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This dissertation introduces a relativistic autonomous observation model that 

takes special relativistic mechanics as a baseline and is more general than 

Einstein’s observation model. Next, it presents two autonomous navigation 

methods that build on the relativistic autonomous observation model. These 

methods utilize an onboard star catalog and astrometry and spectrometry 

sensors and estimate astrometric and spectrometric quantities in addition to 

spacecraft position and velocity. A case study investigates the performance of 

both navigation methods in the context of technological details of a near-term 

mission, including certain sources of noise and disturbance in the interstellar 

medium. Results of the case study suggest that these methods are suitable for 

any spacecraft for which relativistic effects are detectable onboard. Moreover, 

the methods’ success in estimating astrometric and spectrometric quantities 

may enable means of updating the star-catalog during the mission and may 

improve the accuracy of our current star catalogs. Finally, the dissertation 

presents a technology-push mission concept for an interstellar dark matter 

explorer mission that the two navigation methods enable. This mission 

concept employs well-understood and space-demonstrated technology of 

several heritage spacecraft. It proposes a new idea to detect deviations in the 

dark matter distribution within the solar system and looks promising even in 
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this early development stage. Overall, this dissertation represents a 

foundational step in the development of interstellar navigation technology and 

interstellar dark matter exploration missions. 
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CHAPTER 1 

INTRODUCTION 

Interstellar space exploration missions 

Over 60 years of space exploration missions have mostly been confined to our 

solar system. So far, only three NASA spacecraft, all launched in the 1970s, 

have departed the heliosphere and have reached interstellar space [1]. Among 

the three, only Voyagers 1 and 2 were still transmitting science data back to 

Earth while doing so over 35 years after they were launched [2]. Both spacecraft 

are still functioning as of June 2022, at 156 and 130 astronomical units (AU) 

from the Sun, respectively [3].  

Our current understanding of interstellar space comes from several sources. 

The Voyagers are still transmitting in-situ data on the magnetic field, low- and 

high-energy charged particles, radio emissions, and hydrogen distribution in the 

outer regions of the solar system [4]. Because of them, we know that interstellar 

space begins at approximately 120 AU from the Sun. Other sources of 

information include telescopes [5–7] and particle detectors [8] that are on or 

near the Earth, analyzing photons and particles that carry information about 

their origins. What we currently lack is more in-situ data from interstellar space, 

particularly related to less-understood physical phenomena or objects such as 

dark matter. 

The idea of dark matter first emerged in the early 20th century due to an 

inconsistency between measurements of velocities of stars in galaxies and 
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galaxies in galaxy clusters: those far away from the center were moving much 

faster than our understanding of gravity predicts. However, this discrepancy did 

not become a central concern until the 1970s, when there was enough evidence 

to support this claim [9,10]. So far, all evidence of dark matter’s existence and 

all information regarding its nature comes from astrometric, spectrometric, and 

photometric observations of celestial bodies or cosmic radiation, and 

gravitational lensing measurements [10–13]. Much of this evidence can be 

summarized with a few words: dark matter is massive, it does not interact 

electromagnetically, and it represents approximately 85% of all the matter in the 

universe [14]. 

Currently, there are many terrestrial or near-Earth efforts to search for additional 

information about dark matter using different techniques. These techniques look 

for dark matter directly or indirectly. Direct methods look for interactions of 

ordinary matter with dark matter, such as dark matter particles’ elastic scattering 

on atomic nuclei [15]. Meanwhile, indirect methods try to find products of dark 

matter due to its interaction with itself or ordinary matter. Indirect methods either 

try detecting these products directly [16] or look for discrepancies in the results 

of collider experiments [8]. So far, none of these methods has yielded conclusive 

results. Not being able to understand such a fundamental part of our universe, 

especially one that has strong connections to its current structure and evolution, 

is a priority for the science community, even included in the 2020 Decadal 

Survey on Astronomy and Astrophysics [17]. 
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The way to understand dark matter may lie in Einstein’s equivalence principle: 

physics in an accelerating frame is locally indistinguishable from physics in a 

gravitational field [18]. Recent simulations [19] and observations [12] suggest 

that the Milky Way may have an uneven distribution of dark matter. A spacecraft 

designed to detect acceleration could sense the gravitational effects of nearby 

dark matter. However, until now, no solar system exploration mission that 

explicitly measures acceleration sensed these effects. The most likely reason 

of this lack of evidence is that the gravitational acceleration due to the Sun and 

other massive bodies in the solar system is much greater than that of dark 

matter. Another likely reason is that no spacecraft was specifically looking for 

these effects [20]. Therefore, a space exploration mission aiming to detect dark 

matter needs to employ spacecraft located far enough away from ordinary 

matter’s gravitational interactions within the solar system. 

Sending a spacecraft far from the solar system’s gravitational influence and 

returning science data within a human lifetime requires spacecraft to travel at 

speeds much greater than what today’s interstellar spacecraft achieve. To 

illustrate this fact, consider a mission to long-period comets with aphelia at about 

50,000 AU [21]—a mission consistent with the science priorities in the 2022 

Planetary Science and Astrobiology Decadal Survey [22]. The greatest speed a 

spacecraft can attain with our current technological capabilities is 40 AU/yr, 

which is the speed Parker Solar Probe will reach in 2024 [23]. Even at this 

speed, reaching 50,000 AU would take 1,250 years. 



4 

There are many technological obstacles that must be overcome before 

spacecraft can travel fast enough to realize missions to 50,000 AU and beyond. 

Most of these obstacles are related to the state of the art in propulsion and 

energy storage technology [24]. Multiple research groups are interested in 

solving these challenges [25–27], including Breakthrough Initiatives—a multi-

million-dollar program searching for extraterrestrial life. Their Breakthrough 

Starshot project [28] is looking to send 2.5-gram chip satellites [29,30] to 

Proxima Centauri at 20% of the speed of light, accelerated with beamed power 

propulsion [26,31]. A more near-term example of a 10-kg spacecraft with the 

same propulsion design reaches only to 2% of the speed of light at the edge of 

the solar system [31]. Future propulsion techniques such as this one could 

enable a mission that measures the dark matter distribution in the outer regions 

of the solar system in the near future.  

Deep space spacecraft navigation and the state of the art  

Navigation of spacecraft refers to the estimation of, at a minimum, the position 

and velocity of the spacecraft in some useful frame of reference. State-of-the-

art navigation algorithms for deep space missions (farther than the Moon) are 

either Earth-based or autonomous. Earth-based algorithms, as the name 

suggests, use technology located on Earth in tandem with those on spacecraft 

to estimate spacecraft’s location. Autonomous algorithms, in contrast, navigate 

using only the sensors onboard the spacecraft. 
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State-of-the-art Earth-based algorithms for deep space navigation employ 

radiometric measurements and NASA’s Deep Space Network (DSN). Examples 

of these techniques include round-trip time-of-flight and Doppler-shift 

measurements of signals between Earth and the spacecraft. Another example 

is Very Long Baseline Interferometry (VLBI), which utilizes radiation emitted by 

extragalactic astronomical objects and locates the spacecraft by comparing the 

signals as received by the spacecraft and the DSN. One final example is Delta-

Differential One-Way Ranging, which calculates the time difference between 

arrival times of two ranging signals departing two distinct antennas. This time 

difference is filtered to provide a relative distance [32]. These techniques are 

flight-proven, and therefore most space exploration missions today utilize them. 

Only two deep space autonomous navigation algorithms are flight proven. The 

first is AutoNav, used in many deep space comet and asteroid, flyby and 

encounter missions by NASA. This algorithm tracks nearby objects using optical 

sensors to navigate [33,34]. The second is XNAV, designed as a deep-space-

suitable navigation algorithm that was demonstrated as a part of NASA’s NICER 

mission on the International Space Station [35,36]. The XNAV algorithm uses 

X-ray emissions from pulsars to locate the spacecraft. In addition to these 

demonstrated technologies, there are several other autonomous navigation 

algorithms based on Newtonian mechanics in development [37–43]. These 

algorithms may be suitable for deep-space use and may become flight-proven 

in the near future.  
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Inadequacies of the state of the art for interstellar missions 

None of the navigation technologies summarized above are adequate for a 

future interstellar space exploration mission for two reasons. First, any method 

with Earth in the loop gets affected by geometric dilution of precision [44] and 

time delay. These factors compromise accuracy to the point where navigation 

performance is inferior beyond the heliopause. Second, treating relativistic 

effects as perturbations to Newtonian physical laws introduces calculation 

errors that significantly worsen as the spacecraft speed increases.  

In addition to these challenges, the interstellar medium (ISM) may alter the 

trajectory of spacecraft unexpectedly. Using an open-loop navigation method is 

inadequate in interstellar space while it stays as an uncertain environment. To 

justify these claims, consider again the mission example to 50,000 AU. For the 

purpose of this example, the spacecraft travels at 2% of the speed of light to its 

destination, similar to the 10-kg spacecraft in [31]. 

Why Earth-based navigation does not work for this mission: From 50,000 AU, 

the Earth subtends roughly 1.7 nrad (0.35 mas). The state-of-the-art astrometry 

mission Gaia’s angular resolution is in µas range [45], and the state of the art in 

spacecraft pointing is in the μas range [46]. Then, a spacecraft could 

successfully resolve Earth and point at it. However, the 50,000 AU distance 

would delay the information sent from the Earth to the spacecraft by over nine 

months. Such a delay would prevent Earth-based closed-loop navigation. 
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Why autonomous navigation based on Newtonian mechanics does not work for 

this mission: If the spacecraft is traveling at 2% of the speed of light, the 

relativistic time dilation results in about 17 s/day difference in travel time as 

reckoned on the spacecraft. If the speed is increased by a factor of 10, this time 

difference increases by a factor of 100. In comparison, the error experienced by 

GPS satellites due to effects of special and general relativity is around 38 µs/day 

[47]. These effects would cause a Newtonian algorithm to be inaccurate. 

Why an open-loop method does not work for this mission: 2% of the speed of 

light is high enough for the ISM particles to collide with the spacecraft, lower its 

velocity, and raise its potential [48]. As a result, the charged spacecraft may 

slow down and deviate from its trajectory due to the interstellar magnetic field, 

which has some unknown strength and orientation. In this mission example, 

even a 1° shift in trajectory would cause a transverse deflection of over 800 AU 

for a 50,000 AU journey. Moreover, there could be other, unexpected sources 

of disturbance in the ISM, and an open-loop method could be further infeasible.  

In conclusion, state-of-the-art deep space navigation technologies are 

inadequate for fast, interstellar spacecraft. Viable solutions to this problem are 

either using an autonomous navigation method that includes relativistic 

perturbations or designing autonomous navigation methods based on relativistic 

mechanics. Both approaches can solve the aforementioned issues and enable 

interstellar missions at relativistic speeds. 
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Literature review: relativistic observations 

Essential work on observations on relativistic spacecraft started in 1905 with 

Einstein’s special theory of relativity. Einstein’s famous article [49] describes the 

relativity of lengths and times as functions of motion and derives the 

transformation between two distinct inertial reference frames that move with 

some relative velocity. A consequence of these transformations is that 

electromagnetic radiation emitted by an object may appear to have a different 

direction and wavelength/frequency/energy to a moving observer or apply a 

different radiation pressure on a moving reflector.  

Einstein’s relativistic aberration law and relativistic Doppler shift principle, in 

combination with the work-energy principle, describe how the approach angle 

of a photon and its wavelength change with relativity [49]. In 1916, Einstein 

generalized the special theory of relativity to include curved spacetime and 

gravity and named it the general theory of relativity [50]. The literature on 

relativistic observations focuses on different interpretations and reformulations 

of these two theories and describe either entirely relativistic observations or 

relativistic perturbations to Newtonian observations. 

Entirely relativistic observations 

In 1964, Oliver calculated that a set of stars uniformly distributed on a sphere 

appears as a prolate spheroid to a spacecraft traveling relativistically, with the 

spacecraft at one focus [51]. In 1991, Klioner developed a general relativistic 

observation model for VLBI [52]. Turyshev, in 1996, derived equations for more 
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general relativistic observables [53]. In 2019, Yücalan and Peck extended 

Einstein’s special relativistic equations to describe the observed quantities in 

vector form, in terms of position and velocity vectors of the observer and the 

approach direction of the photon [54].  

Relativistic perturbations to Newtonian observations 

In 1992, Klioner and Kopeikin derived general relativistic corrections to time and 

astrometric observations [55]. In 2010, Felice et al. described the general 

relativistic corrections to radial velocity for measurements of the Gaia spacecraft 

[56]. Schuh and Behrend, in 2012, discussed special and general relativistic 

corrections to VLBI observations [57]. In 2014, Hees et al. discussed 

computation of up to second-order relativistic perturbations to time and 

astrometric and spectrometric observables [58]. In 2015, Titov and Girdiuk 

presented an alternate formula for calculating gravitational time delay in VLBI 

measurements [59]. 

Literature review: relativistic interstellar navigation 

Conversely to the discussion above, astrometric, spectrometric, photometric, 

etc. measurements of photons by a moving observer may provide insight into 

the position and velocity of the observer. Accordingly, in 1975, Hoag and 

Wrigley suggested that an interstellar mission likely needs to measure angular 

directions to nearby and distant stars, Doppler shifts in the observed stellar 

spectra, changes in the stars’ brightness and angular size, and even utilize an 

Earth beacon and several beacon stars, where appropriate, to be successful 
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[60]. Later, in 2012, Semyonov derived relativistic equations of motion and 

reiterated the necessity of astrometry and beacons in autonomous navigation 

of relativistic spacecraft [61]. The literature on relativistic interstellar navigation 

focuses on these observables and uses either entirely relativistic observation 

models or models with relativistic perturbations. 

Methods based on entirely relativistic observation models 

In September 2011, Calabro developed an autonomous navigation algorithm 

that uses astrometric measurements of quasars [62]. Bitetto, also in September 

2011, described a method that uses high-frequency beacons signals to navigate 

[63]. In 2012, Tartaglia developed another navigation algorithm that employs 

both artificial and natural beacons [64]. In March 2019, Yücalan and Peck 

presented a relativistic autonomous navigation algorithm that calculates a 

spacecraft’s position and velocity vectors from astrometric and spectrometric 

star observations, as well as the distances to observed stars [54,65]. In May 

2019, Zhu et al. proposed a solution to estimate a relativistic observer’s position 

by measuring the angular directions to three point sources [66]. In September 

2019, Christian suggested methods that use Doppler effect and angular 

aberration measurements of three or more stars that estimate spacecraft 

position, velocity, and orbital elements [67]. In January 2021, Yücalan and Peck 

offered an optimal relativistic autonomous navigation filter that estimates 

spacecraft’s position and velocity vectors from repeated observations [68]. 

Finally, in July 2021, Bailer-Jones described a method that compares onboard 

astrometric star measurements to a star catalog [69]. 
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Methods based on Newtonian observation models with relativistic perturbations 

In 1996, Parkinson and Spilker derived special and general relativistic 

corrections necessary for navigation of GPS satellites [70]. In 2001, Bahder 

described the general relativistic corrections to beacon signals [71]. In 2006, 

Sheikh et al. presented relativistic corrections for X-ray pulsar navigation [72]. 

Denisov, in June 2009, derived the general relativistic corrections in the laser 

ranging methods [73]. In July 2009, Li and Ke presented general relativistic 

corrections to algorithms that use pulsar ranging. Finally, in 2013, Hećimović 

described the effects of general relativity on time, frequency, and ranging [74]. 

Contributions and significance of this research 

The contributions of the research presented in this dissertation to the field of 

aerospace engineering are four-fold.  

1. This dissertation derives the relativistic autonomous observation equations,  

which transform the observed stars’ direction vectors and characteristic 

wavelengths from an arbitrary inertial reference frame (e.g., that of a star 

catalog) to the rest frame of the spacecraft.  

2. This dissertation describes a least-squares relativistic autonomous 

navigation algorithm based on the relativistic observation model derived in 

Contribution 1. This algorithm assumes that the spacecraft carries a star 

catalog onboard and can take astrometric and spectrometric measurements 

autonomously. In the end, the algorithm recursively estimates the 

spacecraft’s position and velocity in the star catalog’s reference frame, as 
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well as the distances to observed stars in the spacecraft’s rest frame. A case 

study to Proxima Centauri at 20% of the speed of light assesses this 

algorithm’s performance.  

3. This dissertation describes an optimal relativistic autonomous navigation 

filter in the form of an extended Kalman filter based on the relativistic 

observation model derived in Contribution 1. This filter assumes that the 

spacecraft can take onboard astrometric and spectrometric measurements. 

The filter estimates the spacecraft’s position and velocity, as well as the 

stars’ position, velocity, and characteristic wavelength in some arbitrary 

inertial reference frame. The same case study described in Contribution 2 

investigates this algorithm’s performance. 

4. This dissertation outlines a technology-push mission concept for an 

interstellar dark matter explorer mission that employs the two navigation 

algorithms outlined in Contributions 2 and 3. 

