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Abstract

We investigate the asymptotic behavior of the OLS residual-based CUSUM
test for parameter constancy in a dynamic regression with heavy—tailed distur-
bances. We extend previous results by relaxing the finite—variance assumption
and consider disturbances in the domain of attraction of a stable Paretian law.
The main result is a functional limit theorem for the self-normalizing CUSUMs
of OLS residuals. We report on a simulation study of the resulting prelimiting
and limiting processes. Finally, we provide response—surface approximations of
critical values for the CUSUM test statistic.
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1. Introduction

CUSUM-type tests of the stability over time of coefficient vector 3 in the dynamic linear
regression Y; = X3 4 U; are commonly used in the econometric work. Brown, Durbin
and Evans (1975) proposed CUSUM tests based on recursive residuals; MacNeill (1978)
considered a CUSUM test using ordinary least squares (OLS) residuals; while McCabe
and Harrison (1980) studied CUSUM-of-squares tests based on the assumption of
independent, identically distributed (i.i.d.) disturbances. Ploberger and Kramer (1992)
(hereafter, PK) provided a functional limit theorem for the sums of OLS residuals,

k3

where B(”) denotes the OLS estimator for 3. Their main result describes a set of
regularity conditions, which imply that the cumulative process zEﬂ Ui(n), 0<t<1,—
after applying the for finite—variance processes usual normalization—converges weakly
to a Brownian bridge.!

Since the influential work of Mandelbrot (1963) and Fama (1965) there has been
substantial empirical evidence that data arising in speculative markets tend to have dis-
tributions that are fat-tailed and excessively peaked around the center. This makes—as
suggested by Mandelbrot and Fama—the stable Paretian (in short, a—stable) distribu-
tion a much more realistic model than the Gaussian one.? The a-stable family includes
the Gaussian distribution as the special case, which is obtained when the stable index
or tail-thickness parameter equals two; but it also accommodates the infinite-variance
assumption when 0 < a < 2. Accepting the a—stable hypothesis, it is reasonable
to allow the disturbances in a regression, which involves asset returns as dependent
variables, to have infinite variance.

The CUSUM squares test under the infinite—variance assumption was first studied

in Loretan and Phillips (1994). Kim, Mittnik and Rachev (1996) (hereafter, KMR)

!Ploberger and Kramer (1992) modified the CUSUM test to allow for correlated and heteroskedastic
OLS residuals.
2For discussions of a—stable distributions in modeling asset returns we refer to Mittnik and Rachev

(1993), McCulloch (1996), Mittnik, Rachev and Paolella (1997) and Mittnik and Rachev (1998).



replaced the Gaussian assumption in PK’s functional limit theorem by the assumption
of non—Gaussian stable disturbances. More specifically, KMR modified the standard
test statistic by replacing the sample standard deviation by the sample pth norm,
0 < p < a, and showed that, after a proper normalization, the CUSUMs of OLS-
residuals converge to a Lévy bridge (see also Rachev, Kim and Mittnik (1997)). The
limiting procedure enables us to test for the constancy of the regression coefficient 3
by constructing confidence regions based on the Lévy bridge.

The drawback of the approach in KMR is that the resulting test statistic depends on
the unknown stable index a. Moreover, in order to use consistently a sample estimate
of the theoretical pth moment one has to assume that the disturbances themselves
are a—stable. In this paper we avoid these drawbacks. We provide a functional limit
theorem for a self-normalizing version of the CUSUM test put forth in PK. In doing
so, we only assume that disturbances are in the domain of attraction of an a-stable
law. The resulting test statistic does not depend on the unknown stable index o (of
course, its limiting distribution does depend on that index.) It turns out that the
limiting results deviate substantially from those in PK, once we allow disturbances to
be heavy-tailed.

The paper is organized as follows. Section 2 establishes some notation and sum-
marizes relevant facts about a-stable distributions and their domains of attraction. In
Section 3 we derive our main result, the functional limit theorem for the self-normalizing
OLS-residual process arising in the CUSUM test when disturbances are in the domain
of normal attraction of an a-stable law. Simulation results on the prelimiting and
limiting processes are presented in Section 4. There, we also present a set of critical
values, which can easily be implemented in applied work. Section 5 concludes. An

appendix contains the proofs of various technical statements used in Section 3.

2. Stable Laws and Their Domains of Attraction.

There are several ways of defining an a—stable distribution (see Zolotarev, 1986; Samorod-

nitsky and Taqqu, 1994, and the references therein). The classical definition, given



in Lévy (1937), states that a random variable (r.v.) X is stable, if for any positive
numbers A and B there is a positive number, ', and a real number, D, such that
AX: + BX, LNeD'¢ + D, where X and X3 are independent r.v.’s with X; 4 X,1=1,2
and “Z” denotes equality in distribution. For any stable r.v. X there is a number
a € (0,2] such that C satisfies C* = A% + B* (see Feller, 1971, Sec. 17.4). The
exponent « is called the index of stability. For a < 2 a non—degenerate stable r.v. X
with index of stability « satisfies P(|X| > t) ~ ¢t~ for some ¢ > 0 as { — oo, and
the left and right tails of X are balanced as in (4) below. Hence, if a < 2, the tails of
the distribution of a stable r.v. are fatter than those of the normal distribution; and
the tail-thickness increases as a decreases. This is why « is also referred to as the
tatl-thickness parameter. If & < 2, moments of order « or higher do not exist. A stable
r.v. with index « is said to be a—stable. A Gaussian random variable is a 2—stable
random variable (i.e., & = 2). Indeed, if X; and X, are independent normal with a
common mean g and variance o2, then AX; + BXy ~ N((A + B)u, (A + B*)o?); i.e.,
we have C' = (A% + BQ)% and D =(A+ B —C)u.

