bUPL - An Approach to Introductory
Computing Instruction*
R. W. Conway
and
W. L. Maxwell**

TR 68-4

January 1968

Department of Computer Science
Cornell University
Ithaca, New York 14850

‘Thls work was supported in part by the Natlonal Science Foundation
under Grant GP 6827.

*%
The CUPL Project group consists of G. Blomgren, H. Elder, H. Morgan,
C. Pottle, W. Riddle, and R. Walker as well as the authors.

{

O

()

CUPL - An Approach to Introductory Computing Instruction*®

R. W. Conway and W. L. faxwell**
Department of Computer Science
Cornell University

CUPL is a second-generation language and processor
designed specifically for introductory instruction
in computer programming. It combines a severely
simple syntax (based loosely on PL/I) and very
extensive tutorial and diagnostic assistance by

the processor. The processor is core-resident and
compiles very rapidly. The result is an effective
instructional system that can be used for large
numbers of students with modest demands on computer
capacity. Technically CUPL is interesting for the
error-correcting capability of the compiler and

the provision of direct operations for matrix algebra.

CUPL is a special purpose programming language for which
a compiler and a supervisor are available for IBM 360 systems.
Fundamentally the language and the implementation constitute
a unique approach to the problem of introducing general purpose
computer programming to large numbers of students. Our premise
is that a subset of a “production" language is not the most
appropriate vehicle for this purpose, and that standard compilers
and supervisors do not provide the neophyte with as much diag-
nostic and tutorial assistance as is possible.

* This work was supported in part by the National Science
Foundation under Grant GP 6827.

%+ The CUPL Project group consists of G. Blomgren, H. Elder,
H. Morgan, C. Pottle, W. Riddle, and R. Walker as well as the
authors.

2

CUPL is admittedly--in fact, deliberately--limited in scope
and capacity and mdny students are compelled to graduate to a
senior language whenever their computing problems becore signi-
ficant. This is not a difficult step and we willingly subject
a fraction of students to it in order to obtain the advantages
of the CUPL introduction to computing for the larger number of
students. The essential concepts that must be conveyed in an
i{ntroduction to computing are virtually indepandent of the
language employea and, in fact, the language should be as
transparent as possible. Time devoted to instruction in the
mechanics of language or operating system is necessarily deducted
from the time available for ideas and basic concepts.

CUPL is the direct descendant of the CORC language and
operating system (1). Designed@ and implemented in 1962 for the
Burroughs 220 and the Control Data 1604, CORC represented a
number of novel concepts:

1. A very limited and .simple source language syntax

a. Limited number of types of statement--with all
statements being executable imperatives (no
declarative statements).

b. No "type“ distinction for variables--all values
carried internally as floating-point.

Ce. Fixed formal input and output operations.
2. A tolerant compile-and-go operating systen

a. Compiler makes more or less plausible corrections
of every error of syntax so that a syntactically-
correct exccutable object program is always pro-
duced. (Zach correction is of course described
on the program listing.)

b. Every program enters execution and runs to termin-
ation or until a preset limit (time, page count,
error count) is exceeded.

C. No delivery or preservation of object code, hence
no opportunity to compile programs in sections for
gubsequent asgembly and linkage.

(W

3. Core~-resident compilar and oxecution monitor.

a. Firot of a number of consecutive jobs loads the
compiler and monitor from the systems tapes; second
and subsequent jobs are processed with negligi-
ble system setup overhead.

b. System protected by monitoring values of all
subscripts during execution.

4. Source language communication with programmer--source
statement numbers and identifiers are preserved during
execution.

a. Each variable on output is automatically ident-
jfied with name as well as value.

b. Execution messages identify source language
statements by number and variables by source
language identifier. '

© Ce Automatic dump of final values of simple variables
after termination of execution.

a. Automatic count of frequency of encounter during
execution for each statement or block label.

since 1962 each of these ideas has appeared in other lang-
uages and systems, but CORC remains the extreme case in which
they are all combined in a single system. CUPL preserves all of
these characteristics of CORC with an even simpler syntax. CUPL
also includes significant additions:

1. Dynamic allocation of storage to arrays.
2. Direct matrix algebraic operations.
3. Provision for dynamic execution tracing.

CUPL has been implemented in a much smaller memory (65K bytes)
than CORC and can be multiprogramned with other processes in a
larger memory. The error correction is more ambitious and
effective and the compiler reconstructs source statements to
display the effect of corrections rather than describe the
correction. Superficial changes in syntax were made to incline
CUPL toward PL/I rather than the Burroughs implementation of
Algol~-58 upon which CORC was based, but CUPL is not a strict
subset of PL/I and the similarity to CORC is unmistakable.

CUPL Source Langquaqe Syntax

The following is a brief description of the CUPL syntax.
This is intended to illustrate the simplicity of the language and
not serve as a precise definition (a full BNF description is
available). For meta-language let:

Vie V20 eee
e;' €29 vee
Tle X271 oo
81y 829 oo
label
[

be variables (scalar, vector, or matrix)

be well-formed arithmetic expressions

be relational operators (=, GT, GE, LE, LT, NE)
be statements)
be a statement label

indicate an optional syntactic element.