Explicitly, the significance of these contributions are as follows. First, the 

relativistic autonomous observation equations derived in this dissertation are 

more general than Einstein’s angle-based equations. Second, the two 

autonomous navigation algorithms provide a method to estimate spacecraft 

velocity independently from position. Third, the two autonomous navigation 

algorithms estimate astrometric and spectrometric quantities in addition to the 

spacecraft’s position and velocity. Fourth, the navigation algorithms are general: 

they are suitable to use on any spacecraft traveling at any speed between any 

two points, provided the relativistic effects are detectable onboard. Fifth, the 
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interstellar dark matter mission suggests a near-term technology for detecting 

local gravitational anomalies, i.e., dark-matter anisotropy, in interstellar space 

using acceleration measurements. 

Dissertation structure 

Chapter 2 reviews relativistic concepts that inform this research. These 

fundamentals are a point of departure for the algorithm development in 

subsequent chapters.  

Chapter 3 derives the relativistic autonomous observation equations, which 

transform astrometric and spectrometric measurables from an arbitrary inertial 

reference frame to the reference frame in which the spacecraft is at rest 

(Contribution 1). 

Chapter 4 details a least-squares autonomous navigation algorithm based on 

the relativistic autonomous observation model, given onboard astrometric and 

spectrometric measurements, as well as prior knowledge of stellar kinematics. 

This chapter also provides a least-squares navigation algorithm based on 

Newtonian mechanics for comparison and simulates both algorithms under a 

case study (Contribution 2). 

Chapter 5 describes an extended Kalman filter based on the relativistic 

autonomous observation model, given onboard astrometric and spectrometric 

measurements, as well as prior knowledge of stellar kinematics. It then 

assesses the algorithm’s performance with a case study (Contribution 3). 



14 

Chapter 6 describes the details of a near-future interstellar mission that uses 

the navigation algorithms described in Chapters 4 and 5 (Contribution 4). 

Chapter 7 offers a conclusion, framing the research in terms of its promise. It 

does so by revisiting the assumptions and limitations of the research and 

discusses its implications for the field of aerospace engineering. 
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CHAPTER 2 

SUMMARY OF RELEVANT RELATIVISTIC CONCEPTS 

This chapter summarizes special and general relativistic concepts that are vital 

for distinguishing the originality of the work presented in Chapters 3 and 6. More 

information about these concepts is available in relativity texts such as [18,75]. 

Special theory of relativity 

In 1905, Albert Einstein introduced the world to the special theory of relativity 

and its two key postulates. First, in an inertial frame of reference, laws of physics 

take their simplest form. This implies that inertial frames of reference do not 

accelerate with respect to each other and therefore are indistinguishable from 

one another. Second, the speed of light in vacuum is constant and equal to 𝑐 

[49]. Under these postulates, the three-dimensional space and one-dimensional 

time combine into the four-dimensional geometry called spacetime. In 

spacetime, four numbers describe a spacetime point, or an event, 

conventionally ordered as (time, space). Moreover, a particle in spacetime 

travels on what is called a worldline.  

Spacetime diagrams provide a convenient method to illustrate events and 

worldlines. Conventionally, in spacetime diagrams, the ordinate represents the 

time dimension, 𝑐𝑡 (in units of length), and the abscissa represents the space 

dimensions, 𝒙 = (𝑥, 𝑦, 𝑧) (in units of length). Figure 1 gives an example of such 
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a diagram. In the figure, particles 𝒜 and ℬ are traveling on their respective 

worldlines, and the point 𝑃 = (𝑐𝑡𝑃, 𝒙𝑃) describe their rendezvous event.  

 

Figure 1 Spacetime diagram illustrating particles 𝒜 and ℬ, their 

worldlines, and their rendezvous event 𝑃 = (𝑐𝑡𝑃, 𝒙𝑃). 

 

The special theory of relativity characterizes events by the spacetime distance, 

Δ𝑆, between them. Equation (2.1) shows the calculation of the distance between 

two events, where Δ𝑡 is the time difference between the events, Δ𝑥 is the 

distance between the events in 𝑥 coordinate, and so on.  

Δ𝑆2 = −(𝑐Δ𝑡)2 + (Δ𝑥)2 + (Δ𝑦)2 + (Δ𝑧)2 (2.1) 

Notice that the spacetime distance between events is a scalar quantity. 

Therefore, it is independent of the choice of coordinates. In other words, it is 



17 

invariant under coordinate transformations. If Δ𝑆2 is negative, positive, or zero, 

the events are called timelike-, spacelike-, and null-separated, respectively.  

Connecting timelike-separated events forms a timelike worldline. All massive 

particles move on such worldlines. Massless particles (such as photons) travel 

on null worldlines. All possible null worldlines that originate from an event 𝑃 form 

two cone-like surfaces, called light cones. (In four-dimensional spacetime, these 

surfaces are three-dimensional, hence the term cone-like.) Each event has a 

past light cone (pointing in the negative-time direction), and a future light cone 

(pointing in the positive-time direction). Figure 2 illustrates these concepts. 

 

Figure 2 Spacetime diagram illustrating future and past light cones of the 
event 𝑃. Event 𝑃 and events 𝐴, 𝐵, 𝐶 are timelike-, null-, and spacelike-

separated, respectively. 

 



18 

Light cones form the causal structure in spacetime. Thus, no information from 

outside a particle’s past light cone can reach the particle in time, while the 

particle is traveling at a speed that is less than or equal to the speed of light. 

Then, no event outside the particle’s past light cone can somehow change its 

behavior. Similarly, the particle cannot affect events outside its future light cone.  

For example, in Figure 2, event 𝐴 lies within the future light cone of the event 𝑃. 

This means that events 𝑃 and 𝐴 are timelike-separated, and that 𝑃 can affect 𝐴, 

but not vice versa. In contrast, event 𝐶 lies outside of both light cones, and is 

spacelike-separated from event 𝑃. In other words, events 𝑃 and 𝐶 are causally 

disconnected and cannot affect one another. This also implies that 𝑃 and 𝐶 

cannot lie on the timelike or null worldlines of massless or massive particles. 

Finally, events 𝑃 and 𝐵 are null-separated, and information can travel from 𝑃 to 

𝐵 at the speed of light, for example, via photons in vacuum. 

In the four-dimensional spacetime, vectors are called four-vectors, and often 

denoted by Greek-letter superscript indices that run from 0 to 3. A relevant 

example of a four vector is the position of a particle, 𝑥𝜇, where 𝜇 ∈ {0, 1, 2, 3}. In 

this example, 𝑥0 denotes the time coordinate 𝑐𝑡, 𝑥1 denotes the 𝑥-coordinate, 

𝑥2 denotes the 𝑦-coordinate, and so on. Another relevant example of a four-

vector is the wave vector, 𝑘𝜇, of a photon. The wave vector describes the 

angular frequency or wavelength of the photon in the 𝑘0 coordinate, and the 

direction of motion of the photon in the 𝑘1, 𝑘2, and 𝑘3 coordinates. Just like Δ𝑆2, 

norms of four-vectors are invariant under coordinate transformations.  
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Reference frames and their associated coordinate systems in four-dimensional 

spacetime are related by a series of translations, reflections, rotations, and 

boosts (i.e., rotation of the time dimension). The only transformations relevant 

to this work are boosts, and they take the general form in Equation (2.2). In this 

equation, 𝑑𝜇 is a four-vector in some “unprimed” reference frame, and 𝑑′𝜇 is the 

same four-vector, represented in the “primed” reference frame. Equation (2.2) 

then provides the transformation between these two reference frames. In the 

equation, 𝒗 ≜ (𝑣1, 𝑣2, 𝑣3) is the three-dimensional velocity of the primed 

reference frame relative to the unprimed reference frame, and 𝑣 = ‖𝒗‖, 𝑘𝑎𝑏 =

(𝛾 − 1) 𝑣𝑎𝑣𝑏 𝑣
2⁄  for 𝑎, 𝑏 ∈ {1,2,3}; and 𝛾 = 1/√1− 𝛽2 for 𝛽 = 𝑣/𝑐. 

𝑑′𝜇 =

(

 

𝛾 −𝛾𝑣1 𝑐⁄ −𝛾𝑣2 𝑐⁄ −𝛾𝑣3 𝑐⁄

− 𝛾𝑣1 𝑐⁄ 𝑘11 + 1 𝑘12 𝑘13
− 𝛾𝑣2 𝑐⁄ 𝑘12 𝑘22 + 1 𝑘23
− 𝛾𝑣3 𝑐⁄ 𝑘13 𝑘23 𝑘33 + 1)

 𝑑𝜇 (2.2) 

General theory of relativity 

At its core, the general theory of relativity differs from the special theory by how 

it calculates the spacetime distance between two events. It does that by defining 

a symmetric spacetime metric tensor 𝑔𝜇𝜈 . This metric tensor defines a curved 

spacetime, in other words, 𝑔𝜇𝜈  is in general a function of the two spacetime 

positions 𝑥𝜇 and 𝑥𝜈. Under these definitions, Equation (2.1) turns into Equation 

(2.3), which now calculates the infinitesimal spacetime distance, 𝑑𝑆, between 

two points separated by differential distances 𝑑𝑥𝜇 and 𝑑𝑥𝜈. 
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𝑑𝑆2 = ∑ 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈

𝜇,𝜈=3

𝜇,𝜈=0

(2.3) 

Notice that if 𝑔𝜇𝜈  is equal to 𝜂𝜇𝜈  given below,  

𝜂𝜇𝜈 = (

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) (2.4) 

Then, Equation (2.3) takes the form in Equation (2.5), 

𝑑𝑆2 = −𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 (2.5) 

Which is equivalent to Equation (2.1). More simply put, the special theory of 

relativity is equivalent to the general theory of relativity when the spacetime 

metric is equal to 𝜂𝜇𝜈 . This special metric defines the flat spacetime—that in 

which the reference frames are inertial. 

Another important concept of the general theory of relativity is Einstein’s 

Equivalence Principle, which states that locally, a gravitational field and a 

corresponding acceleration of the reference system are equivalent [76]. Here, 

“local” describes a small enough region of the spacetime, depending on the 

spacetime metric. This principle implies that any curved spacetime is locally flat 

or inertial, in other words, all 𝑔𝜇𝜈  is locally equivalent to 𝜂𝜇𝜈 .  

A final important concept is gravitational time dilation, which describes the effect 

of approaching or receding from a massive object on time. Equation (2.6) 

calculates this effect, where Δ𝑡′ is the change in time in the gravitationally 
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influenced reference frame, Δ𝑡 is the change in time in a reference frame that is 

infinitely distant from the massive object, 𝐺 is the gravitational constant, 𝑀 is 

the mass of the massive object, and 𝑟 is the distance from the center of mass 

of the massive object. 

Δ𝑡′ = Δ𝑡√1 −
2𝐺𝑀

𝑟𝑐2
(2.6) 

Reorganizing this equation, we see that the gravitational time dilation between 

two points at distances 𝑟1 and 𝑟2 due to a massive object is calculated by 

Equation (2.7). 

Δ𝑡1
′

Δ𝑡2
′ = √

1 −
2𝐺𝑀
𝑟1𝑐2

1 −
2𝐺𝑀
𝑟2𝑐

2

(2.7) 
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CHAPTER 3 

RELATIVISTIC AUTONOMOUS OBSERVATION MODEL 

This chapter derives the vector transformations of astrometric and spectrometric 

observables between the rest frames of a star and a spacecraft. These 

equations transform vectors to vectors, and reduce to Einstein’s relativistic 

aberration law and relativistic Doppler shift principle given in Equations (3.1) 

and (3.2), respectively [49]. Here, 𝑣 is the spacecraft’s speed, 𝑐 is the speed of 

light. 𝜙 is the angle between spacecraft’s velocity vector and the vector 

connecting the star to the spacecraft in star’s rest frame. 𝜙′ is the same angle 

in spacecraft’s rest frame. 𝜆, and 𝜆′ describe the wavelength of an observed 

photon in these two frames, respectively. Figure 3 illustrates 𝜙 and 𝜙′. 

cos𝜙′ =
cos𝜙 − 𝑣 𝑐⁄

1 − cos𝜙 ⋅ 𝑣 𝑐⁄
(3.1) 

𝜆′ =
𝜆

𝛾(1 − cos𝜙 ⋅ 𝑣 𝑐⁄ )
(3.2) 

 

Figure 3 Einstein’s definition of the variables 𝜙 and 𝜙′ in the relativistic 

aberration law and relativistic Doppler shift principle. 
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Assumptions 

The most abundant objects that are observable with conventional sensors in 

interstellar space are stars. Onboard astrometric and spectrometric 

measurements can provide some information about where stars are relative to 

the observer and how their emission/absorption spectra appear in some range 

of wavelengths. Setting aside the technological specifics of cameras and 

spectrometers, this derivation assumes the observables available to the 

spacecraft are the exact directions to stars and their exact spectral signature in 

the rest frame of the spacecraft. This spectral signature refers to a characteristic 

wavelength—such as the peak wavelength—within the emission/absorption 

spectrum of the star that the star catalog provides. Extending this analysis to 

address the more general case of a full spectrum is straightforward. 

Taking astrometric and spectrometric measurements in this context describes 

the process of receiving and inspecting photons that the stars emitted sometime 

in the past. In fact, exactly how long ago a star emitted a photon depends on 

the distance between the star (at the time of emission) and the spacecraft (at 

the time of observation), as well as the medium through which the photon 

travels. Considering how little is known about the ISM and circumstellar matter, 

this analysis assumes that photons do not interact with nearby matter and lose 

velocity [77] and considers a case where all photons travel at 𝑐. Under this 

condition, in this derivation, the information transfer between two events via 

photons happens at 𝑐. 
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The derivation assumes that a suitable star catalog is available onboard—one 

that provides the positions and characteristic wavelengths of the observed stars. 

Star catalogs typically use approximately inertial reference frames to establish 

a coordinate system in which they present their data, such as the International 

Celestial Reference System [78]. The analysis assumes that this reference 

frame is inertial. Moreover, for derivational simplicity, it assumes that the stars 

are at rest and perfectly known by the star catalog, and that their spectra are 

unchanging. In addition, it assumes that the spacecraft can recognize each star 

whose light it observes and match it to its entry in the star catalog. 

Spacecraft traveling in the interstellar medium may experience disturbances 

from the environment [48]. These disturbances may cause spacecraft to 

accelerate in an unknown and changing direction. That said, per Einstein’s 

equivalence principle [79], it is possible to ignore any acceleration of the 

spacecraft locally and approximate the spacetime as flat. As one of the goals of 

this work is to develop navigation algorithms for spacecraft, one can reasonably 

assume that the navigation algorithm can satisfy the flatness requirement by 

decreasing the time between estimation steps if necessary. Thus, this derivation 

assumes that the spacecraft is in rectilinear motion with respect to the inertial 

reference frame of the star catalog. 

Chapters 4 and 5 discuss the effects of some of these assumptions on the 

navigation algorithms’ performance. 
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Reference frames and notation 

From this point forward, the star-catalog frame is the inertial reference frame for 

all the unsuperscripted quantities such as the characteristic wavelength 𝜆𝑖  

belonging to the ith star, defined by the unsuperscripted coordinate system 

(𝑐𝑡, 𝒙) with origin 𝒞. In contrast, the spacecraft is at rest in its so-called 

spacecraft frame, defined by superscripted coordinates (𝑐𝑡′, 𝒙′) with origin 𝒫, 

and relative to which the superscripted quantities such as the observed 

characteristic wavelength 𝜆𝑖
𝑜  belonging to the ith star are defined. Note that one 

can choose 𝒞 and 𝒫 to coincide at some time 𝑡0 without any loss of generality. 

Also note that all future discussions consider a single coordinate system per 

reference frame, both described above. 

Relativistic autonomous observation equations 

The system of interest under the assumptions stated earlier is equivalent to the 

arrangement represented in Figure 4. The figure describes the following 

situation. At time 𝑡, spacecraft 𝒫 is at a position 𝒓 = 𝒓(𝑡) in the star-catalog 

frame, traveling at velocity 𝒗 = 𝒗(𝑡) from origin 𝒞 to its destination. There exist 

a set of stars {𝒮𝑖  | 1 ≤ 𝑖 ≤ 𝑛} in the sky, which are observable in both reference 

frames. The spacecraft 𝒫 knows the position, 𝑹𝑖(𝑡), and characteristic 

wavelength, 𝜆𝑖(𝑡), of 𝒮𝑖  in the star-catalog frame. 𝒫 observes the direction to 𝒮𝑖  

as 𝑹̂𝑖
𝑜(𝑡) and the characteristic wavelength of 𝒮𝑖  as 𝜆𝑖

𝑜 (𝑡) in the spacecraft frame 

(neither visible in the figure). 
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Figure 4 Relativistic autonomous observation, represented in the star-
catalog frame. 

 

Figure 5 depicts the same system in the star-catalog frame. In this reference 

frame, (by definition) 𝒞 and (by assumption) 𝒮𝑖  are not moving in space but are 

in time. As a result, their worldlines are straight lines parallel to the time axis in 

the figure. 𝒫 moves (by assumption) at constant velocity 𝒗, therefore its 

worldline is a tilted straight line: moving in space and time. Observation of a 

photon corresponds to the event 𝐴 = (𝑐𝑡, 𝒓 = 𝒗𝑡) and emission of the same 

photon corresponds to the event 𝐵 = (𝑐(𝑡 − 𝛥𝑡),𝑹𝑖). 
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Figure 5 Relativistic autonomous observation, represented in the star-
catalog frame with a spacetime diagram. 