Closed—form expressions of a—stable distributions or their densities exist only in few
special cases. However, the logarithm of the characteristic function (ch.f.), f(8) =

Ee®X  of a—stable r.v. X, can be written as

Inf() = —o“|0|*[1 — i3 sign(0) tan =] .—I-Z'ILLQ, for a # 1, 0
—o|0|[1 4 i3 sign(0)In[d]] +ipd,  fora =1,

0 € R, where p € R is the location parameter; o > 0 is the scale parameter; and
B € [—1,1] is the skewness parameter. The distribution function of an a-stable r.v.
satisfying (1) is denoted by S(z; o, 3,0, ). If 3 = 0, the distribution is symmetric. The
location parameter shifts the distribution to the left or right, while the scale parameter
expands or contracts it about g. If X has ch.f. (1) we write X < Sa(B,0,u). For
a =2, So(3,0,p) is the normal distribution N(p,20?). Unless both a =1 and 3 # 0
the standardized version (X — p)/o of X 4 Sa(B,0, 1) has distribution S,(3,1,0).

A sample Uy, Us, ... of 1.i.d. observations is said to be in the domain of attraction



of an a—stable law with index o € (0,2] if there exist constants a, > 0 and b, € R
such that
a;'S, —b, = X, (2)

where S, = U; 4+ --- + U,, X is a non-degenerate a-stable r.v., and “=” stands for
weak convergence. In particular, when U;’s are a-stable, U < Sa(B,0,1), (2) holds
and, moreover, we have a>'S, — b, 4 Uy, with a, = n'/* and b, = ,Lc(nl_l/CY — 1) for
a#1,and b, = %Uﬁnlnn for a = 1.

The assumption that the disturbances U;’s are in the domain of attraction of an
a-stable law is a relaxation of the assumption of a—stable distributed disturbances. In
fact, for @ < 2 the domain—of-attraction condition (2) is equivalent to the assumption

that the tail behavior of U; is of the Pareto-Lévy form (cf. Feller, 1966, p. 303):

P(Ui[ > 1) =7 L(t), 1 >0, (3)
where L(t) is a slowly varying function as ¢ — 0o,? and
P(UZ > t) P(UZ < —t)

lim

"R B0 <0 o .

=p, lim

t=oo P(|U;] < 1)

for some p > 0 and ¢ > 0 with p4+ g = 1.
We shall further assume that U; are in the domain of normal attraction of an a—

stable law, that is, for some ¢ > 0,
P(|U;| > t) ~et™ ast — oo, (5)

and furthermore the limiting relationships (4) hold.*

3L(t) is a slowly varying function as ¢ — oo, if for every constant ¢ > 0, lim;_, o, L(ct)/L(t) exists
and is equal to 1. We will use L or ! to denote a slowly varying function.

4The U;’s are in the domain of normal attraction of an a—stable law, if (2) holds with a, = con
for some positive constant ¢g. Note that when the U;’s are in the general domain of attraction, then,
in (2), a, = n'/*L(n) for some slowly varying function L(n) as n — co.

1/«



Let g(z) = 1/P(|U;| > x) and consider the generalized inverse of g(z):

g (y) :=sup{z: g(z) < y}.

Set
an:=¢"(n), n > 1, (6)

then, as n — oo, a, ~ en'/?>
Next, we need some basic definitions and results on Poisson random measures (see
Resnick (1987)). Let F be a locally compact topological space with a countable base
and let £ be the Borel o-algebra of subsets of E. A point measure m on & with support
{zi,1 > 1} C F is defined by
m = 2; €z, s (7)
where

1, if x; € A,
wiy=] Ace. 0
0, ifz; & A,

A point process N on F is a random element,
N:(Q,A P)— (Mp(E), M,(F)),

on the original probability space (£, A, P) with values in the space Mp(F) of all point
measures on £ with the o-algebra Mp(FE) generated by the sets {m € Mp(E) : m(F) €
B}, F' € € and B a Borel set in [0, 00], i.e., B € B([0, c0]).

Let p be a Radon measure on (£, &), that is, p is finite on all compact subsets of

E. A point process N is called Poisson random measure (PRM) with mean measure

o if

SHere, and in what follows, ¢ stands for a generic constant, which can be different in various
contexts.



(i) for every F' € £, and every k € N :={1,2,...},

s =P i p(F) <
PN =k =1 B if p(F) < oo,
0, if p(F') = oo;

and if

(ii) Fi,..., Fy (for every k € N) are mutually disjoint sets in £, then N(F}),...,

N(Fy) are independent r.v.

Consider next an array of r.v.’s (U, ;,7 > 1,n > 1) with values in (F, £) and assume

that for each n (U, ;);>1 are i.i.d. r.v.’s. Suppose that the sequence of finite measures

defined by
pn(A) :=nP(U, 1 € A), A€ €, (9)

converges vaguely to a Radon measure y on (F,£).°

Proposition 1. (see Resnick (1987), Proposition 3.21). Let

fn = Zg(%l]k,n)

E>1

and &€ be a PRM on [0,00) X E with mean measure dt x du. Then

fin = H (10)

if and only if "
&n = €. (11)
We now apply the above proposition to the sequence (U;)i>1 of i.i.d. r.v.’s in the

domain of normal attraction of an a-stable law. Namely, we take F := [—o0,00] \

{(0)}), (i.e., relatively compact sets are those bounded away from the origin) and set

8(pn)n>1 converges vaguely to p (pn — p) if limsup, o pin(K) < p(K) for all compact sets
K C F and liminf,_, tn(G) > p(G) for all open relatively compact sets G C E.