There are eight types of executable statements in CUPL:

(1abel]
{label]
[label}
tlabell
[label]
[label]

{lahel)
{1abel)
{label]}

{label)

LET v=e

GO TO label

READ Vi, V24 eoe

WRITE V), Va2, s+ , 'literal message', ...
STOP

IF e; ry; e; [AND ej3 r2 e,] [OR es ry 3¢}
[THEN sqd [(ELSE s;]

ALLOCATE v; (e;, e2), va(e3), ...

PERFORM label (e TIMES]

PERFORM label WHILE e; r; ez [AND @3 ra eyl
[OR es ry egl

PERFORM label FOR v = @; TO e [BY e3)

5
A dynamic monitoring of value assignment is provided by a ninth
statement type!
[label] WATCH v; V2, se»
For each of the variables listed this causes an appropriate message
to be printed the next ten times that a value is assigned by either
a LET or a READ statement. Comments that are to appear only in the:
source listing are given as:
COMMENT literal message
An essential feature of the CUPL syntax is the block structure.
Sequences of CUPL statements can be designated as a block by de-
1imiting them with the words BLOCK and END with matching labels.
For example:
TERM BLOCK
LET VAL3 = VAL3/X
LET SUM = SUM + VAL3
WRITE SUM, VAL3, X
TERM END
A block can be located anywhere in the program--inserted
between any pair of consecutive statements--without affecting the
execution of the program. The block is skipped when encountered
in the course of sequential execution and is entered (called) only'
by means of a PERFORM statement:
PERFORM TERM ...
As a matter of form a block is often placed directly following its
controlling PERFORM statement but this is not necessary and, since

two or more statements can refer to the same block, it is not al-
ways possible. Some programmers perfer to collect all blocks in
a common position in the program.

This block structure is peculiar to CUPL and we believe that
it makes an important contribution to the simplicity of the lang-
uvage. This single construct provides both iteration control
("DO loops"), and a rudimentary procedure and subroutine capability.
Although some tasks are awkward (multiple arguement subroutines)
and there is some extra writing (BLOCK line when the block immediavely
follows the controlling statement) the concept is easily understood
and easily followed in post-mortem., The redundancy is put to good
use in error analysis and corxrection.

Matrix Algebra

A significant feature of CUPL is the ability to program
directly in terms of arrays rather than in terms of the individual
elements of arrays. This means that one can use vector and matrix
notation, in a reasonably natural and familiar way, in computation,
logical conditions and input/output operations. Although this
ability is still somewhat unusual in programming languages we be-
lieve that it is entirely consistent with CUPL's form and intent.
Modern undergraduate mathematics is making increasing use of
linear algebra and trying to lead atudents to think in terms of
arrays and array operations. A computing language should not re-=
quire the student to redefine each of these operations--element by
element with nested blocks--each time that it is used. The only
difficulty with .is feature of CUPL seems to be that the ease of
use and the execution speed advantage attracts experienced users-=
who then object to certain other characteristics of the systen.

Although a serious effort was made to.make CUPL a compatible
subset of PL/I, the definition of array operations was one of
several areas in which the price of compatibility was judged to
be excessive. CUPL adopted the normal definitions of linear al-
gebra rather than the element by element operations of PL/I. The
arithmetic operations ané functions are described below. 1In
this description A and B represent matrices (or matrix-valued
expressions), aj4 and big are individual elements, and ap, ac, br
and bg designate the number of rows and columns of A and B re-
spectively. § represents a scalar-valued expression; s is its
current value. Conformability conditions for each operation are
given after the symbol "CcC".

1. A ¢ B is the matrix C defined by cij - aij* bij‘

CC: a, = bz. ’c - bc‘ C is also a, xa..

2. S*A or A*S is the matrix C defined by cij - saij.
CC: none. C is also a, X a.. Following standard notation,
-A is allowed as a substitute for (~1)*A and A/S as a substitute

for A*(1/5). a
c
3. A*B is the matrix C defined by °ij ‘ikbkj'

CC: L b . Clis a, x b .

4. AhS(A) is the matrix C defined by Cyy ™ 844

CC: none. C is also a, x ag.

5. TRN(A), the transpose of A, is the matrix C defined

by c1j ji‘ CC: none. C is a, xa.

6. TRC(A), the trace of A, is a scalar whose value is
3
i-xail. CC: a, = a,.

7. SGM(A) is a scalar whose value is the sum of all the
elements of A. CC: none. :

8. DET(A) is the determinant of A, a scalar. CC: a, = a,.

9. INV(A) is the inverse of k: CC: a, = a,. C is also

10. DPT(A,B), defined only when A and B are vectors, is
a

the scalatit a1 g CC: L bc =1, a, = br o

11. MAX(A,S,B,...,Z) is the maximum of the current values
of all the scalars and all the elements of all the arrays in
the list A,S,...,2. CC: none. :iIIN(.....) is defined similarly
for the minimum value.