 

The star-catalog frame and the spacecraft frame are related by a boost, and 

therefore, four-vectors in those frames are related by Equation (2.2). Then, the 

position of some event (𝑡, 𝒙) represented in the star-catalog frame corresponds 

to the position (𝑡′, 𝒙′) in the spacecraft frame, as described by Equations (3.3) 

and (3.4), for 𝒗 = 𝒗/‖𝒗‖. 

𝑡′ = 𝛾(𝑡 − 𝒗 ⋅ 𝒙/𝑐2) (3.3) 

𝒙′ = 𝒙 − 𝛾𝒗𝑡 + (𝛾 − 1)(𝒗 ⋅ 𝒙)𝒗 (3.4) 

Applying these transformations to spacetime coordinates of 𝒞, 𝒫 and 𝒮𝑖 , it is 

possible to draw worldlines of 𝒞, 𝒫 and 𝒮𝑖  in the spacecraft frame. Figure 6 
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illustrates these worldlines, where 𝑹𝑖0
′ = 𝑹𝑖 − (1− 1/𝛾)(𝒗 ⋅ 𝑹𝑖)𝒗, and the 

subscript 0—zero—represents the initial value of 𝑹𝑖
′, i.e., 𝑹𝑖

′(𝑡′ = 0). This motion 

is consistent with Newtonian intuition: if 𝒫 is moving at velocity 𝒗 in the star-

catalog frame, then 𝒞 and 𝒮𝑖  must be moving at velocity −𝒗 in the spacecraft 

frame. 

 

Figure 6 Relativistic autonomous observation, represented in the 
spacecraft frame with a spacetime diagram. 

 

The spacetime coordinates for events 𝐴 and 𝐵 in the spacecraft frame are 𝐴 =

(𝑐𝑡′, 𝟎) and 𝐵 = (𝑐(𝑡′ − 𝛥𝑡′), 𝑹𝑖0
′ − 𝒗(𝑡′ − 𝛥𝑡′)), respectively. Since it is a photon 

that is traveling between 𝐴 and 𝐵, these events are null-separated, and Equation 

(3.5) must hold. 

0 = −(𝑐𝛥𝑡′)2 + ‖𝑹𝑖0
′ − 𝒗(𝑡′ −𝛥𝑡′)‖2 (3.5) 
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Solving this quadratic equation yields a single solution for 𝛥𝑡′ > 0 (i.e., one that 

does not break causality), given in Equation (3.6). 

𝛥𝑡′ =
𝛾

𝑐
[𝛽𝒗 ⋅ (𝑹𝑖 − 𝒓) + ‖𝑹𝑖 − 𝒓‖] (3.6) 

Substituting this relation to the space coordinates of 𝐵, given above as 𝐵 =

(𝑐(𝑡′ − 𝛥𝑡′), 𝑹𝑖0
′ − 𝒗(𝑡′ − 𝛥𝑡′)), results in Equation (3.7), which gives the 

observed position of the star in the spacecraft frame, 𝑹𝑖
𝑜. The observed direction 

to a star in the spacecraft frame is then the unit vector 𝑹̂𝑖
𝑜. 

𝑹𝑖
𝑜 = 𝑹𝑖 −

1

𝛾
𝒓 + (𝛾 − 1)(𝒗 ⋅ 𝑹𝑖)𝒗 − 𝛾𝛽

2(𝒗 ⋅ 𝒓)𝒗 + 𝛾𝛽‖𝑹𝑖 − 𝒓‖𝒗 (3.7) 

Let this observed photon have a wave four-vector (𝜔𝑖/𝑐, 𝒌𝑖) in the star-catalog 

frame, where 𝜔𝑖 is the angular frequency of the wave and 𝒌𝑖  is the classical 

wave vector that points at the direction of travel. Again, this four-vector belongs 

to a photon and is null, and therefore, ‖𝒌𝑖‖ = 𝜔𝑖 𝑐⁄  must be true. Equation (2.2) 

again provides the transformation from the star-catalog frame to the spacecraft 

frame and yields the relativistic Doppler shift equation in Equation (3.8), where 

𝒌̂𝑖  is the direction of travel in the star-catalog frame. 

𝜔𝑖
′ = 𝛾𝜔𝑖(1 − 𝛽𝒗 ⋅ 𝒌̂𝑖) (3.8) 

From Figure 5, this vector corresponds to the space component of the four-

vector pointing from event 𝐵 = (𝑐(𝑡 − 𝛥𝑡),𝑹𝑖) to event 𝐴 = (𝑐𝑡, 𝒓), given in 

Equation (3.9). 
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𝒌̂𝑖 = −
(𝑹𝑖 − 𝒓)

‖𝑹𝑖 − 𝒓‖
(3.9) 

Substituting this relation and 𝜔𝑖 = 2𝜋/𝜆𝑖  into Equation (3.8) gives the observed 

characteristic wavelength of the star in the spacecraft frame, 𝜆𝑖
𝑜 , in Equation 

(3.10). 

𝜆𝑖
𝑜 = 𝜆𝑖 [𝛾 (1 + 𝛽𝒗 ⋅

𝑹𝑖 − 𝒓

‖𝑹𝑖 − 𝒓‖
)]
−1

(3.10) 

Equations (3.7) and (3.10) are the relativistic autonomous observation 

equations.  

Equivalence to Einstein’s derivations 

The relativistic autonomous observation equations reduce to Einstein’s 

relativistic aberration law and relativistic Doppler shift principle, given in 

Equations (3.1) and (3.2). To show the equivalence, we need to write the angles 

𝜙 and 𝜙′ in terms of the vector quantities defined here. In Figure 3, 𝜙𝑖 is the 

angle 𝒗 makes with the vector pointing from 𝒮𝑖  to the spacecraft in the star-

catalog frame, which is equal to −(𝑹𝑖 − 𝒓). 𝜙𝑖
′ is the same angle in the 

spacecraft frame. Then, Equations (3.11) and (3.12) calculate 𝜙𝑖 and 𝜙𝑖
′. 

cos 𝜙𝑖 = 𝒗 ⋅
−(𝑹𝑖 − 𝒓)

‖𝑹𝑖 − 𝒓‖
(3.11) 

cos𝜙𝑖
′ = 𝒗 ⋅

−𝑹𝑖
𝑜

‖𝑹𝑖
𝑜‖

(3.12) 
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Plugging Equations (3.11) and (3.12) into Equation (3.1) and substituting 𝛽 for 

𝑣/𝑐 yields Equation (3.13). 

𝒗 ⋅
𝑹𝑖
𝑜

‖𝑹𝑖
𝑜‖
=
𝒗 ⋅
(𝑹𝑖 − 𝒓)
‖𝑹𝑖 − 𝒓‖

+ 𝛽

1+ 𝛽𝒗 ⋅
(𝑹𝑖 − 𝒓)
‖𝑹𝑖 − 𝒓‖

(3.13) 

Taking the dot product of 𝒗 with Equation (3.7) simplifies to Equation (3.14). 

𝒗 ⋅ 𝑹𝑖
𝑜 = 𝛾‖𝑹𝑖 − 𝒓‖(𝒗̂ ⋅

(𝑹𝑖 − 𝒓)

‖𝑹𝑖 − 𝒓‖
+ 𝛽) (3.14) 

Equations (3.13) and (3.14) are equivalent if and only if Equation (3.15) is true. 

‖𝑹𝑖
𝑜‖ =  𝛾‖𝑹𝑖 − 𝒓‖ + 𝛾𝛽𝒗 ⋅ (𝑹𝑖 − 𝒓) (3.15) 

Taking the square of Equations (3.7) and (3.15) result identically in Equation 

(3.16) for 𝒓 ∥ 𝒗. Therefore, Equation (3.7) is equivalent to Equation (3.1). 

‖𝑹𝑖
𝑜‖2 = 𝛾2‖𝑹𝑖− 𝒓‖

2 + 𝛾 2𝛽2(𝒗 ⋅ 𝑹𝑖)
2 + 2𝛾2𝛽‖𝑹𝑖 − 𝒓‖(𝒗 ⋅ 𝑹𝑖)

− 2𝛾 2𝛽2(𝒗 ⋅ 𝑹𝑖)(𝒗 ⋅ 𝒓) − 2𝛾
2𝛽‖𝑹𝑖 − 𝒓‖(𝒗 ⋅ 𝒓)

+ 𝛾 2𝛽2(𝒗 ⋅ 𝒓)2                                                                                          (3.16) 

Plugging Equation (3.11) into Equation (3.2) and substituting 𝛽 for 𝑣/𝑐 yields 

Equation (3.17). This equation is identical to Equation (3.10). Therefore, 

Equation (3.10) is identical to Equation (3.2). 

𝜆′ =
𝜆

𝛾 (1 + 𝛽𝒗 ⋅
(𝑹𝑖 − 𝒓)
‖𝑹𝑖 − 𝒓‖

)
(3.17)
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Visualization of the equations 

The relativistic autonomous observation equations in Equations (3.7) and (3.10) 

are different from Equation (2.2), which simply transforms spacetime positions 

between reference frames. The difference is easy to show in the simple example 

given in Figure 7. In this example, a spacecraft 𝒫 travels at constant velocity 

0.2𝑐 from origin 𝒞 to Proxima Centauri, 4.24 light years from 𝒞 in the star-catalog 

frame. The coordinate axes of this frame are such that the line from 𝒞 to Proxima 

Centauri passes through the point (𝑥, 𝑦, 𝑧) = (1, 1, 1). At this instant, 𝒫 is 2 light 

years away from 𝒞. 𝒫 observes two stars in addition to Proxima Centauri, both 

10 light years away with static/unchanging positions in the star-catalog frame, 

located along the 𝑦 and −𝑧 axes, at distances 𝒮𝑦  and 𝒮−𝑧, respectively. 

 

Figure 7 A simple relativistic observation example, represented in the 
star-catalog frame. 
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Traveling towards Proxima Centauri, 𝒫 approaches 𝒮𝑦  but recedes from 𝒮−𝑧. 

The spacetime coordinates of all objects in the star-catalog frame are known; 

therefore, Equations (3.3) and (3.4) can convert these coordinates to the 

spacecraft frame. Table 1 gives the corresponding spacecraft-frame time 

coordinates (𝑡′) of the spacecraft, the two stars, and Proxima Centauri for the 

case where all four objects exist simultaneously in the star-catalog frame at time 

𝑡 = 10 years, at the space coordinates given above.  

Table 1 Time coordinates of the spacecraft, the two stars, and Proxima 
Centauri in star-catalog (unprimed) and spacecraft (primed) frames for 

identical star-catalog frame time, 𝑡. 

 𝑡 [years] 𝑡′ [years] 

𝒫 10.0 9.80 

𝒮y 10.0 9.03 

𝒮−z 10.0 11.4 

Proxima Centauri 10.0 9.34 

 

The simultaneous events of 𝒫, 𝒮y, 𝒮−z, and Proxima Centauri being at their 

positions in Figure 7 in the star-catalog frame do not represent simultaneous 

events in the spacecraft frame. The same is true for the reverse transformation, 

since that is simply Equations (3.3) and (3.4) with 𝑣 → −𝑣. Table 2 gives the 

corresponding time coordinates of the spacecraft, the two stars, and Proxima 

Centauri for the case where all four exist simultaneously in the spacecraft frame 

at time 𝑡′ = 9.80 years, which corresponds to 𝑡 = 10 years for 𝒫. 
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Table 2 Time coordinates of the spacecraft, the two stars, and Proxima 
Centauri in star-catalog (unprimed) and spacecraft (primed) frames for 

identical spacecraft frame time, 𝑡′. 

 𝑡 [years] 𝑡′ [years] 

𝒫 10.0 9.80 

𝒮y 10.8 9.80 

𝒮−z 8.38 9.80 

Proxima Centauri 10.5 9.80 

 

Table 2 implies the following: at the time of observation, objects behind the 

spacecraft (here, 𝒮−𝑧) are at a past location, and objects in front of the 

spacecraft (here, 𝒮𝑦  and Proxima Centauri) are at a future location. In the star-

catalog frame, objects behind the spacecraft are moving away from the 

spacecraft. Therefore, a past location corresponds to a location nearer to the 

spacecraft than the nonrelativistic case where stars only shift an amount equal 

to spacecraft’s position vector. Similarly, objects in front of the spacecraft are 

moving towards the spacecraft, and a future location corresponds to, again, a 

location nearer to the spacecraft than in the nonrelativistic case. 

Figure 8 generalizes this result to many stars (at an exaggerated velocity of 0.5𝑐 

for visualization purposes). In the figure, Newtonian frame refers to the frame of 

reference for which the spacecraft is at the same position, but its velocity is zero 

relative to the star-catalog frame. The medium-colored ellipsoid of Figure 8 

shows what the spacecraft would observe if photons had infinite velocity, and 

the dark-colored ellipsoid shows the positions of the stars as observed, 
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calculated by Equation (3.7). Note that all observed locations correspond to past 

locations of the stars, and observation does not break causality. Objects behind 

the spacecraft “seem” nearer because the spacecraft is moving away from 

them, and they must send their photons earlier. Correspondingly, objects ahead 

“seem” farther since they continue moving after emitting the observed photons. 

 

Figure 8 Stars: during observation in Newtonian frame (light-colored 
sphere), during observation in spacecraft frame (medium-colored ellipsoid), as 
observed in spacecraft frame (dark-colored ellipsoid), for 𝒗 = 0.5c. Plus-sign 

denotes the spacecraft, black arrow is parallel to spacecraft’s velocity. 

 

In addition to the position, the relativistic motion of the spacecraft also affects 

the observed characteristic wavelengths. Figure 9 visualizes Equation (3.10). In 

the figure, the ordinate represents the observed characteristic wavelengths with 

respect to the angle 𝜋 − 𝜙 defined in Figure 3, for the case where the star-

catalog characteristic wavelengths are all equal to 600 nm. The figure also 

emphasizes the visible band (380–780 nm) for visualization purposes.  
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Figure 9 Observed characteristic wavelengths vs. the angle 𝜋 − 𝜙 defined 

in Figure 3, for 𝒗 = 0.5c and 𝝀𝒊 = 600 nm (solid line). Dotted lines denote the 
visible band. 
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Conclusions 

The relativistic autonomous observation equations represent a model that is 

traceable to modern physics. The derivations consider features of relativistic 

mechanics whose theory is well-understood but not directly incorporated into 

space technology. The existence of these equations enables novel solutions to 

the problem of autonomous navigation that are valid for spacecraft traveling at 

any speed between any two points.  
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CHAPTER 4 

A LEAST-SQUARES APPROACH TO AUTONOMOUS NAVIGATION 

This chapter describes a relativistic autonomous navigation algorithm that is 

based on the relativistic autonomous observation equations derived in Chapter 

3. The algorithm takes advantage of the relativistic length contraction and 

Doppler shift of the observed star positions away from the origin to estimate the 

distances to the observed stars in addition to spacecraft position and velocity. 

The derivations assume that the spacecraft has access to a star catalog, can 

take astrometric and spectrometric measurements onboard, and can recognize 

the stars it observes. With that, the algorithm is suitable to use for any spacecraft 

for which relativistic effects are detectable onboard. 

A case study investigates the method in the context of technological details of 

a mission, including certain sources of noise and disturbance in the interstellar 

medium. Namely, the simulations include the measurement errors of the star 

catalog and the sensors, the errors in the equilibrium solution, and the random 

accelerations in the ISM. The chapter also derives and simulates a 

nonrelativistic autonomous navigation algorithm for comparison.  
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Assumptions 

The Newtonian and relativistic autonomous navigation algorithm derivations 

assume that spacecraft has an onboard star catalog that provides positions and 

characteristic wavelengths of several stars in some inertial reference frame. 

They also assume that the spacecraft can take astrometric and spectrometric 

measurements onboard, can recognize the stars it observes, and can match the 

star catalog entries to the stars it observes. 

Newtonian autonomous navigation algorithm 

Initially, consider a nonrelativistic case. From Figure 4, we calculate the position 

of a star in the star-catalog frame as the sum of two vectors: the position of the 

spacecraft and the observed position of a star. Equation (4.1) shows this 

summation in terms of the variables defined in Chapter 3.  

𝑹𝑖 = 𝒓 + 𝑹𝑖
𝑜 (4.1) 

Alternatively, we can derive this formula by evaluating the relativistic 

autonomous observation equations in the nonrelativistic limit, i.e., as 𝑣 → 0, and 

therefore 𝛽 → 0, and 𝛾 → 1. Under these conditions, Equation (3.7) simplifies to 

Equation (4.1), and Equation (3.10) becomes trivial. 