2 in (11) stands for the weak convergence of stochastic point processes, in this case the weak
convergence in the space Mp([0,00) x E).



in Proposition 1, Uy, = Z]—’“, where a,, was defined as g (n), see (6). Then, as n — oo,

X:L = z:ef(ﬁ ﬂ) = 25(“,];) =: X" (12)
k=1 %

n’an

in M,(]0,00) x E), where the limit in (12) is a PRM with mean measure dt x dv, and
v(dz) = apr= " dz1({z > 0}) + ag|z|""Hdz1({z > 0}) (13)

(see Formula (4.70) in Resnick (1987), p. 226). Furthermore, the points of X* on
{t < 1} arranged in the non-increasing order by the magnitude of the “jumps” j; can
be represented in distribution as

(08, T7) (14)

21

where (U?);>1,(0;) ;51 and (T';) ;1 are three independent sequences of r.v.’s; (U?);51 are
i.i.d. r.v.’s uniformly distributed on [0, 1]; (4;);>1 are i.i.d. random signs, P(d; = 1) =
1-P(6; = —1) = p;and (I';);>1 are the standard Poisson arrivals, i.e., ['; = e1+...+¢;,

where (€;);>1 is a sequence of i.i.d. exponential r.v.’s with mean 1.

3. CUSUM Test and Its Limiting Distribution

Consider the regression model

Vi XB4U, 1<i<n, (15)
where 3 = (8o, (1),
1
X,L-:<Zi),1§z'§n, (16)
with
1 n
— > Zi =400 0, (17)
n =1



1 n
N7 =, R>0, (18)

n =1
and Uy, U,,... are i.i.d. r.v.’s in the domain of normal attraction of an a—stable law.
Define the normalizing constants a,, by (6), and so, a, ~ en'/® as n — occ. In addition,

we assume:

(A1) If1 <a <2, then E(U;) =0. (19)

(A2) Ifa= 1,then/ rdFy, (2) =m0 0, (20)

—n

where Fp, () is the distribution function of U/;.® No additional assumptions are imposed
for the case 0 < a < 1.

The OLS estimator for # and the OLS residuals are given by

—1 n

o= () 1)
=1 7=1

and

UM =Y, — XI8M, 1 <i<n, (22)

respectively.

Our main result is Theorem 1 below; it provides a functional limit theorem for the
CUSUM process based on self-normalized OLS residuals. We shall examine the weak
limit in the Skorohod space D[0, 1] of the following sequence of processes: for £ € [0, 1]
and n > 1 let?

né] £7(m) 1 ~Iné] ()
Xa(€) = 2ol 17z G 2o D 1/2° (23)

2 2

(z (o))" (2w (00))
Next, let
Y52, 8T (Lpvcey — €
Ky o= T B Qongo 28) ey (24)
00 -2/ 1/2
(T 1)

8Note that Assumption A2 implies, in particular, that Uy, Us, ... are attracted to a symmetric

1-stable (Cauchy) law. No symmetry assumptions are made in the case o # 1.
®Notation [a] denotes the integer part of a.



where the sequences (V});>1, (0;);51 and (I';);>1 are independent. (V;);>; are “random
signs” (that is, i.i.d. r.v.’s) with uniformly distributed on [0, 1], V; 4 U(0,1); (6;)>1
are “random signs” with P(§; = 1) =1 — P(§; = —1) = p, where p is defined in (4);

and (I'j);>1 are the arrivals of a standard Poisson process.

Theorem 1. Under assumption A1, if | < a < 2, or under assumption A2, ifa =1,

the sequence of processes (X, (€))o<e<1 converges weakly in the Skorohod Jy topology in
DI[0,1] to the process (Xoo(€))o<e<t:

X, = Xeo. (25)

Proof. Observe that the OLS estimator 4(") = (Bé”),B{n))’ has the form

-1
(ﬁé”>) B n rL 7 " (Bo+ BiZ; + U)
5H(n) -
2 ST Y, 22 S (B + i 2R+ U Zy)
1 Yo Zz'z — > Zi
n Z?:l 222 - (Z?:l ZZ)Q — Z?:l ZZ n

n 7.4,
y Y (Bo+ Bz + Uj) . (26)
i (BoZi + BiZE + Ui Z;)
Therefore,
n 2 n n n
Aln) 2iet Zi Zj:l UJ’ — iz Zi Zj:l UJ'ZJ' 27
bo” =Fot nYi 2 — (i Zi)* 7 27)
and
Aln) n Z?:l U, Z; — 2?21 U; 2?21 Zj 98
Pri=pt n ?:122'2_( ?:122')2 ‘ ( )
From (27) and (28), we conclude
U™ = Bo+BZi+ U — (1, %) (B((Jn),%%n))l
— UZ . EZ:I Zlg 2?21 U] - 22:1 Zk Z?:l U]Z] (29)

nyi 27 = (Zi Z5)?

9



n Zz:l Uka - 22:1 Uk Z?:l Z]

_ZZ n n ,i:1,...,n.
nLjm 45 — (Eia1 Zi)
Therefore, for 0 < ¢ <1,
[f:] - [f:] U; — [né] 1 Zi 2 Uy =2k 2k 275 Ui Z;
= = Wi 2 = (D )

_iznZk 1Uka 2221 UkZ?:IZ]'
Zj:l Z]2 - (Z?:l Z])2

= (%Uz_@il]z)

[n.f]zk 1Zkzj 1UZ nz Z Zk 1Uka
nYioy 25 — ?:121)2

-I-Zgii] Zi Y1 4 Zk:l k— [7;_)5] o Uk(X5ey Z4)°
nzn_ 22 —( ?—1 Z;)?

[né€] n
(iU——QZ) () + 1{7(6).

We rewrite the process defined in (23) as

-1 [ni] U(”)
X, () = o 2=t U 0<E<t, 0>,

(CLT—L? Z;z:l Uz(n)Q) 1/2°

(30)

(31)

where (a,,n > 1) are given by (6). By (30), the numerator of (31) has the representa-

tion

L - (g aeg)
+—@—%1iw+$ww+$#%>

- (1) - enxa) + - (- ) S

=1
1 1
+ =176 + —1(9),

n n

where (X¥) is given by the right-hand side of (12), and

10



X) = [_jaX, 0ze<t, (33)

t—
for all measures X on [0,00) x E for which the integral is well defined. Observe that
for every fixed £ € [0,1], £ — [ng] —neo 0. Furthermore, the sequence ( ln Yoy Ui)nst

is tight,'® which follows from Lemma 1 below. Therefore,
1
an

where 5 stands for convergence in probability.

