iξ1(p − lo) + iφ̇p(t) = −

∆ωo

2
+ i

ξ2

2
(p − lo)2
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−igo

|A|2A

Apeiξ1(p−lo)t−i(p−lo )θ+ i
2
ξ2(p−lo)2t+iφ′p(t)

]

Here we come back to the kerr term and simplify it:

−igo

|A|2A

Apeiξ1(p−lo)t−i(p−lo )θ+ i
2
ξ2(p−lo)2t+iφ′p(t)

= igo

N
∑

l

N
∑

m

N
∑

n

AlAmAn

Ap

e2iξ1[(l−lo)−(m−lo)+(n−lo)−(p−lo)]e
i
2
ξ2[(l−lo)2−(m−lo)2

+(n−lo)2−(p−lo)2]×

e−iθ[(l−lo)−(m−lo)+(n−lo)−(p−lo)]ei[φ′
l
(t)−φ′m(t)+φ′n(t)−φ′p(t)]

Energy conservation requires l − m + n − p = 0 thus the first and third expo-

nentials both equal unity. Again, combine the second order terms with the φ′

terms and making the transformation φ
′

l,m,n,p
(t) + 1

2
ξ2(l,m, n, p − lo)2t → φl,m,n,p(t)

= igo

N
∑

l

N
∑

m

N
∑

n

AlAmAn

Ap

ei(φl(t)−φm(t)+φn(t)−φp(t))

Putting this back in the full equation we obtain:

φ̇p(t) = i
∆ωo

2
− 2ξ1(p − lo) +

ξ2

2
(p − lo)2 − go

N
∑

l

N
∑

m

N
∑

n

AlAmAn

Ap

ei(φl(t)−φm(t)+φn(t)−φp(t))

A.1 Derivation part II

In the part I we were able to derive this expression for the phases:
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φ̇p(t) = i
∆ωo

2
+
ξ2

2
p2
+ O(

ξ3

3
p3) − go

N
∑

l

N
∑

m

N
∑

n

AlAmAn

Ap

ei(φl(t)−φm(t)+φn(t)−φp(t))

φ̇p(t) = i
∆ωo

2
− 2ξ1 p +

ξ2

2
p2
+ O(

ξ3

3
p3) − go

N
∑

l

N
∑

m

N
∑

n

AlAmAn

Ap

ei(φl(t)−φm(t)+φn(t)−φp(t))

Our collaborator Steve Strogatz pointed out that this expression results in a

complex value for the phases, which is not physical. My advisor Alex Gaeta

suggested that we separate the real and imaginary parts of the equation and

solve for the real part of the phase, which is what we were really looking for in

the beginning. First, I will solve for the real and imaginary parts of the equation.

Also, I’ve included the existence of higher order dispersion terms; as it turns out

they eventually play a meaningful role.

A.2 The Real Part of the Phase Equation

First, let

φlp(t) = φl(t) − φm(t) + φn(t) − φp(t)

A
2
lp =

AlAmAn

Ap

Also,

φp(t) = φp(t) + iαp(t)

and

−go

N
∑

l

N
∑

m

N
∑

n

AlAmAn

Ap

ei(φl(t)−φm(t)+φn(t)−φp(t))
= −go

N
∑

lmn

A
2
lpexp(iφlp − αlp)
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Focusing on the coupling term, the exponential can be split into two parts

= −go

N
∑

lmn

A
2
lp[Cos(φlp) + iS in(φlp)]exp(−αlp)

Putting all the terms together:

φ̇r
p+iφ̇i

p = i
δωo

2
−2ξ1 p+

ξ2

2
p2
+O(

ξ3

3
p3)−go

N
∑

lmn

A
2
lp[Cos(φlp)exp(−αlp)+iS in(φlp)exp(−αlp)]

Equating the real and imaginary terms:

REAL : φ̇p = −2ξ1 p +
ξ2

2
p2
+ O(

ξ3

3
p3) − go

N
∑

lmn

AlpCos(φlp)exp(−αlp)

IMAG : α̇p =
δωo

2
− go

N
∑

lmn

AlpS in(φlp)exp(−αlp)

REAL : φ̇p =
ξ2

2
p2
+ O(

ξ3

3
p3) − go

N
∑

lmn

AlpCos(φlp)exp(−αlp)

IMAG : α̇p =
δωo

2
− go

N
∑

lmn

AlpS in(φlp)exp(−αlp)

The REAL equation can be further simplified by going into the rotating wave

frames of ALL of the modes φp → φp − 2ξ1 pt, and by assuming that there is

uniform loss. Also, to simplify the notation we drop the r superscript with the

understanding that we are looking at the real phases.