A linear matrix equation 𝐴𝑥 = 𝑏 exists for 𝑥 ∈ ℝ(𝑛+3)×1, given in Equation (4.2), 
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𝑥 =

(

 
 

𝒓
𝑅1
𝑜

𝑅2
𝑜

⋮
𝑅𝑛
𝑜
)

 
 

(4.2) 

for matrices 𝐴 ∈ ℝ(3𝑛)×(𝑛+3) and 𝑏 ∈ ℝ(3𝑛)×1, given in Equations (4.3) and (4.4), 

where 𝕀 denotes the identity matrix. 

𝐴 =

(

 
 
 
 

𝕀 𝑹̂1
𝑜 0 0 0 0

𝕀 0 𝑹̂2
𝑜 0 0 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝕀 0 0 𝑹̂𝑖

𝑜 0 0
⋮ 0 ⋮ ⋮ ⋱ ⋮
𝕀 0 0 0 0 𝑹̂𝑛

𝑜)

 
 
 
 

(4.3) 

𝑏 =

(

 
 
 

𝑹1
𝑹2
⋮
𝑹𝑖
⋮
𝑹𝑛)

 
 
 

(4.4) 

The linear matrix equation can be solved 𝐴𝑥 = 𝑏 with any method of linear 

regression [80]. This derivation considers a least-squares approach with Moore-

Penrose pseudoinverse, where the solution is of the form in Equation (4.5). 

𝑥 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏 (4.5) 

Equations (4.2) – (4.5) represent a Newtonian autonomous navigation algorithm 

that estimates the position of the spacecraft and the distances to stars from the 

spacecraft in a common inertial frame called the Newtonian frame in what 

follows. Note that this Newtonian frame is equivalent to that in Figure 8. 
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Relativistic autonomous navigation algorithm 

Equations (3.7) and (3.10) transform known star-catalog frame quantities (𝒓, 𝒗, 

𝑹𝑖, 𝜆𝑖 ) to the measured spacecraft frame quantities (𝑹̂𝑖
𝑜, 𝜆𝑖

𝑜 ). However, these 

equations include an additional term that is neither known nor measured: 𝑅𝑖
𝑜, 

the distance to the ith star in the spacecraft frame. As a result, it is possible 

(although not necessary) to estimate distances to stars in the spacecraft frame 

in addition to spacecraft’s position and velocity.  

The navigation algorithm begins with an initial guess of spacecraft’s position 

and velocity. For example, such a guess might be based on extrapolating the 

trajectory via nonrelativistic orbit-mechanics. Regardless of the source of this 

guess, it serves as the equilibrium solution for these equations subject to small 

perturbations that correspond to errors in the guess. Linearizing Equations (3.7) 

and (3.10) around this equilibrium solution is then possible by substituting 𝒓 =

𝒓𝑒 + 𝛿𝒓, 𝒗 = 𝒗𝑒 + 𝛿𝒗, for ‖𝛿𝒓‖ ≪ ‖𝒓‖, ‖𝛿𝒗‖ ≪ ‖𝒗‖.  

A linear matrix equation 𝐴𝑥 = 𝑏 exists for 𝑥 ∈ ℝ(𝑛+6)×1 , given in Equation (4.6), 

𝑥 =

(

 
 
 

𝛿𝒓
𝛿𝒗
𝑅1
𝑜

𝑅2
𝑜

⋮
𝑅𝑛
𝑜)

 
 
 
 (4.6) 

for matrices 𝐴 ∈ ℝ(4𝑛)×(𝑛+6), 𝑏 ∈ ℝ(4𝑛)×1. Equations (4.7) – (4.14) calculate 

these matrices 𝐴, 𝑏 by linearizing Equations (3.7) and (3.10) with 𝒓 = 𝒓𝑒 + 𝛿𝒓, 
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𝒗 = 𝒗𝑒 + 𝛿𝒗, for ‖𝛿𝒓‖ ≪ ‖𝒓‖, ‖𝛿𝒗‖ ≪ ‖𝒗‖. The variables with subscript “e” are 

those evaluated at the equilibrium solution, and 𝟙 represents the matrix of ones. 

𝐴 =

(

 
 
 
 
 
 
 
 
 
 

𝐹𝑟,1 𝐹𝑣,1 𝑹̂1
𝑜 𝟎 … 𝟎 … 𝟎

𝐹𝑟,2 𝐹𝑣,2 𝟎 𝑹̂2
𝑜 … 𝟎 … 𝟎

⋮ ⋮ ⋮ ⋮ … ⋮ … ⋮
𝐹𝑟,𝑖 𝐹𝑣,𝑖 𝟎 𝟎 … 𝑹̂𝑖

𝑜 … 𝟎

⋮ ⋮ ⋮ ⋮ … ⋮ … ⋮
𝐹𝑟 ,𝑛 𝐹𝑣,𝑛 𝟎 𝟎 … 𝟎 … 𝑹̂𝑛

𝑜

𝐺𝑟,1 𝐺𝑣,1 0 0 … 0 … 0

𝐺𝑟,2 𝐺𝑣,2 0 0 … 0 … 0
⋮ ⋮ ⋮ ⋮ … ⋮ … ⋮
𝐺𝑟,𝑖 𝐺𝑣,𝑖 0 0 … 0 … 0
⋮ ⋮ ⋮ ⋮ … ⋮ … ⋮
𝐺𝑟,𝑛 𝐺𝑣,𝑛 0 0 … 0 … 0 )

 
 
 
 
 
 
 
 
 
 

(4.7) 

𝑏 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(𝑹1
𝑜)𝑒

(𝑹2
𝑜)𝑒
⋮

(𝑹𝑖
𝑜)𝑒
⋮

(𝑹𝑛
𝑜 )𝑒

𝜆1
𝜆1
𝑜 − (

𝜆1
𝜆1
𝑜)

𝑒

𝜆2
𝜆2
𝑜 − (

𝜆2
𝜆2
𝑜)

𝑒

⋮
𝜆𝑖
𝜆𝑖
𝑜 − (

𝜆𝑖
𝜆𝑖
𝑜)

𝑒

⋮
𝜆𝑛
𝜆𝑛
𝑜 − (

𝜆𝑛
𝜆𝑛
𝑜 )

𝑒)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(4.8) 

𝐹𝑟,𝑖𝛿𝒓+ 𝐹𝑣,𝑖𝛿𝒗+ 𝑹̂𝑖
𝑜𝑅𝑖

𝑜 ≈ (𝑹𝑖
𝑜)𝑒 (4.9) 

𝐺𝑟,𝑖𝛿𝒓+ 𝐺𝑣,𝑖𝛿𝒗 ≈
𝜆𝑖
𝜆𝑖
𝑜 − (

𝜆𝑖
𝜆𝑖
𝑜)

𝑒

(4.10) 
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𝐹𝑟,𝑖 =
1

𝛾𝑒
𝕀 + 𝛽𝑒𝛾𝑒 (𝛽𝑒𝒗𝑒  +

(𝑹𝑖 − 𝒓)

‖𝑹𝑖 − 𝒓‖
)𝒗𝑒

𝑇 (4.11) 

𝐹𝑣,𝑖 = −
1

𝑣𝑒
{𝛽𝑒𝛾𝑒‖𝑹𝑖 − 𝒓𝑒‖(𝕀 + 𝛽𝑒

2𝛾𝑒
2𝒗̂𝑒𝒗𝑒

𝑇) +
𝛽𝑒
2𝛾𝑒
3

𝑐2
(𝒗𝑒
𝑇(𝑹𝑖 − 𝒓𝑒))𝟙

− (𝛾𝑒 +
1

𝛾𝑒
− 2) (𝒗𝑒

𝑇𝑹𝑖)𝒗𝑒𝒗𝑒
𝑇 + (𝛾𝑒 − 1)(𝑹𝑖 𝒗̂𝑒

𝑇+ (𝒗𝑒
𝑇𝑹𝑖)𝕀)

+ 𝛽𝑒
2𝛾𝑒(𝒗𝑒𝒓𝑒

𝑇− 𝒓𝑒𝒗𝑒
𝑇 − (𝒗𝑒

𝑇𝒓𝑒)𝕀)}                                                     (4.12) 

𝐺𝑟,𝑖 =
−𝛽𝑒𝛾𝑒𝒗𝑒

𝑇

‖𝑹𝑖 − 𝒓𝑒‖
(𝕀−

(𝑹𝑖 − 𝒓𝑒)(𝑹𝑖 − 𝒓𝑒)
𝑇

‖𝑹𝑖 − 𝒓𝑒‖2
) (4.13) 

𝐺𝑣,𝑖 =
𝛾𝑒
𝑐
(
(𝑹𝑖 − 𝒓𝑒)

𝑇

‖𝑹𝑖 − 𝒓𝑒‖
+ 𝛽𝑒𝛾𝑒

2(𝛽𝑒
𝒗𝑒
𝑇(𝑹𝑖 − 𝒓𝑒)

‖𝑹𝑖 − 𝒓𝑒‖
+ 1)𝒗𝑒

𝑇) (4.14) 

Just like the nonrelativistic problem, the solution of this equation has the form in 

Equation (4.5). Equations (4.5) – (4.14) then represent a relativistic autonomous 

navigation algorithm that estimates the position and velocity of the spacecraft in 

the star-catalog frame and the distances to stars in the spacecraft frame.  

Simulation details 

The spacecraft of interest in this simulation is one that exists in the near future 

according to current technological trends: the Breakthrough Starshot spacecraft 

[28,81]. It travels in the ISM from Earth to Proxima Centauri at 20% of the speed 

of light, carrying onboard a star catalog, a star tracker, and a spectrometer. The 

star catalog provides the positions and characteristic wavelengths of some 
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stars, and the star tracker and spectrometer measure the directions to same 

stars and their characteristic wavelengths.  

Though, unlike the assumptions in Chapter 3, the universe is not perfect. The 

star catalog and the two sensors all exhibit measurement noise. Linearizing the 

relativistic navigation algorithm around an equilibrium point calls for 

incorporating errors in the initial guesses. The interaction of the fast-moving 

spacecraft with the ISM disturbs the spacecraft trajectory. The following 

discussion summarizes how the simulations take into account these sources of 

error into consideration. Note that this analysis does not include technological 

challenges related to construction or propulsion of this spacecraft. In addition, 

the analysis assumes that the spacecraft carries a perfect atomic clock onboard 

to measure time. 

Star catalog characteristics 

A typical star catalog provides positions and spectral classifications of more 

than 100,000 stars as well as how these parameters change over time [82]. The 

state-of-the-art star catalog, Gaia Data Release 2, contains approximately 1.7 

billion stars [83]. With this many possibilities, the number of stars used in 

navigation algorithms can range from 171 [84] to about 16 million [85]; the 

decision of the number of stars used in navigation mostly depends on the 

processing capabilities (note the matrix inversion in the navigation algorithms). 

Fortunately, demonstrating the functionality of an algorithm does not depend on 

the number of stars in a star catalog nor the locations of stars in the sky as those 
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only affect the accuracy of the results. So, for the sake of merely demonstrating 

functionality, these simulations consider an artificial star catalog of size 1,000.  

Table 3 lists some characteristics of this set of stars. These values are 

comparable to the distribution of the stars in Gaia Data Release 2 with parallax 

100–768.5 mas, which corresponds to stars that are within 33 light years but 

farther than Proxima Centauri, and with astrometric pseudo-wavelength 380–

740 nm, which is an arbitrary selection. (Pseudo-wavelength is the multiplicative 

inverse of pseudo-color as defined by the catalog documentation, calculated 

using the chromatic displacements of the image centroids [85]). In the table, the 

starred values are slightly modified from the original to produce a more uniformly 

distributed catalog. All errors are assumed to be Gaussian, as established by 

central limit theorem. The artificial stars in this catalog are not affected by the 

expansion of the universe as they are within the Milky Way galaxy. 

Measurement noise calculations 

The right ascension error in Table 3 also represents the measurement noise for 

the star catalog, while the mean and standard deviation of the spectrometer’s 

error are chosen to be 1 pm, similar to the accuracy and resolution of ESO’s 

Very Large Telescope [86], both representing the state-of-the-art astrometric 

and spectrometric observation capabilities. The measurement errors are 

assumed to be Gaussian, as established by central limit theorem. 
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Table 3 Star catalog characteristics from Gaia Data Release 2. 

Item Distribution Mean 
Standard 
Deviation 

Right ascension range [mas] Uniform π* π/√3* 

Right ascension error [mas] Normal 1.1924 0.6122 

Declination range [mas] Uniform 0* π/√12* 

Declination error [mas] Normal 1.1226 0.5856 

Parallax range [mas] Normal 236.77 50* 

Parallax error [mas] Normal 1.5757 0.8242 

Proper motion in right ascension 
range [mas/year] 

Normal −11.517 704.04 

Proper motion in right ascension 
error [mas/year] 

Normal 2.0794 0.9800 

Proper motion in declination range 
[mas/year] 

Normal 14.302 563.07 

Proper motion in declination error 
[mas/year] 

Normal 1.8407 0.9049 

Astrometric pseudo-color range 
[1/µm] 

Normal 1.7044 0.2686 

Astrometric pseudo-color error 
[1/µm] 

Normal 0.2557 0.1288 

Radial velocity error [km/s] Normal 0.2889 0.4593 

 

Equilibrium solution calculations 

As discussed above, an equilibrium solution for spacecraft’s position and 

velocity can come from extrapolation of the expected trajectory, since it is 

reasonable to expect that the spacecraft has a priori knowledge of its trajectory 

and the frequency of its observations. Equation (4.15) then provides the 

transformation between star-catalog time and spacecraft time which is 

measured perfectly onboard. This transformation is simply Equation (3.3) with 
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𝒗 → −𝒗 and 𝒙′ = 0 (since the spacecraft does not move in the spacecraft 

frame).  

𝑡 = 𝛾𝑡′ (4.15)  

Then, Equations (4.16) – (4.18) incorporate the current guess of time, velocity, 

and position of the spacecraft in the star-catalog frame as a function of the 

previous estimation, where Δ𝑡′ is the time between observations made. 

𝑡𝑒 = 𝑡𝑒,𝑝𝑟𝑒𝑣 + 𝛾𝑒Δ𝑡
′ (4.16) 

𝑣𝑒 = 𝑣𝑒,𝑝𝑟𝑒𝑣 (4.17) 

𝑟𝑒 = 𝑟𝑒,𝑝𝑟𝑒𝑣 + 𝑣𝑒,𝑝𝑟𝑒𝑣(𝑡𝑒 − 𝑡𝑒,𝑝𝑟𝑒𝑣) (4.18) 

Star recognition problem 

The simulations assume that the spacecraft recognizes each star it observed 

and matches these observations to the entries in the star catalog. In practice, 

the star-recognition–problem can be solved in any number of ways such as [87]. 

Interstellar medium disturbance calculations 

Draine has investigated some of the environmental effects on this spacecraft in 

the ISM [48]. As a summary, up to ~1010 “standard-sized” interstellar dust 

particles could impact the spacecraft until it reaches its destination, Proxima 

Centauri, with the largest among these being ~5 μm with a mass of ~10−12 kg. 

At 20% of the speed of light, these dust particles may have momentum as high 

as ~10−2 kg m/s relative to the spacecraft, in the direction opposing the 
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spacecraft motion. Some of them could penetrate the spacecraft and slow it 

down (perfectly inelastic collision).  

Table 4 gives the momentum of different-sized dust particles, the expected 

number of impacts during travel, and the resulting total momentum exchange 

for this spacecraft. The overall change in spacecraft’s velocity due to these 

impacts ends up being ~6 km/s, which is ~0.01% of the initial velocity. It is 

possible to simulate this effect by inducing a uniform acceleration of magnitude 

approximately 10−10 m/s2 during the mission, opposing the velocity. 

Table 4 Interstellar grain impact characteristics for travel to Proxima 
Centauri. 

Size 
[μm] 

Mass 
[kg] 

Momentum 
[kg m/s] 

Expected number 
of impacts 

Change in linear momentum 
of spacecraft [kg m/s] 

0.1 10−17 10−9 1010 4 

1 10−14 10−6 106 0.7 

10 10−11 10−3 103 0.7 

100 10−8 1 1 0.7 

 

However, this effect is not the only mechanism in the ISM that would disturb the 

trajectory. At this velocity, the protons and electrons in the ISM have kinetic 

energies of magnitude ~19 MeV and ~10 keV, respectively. These energies are 

more than enough to eject electrons from the surface of the lightsail [88], and 

therefore these particles could raise the spacecraft to a positive potential. In the 

end, the charge accumulated on the spacecraft would be around ~1 nC.  
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The interstellar magnetic field strength and orientation are not well known, but 

its magnitude is estimated to be ~3⋅10−10 T. Lorentz force law suggests that this 

magnetic field would apply an acceleration with a magnitude proportional to the 

total spacecraft charge, spacecraft velocity, and the interstellar magnetic field 

strength, and inversely proportional to the spacecraft mass. This acceleration 

evaluates to approximately 2⋅10−8 m/s2 during the many years of travel. 

Subsequently, the spacecraft’s trajectory is curved with a gyroradius of ~2⋅1012 

AU. This curvature would deflect the trajectory by ~0.03 AU, assuming the 

magnetic field direction does not change. It is then possible to simulate this 

effect by inducing a uniform acceleration of magnitude ~10−8 m/s2 during the 

trajectory, in a random direction. 