Considering the denominator in (31), we have

n n: Z? ZT'L: U _ Zn: Zk ET'L: UZ)2
iz (Zk1k31y k=1 j=1Yi4;
Z( 2 ) Z n(z;zzl ZJZ _ (Z?:l Z].)Q)Q

Z ZEn ey UnZe — 3py Un Y0y Z5)?

! (Wi 22 = (S 207

. 2 Z?:l Ui(Zizl Z}? Z?:l Uj - 22:1 Zy Z?:l UJ'ZJ')
n Z?:l Z]‘2 - (Z?:I Zj)2

B 2370 UiZi(n Y Ur Zy — 3052y Ui >t Z;)

n 2?21 Z]'Q - (2?21 Zj)2

i 2 Z?:l Zz'(ZZ:l Z,f Z?:l Uj - 22:1 Zy Z?:l UJ'ZJ')
n Z?:l Z]‘2 - (Z?:I Zj)2

v n ey UnZi — 375 Uk Z?:l Z;

n 2?21 ZJ'Q - (2?21 ZJ')2
n 5

=: > U+ > Rj(n). (35)
=1 7=1

To continue the analysis of Z:»LZI(UZ»(H))2 we need the following lemma, whose the

proof is given in the Appendix.

Lemma 1. Let (V;)i>1 be i.i.d. r.v.’s such that for some 0 < a <2 and ¢ >0

P([Vi| > X) <eX™, XA>0, (36)

10A sequence of r.v.’s (n;, i > 1), is tight, if for every ¢ > 0 there exists a constant K. > 0, such
that sup;~q P(|ni] > K¢) < € (see, for example, Billingsley (1968)).

11



for all v > 1. Let (&)i>1 be a sequence of real numbers such that

— 1<
hmn_mogz &]° < oo.
7=1

(i) If 0 < o < 1, then

the sequence (n~'/® Y Vi&),n > 1, s tight.

7=1
(it) If o =1, and
/n rdFy, () = p5e0 0,

—n

then (38) holds.

(itt) If 1 < o <2 and E(V;) =0, then (38) holds.

For 0 < ¢ <1 let
o1 3
(075 U

n

T.(8) =

Then, by the decomposition (32),

(X)) — LX) -2y v

&) = (az2y, U2 (e T UP)Y?

L1 L7{7(¢)
(a2 Y r, U2 T (a2 X, UF)1/2
= Ha(€) + RY(€) + R (6) + RE(€).

_|_

Lemma 2. Asn — oo,

for alli =1,2,3 and for all 0 < ¢ < 1.

The proof is given in the Appendix.

12
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(39)

(40)
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For any 0 < a < b < oo, let [522(}() be defined on M,([0, co] x ([—o0, 0] \ {0})) as

I9(X) = | P lagyicn dX, (42)

<1

and let (X = lim, 0,400 [ﬁ?(X) Define, similarly, for 0 < ¢ <1,

I8 (X) = /K)5 I acyjicny dX. (43)

It is well known (Resnick, 1987) that [5716){ is a map M,([0, 00] X ([—o0, 0]\ {0})) = R
that is almost surely continuous with respect to the law of X* (see (12)). Fix now a

small ¥ > 0, and let

(44)

Then, H,pe,y is a functional M,([0,00] X ([—o0,00] \ {0})) which is almost surely
continuous with respect to the law of X*. For arbitrary 0 < & < ... < & < 1, the

functional
HE (&, & X)
1= (Hapien (61)s s Hapen()) + My([0,00] x ([—00,0¢]\{0})) = R (45)

is almost surely continuous. By the Continuous Mapping Theorem, we have

(Hz (&), ..., H2 (&)

% [a,lb;gl (X*) - El]cg,lb),l(X*) [a,lb;gk (X*) - Sk[tg,lb),l(X*) (46)
noreo 73 (x*))1/2 T 7@ (xx*))1/2
(1o (X2))H2 + (Lo (X9))2 4
in R*, where for 0 < ¢ <1,
szw(f) = Ha,b;E;W(X:z) (47)

and X7 is defined in (12).

13



It turns out that a,b and 4 can be set to a = 0, b = co and v = 0 (and, thus, we
can replace H*" (&) by H,(¢) defined in (40)). This is shown in the following lemma.

Lemma 3. Asn — oo,

I, (X7) [, (X7)
(Hn(gl)a Tt Hn(fk)) %n—)(’o (([(2§(X*))1/27 T ([(2§(X*))1/2) (48)

in RF, where

LX) =Y 5T (L0 = 6), 0<E< T, (49)
=1 T

and the sequences (6;);>1,(1';);51 and (U](O))jzl are defined in (24).
The proof is given in the Appendix.
From (40), Lemma 2 and Lemma 3 it follows that

]ﬁl(X*) [ik(X*) ) ‘ (50)

(To(&1), -+, To(&k)) =nooo ([(2)(X*)1/2""’ [@)(X)1/2

Since the coordinates of the vector in the right-hand side of (50) are almost surely

non-zero, we also have

1 1 [(2)(X*)1/2 [(2)(X*)1/2
(Tn@l)’“"n(sk)) %“*‘”( X T Ty (X7 ) (51)

Next, we replace in the above limiting relation 7,,(&) by X,.(&) as given in (31).