12. P@SMAX(A) gives the position of the maxinum element of
A . P@SMAX(A) is the positive integer designating the row of A
in which the maximum element occurs.* If the maximum appears in
more than one row then the value of P@SMAX(A) is the smallest of
the possible row subscripts. PPSMIN(A) is defined similarly.
CC: none. ‘

8
Array expressions can be used in the conditions employed

in the IF and PERFORH...WHILE statements. The relations are
defined in the usual way:

A = B means ‘ij - bij for all pairs i,j.
A NE B means aij d bij for at least onc pair 4,jJ.
<

A LE B means ‘ij bij for all pairs i,j.

-
A GE B means ayy - bij for all pairs i,j.

an
o

A LT B means ‘13 13 for all pairs i,j and

a1j < bij for at least one pair i,j.

v

A GT B means ‘ij - bij for all pairs i,j and

a; > by for at least one pair i,J.

In each case the conformability conditions are a, = bt v ag

Arrays can be used directly in input and operation operations.

The statement :

READ A, B, ...
will read the elements of A from the data-list assuming that they
are in row by row order, followed by the elements of B, etc.
The statement

WRITE A, B, ...
will print the elements of A in row by row order. Each row begins
.a new print line (with a maximum of five elements per line) and
is appropriately labeled.

-bc.

® These functions are usually used with vectors, for which
the row subscript determines the position. ?o locate both row
and column in a general matrix one can use

LET RPWMAX = P@SMAX (A)
LET CPLMAX = P@SMAX (TRN (A (RFWMAX,*)))

U/

9

In any of these contexts one can refer to an entire array, an
individual element, or a particular row or column, subject only to the
conformability requirements of the particular operation being per-
formed:

A represents the entire array
A(I,J) represents a particular element
A(*,J) represents the Jth column of A
A(I,*) represents the Ith row of A.

IDN is used to represent the identity matrix. This is automa-
tically adjusted to whatever size is required by the context in
which it appears. i

A matrix with all elements of equal value can be produced by
giving a constant on the right of an assignment statement. For

example,

LET UNIT = 1
assigns the value 1 to cach of the elements of UNIT. This special
type of assignment statement, and the identity matrix are the only
cases where dimensions are automatically managed by the system. In
general it is the programmers' responsibility to dimension his
arrays so that all expressions are meaningful and conformable. This
is, of course, a requirement of linear algebra and not a peculiarity
of CUPL. CUPL monitors conformability conditions during execution
and notifies the programmer of any lapses. CUPL then modifies di-
mensions to achieve the required conformability and execution pro-
ceeds. Continuation is in the hope of yielding additional diagnostic
information; there is little chance that the computational results
will be what the programmer intended.

ey -

10

Dynamic Storage Allocation

CUPL makes the assignment of storage space to arrays when an
ALLOCATE statement is encountered during execution of the program,
rather than during compilation. This makes it unnecessary to draw
the distinction for the student between execution-controlling ‘state-
ments” and compiler-controlling "declarations”. Iiore importantly,
this permits the dimensions of arrays to depend upon the results
of calculations and/or external data, and for the dimensions to
éhange during execution of the program. This allows the use of
data-directed routines such as the following:

READ N

PERFORM CYCLE N TIMES
CYCLE BLOCK

READ I, J

ALLOCATE PRIMARY(X,. I+3), SECOND(J)
. PERFORM MATRX4
CYCLE END

STOP
MATRX4 BLOCK
etc.

It is also true, although of incidental importance for CUPL, that
dynamic allocation permits efficient use of memory since all arrays
do not have to be carried simultaneously and at the maximum dimen-
sions that are needed at any time during execution. Dynanic alloca-
tion permits arrays to be expanded and contracted according to
immediate needs. *

aInitial allocation of an array sets all its elements to 0.
Subsequent reallocation of the array preserves values of elements

common to both allocations, and zeros elenents outside this range.

11

It is considerably more difficult to implement a dynamic storage
management system but it is characteristic of CUPL that the procecssor
be taxed more heavily than is usual in order to spare the new pro-
grammer having to learn at what stage different classes of action
are performed.

Input and OQutput

Input and output functions, which often seem to consume in-
structional effort quite out of proportion to their significance,
are a fruitful area for simplification in a limited-objective lan-
guage. The CUPL communication statements are quite restrictive but
are exceedingly simple to use. The only input to the system is a
sequence of source card images, controlled by the READ statement;
the only output is a sequence of printer line images, controlled by
the WRITE statement. In both cases format is implicit in the system.