General relativistic time dilation 

Since this spacecraft is receding from the Sun and approaching Proxima 

Centauri, there will be gravitational time dilations associated with this mission. 

From Equation (2.7), we calculate that, if the spacecraft is leaving Earth and 

arriving at Proxima Centauri, the gravitational time dilation caused by the Sun 

is around 6.5 s over 21 years. This number is even smaller for Proxima Centauri, 

a star that is less massive than the Sun. This effect is significantly smaller than 

the effect of special relativity, which corresponds to around 5 months over 21 

years. Therefore, general relativistic effects are ignored in this simulation. 

With all these considerations, Figure 10 provides both the Newtonian and the 

relativistic algorithm simulations’ flowchart for a single mission. 
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Figure 10 Flowchart of the least-squares algorithm for a single mission. 
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Simulation results 

Both the Newtonian and relativistic autonomous navigation algorithms 

described in Equations (4.2) – (4.5), and Equations (4.5) – (4.14), respectively, 

are implemented and simulated in MATLAB version R2019b using the flowchart 

in Figure 10, with and without sources of error described above, at equally-

separated (in time) points over the trajectory. The presented results come from 

Monte Carlo analyses of several runs of these algorithms with different noise 

values. The estimation errors discussed in the following paragraphs are 

averaged over estimation points and individual runs of the algorithm. 

Figures 11 and 12 show results of representative run of the Newtonian 

navigation algorithm at 0.6 m/s and 20% of the speed of light, respectively, in 

an ideal universe.  

 

Figure 11 Representative simulation results of the Newtonian navigation 
algorithm for 𝑣 = 0.6 𝑚/𝑠. The visible number of stars and estimation points 

are reduced for visualization purposes. 
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Figure 12 Representative simulation results of the Newtonian navigation 
algorithm for 𝑣 = 0.2𝑐 . The visible number of stars and estimation points are 

reduced for visualization purposes. 

 

Table 5 summarizes the results of the Monte Carlo simulations of the Newtonian 

autonomous navigation algorithm at these speeds for the ideal universe case. 

These results show that even at a low speed of 0.6 m/s in an ideal universe, a 

nonrelativistic approach to navigation exhibits an average error of approximately 

3⋅108 m in the position of the spacecraft. Moreover, the estimation error is linear 

with the velocity: at 20% of the speed of light (or 108 times 0.6 m/s), the position 

error goes to around 3⋅1016 m. In other words, the nonrelativistic algorithm 

without any perturbative corrections is unusable in the velocity regime for which 

interstellar travel is feasible, while the relativistic algorithm works perfectly, by 

definition. 
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Table 5 Nonrelativistic algorithm estimation errors at different spacecraft 
speeds (order of magnitude) for the case of zero disturbance. 

 
Average estimation error 

𝑣 = 0.6 m/s 𝑣 = 0.2c 

Position [m] 108 1016 

Velocity [m/s] N/A N/A 

Distance to observed star [m] 107 1015 

 

Figure 13 shows results of a representative run of the relativistic autonomous 

navigation algorithm at 20% of the speed of light while including all the noise 

and disturbances mentioned earlier. Comparing Figures 12 and 13, it is clear 

that the relativistic algorithm performs better than the Newtonian algorithm, even 

after being influenced by noise and disturbance. 

 

Figure 13 Representative simulation results of the relativistic navigation 
algorithm for 𝑣 = 0.2𝑐 . The visible number of stars and estimation points are 

reduced for visualization purposes. 
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Table 6 then summarizes the performance of the relativistic algorithm at 20% of 

the speed of light while including all the noise and disturbances mentioned 

earlier, individually, and altogether. The relativistic autonomous observation 

equations are nonlinear, which explains the order-of-magnitude difference 

between contributions of individual and combined factors. With all these 

contributions, on average, the algorithm estimates the position of the spacecraft 

to around 4⋅1010 m (%0.001 error), the velocity of the spacecraft to around 150 

m/s (%0.0003 error), and the distances to stars to around 9⋅1014 m (0.7% error).  

Table 6 Dependence of relativistic algorithm’s estimation errors on the 
noise and disturbance (order of magnitude). 

Average 
estimation 

error 

Only 
star 

motions 

Only 

star 
catalog 
noise 

Only 
measurement 

noise 

Only the 
ISM 

disturbance 

Only time 
estimation 

All 
included 

Position 
[m] 

100 10−1 1011 100 100 1011 

Velocity 
[m/s] 

10−9 10−9 102 10−9 10−9 102 

Distance 
to 

observed 
star [m] 

10−1 100 1010 10−1 10−3 1015 

 

As Table 6 shows, the main contributor of error in the estimation is the 

measurement noise of the sensors. Further simulations show that it is possible 

to reach a spacecraft position accuracy of around 2⋅109 m (more than an order 

of magnitude) with a multiplicative improvement of two in the spectrometer 

measurements. Similar improvements exist in estimations of spacecraft velocity 

and star distances. Moreover, converting the parallax range and parallax error 
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parameters in Table 3 to m reveals that the star catalog reports the distance to 

99% of stars (3σ) with an error between 8⋅1014 m and 2⋅1016 m. Then, even 

without an improvement in the spectrometer measurements, this algorithm can 

enhance the accuracy of range measurements in the provided star catalog. 

Figures 14 and 15 show the improvement in the algorithm performance with the 

addition of a simple moving average. This addition averages the error in the 

equilibrium solution over the previous iterations. After 1,000 iterations of the 

algorithm, which would correspond to a short time in a 21-year mission 

realistically, error between the estimated (denoted by the subscript est) and true 

position and velocity of the spacecraft reduces by more than an order of 

magnitude. This result implies that this algorithm shows great promise to be 

used as a first step in a recursive algorithm, such as a Kalman filter. 



56 

 

Figure 14 The change of position error with simple moving average. Each 
iteration represents a time step. 

 

Figure 15 The change of velocity error with simple moving average. Each 
iteration represents a time step. 
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Conclusions 

This study shows that not only position, but also velocity, is obtainable from star 

observations at relativistic speeds. The simulations of the relativistic 

autonomous navigation algorithm include contributions of many of the ignored 

factors in the derivation of the relativistic autonomous observation equations. 

Namely, they include the effects of the motion of stars, the imperfection of 

observations, the inaccurate initial guess of spacecraft’s position and velocity, 

and interactions with the interstellar medium. Even with these sources of error 

involved, the navigation algorithm performs well enough to be used in any 

interstellar mission as a first step in a recursive algorithm, such as a Kalman 

filter. Moreover, the algorithm’s estimating the star distances may provide 

means of updating the star-catalog during the mission and improve the accuracy 

of our current understanding of star ranges. Finally, improvements in sensor 

measurements betters the algorithm’s accuracy significantly, which implies that 

future performances of this algorithm will only improve.   
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CHAPTER 5 

AN OPTIMAL AUTONOMOUS NAVIGATION FILTER 

This chapter describes an optimal relativistic autonomous navigation filter that 

is based on the relativistic autonomous observation equations derived in 

Chapter 3. The algorithm measures the relativistic length contraction and 

Doppler shift of the observed stars away from the origin to estimate spacecraft 

position and velocity, and star positions, velocities, and characteristic 

wavelengths. 

The derivation assumes that the spacecraft has access to an inexact star 

catalog and imperfect sensors and can recognize the stars it observes. 

Moreover, it includes the acceleration of the spacecraft and motion of the stars. 

With these assumptions, the filter is suitable to use for any spacecraft for which 

relativistic effects are detectable onboard. 

The same case study used in Chapter 4 investigates the method in the context 

of technological details of a mission, including similar sources of noise and 

disturbance. Specifically, the simulations include the reporting errors of the star 

catalog, the measurement errors of the sensors, and the random accelerations 

in the ISM.  
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Summary of an extended Kalman filter 

Kalman filters use the system's dynamics and observations to calculate an 

optimal estimation of the states. These observations take the form of a series of 

sensor measurements containing noise and other inaccuracies [89]. Kalman 

filters, therefore, balance information obtained from dynamics and observations 

to estimate the state, given the uncertainty in the knowledge of the plant’s 

dynamics and the sensors’ performance.  

Each Kalman filter starts by predicting the states and state covariance using 

dynamics. It then calculates the error in these predictions using actual 

observations and observation covariance. Finally, it computes a Kalman gain, a 

measure of trusting dynamics or observations, and uses it to update its estimate 

of the states and state covariance.  

Extended Kalman filters specifically work with nonlinear dynamics or 

observations that are not linear functions of the states, as long as all nonlinear 

functions are smooth and differentiable. The following eight steps outline the 

general form of an extended Kalman filter.  

1. Predict the state estimate: 𝑥𝑘+1,𝑒𝑠𝑡
∗ = 𝑓(𝑘, 𝑥𝑘,𝑒𝑠𝑡, 𝑞̃) 

2. Predict the state covariance: 𝑃𝑘+1
∗ = 𝐹𝑘𝑃𝑘𝐹𝑘

𝑇 +𝑄𝑘, where 𝑥𝑘+1,𝑒𝑠𝑡
∗ ≈

𝐹𝑘𝑥𝑘,𝑒𝑠𝑡 + 𝜇̃𝑘 and 𝑄𝑘 = 𝐸{𝜇̃𝑘𝜇̃𝑘
𝑇} 

3. Predict the observation: 𝑧𝑘+1,𝑒𝑠𝑡 = ℎ(𝑘, 𝑥𝑘+1,𝑒𝑠𝑡
∗ , 𝑟̃)  

4. Calculate the innovation: 𝑦 = 𝑧𝑘+1 − 𝑧𝑘+1,𝑒𝑠𝑡 
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5. Calculate the innovation covariance: 𝑆 = 𝐻𝑘𝑃𝑘+1
∗ 𝐻𝑘

𝑇+ 𝑅𝑘, where 

𝑧𝑘+1,est ≈ 𝐻𝑘𝑥𝑘+1,𝑒𝑠𝑡
∗ + 𝜈̃𝑘 and 𝑅𝑘 = 𝐸{𝜈̃𝑘𝜈̃𝑘

𝑇} 

6. Evaluate the Kalman gain: 𝐾 = 𝑃𝑘+1
∗ 𝐻𝑘

𝑇𝑆−1 

7. Update the state estimate: 𝑥𝑘+1,𝑒𝑠𝑡 = 𝑥𝑘+1,𝑒𝑠𝑡
∗ + 𝐾𝑦 

8. Update the state covariance: 𝑃𝑘+1 = 𝑃𝑘+1
∗ −𝐾𝐻𝑘𝑃𝑘+1

∗  

In this formulation, the subscript “𝑘” denotes quantities evaluated at discrete 

time 𝑡𝑘; the subscript “𝑒𝑠𝑡” denotes estimated quantities (rather than measured); 

the superscript “∗” denotes predicted quantities; “𝐸{𝑊}” denotes the expected 

value of the matrix 𝑊. With these clarifications in place, Table 7 lists the 

variables with the quantities they represent. The rest of this chapter focus on 

selecting and deriving these quantities for this filter’s application. 

Table 7 Extended Kalman filter variables and the quantities they 
represent. 

Variable Quantity 

𝑥 state vector 

𝑃 state covariance 

𝑓 state transition function 

𝑞̃ noise associated with unmodeled system dynamics 

𝜇̃𝑘 process noise 

𝑄 process noise covariance 

𝑧 observation vector 

ℎ observation function 

𝑟̃ noise associated with unmodeled observation dynamics 

𝜈̃𝑘 observation noise 

𝑅 observation noise covariance 

𝑦 innovation 

𝐾 Kalman gain 
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Assumptions 

The optimal relativistic autonomous navigation filter derivation assumes that the 

spacecraft has access to onboard astrometry and spectrometry sensors can 

imperfectly measure directions to the same stars and their characteristic 

wavelengths. The star catalog is now only used to provide inexact positions, 

velocities, and characteristic wavelengths of several stars as initial conditions. 

In addition, the derivation considers a general case where the spacecraft is in 

uniformly accelerating motion, and the stars do not change characteristic 

wavelengths but move rectilinearly. Finally, the derivation ignores the star 

recognition problem. 

Derivation of the state transition equations 

Equation (5.1) provides the state vector of this filter. In summary, the states are 

the position, 𝒓𝑘, and velocity, 𝒗𝑘, of the spacecraft and the position, 𝑹𝑖,𝑘, 

velocity, 𝑽𝑖,𝑘, and characteristic wavelengths, 𝜆𝑖,𝑘  of the observed stars in the 

star-catalog frame at a time 𝑡𝑘. As a result, this vector is an element of ℝ(7𝑛+6)×1 , 

where 𝑛 is the number of observed stars. 
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𝑥𝑘 =

(

 
 
 
 
 
 
 
 
 

𝒓𝑘
𝒗𝑘
𝑹1,𝑘
⋮
𝑹𝑛,𝑘
𝑽1,𝑘
⋮
𝑽𝑛,𝑘
𝜆1,𝑘
⋮
𝜆𝑛,𝑘)

 
 
 
 
 
 
 
 
 

(5.1) 

Predicting the next state vector (i.e., the state vector at time 𝑡𝑘+1, or 𝑥𝑘+1,𝑒𝑠𝑡
∗ ) 

requires knowledge of state transition. In general, state-transition equations 

have the nonlinear form on the right-hand side of Step 1 of the extended Kalman 

filter formulation. If the spacecraft is in uniformly accelerating motion, the states 

𝒓𝑘 and 𝒗𝑘 evolve according to Equations (5.2) and (5.3), where Δ𝑡 is the time 

elapsed between 𝑡𝑘 and 𝑡𝑘+1, and 𝒂̃ is the random acceleration that the 

spacecraft experiences. 

𝒓𝑘+1,𝑒𝑠𝑡
∗ = 𝒓𝑘 + 𝛥𝑡 𝒗𝑘 +

1

2
(𝛥𝑡)2 𝒂̃ (5.2) 

𝒗𝑘+1,𝑒𝑠𝑡
∗ = 𝒗𝑘 + Δ𝑡 𝒂̃ (5.3) 

Star catalogs have constant errors associated with their reporting of positions, 

velocities, and characteristic wavelengths of all 𝑛 stars, denoted by variables 

with a tilde mark. In other words, 𝑹𝑖,𝑘 = 𝑹𝑖,𝑘
𝑡𝑟𝑢𝑒 + 𝑹̃𝑖, 𝑽𝑖,𝑘 = 𝑽𝑖,𝑘

𝑡𝑟𝑢𝑒 + 𝑽̃𝑖 , and 𝜆𝑖,𝑘 =

𝜆𝑖,𝑘
𝑡𝑟𝑢𝑒 + 𝜆𝑖. If the stars are unchanging but moving rectilinearly, 𝜆𝑖,𝑘

𝑡𝑟𝑢𝑒  and 𝑽𝑖,𝑘
𝑡𝑟𝑢𝑒  

stay constant with time, i.e., 𝜆𝑖,𝑘+1
𝑡𝑟𝑢𝑒 = 𝜆𝑖,𝑘

𝑡𝑟𝑢𝑒  and 𝑽𝑖,𝑘+1
𝑡𝑟𝑢𝑒 = 𝑽𝑖,𝑘

𝑡𝑟𝑢𝑒 . Moreover, 𝑹𝑖,𝑘
𝑡𝑟𝑢𝑒  
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evolves as 𝑹𝑖,𝑘+1
𝑡𝑟𝑢𝑒 = 𝑹𝑖,𝑘

𝑡𝑟𝑢𝑒 +𝛥𝑡 𝑽𝑖,𝑘
𝑡𝑟𝑢𝑒 . From here, we can find the evolution of the 

rest of the states, 𝑹𝑖,𝑘, 𝑽𝑖,𝑘, and 𝜆𝑖,𝑘, as in Equations (5.4) – (5.6).  

𝑹𝑖,𝑘+1,𝑒𝑠𝑡
∗ = 𝑹𝑖,𝑘 +𝛥𝑡 𝑽𝑖,𝑘 − 𝛥𝑡 𝑽̃𝑖 (5.4) 

𝑽𝑖,𝑘+1,𝑒𝑠𝑡
∗ = 𝑽𝑖,𝑘 (5.5) 

𝜆𝑖,𝑘+1,𝑒𝑠𝑡
∗ = 𝜆𝑖,𝑘 (5.6) 

Finding the matrices 𝐹𝑘 and 𝜇̃𝑘 in Step 2 of the extended Kalman filter at this 

point is trivial, as Equations (5.2) – (5.6), i.e., the function 𝑓, is already linear.  

Derivation of the observation equations 

The observations of the spacecraft are directions and characteristic 

wavelengths of stars. Within the context of the relativistic autonomous 

observation equations in Equations (3.7) and (3.10), these quantities 

correspond to 𝑹̂𝑖
𝑜 and 𝜆𝑖

𝑜 , respectively, where the “hat” operator in the former 

describes the unit vector parallel to the original vector. Consequently, Equation 

(5.7) provides the observation vector of this filter, which is an element of ℝ(4𝑛)×1. 