Arguments similar to those used in the Appendix to prove Lemma 2 imply that
a;’Ri(n) B, 0, forall j=1,....5, (52)

with R;(n) as in (35). Therefore,

2

~r 7 e N DI DY 53
H (Xn@l)’ ’XA&)XM&)’ ’ Tn@k)) (53)
5 k 1 )
< ]z:; |a7_LQR](n)| Tnz::l |a_1 Zgifm] Ul(n) |2 n—roo 0,



because, for each m =1,...,k, |Z£i§1m] Ui(n)/an| converges weakly to an almost surely

positive limit.

We conclude from (51) and (53) that

; # ([(2)(X*))1/2 ](2)(X*)1/2
(e w@) * ()

which implies, as above, that

]ﬁl(X*) [fk(X*) ) ' (55)

(Xn(fl)a s 7Xn(£k)) 1:ﬂ>n—>°° ([(2)(X*)1/2’ T [(2)(X*)1/2

We have now established that

in the sense of convergence of the finite-dimensional distributions. Recalling represen-

tation (14) of the the points of X*, we immediately see that

with X (&) defined in (24). Therefore, it remains to prove that (56) also holds in the
sense of weak convergence in the J;-topology in D(]0,1]). Since we have already proved
the convergence of finite-dimensional distributions, it remains only to prove tightness.

This follows from Lemma 4, which is proved in the Appendix.
Lemma 4. The sequence <{Xn(§), 0<¢e<1}, n> 1), is tight in D([0,1]).

Lemma 4 completes the proof of Theorem 1. O

4. Simulation Results

It is common practice to approximate the finite—sample distribution of a test statistic
by its limiting distribution. The functional limit theorem proved in the previous section

allows us to construct tests for the constancy of regression coefficient 3 by comparing

15



the distribution of the estimated residuals, Ui(n), with that implied by the constant—
coefficient assumption. The only condition our test statistic has to satisfy is that it
is a functional of (X,(£), 0 < ¢ < 1) which is continuous in the Skorohod topology
on D|[0,1], at least with probability 1 with respect to the law of the limiting process
(Xoo(€), 0 <€ < 1). One then derives the distribution of the same test—statistic func-
tional evaluated on the limiting process. In the presence of heavy—tailed disturbances
the limiting process (X, (£), 0 < ¢ < 1) is not a standard one. Because of its compli-
cated probabilistic structure, one has to resort to simulations to tabulate distribution
or density values. In this section we present simulation results for the marginal distri-
butions of the limiting process of interest. It turns out that already for a sample size
of n = 100 the finite—sample distributions are reasonably well approximated by the

limiting distributions.

4.1. Limiting and Finite-sample Marginal Distributions

We simulated 10,000 replications of X..(&) for £ = .01,.02,...,.99, truncating the
infinite sums in (24) at 1000. The inclusion of additional summands had no noticeable
impact on the approximations. For the corresponding finite-sample distributions of
X,.(€) we also simulated 10,000 replications with n = 100. For o = 1.1,1.5,1.9, Figures
1-3 show the estimated densities of the finite-sample distributions (top graphs) and

the approximate limit distributions (bottom graphs) as a function of £.!!

4.2. Critical Values for Tests Based on Marginal Distributions

To derive critical values we simulated the finite-sample distribution with U; being
drawn from symmetric a-stable distributions with o € {1.0,1.1,..., 1.9,2.0}."? Given
the closeness of finite-sample and limiting distributions, we simulated X,,(§) (see (23))

with sample size n = 100, in order to keep the computational burden manageable.!?

1 The distributions become highly peaked as & approaches 0 and 1. This is especially the case for
small a’s. Therefore, Figure 1 displays only the results for £ € [.1,.9].

12We have confined our simulation studies to this  range, because it covers the a estimates reported
in empirical work.

13 As simulations show, increasing the sample size has no noticeable impact on the simulated critical
values.
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Because Xn(f) = X, (1 =¢), € € [0,1], we can restrict ourselves to ¢ € [0,1/2].
Specifically, we considered values ¢ € {0,0.01,...,0.49,0.5}. For each of the resulting
561 (o, £)-combinations we simulated 20,000 replications of X,,(&).

Instead of tabulating the critical values for selected values of a and &, we use
response—surface techniques to compactly summarize the simulation results.!* Another
advantage of this approach is that it allows us to approximate critical values for inter-
mediate a- and £-values. We consider the significance levels 1 —~, with 4y = .01, .05, .10,
and fit to each of the three sets of 561 (a, {)-combinations a function of the form

Uy (s &) i i: Cry i O LE, (58)

1=0 j=1
where
a, = (Ina)™'?
5* = (hl(l + 5))1/]377
with
2, if vy = .10,
P, = !
3, ifv=.01,.05,
and
1, if vy =.05,.10,
L, =
2, ify=.01,
5, if v =.05,.10,
I, = 7

2, ify=.01.

The least-squares estimates of coefficients ¢, ; ; are reported in Table 1. Figure 4
compares simulated (left panel) and fitted (right panel) critical values and suggests a
close fit. The good fit is also reflected by the adjusted R?-values, which are .99972,
99990 and .99993 for v = .01, .05, .10, respectively. As is to be expected, the goodness

of fit decreases somewhat as we move into the tail of the distribution, i.e., as vy decreases.

14Gee Hendry (1984) and Myers, Khuri and Carter (1989) for details of the response-surface
methodology.
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5. Conclusions

We have investigated the OLS—based CUSUM test for regressions with heavy—tailed
disturbances. The resulting limiting distribution deviates substantially from that for
the finite—variance case. Because the limiting process has a rather complicated struc-
ture, we resort to simulations to examine the limiting and prelimiting behavior as well
as to obtain critical values for the test statistic. Using response—surface methods we
derive simple polynomial approximations of critical values which involve only a dozen

or less coefficients and, thus, can be easily implemented in applied work.