The WRITE statement:

WRITE X, TOTAL, SQUARE(I,J), P

displays source language names and current values of the listed
variables in a three per line format:

X = 2.50000000 TOTAL = 3.70000000E+12 SQUARE (3,4)=4.56600000

P = 3.23456789
Each WRITE statement begins a new line. The automatic naming of out-
put variables can be supprassed by marking particular variables with
a */". Arbitrary messages can be printed by enclosing the literal
character string in quotes in the variable list. For example:

WRITE X, 'LINE TOTAL=', /TOTAL

might yield the printed line:

X = 2.50000000 LINE TOTAL = 3,70000000E+12
The line format is simply six 20 character fields. Each element--
name or value--occupies one field and literals are assigned one or
more fields depending on their length. If labeled output is specified
== X,Y,Z == three names and three values fill a line. If unlabeled

[, .)

12

output is specified -- /X,/Y,/Z, ... == Bix values can appear on a
line. The two modes can be intermixed arbitrarily. (The system
automatically prevents the name and value of a single variable from
being separated by the end of a line.) The commas between variables
on the WRITE list, like almost all CUPL punctuation, are not really .
necessary. A blank space is adequate. However, two or more adja-
cent commas on the list indicate an empty position on the list and
cause one or more fields to be skipped on the output. It is possi-
ble with this simple structure to produce fairly attractive output
and this ability represents a significant improvement over the
absolute rigidity of CORC.

Any data required by a program is listed after the flag *DATA
following the last statement of the program. This is a continuous
list in which the boundary between cards is of no significance (ex-
cept that individual values cannot be divided over a card boundary.)
Values may be placed one per card or several per card just so long
as the order is maintained for proper encounter by the READ state-
ments during execution. Values on the list are separated by either
commas or spaces. Values on the list may be provided with the name
of the variable to which the value is to be assigned:

*DATA 7, 13.5, -1.667E+5, X=4.5, 444, NEUBASE= 9
When such a name is given the execution monitor checks this against
the variable on a READ list that actually reads this value. The
name on the READ list controls the assignment that is made, but in
the event of disagreement the monitor can issue a warning that there
is surely trouble in the ordering of the data, or in sequence con-
trol in the program.

Arrays can be given directly on either READ or WRITE lists
avoiding the necessity of using nested blocks to load or display

the contents of arrays. In either case a row by row format is assumec.

By writing WRITE ALL at any point in the program the user can
obtain a dump of the current values of all of the simple variables
(not arrays) used in the program. Such a dump is provided automat- .

ically on termination of execution, but it can be requested

)

O

13

as many times earlier as the programmer requires. In the event
of an unnatural termination (time limit, page 1limit, or error
1imit) the system automatically provides a sequence of WRITE ALL
dumps--one inserted after each of thé last twenty statements
executed. The final dump also lists all of the labels (both
simple statement labels and block labels) in the program along
with a count of the number of times each was encountered during
execution. As far as we are aware the provision of this infor-
mation is unigue in CUPL (carried over from CORC) and experience
has shown that it is extremely useful in tracking down errors
in a program. The system also provides a list of the gstatement
numbers of the last sixteen statements executed.

Following the final dump the system automatically lists
the first ten values from the *DATA list. In spite of repeated
advice to do so, many students cannot bring themselves to
echo-print input during the testing of a program and it is often
impossible to diagnose difficulty without positive information
as to just what was received by the early READ statements.

Error Correction in CUPL

In the detection of program errors CUPL differs from other
processing systems only in degree, but once discovered, its
treatment of errors is radical. This can be summarized in the
following way:

1. The compiler transforms every source program into

syntactically perfect form.

2. Every program reaches execution phase.

3. Execution is aborted only when time, page or error
count limits are exceeded and not by individual events.
(These limits are set by the header card for a batch
run and can be easily varied.)

14

The idea is simply to keep the process going as long as possible
to obtain maximum diagnostic information. By breaking the

“one bug per pass" pattern one can significantly reduce the
average number of job submissions required to achieve successful
execution. Prolonging the life of a moribund program night
appear to be wasteful of machine time, but based on experience
with CORC we believe that the reduction in the average nunber

of passes per job more than offsets the increase in the average
per pass. Even if that were not the case the improved service to
the user might well be worth the expenditure of additional machine
time.

Of course the value of information obtained by continuing
the process after encoutering a serious error depends in large
part on the plausibility of the repair effected. We believe
that CUPL represents a constructive demonstration that plausible
repairs can be made in a useful proportion of difficulties. We
have been cataloguing student prograrming errors for five years
and refining our correction technigues over that period so that
CUPL has some fairly interesting abilities. CUPL Zoes not
represent a general theory of error correction; its ability is
the aggregate of several hundred ad hoc techniques.

The CUPL compiler is logically divided into two sections.
The first transforms the source language program into a syntact-
ically perfect intermediate language. The seconé assures Sya-
tactically perfect input and produces object codes. These sections
are very cleanly divided so that refinement of the repair tech-
niques of the first section can continue witnout affecting the
body of the compiler.

The major limitation in the present strategy of repair is
that, with only a few exceptions, it is based on a single scan
of the source program. In many cases more plausible repairs
could be made after a multiple-pass scan but this greatly
complicates and slows the processor ané we rationalized our
laziness with a "diminishing return® argument.