𝑧𝑘 =

(

 
 
 
 

𝑹̂1,𝑘
𝑜

⋮
𝑹̂𝑛,𝑘
𝑜

𝜆1,𝑘
𝑜

⋮
𝜆𝑛,𝑘
𝑜 )

 
 
 
 

(5.7) 

Step 3 of the extended Kalman filter predicts the observation vector from the 

(predicted) state estimate of Step 1. Equations (3.7) and (3.10) provide just that. 
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If the stars are imperfectly observed by the sensors in the spacecraft frame, 

Equations (5.8) – (5.10) provide the transformation from the predicted state 

estimate to the predicted observations (i.e., the function ℎ), where 𝑹̃̂𝑖
𝑜 and 𝜆𝑖

𝑜  

denote the measurement errors in directions and characteristic wavelengths, 

respectively. Here, the quantities 𝛽𝑘,𝑒𝑠𝑡
∗ , 𝛾𝑘,𝑒𝑠𝑡

∗ , and 𝒗𝑘,𝑒𝑠𝑡
∗  denote those evaluated 

using 𝒗𝑘,𝑒𝑠𝑡
∗ . For notational simplicity, the subscripts “𝑒𝑠𝑡” are omitted yet implied 

in the right-hand side quantities of Equations (5.8) – (5.10). 

𝑹̂𝑖,𝑘
𝑜 =

𝑹𝑖,𝑘
𝑜 ∗

‖𝑹𝑖,𝑘
𝑜 ∗
‖
+ 𝑹̃̂𝑖

𝑜 (5.8) 

𝑹𝑖,𝑘
𝑜 ∗

= 𝑹𝑖,𝑘
∗ −

1

𝛾𝑘
∗ 𝒓𝑘
∗ + (𝛾𝑘

∗− 1)(𝒗𝑘
∗ ⋅ 𝑹𝑖,𝑘

∗ )𝒗𝑘
∗ − 𝛾𝑘

∗(𝛽𝑘
∗)2(𝒗𝑘

∗ ⋅ 𝒓𝑘
∗ )𝒗𝑘

∗

+ 𝛾𝑘
∗𝛽𝑘
∗‖𝑹𝑖,𝑘

∗ − 𝒓𝑘
∗‖𝒗𝑘

∗                                                                              (5.9) 

𝜆𝑖,𝑘
𝑜 = 𝜆𝑖,𝑘

∗ [𝛾𝑘
∗(1+ 𝛽𝑘

∗𝒗𝑘
∗ ⋅

𝑹𝑖,𝑘
∗ − 𝒓𝑘

∗

‖𝑹𝑖,𝑘
∗ − 𝒓𝑘

∗ ‖
)]

−1

+ 𝜆i
𝑜 (5.10) 

Finding the matrix 𝐻𝑘 from these equations is nontrivial yet possible. Equations 

(5.8) – (5.10) are nonlinear, but they are smooth and differentiable for 𝑹𝑖,𝑘,𝑒𝑠𝑡
∗ ≠

𝒓𝑘,𝑒𝑠𝑡
∗ , i.e., while the spacecraft is not traveling towards a star it observes. Then, 

linearize 𝑹̂𝑖,𝑘
𝑜  and 𝜆𝑖,𝑘

𝑜  about the point 𝑡𝑘 = 0 (i.e., 𝒓0 = 𝟎 and 𝒗0 = 𝟎), and notice 

that 𝑹̂𝑖,𝑘
𝑜  and 𝜆𝑖,𝑘

𝑜  are equal to 𝑹̂𝑖,𝑘 and 𝜆𝑖,𝑘, respectively, at this point. In other 

words, if Equation (5.8) is equivalent to 𝑹̂𝑖,𝑘
𝑜 = ℎ1,𝑖(𝑥𝑘) + 𝑹̃̂𝑖

𝑜, and if Equation 

(5.10) is equivalent to 𝜆𝑖,𝑘
𝑜 = ℎ2,𝑖(𝑥𝑘) + 𝜆i

𝑜 , then, they are approximately equal to 
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Equations (5.11) and (5.12). Notice that the 𝑽𝑖,𝑘,𝑒𝑠𝑡
∗  and 𝜆𝑖,𝑘,𝑒𝑠𝑡

∗  terms in the 

linearization are trivial due to Equations (5.5) and (5.6). 

𝑹̂𝑖,𝑘
𝑜 ≈ 𝑹̂𝑖,𝑘,𝑒𝑠𝑡

∗ +
𝜕ℎ1,𝑖
𝜕𝒓𝑘

𝒓𝑘,𝑒𝑠𝑡
∗ +

𝜕ℎ1,𝑖
𝜕𝒗𝑘

𝒗𝑘,𝑒𝑠𝑡
∗ +

𝜕ℎ1,𝑖
𝜕𝑹𝑘

𝑘Δ𝑡(𝑽𝑖,𝑘,𝑒𝑠𝑡
∗ − 𝑽̃𝑖)+ 𝑹̃̂𝑖

𝑜 (5.11) 

𝜆𝑖,𝑘
𝑜 ≈ 𝜆𝑖,𝑘,𝑒𝑠𝑡

∗ +
𝜕ℎ2,𝑖
𝜕𝒓𝑘

𝒓𝑘,𝑒𝑠𝑡
∗ +

𝜕ℎ2,𝑖
𝜕𝒗𝑘

𝒗𝑘,𝑒𝑠𝑡
∗ +

𝜕ℎ2,𝑖
𝜕𝑹𝑘

𝑘Δ𝑡(𝑽𝑖,𝑘,𝑒𝑠𝑡
∗ − 𝑽̃𝑖)+ 𝜆i

𝑜 (5.12) 

Further notice that 𝑹̂𝑖,𝑘,𝑒𝑠𝑡
∗  is approximately equal to Equation (5.13).  

𝑹̂𝑖,𝑘,𝑒𝑠𝑡
∗ ≈ (

𝑹𝑖,𝑘,𝑒𝑠𝑡
∗ 𝑇𝑹𝑖,𝑘,𝑒𝑠𝑡

∗ 𝕀3×3 −𝑹𝑖,𝑘,𝑒𝑠𝑡
∗ 𝑹𝑖,𝑘,𝑒𝑠𝑡

∗ 𝑇

‖𝑹𝑖,𝑘,𝑒𝑠𝑡
∗ ‖

3 )|

𝑡𝑘=0

𝑹𝑖,𝑘,𝑒𝑠𝑡
∗ (5.13) 

Together, Equations (5.11) – (5.13) form the matrices 𝐻𝑘 and 𝜈̃𝑘, as outlined in 

Equations (5.14) and (5.15), where ℎ𝑝,𝑖,𝑟 ≜ 𝜕ℎ𝑝,𝑖 𝜕𝒓𝑘⁄ , ℎ𝑝,𝑖,𝑣 ≜ 𝜕ℎ𝑝,𝑖 𝜕𝒗𝑘⁄ , ℎ𝑝,𝑖,𝑅 ≜

𝜕ℎ𝑝,𝑖 𝜕𝑹𝑘⁄ , and Equation (5.13) is equivalent to 𝑹̂𝑖,𝑘,𝑒𝑠𝑡
∗ ≈ 𝑀𝑖,𝑘𝑹𝑖,𝑘,𝑒𝑠𝑡

∗ . 

𝐻𝑘

=

(

 
 
 

ℎ1,1,𝑟 ℎ1,1,𝑣 𝑀1,𝑘  0 ℎ1,1,𝑅𝑘Δ𝑡  0 0   
⋮ ⋮  ⋱   ⋱   ⋱  

ℎ1,𝑛,𝑟 ℎ1,𝑛,𝑣 0  𝑀𝑛,𝑘 0  ℎ1,𝑛,𝑅𝑘Δ𝑡   0

ℎ2,1,𝑟 ℎ2,1,𝑣 0   ℎ2,1,𝑅𝑘Δ𝑡  0 1  0

⋮ ⋮  ⋱   ⋱   ⋱  
ℎ2,𝑛,𝑟 ℎ2,𝑛,𝑣   0 0  ℎ2,𝑛,𝑅𝑘Δ𝑡 0  1)

 
 
 

   (5.14) 

𝜈̃𝑘 =

(

 
 
 
 

−ℎ1,1,𝑅,𝑘𝑘Δ𝑡𝑽̃1 + 𝑹̃̂1
𝑜

⋮

−ℎ1,𝑛,𝑅,𝑘𝑘Δ𝑡𝑽̃𝑛 + 𝑹̃̂𝑛
𝑜

−ℎ2,1,𝑅,𝑘𝑘Δ𝑡𝑽̃1 + 𝜆i
𝑜

⋮
−ℎ2,𝑛,𝑅,𝑘𝑘Δ𝑡𝑽̃𝑛 + 𝜆i

𝑜)

 
 
 
 

(5.15) 
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Simulation details 

This simulation considers the same spacecraft in Chapter 4: the Breakthrough 

Starshot spacecraft [28,81] that travels in the ISM from Earth to Proxima 

Centauri at 20% of the speed of light while carrying onboard a star tracker, a 

spectrometer, and a perfect atomic clock. The following discussion summarizes 

how this simulation calculates the quantities derived earlier in the chapter, with 

an emphasis on the differences between Chapter 4 and this chapter.  

Star catalog characteristics 

The simulations in this chapter consider a catalog of 200 stars having the 

normally distributed characteristics listed in Table 8. The values in this table are 

comparable to the distribution of the 1014 stars in Gaia Early Data Release 3, 

which is an updated star catalog compared to that in Chapter 4 [90], with 

parallax 15–768.5 mas, astrometric pseudo-wavelength 380–740 nm (an 

arbitrary choice), and radial velocity less than or equal to 30 km/s. Different from 

the values in Gaia Early Data Release 3 are the distributions of right ascension 

and declination of the stars in the catalog. The intent here is to produce a 

multidirectional and uniform star catalog than what Gaia may have observed in 

the stellar neighborhood. Yet again, the choice to use an artificial star catalog 

stems from the goal of demonstrating the algorithm’s functionality. All errors are 

assumed to be Gaussian, as established by central limit theorem. 
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Table 8 Star catalog characteristics, comparable to those in Gaia Data 
Release 2 (for radial velocity) and Gaia Early Data Release 3 (all else). 

Item Units Variable Distribution Mean 
Standard 
Deviation 

Right ascension mas 𝛺 Uniform π π/√3 

Right ascension 
error 

mas 𝛺̃ Normal 0.05397 0.08863 

Proper motion in 
right ascension 

mas/year 𝛺̇ Normal 7.7082 243.17 

Proper motion in 
right ascension 
error 

mas/year 𝛺̃̇ Normal 0.07052 0.11428 

Declination mas 𝛿 Uniform 0 π/√12 

Declination error mas 𝛿 Normal 0.05022 0.08289 

Proper motion in 
declination 

mas/year 𝛿̇ Normal -53.493 226.99 

Proper motion in 
declination error 

mas/year 𝛿̇̃ Normal 0.06496 0.10577 

Parallax mas 𝑝 Normal 23.985 17.387 

Parallax error mas 𝑝̃ Normal 0.07104 0.11474 

Radial velocity km/s 𝑅̇ Normal -7.1921 27.984 

Radial velocity 
error 

km/s 𝑅̃̇ Normal 0.70856 1.2873 

Astrometric 
pseudo-color 

1/µm 𝜈 Normal 1.47546 0.08354 

Astrometric 
pseudo-color 
error 

1/µm 𝜈̃ Normal 0.01353 0.02234 
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The multiplicative inverse of parallax, when taken in arcseconds, provide the 

distance to a star (say, 𝑅𝑖) in parsecs. This quantity, in combination with the 

right ascension, declination, proper motion, and radial velocity, when taken in 

SI units, yield star positions and velocities, 𝑹𝑖,0 and 𝑽𝑖,0, respectively, in SI units, 

as in Equations (5.16) and (5.17). The astrometric pseudo-color yields star 

characteristic wavelengths, 𝜆𝑖,0 , in proper units as in Equation (5.18).  

𝑹𝑖,0 = 𝑅𝑖 (

cos𝛿𝑖 cos 𝛺𝑖
cos 𝛿𝑖 sin𝛺𝑖
sin𝛿𝑖

) (5.16) 

𝑽𝑖,0 = 𝑅̇𝑖 (

cos𝛿𝑖 cos𝛺𝑖
cos 𝛿𝑖 sin𝛺𝑖
sin𝛿𝑖

)+ 𝑅𝑖(

−𝛿𝑖̇ sin𝛿𝑖 cos𝛺𝑖 − Ω̇𝑖 cos𝛿𝑖 sin𝛺𝑖
−𝛿𝑖̇ sin𝛿𝑖 sin𝛺𝑖 + Ω̇𝑖 cos𝛿𝑖 cos𝛺𝑖

𝛿𝑖̇ cos𝛿𝑖

) (5.17) 

𝜆𝑖,0 =
1

𝜈𝑖
(5.18) 

The quantities tagged as “error” in Table 8 represent the measurement noise 

for the star catalog and contribute to the calculation of 𝑹𝑖,0
𝑡𝑟𝑢𝑒 , 𝑽𝑖,0

𝑡𝑟𝑢𝑒 , 𝜆𝑖,0
𝑡𝑟𝑢𝑒  as in 

Equations (5.19) – (5.21), where 𝛿𝑖̅ = 𝛿𝑖 + 𝛿𝑖, 𝛺̅𝑖 = 𝛺𝑖 + 𝛺̃𝑖, and 𝑅̅𝑖 = 1 (𝑝𝑖 + 𝑝̃𝑖)⁄  

in proper units.  

𝑹𝑖,0
𝑡𝑟𝑢𝑒 = 𝑅̅𝑖(

cos 𝛿𝑖̅ cos 𝛺̅𝑖
cos𝛿𝑖̅ sin𝛺̅𝑖
sin𝛿𝑖̅

) (5.19) 
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𝑽𝑖,0
𝑡𝑟𝑢𝑒 = (𝑅̇𝑖 + 𝑅̃̇𝑖)(

cos 𝛿𝑖̅ 𝑖 cos 𝛺̅𝑖

cos𝛿𝑖̅ sin 𝛺̅𝑖
sin𝛿𝑖̅

)

+ 𝑅̅𝑖

(

 
 
− (𝛿𝑖̇ + 𝛿𝑖̇

̃) sin𝛿𝑖̅ cos 𝛺̅𝑖 − (𝛺̇𝑖 + 𝛺̃̇𝑖)cos𝛿𝑖̅ sin 𝛺̅𝑖

− (𝛿𝑖̇ + 𝛿𝑖̇
̃) sin𝛿𝑖̅ sin 𝛺̅𝑖 + (𝛺̇𝑖 + 𝛺̃̇𝑖)cos𝛿𝑖̅ cos 𝛺̅𝑖

(𝛿𝑖̇ + 𝛿𝑖̇
̃) cos𝛿𝑖̅ )

 
 
         (5.20) 

𝜆𝑖,0
𝑡𝑟𝑢𝑒 =

1

𝜈𝑖 + 𝜈̃𝑖
(5.21) 

The “error” quantities in Table 8 also inform the calculation of the star catalog 

error variables 𝑹̃𝑖, 𝑽̃𝑖, and 𝜆𝑖. One can use Equations (5.16) – (5.21) to do Monte 

Carlo analyses that numerically yield probability distributions for these variables. 

Table 9 summarizes the result of these analyses done with 1,000,000 stars. The 

simulations assume that the star catalog errors are common for all stars and 

use these statistics to generate normal random numbers that represent them. 

These quantities are taken as Gaussian, as established by central limit theorem. 

Table 9 Statistical properties of the star catalog error variables 𝑹̃𝒊, 𝑽̃𝒊, 

and 𝝀̃𝒊, and the measurement error variables 𝑹̃̂𝑖
𝑜 and 𝜆𝑖

𝑜 . 

Variable 
Mean [m] Standard Deviation [m] 

x y z x y z 

𝑹̃𝑖 −1.65⋅1017 −1.97⋅1018 7.37⋅1017 5.64⋅1020 1.31⋅1020 5.28⋅1020 

𝑹̃̂𝑖
𝑜 −5.81⋅10−7 −1.97⋅10−6 6.63⋅10−7 7.24⋅10−4 1.29⋅10−3 5.62⋅10−4 

𝑽̃𝑖 −4.18⋅104 1.46⋅104 6.90⋅104 3.53⋅107 1.46⋅107 8.82⋅107 

𝜆𝑖 −6.07⋅10−9 1.03⋅10−8 

𝜆𝑖
𝑜  1⋅10−12 1⋅10−12 
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Measurement noise calculations 

As Gaia is a state-of-the-art astrometry mission, its “error” also informs the 

astrometric observation noise in the simulation, 𝑹̃̂𝑖
𝑜. With a similar Monte Carlo 

analysis, Table 9 summarizes the characteristics of this noise. The mean and 

standard deviation of the spectrometric observation noise, 𝜆𝑖
𝑜 , in the simulation 

are 1 pm, similar to the accuracy and resolution of the Very Large Telescope 

[86], a state-of-the-art spectrometer. Like the star-catalog error discussion, the 

simulations use the same observation error characteristics for all observations, 

including the assumption that these errors are Gaussian. 

Star recognition problem 

Same as the simulations in Chapter 4, the star recognition problem is ignored. 