φ̇p =
ξ2

2
p2
+ O(

ξ3

3
p3) − go

N
∑

lmn

A
2
lpCos(φl − φm + φn − φp)
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A.3 Stable Solution with a Strong Pump

This equation does not have globally stable solutions. The Cosine coupling term

has the effect of pulling its argument towards a value of −π/2, but this criterion

cannot be satisfied by all energetically appropriate combinations of phases at

the same time. However, if we introduce a strong pump the system becomes

simplifiable!

By strong pump I mean let mode 0 be γ (10→100) times stronger than every

other mode. This does two things: 1) It makes it reasonable to approximate the

strength of every other comb mode as A, in which case the pump is γA, and 2)

it separates the sum of FWM terms into different classes of terms based on how

many pump photons are involved in it.

Pump degenerate (PD) processes, where two pump photons annihilate to

create two symmetric comb mode photons, have a relative strength of γ2 com-

pared to processes that do not involve the pump at all. Similarly pump non-

degenerate (PND) processes, where one pump photon and one comb photon

annihilate to generate yet two other energetically appropriate comb photons,

has relative strength of γ. The inverse of these processes have relatives strengths

of 1 and γ−1, respectively. In order the 5 classes of process have relative strengths

γ2, γ, 1, γ−1 and 1. Since we are concerned with only net flow of phase informa-

tion (i.e. photons/energy) we neglect all process with relative strengths of unity

and less.

φ̇p =
ξ2

2
p2
+O(

ξ3

3
p3)−goA

2γ2cos(2φ0−(φp+φ−p))−goA
2γ

p−1
∑

m=1−p

Cos(φ0+(φm−φm−p)−φp)
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We notice several things from this simplification:

1) First, we’ve restricted the sum from m = 1− p to p−1 to make the algebraic

manipulations clearer. This restriction will be relaxed at the end so that all the

terms are accounted for.

2) There is only one PD term and it has the value (φp+φ−p), a phase average of

the pth modes symmetric about the pump, in the argument of the coupling term.

This suggests that we may get somewhere by solving for the phase averages of

the pth symmetric pair of modes.

3) If the phase averages are a meaning variable of the system then it makes

sense that the orthogonal variable of the phase differences (φp − φ−p)) are also

meaningful. We see that if we take this difference in phases the PND terms

simplify using a few trig identities.

A.4 Phase Average Equation

Let’s consider the phase averages first. We define the average phase of the pth

modes symmetric on either side of the pump as: φ̄p = (φp + φ−p))/2. Adding the

above equation in such a way:

φ̇p + φ̇−p

2
= ˙̄φp =

ξ2

2
p2 − 2goA

2γ2Cos[2(φ0 − φ̄p)]

−goA
2γ

p−1
∑

m=1−p

[Cos(φ0 + (φm − φm−p) − φp) + Cos(φ0 + (φ−m − φp−m) − φ−p)]

The equation has contributions from both the PD and PND terms but the

early evolution is dominated by the PD term. This is because 1) the PD term is
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γ times stronger and more importantly 2) in the early evolution the phases are

still random and the PND terms sum to zero on average. The effect of the term

is to symmetrize the phases of symmetric modes such that (φp−φo) ≈ −(φ−p−φo).

Also, this term also predicts that the pump phase will be offset from the rest of

the phase profile by π/4 < φo f f < π/2 in order to create a Sine-like coupling term

and to compensate for dispersion. We pause from the ˙̄φp equation for now and

consider the phase difference equation.

A.5 Phase Difference Equation

We define the phase difference of the pth modes symmetric on either side of the

pump as: δ′p = (φp − φ−p))/2. Adding the above equation in such a way:

φ̇p − φ̇−p

2
= δ̇′p =

ξ3

3
p3−2goA

2γ

p−1
∑

m=1

[Cos(φ0+(φm−φm−p)−φp)−Cos(φ0+(φ−m−φp−m)−φ−p)]

The PD terms cancel each other out along with every other even term. We

are only left with the odd terms and the PND terms. Since the terms are also

symmetric for ±m we can begin the sum at m = 1 and put a factor of 2 in front.