)

15

When one or more errors are encountered in a statement and
the scanner introduces corrections into the intermediate language
a 'reverse translation” routine is triggered that reproduces a
source language statement equivalent to what has been produced in

intermediate forr. Comparison of the card image and the corrected -

form usually suggests the nature of the error. In case this is
not sufficient information the specific errors are indicated at
the right side of the page, with a numbering system coded to ex-
planatory paragraphs in an appendix of the CUPL Manual. The pro=-
gram listing appears as follows: (Line numbers are provided by
the system and do not appear on the cards).

LINE LABEL STATTUENT ERRORS
0001 READ A, B3, BASE
0002 TEST IF BASE LE 16 THEN GO TO LOW
0003 CUM = B3**aA
ERROR IN 0004 LET SUil = BASE + 7
CUPL USES 0004 LET SUM = BASE + 1
ERROR IN 0005 _ TEST READ X, /ANGLE 52,05
CUPL USES 0005 READ X, ANGLE
0006 GO TO ALVANCE .
WARNING 0007 PERFORM COMP A TIMES 04
ERROR IN 0008 LET X -A + B3 11
CUPL USES 0008 LET X = -A + B3
ERROR IN 0009 LET X = /23 01,12,70
CUPL USES 0009 LET X = 1
ERROR IN 0010 PASS X ~-A 01,02
CUPL USES 0010 PASS (NO OPERATION IS PERFORMED)
ERROR IN 0011 PRINT X, ANGLE 70
CUPL USES 0011 WRITE X, AJGLE

Several observations about CUPL corrections can be made from this
example:

a. CUPL stands ready with the constant “1" to complete or
replace damaged arithmetic expressions.

16

b. 1In some cases, such as the inaccessible statement in
line 0007, CUPL will warn the programmer of a construc-
tion that is apparently pointless although syntactically
correct.

c. The redundancy in the CUPL syntax is used by the sys-
tem to try to reconstruct statements. For example, ;
an assignment statement can survive with either the
word "LET" or the operator "=" but CUPL will not try
to make an assignment statement out of a construction
that lacks both.

d. When a particular statement is beyond CUPL's compre=
hension (for example, line 0010) it is replaced by
a null statement. This statement is still counted
in execution and, if provided with a label, can still
be a target for transfer.

One of the more interesting corrective abilities and one which
not infrequently manages to restore a program to what the author
really intended is the procedure for maintaining the distinction
between label names and variable names. An identifier in CUPL can
represent either a variable, a statement label or a block label, and
although there are strict and explicit rules that a particular iden-
tifier should not be used for more than one of these purposes CUPL
can often keep track of the intent when the rule is violated. In
such cases CUPL creates new identifiers by providing a prefix be-
fore the given name. For example, in the following, “X" is used
initially as a variable, then as a statement label, and finally
as a block label. If the statements referring to the identifier
are otherwise in reasonably good form CUPL can usually keep the
names sorted out:

()

17

LINE LABEL STATEMENT) ERRORS
0001 LIT X =Y + 3
ERROR IN 0002 X PERFORM X UNTIL X GT Y - P(J) 41,07
CUPL USES 0002 $X PERFORM $$X UNTIL X GT ¥ - P(J)
ERROR IN 0003 X BLOCK 41
CUPL USES 0003 $8X BLOCK
ERROR IN 0004 X WRITE X, X, P 05
CUPL USES 0004 WRITE X, Y, P
ERROR IN 0005 X ELD 41
CUPL USES 0005 $$X EIID
ERROR IN 0006 GO TO X 07
CUPL USES 0006 GO TO $X

Logically the most difficult of CUPL correction efforts is
with respect to the block structure of a program. CUPL attempts
to make sure that block labels are always present in matched pairs
{on BLOCK and END lines) and that blocks are always closed in the
opposite order of their opening. For example,

LINE LABEL © STATEMENT ERRORS
0001 Bl BLOCK
0002 B2 BLOCK
0003 B3 BLOCK
ERROR IN 0004 B2 END ’ 4C
CUPL USES 0004 B3 D :
ERROR IN 0005 B3 END 4C
CUPL USES 0005 B2 END
ERROR IN 0006 END 48
CUPL USES 0006 Bl END

CUPL assumes that the most common block location will be directly
after the controlling PERFORI statement and reconstruction is
biased toward this form. The single-scan strategy becomes a prob-=
lem in this regard. CUPL cannot assume that a block always follows
a PERFORM statement so that by the time an END line is encountered
and it is clear that a BLOCK line was omitted the orinted li§;inq
is irretrievable. CUPL can patch the object code to insert a
BLOCK line but it cannot get it on the listing in the proper place.
Error code 45 indicates this type of difficulty:

18

LINE LABEL STATEMENT ERRORS
0001 PERFORM BA
0002 READ X, Y, Z
WARNING 0003 BA END 45
0004 PERFORM BB
CUPL USES 0005 BB BLOCK 4B
ERROR IN 0006 BB READ X, ¥, 2 42
CUPL USES 0006 READ X, Y, 2
0007 BB ELND
ERROR IN 0008 DO BC 70
CUPL USES 0008 PERFORM BC
0009 READ X, Y, 2
ERROR IN 0010 EUD : 45,47
CUPL USES 0010 BC END

CUPL also undertakes a certain amount of spelling correction
for both reserved words and identifiers. Toward this end the usage
of each identifier is catalogued as the progranm is scanned. “hen
an identifier is used "unreasonably" (for example, a variable that
appears exactly once in the'program. or appears only on the left
hand side of assignment statements) it is a candidate for the
spelling analysis routine. This routine compares the mis-usec
jdentifier with all other identifiers used in the pregram. If it
is sufficiently similar to one of the others CUPL will equate the

two and declare that

".APPEARS TO BE A MISSPELLING OF AND THE TWO HAVE
BEEN EQUATED"

There are many reasons why this does not always make the prcper
repair, but it rarely makes the program any worse and it succeeds
in just enough cases to make it worth doing.

These examples represent a very small fraction of the error

correction procedures. A better jdea of their scope can be obtained

by scanning the error messages in Appendix D of the CUPL ianual.
However, it is very difficult to really appreciate the effect of
these procedures without scanning the output of randomly selected
student jobs.

19

Implementation

CUPL has thus far been implemented only for IBM 360 Systems.
The progranm is written in 360 Assembly Language. Separate versions
have been produced for DOS and 0S. A minimum configuration of
65,536 bytes of core (F level system) and one 2311 disc is required, .
but many options in configuration can be specified at the time that
the system is generated. The program is highly compartmented so
that all of the instructions that are dependent on either con-
figuration or operating system are segregated into a single super-
visor-control section; none of the primary section of the program
need be touched.

A batch of source programs in the CUPL language appears to
be a single task to DOS or a single job step to 0S. A header card
on the first program calls the CUPL supervisor-control module from
disc. This supervisor retains control until the last program of
the batch has been processed. HNormally all sections of the CUPL
system remain in core throughout the batch run. Object code is
conpiled directly into an area of core not occupied by the system.
User working storage is also a distinct area of core. CUPL monitors
the values of all subscripts during execution so that there is no
way that a user's program can run out of control and damage either
itself or the CUPL system. With this strategy the systems overhead
between jobs is approximately 1 millisecond (on a Model 40) which
is the time required to re-initialize the symbol table in core.
Termination of execution of one program is simply a transfer to
the compiler -- which has been inactive, but is still resident -~
and a new user program is overlaid on the old.

Including the necessary resident modules of DOS the complete
CUPL system occupies approximately 58,000 bytes of core. In an F level

* The system will operate without the disc if the optional scanner=-
overlay is not used.

20

system this leaves the user only 7,500 bytes (or 900 words since
full-word precision is used throughout.) Based on five year
experience with CORC and four months with CUPL this appears to
be adequate for a majority of introductory student programs.
However, when it develops during execution* that additional
core is required CUPL overlays the scanner section of the compiler ~
to make an additional 17,000 bytes available. The system is
thus rather frugal with both time and space. The inactive com-
piler does not block the user from having larger amounts of core
when needed, and the supervisor reloads the scanner between
jobs (approximately 0.1 second) only when this is necessary.
Of course, if more than F level core is available to the system
the overlay and reload are invoked less frequently. The OS
version of CUPL requires a minimum of G level (128K.)

The CUPL system is itself entirely relocatable and reentrant.
It can readily be used in a partition with another processor in
either background or foreground status. Reentracy, of course,
permits a single copy of the system to process several different
source programs in alternation and was provided in anticipation
of a time-shared version of CUPL. A time-shared version will
only require the replacement of the supervisory-control section
and replication of the program status block.

System Performance

It is difficult to give precise and meaningful statistics
of operating speeds but the following should give a rough idea
of capability. Running on a 360 Model 30 with a 2540 card
read/punch (1000 cards per minute) and a 1403-N1 printer (1100
lines per minute) the scanner is limited by the card read speed
for error-free input. (Statements containing an error cause
two print lines and a space and the printer is momentarily

* Note that the dynamic dimensioning of arrays means that
core requirements ars not known to the system until
execution ;ime.

)

U/

21

1imiting.) The generation of object code for typical (50-100
statement) programs takes place as the printer indexes to a new
page to prepare for execution output and there is rarely any
apparent pause. Execution time, of course, depends upon the
particular program but is rather typically limited by the
printer.

We have done more careful timing on a Model 40. Running
in a tape-to-tape mode to eliminate reader or printer restriction
the scanner is capable of something over 4000 statements per
minute. Running as a tape~to-tape background partition behind
DOS E level FORTRAN with the reader and printer assigned to
FORTRAN there is no apparent degradation of FORTRAN performance==
the WAIT light burns less brightly than usual.