Interstellar medium disturbance calculations 

Same as the simulations in Chapter 4, the simulation calculates the total random 

acceleration, 𝒂̃, as the sum of these two terms: an acceleration of 10−10 m/s2 

that is opposing the velocity, plus an acceleration of 2⋅10−8 m/s2 in a uniform 

random (but constant in time) direction. This disturbance forms the process 

noise in the system. 

General relativistic time dilation 

Same as the simulations in Chapter 4, general relativistic effects are ignored. 

With all these considerations, Figure 16 provides the extended Kalman filter 

simulations’ flowchart for a single mission. 
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Figure 16 Flowchart of the extended Kalman filter for a single mission.  
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Simulation results 

The rest of this chapter presents the results from Monte Carlo simulations of 

this optimal relativistic autonomous navigation filter. The simulation is 

implemented in MATLAB version R2019b using the flowchart in Figure 16, with 

and without process and measurement noise, at equally separated (in time) 

10,000 points over the trajectory, corresponding to about one estimation/day.  

Figures 17 and 18 show results of a representative run of the optimal 

autonomous navigation filter at 20% of the speed of light while including all the 

noise and disturbances mentioned earlier. Note that the time between each 

estimation point in these simulations is low enough that the convergence time 

depend only on the observability of the relativistic phenomena.  

 

Figure 17 Estimation error convergence in position (left) and velocity (right) 
in a representative simulation of the optimal navigation filter for 𝑣 = 0.2𝑐. 
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Figure 18 Estimation error convergence in star position (left), star velocity 
(middle), and star characteristic wavelength (right) in a representative 

simulation of the optimal navigation filter for 𝑣 = 0.2𝑐. 

 

Table 10 summarizes the performance of the optimal algorithm at 20% of the 

speed of light while including all the noise and error calculated earlier, 

individually, and altogether. The estimation errors in this table are averaged 

over estimation points and individual runs of the algorithm. The relativistic 

autonomous observation equations are nonlinear, which explains the order-of-

magnitude difference between contributions of individual and combined factors. 

With all these contributions, on average, the algorithm estimates the position of 

the spacecraft to around 4⋅1010 m (%0.0002 error), the velocity of the spacecraft 

to around 20 m/s (%0.00003 error), star positions to around 1018 m, (%13 error), 

star velocities to around 105 m/s, (%39 error), and star characteristic 
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wavelengths to around 10-7 m, (%1 error). As Table 10 shows, the main 

contributor of error in the spacecraft position and velocity estimation is the star 

catalog error, but the main contribution of error in the star positions, velocities, 

and characteristic wavelengths is the measurement noise. 

Table 10 Dependence of optimal algorithm’s estimation errors on the 
noise and disturbance (order of magnitude). “ϵ” denotes the numerical 

precision. 

Average 
estimation error 

Only 
process 

noise 

Only 
measurement 

noise 

Only star 
catalog 
error 

All 
included 

Position [m] 104 103 109 1010 

Velocity [m/s] 10-5 100 101 101 

Star distance [m] 10-10 1018 1013 1018 

Star speed [m/s] ϵ 105 100 105 

Star characteristic 
wavelength [m] 

ϵ 10-7 10-12 10-7 

 

Comparing Tables 6 and 10, we see that the optimal algorithm does at least an 

order of magnitude better in estimating the position and velocity of the 

spacecraft than the algorithm in Chapter 4, on average. However, it performs 

several orders of magnitude worse in estimating the distances to stars, while 

adding on the benefit of estimating star velocities and characteristic 

wavelengths. That said, converting the parameters in Table 8 to the star 

catalog’s reporting errors, we find that the star catalog reports the distance, 

speed, and characteristic wavelength of 99% of stars (3σ) with errors of 

approximately 2⋅1021 m, 7⋅107 m/s, and 2⋅10-7 m, respectively. Then, even with 
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the state-of-the-art sensor resolutions, this algorithm can enhance the accuracy 

of position and velocity measurements in the provided star catalog, on average. 
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Conclusions 

The derivation of the optimal autonomous navigation algorithm includes star 

motions, which were ignored in the derivation of the relativistic autonomous 

observation equations. Furthermore, the simulations of the filter consider other 

ignored effects such as star catalog errors, observation noise, and random 

acceleration within the interstellar medium. Even with these sources of errors 

involved and without the constant usage of a star catalog, the optimal filter 

performs better in estimating spacecraft’s position and velocity than the least-

squares algorithm, which is expected. What is impressive is the filter’s potential 

in improving our current estimation accuracy of star positions and velocities. 

Overall, this filter shows promise as a standalone navigation filter on any 

interstellar mission, provided the relativistic effects are detectable onboard. 

Furthermore, since its estimation accuracy depends heavily on sensor 

measurements, future technological advances will only improve its 

performance, and may enable improvement in our spectrometric knowledge.  
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CHAPTER 6 

APPLICATION: INTERSTELLAR DARK MATTER EXPLORER MISSION 

CONCEPT 

High-level mission concept 

The Interstellar Dark Matter Explorer Mission seeks to use heritage spacecraft 

components to detect deviations in the dark matter distribution near the 

heliopause within a reasonable mission duration of around 25 years. The 

payload utilizes ESA’s GOCE spacecraft’s gravity gradiometry techniques to 

measure local acceleration deviations with a resolution of 10−12 𝑚/𝑠2. The 

navigation algorithms described in Chapters 4 and 5 are used in this mission by 

employing ESA’s Gaia spacecraft’s astrometric and spectrometric techniques. 

NASA’s Voyager spacecrafts’ Communication System provide adequate 

downlink capabilities. SpaceX’s Starship launches the spacecraft into a low 

Earth orbit, then the spacecraft propels itself into a hyperbolic transfer orbit to 

Jupiter. After performing a gravity assist maneuver around Jupiter, the 

spacecraft travels on another hyperbolic orbit to its destination at 125 AU from 

the Sun, with a total travel time of 23 years. The spacecraft operates two 

radioisotope thermoelectric generators, used on NASA’s New Horizons 

spacecraft, to produce power in interstellar space. The total dry mass of the 

spacecraft is approximately 2.5 tons, and the Interstellar Dark Matter Explorer 

Mission costs less than 1.6 billion USD to develop, launch, and operate. 
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Science goals 

Dark matter is simply matter that is non-luminous and non-absorbing. It has 

nonzero mass and therefore interacts with gravity. Current local and global 

observations suggests that the Milky Way has a dark matter halo and perhaps 

also a dark disk. These observations also lead one to conclude that the dark 

matter density near the Sun is around 6.24 ⋅ 10−22  𝑘𝑔/𝑚3, on average [91]. 

Recent simulations show that dark matter near the solar system could form 

clumps with much higher densities [19]. If so, a spacecraft that can measure 

gravity and that is far enough from the gravitational interactions within the solar 

system may be able to detect these clumps and help uncover the mystery of 

one of the least-understood physical phenomena. Furthermore, obtaining the 

dark matter distribution at a future position of the Sun may serve as a precursor 

for dark matter detection within the solar system in the future. The following 

paragraphs discuss the expected acceleration measurements for point particle 

and uniform sphere models of dark matter clumps. 

Dark matter as point particle at a distance 

The gravitational acceleration magnitude, 𝑎, applied by an infinitesimally small 

dark matter clump of mass 𝑀 on a spacecraft that is a distance 𝑑 away is 

calculated by Equation (6.1), where 𝐺 is the gravitational constant. 

𝑎 =
𝐺𝑀

𝑑2
(6.1) 
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From Equation (6.1), we calculate the differential acceleration between two 

consecutive measurements at distances 𝑑1 and 𝑑1 + 𝑑 from the dark matter 

clump, where 𝑑 > 0, as in Equation (6.2). 

𝑎1 − 𝑎2 =
𝐺𝑀

𝑑1
2
[1 −

1

(1 + 𝑑/𝑑1)2
] (6.2) 

If 𝑑 ≪ 𝑑1, then by using binomial approximation, we find Equation (6.2) to be 

approximately equal to Equation (6.3). 

𝑎1 − 𝑎2 ≈ 2𝐺𝑑
𝑀

𝑑1
3

(6.3) 

Assuming 𝑑 of the mission is known, two consecutive differential acceleration 

measurements yield a measure of 𝑀/𝑑1
3. 

If the spacecraft takes 𝑛 consecutive measurements, using a similar analysis, 

the differential acceleration between measurements 𝑖 and 𝑖 + 1 is equal to 

Equation (6.4). 

𝑎𝑖 − 𝑎𝑖+1 =
𝐺𝑀

𝑑1
2
[

1

[1 + (𝑖 − 1)𝑑/𝑑1]2
−

1

(1 + 𝑖𝑑/𝑑1)2
] (6.4) 

With binomial approximation, Equation (6.4) is approximately equal to Equation 

(6.5), which is identical to Equation (6.3). Then, all consecutive differential 

acceleration measurements yield a measure of 𝑀/𝑑1
3. 

𝑎𝑖 − 𝑎𝑖+1 ≈ 2𝐺𝑑
𝑀

𝑑1
3

(6.5) 
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Dark matter as uniform sphere at a distance 

The discussion is similar to above, except it is now possible to express the dark 

matter mass as a function of density, 𝜌, and radius, 𝑟, of the clump sphere. In 

sum, all consecutive differential acceleration measurements yield a measure of 

𝜌(𝑟 𝑑1⁄ )3, where 𝑑𝑖 is the distance between the spacecraft and the clump’s 

center of mass at measurement step 𝑖, since the differential acceleration 

between measurements 𝑖 and 𝑖 + 1 is approximately equal to Equation (6.6). 

𝑎𝑖 − 𝑎𝑖+1 ≈
8𝜋𝐺𝑑

3
𝜌 (
𝑟

𝑑1
)
3

(6.6) 

Payload 

Several missions have successfully demonstrated that sensors that measure 

acceleration directly or indirectly can in fact measure gravity with high precision. 

For example, in 2002–2017, NASA and DLR’s joint mission GRACE performed 

gravimetry by measuring the relative distance and velocity of its twin satellites 

and calculating the Earth’s gravitational field with a resolution of 10−11 𝑚/𝑠2 

[92,93]. In 2009–2013, ESA’s GOCE satellite carried three pairs of 

accelerometers to map Earth’s gravitational anomalies using gravity 

gradiometry with a resolution of 10−12 𝑚/𝑠2 [94,95]. In 2012, NASA’s GRAIL 

mission adapted GRACE’s technique to the Moon [96]. In 2018, GRACE-FO 

replaced GRACE, and still continues to perform gravimetry around Earth [97].  

Applicable to this mission concept, which requires onboard acceleration 

measurements, are both GRACE’s gravimetry and GOCE’s gravity gradiometry 
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techniques. Given dark matter’s extremely low local-density distribution, the 

system that has a higher resolution should be the payload. Therefore, GOCE’s 

Electrostatic Gravity Gradiometer (EGG) instrument, which consists of three, 

50-cm apart pairs of servo-controlled, capacitive accelerometers fixed on an 

ultra-stable carbon-carbon structure, is proposed as the payload of this mission. 

This instrument will need to be calibrated in an orbit around the Earth before 

departing on its journey to detect dark matter, as performed originally by the 

GOCE spacecraft [98]. 

Following the dark matter models discussion, if the resolution of this instrument 

is 10−12  𝑚/𝑠2, then it can detect the local dark matter whenever Equation (6.7) 

or Equation (6.8) hold. 

𝑀

𝑑1
3
≈
𝑎𝑖 − 𝑎𝑖+1
2𝐺𝑑

≥
7.5 ⋅ 10−3

𝑑
(6.7) 

𝜌 (
𝑟

𝑑1
)
3

≈
𝑎𝑖 − 𝑎𝑖+1
8𝜋𝐺𝑑/3

≥
1.8 ⋅ 10−3

𝑑
(6.8) 

Alternatively, not detecting a differential acceleration puts an upper bound on 

the left-hand side quantities of Equations (6.7) and (6.8).  

Destination and trajectory  

The requirement for this spacecraft to be located far enough from gravitational 

interactions within the solar system suggests that such a mission can be 

successful beyond the heliopause, which is around 120 AU from the Sun [99]. 

For example, at 125 AU, the differential gravity due to the Sun between two 
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accelerometers that are 50-cm apart is approximately 2.028 ⋅ 10−20  𝑚/𝑠2, 

calculated using Equation (6.9), where 𝜇⊙ = 1.327 ⋅ 10
20 𝑚3/𝑠2 is the 

gravitational parameter of the Sun [100]. In comparison, the differential gravity 

at this distance due to Jupiter is approximately 1.936 ⋅ 10−23 𝑚/𝑠2 for Jupiter’s 

gravitational parameter, 𝜇𝐽 = 1.267 ⋅ 10
17 𝑚3/𝑠2 [101]. These numbers are 

much lower than GOCE’s detection accuracy. Furthermore, solar radiation 

pressure and related effects are virtually absent past the heliopause, by 

definition. Therefore, 125 AU is the operational distance from the Sun for this 

mission. 

Δ𝑔 = 𝜇 (
1

𝑟𝑚𝑎𝑥2
−

1

𝑟𝑚𝑖𝑛
2
) (6.9) 

Reaching 125 AU in less than 25 years (an arbitrary but practical goal) would 

require the spacecraft to travel much faster than past interstellar missions. For 

example, Voyager 1 reached 125 AU from the Sun in about 36 years. A common 

technique that increases the velocity of interstellar spacecraft to required levels 

is a gravity assist maneuver around Jupiter. For that, the spacecraft needs to 

depart Earth, travel to Jupiter on a transfer orbit, perform the gravity assist 

maneuver around Jupiter, and finally, depart Jupiter on an orbit that reaches 

125 AU. To find the details of these orbits and the Earth departure speed relative 

to Earth (i.e., the launch speed), we need to work backwards and first calculate 

the necessary Jupiter departure velocity relative to the Sun.  
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Jupiter to 125 AU, hyperbolic orbit 

Assume that the spacecraft travels on a hyperbolic orbit relative to the Sun after 

departing Jupiter to reach 125 AU as quickly as possible. Equation (6.10) 

calculates 𝑡, the time of flight on a hyperbolic orbit measured from the perihelion, 

where 𝑎 denotes the semimajor axis of the orbit, 𝑟𝑝 denotes the perihelion 

distance, and 𝑟 denotes the position of the spacecraft from the Sun [102]. 

Solving this equation numerically for 𝑡 = 22 𝑦𝑒𝑎𝑟𝑠, 𝑟 = 125 𝐴𝑈, and 𝑟𝑝 = 5.2 𝐴𝑈 

results in 𝑎 = −1.295 𝐴𝑈. The perihelion choice in this calculation is arbitrary 

and will depend on Earth and Jupiter’s relative positions during the mission. 

𝑡 = √
(−𝑎)3

𝜇⊙
{(1 −

𝑟𝑝
𝑎
)sinh [acosh(

𝑎 − 𝑟

𝑎 − 𝑟𝑝
)]− acosh(

𝑎− 𝑟

𝑎− 𝑟𝑝
)} (6.10) 

Equation (6.11), also known as the vis-viva equation [103], calculates the 

spacecraft’s speed from its distance from the Sun and the semimajor axis of the 

orbit. From here, we find that the spacecraft’s Jupiter departure speed should 

be 32,034 m/s relative to the Sun. Using the same equation, we find that the 

spacecraft’s speed at 125 AU relative to the Sun is 26,443 m/s, while on this 

hyperbolic orbit. 

𝑣 = √𝜇 (
2

𝑟
−
1

𝑎
) (6.11) 

The next unknown to solve is the spacecraft’s Jupiter arrival speed before the 

gravity assist maneuver.  
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Gravity assist maneuver around Jupiter 

Equation (6.12) provides the turn angle, 𝛿, of a gravitational assist maneuver, 

where 𝑣∞ is the relative velocity of the spacecraft with respect to the planet when 

the spacecraft is infinitely far from it, 𝑟𝑓𝑏 is the flyby radius, and 𝜇𝑝 is the 

gravitational parameter of the planet [104]. 

sin (
𝛿

2
) =

1

1+
𝑟𝑓𝑏𝑣∞2

𝜇𝑝

(6.12)
 

During a gravity assist maneuver about Jupiter, a spacecraft’s departure speed 

relative to the Sun is maximum when its velocity vector aligns with Jupiter’s 

orbital velocity about the Sun [104], which is equal to 13.07 km/s [101]. Then, 

the spacecraft’s Jupiter departure (and arrival) speed relative to Jupiter should 

be equal to 𝑣∞ = 18,964 𝑚/𝑠. To minimize the spacecraft’s arrival speed relative 

to the Sun given this 𝑣∞, we need to maximize 𝛿, or equivalently, minimize 𝑟𝑓𝑏 

[104].  

Take 𝑟𝑓𝑏,𝑚𝑖𝑛 = 75,600 𝑘𝑚, which is the nearest approach for the Juno 

spacecraft’s orbit’ [105]. Then, from Equation (6.12), 𝛿𝑚𝑎𝑥 = 1.935 𝑟𝑎𝑑 ≈ 111
∘, 

which is also equal to the angle between Jupiter’s velocity vector and the 

spacecraft’s Jupiter entry velocity vector since the former is parallel to the 

spacecraft’s Jupiter departure velocity. As a result, the spacecraft’s Jupiter 

arrival speed relative to the Sun is 18,819 m/s. In other words, the net Δ𝑣 relative 

to the Sun from this Jupiter gravity assist maneuver is 13,216 m/s. (For 
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comparison, Voyager 1’s Δ𝑣 gain around Jupiter was around 10 km/s.) The next 

unknown to solve is the spacecraft’s Earth departure speed. 

Earth to Jupiter, hyperbolic orbit 

The Sun-relative speed of 18,819 m/s near Jupiter corresponds to a (barely) 

hyperbolic orbit about the Sun, since the escape velocity from the Sun at 

Jupiter’s distance is 18,471 m/s, calculated from Equation (6.13). 

𝑣𝑒𝑠𝑐 = √2𝜇 𝑟⁄ (6.13) 

From Equation (6.11), this orbit corresponds to one with 𝑎 = −68.40 𝐴𝑈. From 

the same equation, hen this orbit crosses Earth’s orbit, its orbital velocity is 

42,274 m/s, which should be spacecraft’s Earth departure speed relative to the 

Sun. The choice of other orbital parameters depends on Earth and Jupiter’s 

positions at the time of launch and determines the time of flight from Earth to 

Jupiter. For instance, if this orbit’s perihelion is at Earth, then, from Equation 

(6.10), the time of flight from Earth to Jupiter is 13.1 months, and the total time 

of flight from Earth to 125 AU is just over 23 years. Figure 19 illustrates the 

proposed spacecraft trajectory from Earth to 125 AU. 
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Figure 19 Illustration of the dark matter explorer spacecraft’s proposed 

trajectory from Earth to 125 AU (not to scale). Included speeds denote 

spacecraft’s speed relative to the Sun at points of interest. 

 

Launch from Earth 

The escape velocity from the Earth at a 500 km circular orbit (low Earth orbit, 

LEO) is approximately 10,771 m/s, calculated using Equation (6.13) and the 

gravitational parameter of Earth, 𝜇⊕ = 3.986 ⋅ 10
14 𝑚3/𝑠2. Assuming the 
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spacecraft is launched from LEO in the direction of Earth’s orbit around the Sun 

to save launch effort, given that the orbital velocity of the Earth around the Sun 

is 29,780 m/s on average [106], the spacecraft’s launch velocity from LEO 

relative to the Earth is 12,494 m/s. This speed exceeds the escape velocity and 

corresponds to a hyperbolic orbit, which implies that the spacecraft leaves 

Earth’s gravitational influence region (nearer than 0.01 AU [107]) relatively 

quickly and the calculations done without patched conic approximations [102] 

are acceptable for a first-order analysis. A similar discussion could be done for 

velocity-on-a-hyperbolic-orbit calculations near Jupiter, which has a 

gravitational influence region of around 0.35 AU [107]. 

Orbit near 125 AU 

The escape velocity from the Milky Way galaxy at the Sun is estimated to be 

550.9−22.1
+32.4 𝑘𝑚/𝑠 [108]. The Sun’s orbital speed about the center of the galaxy is 

approximately 250 km/s [100]. Then, the spacecraft’s Jupiter departure orbital 

velocity relative to the galactic center is between 218 km/s and 282 km/s, both 

significantly smaller than the galactic escape velocity. This result implies that 

the spacecraft ultimately is in an elliptical orbit about the galactic center. 

Guidance, Navigation, and Control 

As mentioned earlier, the target distance for this mission is approximately 125 

AU. This distance is far enough from the Earth to make the usage of DSN in 

navigation ineffective, as the time delay significantly affects all Earth-based 

ranging methods beyond heliopause. Therefore, the autonomous navigation 



88 

algorithms described in this dissertation may offer an improvement in the 

resolution of this dark matter exploration mission, provided that the onboard 

sensors can resolve the relativistic effects at this speed.  

The spacecraft’s speed at 125 AU relative to the Sun is 26,443 m/s. To calculate 

the relativistic effects this spacecraft experiences, we need to consider its 

motion relative to an inertial reference frame. The International Celestial 

Reference Frame defines itself as inertial relative to extragalactic sources [78], 

therefore, the extragalactic reference frame is a good inertial baseline for this 

purpose. We know that the Sun’s orbital speed around the galactic center is 

approximately 250 km/s, and Milky Way’s speed relative to the extragalactic 

reference frame is approximately 600 km/s [109]. As a result, the spacecraft’s 

speed at 125 AU relative to an inertial reference frame is at least 823,557 m/s, 

which is 0.275% of the speed of light.  

From Einstein’s relativistic aberration law and relativistic Doppler shift principle 

given in Equations (3.1) and (3.2), we can calculate the change in observed 

angles and characteristic wavelengths at this speed. The results show that the 

stars may appear to move hundreds of arcseconds and may shift characteristic 

wavelengths in the visible region by a few nanometers. Therefore, the 

navigation algorithms described earlier would require onboard sensors that are 

able to resolve these observational changes to perform successfully throughout 

this mission. 
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ESA’s Gaia spacecraft satisfy the angular and spectral resolution requirements 

of the navigation algorithms. Gaia’s on-board star-mapper detector provides 

sub-arcsecond resolution for even the very faint stars [110], and its Radial 

Velocity Spectrometer has a resolving power of approximately 11,500 within the 

region 847–874 nm, which corresponds to a resolution between 73.6–76 pm. 

Simulating the extended Kalman filter of Chapter 5 with these observation 

noises and 100 stars result in an average position estimate of 70,000,000 m 

(0.00047 AU) and velocity estimate of 3 m/s, which is excellent performance. In 

sum, Gaia’s Astrometric Instrument and Radial Velocity Spectrometer are the 

navigation sensors for this mission, providing measurements to an onboard 

computer that runs the optimal relativistic autonomous navigation filter, 

described in Chapter 5. 

Detecting the acceleration due to dark matter anisotropy may require an 

undisturbed orbit near 125 AU. The ISM is still not well known, and the 

interstellar dust and gas may cause this spacecraft to accelerate significantly. 

In addition, the spacecraft needs a guidance system for trajectory corrections 

and orbital maneuvers. For these purposes, the spacecraft utilizes Gaia’s 

Chemical Propulsion System, which uses N2O4/MMH propellant with 291 s 

specific impulse and 10 N nominal thrust [111].  

Communications 

A communication system is necessary for this spacecraft to report science data 

back to Earth. At a minimum, the spacecraft should send Earth its three-
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dimensional position and velocity estimations from the navigation algorithm and 

the differential acceleration measurements from the three pairs of 

accelerometers.  

At 130+ AU, Voyagers’ antennas still successfully transfer data back to Earth, 

and therefore, their Communications System is a suitable option for this 

mission. For example, during cruise in its interstellar mission, Voyager 2 uses 

its High Gain Antenna in low power mode which provides downlink telemetry at 

160 bps [112]—more than enough for this purpose. 

Attitude Determination and Control 

The spacecraft could use Gaia’s telescopes as a relativistic star tracker and the 

acceleration readings performed by GOCE’s EGG to determine its attitude 

[113,114]. Then, it could use Gaia’s Micro Propulsion System with cold gas 

thrusters to control its attitude [111,115]. While many other solutions would be 

suitable, Gaia’s offers the benefit that its size, weight, and power have already 

been assessed for the payload of interest, making estimates of these 

parameters more trustworthy. 

Power and Mass 

The spacecraft, at a minimum, needs to include GOCE’s gravity detection and 

gradiometer calibration systems, Gaia’s astrometry, spectrometry, orbit control, 

and attitude control systems, and a communication system that offers Voyager’s 
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capability. In addition, it should include an appropriate electrical power system, 

onboard processing capabilities, and necessary structural elements. 

Table 11 provides the power and mass budgets of the spacecraft, including 

roughly 25% contingency throughout per Goddard’s Design Rules [116]. The 

total power consumption of the spacecraft, including the 25% margin in this early 

mission development stage [116], is estimated to be approximately 905 W. In 

an interstellar mission such as this, solar arrays cannot produce enough power, 

and nuclear power is the preferred option.  

For example, the New Horizons spacecraft used a Radioisotope Thermoelectric 

Generator (RTG) with a mass of 56 kg, which generates 300 W at the beginning 

of its life, and 3.5 W less every year [117]. Then, at the end of 23 years, its 

power production amount becomes 219 W. Using two of these RTGs for 23 

years and storing some of this power in rechargeable batteries or 

supercapacitors [118] for peak power consumption instances (for instance, 

when taking astrometric and spectrometric data) suffices for this mission. 
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Table 11 Power consumption and mass estimations of the included 
components of GOCE, Gaia, and Voyager’s Communication System 

[24,95,119–125] and additional necessary components [24,118], including the 
25% contingency margin [116]. 

Heritage 
Spacecraft 
Components 

Function Subsystem/Component Power Mass 

GOCE 

Gravity 
detection 

Electrostatic Gravity 
Gradiometer 

75 W 
150 
kg 

Gradiometer 
calibration 

Gradiometer Calibration 
Device (cold gas 
thruster) 

8 W 50 kg 

Gaia 

Astrometry and 
spectrometry 

Astrometric Instrument 
and Radial Velocity 
Spectrometer 

500 
W 

800 
kg 

Orbit control 
Chemical Propulsion 
System (bipropellant) 

12 W 
425 
kg 

Attitude control 
Micro Propulsion System 
(cold gas thruster) 

12 W 60 kg 

Voyager Communication Communication system 67 W 85 kg 

Dark Matter 
Mission 
Specific 
Components 

Data handling and processing 20 W 1 kg 

Energy storage, power management and 
distribution 

30 W 10 kg 

Structure - 
300 
kg 

Power generation (radioisotope 
thermoelectric generator) 

- 
112 
kg 

25% margin  
181 
W 

499 
kg 

Total 
905 
W 

2492 
kg 
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Launch vehicle  

SpaceX’s Starship can deliver 150 metric tons to a 500-km orbit [126]. Including 

the 25% margin in this early mission development stage [116], this spacecraft 

has a mass of approximately 2.5 tons. Starship’s capacity enables this mission 

to carry a high-performance chemical propulsion stage to accelerate the 

spacecraft to the necessary velocity for transfer orbit to Jupiter (12,494 m/s). 

Specifically, the RL10B-2 engine with LOX/LH2 propellant provides an 𝐼𝑠𝑝 of 

465.5 for a 5.88:1 oxidizer-to-fuel weight ratio [24]. Table 12 provides 

characteristic masses and densities of the RL10B-2 engine, LOX/LH2 storage 

tanks, and storage tank insulation. 

Table 12 Characteristic masses and densities of the propulsion system 
[127]. 

RL10B-2 engine mass 663 kg 

LOX density 1140 kg/m3 

LOX tank mass 12.16 × (tank volume in m3) kg 

LOX tank insulation mass 1.123 × (tank area in m2) kg 

LH2 density 72 kg/m3 

LH2 tank mass 9.09 × (tank volume in m3) kg 

LH2 tank insulation mass 2.88 × (tank area in m2) kg 

 

Let the LH2 mass in the LH2 tank be 𝑥 kg. To minimize the mass of the tank 

structure and insulation, the fuel tanks are spherical. Then, from Table 12, the 

LH2 tank radius is 0.1491 𝑥1/3 m, tank mass is 0.1263 𝑥 kg, and the tank 
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insulation mass is 0.8047 𝑥2/3 kg. If the engine has a 5.88:1 oxidizer-to-fuel 

weight ratio, the LOX mass in the LOX tank is 5.88 𝑥 kg, and from Table 12, the 

LOX tank radius is 0.1072 𝑥1/3 m, tank mass is 0.0627 𝑥 kg, and the tank 

insulation mass is 0.1621 𝑥2/3 kg. Then, Equations (6.14) and (6.15) provide the 

dry and wet masses of this spacecraft, respectively. 

𝑚𝑑𝑟𝑦 = 3155 + 0.1890 𝑥 + 0.9669 𝑥
2 3⁄ (6.14) 

𝑚𝑤𝑒𝑡 = 3155 + 7.0690 𝑥 + 0.9669 𝑥
2 3⁄ (6.15) 

If the Starship can insert 150 metric tons into the desired orbit, then the 

maximum value of 𝑥 is 20,670 kg, which means the total dry mass is 7,790 kg, 

and the total propellant mass is 142,210 kg. Equation (6.16), the Tsiolkovsky 

rocket equation, calculates the Δ𝑣 this spacecraft can achieve with this amount 

of LOX/LH2, as 13,502 m/s, which is 1008 m/s higher than the required speed, 

12,494 m/s. This extra Δ𝑣 represents propellant mass margin. 

Δ𝑣 = 𝐼𝑠𝑝𝑔0 ln
𝑚𝑤𝑒𝑡
𝑚𝑑𝑟𝑦

(6.16) 

GOCE’s and Gaia’s dimensions are 5.3 m × 2.3 m and 4.6 m × 2.3 m, 

respectively. The propulsion engine RL10B-2’s dimensions are 4.15 m × 2.15 

m. From Table 12, the LOX and LH2 tanks’ diameters are 5.88 m and 8.18 m, 

respectively. Starship’s payload volume dimensions has a diameter of 8 m, and 

a height of up to 22 m [126], and can comfortably accommodate all components 

of the spacecraft.  
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Cost 

Table 13 provides the individual costs of the heritage elements of this mission 

and estimates the total cost of this mission to be less than 1.6 billion USD. This 

cost is about half the expected development cost of NASA’s Nancy Grace 

Roman Space Telescope, to be launched in 2027 [128]. The real cost is 

expected to be lower than 1.6 billion USD, as this solution excludes the 

development of individual instruments. 

Table 13 Top-level individual costs of the heritage elements included in 
this spacecraft [117,129–135]. 

Item Cost 

GOCE spacecraft (including operations) $325,560,000 

Gaia spacecraft (including operations) $698,258,000 

Voyager spacecraft (including operations) $360,000,000 

2 x New Horizons RTG $260,000,000 

Starship launch $10,000,000 

Total $1,653,818,000 
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Conclusions 

This technology-push dark matter explorer mission concept employs well-

understood and space-demonstrated technology of several heritage spacecraft. 

It proposes a new idea to detect deviations in the dark matter distribution within 

the solar system. Utilizing the relativistic autonomous navigation algorithms 

presented in the earlier chapters and GOCE’s excellent performance, this 

mission looks promising even in this early development stage. Advancing the 

analyses presented in this chapter may help the physics community understand 

a fundamental unknown of our universe.  
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CHAPTER 7 

CONCLUSION 

This dissertation focuses on spacecraft traveling relativistically in interstellar 

space, particularly the problem of its navigation. The problem arises because 

the state-of-the-art Earth-based navigation, as well as the autonomous 

navigation methods developed around Newtonian mechanics are insufficient for 

relativistic interstellar missions. This dissertation seeks to solve this problem by 

developing autonomous navigation algorithms framed around relativistic 

mechanics. It does so by first modeling the observations of this spacecraft, then 

developing autonomous navigation algorithms around this observation model, 

and finally, presenting a mission concept that uses the relativistic autonomous 

navigation methods and investigating the methods’ performance. 

The relativistic autonomous observation model derived in Chapter 3 has many 

simplifying assumptions. It assumes that the spacecraft is in uniform rectilinear 

motion, the stars it observes are static, the star catalog reports observed stars’ 

positions and characteristic wavelengths exactly, and its onboard sensors take 

perfect measurements. With these assumptions, Chapter 3 derives an 

observation model that is more general than Einstein’s angle-based 

equations—used commonly by other researchers for developing relativistic 

methods. 

The relativistic autonomous navigation methods described in Chapters 4 and 5 

establish around the relativistic observation model in Chapter 3. In derivations 
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and simulations, these methods relax many of Chapter 3’s assumptions, and 

successfully estimate the spacecraft’s position and velocity to a reasonable 

degree. In addition, these methods provide a novel way of improving our current 

astrometric and spectrometric capabilities. Furthermore, both methods are 

generally suitable for any spacecraft at any speed between any two points, 

provided it is equipped by adequate sensors. 

Chapter 6 describes a technology-push mission concept for an interstellar dark 

matter explorer mission that employs well-understood and space-demonstrated 

technology of heritage spacecraft and the relativistic navigation algorithms of 

Chapters 4 and 5. This mission concept suggests a technology for detecting 

dark-matter anisotropy in interstellar space using acceleration measurements, 

which has never been done before. 

In sum, this dissertation provides a more general observation model than what 

is currently used in the field of aerospace engineering, which can enhance the 

development of relativistic navigation algorithms and other relativistic 

calculations. Additionally, this dissertation describes two general autonomous 

navigation algorithms which show that not only position, but also velocity, is 

obtainable from star observations at relativistic speeds. Both algorithms are 

suitable for all spacecraft traveling at any speed and on any trajectory and can 

improve our astrometric and spectrometric knowledge base. Finally, dark matter 

is a highly sought-after topic of interest in the physics and space communities, 

and this dissertation offers a near-term technology for answering some of their 
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questions. For these reasons, this dissertation represents broad impact to the 

field of aerospace engineering. 
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