Appendix

Proof of Lemma 1. The case 0 < o < 1: It follows from (36) that there are constants
a,b € (0,00) such that
st
|VJ| < aSj—I_ba (Al)

where S; < S.(1,1,0).'5 Therefore,

n

nTVNT VG < TS ViG]
7=1

7=1
st n
< 7YY (0S4 b)) (A.2)
7=1
= an™'* Y SilE ]+ TS g,
=1 7=1
Now, by (37),
WS 6] e O, (A3

J=1

whereas

st
15We say that a r.v. X is stochastically smaller than a r.v. Y (denoted X < Y) if P(X > z) <
P(Y > z) for all z € R.
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n n 1/a
n—l/aZSj|§j| L5, ((iz |§j|a) ,1,0) : (A.4)

Since the scale parameter in the right hand side of (A.4) is bounded, we con-
clude that both terms on the right hand side of (A.2) are tight, and so the sequence
(n=t/e >0y Vi€s, n > 1) is itself tight.

The case 1 < a < 2: Write

n n

X =N GV < 07, X = 07N EV(Vi > et ). (AS)

=1 =1

We have

k3

BXMY? = a2 BVEI(V] < n'lo) Y €2

+n MBIV < n'/?))? & (A.6)
< nTHER(VEL(IVi] < nt)) D¢

=1
+n B[] <)) 16D
=1
Now, by (36),

BRIV <0 ) = [ POV < n') > i
0
2/a

_ / POV < |Vi| < n'/2) dA
0

2/a

< c/n A=/2 g\
0

= en 't

Here and in the sequel ¢ is some finite positive constant that may change from line

to line. We conclude that there exists a constant Dy < oo, such that for all n > 1,

n 1 n
n BV <nl?) 3 D€ < e € < D (A7)
5 n



Furthermore, because EV; = 0,

[EVIL(VII <o) = [E(W1(W] > n'/)
< B(Vil(i] > n'/))
= /OOO P(IVi|1gysntrey > A) dX (A.8)
= TPV > ) 4 [P > ) )

< en 1t/ + c/ AT d)

nl

— ente,

Therefore, by (37),

w2l (BRI < 07)))? (Z |&|)2 <c (lz |&|)2 <D< (A9)

for some absolute constant Ds.

It follows now from (A.6), (A.7) and (A.9) that (E(X{V)?),>: is a uniformly

bounded sequence, and so

(X(M),>1 is tight. (A.10)

Finally, by (A.8) we have for an absolute constant D3,
n 1 n
E|X@)| < p=t/e (E(Vll(|V1| < nl/a))) S < e=> 1] < D3 < <. (A.11)
i=1 L)

This implies that
( x(2)

n

n > 1) is tight; (A.12)

and our statement follows in the case 1 < o < 2 from (A.5), (A.10) and (A.12).
The case o = 1: We still use the decomposition (A.5). The same argument as in

the case 1 < a < 2 shows that the sequence (X{", n > 1) is tight. Further, take any

T
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0 < 8§ < 1, and choose a constant b > 0, so large that

P(|V;| > bn for some i =1,...,n) < for all n > 1. (A.13)

3

DN

Then, for every M > 0

P(XW| > M) < g+ P (n‘lz&\/il(n < Vil < bn) > M) :

=1

Now,
B3 V< Vi <bn)| < S3I6IA(VIL( < V] < bu)
1 n
= EZ|§|/ rd Py, ()
1 n
< LY (el P> )

N
Il
=

P(Vi| > y)dy)

ieref )

&](1 +logb) < c(b) < oo,

INA
Mz

_'_
SI= s~
3

Il

9
S|=
M-t

-
Il
—

Choosing M > %Q, we have
P(IXP| > M) <8, foralln > 1.

Hence, the tightness property of (X(?), n > 1) is established. O

n

Proof of Lemma 2. In our notation, a;2 3%, U? = IB(X¥). Tt converges weakly to

a positive r.v.. Therefore, (I(2(X*)~1/2 n > 1) is a tight sequence and, by (34),
RO(€) By 0, forall 0 < € < 1.

The remaining part of the lemma will follow once we prove that
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1
_[Z.(”)(g) Do 0fori=1,2and all 0 < £ < 1.

an

We have by (17) and Lemma 1, that

n n

(€] Y_ 7 Y UiZ; .
k=1 7=1 —1
2pl/a e z_: _>n—>oo 0.
Similarly,
=1 —l/a P
Z; UrZ n—soo U.
l/a S [nf E kz::l ELE| —Pn—s

Moreover, by (17) and (18),

1 "
]:

Now, (A.14) with 7 = 1 follows from (A.15)—(A.17). Furthermore,

2

.
i Mz
I

[n€] n
EZ > Z ZUk
7=1

l/oz

n

Y Z

1 [n€]

1

P
—Fn—sco 0

n—l/oz Z Uk

k=1

by (17) and because the sequence (n"l/CY > i1 Ur)n>1 1s tight.

2
1 n
<(157)

Therefore, we have (A.14) with ¢ = 2 by (A.17)-(A.19). O

Similarly,

(s Z)2 e, Uy

P,
— 0.
’]’I,in/a n—00

n—l/a Zn: Uk

k=1
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Proof of Lemma 3. Observe that I¢(X*) is well defined, and

[(1)

a7a_17£

(X*) — 51,5713_171(}(*) —am0 [¢(X*)  almost surely. (A.20)

To prove the lemma we will use Theorem 4.2 of Billingsley (1968). The first step is to
show that for any v > 0

izgi&f] Ui_&iz?ﬂ Ui =1 k
(a2 UHY2 44 7 7=1...,

X e e, (XY) j=1,....k|. (A.21)
(IB(X))? 45 T

To this end it is enough to show that for every 0 < ¢ < 1,

lin%mn_moPﬂAn(fﬂ >e)=0forevery 0 <e <1, (A.22)
a—r
where
ai ZUil(ana < |U;| < ana_l) — f—EUil(ana < U] < ana_l)
An — =1 nog=1
© (@50, UL (aa < U] < ana )72 1 7)
SSuoelyn
n 4 A =
- =l =1 (A.23)
(a2 > U 44
=1
We have