Cornell is installing a Model 65 in October. with suitable
blocking of input and output we expect a scan speed of more than
30,000 statements per minute on that machine.

The various forms of monitoring cause CUPL to execute more
slowly than FORTRAN. The magnitude of the difference depends
greatly on the type of program. The minimum is a penalty of
approximately 25%; the worst possible case is a progran that
consists entirely of doubly-subscripted variables. Subscript
monitoring will cause such a program to run at about one-eighth
FORTRAN speed. However, we question whether this represents a
serious disadvantage for the system since the existence of the
matrix operations in CUPL makes much of the use of subscripted
variables obsolete. The matrix operations are not only much
more natural for the programmer, but they mean a substantial
reduction in the number of source statements and a significant
improvement in execution time. For example, for a program
that consisted entirely of the repeated multiplication of two

22
ten by ten matrices, the following execution times were obtained
on a Model 40:

E FORTRAN (using subscripts) 0.54 seconds per multiply
CUPL (using subscripts) 4.76 seconds per multiply
CUPL (using direct matrix mult) .22 seconds per multiply

CUPL_vs WATFOR

The arqgument as to whether CORC's source language simplicity
and tolerant processing were adequate compensation for the fact

that it was not a subset of FORTRAN was to a great extent irrelevant.

The efficiency of batch processing with a core-resident system
reduced by a factor of about ten the total time required to process
student jobs. It permitted Cornell to embark on ambitious in-~
structional programs and to adopt very liberal procedures with
respect to undergraduate use of the computer. It was more than
three years after the intzodgction of CORC before core-resident
FORTRAN systems became available for the 1604.

Whereas one might have expected that the transition from
tape to disc residence for systems would have essentially elimin-
ated inter-job setup time, and made core-resident systems un-
necessary, quite the opposite has occured. Increased demancs
on operating systems (and perhaps something less than optimal
implementation) have resulted in incredibly large inter-job
overheads. FORTRAN times for null-jobs of as much as 100 seconds
are experienced by many small 360 installations. Effectively
this means that unless such machines use a core-resident processor
(and none is supplied by the manufacturer) they are not really
very useful in an educational environment.

Since by now there are a number of core-resident systems
one can have both efficiency and FORTRAN. A 360 version of
WATFOR offers almost-compatible FORTRAN IV and other systems

23

wlll undoubtedly appear. WATFOR also offers substantially better
diagnostic assistance than standard FORTRAN processors.
CUPL and WATFOR appear to be roughly comparable in speed
of both compilation and execution. CUPL has some minor advantagest
1. CUPL requires less core. It will operate on an F level -
machine (65,536) where WATFOR requires G level
(131,072). In these sizes CUPL will accomodate a program
of approximately 350 statements; WATFOR about 200. CUPL
overlays the compiler as required; WATFOR is permanently
resident. These figures affect not only the size of the

minirum operable system but also the necessary partition
gize in a multi-programming system.

2. CUPL error detection, correction and execution monitoring
{s much more extensive.

3. Matrix algebra and dynamic storage allocation are not
available in WATFOR.

4. CUPL is somewhat more contemporary in form. Its
relocatability makes it more adaptable to multi-prog=
ramming; its reentrancy makes it adapatable to time-
sharing supervisors.

Many people would probably prefer a relocatable, reentrant,
error-correcting FORTRAN IV with matrix algebra that would operate
in 65K (or less) of core but so far none has been announced.
Actually we do not see cupL and WATFOR as being directly compet=-
jtive. WATFOR is an efficient way to run small FORTRAN programsj
CUPL is an approach to introductory instruction. Cornell will
use both processors. Many of the students who are introduced to
computing through CUPL will graduate to FORTRAN and many of their
PORTRAN programs will be processed through WATFOR.

24

CUPL in a Large-Scale Computing System

Cornell will provide CUPL processing on a 360 lModel 65
running under HASP. Initially the system will be oriented to
remote-job-entry and remote-output-delivery with bulk-core
time-sharing due in mid-1968. The principal terminals in the
system will be modified 360 Model 20's serving as card reading,
line printing stations. With minor modifications the priority
system under HASP will serve to batch jobs for CUPL and for
WATFOR internally. Plans are to run a batch of CUPL and WATFOR
jobs every ten or fifteen minutes. If necessary long-running
production jobs will be checkpointed and rolled-out of at least
one partition of core to permit the maintenance of this schedule.
We estimate that one second of 65 CPU time spent on CUPL will
generate three to four minutes of work for a basic Model 20
terminal. Although there will be a number of Model 20 terminals
operating simultaneously it is obvious that the CPU demands
for CUPL will be very modest.

The entire Cornell system (not just CUPL) will operate
under a special job control lanquage. This has an exceedingly
simple structure and a tolerant, error-correcting scanner. It
is intended to serve the needs of a large majority of users,
but those who require greater flexibility can easily penetrate
this language to obtain full 0S facilities.