Looking at the PND terms carefully we see that we have a sum of the form

Cos(a+b−d)−Cos(a+c−e) = −2S in(b−c
2
− d−e

2
)S in(a− b+c

2
− d+e

2
). Letting (φm−φm−p)

and (φ−m − φp−m) be δ′mp and δ′−mp, respectively and δ′p = (φp − φ−p))/2, the sum of

the two Cosine terms becomes:

−2S in(
δ′mp − δ′−mp

2
+ δ′p)S in(φ0 −

δ′mp + δ
′
−mp

2
− φ̄p)
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We recall from the phase average equation that (φp − φo) ≈ −(φ−p − φo). This

means that δ−mp ≈ −δmp, and since δ′mp = δ′m − δ′m−p, the equation for the phase

average simplifies to:

δ̇′p =
ξ3

3
p3
+ 2goγA

2S in(φ0 − φ̄p)

p−1
∑

m=1

S in(δ′m + δ
′
p−m + δ

′
p)

We see that the coupling terms can now be further simplified by writing it

the form of an order parameter.

R(t)ei(δ′po−δ′p)
=

1

p − 1

p−1
∑

m=1

ei(δ′m+δ
′
p−m−δ′p)

The value δ′po is given by the average of the values (δ′m + δ
′
m−p) for m = 1 to (p−1),

but each δ′m occurs twice the expression for δ′po simplifies to:

δ′po =
2

p − 1

p−1
∑

m=1

δ′m

The function Rd(t) is:

R(t) =
2

p − 1
|

p−1
∑

m=1

ei(δ′m−δ′m0
)|

The average phase difference δ′
m0

appears in the argument because it indicates

a linear phase shift across the modes and needs to be subtracted out in order to

get the correct value for the phase coherence. This allows us to write

δ̇′p =
ξ3

3
p3
+ 2goγA

2R(t)S in(φ0 − φ̄p)S in(δ′po − δ′p)

But we’re not done! This equation has all the functional forms of the Kuramoto

model, however, it still has the annoying problem that the order parameter de-

pends on p and is not, in it current form, a function of the entire system. Next

we make two manipulations that will both simplify the notation and allow us

to write the order parameter independently of the mode number p.
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1) We let δp = δ
′
p/p such that

pδ̇p =
ξ3

3
p3
+ 2goγA

2R(t)S in(φ0 − φ̄p)S in[p(δo − δp)]

and,

δo =
2

p(p − 1)

p−1
∑

m=1

mδm

2) We let the sum upper limit go to N/2 to include all the terms and to make

δo independent of p, for large N.

δo =
8

N2

N/2
∑

m=1

mδm

Likewise

R(t) =
2

N
|

N/2
∑

m=1

eim(δm−δ0)|

Finally, we can write the final form of the phase difference equation and the

order parameter:

δ̇p =
ξ3

3
p2 − 2goγA

2

p
R(t)S in(φ0 − φ̄p)S in[p(δp − δo)]

R(t) = 2

N
|
∑N/2

m=1
eim(δm−δ0)|

δo =
8

N2

∑N/2

m=1
mδm

A.6 Phase Average Equation Cont’d

˙̄φp =
ξ2

2
p2−2goA

2γ2Cos[2(φ0−φ̄p)]−goA
2γ

p−1
∑

m=1−p

[Cos(φ0+(φm−φm−p)−φp)+Cos(φ0+(φ−m−φp−m)−φ−p)]

We return to the phase average equation to clear up the PND part of the equa-

tion. We can tell by inspection that the same analysis that worked for the phase
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difference equation will apply here, the only difference being the addition of the

Cosines resulting in a product of Cosines.

˙̄φp =
ξ2

2
p2 − 2goA

2γ2Cos[2(φ0 − φ̄p)] − goγA
2R(t)Cos(φ0 − φ̄p)Cos(p(δp − δo))

A.7 Summary

All the equations together:

˙̄φp =
ξ2

2
p2 − 2goA

2γ2Cos[2(φ0 − φ̄p)] − goγA
2R(t)Cos(φ0 − φ̄p)Cos(p(δp − δo))

δ̇p =
ξ3

3
p2 − 2goγA

2

p
R(t)S in(φ0 − φ̄p)S in[p(δp − δo)]

R(t) = 2

N
|
∑N/2

m=1
eim(δm−δ0)|

δo =
8

N2

∑N/2

m=1
mδm
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