L0 (100] < o00) + 1000 > 0™
PIAE)] 2 ) < P

- (@237, Ul (ana < |Ui| < ana='))'/2 4 5

n =1

ELyn, Ui(1<|Ui| < ana) + 10} ))

(a2 Ull(ana < |U;| < ana=))1/2 + 5

€
>
-2
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1
(072 i UD)'? +

+ P G_ZUi_fa_ZUi

n =1 n =1

1 €
_ > =
(a2 Ul(ana < |U;| < ana=))1/2 + 4| = 2
= ¢W(a,e) + ¢D(a,e). (A.24)
Furthermore,
[n€]
1
¢Ma,e) < P (— S UA(|U;]| < aay)| > %Y)
Un |i=1
[n€]
1
+ P (— ZU21(|UZ| > a_lan) > 5—7)
an | 8
1 n
4+ P (— S UA(|UY] < aay)| > 5—’7)
an i3 8
1 n
+ P (a— U21(|UZ| > a_lan) > %) (A.25)
no|i=1
€ € € €
= g0, )+ a1 o)+ 0 D )+ g e D).
8 8 8 8
We claim that
%mn%qg@(a,g) =0, fori=1,...,4. (A.26)
Clearly, (A.26) and (A.25) will imply that
limmn_}ooqgl)(a,a) =0. (A.27)

a—0

We prove (A.26) only for ¢ = 3,4, as the other two cases are similar. The proof of

(A.26) for ¢ = 4 follows from the following inequalities: for some constant ¢ > 0,

¢"(a,¢) < P(at least one U;,i = 1,...,n, satisfies |U;| > a™'a, ) (A.28)

= 1= (1= P(U| > a7t
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a

< 1—(1—ca®n™)" =00 1 —e .

We turn now to the proof of (A.26) with ¢+ = 3. For the case 0 < a < 1 we use the

inequalities

" Na,e) < eV E(UN(UL] < aay)) (A.29)

anl/e

< etV [P0 > ) dy
0
anl/e

S Cé_ln_l/a-l_l/ y—oz dy
0

= ccla'T™

Thus, (A.26) holds for ¢ = 3.

Consider now the case 1 < o < 2. Repeating the computation used in the proof of

)2

Lemma 1, we have

1
K (nl/a

EU21(|U2| < cml/")

=1

< plo2e [E (U31(|U2-| < anl/a)) +n (E(U11(|Ui| < anl/a)))Q]
< enl-2o {a2—an—1+2/a + n(aa-ln—lﬂ/a)?} (A.30)
< ¢ (aQ_a + CLM_Q) )

for some 0 < ¢ < co. Therefore,

.o 1
limlim, o (m

a—0

)2 ~0, (A.31)

Z U21(|UZ| < anl/a)
=1

implying (A.26) with ¢ = 3.
The case a = 1 remains. Here, we use assumption (A2) and repeat the computation
in (A.30) above to obtain
1 n

E (5 ST UA(U| < an)])? < en”! (an +n(E(U11(|UZ»| < an)))Q) oo CA.

=1
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Hence, (A.31) still holds and (A.26) has been proved for all cases.
If we show that
lim Timy 00 ¢ (€, 1) = 0, (A.32)

a—0

then (A.24), (A.26) and (A.32) imply (A.22), and (A.21) will follow.

To this end, observe that, by Lemma 1, the sequence

a;Ui —fa;@
n>1

is tight. Therefore, (A.32) will follow once we prove that

%EMOOPQM > ¢) =0, (A.33)
where

N 1 1
A, = —

” 1/2 n 1/2 .
(a;2ZUf) + v (aZQZUfl(‘mn < |Ui| < a_lan)) T
=1

=1

However,
Al 0 (ot 02 (1000 < a) + 101> 071 ).
i=1

and so (A.33) follows from the same arguments we used in proving (A.26) for ¢ = 3, 4.
Therefore, (A.21) follows.

We now turn to the proof of (48). Using once again Theorem 4.2 of Billingsley
(1968) and (A.21), we conclude that it is enough to show that for every 0 < ¢ < 1, and

for every 0 < & < 1, we have

(a2 500, U2 + 4
Ly —elyr, U

(ar_zQ Z:’L:l U22)1/2 _
T E[ng] U—ilyr >e| =0. (A.34)
a =11 an =1

lim lim,,— oo P (
v—0
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However, (A.34) follows from the fact that |a;’ ZEEI] U; — &a;' Y0 Ui| converges
weakly, as n — oo, to an almost surely positive limit. This completes the proof of

Lemma 3. O

Proof of Lemma 4. Observe that the denominator in (31) converges weakly to an

almost surely positive limit. Therefore, it is enough to prove that the sequence of

processes
[n€]
1 n
Yn(S)Z{—ZUf ),0§§§1} (A.35)
Gn =1
is tight.

To this end we turn to (30). Taking (17) and (18), into account the tightness in

(A.35) will follow once we prove the following statements:

[n€]
Sequence {agl YU, 0<¢< 1} is light; (A.36)

=1

Sequence { (agl > UZ) @, 0<¢L 1} is light; (A.37)
n

=1

[nf] Z Zk Z U]‘Z]' - nz ZZ Z Uka
Sequence { a;* =L =l =l k=l ,0<E<1 (A.38)

n2

is tight;

Sequence < a,; ' ,0<E<1 (A.39)

is tight.

Now, by the invariance principle, the sequence in (A.36) actually converges weakly
in D([0,1]) and is, therefore, tight. Furthermore, {[7;—5], 0<E<1 =6 0<E< 1}
in D([0,1]). Since (a;' X", Ui, n > 1) is tight, (A.37) follows. An identical argument
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shows that the sequence

[n¢] Zi: Zy Zj: U;Z;

_ k=1 1 o
a7’ n2] , 0 <€ <1y is tight. (A.40)

Moreover, it follows from (17) that

[n¢]

> Z;

=1

1
sup —
0<E<1 M

S neseo 0. (A.41)

Therefore, the sequence

{nZZZ» S UrZy, 0 <€ 1} (A.42)

=1 k=1

is tight. Now, (A.38) follows from (A.40) and (A.42). The proof of (A.39) uses the

same arguments as the proof of (A.38). This proves Lemma 4. O

1]

2]

References

Billingsley, P. (1968), Convergence of Probability Measures, New York: Wiley &

Sons.

Brown, R.L., J. Durbin and J.M Evans (1975), Techniques for testing the con-
stancy of regression relationships over time, Journal of the Royal Statistical Soci-

ety, Series B 37, 149-163.

Fama, E. (1965), The behavior of stock market prices, Journal of Business 38,
34-105.

Feller, W. (1971), An Introduction to Probability Theory and Its Applications
Vol. 2 (2nd ed.), New York: Wiley.

Hendry, D.A. (1984), Monte Carlo experimentation in econometrics, in: 7.

Griliches and M.D. Intrilligator (ed.), Handbook of Fconometrics, Vol. 11, Ch.
16. Amsterdam.

Kim, J.-R.; S. Mittnik and S.T. Rachev (1996), The CUSUM test based on OLS-
residuals when disturbances are heavy-tailed, Unpublished manuscript, Institute
of Statistics and Econometrics, Christian Albrechts University at Kiel.

28



7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Lévy, P. (1937), Theorie de L’addition des Uariables Aleatories (2nd ed.), Paris:
Gauthier-Uillars.

Loretan, M. and P.C.B. Phillips (1994), Testing the covariance stationarity of
heavy-tailed time series, Journal of Empirical Finance 1, 211-248.

Mandelbrot, B. (1963), The variation of certain speculative prices, Journal of
Business 26, 394-419.

McCabe, B.P.M. and M.J. Harrison (1980), Testing the constancy of regression re-
lationships over time using least squares residuals, Journal of the Royal Statistical
Sociely, Series C 29, 142-148.

McCulloch, J.H. (1996), Financial applications of stable distributions, in: Statis-
tical Methods in Finance, Handbook of Statistics, Vol. 14, ed. G.S. Maddala and
C.R. Rao, Elsevier Science.

MacNeill, 1.B. (1978), Properties of sequences of partial sums of polynomial re-
gression residuals with applications to tests for change of regression at unknown
times, The Annals of Statistics 6, 422-433.

Mittnik, S. and S.T. Rachev (1993), Modeling asset returns with alternative stable
distributions, Feconometric Review 12, 261-330.

Mittnik S. and S.T. Rachev (1998), Asset and Option Pricing with Alternative
Stable Models, Series in Financial Economics and Quantitative Analysis, Wiley,
forthcoming.

Mittnik, S., S.T. Rachev, J.-R. Kim and (1998), Chi-square-type distributions for
heavy-tailed variates, Feonometric Theory 14, 339-354

Mittnik, S., S.T. Rachev, and M. Paolella (1997), Stable Paretian modeling in
finance: some empirical and theoretical aspects, in: A Practical Guide to Heavy

Tails, ed. R.J. Adler, R.E. Feldman and M.S. Taqqu, Boston: Birkhauser

Myers, R.H., I. Khuri and W.-H. Carter, Jr. (1989), Response surface methodol-
ogy: 1966-1988, Technometrics 31, 137-157.

Ploberger, W. and W. Kramer (1992), The CUSUM test with OLS residuals,
FEeconometrica 60, 271-285.

Rachev, S.T., J.-R. Kim and S. Mittnik (1997), Econometric modeling in the
presence of heavy-tailed innovations: a survey of some recent advances, Stochastic

Models 13, 841-866.

Resnick, S. (1987), Extreme Values, Regular Variation and Poinl Processes, New
York: Springer-Verlag.

29



[21] Samorodnitsky G. and M.S. Taqqu (1994), Stable Non-Gaussian Random Pro-
cesses, New York: Chapman & Hall.

[22] Zolotarev, V.M. (1986), One-dimensional Stable Distributions, Translations of
Mathematical Monographs, American Mathematical Society, Vol. 65, Providence.

30



Table 1. Coefficients of Response Surface Estimates ¢, ;; in Eqn. (58)

01]-2929 21.90 -26.64 -7.519 18.53

A0 1| 5483 -31.77  41.77  13.83 -34.20
2 _ _ _ _ _
0-8.926 87.85 -248.5 295.0 -127.6

05 1) 1522 -1379 404.7 -487.4 210.3
2 _ _ _ _ _
0 6.754 -19.46 27.11 -13.93 —

01 1]-1.240 10.74 -24.64 18.33 —
2 1-11.71 33.28 -19.85 -5.538 —
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Figure 1. Simulated Finite-sample and Limit Distributions for a = 1.1

Simulated Pre-Limit Density, a=1.1
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Figure 2. Simulated Finite-sample and Limit Distributions for a = 1.5

Simulated Pre-Limit Density, a=1.5
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Figure 3. Simulated Finite-sample and Limit Distributions for « = 1.9

Simulated Pre-Limit Density, a=1.9
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Figure 4. Simulated and Response-surface Fits of Critical Values

les

.90 Quant

Fitted

iles

90 Quant

Simulated

i
\
/ \\ \\
o
ity
Uil ey
il
§\§.
il
I
O

i
ity
il
\:\§$-
it
Uiy
i w
: §$~ —
ay

I

i

o
il

/
§ /

N - O«

ile

Quant

O

fes

5 Quant

0
.9

°
—2

]
@
<
®
>
(0]
(@0}
2
s
9

iT

©

o
o

(7]

o

/ <
i g
o =
b o
\ 2
\\\\ o
| g
[¢]

S

£

)

©

i
il
-
Il
L0
- ®©

35