The system includes a special data management section
outside of 0S. This will permit CUPL and WATFOR users to have
on-line storage of programs and data-sets and powerful editing
ability in a simple and machine-efficient manner. We believe
that this is crucial. A modern student-oriented system must
offer on-line storage and unless this is done very simply and
efficiently much of the advantage of core-resident processors
will be negated.

25

The intent is to provide a remote-access, fast-turnaround
system with on-line storage and editing for very large numbers
of students with a minimum consumption of central facility capacity.
The lack of split-second interactive caéability for student work
will be at least partially offset by the corrective actions of .
the compiler. This is certainly not as glamorous and probably
not as effective as individual interactive terminals, but it
would appear to be an order-of-magnitude less costly for a given
number of students, both in terminal expense and in demand upon
the central facility. It could be regarded as an interim system
until large-scale time-sharing overcomes its current difficulties,
and perhaps even then have a place as a low-cost alternative
to time-sharing. 1In any event it should provide a reasonable and
contemporary standard against which time-sharing can demonstrate
its virtues.

Extensions of CUPL

We have no intention of eventually extending CUPL to become
a general purpose production language. Most of CUPL's virtues
lies in its simplicity and extensive assistance to the programmer
and one or both of these would be lost in achieving the generality
and efficiency that are necessary for a production language.
Five years of experience have shown the present structure to be
suitable for its intended purpose. Moreover we see no real
benefit and some loss in postponing the graduation to a senidr
language for those students who have serious computing problems.

We are working on additions to CUPL that will permit
jintroduction to the concepts of elementary list processing and
simulation. Again this is based on CORC experience.. CLP (2) was
an extension of CORC that provided the basic features of
SIMSCRIPT-type programming, and it proved to be tremendously
useful. Students have been able to understand the essential
concepts in this type of programming without spending a long
time learning the details of a sophisticated list processing
language. The necessary additions consist of structured operands,

26

several list management statements and co-routines (interruptable
subroutines for gquasi-parallel processes.) It appears that this
will require a modification of the CUPL processor, rather than
simple additions to it, and that at least 128K of core will be
necessary. We are also in the process of implementing a

CuPL - like language for instruction in the basic concepts of
business data processing, (5) This has been sorely needed for
some time since production languages in that area are even less
suited for introductory instruction than is FORTRAN for scientific
work. The result is that in a number of (graduate) schools of
business an unfortunate and unnecessary amount of time has been
spent in instruction in this area, but for the large majority

of business students appropriate instruction in these crucial
concepts has not been provided. We are implementing (interpretiv-
ely in 128K) a language that will make it possible to teach the
concepts of files, transactions, access methods and security
problems without making a professional COEOL programmer out of
the student. We expect the language to make it possible for a
group of students to construct and operate an elementary management
information system.

In spite of the arguments of the last section that remote=-job-
entry from high-speed terminals is an appropriate way to serve
large-volume introductory jnstruction a time-sharing supervisor
for CUPL will be produced. This will complerent the existing
supervisor and permit some interesting experimental comparisons
of the two modes of operation. Of course, it may replace the
present supervisor if the pressure for jndividual terminal
computing is jrresitable. The first time-shared CUPL will be
a somewhat unusual system employing twelve-key keyboard telephones
as terminals.(3) Information will be entered from the keyboard
with only one stroke per character. The prograrmed scanner uses
context to eliminate the ambiguity in transmission. A standazd

O

O

27

audio-response unit will be used to provide output.

Distribution and Maintecnance

Cornell is prepared to make CUPL available to anyone
interested in trying the system. The normal distribution medium
is magnetic tape but punched cards can be used. CUPL has been .
in use at Cornell for six months by more than one thousand
students and is reasonably well checked-out. Errors undoubtedly
remain and we intend to distribute periodic updates to anyone
who has received a copy of the syatem.»xnstructional manuals,
coding forms, 35mm slides and taped lectures for the system
are also available. ' ’

July 1, 1967

1.

2.

3.

4.

References

Conway, R. W. and W. L. Maxwell, "CORC--The Cornell Computing
Language,” Communications of ACM, 6 (June 1963),
317-321.

Conway, R. W., J. J. Delfausse, W. L. Maxwell and W. E. Walker,
"CLP - The Cornell List Processor," Communications of ACM,
8 (April 1965), 215-216.

Conway, R. W. and H. L. Morgan, "Tele-CUPL: A Telephone
Time-Sharing System” Communications of ACM * (September
1967).

Conway, R. W. and W. S. Worley, Jr., "Preliminary Description
of the Cornell Operating System for the 360," Office
of Computer Services, Cornell University, Ithaca, New York.

Morgan, H. L., "CUPL-DP, A Language for Introductory
Instruction in Data Processing," Department of Computer
Science, Cornell University, Ithaca, New York (July 1967).

_Walker, Re J., CUPL--The Cornell University Programming
Language, Department of Computer Science, Corne

University, Ithaca, New York (December 1966).

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif

