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A protein molecule is an intricate system whose function is highly sensitive to small 

external perturbations. However, few examples that directly correlate protein function 

with continuous, progressive sub-angstrom structural perturbations have thus far been 

presented. In order to elucidate this relationship, we have investigated the Aequorea 

yellow fluorescent protein Citrine as a model system under high-pressure perturbation. 

Citrine has been compressed by high pressure to produce deformations of its β-barrel 

scaffold and light absorbing and emitting center, the chromophore, by applying a 

novel high pressure cryo-cooling technique. 

A closely  spaced series of high-pressure X-ray crystallographic structures of Citrine 

from 0.1 to 500 MPa reveal that the chromophore undergoes a progressive 

deformation of up  to 0.8 Å at an applied pressure of 500 MPa. It is experimentally 

demonstrated that deformation of the chromophore is directly correlated with a 

progressive shift of the fluorescence peak of Citrine from yellow to green under these 

conditions. 

The re-orientation of the Citrine chromophore is actuated by  the differential motion of 

two clusters of atoms that compose the β-barrel scaffold of the molecule, resulting in a 

bending or buckling of the β-barrel. The high-pressure structures also reveal a 

perturbation of the hydrogen bonding network stabilizing the excited state of the 



Citrine chromophore that is implicated in the reduction of fluorescence intensity  of the 

molecule under high pressure. 

The blue-shift of the Citrine fluorescence spectrum resulting from the bending of the 

β-barrel provides structural insight into the transient blue-shifting of isolated yellow 

fluorescent protein molecules under ambient conditions and suggests mechanisms to 

alter the time-dependent behavior of Citrine under ambient conditions.

The results presented in this thesis demonstrate that  the fluorescence spectrum of 

Citrine is highly  sensitive to sub-angstrom deformations and its fluorescent function 

must be understood at the sub-angstrom level. These results provide important general 

lessons for the structure-function relationship of enzymes, and may have significant 

implications for protein function prediction and biomolecule design and engineering 

as they suggest methods to tune protein function by modification of the protein 

scaffold.
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CHAPTER 1

INTRODUCTION

1.1 Overview of this Thesis

A protein molecule is an intricate system whose function is highly sensitive to small 

external perturbations. However, few examples that directly correlate protein function 

with continuous, progressive sub-angstrom structural perturbations have thus far been 

presented. In order to elucidate this relationship, we have investigated the Aequorea 

yellow fluorescent protein Citrine [1, 2] as a model system under high-pressure 

perturbation. Citrine has been compressed by  high pressure to produce deformations 

of its β-barrel scaffold and light absorbing and emitting center, the chromophore, by 

applying a novel high pressure cryo-cooling technique [3, 4]. 

A closely  spaced series of high-pressure X-ray crystallographic structures of Citrine 

from 0.1 to 500 MPa reveal that the chromophore undergoes a progressive 

deformation of up  to 0.8 Å at an applied pressure of 500 MPa. It is experimentally 

demonstrated that deformation of the chromophore is directly correlated with a 

progressive shift of the fluorescence peak of Citrine from yellow to green under these 

conditions [5]. 

The re-orientation of the Citrine chromophore is actuated by  the differential motion of 

two clusters of atoms that compose the β-barrel scaffold of the molecule, resulting in a 

bending or buckling of the β-barrel [6]. The high-pressure structures also reveal a 

perturbation of the hydrogen bonding network stabilizing the excited state of the 

Citrine chromophore that is implicated in the reduction of fluorescence intensity  of the 

molecule under high pressure. 
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The blue-shift of the Citrine fluorescence spectrum resulting from the bending of the 

β-barrel provides structural insight into the transient blue-shifting of isolated yellow 

fluorescent protein molecules under ambient conditions [7] and suggests mechanisms 

to alter the time-dependent behavior of Citrine under ambient conditions.

The results presented in this thesis demonstrate that  the fluorescence spectrum of 

Citrine is highly  sensitive to sub-angstrom deformations and its fluorescent function 

must be understood at the sub-angstrom level. These results provide important general 

lessons for the structure-function relationship of enzymes, and may have significant 

implications for protein function prediction and biomolecule design and engineering 

as they suggest methods to tune protein function by modification of the protein 

scaffold.

1.2 Introduction

It is well known that the three-dimensional structure of a protein molecule is crucial to 

understanding its function [8]. As protein molecules have dimensions of tens to 

hundreds of angstroms, sub-angstrom perturbations to the positions of atoms and 

functional groups in the molecule may appear insignificant [9]. However, if one 

considers two objects interacting through a Lennard-Jones potential that are separated 

by 3.5 Å and moves them together by just 0.1 Å, the potential energy between these 

objects will change by (1/3.46) / (1/3.56) = 1.19, or 19%. This result suggests that 

changes as small as 0.1 Å in the relative positions of critical functional groups could 

make a large difference in the energy of an electronic transition, and thus a notable 

change in protein function [10]. Fersht and Winter [11] noted that the activity of triose 

phosphate isomerase is reduced by approximately  three to four orders of magnitude by 

a change in the position of the active site base by approximately 1 Å. 

2



The sensitivity of protein function to sub-angstrom positioning of critical functional 

groups is further implied by the observation that  modest pressures (less than a few 

hundred MPa) significantly modify protein function [12]. Using high-pressure stopped 

flow techniques Ueda et al. [13] observed that pressures in the range of tens of MPa 

reduce the flash decay  rate of firefly luciferase. Bruner and Hall [14] used a high-

pressure patch clamp apparatus to measure the conductance properties of the pore 

forming membrane protein alamethicin. Bruner and Hall found that pressures up  to 

100 MPa exponentially increase the average lifetime of the conductance states of 

alamethicin. Unno et al. [15] found that the R (relaxed or oxygenated) to T (tense or 

de-oxygenated) transition of hemoglobin is biased towards the R-state by the 

application of pressure. Adachi and Morishima [16] established that the rate of carbon 

monoxide and oxygen association of horse and sperm whale myoglobin are 

exponentially modified by pressures up  to 200 MPa using time resolved spectroscopy 

and flash photolysis. Miller et al. [17] observed that the methyl-viologen reducing 

activity (a proxy for H2 consumption) of a hydrogenase from the thermophilic 

bacterium Methanococcus jannaschii is increased by  the application of pressures up to 

75 MPa. Hay et al. [18] observed that pressures up to 200 MPa exponentially increase 

the rate of NADH oxidation by the flavoprotein morphinone reductase. 

Several studies have highlighted the sensitivity  of inter- and intra-molecular biological 

electron transfer to the application of high pressure. Using high-pressure radiolysis 

and optical absorption Wishart et al. [19] demonstrated that the application of high 

pressure causes an exponential increase in the rate of intra-molecular electron transfer 

in metal-labeled cytochrome c, and electron transfer from metal in solution to 

cytochrome c. Meier et al. [20] measured the effects of high pressure on the rates of 

intra-molecular electron transfer in ruthenium modified cytochrome c. Bänsch et al. 
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[21] studied the effect of high pressure on the rate of inter-molecular electron transfer 

from reduced horse heart cytochrome c to Pentaammine (isonicotinamide) 

ruthenium(II) perchlorate ([Ru(NH3)5-isn](ClO4)2) using a custom high-pressure 

stopped flow absorption spectrometer. Bänsch et al. found that these transfer rates 

were sensitive to both temperature and pressure. Scott et al. [22] studied the sensitivity 

to pressure of electron transfer between attached metal-labels and the heme group in 

cytochrome b5 molecules. Scott et al. [22] found that these intra-molecular transfer 

rates displayed an exponential dependence upon applied pressure. 

The structural perturbations needed to actuate these functional changes are suggested 

by several high-pressure atomic structures of protein molecules. Kundrot and Richards 

[23, 24] solved the crystal structure of hen egg white lysozyme at a pressure of 100 

MPa at  room temperature using a high-pressure, X-ray  transparent beryllium cell. 

Urayama et al. [4] solved the structure crystal structure of sperm whale myoglobin at a 

pressure of 200 MPa at room temperature using a high-pressure beryllium cell and at 

low temperature using a high-pressure cryo-cooling technique. Kim et al. [3] solved 

the structure of glucose isomerase at 130 MPa and of thaumatin at 185 MPa using the 

high-pressure cryo-cooling technique. Fourme et al. [25] solved the crystal structure of 

hen egg white lysozyme using an X-ray transparent high-pressure diamond anvil cell 

at pressures from 300 to 690 MPa. Refaee et al. [26] solved the structure of hen egg 

white lysozyme in solution at 200 MPa using a high-pressure NMR cell. Williamson et 

al. [27] solved the structure of bovine pancreatic trypsin inhibitor also using a high-

pressure NMR cell. Collins et al. [28, 29] solved the crystal structure of the wild type 

and L99A mutant  of T4 lysozyme using the high-pressure beryllium cell at pressures 

up to 200 MPa. Wilton et al. [30] reported the structure of protein G at 200 MPa using 

a high-pressure NMR cell. All of these high-pressure protein atomic structures indicate 

4



that pressures of a few hundred MPa typically  displace atoms by approximately 0.1 to 

1 Å from their ambient pressure positions.

Numerical simulations of the structural deformation of cytochrome c mutants at high 

pressure by Miyashita and Go [31] and by Prabhakaran et al. [32] also indicate that 

deformations to protein structure induced by pressures of several hundreds of MPa are 

on the order 0.1 to 1.0 Å.

Observations of the small structural perturbations of protein structure by high-pressure 

concomitant with dramatic modification of protein function suggests that the exact 

positioning of atoms, especially in the active sites of catalytic proteins is an important 

feature of protein operation, and that this positioning is subject to environmental 

perturbation. 

The number of reported high-pressure protein structures is extremely small in 

comparison to the total number of reported protein structures. The number of 

investigations that attempt to correlate pressure-induced sub-angstrom structural 

deformations to impacts upon the functional properties of a protein molecule is 

smaller still. The three most notable investigations of this type are the investigation of 

the high-pressure modification of the rate constant of morphinone reductase by Hay  et 

al. [18], the investigation of the carbon monoxide recombination rate of myoglobin by 

high-pressure Raman spectroscopy by Galkin et al. [33] and the investigation of 

conformational substates of myoglobin using high-pressure X-ray  crystallography by 

Urayama et al. [4].

5



1.2.1 Numerical Simulations Link Sub-Angstrom Structural Perturbations in the Active 

Site of Morphinone Reductase to an Accelerated Rate Constant

The flavoprotein morphinone reductase is expressed by the gram-negative bacterium 

Pseudomonas putida M10. P. putida M10 was isolated from opiate factory effluent1 

[34, 35] and utilizes morphine alkaloids as its sole energy and carbon source2 [35, 36].

The first  two steps of the degradation of morphine alkaloids by P. putida M10 are 

catalyzed by the enzymes morphine dehydrogenase and morphinone reductase [36]. 

Morphine dehydrogenase catalyzes the oxidation of morphine to morphinone and 

codeine to codeinone in the presence of NADP+ [35]. Morphinone reductase catalyzes 

the saturation of the carbon-carbon double bond of morphinone and codeinone 

yielding hydromorphone and hydrocodone in the presence of NADH [37]. A cartoon 

stereo diagram of morphinone reductase is shown in figure 1.1. 

To perform the reduction of morphinone and codeinone, morphinone reductase 

acquires a hydride (H-) ion from NADH that is transiently stored on the flavin 

mononucleotide (FMN) prosthetic group of the enzyme. This stored charge is used to 

reduce morphinone to hydromorphone or codeinone to hydrocodone. The NADH 

oxidation half-reaction proceeds in three distinct  steps: docking of the NADH cofactor 

and morphinone reductase, formation of a charge transfer (CT) complex [37] and 

6

1  It is unclear if Pseudomonas putida M10 occurs naturally in the waste streams of 
heroin factories. French et al. commented that P. putida M10 was isolated from opiate 
factory waste liquor, implying that the bacterium does occur naturally  in this 
environment. However, the citation used to support this statement by Bruce et al. 
refers to the source of the organism only as industrial waste liquor enriched with 
morphine. 

2 Bruce et al. noted that although P. putida M10 can utilize morphine as its sole energy 
and carbon source, it is cultured with supplemental glucose.



finally by  the transfer of a hydride ion from the C4 atom of the NADH to the N5 atom 

of the FMN group [18]. Hay et al. [18] used high-pressure perturbation of morphinone 

reductase to probe the mechanism of hydride transfer from the NADH to the FMN 

prosthetic group. The FMN group and NADH4 cofactor analog [38] are highlighted in 

figure 1.1. A diagram of the FMN group and NADH4 cofactor analog is shown in 

figure 1.2. The direction of hydride transfer and the separation of the NADH4 C4 and 

FMN N5 atoms, d, are shown in figure 1.2.

The rate of hydride transfer from NADH to the FMN prosthetic group in morphinone 

reductase is highly  dependent upon pressure, temperature and the hydrogen isotope 

composition of the NADH cofactor [18]. Hay et al. [18] measured the hydride transfer 

rate from NADH and NAD2H (deuterated NADH) by time resolved observation of the 

absorbance of the FMN prosthetic group  at 464 nm in a high-pressure stopped flow 

apparatus at pressures ranging from atmospheric to 200 MPa, and temperatures 

ranging from 5 to 40 ˚C. The ratio of the protium ( kH ) to the deuterium ion transfer 
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Figure 1.1:  Stereo image of the structure of Morphinone Reductase from 

Pseudomonas putida M10 by Pudney et al. [38]. The cofactor analog 

NADH4 [38] and flavin prosthetic group (FMN) are highlighted. PDB 

accession code 2R14.
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rate (kD ) gives the Kinetic Isotope Effect (KIE) for the reaction. The change of the 

Kinetic Isotope Effect with pressure and temperature is revealing of the hydride 

transfer mechanism. The KIE is defined as

 

� 

KIE = kH
kD

. (1.1)

Hay et al. [18] demonstrated that the transfer rates of both protium and deuterium ions 

from the NADH cofactor to the FMN prosthetic group of morphinone reductase 

increased exponentially with applied pressure. 

Semi-classical transition state models assume that proton transfer between reactant 

and product states occurs by passage of the proton over a potential barrier between the 

reactant and product states. The rate of passage over the barrier is thus only  a function 

of the height of barrier and of the attempt frequency, not of the barrier width. Semi-
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Figure 1.2:  The Morphinone Reductase flavin prosthetic group (FMN) and non-

oxidizable cofactor analog NADH4 from the crystal structure by 

Pudney et al. [38].



classical transition state theory models predict that  the application of high pressure 

should only  affect the vibrational frequencies of atoms involved in proton transfer [39, 

40], thus only affecting the attempt frequency for barrier crossing. Different hydrogen 

isotopes should vibrate at different frequencies due to their different masses, resulting 

in different transfer rates at  room temperature and pressure for different isotopes. 

Experiments by Isaacs et al. [39] indicate that these stretching vibrations are 

insensitive to pressures lower than a few hundred MPa. Thus, pressures in the range of 

a few hundred MPa should not affect the Kinetic Isotope Effect ratios of proton 

transfer reactions that require passage of the proton over a potential barrier. 

However, modern transition state theories do predict  that in certain reaction 

geometries, high pressure may increase a hydride transfer rate by increasing the 

probability  of potential barrier penetration by quantum mechanical tunneling through 

the potential barrier between the reactant and product states [18]. Thus, the transfer 

rate through the barrier is a function of the barrier width, as well as the barrier height. 

As different hydrogen isotopes have different masses, and thus different de Broglie 

wavelengths, the rate of transfer of the two different isotopes will vary  with different 

rates with increasing pressure. Thus, the Kinetic Isotope Ratio of the reaction will be 

sensitive to the application of high pressure.

Hay  et al. [18] found that  the Kinetic Isotope Effect for the hydride transfer reaction 

from NADH (or NAD2H) to the FMN group in morphinone reductase varies with 

temperature and pressure.

Hay et al. [18] proposed a numerical quantum mechanical model based upon small, 

pressure-induced structural deformations to the active site of morphinone reductase 
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that would actuate this large, exponential change in hydride transfer rate and kinetic 

isotope effect with increasing pressure. Hay et al. [18] proposed that hydride ions 

transfer from NADH to the FMN prosthetic group by tunneling through a potential 

barrier. The width of this barrier, defined by the separation of the proton donor (the C4 

atom on the NADH cofactor) and the proton acceptor (the N5 atom on the FMN 

prosthetic group): r, may be reduced by the application of high pressure, thus 

significantly increasing the probability of tunneling, and thus the proton transfer rate. 

The direction of hydride transfer and the separation of the NADH4 C4 and FMN N5 

atoms, d, are shown in figure 1.2. To clarify, d is the separation of the C4 and N5 

atoms, while r is the separation of the proton donor and acceptor sites attached to these 

atoms. X-ray crystallography can resolve the positions of the C4 and N5 atoms, but 

not the acceptor sites. However, the proton transfer model by Hay et al. [18] is 

presented in terms of donor to acceptor site distance, r. 
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An X-ray structure of morphinone reductase complexed with the non-oxidizable 

cofactor analog NADH4 by Pudney et al. [38] indicates that the C4 to N5 separation: r, 

is approximately 3.45 Å at room pressure and cryogenic temperatures. This suggests 

that the proton donor to acceptor separation is approximately 1.7 Å under these 

conditions [18]. Hay et al. [18] speculate that high pressure compresses the distance 

between the NADH cofactor and FMN prosthetic group, facilitating tunneling of 

hydride ions from the cofactor to the prosthetic group. A numerical tunneling model 

by Hay et al. [18] predicts that the donor to acceptor distance: r, must reduce from 1.7 

Å at 0.1 MPa to 1.0 Å at 200 MPa, given an activation enthalpy of 5.2 kJ mol-1, in 

order to account for the observed change in Kinetic Isotope Effect  by this pressure. A 

plot of the calculated change in Kinetic Isotope Effect corresponding to this 

decreasing separation is shown alongside the measured change in Kinetic Isotope 

Effect versus pressure in figure 1.3. 

Attempts, not fully successfully, to solve the structure of morphinone reductase under 

high pressure and confirm the model proposed by Hay et al. [18] are outlined in 

chapter 6 of this thesis. 

1.2.2 High Pressure Raman Spectroscopy Links Sub-Angstrom Perturbations of the 

Heme Group of Myoglobin to an Acceleration of the Carbon Monoxide Association 

Rate

The behavior of the heme proteins hemoglobin and myoglobin under high pressure has 

received considerable attention. These investigations have allowed a structural 

explanation of the behavior of ligand re-binding in myoglobin under high pressure to 

emerge. Galkin et al. [33] used high-pressure Raman spectroscopy to infer a 

correlation between pressure-induced changes in the carbon monoxide re-binding rate 
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Figure 1.4:  A: Ratio of Mb to MbCO absorption markers with increasing pressure, 

indicating switch in dominant population from Mb at 0.1 MPa to 

MbCO at 175 MPa. B: Iron-proximal histidine stretch mode band 

frequency shift with pressure, indicating motion of heme iron into plane 

of heme group. C: Heme iron charge transfer transition band, indicating 

motion of heme iron into plane of heme group. Adapted from Galkin et 

al. [33].
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of horse met-myoglobin and a structural change in and around the ligand-binding 

heme group of the molecule. 

As with hemoglobin, the out of plane position of the myoglobin heme iron is sensitive 

to the ligand binding state of the molecule. When oxygen, or carbon monoxide is 

bound to the heme, the heme iron lies in the plane of the heme group. When no ligand 

is bound to the myoglobin heme, the heme iron puckers out of the plane of the heme 

group by approximately 0.2 to 0.3 Å [41-43] (the heme iron puckers by ≈ 0.4 Å in 

hemoglobin). The puckering motion of the heme iron is transmitted to the F helix by 

the proximal histidine that connects the heme group to the F helix [43]. 

Galkin et al. [33] made steady state measurements of the Raman spectra of a carbon-

monoxy-myoglobin sample photolyzed by the Raman excitation beam. The Raman 

peaks at 1354 and 1372 cm-1 are proportional to the populations of photolyzed Mb and 

recombined MbCO in the sample respectively. The ratio of the 1354 and 1372 cm-1 

peaks is shown in figure 1.4A. The ratio of these two peak intensities is equal to the 

population ratio of Mb to MbCO and is thus representative of the rate of 

recombination of Mb with carbon monoxide. Photolyzed unbound Mb is the dominant 

species in the sample at atmospheric pressure, while MbCO becomes the dominant 

fraction at  pressures exceeding 70 MPa. This change in the dominant population 

suggests that the recombination rate of CO to Mb increases with pressure, consistent 

with the time resolved flash photolysis results of Adachi and Morishima [16] on horse, 

sperm whale and dog myoglobin. 

Galkin et al. [33] linked this functional change of myoglobin, an increase in ligand 

rebinding rate, to a sub-angstrom structural change in the myoglobin molecule by 
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examining peaks in the Raman scattering spectrum of myoglobin. These Raman peaks 

are highly sensitive indicators of the structural state of the active site. 

The most significant change in the myoglobin Raman spectrum is the linear shift of 

the iron-proximal histidine stretching mode: νFe−His [44, 45] with increasing pressure. 

The iron-proximal histidine stretching mode band shifts by  approximately 4 cm-1 from 

0.1 to 175 MPa. The νFe−His stretch mode frequency versus pressure is shown in figure 

1.4B. 

Galkin et al. [33] also examined the near infrared absorption band III centered at  762 

nm at 0.1 MPa. The band III absorption peak is speculated to correspond to the 

porphyrin a2u Highest Occupied Molecular Orbital (HOMO) to dyz iron orbital charge 

transfer transition. The position of the band III absorption peak as a function of 

pressure is shown in figure 1.4C. The band III absorption peak shifts by approximately 

1.2 nm from 0.1 to 175 MPa. It is speculated that a shift in the position of the infrared 
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band III absorption peak is related to the heme iron out of plane position [46, 47] and 

possibly to the relative orientation of the heme and proximal histidine [48]. 

Calculations by Stavrov [49] suggest that the pressure-induced shift  of the iron-

proximal histidine stretch mode peak (νFe−His ) corresponds to a motion of the heme 

iron of approximately 0.015 Å toward the plane of the heme group. Calculations by 

Galkin et al. [33] support the existence of this deformation motion by suggesting that 

the shift  of the band III absorption peak corresponds to a motion of the heme iron of 

approximately 0.01 Å into the plane of the heme group. This motion of the heme iron 

towards the plane of heme group places the heme in a structural state more like that 

observed in ligand-bound myoglobin. A smaller spectral shift of the 343 cm-1 Raman 

peak is speculated to correspond to a motion of the myoglobin helices [33]. 

Galkin et al. [33] speculated that the extremely small heme iron motion suggested by 

their results is actuated by  a small pressure-induced motion of the myoglobin F helix 

through the proximal histidine linking the heme to the helix. The proposed motion of 

the F helix and its linkage to the heme is shown in figure 1.5.

Galkin et al. [33] speculated that the motion of the proximal histidine induced by high 

pressure increases the planarity of heme group, reducing the barrier to ligand 

recombination. As ligand-binding to the heme is the rate-limiting step in the binding of 

myoglobin to its ligand, this small deformation to the heme group  may greatly 

increase the ligand rebinding rate.
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1.2.3 Conformational Substates of Myoglobin Investigated by High-pressure X-ray 

Crystallography

Ansari et al. [50] demonstrated that carbon-monoxy  sperm whale myoglobin displays 

three conformational substates associated with the infrared stretch bands of the heme-

bound carbon monoxide. The A0 band is centered at ≈ 1967 cm-1, the A1 band at ≈ 

1947 cm-1 and the A3 band at ≈ 1929 cm-1. Frauenfelder et al. [51] speculated that 

these substates may possess different reactive properties, giving myoglobin ligand 

binding and reactive properties not traditionally associated with single subunit, non-

allosteric enzymes. Urayama et al. [4] noted that an understanding of the structural 

properties of these conformational substates may shed light on the structural basis of 

myoglobin’s anomalous reactive properties. 

The relative populations of the A0, A1 and A3 substates of myoglobin are sensitive to 

pressure, temperature and pH [12, 50]. At room temperature and pressure, a pH 

decrease from 6.6 to 5.5 increases the A0/A1 population ratio by  a factor of 

approximately 10. Similarly, a pressure increase from 0.1 to 200 MPa at room 

temperature increases the A0/A1 ratio by factor of 2.8. These results suggest a 

similarity between the pH and pressure modified structures of myoglobin. 

Urayama et al. [4] solved the structure of carbon-monoxy sperm whale myoglobin 

using room temperature high-pressure X-ray crystallography  techniques and a low-

temperature high-pressure cryo-cooling technique [3, 4]. Urayama et al. [4] suggested 

that these high-pressure structures of MbCO may provide a structural explanation for 

the pressure-dependent infrared spectroscopic and reactive properties of MbCO.
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Urayama et al. [4] noted similarities between the structure of carbon-monoxy-

myoglobin at high-pressure and the structure of the molecule at low pH, concomitant 

with similar changes in the A0 to A1 population ratio under both pressure and pH 

perturbation. Urayama et al. [4] speculated that the small pressure-induced global 

structural changes of myoglobin corresponded to those associated with the A0 state.  

The largest pressure induced displacements in myoglobin occurred in the F helix, AB 

loop, and CD loop regions. The start of the F helix displaces toward by heme group by 

approximately 0.25 Å under a pressure of 200 MPa. This displacement of the F helix 

is particularly significant as this helix is connected to the heme group  through the 

proximal histidine (His93). The displacement of the F-helix suggests a mechanism for 

pressure to alter the conformation of the heme and hence its spectroscopic and reactive 

properties. 

1.3 Preview of Thesis

The work presented in this thesis builds upon the examples presented by Hay et al. 

[18], Galkin et al. [33] and Urayama et al. [4], and provides a direct correlation 

between the directly  measured, continuously perturbed X-ray  crystal structures of a 

protein molecule under a range of high pressures and a continuously varying 

functional change of the molecule. 

To systematically investigate the correlation between protein function and small 

structural deformations, we chose to study the Aequorea Yellow Fluorescent Protein 

(YFP) Citrine [1, 2, 52] under high pressure. Citrine is an extremely bright, 

intrinsically fluorescent protein whose atomic structure is known to 2.2 Å resolution 

[1] and displays a fluorescence peak shift of approximately  1 nm per 100 MPa at room 

temperature [53]. 
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Chapter 2 of this thesis discusses methods for solving the structures of protein 

molecules under high pressure, and the possibility and reliability  of detecting small 

deformations in the structure of a protein molecule well below X-ray  wavelengths and 

the diffraction resolution limit of protein crystals. 

Chapter 3 of this thesis discusses the Citrine molecule, its photophysics, and it a 

possible mechanism for the response of its fluorescence spectrum to high pressures. 

Section 4.2 of chapter 4 details the growth and purification of Citrine. Section 4.3 

describes the construction of a safety enclosure for the high-pressure cryocooling 

apparatus. Section 4.4 describes a micro-spectrophotometer that was used to measure 

the optical properties of Citrine under high-pressure cryocooling conditions. Section 

4.5 of this chapter describes the effects of high pressure on the fluorescence spectrum 

of Citrine. Section 4.6 describes the crystallization of Citrine.  

A closely spaced series of high-pressure structures of Citrine were solved using a 

novel high-pressure cryo-cooling X-ray crystallography technique developed by Kim 

et al. [3]. Details of data collection from these crystals is described in section 4.7 of 

chapter 4. Analysis of these high-pressure structures of Citrine reveal a progressive 

deformation of the chromophore that correlates with a progressive blue-shift of the 

fluorescence peak of Citrine observed under these high-pressure cryo-cooling 

techniques that was discussed in section 4.5 of chapter 4. The detailed structural 

analysis of Citrine’s chromophore under high pressure is described in section 4.8 of 

chapter 4.
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The deformation of the Citrine chromophore is actuated by the relative translation and 

rotation of two clusters of atoms with differing compressibilities that compose the β-

barrel scaffold of the Citrine molecule. This relative motion of the two clusters 

composing the β-barrel scaffold is reminiscent of a bending or buckling of the β-barrel 

[6]. The identification of these two clusters of atoms, and the mechanism of actuation 

of the chromophore deformation is discussed in chapter 5.

The series of high-pressure structures of the Citrine molecule also reveal a 

perturbation of the hydrogen bonding network stabilizing the excited state of the 

Citrine chromophore. This perturbation is implicated in the reduction of fluorescence 

intensity of the Citrine molecule under high pressure and is discussed further in 

chapter 5. 

Recent single molecule experiments on enzymes including cholesterol oxidase [54], 

hairpin ribozyme [55], λ exonuclease [56], lipase [57, 58] and the Yellow Fluorescent 

Protein [7] indicate that under ambient conditions, single protein molecules switch 

between a series of conformational states with distinct functional properties [59]. 

These distinct functional properties may correspond to structural changes on the 

angstrom to sub-angstrom level in the case of flavin reductase [60], or on the 0.1 to 0.2 

Å length-scale in the case of Photoactive Yellow Protein (PYP) [61]. These functional 

substates are highly reminiscent of the three functional and conformational substates: 

A0, A1 and A3 of myoglobin that were investigated by Frauenfelder et al. [51] and 

were discussed in section 1.2.3. 

Photoactive Yellow Protein (PYP) is a bacterial photo-receptor [62, 63] capable of 

forming crystals that diffract to extremely  high resolution (≈ 0.82 Å) [64]. At 
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cryogenic temperatures, PYP is capable of executing the first  five steps in its 

photocycle, but becomes trapped in the spectroscopically  identifiable state I1 of the 

photocycle. This should allow a population of PYP molecules to be completely 

converted to state I1. However, based upon optical absorption measurements, Coureux 

et al. [61] concluded that two populations of conformers exist in a sample of flash 

frozen PYP, despite apparent structural homogeneity  in a model of the protein derived 

from 0.82 Å resolution X-ray diffraction data. One of these populations, comprising 

approximately 30% of the sample is photoactive, meaning that  it can be excited to 

state I1. However, the remaining population is photo-inactive. Coureux et al. [61] 

concluded, given an error of approximately 0.1 to 0.2 Å on the PYP structure, that the 

active and non-active conformers must have structures differ by only 0.1 to 0.2 Å.  

Blum et al. [7] observed that  isolated molecules of Yellow Fluorescent Protein, a close 

relative of Citrine, transiently convert to a blue-shifted form, with a fluorescence peak 

at ≈ 514 nm. This blue-shifted fluorescence peak is the same as that observed from 

Citrine under high-pressure cryo-cooling at 350 MPa. Chapter 5 discusses the 

possibility of using high-pressure cryo-cooling to gain structural insight into 

transiently  occupied protein states such as those seen for Yellow Fluorescent Protein 

[7], cholesterol oxidase [54], hairpin ribozyme [55], λ exonuclease [56] and lipase [57, 

58]. Possible mutations to the Citrine structure, highlighted by the high-pressure 

structures of Citrine, that may alter its time dependent behavior to favor the blue-

shifted state are discussed in chapter 6.

We attempted to apply the high-pressure X-ray crystallography techniques used to 

analyze the structure and functional alteration of Citrine under high pressure to 

Morphinone Reductase. These attempts are outlined in chapter 6. 
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In chapter 6, we discuss possible future high-pressure X-ray crystallography 

experiments, and the possibility of using high-pressure cryo-cooling to identify 

mutation sites in protein structures is discussed.
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CHAPTER 2

SOLVING THE STRUCTURE OF PROTEIN MOLECULES 

AND PRECISION OF PROTEIN STRUCTURES

2.1 Introduction

The 3-dimensional structure of protein molecules is intimately tied to their function. 

Knowledge of the 3-dimensional structure of a protein molecule is a necessary, but 

often insufficient, condition for understanding the mechanism of action of the 

molecule. Computer algorithms exist that predict the 3-dimensional structure of a 

protein molecule. A well-known technique is template-based modeling, where a 

known structure of a protein molecule with a similar primary sequence to the target is 

used to generate a homology model [65]. Homology modeling has shown some 

success in predicting the 3-dimensional structure of protein-molecules from linear 

amino acid sequences [66, 67]. Assuming a primary  sequence identity of 35% between 

a template and a target structure, the SWISS-MODEL homology  modeling server 

achieves a mean rms (root mean square) deviation of α-carbon atom positions between 

the homology model and an experimental structure of the molecule of 3.5 Å ± 1.6 Å 

(supporting material to Arnold et al. [66]). For 95% sequence identity, the mean rms 

deviation between the homology model and experimental structure of a molecule is ≈ 

1.2 Å. Similar modeling programs achieve similar levels of accuracy to SWISS-MODEL 

for sequence identities greater than 35% (supporting material to Arnold et al. [66]). 

While the rms deviations between homology models and experimental structures are 

small in comparison to the exterior dimensions of a protein molecule, typically  tens of 

angstroms, they are large in comparison to the structural deviations induced by high 

pressure. For comparison, the rms deviation between α-carbon atoms of the low 

temperature, room pressure (Protein Data Bank (PDB) accession code 1A6K) and low 
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temperature, high pressure (1JP9) structures of myoglobin analyzed by  Urayama et al. 

[4] is only 0.132 Å.

Additionally, there are notable examples of protein molecules whose structures may 

not be amenable to homology modeling. For example, mutation of a single residue in 

Rat Liver S-Adenosylhomocysteine Hydrolase produces large changes in the 

conformation and catalytic behavior of the enzyme [68]. More importantly, there 

appears to be no general rule to estimate the precision of individual results of 

structural modeling. Given that the function of protein molecules may be sensitive to 

sub-angstrom structural perturbations, it  is presently  difficult to accurately predict  and 

understand the catalytic behavior of molecules based only upon computer-simulated 

models.

As of today, two complementary  techniques exist for finding the structures of 

macromolecules with atomic level precision: X-ray  crystallography and Nuclear 

Magnetic Resonance (NMR). Both X-ray crystallography and NMR have been 

adapted for high pressure use. Kundrot and Richards [23] developed a high-pressure 

X-ray transparent beryllium cell for macromolecular crystallography  at room 

temperature. This cell was used to solve the structure of hen egg white lysozyme at a 

pressure of 100 MPa [24, 69]. Urayama et al. [4, 70] developed a high-pressure cryo-

cooling technique that is used to freeze protein crystals under high pressure and lock 

in pressure induced structural deformations. Urayama et al. [4] used both the high-

pressure cryo-cooling technique and a high-pressure beryllium X-ray cell to solve the 

structure of sperm whale myoglobin at pressures up to 200 MPa. Kim et al. [3] further 

developed the high-pressure cryo-cooling technique. Kim et al. demonstrated that the 

high-pressure cryo-cooling technique effectively reduces the damage to protein 

24



crystals due to freezing to cryogenic temperatures [3]. Fourme and co-workers 

developed a diamond anvil cell suitable for macromolecular X-ray crystallography at 

pressures up to 1 GPa [25, 71]. Fourme and co-workers have used the macromolecular 

diamond anvil cell to solve the structures of hen egg white lysozyme [25], cow pea 

mosaic virus [72-74] and a short oligonucleotide [75]. Refaee et al. developed a high-

pressure NMR cell that permits the room temperature, high-pressure solution structure 

of macromolecules to be solved at pressures up  to 200 MPa [26]. The high-pressure 

cryo-cooling technique was used to solve all new protein atomic structures discussed 

in this thesis. 

25

Aperture Viewing Screen

Interference Pattern 

Intensity on Screen

Slit

Laser Beam
!

Scattering 

Angle

Figure 2.1:  Schematic of optical diffraction experiment. A laser beam is passed 

through a narrow slit, causing interference of the beam. The 

interference pattern is projected on a screen behind the aperture. The 

intensity of the interference pattern is given by the Fourier transform of 

the aperture.
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Figure 2.2:  A: The transmission through a single slit, and the square of the Fourier 

transform of the slit. B: An infinite comb of delta functions and its 

Fourier transform. C: An infinite comb of finite width slits, and its 

Fourier Transform. The scattering angle referred to in the figure is 

defined in figure 2.1.
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2.2 Introduction to X-ray Crystallography

In order to solve the structure of protein molecules to atomic or close to atomic 

resolution a probe is required with a wavelength comparable to or smaller than atomic 

dimensions. Hard X-rays have wavelengths ranging from approximately  10 Å to 0.1 

Å, corresponding to photon energies of 1.2 to 120 keV. This wavelength scale makes 

hard X-rays appropriate for resolving atomic scale features in molecules: solving the 

structure of the molecule. However, as of the present day, no technique exists to focus 

X-rays sufficiently to permit imaging with angstrom scale resolution to permit hard X-

ray microscopy. In order to solve the structure of a molecule, the diffraction pattern 

produced by the interaction of X-rays with an atomic scale structure must be analyzed 

in order to elucidate the structure of a molecule. X-ray  crystallography has been used 

since the first decade of the 20th century  to solve the atomic structures of increasingly 

complex molecules [76, 77].

X-ray crystallography was the first  technique successfully  applied to solve the 3-

dimensional atomic structure of a protein molecule [78, 79]. Over the past five 

decades, X-ray crystallography  of protein molecules has become an increasingly 

refined and easily applied technique [76, 77]. 

To gain an intuitive understanding of X-ray  crystallography, it is useful to consider 

optical diffraction: the events that  occur when light, for instance a laser beam, passes 

through, and is scattered by an aperture with dimensions comparable to its 

wavelength. The interference pattern that  results from this scattering is projected on a 

screen behind the aperture. The interference pattern is the modulus squared of the 

Fourier transform of the aperture. A diagram illustrating the geometry of this 

interference experiment is shown in figure 2.1. The transmission of the slit, and the 
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square modulus of its Fourier Transform are shown in figure 2.2A. In a similar 

fashion, the X-ray diffraction pattern produced by the interference of X-rays passing 

through a crystal and projected onto a film, image plate or CCD (charge coupled 

device) X-ray detector is related to the Fourier transform of the protein crystal. 

If the laser beam is passed through a comb of slits of finite width spaced at regular 

intervals, the resulting interference or diffraction pattern projected onto the screen 

behind the aperture is also a repeating series of regularly spaced sharp  peaks that 

becomes increasingly  dim as one moves away from the center of the pattern. This is 

shown in figure 2.2C.

The aperture can be thought of as a single finite width aperture convolved with a comb 

of infinitesimally  thin apertures, or delta functions [80]. An infinitely long comb of 

delta functions is shown in figure 2.2B. The Fourier transform of an infinite comb of 

delta functions is also an infinite comb of delta functions. The spacing of the delta 

functions in the Fourier transform is inversely proportional to the spacing of delta 

functions in real space [80]. For instance, if the delta functions are spaced at intervals 

of T in real space, the spacing in Fourier space will be proportional to 1/T. This is 

shown in figure 2.2B.

An infinite comb of slits of finite width, like that shown in figure 2.2C, can be thought 

of as the convolution of a single slit  of finite width, like that shown in figure 2.2A, 

with an infinite of comb of delta functions, like that shown in figure 2.2B. The Fourier 

transform of the convolution of two functions is equal to the product of the Fourier 

transforms of these two functions [80]. The Fourier transform of the infinite comb of 

finite width slits is equal to the Fourier transform of a single finite slit multiplied by 
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the Fourier transform of a train of delta functions. The interference pattern viewed on 

the screen is equal to the square of the Fourier transform of the infinite comb of finite 

width slits. The interference pattern appears as a regularly spaced pattern of peaks. 

The spacing of the peaks is inversely proportional to the spacing of the slits, while the 

intensity of each peak is determined by the Fourier transform of a single slit. This 

interference pattern is shown in figure 2.2C.

A crystal contains many identical copies of a molecule arranged into a lattice: a 

periodic structure. One can think of the lattice as a train of delta functions in 3-

dimensions, and the crystal as a single molecule convolved with these delta functions. 

Thus, the interference, or diffraction pattern from the crystal is related to the Fourier 

transform of the lattice, multiplied by the Fourier transform of a single molecule. 

As only the electrons of the atoms in the molecule interact appreciably with the X-ray 

beam, the Fourier transform of the molecule is the Fourier transform of the electron 

distribution in the molecule, often called the electron density. As the Fourier transform 

of the crystal, or the volume of the crystal illuminated by the X-ray  beam, is related to 

the Fourier transform of the crystal lattice, multiplied by the Fourier transform of a 

single molecule, the diffraction pattern is confined to sharp peaks, called Bragg spots 

[81]. It is important to remember that the optical case described earlier, where a laser 

beam passes through a slit does not describe all of the features of X-ray  diffraction 

from a crystal. The most important feature at which these two cases diverge is 

dimensionality. The example of a laser beam passing through an aperture is confined 

to 1-dimension, whereas a protein crystal is a 3-dimensional structure. For this reason, 

additional measures are needed to describe the diffraction pattern from the crystal. A 

representative diffraction pattern from a crystal of the protein Citrine is shown in 
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figure 2.3. The diffraction image also contains a prominent ring that comes from oil 

used to coat the crystal. As the oil does not have an ordered structure, it cannot cause 

Bragg spots to appear in the diffraction pattern. The ring diameter is representative of 

the spacings of carbon atoms within and between oil molecules. 
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Figure 2.3:  X-Ray diffraction pattern from a Citrine crystal taken at Cornell High 

Energy Synchrotron Source (CHESS) station F2 with and Area Detector 

Systems Corporation (ADSC, Poway, CA, USA) Quantum 210 CCD X-

ray detector.



32

D: Accessible Points in 

Reciprocal Space by 

Incident Beam

O

Incident Beam, k
i

Scattered Beam, k
s

Scattering 

Vector, Q

Ewald Circle

Ewald Circle 

Width, !k

Detector Face

2"

Reciprocal Space Origin, O

a
1

a
2

G

1,2 Reciprocal Lattice Point

C: Diffraction Spots 

Produced by Incident 

Beam

A: A 2-D Reciprocal Lattice B: X-ray Scattering

Geometry

Detector Face

1,2 Spot

2,2 Spot0,1 

Spot

0,0 

Spot

Figure 2.4:  Ewald Circle construction. Adapted from Als-Nielsen and McMorrow 

[82].



A useful construction to describe the X-ray diffraction from a crystal is the Ewald 

sphere (pronounced Ee-vold) [82]. A two-dimensional version of the Ewald sphere, 

the Ewald circle, is shown in figure 2.4. The Ewald construct is often most easily 

understood, and drawn, in a two-dimensional construct, and can later be generalized to 

three dimensions. Figure 2.4A shows the reciprocal lattice of the crystal: the Fourier 

transform of delta functions representing the crystal lattice in real space. As in the case 

of the optical example discussed earlier, the spacing of the reciprocal lattice points is 

inversely proportional to the spacing of the lattice points in real space. Two vectors, a1 

and a2 are shown in figure 2.4A that establish a set of basis vectors for this 2-

dimensional space. In this example, the basis vectors are orthogonal and of equal 

length, but need not be, and often are not. Any reciprocal lattice vector can be 

constructed from a combination of these two reciprocal lattice vectors. A reciprocal 

lattice vector, G, projecting from the origin, O, is shown in figure 2.4A. 

The Bragg spots in the diffraction pattern from a crystal occur because of constructive 

interference between X-rays scattered from individual molecules in the crystal. This 

can only  occur at small number of discrete scattering angles. These angles are 

determined by the crystal lattice. The incident X-ray beam, ki , and an outgoing 

scattered X-ray, ks , are shown in figure 2.4B. The magnitude of the incident and 

scattered wave-vectors is inversely proportional to the wavelength of the incident and 

scattered X-ray beams, λ:

 

� 

ki = 2π
λ

. (2.1)

The end of the incident wave vector, ki , terminates at  the origin of reciprocal space, O. 

The angle of the incident wave vector is the determined by the experimenter, who can 
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rotate the incident wave vector arbitrarily to explore different parts of reciprocal space. 

The lengths of these two vectors are inversely proportional to the wavelengths of these 

X-ray beams. As the X-ray scattering is elastic, no energy is lost  during scattering, the 

lengths of ki and ks are equal. The Ewald circle construct assists in understanding when 

a constructive scattering event will occur. The incident wave vector and outgoing 

wave vector are both drawn as radii from the center of the Ewald circle. The 

circumference of the Ewald circle has a finite width, Δk, that reflects the slight spread 

in wavelengths and divergence present in the incident X-ray beam. The spread in 

wavelengths used in conventional crystallography experiments is usually  very small: 

the incident  beam is essentially monochromatic. A less commonly used type of 

crystallography  experiment, called Laue crystallography, utilizes a much wider spread 

of incident X-ray  wavelengths, and captures many  more Bragg spots in a single 

diffraction image. Typical X-ray beam divergences are less than a few milliradians.

A vector, Q, connecting the incident and scattered wave vectors is shown in figure 

2.4B. If Q is equal in length and direction to an inverse lattice vector, G, then 

constructive scattering will occur. The Ewald circle helps to identify this: if the 

circumference of the Ewald circle lies upon a reciprocal lattice spot then constructive 

interference will occur. A beam of scattered X-rays will be directed from the center of 

the Ewald circle toward the reciprocal lattice point and out of the crystal, and appear 

on the detector face. Constructive scattering is shown in figure 2.4C. In figure 2.4C, 

three constructive scattering events occur, producing three Bragg spots. Each spot is 

numbered by  its originating position in the reciprocal lattice. These lattice indices are 

commonly referred to as h, k and l. A 2-dimensional version of this numbering scheme 

is shown in figure 2.4C. In so far as a reciprocal lattice spot is completely  within the 

thickness of the Ewald sphere, the intensity  of each Bragg spot will be determined by 
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the Fourier transform of an individual molecule at the position of the lattice point in 

reciprocal space. In addition to the three Bragg spots, the incident beam will also 

appear in the diffraction image. The incident, or direct beam, is labeled as the (0,0,0) 

reflection, and appears in every diffraction image in the dataset. The direct beam spot 

is labeled as (0,0) in figure 2.4C. The direct  beam is much more intense than the other 

Bragg spots, and for this reason is heavily attenuated by a small lead beam stop placed 

directly  behind the crystal. The thickness of the beamstop is often chosen so as not to 

completely block the direct beam, allowing it to be identified in the diffraction image. 

The direct X-ray beam center is shown in the inset in figure 2.3 in the center of the 

white shadow of the beam stop. 

It is important to remember that the Fourier transform of an individual molecule need 

not be real: it is almost always complex, having real and imaginary  components. Thus, 

the Fourier transform of a single molecule at a lattice point in reciprocal space (often 

called the structure factor) may be given by the complex number

   F h,k,l( )= A h,k,l( )exp iφ h,k,l( )( ) , (2.2)

where 

� 

F h,k,l( )  has an amplitude A, and a phase component, φ. The intensity  of the 

Bragg spot associated with this structure factor is given by the structure factor 

multiplied by its complex conjugate

 I h,k,l( )=FF*=A2 . (2.3)

The intensity of the spot, the only quantity  that can be practically  measured in an 

experiment, is purely  a function of the amplitude of the structure factor, presenting a 
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complication in interpreting the diffraction pattern of the crystal. The goal of a 

crystallography  experiment is to determine the Fourier transform of an individual 

molecule, by  measuring all of its structure factors, and then to invert  the transform to 

determine the real space structure of the molecule. As the intensity of a Bragg spot is 

determined solely by the amplitude of its associated structure factor, information on 

the phase of the structure factor is lost. The amplitudes alone are a necessary, but 

insufficient condition for the solution of the structure of an individual molecule. This 

loss of information, and the problem it poses for reconstructing the structure of the 

molecule is called the phase problem. For molecules containing less than 100 non-

hydrogen atoms, the loss of information associated with the phase problem does not 

pose an insurmountable problem for the solution of the structure of the molecule. The 

structure of molecules containing less than 100 atoms may  be solved using traditional 

direct phasing methods [83]. More recently, dual-space recycling direct methods, often 

called “Shake-and-Bake” methods, have permitted the direct phasing of diffraction 

patterns from molecules containing well over 200 atoms, and a small number of small 

protein molecules [83, 84]. However, for larger molecules, and especially for 

macromolecules, the phase problem, and associated loss of information typically poses 

too great a challenge for direct methods [83]. 

The solution to the crystallographic phase problem was the crucial breakthrough in the 

solution of the structures of protein molecules. Today, several techniques exist to 

measure the relative phases of the diffraction spots in an X-ray crystallography 

experiment. For this thesis, no experimental measurement of the phases was required, 

as closely related structures of the proteins examined in this thesis were already 

known, permitting phasing by molecular replacement [85].
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Figure 2.4D shows the area of reciprocal space that is accessible by  an X-ray beam of 

a given wavelength. By rotating the crystal, and hence the reciprocal lattice about the 

incident X-ray beam, the Ewald circle can be rotated through reciprocal space, 

sweeping out a circle with a radius equal to twice the Ewald circle radius. As the 

length of the incident X-ray wave vector is inversely proportional to incident X-ray 

wavelength, a shorter X-ray  wavelength permits access to more points in reciprocal 

space, and allows for a more accurate reconstruction of the structure of a single 

molecule.

It is important to note that to acquire sufficient  information to solve the structure of the 

molecule, the incident wave vector does not have to be swept through 360˚ about the 

origin as is shown in figure 2.4D. For a 3-dimensional crystal, the diffraction pattern is 

at least two-fold symmetric. At a maximum, the incident wave vector needs to be 

rotated by 180˚ to gather sufficient information to reconstruct the structure of a single 

molecule. However, many  crystals display higher symmetry, further reducing the 

minimum area (or volume) of reciprocal space that must sampled in order to 

reconstruct the structure of the molecule. 

A second important note is that  the structure solution process of X-ray  crystallography 

assumes that all of the molecules composing the crystal are identical. This is true at 

one level: all of the molecules composing the crystal are chemically  isomorphous, and 

have adopted same gross fold. However, fine details of the structure need not, and 

often are not identical. For instance, a side-chain may appear in two distinct 

conformations. This can be resolved in the electron density: a residue in the structure 

of the molecule will appear to have two side chains rather than one. Another type of 

structural inhomogeneity may not be resolvable given the maximum resolution of the 
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dataset, and is often modeled by an increase in the temperature factor (often also 

called the B-factor) of the residue. In small molecule crystallography, the temperature 

factor models the thermal fluctuation in position of the residue. However, in 

macromolecular crystallography, the temperature factors of residues indicate 

extremely large positional fluctuations, suggesting conformational inhomogeneity that 

cannot be resolved into individual positional states. 

Finally, the wavelength of X-rays generated by rotating anode and synchrotron sources 

is approximately 1 Å. For example the copper K-α line produced by a rotating anode 

X-ray source with a copper target is 1.54 Å, the wavelength of CHESS station F2 

when tuned to the selenium edge is 0.9795 Å, and the CHESS station F1 

monochromator is tuned to 0.918 Å. These X-ray wavelengths suggest that  the highest 

resolution that should be achievable by X-ray  crystallography  is approximately 0.5 Å. 

However, only one dataset  out of approximately 54,000 structures reported in the PDB 

(Protein Data Bank) displays such a high resolution [86]: when using a 0.54 Å 

synchrotron X-ray beam. The limiting factor in the quality of a protein atomic 

structure is the quality  of the crystal from which it  was derived. Typical protein 

crystallography  datasets display maximum resolutions of 1.5 to 4.0 Å. This low 

maximum resolution is in part due to conformational inhomogeneity  inside the protein 

molecule, but is mostly  due to inhomogeneity in the crystal lattice. It is believed that a 

protein crystal is not  composed of a single lattice from edge to edge, but rather 

contains many sub-domains, that are slightly  misaligned from one another. The 

average degree of misalignment is called the mosaicity. The mosaicity of the crystal 

results in a spread of the angular position of each Bragg spot. It is not uncommon to 

find the angular position of a Bragg spot to be spread across one or more degrees. The 

mosaicity  of the crystal is also enhanced by the divergence of the X-ray beam. The 
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crystal mosaicity contributes heavily  to the reduction of the maximum possible 

resolution in the X-ray dataset, and is thus a major determinant of the quality  of a 

model of a protein atomic structure. 

2.3 Production of Protein and Preparation of Crystals for X-ray Crystallography

The first two steps of protein crystallography, obtaining sufficient quantities of highly 

purified protein, and then crystallizing this protein are the two limiting steps in protein 

crystallography. 

The first protein molecules whose structures were solved, sperm whale myoglobin and 

horse hemoglobin, were chosen because large quantities of the protein were available 

from natural sources and they readily formed high quality  crystals suitable for X-ray 

diffraction [81]. A flow chart  of the steps involved in producing highly  purified protein 

and diffraction quality crystals is shown in figure 2.5. A flow chart detailing the steps 

towards the solution of the structure of a molecule given diffraction quality crystals is 

shown in figure 2.8. An important feature of the flow chart shown in figure 2.5 is that 

the number of arrows pointing forwards is equal to the number pointing backwards. 

The process of protein expression, purification and expression is often a highly 

iterative process of trial and error. 

Today, the number of proteins that may  be produced in large quantities and 

crystallized is much larger than it was in the 1950s thanks to recombinant DNA 

technology, modern protein purification technology and a wide selection of 

commercially available ready-to-use molecular biology kits. Protein crystallization is 

also considerably easier due a wide body of experience in crystallization and a wide 

selection of commercially available protein crystallization kits and tools. This, along 
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with a not inconsiderable amount of hard work, has greatly expanded the scope of 

crystallization, and has allowed many problems in purification and crystallization that 

were previously thought intractable to be solved. 

Today, unlike in early experiments by Perutz and Kendrew, protein purification rarely 

begins with proteins derived directly from their parent organism. Today, the gene 

encoding the protein is usually cloned from the organism and then used to transform 

microorganisms that can produce much larger quantities of extremely homogeneous 

protein. This has a number of advantages: firstly, in order to obtain sufficiently large 

quantities of a protein from its natural source, one is often required to source it from 

many individual organisms, often reducing the homogeneity of the sample, and its 

crystallizability. 

Secondly, for proteins derived from microorganisms, the number of microorganisms 

that can be cultured in present day laboratory conditions is extremely small [87]. Some 

microorganisms do not respond well the culture media used in modern laboratories 

while others require extremely  specialized conditions such as high pressure [88], high 

ionic strength or high temperature [89] in order to replicate. 

Thirdly, recombinant DNA technology allows the rapid manipulation of the gene 

encoding the protein, allowing the generation of a large number of mutant proteins. 

This allows the study of many naturally, and non-naturally occurring mutants. 

Finally, and perhaps most importantly, cloning of a gene, removes a number of safety 

and ethical considerations concerning the use of naturally derived proteins. For 

example, the manipulation of proteins, such as hemoglobin, that have been derived 
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from human blood carries with it the risk of exposure to a number of blood-borne 

pathogens such as HIV and hepatitis B and C. For proteins from rare and endangered 

plants, there is both a collection problem and the ethical dilemma involved with 

destroying large numbers of individual plants. For human and animal derived proteins, 

collection of the protein may  require a large number of donors. Experiments involving 

human or live animal subjects often carry with them ethical and safety  considerations 

that should be carefully weighed. For example, the collection of mutant proteins 

implicated in human disease often carries with it  the burden of expectation of 

treatment. Extraction of proteins from animal species often carries with ethical 

concerns, especially from endangered species. 

In addition to cloning, an important starting point  for the production of recombinant 

protein is the choice of a suitable host microorganism. The most commonly used 

microorganism is the strain K12 Escherichia coli. The K12 strains of E. coli have been 

heavily acclimated to laboratory  culture conditions over several decades of laboratory 

use, and are considered unable to survive outside of laboratory culture conditions, 

preventing escape from the laboratory  [90]. E. coli strains are easily transformed with 

exogenous genetic material using plasmids, small circular sections of DNA, usually 

encoding a small number of genes. The E. coli strain can be prompted to produce large 

quantities of the exogenous protein using a chemical signal that activates transcription 

from the plasmid. However, prokaryotic cells often lack the protein machinery  to 

properly  modify exogenous proteins following translation. In some cases, it  is possible 

to reconstitute these accessory  genes into E. coli. [91, 92]. However, in other cases it is 

simpler to use a more complex organism containing post-translational machinery that 

more closely matches that of the protein’s parent organism. Commonly used host 
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organisms include yeast (Saccharomyces cerevisiae) and insect cells from Drosophila 

melanogaster (common fruit flies). 

Recent advances in gene synthesis have the potential to render the cloning step 

redundant. In the last four years, new gene synthesis technology has emerged that 

allows long genetic sequences to be synthesized artificially with little or no error [93]. 

Prior to this invention, a long gene would have to be physically transferred between 

interested parties, usually deposited and dried on a piece of blotting paper. This new 

invention allows a genetic sequence to be digitally transmitted between parties. The 

digitally encoded copy of the gene may then be mutated and optimized for the host 

organism, and sent for synthesis. Companies that offer long gene synthesis are Codon 

Devices (Cambridge, MA, USA), GeneArt (Regensburg, Germany) and DNA 2.0 

(Menlo Park, CA, USA). Recently, microfluidic DNA synthesis was demonstrated, 

opening of the possibility of gene synthesis on the laboratory bench [94]. 

Following construction of the gene, the host cell line is transformed with the gene, 

cultured, and then prompted to over-express the protein encoded by  the gene. The cells 

are then lysed, and the exogenous protein is purified from the cellular debris. It is 

common to add DNA bases encoding several histidine residues, called an affinity tag, 

to the N or C-terminus of the protein molecule at the gene modification step. The 

affinity tag is designed to strongly  bind to a purification column, permitting the rapid 

purification of the protein. The affinity tag is often removed by a protease enzyme that 

attacks the protein sequence between the affinity tag and the start  of the desired 

protein molecule. A typical yield of recombinant protein from several liters of E. coli 

culture is between tens and hundreds of milligrams. 
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The large quantity  of recombinant protein allows the screening of multiple 

crystallization conditions. Protein crystallization typically  requires highly pure protein. 

Anecdotally, crystallization requires that the protein sample be at least 95% pure. At 

the time of writing very little ability exists to predict the crystallization conditions for 

a given protein molecule. For this reason, it is common to attempt to crystallize a 

protein molecule in a wide variety  of conditions, often called a sparse matrix screen 

[95]. 

The process of refinement of the crystallization conditions for the protein Citrine [1], 

the topic of this thesis, is shown as a series of photographs in figure 2.6. Figure 2.6A 

shows the first Citrine crystal observed during a coarse screen of crystallization 

conditions around those suggested by Griesbeck et al. [1]. The crystal shown in figure 

2.6A nucleated and was grown in 9% PEG 3350, 50 mM Na acetate, NH4 acetate, pH 

4.5. This crystal was definitively identified as a protein crystal by staining with the 

dye Izit (Catalog number HR4-710, Hampton Research, Aliso Viejo, CA, USA). The 

Izit  dye binds to the solvent channels present in protein crystals, but not present in salt 

crystals. Following staining with Izit, protein crystals will retain the dye, while salt 

crystals that also form under protein crystallization conditions will not. 

Following identification of crystallization conditions that produce crystals, it is typical 

to refine these conditions to produce crystals that appear to be of suitable quality  for 

X-ray diffraction. It is not uncommon at the initial screening and refinement step to 

revisit  the purification step  as the crystallization may highlight  a need for further 

purification. Protein crystal seeds, produced by tapping the surface of the first Citrine 

crystal shown in figure 2.6A with a fine needle (Crystal Probe, Catalog Number 

HR4-217, Hampton Research, Aliso Viejo, CA, USA), were transferred to a fresh 
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droplet of protein solution and precipitant. These seeds provided nucleation points for 

new crystals. This process produced the slightly improved crystals shown in figure 

2.6B. This seeding procedure was repeated, and the crystallization conditions refined, 

eventually producing the high quality crystals shown in figure 2.6C. 

Following the production of apparently  diffraction quality crystals, the crystal quality 

can be tested by X-ray diffraction. One of the high quality  crystals shown in figure 

2.6C was transferred to a cryo-loop (Hampton Research, Aliso Viejo, CA, USA) and 

frozen. A frozen crystal mounted on the goniometer at CHESS station F2 for X-ray 

data collection is shown in figure 2.6D.
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A: First Citrine crystal observed in 
crystallization screening

B: Seeded Citrine crystals under refined 
conditions

C: Diffraction quality Citrine crystals D: Citrine crystal at CHESS station F2

Figure 2.6:  Crystals of the yellow fluorescent protein, Citrine, at important stages 

in the crystallization refinement process.



Photographs showing the refinement of crystallization conditions for the protein 

Morphinone reductase are shown in figure 2.7. Initial screening about the 

crystallization conditions suggested by Pudney et al. [38] produced what are believed 

to be spherical clusters of needle crystals. These spherical clusters are shown in figure 

2.7A. Further refinement of the crystallization conditions suggested by Pudney et al.  

[38] was unable to produce usable crystals. This prompted screening around the 

conditions suggested by  Moody et al. [96] and Barna et al. [97]. The crystals shown in 

figure 2.7B were produced using the conditions suggested by Moody  et al. [96]. These 

conditions were refined, yielding the crystals shown in figure 2.7C. These crystals 

were soaked with the substrate analog NADH4, mounted in cryo-loops and frozen, and 

taken to CHESS station F2 for a diffraction data collection. 
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A: Spherulite Morphinone Reductase 
crystals grown early in screening

D: Morphinone Reductase crystal soaked 
in NADH4 at CHESS Station F2

C: Almost diffraction quality Morphinone 
reductase crystals

B: Shower of rod-like Morphinone 
Reductase crystals

Figure 2.7:  Crystals of Morphinone Reductase at important stages in the 

crystallization refinement process.
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Figure 2.8:  Flow chart of protein crystal data collection and reduction procedure.
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2.4 X-ray Diffraction Data Collection and Reduction

X-ray diffraction data is collected from a protein crystal at  a synchrotron or home X-

ray source. A dataset of diffraction images is taken from the crystal as the crystal is 

rotated around the X-ray beam, sweeping the incident beam through the reciprocal 

lattice space of the crystal. The exposure time for each image varies with source, and 

can last from < 1 second at a high flux synchrotron beam-line such as F1 at CHESS, to 

several minutes at a rotating anode source. A flow chart  outlining the process of 

diffraction data collection and reduction is shown in figure 2.8. Data collection is 

typically a much more straightforward process than that used to arrive at  diffraction 

quality crystals. 

One typically chooses crystals for use in diffraction data collection based upon their 

external appearance. The external appearance is often, but certainly  not always, an 

indicator of diffraction quality. For this reason, it is prudent to screen a large selection 

of crystals, and check for diffraction quality. Screening typically only requires a few 

diffraction images to establish the diffraction quality of the crystal. Initial screening 

can often be done by manual inspection of a single diffraction image from the crystal. 

The author’s eye is typically capable of discerning diffraction spots with a signal to 

noise of approximately 3.0, and so a reasonable estimate of the diffraction limit of the 

crystal can be obtained manually. If the screening indicates a suitable crystal, then one 

can collect a full dataset from the crystal.

For each image in the diffraction dataset, the crystal is rotated, or oscillated, through 

typically 1˚. Oscillating the crystal through a small angular range greatly increases the 

number of reciprocal lattice points that pass through the thickness of the Ewald sphere, 

and greatly increases the number of diffraction spots captured in the diffraction image. 
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For the next image, the crystal is rotated through the next 1˚ increment. The number of 

diffraction images required to solve the structure of the molecule depends upon the 

symmetry of the crystal. Some crystals have extremely  high symmetry, while others 

have lower symmetry. The maximum number of frames required to solve a structure is 

180˚. 

Following, or preferably during collection of the full dataset, the first few images of 

the dataset are indexed, to determine the space group, lattice (or unit cell) parameters, 

and mosaicity of the crystal. An algorithm searches the images for diffraction spots, 

and calculates the best space group and unit cell parameter match to the position of 

these spots [98, 99]. Performing this step early in the data collection procedure is 

preferable, as crystals that display diffraction that is acceptable to the human eye, may 

not index properly. The most  accurate estimate of the crystal mosaicity may be 

obtained by indexing a small range of frames separated by  90˚, for instance frames 1 

to 3 and 88 to 90. For this reason, it is preferable to wait until at least 90˚ of diffraction 

data has been collected from the crystal before making a final estimate of the 

mosaicity. The initial indexing algorithm used in this thesis was the Data Processing 

Suite (DPS) algorithm by Rossmann and van Beek [99]. Indexing parameters were 

refined using the MOSFLM code [100]. 

When the full dataset has been collected, the intensities of the diffraction spots in the 

series of diffraction images are calculated. This process is called integration. For the 

work described in this thesis integration was performed with the MOSFLM code by 

Leslie [100] that is part of the CCP4 suite (Collaborative Computational Project 

Number 4, Daresbury Laboratory, Warrington, United Kingdom) [101].
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The intensity  of the spots is both a function of the structure of the molecule in the 

crystal, the intensity of the X-ray source, and the volume of the crystal illuminated by 

X-rays. Following integration, the data reduction process removes the effects of 

variations in the intensity of the X-ray source and intensity of diffraction due to 

changes in the volume of the crystal that is illuminated as the crystal is rotated. This 

procedure is called scaling [102]. Scaling produces a set of intensities that are 

independent of the X-ray intensity and crystal volume illumination. Following scaling, 

the intensities are truncated, to produce amplitudes [103].

The procedure thus far described yields only a set of structure factor amplitudes. If a 

model structure that is closely related to the molecule of interest’s structure is known, 

then the amplitudes alone may be used to solve the structure of the molecule of 

interest. A process called Molecular Replacement (MR) is first used to establish the 

orientation of the model of the unit cell of the molecule of interest [104]. Two 

currently popular programs for molecular replacement are MOLREP [85] and AMORE 

[105, 106]. MOLREP was used for the work presented here. MR finds the orientation of 

the model in the unit cell of the crystal. Following the molecular replacement step, the 

orientation of the model is sometimes further refined by a process called rigid body 

refinement. Rigid body refinement was performed with the REFMAC5 code [107], part 

of the CCP4 suite of programs.

Following the rigid body refinement step, the model is then refined. The refinement 

procedure iteratively  adjusts the model of the molecule of interest by  rotating bonds, 

translating atoms, and adding atoms to the model. Modern refinement algorithms 

minimize the difference between the observed diffraction amplitudes and calculated 

diffraction amplitudes predicted for the model, and minimize the divergence of the 
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model’s stereochemical parameters such as bond lengths and bond angles from 

idealized library values. The refinement algorithm used in the work presented in this 

thesis was REFMAC5 [107], part of the CCP4 suite of programs. Solvent addition was 

performed with the ARP/WARP (Automated Refinement Procedure/water Automated 

Refinement Procedure) algorithm [108-113]. 

Finally, the model is validated by  checking its stereochemistry against an independent 

library of structural constraints, and by examining its quality  indicators [114]. At this 

step, it is often wise to deposit the structure into the Protein Data Bank (PDB): a 

publicly accessible database of protein structures. Deposition of protein atomic 

structures discussed in a journal article is typically a precondition of publication. The 

structural quality  necessary for inclusion into the Protein Data Bank often requires 

revision of a structure that the experimenter may  deem acceptable. To avoid conflict 

between published structural analysis, and the structures available to the public in the 

PDB, it is recommended that the experimenter deposit their structures into the PDB 

prior to making a final structural analysis that will be included in a publication. 

2.5 Solving the Structure of Proteins Molecules Under High Pressures

Two high-pressure adaptations to X-ray crystallography were used in this thesis to 

solve the structures of protein molecules under high pressures. The fist technique uses 

hydrostatic pressure, in which the liquid solvent surrounding a protein crystal is 

pressurized to apply pressure to protein in a crystal. The second technique: high-

pressure cryo-cooling, applies pressure to a protein crystal with pressurized helium 

gas. 
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A: Disassembled beryllium high-pressure X-ray cell

B: Beryllium cell mounted on CHESS station F1 goniometer

Figure 2.9:  The high-pressure beryllium X-ray cell. A: The beryllium cell in its 

disassembled state next to a US quarter dollar coin (diameter ≈  2.4 cm). 

B: The beryllium high-pressure cell at CHESS station F1.



2.5.1 High-pressure Beryllium X-ray Cell

The beryllium cell for high-pressure X-ray crystallography was developed by Kundrot 

and Richards [23] and used to solve the structure of hen egg white lysozyme under a 

pressure of 100 MPa [24, 69]. The original beryllium cell design by Kundrot and 

Richards was limited to a maximum pressure of 100 MPa. A modification to the seal 

of the beryllium cell by Urayama increased the maximum pressure of the cell to 200 

MPa [70].

The primary advantage of the beryllium cell is that  it  operates at room temperature. 

Most high-pressure effects on protein function are initially  noticed at room 

temperature. For catalytic proteins, a fluid, non-frozen solvent is required to perform 

their function. The beryllium cell permits solution of the structure under these 

conditions. 

Unfortunately, the beryllium cell has a number of disadvantages. Firstly, beryllium 

metal displays strong X-ray powder diffraction rings starting at 2 Å and extending to 

higher resolution [23]. These powder diffraction rings obscure diffraction spots from a 

protein crystal in the cell at resolutions higher than 2 Å [70]. Secondly  the cell 

requires complex assembly  at an X-ray beam-line, necessitating that several hours of 

X-ray beam-time be used for setup. Finally, it  is challenging to locate small protein 

crystals, smaller than 500 µm in largest dimension, in the cell. 

A photograph of the disassembled high-pressure beryllium X-ray  cell is shown in 

figure 2.9A. A photograph of the beryllium cell at  CHESS station F1 is shown in 

figure 2.9B. 
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2.5.2 High-pressure Cryocooling

An alternative to the beryllium cell is the high-pressure cryo-cooling technique 

developed by  Kim et al. [3, 12, 115-117]. A schematic of the high-pressure cryo-

cooling procedure is shown in figure 2.10. A photograph of the safety enclosure used 

to surround the high-pressure cryo-cooling apparatus is shown in figure 2.11. A 

photograph of the assembled high-pressure cryo-cooling apparatus is shown in figure 

2.12. The assembled high-pressure cryo-cooling apparatus is enclosed in a room to 

provide additional shielding to the operator in the event of an unexpected pressure-

release. The apparatus is operated remotely from an adjacent room.

A protein crystal is pressurized with helium gas and is then cooled to 77 K, locking in 

collective pressure-induced structural changes [3, 4]. Following pressure release, the 

protein molecules composing the crystal will retain many of the collective changes of 

the pressurized state, on the condition that the crystal’s temperature remains well 

below its glass transition temperature [3, 12, 116].
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procedure. Adapted from Kim et al. [3].



2.6 Locating Objects with Sub-wavelength Precision

Given that the expected perturbations to protein structure induced by pressure are 

typically on the order of 0.1 to 1.0 Å it is important to address how precisely  these 

structural deformations may be detected. What is the limit of detectability  for small 

structural motions in proteins? How does one reliably  and verifiably  visualize 

structural changes to a protein molecule on the order of 0.1 Å when one only  has 

imaging resolution, through X-Ray crystallography of 1.0 to 2.0 Angstroms? To 

address this, an optical analogy is in useful. 
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Figure 2.11:  Photograph of high pressure cryo-cooling apparatus safety  enclosure 

prior to painting. From the left: Chae Un Kim, Marianne Hromalik, Yi-

Fan Chen, Buz Barstow. Photograph by Nozomi Ando.
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Figure 2.12:  Photograph of high-pressure cryo-cooling apparatus after full assembly.
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Figure 2.13:  Precision possible in determining the center of two closely separated 

Airy patterns in the presence of random noise. See section 2.6.

A: Fitting an Airy Pattern to Noisy Data

B: Sum of Two Airy Patterns at Different Separations

C: Error on Peak Separation for Different Signal to Noise Ratios
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In an optical microscopy system, a point source is imaged as an Airy pattern. The 

width of this Airy pattern is determined by the numerical aperture of the imaging 

system, and by the wavelength of light used to detect it. It  is commonly accepted that 

the smallest feature that can be resolved by an imaging system, given a perfect set  of 

optics, has a size of approximately half of the wavelength of light used to image it 

[118]. However, if one carefully measures the intensity  distribution of an object 

imaged by  an optical system, one can numerically fit an Airy pattern to this, and 

determine the center of the Airy pattern. Given sufficient signal to noise, one can 

determine the center of the Airy pattern and the position of the object with sub-

wavelength precision.

The effect of noise on the precision of the measurement of the center of an Airy 

pattern was explored using a Monte Carlo simulation. The results of this simulation 

are shown in figure 2.13. Figure 2.13A shows an Airy  pattern with simulated Gaussian 

noise. The standard deviation of the noise is 1/5th of the height of the Airy pattern: 

giving a signal to noise ratio (I/σ) of 5.0. Three Airy patterns have been overlaid on 

the simulated noisy Airy  pattern, each with a slightly  different center: one centered at x 

= 0.0, the second at x = -0.02 and the third at x = 0.02. To the eye, it  is difficult  to 

determine which of these patterns bests fits the simulated noisy  data. However, with a 

least squares fitting algorithm, it is easy  to distinguish, even though the difference in 

position of these patterns is very much smaller than the width of the Airy pattern (the 

distance from first minimum to first minimum is 1.0 in the unit system used in this 

simulation). 
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Figure 2.13B shows the several double Airy  patterns, formed by  the sum of two Airy 

patterns, with decreasing separations between their peaks. As the individual Airy 

patterns move closer together it appears increasingly difficult to separate the two 

peaks, at least to the eye, even without noise. However, given knowledge of the 

number of individual Airy patterns forming the summed pattern, a numerical fitting 

algorithm can accurately separate the two peaks.

A library of ten thousand simulated noisy double Airy  patterns was generated with 

random Gaussian noise with a specified signal to noise level and separation. Each 

simulated pattern in this library was fitted to a clean double Airy  pattern, and the 

separation of the peaks was calculated. The difference between this separation, and the 

actual separation was calculated. The standard deviation of these differences was 

calculated, and used to represent the error on the calculation of the separation. The 

results of this simulation are shown in figure 2.13C.

The results shown in figure 2.13C indicate that with signal to noise ratios greater than 

1.0, the separation of the peaks can accurately be resolved to distances much lower 

than the peak width. For a signal to noise of 1.0, the peak separation can be 

determined for peak separations greater than ≈ 0.25 times the peak width. The results 

of this simulation indicate, that at least in principle, given knowledge of how many 

scattering centers one is viewing, one can accurately  locate them relative to one 

another with a precision much smaller than the viewing wavelength. This sub-

wavelength scale location of objects has been demonstrated by several “super-

resolution” optical techniques [119-130] that are able to locate objects imaged with an 

optical microscopy system with nanometer resolution. 
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2.7 Macromolecular Structural Refinement

The analogy with optical systems presented in section 2.6 suggests that although the 

length scale associated with the diffraction resolution of protein crystals is very much 

longer than the expected pressure-induced structural deformations in the molecule, it 

may  be possible to reliably  detect these displacements. In order to understand the 

ability  of X-ray crystallography to discern small structural changes in protein 

structures, especially given data of only limited resolution; an introduction to the 

process of structural refinement is helpful. This short introduction follows the 

convention of Prince and Boggs [131].

The purpose of refinement is to improve the quality  of an atomic model of a molecule 

by adjusting the model parameters so as to minimize the difference between the 

observed X-ray structure factors and the structure factors calculated from the model. 

In addition, refinement often draws upon libraries of bond lengths and angles in order 

to improve the model. A refinement procedure that attempts to constrain bond lengths 

and angles to library  values is known as a restrained refinement, while one that draws 

only upon diffraction data is known as an unrestrained refinement.

Historically, protein structure refinement has proceeded by  the minimization of a least 

squares residual function. This approach is highly suitable for small molecule 

crystallography, where the number of diffraction spots is small, and the maximum 

resolution of the X-ray diffraction data is high. However, least squares refinement is 

less successful for protein diffraction datasets that contain many diffraction peaks yet 

display  a low maximum resolution. A more successful residual, the log-likelihood 

residual, is now implemented in several crystallographic refinement packages, 

including REFMAC5 [107], used in this thesis. However, much of the discussion of 

61



precision in macromolecular X-ray crystallography is rooted in least squares 

refinement, and so a discussion is appropriate. 

The goal of refinement is to find a vector of model parameters, x, containing the 

atomic coordinates, B-factors and occupancies of the atoms composing the protein 

molecule. The number of model parameters ranges from 5 per atom in the case of an 

isotropic B-factor model, to 13 in the case of an anisotropic B-factor model. As a 

protein molecule is often composed of thousands of atoms, the total number of model 

parameters, p, may be in excess of 10,000. 

The calculated model parameters, x, should produce a set  of calculated diffraction 

amplitudes and phases, 

� 

M x( ) , that most closely matches the observed diffraction 

amplitudes and possibly phases, y. Each observed diffraction data point is associated 

with a weight, wi, that  is inversely  proportional to its likely precision. The most 

commonly used residual in least squares refinement is the L2 norm [132]:

 

� 

L2 x( ) = wi yi −Mi x( )[ ]2
i=1

n

∑ . (2.4)

The best set of model parameters, 

� 

ˆ x , that most accurately  reflect the real molecule, 

will minimize L2 with respect to each model parameter: xj. These partial derivatives 

form a set of equations often called the normal equations:

 

� 

∂L2 x( )
∂x j

= −2 wi yi −Mi x( )[ ]∂Mi x( )
∂x ji=1

n

∑ = 0 . (2.5)
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In the vicinity of the minimum, where ∂L2 ∂x j = 0 , the calculated structure factors, 

� 

Mi x( ) , may be approximated as

 

� 

Mi x( ) ≈ bi + Aij x j
j=1

p

∑ , (2.6)

where the Aij are the elements of a matrix A of rank 

� 

n × p . n is the total number of 

observations and p is the total number of parameters in the model. The bi are the 

elements of a vector b of length n. In matrix form

 

� 

M x( ) ≈ b+Ax . (2.7)

In matrix form, the residual, L2, may be written as

 

� 

L2 = y −b( ) −Ax[ ]TW y −b( ) −Ax[ ] , (2.8)

Where W is a matrix whose diagonal elements are equal to the set of weights wi

 Wij =
wi i = j
0 i ≠ j

⎧
⎨
⎪

⎩⎪
. (2.9)

In this notation, the normal equations may be written as

 

� 

ATWAx =ATW y −b( ). (2.10)
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In the vicinity of the minimum where ∂L2 ∂x j = 0 , 

 Mi x( ) ≈ Mi xc( )+ ∂Mi

∂x j x=xc

x - xc( ) j
j=1

p

∑ . (2.11)

Thus, 

 Aij =
∂Mi x( )
∂x j x=xc

. (2.12)

The solution to this normal equations, the set of model parameters, 

� 

ˆ x , that minimizes 

the residual L2 , is

 x̂ = ATWA( )−1ATW y − b( ) . (2.13)

In the case of the solution of the structure of protein molecule, in which there are 

many thousands of model parameters, p, and many  tens of thousands of observations, 

n, the computation of the matrix H = ATWA( )−1 ATW , of size p × n , and of the 

inverse of ATWA , of size p × p , are too computationally  costly to perform. Inversion 

of a square ( p × p ) matrix typically requires a number of computational operations 

proportional to p3 . The best-fit model parameters, x̂ , are found by iterative numerical 

procedures that minimize the L2 residual while avoiding explicit computation of H 

and its inverse, usually requiring a number of operations proportional to p2  or np2 . 

As p, the number of observations is typically larger than n, sometimes by an order of 

magnitude, these operations show considerable time savings [131]. 

In order to add constraints to the refinement process, an additional term is added to the 

least squares residual L2 . This additional term is either an energy-based term, that 
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adds an energetic penalty to non-stereochemically  correct positions of atoms, or a 

structure dictionary based penalty term [132]. 

Cruickshank [133] demonstrated that the coordinate uncertainty on a restrained bond 

length, l, could be estimated by  summing the inverses of the uncertainties on the 

length calculated by diffraction data alone and the uncertainty  of the library length of 

the bond: 

 
1

σ res
2 l( ) =

1
σ diff
2 l( ) +

1
σ geom
2 l( ) . (2.14)

In the case where the diffraction component of the uncertainty on the length l is large, 

the uncertainty on restrained length will asymptote to the uncertainty on the library 

value [133].

More modern refinement algorithms, including REFMAC5 [107], use the maximum 

likelihood method. The maximum likelihood method is often highly successful with 

low resolution X-ray diffraction data where the number of observations is only  slightly 

higher than, or often less than the number of model parameters. The maximum 

likelihood method attempts to find the set of model parameters with the maximum 

probability  or likelihood given a corresponding set of observations. The maximum-

likelihood method functions by calculating the joint probability, 

� 

P Fobs;Fcalc( ) , of all 

calculated structure factors given the corresponding observed structure factors. 

 P Fobs;Fcalc( ) = P Fobs, i;Fcalc, i( )
i=1

n

∏ . (2.15)
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As probability  is always equal to or less than 1.0, maximizing the probability  is 

equivalent to minimizing its negative logarithm;

 − log P Fobs;Fcalc( )( ) = − log P Fobs, i;Fcalc, i( )( )
i=1

n

∑ . (2.16)

2.8 Estimation of Errors on Protein Atomic Models

2.8.1 Model Parameter Uncertainty Estimate by Least Squares Matrix Inversion

The most complete picture of the errors in a protein atomic model offers an estimation 

of the uncertainty on each model parameter. However, this error estimation method 

requires considerable computation, and thus, even at the time of writing is not 

regularly performed.

At the end of the refinement the model parameters, x, have converged upon a final 

value, xc . The normal equations can be applied to the converged model to determine 

an estimate of the error on each parameter. The true value of each model parameter, 

� 

ˆ x i, will vary from the modeled value by a small amount, ei :

 

� 

ˆ x = xc + e. (2.17)

The normal equations (equation 2.10) can be used to assess the value of the model 

error vector e. At the end of the refinement procedure, the normal equations will be 

approximately satisfied:

 

� 

A T WAˆ x ≈ A T W y −b( ) . (2.18)
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Assuming that 

� 

ˆ x  contains a small error e;

 

� 

ATWA xc + e( ) =ATW y −b( ) , (2.19)

 

� 

ATWA xc + e( ) =ATW y −M xc( ) +Axc( ) . (2.20)

Thus, the error, e, on the refined model parameters, xc , may be estimated as

 

� 

e = ATWA( )−1ATW y −M xc( )( ) . (2.21)

By explicitly inverting the matrix 

� 

ATWA it  is possible to find estimates for the 

uncertainty on all parameters in the model. However, inverting such a large matrix, of 

size 

� 

p × p is computationally intensive. At the time of writing, crystallographic 

refinement programs do not regularly perform this operation. 

Tickle et al. [134] performed full-matrix inversion calculations to estimate the 

coordinate uncertainty  in two eye-lens proteins:  γB-crystallin, refined at 1.49 Å and 

βB2-crystallin, refined at 2.1 Å. The estimated coordinate uncertainties for the main 

chain atoms ranged from 0.05 to 0.27 Å for γB-crystallin and from 0.05 to 0.35 Å for 

βB2-crystallin.

67



68

A: Deviation of !-carbon Positions

B: !-carbon B-Factors
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Figure 2.14:  A: Plot of distance deviations between positions of α-carbon atoms of 

ostensibly  identical TGF-β2 structures 1TFG and 1TGI. B: Plot of B-

factors of α-carbon atoms of 1TFG (dotted line) and 1TGI (solid line). 

Note that the B-factors correspond strongly  with the positional 

uncertainties of the α-carbon atoms shown above. Adapted from 

Daopin et al. [9].



2.8.2 Approximate Formulas for Coordinate Uncertainty

To address the computational difficulty of inverting the matrix 

� 

ATWA , several 

attempts have been made to produce approximate model parameter error formulas. 

Cruickshank tested these formulas against full matrix inversion estimates of errors on 

protein atomic models, and compared them with an experimental study of error in 

protein structures by Daopin et al. [9].

Daopin et al. [9] addressed the issue of accuracy and reproducibility in protein 

structures solved by X-ray crystallography by solving and comparing the structures of 

two ostensibly identical Transforming Growth Factor-β2 (TGF-β2) molecules 

expressed by Chinese Hamster Ovary  (CHO) cells and E. coli. The molecule 

expressed in CHO cells formed crystals that diffracted to 1.8 Å, while the molecule 

expressed in E. coli formed crystals that  diffracted to 1.95 Å. Daopin et al. [9] found 

that the structures of these two ostensibly  identical molecules matched extremely well, 

showing deviations for the most part only at the sub –angstrom level.  The deviation 

between α-carbon atom positions for most of the protein was at the 0.1 Å, with a 

smaller fraction at the 0.25 Å level, while some apparently disordered regions showed 

deviations at the 0.5 to 1.0 Å level. The deviation between α-carbon atom positions for 

each of the residues in the two structures of TGF-β2 is shown in figure 2.14A. 

Daopin et al. [9] found that the magnitude of the deviation between atoms in the two 

ostensibly  identical structures correlated with the B-factor of the atom. The B-factor is 

defined as

 

� 

B = 8π u2  (2.22)
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For a B-factor of 80 Å2, the root  mean square (rms) amplitude of the motion u2  of 

the atom is 1.01 Å, for a B-factor of 40 Å2, the rms amplitude is 0.71 Å and for 20 Å2, 

the rms amplitude is 0.5 Å. These distances are comparable to the lengths of bonds 

found in protein molecules. The length of a C-N bond is typically ≈ 1.32 to 1.46 Å 

[135], a C-C bond is typically  ≈ 1.44 Å [135] and a C-O bond is typically ≈ 1.24 Å 

[136]. Additionally, the scattering power of an atom reduces exponentially  with 

increasing B-factor (

� 

exp −2B sin θ( ) λ( )2( ) ). Thus, it is reasonable to expect that the 

precision with which an atom may be located reduces with increasing B-factor.

A plot of the B-factors of the α-carbon atoms of the two structures of TGF-β2 are 

shown in figure 2.14B. Cruickshank provided a qualitative explanation for this 

dependence of positional uncertainty  upon B-factor. The Debye-Waller B-factor 

expresses the root mean square amplitude of the displacement in the position of an 

atom. In small molecule crystallography, the B-factor is often small, and can be 

attributed solely to thermal motion of the atom. However, in protein molecules, the B-

factor may be large, and is sometimes attributed to conformational heterogeneity  in the 

protein sample. For instance, in a protein molecule, it may be possible for an atom or 

an entire residue to assume two or more distinct conformations. Due to the resolution 

limit of the X-ray diffraction from a crystal of this protein it  may not be easy to 

separate these two conformations, and this conformational heterogeneity  may be 

modeled as a large B-factor. 
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Figure 2.15:  Positional uncertainty of C, N and O atoms in TGF-β2 structures versus 

B-factors. Trend lines were computed from Cruickshank’s positional 

error estimate formula (equation 2.23). Adapted from Daopin et al. [9].
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Cruickshank’s first positional precision formula [133, 137] related the positional error 

of an atom to its B-factor through a Fourier map approach. Cruickshank [133] 

described the formula qualitatively as

 

� 

σ x( ) = σ slope( ) atomic peak curvature( ) . (2.23)

Atoms that have a low positional spread will have a tightly  constrained electron 

density  with a high curvature, giving a low positional error. Conversely, atoms that 

have a wide positional spread will have a low electron density peak curvature and a 

high error in their position.

The 

� 

σ slope( )  term is identical for all atoms in the molecule, while the curvature term 

varies according to the atom type. Both terms are summed over all observations, obs, 

in the diffraction dataset: 

 σ slope( ) = h2 ΔF 2

obs
∑⎛⎝⎜

⎞
⎠⎟

1/2

, (2.24)

 

� 

atomic peak curvature = h2

obs
∑ f i sin θ( ) λ( )exp −Bsin2 θ( ) λ2( ) m 2{ }, (2.25)

 m = 1 Centric reflections
2 Acentric reflections

⎧
⎨
⎩

. (2.26)
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A: Variation of Uncertainty with R-Factor

B: Variation of Uncertainty with Number of Observations
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Figure 2.16:  Estimated average coordinate uncertainty for C, N and O atoms in 

protein structures. A: Variation of coordinate uncertainty with 

maximum resolution for several different R-factors. The observation 

parameter number, n, was 15,000, and model parameter number was 

8,000. B: Variation of coordinate uncertainty  versus maximum 

resolution for several different  observation - parameter (n - p) numbers. 

R-factor was 0.16.



Centric reflections are those for which I h,k,l( ) = I −h,−k,−l( )  due to the symmetry 

of the crystal. Daopin et al. [9] concluded that the approximate Cruickshank formula 

produced an adequate estimate of the uncertainty on the position of atoms in the TGF-

β2 molecule. Figure 2.15 shows the estimated uncertainty  on the position of carbon, 

nitrogen and oxygen atoms in the TGF-β2 structure versus B-factor, and the expected 

uncertainty predicted by the Cruickshank formula shown in equations 2.24 to 2.26. 

The plots in figure 2.15 indicate that atoms with B-factors lower than 40 Å2 can be 

located with sub-angstrom precision.

Cruickshank developed two additional formulas to produce an overall estimate for the 

coordinate uncertainty  in a protein atomic model. By approximating the solution of the 

equation 2.21, Cruickshank estimated the uncertainty on an atomic coordinate for a 

single atom in a protein structure derived by unrestrained refinement [133]: 

 σ xi( ) = k Ni p( )1/2 g Bi( ) g Bavg( )( )C−1/3Rdmin . (2.27)

In this equation, k is ≈ 1.0, Bi is the B-factor of the atom under consideration and Bavg 

is the average B-factor of the fully occupied sites in the atomic model. C is the 

fractional completeness of the dataset to the resolution dmin. 

Sheldrick [133] noted that Ni may be approximated as

 Ni = Z j
# 2 Zi

# 2

j
∑ , (2.28)

where 

� 

Z j
#  is the scattering factor of the atom at sinθ λ = 0.3 Å-1 . 
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The function g is an empirical function of the form

 

� 

g B( ) = a1 + a2B + a3B
2 . (2.29)

However, the coefficients a1, a2 and a3 appear to vary between structures [133], 

limiting the applicability of equation 2.27. 

However, from equation 2.27, Cruickshank was able to derive an approximate formula 

for the average atomic coordinate uncertainty  in an unrestrained atomic model that 

does not rely upon the use of empirical coefficients: 

 

� 

σ x,Bavg( ) =1.0 Ni n − p( )( )1/ 2C−1/ 3Rdmin . (2.30)

To estimate the uncertainty on the coordinates of C, N and O atoms, Ni may be taken 

as the number of fully occupied atomic sites. For heavy atoms, Ni may be calculated 

from equation 2.28.

Cruickshank’s average, diffraction component only coordinate uncertainty  formula 

predicts that the uncertainty on the position of an atom varies with the number of 

atomic sites in the molecule, the difference between the number of observations, n and 

the number of model parameters p, the completeness of the dataset C, and the 

maximum resolution of the dataset dmin. 
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In the case of low-resolution structures where n – p, is negative, Cruickshank proposed 

an alternative formula based upon the Rfree factor [138],

 σ x,Bavg( ) = 1.0 Ni nobs( )1/2C−1/3Rfreedmin . (2.31)

Cruickshank [133] also noted that the error in position, rather than error in a single 

coordinate (x, y or z), could be estimated by multiplying the error formulas by

� 

3.

 σ r,Bavg( ) = 3σ x,Bavg( ) . (2.32)

Plots of the behavior of the coordinate uncertainty formulas (equations 2.30 and 2.31) 

are shown in figure 2.16. It is interesting to note that the approximate coordinate error 

formulas do not contain an explicit dependence on the average B-factor. However, the 

B-factor does implicitly  enter into the formulas through the R-factor of the atomic 

model. The R-factor of a protein atomic model may be reduced by  increased structural 

heterogeneity and diminished maximum diffraction resolution associated with an 

increased B-factor. Additionally, the average coordinate uncertainty formulas of 

equations 2.30 and 2.31 contain a term for the completeness, C, of the diffraction 

dataset and a term for the difference between the number of observations, n, in the 

dataset and the number of parameters, p, in the model derived from the dataset. These 

terms are however, linked, as a reduction in the total number of observations will 

result in a reduction in the completeness of the dataset. However, the relationship 

between C and n – p is complicated, making the inclusion of the two terms 

appropriate. Variation of the C term alone had negligible effect on the predicted 

coordinate uncertainty, and so was left at 100% in all of the examples shown.
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All of the examples shown in figure 2.16 assume a protein with 2000 fully occupied 

sites, approximately the number in the Citrine molecule studied in this thesis. 

Additionally, it was assumed that each atom had 4 associated parameters, 3 

coordinates and 1 B-factor, giving a model with 8,000 parameters. 

Figure 2.16A shows the estimated coordinate uncertainty  versus maximum resolution 

for several different R-factors, ranging from 10% to 20%. The total number of 

observations was assumed to be 25,0000, typical of Citrine datasets. At a maximum 

resolution of 2 Å, the coordinate uncertainty ranges from ≈ 0.07 Å at R = 10% to ≈ 

0.14 Å at R = 20%. 

Figure 2.16B shows the estimated coordinate uncertainty  versus maximum resolution 

for dataset  with different numbers of observation – parameter numbers, n - p, ranging 

from 90,000 to 1,000. The variation of n - p produces a large range of coordinate 

uncertainties at a maximum resolution of 2 Å. For n - p = 90,000, the coordinate 

uncertainty of the resulting model is predicted to be less than 0.05 Å. For n - p of 

1,000, the coordinate uncertainty is predicted to be ≈ 0.45 Å.

These results indicate that  even with a maximum diffraction resolution of 2 Å, a high 

degree of atomic model coordinate precision is possible, even without the use of 

library constraints. However, the precision of the model is highly  dependent upon the 

number of independent observations in the diffraction dataset  used to derive the 

model.
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2.8.3 Estimation of Coordinate Uncertainty due to Refinement Procedure

Urayama et al. [4] attempted to quantify the coordinate uncertainty in the structure of 

sperm whale myoglobin due to differences in macromolecular refinement procedures. 

Urayama et al. [4] compared two atomic models of sperm whale myoglobin at room 

temperature and pressure that were derived from the same X-ray diffraction dataset, 

but were refined by different procedures. These two models showed a room mean 

square deviation in extended main chain atomic positions of 0.095 Å.  Urayama et al. 

[4] concluded that the smallest pressure-induced deformation that could be 

ambiguously identified in sperm whale myoglobin was approximately 0.1 Å.

2.8.4 Conclusions

Several studies have been conducted of the uncertainty on the atomic coordinates of 

protein atomic models derived by  X-ray  crystallography. These studies all indicate that 

for reasonably well ordered atoms, the uncertainty on the coordinates of the atom is 

well below 1 Å, even when the resolution of the diffraction dataset used to derive the 

model is well above 1 Å. Intuitively, it is reasonable to expect that  fluctuations in the 

position of an atom due to thermal vibrations or conformational heterogeneity will 

reduce the precision with which it may be located. Studies by Cruickshank and Daopin 

et al. [9] support this intuition. Similarly, atoms with higher atomic numbers, and 

consequently higher X-ray scattering powers, may be more precisely located than 

those with lower scattering powers. The most important determinant of precision in a 

protein atomic model appears to be the ratio of X-ray diffraction observations to 

model parameters. The use of constraints in the refinement of an atomic model can 

significantly reduce the uncertainty on bond lengths and some bond angles in the 

protein atomic model. However, large numbers of distances in a protein molecule are 

unconstrained, and must be determined purely by diffraction data. 
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These results suggest that given X-ray diffraction data with a maximum resolution of 

2.0 Å, it is possible, to identify  sub-angstrom structural perturbations in a protein 

molecule, given sufficient observations. With this in mind, chapter 3 examines a 

protein system where the structure and function of the protein are highly linked, and 

can be affected by structural changes on the sub-angstrom level. 
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CHAPTER 3

INTRODUCTION TO CITRINE

3.1 Selection of Citrine

To systematically investigate the correlation between protein function and small 

structural deformations on the order of 0.1 Å, we sought a model protein that 

contained an easily  probed reporter group, that formed high-quality  crystals suitable 

for X-ray diffraction and was known to display  pressure sensitive behavior. Citrine 

[1], a member of the Yellow Fluorescent Protein (YFP) [52] family of recombinant 

proteins derived from the Green Fluorescent Protein (GFP) expressed by the jellyfish 

Aequorea victoria [2], satisfied these criteria. 

Citrine is an extremely bright, intrinsically fluorescent protein whose atomic structure 

is known to 2.2 Å resolution at room temperature [1]. The room temperature, room 

pressure Citrine atomic structure by Griesbeck et al. [1] was derived from an X-ray 

diffraction dataset of approximately 12,200 reflections, has a crystallographic R-factor 

of 0.164 (Protein Data Bank (PDB) accession code 1HUY) and contains 

approximately 2000 non-hydrogen atoms. Cruickshank’s average coordinate 

uncertainty formula (equation 2.30) suggests that it  may be possible to identify 

structural deformations as small as 0.25 Å in a model of this quality  of Citrine at  high 

pressure with 8,000 parameters. 

Verkhusha et al. [53] observed that the fluorescence peak of EYFP (Enhanced YFP), a 

close relative of Citrine, shifts towards the red by approximately 4 nm as the 

hydrostatic pressure applied to it is increased from atmospheric (0.1 MPa) to 300 MPa 

at room temperature. Citrine displays a similar peak shift of approximately 1 nm per 

100 MPa in several buffering solutions. High pressure, room temperature, solution 

82



spectroscopy  on Citrine is discussed in section 3.3. The shift of the peak of Citrine’s 

fluorescence spectrum is shown in figure 3.8. 

It is appropriate at  this time to note that the purpose of the experiments reported in this 

thesis is not to understand a peak shift in the fluorescence emission from jellyfish. 

Firstly, no wild-type organism known to exist expresses the Yellow Fluorescent 

Protein. Secondly, the pressures required to shift the fluorescence peak of Citrine are 

much higher than those encountered by the Aequorea jellyfish on its deepest dive to 

approximately 200 meters below sea level [139]. The fluorescence peak of Citrine 

noticeably changes at pressures exceeding 100 MPa, equal to the pressure at the 

deepest point on the ocean floor, at the bottom of the Marianas Trench, 1100 meters 

below sea level. The pressure at 200 meters is in contrast only 20 MPa, insufficient  to 

noticeably perturb the fluorescence peak of Citrine.

The purpose of these experiments is to understand the structural basis of the pressure 

sensitivity of protein function, to provide deeper understanding of the protein 

structure-function relationship at the sub-Ångstrom level, to highlight problems and 

opportunities in the engineering of protein molecules, and possibly to suggest  means 

to engineer and optimize protein molecules to perform novel tasks. 
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Figure 3.1:  Scattered light from the Aequorea victoria jellyfish. This scattered light 

is often confused for fluorescence light. Photograph courtesy of Dr 

Steven Haddock (Monterey Bay Aquarium, Moss Landing, CA).



3.2 Citrine’s Family Background

Citrine is a member of a large family  of proteins derived from the wild-type (wt) 

Green Fluorescent Protein (GFP) (wtGFP) that is naturally expressed in the Pacific 

Northwestern hydromedusan jellyfish Aequorea victoria [2]. The role of GFP in the 

Aequorea jellyfish is to convert, with a very  high quantum efficiency, blue light 

emitted by a photochemical reaction catalyzed by the protein aequorin into green light. 

A common misconception is that the Aequorea jellyfish constantly emits light from 

large portions of its body. An image of the Aequorea jellyfish in figure 3.1 shows light 

scattered from the jellyfish that is often mistaken for fluorescence light. Fluorescence 

light is emitted in bursts from small nodules containing aequorin and GFP located 

around the skirt of the jellyfish. These nodules are shown in figure 3.2. 

The biological function of fluorescence from the Aequorea jellyfish remains unclear. 

However, the Aequorea jellyfish is known to emit  light when touched, leading some to 

suggest that its purpose may be to act as a “burglar alarm”, to ward off predators, or 

possibly to attract even larger predators to consume the would-be consumer of the 

jellyfish [140]. The reason why GFP converts blue light to green light remains even 

more unclear. The evolutionary  advantage of emitting green light over blue light, with 

the resulting small, but significant loss of energy, and the reason why the aequorin 

enzyme in the jellyfish has not evolved to emit green light without the GFP accessory 

protein remain even greater mysteries [2]. 
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Figure 3.2:  Aequorin and GFP containing nodules around the skirt of the Aequorea 

victoria jellyfish. Photograph courtesy  of Dr Steven Haddock 

(Monterey Bay Aquarium, Moss Landing, CA). 



In the past 15 years, GFP has acquired a completely new role, separate from its 

original biological role. GFP is unusual amongst fluorescent proteins in that  it requires 

no prosthetic groups or accessory proteins to become fluorescent. After translation, 

GFP folds from an unmodified polypeptide chain into its native conformation, a β-

barrel, without assistance. The GFP scaffold catalyzes the formation of the light 

absorbing and emitting element in protein, the chromophore, within 90 minutes to 4 

hours of folding [141-143]. 

Another important feature of GFP is that  it will acquire its native conformation even 

with additional residues added to either its N or C terminus. Thus, the Aequorea 

fluorescent proteins may be fused to other proteins and still acquire their native 

conformation and fluoresce. More importantly, the gene for GFP, once cloned [144] 

from the Aequorea jellyfish, may be added to the start or end of genes encoding other 

proteins. The new protein complex may be expressed in eukaryotic and prokaryotic 

organisms [145-147], providing a visible marker for gene expression. This highly 

desirable and, at the time of its discovery, unique feature of the Green Fluorescent 

Protein stimulated the creation of mutants of GFP that fluoresce at both longer and 

shorter wavelengths.  

The β-barrel scaffold of all Aequorea fluorescent proteins is an extremely  stable 

molecular structure [2]. The start of the polypeptide chain of the Aequorea fluorescent 

proteins folds into a α-helix that lies at the top of the β-barrel. The polypeptide then 

forms a central 3-10 helix that is wrapped by 11 β-sheets that form the β-barrel. A 

cartoon representation of the Citrine molecule and its chromophore are shown in 

figure 3.3. A stereo view of the Citrine molecule is shown in figure 3.4. 
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The β-barrel structure is highly resistant to denaturation and protease action [2]. A 

temperature of 78 ˚C is required for a sample of wild-type GFP to lose 50% of its 

fluorescence [148, 149]. Although changes in pH do affect the spectral properties of 

GFP, there are no reports of denaturation due to excessively acidic or basic conditions. 

The β-barrel structure is also highly stable under pressure [148]. Wild-type GFP 

retains its secondary structure up to pressures of 1400 MPa [148]. GFP is highly 

resistant to chemical denaturants [150]. The β-barrel even resists mechanical attempts 

to pull it apart [151-154].

The light center, or chromophore, of the wild-type GFP auto-catalytically  forms from 

three amino acid residues, Serine 65, Tyrosine 66 and Glycine 67. These three residues 

lie at  the midpoint of the 3-10 helix that runs through the center of the β-barrel. In this 

thesis, the structure formed by these three residues is referred to as the main 

chromophore. This nomenclature, to my knowledge is not used elsewhere, but is used 

here to add clarity. The β-barrel forms a cavity that surrounds the main chromophore, 

sequestering it from the exterior solvent. The solvent protection offered by  the β-barrel 

prevents non-radiative energy emission by the main chromophore and permits it to 

optically fluoresce. 
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Figure 3.3:  The Citrine molecule and Citrine’s chromophore.



Niwa et al. [155] noted that  certain analogs of the Aequorea fluorescent protein 

chromophore (isolated from the  β-barrel) absorb light yet are non-fluorescent at  room 

temperature. However, when these chromophore analogs and their solvent are frozen 

to cryogenic temperatures, they become fluorescent [155]. Additionally, computer 

simulations on the fluorescence of the Aequorea fluorescent protein chromophore 

indicate that in a vacuum environment the chromophore is fluorescent, while in a 

liquid environment, where the chromophore is subject  to collisions with the solvent 

molecules, the excited state of the molecule de-excites by  quenching rather than by 

radiative decay [156].
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Figure 3.4:  Stereo view of the Citrine molecule at a pressure of 0.1 MPa at a 

temperature of 100 K. Structure taken from Barstow et al. [5] (PDB 

accession code 3DPW).



3.3 Mutants of the Green Fluorescent Protein

The primary  determinant  of the spectral properties of the Aequorea fluorescent 

proteins is the chemical composition of the main chromophore. Mutation of the three 

residues that compose the main chromophore, particularly the central residue Tyr66, 

alters the spectral properties of the protein. The chromophores of several important 

classes of Aequorea fluorescent protein mutants are shown in figure 3.5.
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 Figure 3.5:  Aequorea fluorescent protein chromophores. Adapted from Tsien [2].



The spectral properties of the main chromophore are also tuned by  the cavity 

surrounding it. The main chromophore is embedded in an intricate hydrogen bonding 

network that runs throughout the cavity in the center of the Aequorea fluorescent 

proteins [2, 52]. Mutation of residues on the walls of this cavity  can affect the spectral 

properties of the Aequorea fluorescent protein by perturbing the β-barrel cavity 

hydrogen bonding network. The effects of these mutations are often more subtle than 

mutation to the main chromophore [2]. The hydrogen bonding network present in the 

Citrine chromophore cavity is shown in figure 3.6.

An undesirable feature of the wild-type GFP is that it  may be excited at two 

wavelengths, corresponding to two ionization states of its chromophore. The anionic 

and neutral ionization states of the wild-type GFP chromophore are shown in figure 

3.5A. The neutral form of the chromophore, where the phenolic oxygen is protonated, 
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absorbs at  397 nm, while the anionic form absorbs at ≈ 470 nm. Upon absorbing a 

photon, the neutral form of the chromophore becomes de-protonated [157]. The 

neutral and anionic forms of the chromophore thus both fluoresce at the same 

wavelength. 

An important mutant of GFP is the S65T mutant [158]. The S65T mutant of GFP, 

where the first residue of the chromophore, serine 65 is replaced by a threonine, alters 

the hydrogen bonding network in the chromophore cavity, favoring de-protonation of 

the main chromophore tyrosine [159]. Therefore only one ionization state of the S65T 

mutant chromophore is present under physiological conditions, and only  one band is 

present in the absorption spectrum of this mutant  [2]. Many mutants of the Green 

Fluorescent Protein contain the S65T mutation [2]. Some mutants, including Citrine, 

contain the S65G mutation that results in similar spectral behavior. 

Blue-shifted mutants of GFP are achieved by mutation of the central residue of the 

main chromophore. Y66W results in a cyan mutant (CFP), while Y66F results in a 

blue mutant (BFP). The chromophores of these mutants are shown in figure 3.5. The 

emission and absorption maxima are shown in table 3.1. 
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Red-shifted mutants of GFP proved harder to fabricate. The X-ray crystal structure of 

the S65T mutant of GFP [160] and of the wild-type GFP [159, 161] provided 

information that permitted the rational design of a red-shifted mutant of GFP, called 

the Yellow Fluorescent Protein (YFP). In the Yellow Fluorescent Protein, residue 

threonine 203 is mutated to a tyrosine. Residue 203 lies on the wall of the β-barrel and 

its side-chain projects into the chromophore cavity. The T203Y mutation stacks a 

phenol ring, the side chain of tyrosine 203, 3.4 Å above the main chromophore found 

in all Aequorea fluorescent proteins. The weak interaction of the main chromophore 

and the tyrosine 203 phenol is speculated to be responsible for shifting the 

fluorescence peak of Citrine from green, at 511 nm to yellow at 527 nm [52]. A 

diagram of Citrine and its chromophore is shown in figure 3.3. The emission and 

excitation spectra of the Citrine molecule under ambient conditions in solution are 

shown in figure 3.7. It  is notable that absorption and emission spectra of Citrine, and 

the other YFP molecules are approximately symmetrical about their midpoint. 
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Fluorescent Protein Absorption,  λex (nm) Emission, λem (nm) Section in Figure 3.5

Wild-type Green 397, 470 504 A

Enhanced Green 479 511 B

Yellow 510 526 C

Cyan 435 490 D

Blue 380 445 E

Table 3.1:  Absorption and emission maxima for major classes of Aequorea 

fluorescent proteins. Adapted from Tsien [2].



One can imagine that a small, pressure induced deformation of the β-barrel scaffold of 

Citrine could perturb the relative positions of the main part of the chromophore (the 

main chromophore) and tyrosine 203, changing their weak interaction, and alter the 

fluorescence properties of Citrine. We sought to demonstrate a direct link between the 

structure of Citrine at high pressure and a change in its fluorescence spectrum. 

The gene encoding Citrine was provided to us by Professor Roger Tsien (University of 

California at San Diego) in a pRSETB plasmid (Invitrogen, Carlsbad, CA, USA). 
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Figure 3.7:  Citrine’s excitation and emission spectra at room temperature and 

pressure. For the excitation spectrum, emission was monitored at 529 

nm while scanning the excitation beam from 350 to 600 nm. For the 

emission spectrum, the excitation was fixed at 473 nm. All 

measurements were made with a Chronos spectrophotometer (ISS, 

Urbana-Champaign, IL, USA).
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3.4 Solution Spectroscopy of Citrine at High Pressure and Room Temperature

To confirm the observation by Verkhusha et al. [53] that the fluorescence peak of 

EYFP shifts to the red upon pressurization at room temperature, and of the shift of the 

fluorescence spectrum of Citrine under high pressure perturbation, we pressurized 

Citrine in a high-pressure optical cell (ISS, Champaign, IL, USA), and measured its 

fluorescence spectrum using a spectrophotometer (Chronos, ISS, Champaign, IL, 

USA). The peak of the fluorescence spectrum was fitted to a polynomial function 

using the Python module SCIPY (http://www.scipy.org). The polynomial function was 

analytically differentiated to find the peak. 
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Citrine displays a linear shift of approximately 1 nm per 100 MPa of its fluorescence 

peak up to the maximum attainable pressure in the high-pressure spectroscopy system 

of 400 MPa. This shift was observed in three different buffering solutions: 50 mM 

HEPES at pH 7.5, 50 mM Tris at pH 7.5 and 50 mM sodium acetate and 50 mM 

ammonium acetate, 5% w/v PEG 3350 at pH 5.0. 

Many buffers display shifts in their buffering pH with pressure, as high pressure often 

favors the association or dissociation of protons [162]. The buffering properties of Tris 

and acetate are known to be largely insensitive to pressure [162-164]. 

Citrine displayed an almost identical shift in fluorescence peak in HEPES at  pH 7.5, 

Tris at pH 7.5 and acetate at pH 5.0. This result implies that the fluorescence peak shift 

is mechanical in nature, and a direct result of the deformation by  pressure of the 

protein’s structure, rather than an effect that is mediated by the protein’s solvent. Plots 

of Citrine’s fluorescence peak versus applied hydrostatic pressure at room temperature 

are shown in figure 3.8. It was very important to clarify the issue of the independence 

of Citrine’s red shift from solvent conditions, so that the fluorescence peak shift could 

be understood simply  in terms of structural changes of the protein, a quantity that is 

measurable by  X-ray  crystallography, rather than in terms of changes of the 

electrostatic environment of Citrine due to changes of pH of the solvent. 
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3.5 Understanding Citrine’s Fluorescence Mechanism

To understand the physical basis of the fluorescence peak shift of the Citrine molecule 

under high pressure, it is useful to understand the physical basis of Citrine’s 

fluorescence spectrum. 

Luminescence is the emission of electromagnetic radiation from an electronically 

excited state of a fluorophore or chromophore. Luminescence is typically divided into 

two categories: fluorescence and phosphorescence. Fluorescence typically occurs over 

timescales ranging from 10-9 to 10-6 seconds, while phosphorescence occurs over 

much longer timescales; typically  10-4 to 102 seconds. This discussion will focus on 

fluorescence. 

Fluorescent fluorophores are typically aromatic molecules. A common feature of many 

fluorophores, including the Yellow Fluorescent Protein family chromophore, is that the 

absorption and emission spectra are symmetrical about their midpoint.

Fluorescence is typically initiated by electronic excitation of the fluorophore due to 

the absorption of electromagnetic radiation. The absorption of photons by the 

fluorophore occurs by the excitation of a single electron from the ground state of the 

chromophore to a higher lying unoccupied electronic state. Luminescence is 

characterized by the spin state of the electrons present in the ground and excited states 

of the fluorophore. The spins of the two electrons present in the ground and excited 

states of fluorescent fluorophores are anti-parallel, giving a net spin of 0. The excited 

state is thus a singlet state. Thus, Pauli repulsion by the electron remaining in the 

ground state does not impede the rapid return of the photo-excited electron, resulting 

in the short lifetime of the excited state, and fluorescence emission. 
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In contrast, in phosphorescent fluorophores, the excited state is a triplet state. Thus, 

Pauli repulsion impedes the rapid return of the excited electron to the ground state, 

resulting the long lifetime of phosphorescence. 

As the ground and excited states involved in fluorescence emission are singlet  states 

they  are often labeled as S states. The ground state is labeled as S0, while the excited 

states are labeled from S1 onwards. The S0 state is typically  the highest  occupied 

molecular orbital (HOMO) of the fluorophore, while the S1 state is the lowest 

unoccupied molecular orbital (LUMO) of the fluorophore. Each of the electronic 

states contain a number of vibrational sub-levels that are due to the vibration of the 

nuclei of the fluorophore. 
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Electronic excitation of the fluorophore does not significantly  perturb the nuclear 

geometry, and thus does not significantly perturb the spacing of the vibrational energy 

levels. Thus, the vibrational sub-structure of each electronic level is largely identical. 

A Jablonski diagram [165], showing the S0, S1 and S2 states of a generalized 

fluorophore is shown in figure 3.9. In the absence of illumination, the fluorophore is 

typically found in the ground vibrational state of the ground electronic state. The 

absorption peak of the fluorophore is typically  close in energy to the band-gap 

between the S0 and S1 states. This band-gap often corresponds to optical or ultra-violet 

wavelengths. 

Light absorption occurs between the S0 state and the excited states over very short 

timescales, typically 10-15 seconds. This short timescale of excitation does not permit 

motion of the nuclei of the fluorophore during the excitation process. Thus, the 

relative probabilities of excitation from the ground state to one of the excited states is 

determined by the spatial overlap of the ground state and excited state wavefunctions. 

These relative probabilities determine the shape of the absorption spectrum. 

Following light absorption, the fluorophore typically relaxes into the lowest 

vibrational state of the first  excited electronic state, S1. This internal conversion 

process typically occurs in approximately 10-12 seconds, much shorter than the 

fluorescence lifetime of 10-9 to 10-6 seconds. Thus, internal conversion is typically 

complete before fluorescence emission occurs. 
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As with absorption, the timescale of fluorescence emission is approximately 10-15 

seconds. Thus, during the process of fluorescence emission the fluorophore nuclei can 

be considered stationary. Again, the relative probability of radiative decay from the 

lowest vibrational state of S1 to each of the vibrational states of S0 is determined by 

the overlap of the wave functions of the ground state and excited state. As the 

vibrational energy levels of S0 have the same spacing as those of S1, the fluorescence 

spectrum is often the mirror image of the absorption spectrum. 

Following radiative decay to one of the ground state vibrational levels, the fluorophore 

will typically  relax to the ground vibrational state of the S0 state. The loss of energy  by 

internal conversion, and by vibrational relaxation accounts for reduction in energy of 

emitted photons when compared to absorbed photons. 

To illustrate this picture of fluorescence, the absorption and emission spectra of 

anthracene, and the corresponding Jablonski diagram of the energy levels of 

anthracene are shown in figure 3.10. The similarity of the absorption and emission 

spectra of Citrine suggest that this simple framework may also be applied to Citrine as 

well. 

3.6 Computer Simulations of Citrine’s Fluorescence Spectrum Under High 

Pressure

3.6.1 Introduction to Extended Hückel Theory

To gain an intuitive understanding of the spectral shift of Citrine’s fluorescence peak 

at high-pressure, a simple computer model of Citrine’s energy levels was constructed 

using the Extended Hückel Theory (EHT) codes CACAO [166] and YAEHMOP (http://

yaehmop.sourceforge.net). CACAO and YAEHMOP both perform identical calculations. 
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CACAO is known to suffer from a number of bugs but has superior graphical 

presentation abilities to YAEHMOP. Simulations were performed using both programs 

and the results were compared. Identical results were obtained in all cases presented 

here.

Extended Hückel theory (EHT) is one of the simplest formulations for computing the 

quantum mechanical wave functions of molecules [167]. For a complete description of 

the theory, the reader should refer to the recent review of quantum chemical modeling 

techniques by Cramer [167]. 

The extended Hückel theory is used to calculate the quantum mechanical wave-

functions of an extended system, often known as molecular orbitals, from a linear 

combination of the valence orbitals of the atoms composing the system. Typically, the 

valence orbitals are the highest occupied electron wave-functions of an atom. Lower 

lying orbitals are assumed to be unaffected by, and uninvolved in chemical bonding. 

As extended Hückel theory neglects the effects of electron-electron interaction, it 

produces poor estimates of the absolute energies of molecular orbitals. However, the 

theory  is still widely used as given a correct molecular structure, the theory will often 

correctly  identify the general features of the orbitals of the molecule. This computation 

may be performed extremely rapidly, and thus, may  be used to rapidly explore 

perturbations to the structure of the molecule. The theory often correctly identifies 

trends in molecular properties given perturbations to the geometry of the molecule 

[168]. Additionally, extended Hückel provides an extremely intuitive framework in 

which to describe quantum mechanical basis of the properties of a molecule. 
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Following Cramer [167], the electronic wave function of a molecule containing N 

valence orbitals, 

� 

Ψ , may be written as a superposition of N Slater type atomic orbital 

wave-functions;

 

� 

Ψ = aiφi
i=1

N

∑ . (3.1)

EHT uses a basis set of Slater type s, p and d valence orbitals (YAEHMOP also adds f 

orbitals in later versions). The angular component of the Slater type orbitals is a 

spherical harmonic function, 

� 

Yl
m θ,ϕ( ) , defined by  the angular momentum quantum 

numbers l and m and the spherical angular coordinates 

� 

θ  and 

� 

ϕ . The radial 

component of the orbital is dependent upon the radial coordinate, r, the principal 

quantum number n, and is scaled by  an empirical coefficient ζ, tabulated by Slater 

[169];

 φi r,θ,ϕ;ζ ,n,l,m( ) = 2ζ[ ]n+1/2
2n( )!⎡⎣ ⎤⎦

1/2 r
n−1 exp −ζr( )Ylm θ,ϕ( ) . (3.2)

The variational principle may  be used to determine the energy levels, and wave 

functions of the molecule. The energy associated with the wave function of the 

molecule may be calculated using the Hamilton operator, H, 

 

� 

E = drΨ*HΨ
All space
∫ drΨ*Ψ

All space
∫ . (3.3)
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The energy  of the wave function may  be estimated by substituting the trial wave 

function from equation 3.1 into equation 3.3:

 E = dr aiφi
i=1

N

∑⎛⎝⎜
⎞
⎠⎟
H ajφ j

j=1

N

∑
⎛

⎝⎜
⎞

⎠⎟All space
∫ dr aiφi

i=1

N

∑⎛⎝⎜
⎞
⎠⎟

ajφ j
j=1

N

∑
⎛

⎝⎜
⎞

⎠⎟All space
∫ , (3.4)

 

� 

E = aia j drφiHφ j∫
i, j
∑ aia j drφiφ j∫

i, j
∑ . (3.5)

Defining a resonance integral matrix element

 

� 

Hij = drφiHφ j∫ , (3.6)

and an overlap integral matrix element

 

� 

Sij = drφiφ j∫ . (3.7)

Sij measures the spatial overlap between the atomic orbitals 

� 

φi  and 

� 

φ j . It is important 

to note that this integral is independent of the probability amplitudes associated with 

these orbitals, ai and aj, which will be calculated later. 

Thus,

 

� 

E = aia jHij
i, j
∑ aia jSij

i, j
∑ . (3.8)
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The energy E, may  be minimized with respect to the probability  amplitudes, ak , of the 

valence orbitals, in order to estimate the energy of the ground state of the molecule: 

 
∂E
∂ak

= 0 ∀k . (3.9)

Differentiating E with respect to ak  produces a set of N secular equations

 

� 

ai Hki − ESki( )
i=1

N

∑ = 0 ∀k , (3.10)

often written as a secular determinant

 

 

H11 − ES11  H1N − ES1N
  

HN1 − ESN1  HNN − ESNN
= 0 . (3.11)

The set of secular equations has N roots, corresponding to N energy  levels. The set of 

N energies may be substituted into equation 3.10 to solve for the set of probability 

amplitudes, aij , giving a set of N molecular orbitals

 

� 

ψ j = aijφi
i=1

N

∑ , (3.12)

each corresponding to one of the N energy levels. 

Each energy level is filled by  two electrons, up to the maximum number of valence 

electrons in the system. This allows identification of the highest occupied (HOMO) 

and lowest unoccupied molecular orbitals (LUMO) of the molecule.
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In order to calculate the energy levels of the molecule, the matrix elements of the 

secular determinant in equation 3.11 must be specified. In extended Hückel theory, the 

matrix elements are calculated by a set of simple approximations. 

The diagonal elements of the resonance integral matrix, 

� 

Hµµ , are approximated by  the 

valence state ionization potential of the electronic orbital in question. For example, for 

a hydrogen 1s orbital, H = -13.6 eV. The diagonal overlap integral matrix elements, 

� 

Sµµ  are equal to 1.0. 

The off-diagonal resonance integral matrix elements are approximated as

 Hµν =
1
2
Cµν Hµµ + Hνν( )Sµν , (3.13)

where 

� 

Cµν  is an adjustable parameter called the Hückel coefficient. 

� 

Cµν  is typically 

set to 1.75 for all matrix elements. 

� 

Hµµ  and 

� 

Hνν  are the ionization potentials for 

atomic orbitals µ and ν . 

The set of probability amplitudes for each energy  level, aij , may  be computed by 

substituting each energy Ei  into equation 3.10. 

A simple example of the extended Hückel theory is useful in acquiring an intuitive 

understanding of the theory. A system of two hydrogen 1s orbitals, the H2 molecule, is 

a suitably simple example. 
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The secular determinant for a two orbital system is;

 
H11 − ES11 H12 − ES12
H21 − ES21 H22 − ES22

= 0 . (3.14)

As the two orbitals are identical, the resonance integrals are identical and equal to H. 

For a hydrogen 1s orbital, H = -13.6 eV. Similarly, the overlap  integrals S12  and S21  

are both equal to S. S11 and S22  are both equal to 1.0. Thus,

 H − E CHS − ES
CHS − ES H − E

= 0 . (3.15)

This gives two non-degenerate roots for E,

 

� 

E1 = H −CHS( ) 1− S( ) , (3.16)

 

� 

E2 = H + CHS( ) 1+ S( ) . (3.17)

Giving an energy gap between the two levels of 

 

� 

ΔE =
2HS 1−C( )
1− S2

. (3.18)

The two corresponding probability amplitudes for this can be found by substituting the 

two values of E into equation 3.10. For E1, 

 

a1 = −a2
a1 = 1 2

a2 = −1 2

. (3.19)
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The corresponding amplitudes for E2,

 

� 

a1 = a2 =1 2 . (3.20)

A plot of E1 and E2 with increasing orbital overlap is shown in figure 3.11. It is 

interesting to note neither E1 nor E2 display minima in this plot, highlighting that the 

extended Hückel Hamiltonian does not include a nuclear repulsion term. However, the 

plot does highlight an important feature of the theory, generally true, that the overlap 

of orbitals of opposite phase tends to raise the energy of, or destabilize, a molecular 

orbital, demonstrated by the increasing energy  of molecular orbital 1 with increasing 

overlap between the two constituent atomic orbitals. 
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Figure 3.11:  Energy of molecular orbitals of H2 molecule computed by  Extended 

Hückel Theory. Note that molecular orbital composed of an out of 

phase atomic orbital combination increases in energy with increasing 

overlap, while the in-phase orbital combination decreases in energy.



Alternatively, in phase atomic orbital overlap tends to stabilize molecular orbitals, 

highlighted by the decreasing energy of molecular orbital 2 with the increasing 

overlap of atomic orbitals 1 and 2. 

3.6.2 Justification for Use of Extended Hückel Theory

As the Citrine fluorescence lifetime is very short, ≈ 3.6 ns [170] and its absorption and 

emission spectra are symmetrical about their overlap  point, it is reasonable to believe 

that the simplified model of fluorescence described in section 3.5 may reasonably 

describe the fluorescence mechanism of Citrine. 

X-ray crystallographic structures of protein molecules under high pressure [4, 24, 

26-29] indicate pressures up to a few hundred MPa do not significantly alter covalent 

bond lengths in protein molecules. Additionally, experiments by Isaacs et al. [39] 

suggest pressures in the same range will also not appreciably  alter the vibrational 

frequencies of the atoms in the Citrine chromophore. Thus, it is not unreasonable to 

believe that the energy spacing of the vibrational energy levels of the Citrine 

chromophore will be unaffected by the application of pressures up to a few hundred 

MPa. For these reasons, it is plausible that the fluorescence peak shift of the Citrine 

molecule under high pressure may be due to the variation of the energy band-gap 

between the ground state of the chromophore, the highest occupied molecular orbital 

(HOMO), and the first excited state of the chromophore: the lowest unoccupied 

molecular orbital (LUMO).
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Although the extended Hückel method is known to perform poorly at computing 

absolute energy levels, it  does allow the identification of trends in the variation of 

energy levels as a function of the geometry of the system [168]. This may allow an 

extended Hückel to be used to semi-quantitatively explain the fluorescence shift of the 

Citrine molecule under high pressure in terms of the deformation of the Citrine 

chromophore structure by high pressure. 

3.6.3 Results of Extended Hückel Simulations of Fluorescence Peak Shift of Citrine

Experiments with an idealized chromophore system give intuitive insight  into the 

structural nature of the chromophore deformation, and the quantum mechanical 

mechanism of the fluorescence peak shift of the Citrine molecule under pressure. 

An idealized chromophore system composed of a truncated main chromophore and the 

phenol ring of tyrosine 203 was constructed. The initial configuration of this system 

placed the center of the tyrosine 203 phenol 3.5 Å directly  above the center of the 

main chromophore phenol. The main chromophore and tyrosine 203 phenol ring were 

coplanar. Hydrogen atoms were added to correct the valence of the input structure. 
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Figure 3.12:  Truncated chromophore structure input to Extended Hückel model of 

Citrine’s fluorescence transition.



A diagram of this structure is shown in figure 3.12. The structure was placed in the 

anionic state, thought to be the predominant protonation state of Citrine, where the 

phenolic oxygen is de-protonated [1, 2], with a charge of -e. 

The fluorescence of the chromophore is modeled as an electronic transition between 

the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular 

orbital (LUMO) of the truncated chromophore structure. 

The energy difference between the HOMO and LUMO in the initial configuration was 

calculated by CACAO and YAEHMOP to be 1.933 eV, corresponding to an emission 

wavelength of 643 nm. The experimentally measured Citrine emission peak 

wavelength at room pressure is 527 nm, corresponding to an energy of 2.359 eV. 

Two deformation motions of the truncated Citrine chromophore were investigated 

with the CACAO code. The first motion was a vertical squeeze. In this simulation the 

center of the phenol ring of the chromophore and the center of the phenol ring of 

tyrosine 203 were placed directly above one another. The vertical separation of the 

two rings was varied and the molecular orbitals of the combined system were 

computed at each step. The second motion that was investigated was a horizontal 

slide. In this motion the vertical separation of the two rings was fixed at 3.5 Å and the 

center of the phenol of tyrosine 203 was moved horizontally away from the center of 

the phenol of the main chromophore and the molecular orbitals were again computed 

at each step. Diagrams showing these two deformation motions are shown as insets in 

figures 3.13A and 3.13B. 
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Figure 3.13:  Results of Extended Hückel Theory  (EHT) calculation of HOMO-

LUMO energy gap of Citrine. A: Variation of energy gap  with 

horizontal slide deformation. Vertical separation is fixed at 3.5 Å. B: 

Variation of energy gap with vertical squeeze deformation. Horizontal 

separation is fixed at 0.0 Å. 
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The variation of the band-gap energy between the highest occupied molecular orbital 

(HOMO) and the lowest unoccupied molecular orbital (LUMO) were extracted from 

the simulations. The shift of the band-gap  from the initial orientation band-gap is 

plotted versus vertical separation in figure 3.13A and plotted versus horizontal 

separation in figure 3.13B.

The horizontal slide motion produces a small, gentle linear relationship between the 

energy band-gap between the chromophore HOMO and LUMO and the horizontal 

separation of the two phenol rings. The band-gap  energy gently  increases with 

increasing horizontal separation of the two rings, corresponding to a slight blue-shift 

in the fluorescence peak. This gentle linear shift  resembles the linear relationship seen 

between applied pressure and wavelength red-shift seen in experiment and shown in 

figure 3.8. 

In the horizontal slide deformation case, a horizontal motion of 1.9 Å from the initial 

configuration produces an increase in the HOMO-LUMO band-gap  energy  of 0.022 

eV. This corresponds to a blue-shift of the fluorescence peak of 7.2 nm for an initial 

band-gap  of 1.933 eV. This small wavelength shift is of the same magnitude as those 

observed in high-pressure experiments on Citrine. The corresponding deformation of 

1.9 Å is large, but not unreasonably large when compared with previously observed 

protein structural deformations under high pressure. A deformation motion of 1.0 Å is 

certainly possible under high pressure, and corresponds to an energy  band-gap  shift of 

0.009 eV, or a 3 nm blue-shift. 

By contrast, the vertical squeeze deformation motion produces a band-gap  energy 

shifts that are almost an order of magnitude larger than those seen in the horizontal 
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slide deformation motion, with a far less linear relationship between deformation and 

the HOMO-LUMO band-gap  energy. These computer simulation results suggest that it 

is more likely that the predominant deformation motion in the Citrine molecule under 

high pressure is a horizontal slide of the main chromophore and tyrosine 203 phenol. 

It is worth noting that when calculating wavelength shifts from these calculations, if 

one replaces the initial band-gap energy  calculated by simulation with that measured 

by experiment one produces very reasonable wavelength shift estimates. For instance, 

in the case of the 1.9 Å horizontal slide motion shown in figure 3.13B, if one replaces 

the initial configuration energy of 1.933 eV with the experimentally measured value of 

2.359 eV, and then calculates the emission wavelength shift, one arrives at a blue-shift 

of 4.9 nm. We speculate that although the Extended Hückel model may incorrectly 

calculate the baseline band-gap energy  for this system, it may  actually  correctly 

calculate the perturbation on the main chromophore by the phenol of tyrosine 203. 

3.6.4 Mechanism of Fluorescence Peak Shift

The extended Hückel model also provides intuitive insight into the mechanism of the 

narrowing of the energy gap between the HOMO and the LUMO. The energy gap 

between the HOMO and the LUMO is narrowed as the tyrosine ring and the 

chromophore move closer together due to the destabilization, or raising in energy, of 

the HOMO. In contrast, the energy of the LUMO remains unperturbed. 

Molecular orbital diagrams of the HOMO and LUMO were generated with CACAO and 

are shown in figure 3.14. Sections of atomic orbitals with negative probability 

amplitudes are colored in red, while those with positive amplitudes are colored blue.
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The most striking feature of these models is that while the HOMO takes significant 

contributions from the atomic orbitals on the phenol of tyrosine 203, the LUMO takes 

a much smaller contribution. The HOMO is significantly destabilized by  the overlap 

of oppositely phased p-orbitals that project from tyrosine 203’s phenol ring, raising its 

energy, while the energy of the LUMO remains unperturbed. This suggests that  if one 

were to alter the orientation of the two rings, one would alter the overlap of the p-

orbitals on the two rings, alter the energy of the HOMO, and thus alter the energy gap 

between it and the LUMO, shifting the fluorescence peak. 
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Figure 3.14:  Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied 

Molecular Orbital (LUMO) of truncated Citrine chromophore 

calculated and visualized with CACAO. Note that the LUMO takes 

almost no atomic orbital contribution from the perturbing tyrosine ring. 

Thus, the energy of the LUMO is insensitive to the relative orientation 

of the main chromophore and tyrosine 203.



A schematic of the narrowing of the band-gap energy  between the HOMO and LUMO 

of the chromophore is shown in figure 3.15. 

Chapter 4 discusses the solution of the structure of the Citrine molecule under high 

pressure using a novel high-pressure cryo-cooling technique [3], and the effect of 

these high-pressure cryo-cooling conditions on the fluorescence peak. 

117

LUMO

HOMO

!E - "E

!E

"E

# + "#

#

Green Fluorescent 

Protein Chromophore

Yellow Fluorescent 

Protein Chromophore

Figure 3.15:  Perturbation of Highest Occupied Molecular Orbital (HOMO) in 

Citrine chromophore by interaction of tyrosine 203 phenol. 



CHAPTER 4

THE DEFORMATION OF THE CITRINE CHROMOPHORE AND A SPECTRAL PEAK SHIFT 

UNDER HIGH PRESSURE

4.1 Introduction

In chapter 3, it was established that the peak of the fluorescence spectrum of the 

Citrine molecule shifts to the red under the application of high hydrostatic pressure at 

room temperature. A simple quantum mechanical model of the Citrine fluorescence 

spectrum suggests that the fluorescence peak shift may be due to a sub-angstrom 

relative sliding motion of the main chromophore and the perturbing tyrosine 203 

phenol that compose the fluorescent chromophore of the Citrine molecule.

Section 4.2 of this chapter details the growth and purification of Citrine. Section 4.3 

describes the construction of a safety enclosure for the high-pressure cryocooling 

apparatus. Section 4.4 describes a micro-spectrophotometer that was used to measure 

the optical properties of Citrine under high-pressure cryocooling conditions. Section 

4.5 of this chapter describes the effects of high pressure on the fluorescence spectrum 

of Citrine1. Section 4.6 describes the crystallization of Citrine. Section 4.7 describes 

the collection of X-ray diffraction data from crystals of Citrine. 

To establish a structural basis for the fluorescence peak shift of Citrine under high 

pressure, the pressurized structure of the Citrine molecule was solved over a range of 

pressures from 50 to 500 MPa using the high-pressure cryo-cooling technique 

developed by Kim et al. [3] and introduced in chapter 2. These pressurized structures 
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were analyzed to find deformations to the chromophore of the molecule, and to find 

deformations to the entire molecule that may actuate any deformation seen at the 

chromophore. The deformations to the chromophore are discussed in section 4.8 of 

this chapter. Deformations to the global structure of Citrine will be discussed in 

chapter 5. 

The high-pressure cryo-cooling technique [3, 4] greatly eases high-pressure X-ray 

crystallography when compared to room temperature high-pressure X-ray 

crystallography. However, sub-angstrom structural shifts of atoms in protein 

molecules not only occur in response to high pressure, but also occur due to thermal 

contraction in response to cooling to cryogenic temperatures. Cooling of the protein 

crystal under high pressure complicates the analysis of the protein structure, as the 

deformations locked into the protein molecules composing the crystal by  the high-

pressure cryo-cooling procedure are a combination of the effects of elevated pressure 

and of lowered temperature. The result of this combination is that the high-pressure 

cryo-cooled state is structurally  distinct from both the high pressure, room 

temperature, and low temperature, ambient pressure structures, and is likely to also 

have distinct functional properties. 

The structure of the Citrine molecule at 400 MPa and room temperature is unlikely  to 

be identical to the structure of a Citrine molecule that has been high pressure cryo-

cooled at  400 MPa. Thus, the fluorescence properties of Citrine under high pressure at 

room temperature, and under high-pressure cryo-cooling are likely  to differ. For this 

reason, the high-pressure cryo-cooling technique cannot be immediately  used to 

structurally  resolve the cause of pressure-induced modifications to protein function at 

room temperature. 
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Attempts to solve the structure of Citrine under high pressure at room temperature 

using the beryllium high-pressure X-ray crystallographic cell [23, 24, 28, 29, 69] that 

was introduced in chapter 2 were unsuccessful. We believe this failure to be due to two 

factors. Firstly, Citrine crystals at high pressure at room temperature appear prone to 

dissolution and cracking [171]. Secondly, the small size of Citrine crystals results in 

X-ray diffraction that is weak when compared to the X-ray  scattering background 

from the walls of the high-pressure beryllium cell. 

However, with high-pressure cryo-cooling, direct correlations can be drawn between 

the high-pressure cryo-cooled structure, and the fluorescence properties of high-

pressure cryo-cooled samples. With the detailed structure-function relationship that 

can be derived from high-pressure cryo-cooling experiments, it may be possible to 

explain the room temperature high-pressure effects on the fluorescence spectrum of 

Citrine. 

This chapter first details the growth and purification of recombinant Citrine molecules 

and the growth of high-quality crystals of Citrine, suitable for diffraction analysis. The 

chapter then turns to the design of a micro-spectrophotometer suitable for measuring 

the fluorescence spectra of high-pressure cryocooled Citrine samples, and the impact 

of high-pressure cryocooling on the fluorescence spectrum of Citrine. The chapter 

concludes with details of X-ray data collection from high-pressure cryocooled Citrine 

crystals, refinement of the high-pressure cryocooled Citrine structures, verification of 

the existence of pressure-induced deformations to the Citrine structure, and analysis of 

these deformations. 
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4.2 Growth and Purification of Citrine

4.2.1 Modification of Citrine Plasmid

The gene encoding Citrine was provided by Professor Roger Tsien (University of 

California, San Diego) in a pRSETB plasmid (Invitrogen, Carlsbad, CA, USA). 

Although small quantities of Citrine were expressed in E. coli using the pRSETB 

vector, a few milligrams, this vector has a number of limitations that make it 

undesirable for large-scale expression of Citrine. 

As this project involves the use of recombinant DNA molecules and genetically 

altered microorganisms, it  was registered with the Cornell University Institutional 

Biosafety Committee (IBC) under Memorandum of Understanding and Agreement 

(MUA) number 15613. 

Manipulation of the Citrine gene and large-scale culture of Citrine producing bacteria 

was carried out at the Cornell University Protein Facility in the S.T. Olin Laboratory 

with the help of Dr Cynthia Kinsland. 

The pRSETB plasmid has three major limitations. Firstly, the antibiotic resistance 

scheme used in the pRSETB plasmid, while adequate, would benefit from 

improvement. In addition to the gene for Citrine, the pRSETB plasmid encodes 

ampicillin resistance. E. coli containing the pRSETB plasmid is cultured in the 

presence of an antibiotic, ampicillin, to suppress the growth of bacteria that do not 

contain the plasmid, in an attempt to ensure that all bacteria in the culture are capable 

of producing the desired protein: Citrine. The ampicillin resistance mechanism 

operates by extracellular secretion of β-lactamase [172]. β-lactamase degrades the β-

lactam ring of ampicillin; neutralizing it. Thus, it is possible for the bacteria 
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possessing the plasmid to produce sufficient enzyme to neutralize all of the ampicillin 

in the culture vessel, allowing opportunistic bacteria that do not contain the plasmid to 

flourish. These non-protein producing bacteria can overwhelm the population of 

protein-producing bacteria and substantially  reduce the yield of protein produced by 

the culture. 

To address this problem of antibiotic neutralization and opportunistic growth, the 

ampicillin resistance gene was substituted for a kanamycin resistance gene [172, 173]. 

Kanamycin interferes with the 30S subunit of the bacterial ribosome, disrupting 

protein synthesis. The kanamycin resistance gene encodes an enzyme that degrades 

kanamycin and is confined to the interior of the bacterium. Thus, in order to survive, 

each bacterium must contain the gene that encodes for kanamycin resistance, and the 

Citrine gene that is attached to it. 

The second shortcoming of the pRSETB plasmid is a disappointing protein yield. The 

protein yield from the pRSETB vector was only  approximately 10 milligrams of 

Citrine per liter of bacterial culture. Typically, one might expect several tens of 

milligrams of over-expressed protein per liter of bacterial culture. 

Finally, and most importantly, the affinity tag scheme used in the pRSETB plasmid is 

undesirably expensive. The Citrine protein encoded by the pRSETB gene contains an 

affinity tag, composed of six histidine residues, that is used to selectively  bind the 

protein to a nickel column, facilitating rapid protein purification. Before the protein is 

crystallized, the affinity tag must be removed so that it does not interfere with 

crystallization contacts. The affinity tag is attached to the protein by a short  amino 

acid sequence: the cut sequence. The cut  sequence is recognized by a protease that 
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cleaves the polypeptide chain at a point in the cut sequence, separating the tag from 

the desired protein. Unfortunately, the cut  sequence encoded in the pRSETB Citrine 

can only be recognized and cleaved by the proprietary enzyme EKMax (Invitrogen, 

Carlsbad, CA, USA)

EKMax proved prohibitively expensive, and required an operating temperature of ≈ 37 

˚C, that promoted the aggregation of Citrine. This aggregation reduced the final yield 

of Citrine from 10 milligrams per liter of culture to less than 1 mg. Given the losses of 

protein that are incurred in solvent exchange and filtration, this quantity  of protein was 

insufficient for the crystal growth condition screening necessary to produce crystals of 

sufficient quality for the highly  detailed X-Ray structure determination experiments 

presented in this thesis. 

Thus, it was decided to design a new vector to address the shortcomings of the 

pRSETB plasmid, based around the Novagen (A division of Merck KGaA, Darmstadt, 

Germany) pET-24 vector. The new vector would incorporate a Citrine gene with a 

poly-histidine affinity tag, but with a TEV protease cut site rather than an EKMax cut 

site, and would encode kanamycin rather than ampicillin resistance. The vector would 

also contain a modified promoter sequence that would yield a higher level of protein 

expression than pRSETB. 

TEV (Tobacco Etch Virus) protease is produced at the Protein Facility, and as such is 

available at  low cost and in large quantities. Unfortunately, the use of a TEV cut site 

requires that the cleaved Citrine have an additional glycine residue at its N-terminus. 

Following crystallization of this protein, it  was realized that this additional N-terminal 

glycine may promote the formation of a plate-like form of Citrine crystals. However, 
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the dramatically improved yield of Citrine from this new growth method more than 

compensates for any  reduction in crystallizability. A photograph of the plate-like form 

of Citrine crystals is shown in figure 4.1.

The Citrine gene was extracted from the pRSETB plasmid by amplification using the 

Polymerase Chain Reaction (PCR). By  using PCR primers that were complementary 

to the desired sequence of Citrine, rather than the actual sequence, this step  was also 

used to modify the start of the Citrine gene to incorporate the new protease cut site and 

add BamHI and NcoI restriction enzyme cut sites to facilitate ligation of the gene into 

the pET-24 vector. The modified Citrine gene was amplified and then incorporated 
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Figure 4.1:  Plate-like Citrine crystals grown in 5% PEG 3350, 50 mM sodium 

acetate, 50 mM ammonium acetate, pH 5.0.



into a temporary  plasmid with a TOPO Cloning Kit (Invitrogen, Carlsbad, CA, USA) 

and amplified using MACH1 strain E. coli. After growth of the cell culture, the cells 

were lysed and the plasmid was purified from the cellular debris using a plasmid 

extraction kit  (Plasmid Kit, Qiagen. Qiagen sells a variety  of plasmid extraction kits 

suitable for different purification volumes. Qiagen is a multi-national corporation 

headquartered in Hilden, Germany; Germantown, MD, USA and Venlo, The 

Netherlands). Incorporation of the Citrine gene into the plasmid was verified by 

BamHI and NcoI restriction enzyme digest of the plasmid, followed by agarose gel 

electrophoresis. The digested gene was extracted from the agarose gel with a gel 

extraction kit (Qiagen). 

The extracted Citrine gene was then ligated into a pET-24 vector. The pET-24 vector 

was then used to transform non-mutating 

� 

TOP10 ′ F  E. coli, and grown in small-scale 

culture to amplify  the plasmid. The pET-24 vector was extracted and sequenced to 

confirm that the Citrine gene had not been mutated. The pET-24 vector was then 

purified from the 

� 

TOP10 ′ F  strain, and was used to transform BL21 strain E. coli for 

large-scale production of Citrine. A small culture of BL21 carrying the Citrine gene 

was produced, and the cells were pelleted, mixed with glycerol and frozen at -80  ̊ C 

for later use. 

4.2.2 Over-expression of Citrine

Small quantities of cells were removed from the frozen BL21 cell cultures with a 

sterile toothpick and used to inoculate several 5 mL cultures of LB (Luria-Bertani) 

broth. These cultures were grown overnight at 37˚ C in LB broth with a kanamycin 

concentration of 100 mg/L. The following morning these cultures were each used to 
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inoculate a culture flask containing 2L of LB media with 100 mg/L kanamycin. In 

total, six flasks were inoculated, giving twelve liters of cell culture. 

The culture flasks were shaken in a rotary  shaker at 37 ˚C. The optical density (OD) of 

the cell culture was monitored every 30 minutes. When the cell culture had reached an 

optical density of 0.6, protein over-expression was induced by adding IPTG (Isopropyl 

β-D-1-thiogalactopyranoside; IPTG is a molecular mimic of allactose, a lactose 

metabolite that induces the lac operon. The promoter for the Citrine gene is IPTG-

inducible.) to a final concentration of 100 mM. Protein over-expression was allowed 

to proceed for 6 hours. The cell cultures were then transferred to 1L centrifuge tubes 

and spun at 14,000 × g for approximately 30 minutes to pellet the cells. The cell 

pellets were frozen in a -80 ˚C freezer for overnight storage. The following day, the 

cells were thawed and were resuspended in a high-salt alkaline lysis buffer (50 mM 

NaH2PO4, 300 mM  NaCl, 10 mM imidazole, pH 8.0, 0.22 µm filtered) with a hand-

held homogenizer. Each liter of culture produced a cell pellet of approximately 30 mL 

in volume. The cell pellet was very dense and had the consistency and feel of clay. 

Normally, cell pellets that have expressed non-colored proteins will have a beige, clay-

like color. However, the cell pellets containing over-expressed Citrine had a distinctive 

algal-green color. 

The resuspended cells were then lysed in a French Press style cell disruptor (Constant 

Systems, Low March, Daventry, Northants, United Kingdom). The lysate was then 

spun at 20,000  × g at 4 ˚C for approximately  30 minutes to pellet the cellular debris 

and separate it from the cytosolic proteins, including Citrine. The supernatant had the 

consistency, and because of the presence of Citrine, color of motor oil due to the 

presence of uncoiled genomic DNA that had been liberated from the lysed cells. The 
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uncoiled genomic DNA was precipitated from the supernatant by slowing stirring in 

polyethylenimine to a final concentration of 0.5% v/v. The supernatant volume at this 

step was several hundred milliliters.

After precipitation of the genomic DNA, the Citrine was purified by affinity 

chromatography  using an FPLC (Fast Protein Liquid Chromatography) apparatus 

(ÄKTA FPLC, GE Healthcare, Uppsala, Sweden) with a Nickel-NTA column (HisTrap 

HP, Catalog Number 17-5248-01, GE Healthcare, Uppsala, Sweden). Affinity 

chromatography often renders the protein 95% pure in a single step. 

Prior to use, the Nickel-NTA column was equilibrated with several column volumes (5 

mL) of lysis buffer. The supernatant was loaded onto the Ni-NTA column with a 

suction pump. As a precautionary measure, the flow through was collected. The 

protein concentration in the flow through was monitored by a UV absorption 

spectrophotometer incorporated into the exit tubing of the FPLC. Binding of the 

Citrine protein to the Ni-NTA column could be confirmed visually  due to its bright 

color.

Contaminants that were weakly bound to the column were removed by washing the 

column with a wash buffer with a low imidazole concentration (50 mM  NaH2PO4, 300 

mM NaCl, 20 mM imidazole, pH 8.0). The imidazole competes for binding sites in the 

Ni-NTA column, and will displace weakly  bound contaminants. The FPLC is capable 

of mixing the wash buffer and elution buffer with a much higher concentration of 

imidazole (50 mM NaH2PO4, 300 mM  NaCl, 250 mM imidazole, pH 8.0) in a user-

selected ratio to produce a solution with a variable imidazole concentration. The 

imidazole concentration passing through the Ni-NTA column was slowly  raised and 
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the protein elution from the column was simultaneously monitored to ensure complete 

removal of contaminants. Finally, the imidazole concentration was raised to ≈ 250 mM 

to elute the Citrine bound to the column. Fortunately, Citrine binds strongly to the 

column and is highly  colored, so it easy to verify  that the protein remains bound to the 

column during the wash process. 

After purification by affinity  chromatography, the poly-histidine affinity tag on the 

Citrine molecules was removed by TEV protease digest. The Citrine solution was 

dialyzed overnight into a TEV protease reaction buffer (50 mM Tris-HCl, 0.5 mM 

EDTA, 1mM DTT, pH 8.0) in dialysis tubing with a 10 kDa molecular weight cutoff 

(Snakeskin Dialysis Tubing, Catalog number 68100, Pierce Biotech, Rockford, IL, 

USA). Following overnight dialysis, the TEV protease was added to the dialysis 

tubing. Typically, the TEV concentration used is approximately 1/100th of the 

concentration of the protein to be digested. The cleavage reaction, or digestion, was 

allowed to proceed for approximately 24 hours at 4˚ C.

The cleaved Citrine was separated from the cleaved his-tags, TEV protease (which is 

itself his-tagged) and uncleaved Citrine passing it through a second Ni-NTA column. 

This step binds the uncleaved Citrine, his-tags and TEV protease to the column, while 

the cleaved Citrine flows through. As a final check, the cleaved Citrine was passed 

through a gel filtration column to ensure its purity, and was then filtered using a 

Whatman 0.2 µm Anotop 10 Plus syringe filter (Whatman PLC, Maidstone, Kent, 

United Kingdom) to remove any bacterial contamination.   

Following the final purification step the protein was concentrated to 20 mg/mL with a 

Pall centrifugal concentrator (Catalog number OD010C37, Pall Separation Systems, 
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East Hills, NY, USA), and exchanged into a storage buffer (50 mM  HEPES, pH 7.5). 

The protein concentration was verified by measuring the absorption of the protein at 

514 nm with a Nanodrop  ND-1000 absorption spectrophotometer (Nanodrop, 

Wilmington, DE, USA). The absorption coefficient of Citrine at  512 nm is ≈ 80,000 

M-1 cm-1 [170].

As Citrine does not cold denature, large aliquots of the protein may be slow frozen and 

thawed. 50 µL aliquots of Citrine solution were frozen at -70 ˚C for long term storage. 

Citrine appears to keep quite well at 4 ˚C for at least two years. The pET-24 vector 

yielded approximately 80 mg per liter of culture, giving approximately 1 gram of 

Citrine.

4.3 Redesign of High-Pressure Cryo-cooling Apparatus

4.3.1 Energy Stored in High-Pressure Cryocooling Apparatus

Prior to the collection of the final set of structural and spectroscopic data on Citrine 

under high-pressure cryocooling conditions, it was realized that the high-pressure 

cryocooling apparatus may present a safety hazard to its operator. A simple model of a 

worst-case scenario explosion inside the high-pressure cryocooling safety  enclosure 

was developed to assess the adequacy  of existing enclosure, and to specify the design 

of a new safety enclosure.

As helium is close in behavior to an ideal gas, the energy  released in an adiabatic 

expansion may be estimated with the ideal gas equation of state. The energy  released 

from the expansion of a gas, W, may be calculated by integrating the product of the 

pressure and volume change from the initial high pressure, P0 to a final ambient 

pressure, Pf
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 W = dV P
V0

Vf

∫ . (4.1)

For an adiabatic expansion of an ideal gas;

 

� 

PV γ = constant = k . (4.2)

Thus,

 

� 

PV γ = P0
γV0

γ , (4.3)

 

� 

P = P0
γV0

γV −γ . (4.4)

Thus,

 W = dV P0
γV0

γV −γ

V0

Vf

∫ , (4.5)

 

� 

W = 1
γ −1

P0V0 − P0V0Vf
−γ +1[ ] . (4.6)

V may be found by appealing to the constancy of 

� 

PV γ

 

� 

Vf
γ = P0V0

γPf
−1 . (4.7)

For an ideal gas γ = 5/3. The internal volume of the high-pressure cryocooling 

apparatus is ≈ 15 mL, and the maximum working pressure is either 200 or 400 MPa. 

The energy liberated, W, in an adiabatic expansion is 4500 J from 200 MPa and 9000 J 

from 400 MPa.
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For illustrative purposes, if these energies were directed into a single steel fragment 

with a volume of 1 cm3, and a mass of approximately 8 grams (the density  of steel is 

approximately 8 gram cm3) the corresponding velocities would be 1061 ms-1 for 200 

MPa and 1500 ms-1 for 400 MPa. 

These velocities, while high compared to the speed of sound in air (330 ms-1), are 

comparable to the velocity  of rifle bullets; (the mass of a bullet without its cartridge is 

≈ 5 g), so these velocities may be realistically taken as very high upper limits on the 

speed of ejecta from a ruptured high-pressure cryocooling system. If, on the other 

hand, all of the energy of the explosion, were channeled into the original high-pressure 

cryocooling system enclosure (often referred to as “Frankenstein”), with a mass of 

approximately 200 Kg, it would travel at a speed of 9.5 ms-1 (21.3 mph) for a working 

pressure of 400 MPa, and 6.7 ms-1 (15 mph) for a working pressure of 200 MPa. 

For comparison, the energy liberated by the rupture of a compressed gas cylinder was 

also calculated. Although the pressure inside a gas cylinder is lower: 4000 psi or 28 

MPa, the volume is much higher ≈ 100 L. The liberated energy is 4.2  × 106 J, 3 orders 

of magnitude higher than the energy stored in the high pressure cooling system.

The energy released by  a van der Waals (vdW) gas was also calculated numerically  for 

the case of helium. It was found that at  a starting pressure of 400 MPa, the energy 

liberated W = 8.16 × 103 J, slightly lower than the ideal gas case: 9 × 103 J. However, 

at 200 MPa, the liberated energy  is higher than the ideal gas case: W = 6.5 × 103 J 

versus 4.5 × 103 J. 
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4.3.2 Calculation of Penetration Depth of Projectiles

An empirical formula, proposed by Petry [174], was used to calculate the penetration 

depth of projectiles into infinitely thick steel and concrete barriers, given a projectile 

velocity, size and mass. The penetration depth d in feet, is approximated by

 d = K
m
A
log10 1+

v2

215000
⎛
⎝⎜

⎞
⎠⎟

 (4.8)

In this equation, the mass m, is entered in pounds, the maximum cross sectional area 

A, is entered in ft2, and the empirical constant K is entered in ft3 lb-1. For steel K varies 

between 0.26 × 10-3 and 0.4 × 10-3. For concrete, K = 8 × 10-3. In order to produce a 

reliable estimate of the penetration depth, it has been found that the barrier thickness 

must be at least 3 penetration depths. If this criterion is not adhered to, the penetration 

depth will be longer. The penetration depths into steel and concrete targets were 

calculated for projectiles traveling various velocities are shown in table 4.1.
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Barrier Material Projectile Velocity (ms-1) Penetration Depth (“) Minimum Barrier (“)

Steel 330 0.064 0.191

Steel 1275 0.151 0.452

Steel 1428 0.158 0.475

Concrete 330 1.272 3.816

Concrete 1275 3.01 9.03

Concrete 1428 3.163 9.488

Table 4.1: Calculated penetration depths and minimum barrier thicknesses of 

cubic, 1 cm3 steel projectiles. For steel, the penetration constant, K was 

taken at the maximum listed value 0.4 ×  10-3 ft3 lb-1. For concrete, K 

was taken to be 8 × 10-3 ft3 lb-1.



4.3.3 Effect of Explosive Wave on Shielding

In addition to projectiles ejected by  a rupture in the pressure system, another hazard 

comes from the expanding gas. Professor Arthur Ruoff proposed a calculation, based 

upon a model by Timoshenko [175], for the strain on the edges of a circular plate, 

clamped at  the edges, from a load applied to the center of the plate. Centrally loading 

the plate will produce a higher maximum stress, experienced at the edges of the plate, 

than uniformly  loading the plate, so this calculation can be considered an upper limit 

on the stress produced by  the expanding gas from a rupture of the high-pressure 

cryocooling apparatus. 

The energy released from the rupture from the pressure system is assumed to be 

deposited into the plate as strain energy. From Timoshenko [176], the strain energy, U 

deposited into a plate, by a point force F, causing a central deflection δ

 

� 

U = Fδ 2 . (4.9)

The central deflection of the plate, of radius a, with a flexural rigidity D

 

� 

δ = Fa2

32πD
. (4.10)

The flexural rigidity D, is defined by  Timoshenko in equation 74 of reference [175] as 

a function of the Young’s modulus E, Poisson ratio µ and thickness, h of the plate;

 

� 

D = Eh3

12 1− µ2( ) . (4.11)
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Thus, the force applied to the plate

 

� 

F = 4
a
2πDU . (4.12)

The maximum stress occurs at the clamped edges of the plate, and is given by 

Timoshenko in equation 106 of reference [175],

 

� 

s = 3F
2πh2

. (4.13)

As a function of the strain energy

 

� 

s = 6
ah2

2DU
π

. (4.14)

As the stress is inversely proportional to the radius of the circular plate, it is prudent to 

consider the stress on a circle that inscribes the smallest  rectangular plate on the high 

pressure cooling system. The smallest plate is the side plate, with a dimension of 26 × 

14 inches (0.66 × 0.36 m). This gives the radius of the smallest inscribed circle as 0.18 

m. The thickness of the steel shielding around the high pressure cooling system is 0.5 

inches, its Young's modulus, E  = 2 × 1011 Pa, and its Poisson ratio µ = 0.28.

The maximum stresses for this circular plate were calculated for four cases; where the 

liberated energy from a rupture at 200 and 400 MPa was projected onto a single plate, 

and where it was shared between the 6 faces of a cube. The results are tabulated in 

table 4.2. All of the maximum stresses listed in these scenarios exceed the elastic limit 

of hard steel, of 0.2 GPa, and that of more ductile 1020 steel, with an elastic limit of 

0.35 GPa. 
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However, while these calculations indicate that the applied force exceeds the elastic 

yield stress of the shielding plate, it was derived in the elastic limit, and so will not be 

an accurate predictor of the maximum stress on the plate. Another way to calculate the 

capacity of the plates to absorb energy is to consider the energy  absorption through 

plastic deformation. Examination of the stress-strain curve for steel indicates that the 

plastic deformation of steel can absorb considerably more energy  than the elastic 

deformation. At the elastic limit of 0.2 GPa, the strain of hard steel,  ε = 0.001, given 

its Young’s modulus, E = 200 GPa. 

The strain of ductile 1020 steel, with a higher elastic limit Y = 0.35 GPa is 0.00175, 

given that it has the same Young's modulus as hard steel. The energy stored by elastic 

deformation in a volume V, which for the smallest rectangular plate in the system is 14  

× 26 × 0.5 inch3 = 3.0 × 10-3 m3 is

 

� 

EElastic =YεV 2 , (4.15)
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Scenario Force on Plate (106 N) Maximum Stress (GPa)

400 MPa, vdW Gas, 1 Plate 0.97 2.87

400 MPa, vdW Gas, 6 Plates 0.4 1.17

200 MPa, vdW Gas, 1 Plate 0.86 2.56

200 MPa, vdW Gas, 6 Plates 0.35 1.04

Table 4.2:  Maximum stresses and forces exerted on a circular plate inscribing the 

smallest plate of the shielding surrounding the high-pressure 

cryocooling system by an explosive wave from a rupture at 200 and 

400 MPa, and scenarios where the energy is incident on only  one plate, 

or distributed amongst all 6 shielding plates. 



 

� 

EElastic. Hard = 298 J , (4.16)

 

� 

EElastic. 1020 = 913 J . (4.17)

However, the strain at failure of hard steel is 10 to 20 times the strain at the elastic 

limit, ε = 0.01 - 0.02, so the energy  absorbed by  plastic deformation can be much 

greater. The strain at failure of 1020 steel is even greater, ε ≈ 0.15 - 0.20. The energy 

absorbed can be estimated by integrating a rectangle under the stress-strain curve for 

steel, from the elastic strain to the ultimate strain, and capping the stress at the elastic 

stress. The area for this approximate integration is shown schematically in figure 4.2.

Thus, the energy absorbed by  plastic deformation of the plate under consideration, 

with an elastic limit, Y, and assuming a strain at rupture of 0.01 rather than 0.02, is;
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Figure 4.2: Stress-strain curve for steel showing integration area for estimate of 

energy absorption by plastic deformation.



 

� 

EPlastic =YεV , (4.18)

 

� 

EPlastic. Hard = 5965J , (4.19)

 

� 

EPlastic. 1020 = 156578J . (4.20)

For comparison, assuming that the ultimate strain of concrete is 0.001, and that its 

elastic yield stress is 2 MPa, the energy absorbing capacity of a 14 ×  26 inch2 × 1 ft 

concrete cube is only 143 J.  

4.3.4 Conclusions

These calculations highlighted a number of shortcomings in the design of the original 

safety  enclosure surrounding the high-pressure cryocooling apparatus. Firstly, the 

original safety  shield featured an open face on one side to allow high-pressure tubing 

to access the cryocooling apparatus from a nearby  high-pressure pump. This open face 

also allowed a string into the apparatus that was used to pull three magnets away from 

the high-pressure apparatus, allowing the samples to drop  from the top of the 

cryocooling apparatus to the bottom where they  would be frozen under high pressure. 

It was assumed that this arrangement was safe as the apparatus was isolated from the 

operator in a concrete-walled room. However, this arrangement would offer no 

protection to valuable equipment in the room such as the high-pressure pump, nor 

would it prevent acceleration of the enclosure by the escaping gas.

Additionally, these calculations indicate that the maximum stresses on the safety 

enclosure that would be experienced in a worst-case scenario explosion would occur at 

the edges of the faces of the enclosure. In the original safety enclosure design, the 
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angle brackets used to fix the walls together are very thin, and are attached to the 

heavy  shielding plates by  thin machine screws. Finally, the door to the high-pressure 

safety  enclosure through which the operator accesses the apparatus is hinged and is 

secured by  a thin latch. This door would almost certainly open in the event of a rupture 

of the high-pressure system. It was decided that the high-pressure cryocooling 

enclosure suffered from at least four serious deficiencies. A new design was 

constructed that addressed these deficiencies. 

Firstly, these calculations indicate that the concrete walls of the room are of sufficient 

thickness to prevent the penetration of a single steel object, of mass 8 grams, that 

receives all of the energy  stored inside the high pressure cooling system. However, it 

was decided that a new high-pressure cryocooling enclosure would attempt to prevent 

the release of any  debris from an internal explosion. For a working pressure of 400 

MPa, a minimum wall thickness of 0.475” (table 4.1) is required to prevent the escape 

of a single explosively propelled fragment. 

Similarly, calculations of the energy  absorbing capacity of ductile 1020 steel by plastic 

deformation indicate that a 0.5” wall thickness would be adequate to absorb the energy 

of a pressure wave incident on one of the faces of the enclosure. A schematic of the 

enclosure by Martin Novak is shown in figures 4.3 and 4.4. 

It was decided that the angle bracket used to fix the walls of the enclosure together 

should also be 0.5” thick. It was decided that it  would be imprudent to weld the faces 

of the apparatus together, as deficiencies in the weld joints on a single side may  result 

in the failure of that joint. 
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For this reason, it  was decided that nuts and bolts should be used to affix faces of the 

enclosure together, as a small amount of looseness in the screws would allow even 

redistribution of the strain due to an explosion across the edges of a face. From table 

4.2, the maximum force,Fmax , that will be experienced by a single plate would be 0.97 

× 106 N. This force would be distributed across N bolts, each with an area A. Thus, the 

stress on the bolts will be

 s =
Fmax
AN

 (4.21)
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Figure 4.3: Isometric view and expanded isometric schematic of new high-pressure 

cryocooling apparatus safety enclosure. Design and illustration by 

Martin Novak.



A grade 8 bolt has a proof strength of 0.83 GPa and a minor diameter of 0.401” (0.5” 

major diameter), with a corresponding area of 8.15 × 10-5 m2. In order for the strain on 

the bolts to be less than 0.83 GPa, at least 14 bolts should be used per face. A 

schematic of the face-plates and instructions for the placement of drill or punch holes 

is shown in figure 4.5. A schematic of the angle brackets and instructions for the 

placement of holes is shown in figure 4.6.
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Figure 4.4: Orthogonal view of the new high-pressure cryocooling safety 

enclosure. Design and illustration by Martin Novak.
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Figure 4.5: Expanded view of plates of high-pressure cryocooling apparatus, and 

instructions for drilling holes. Illustration by Martin Novak, hole 

specifications by Buz Barstow.
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Figure 4.6: Expanded isometric view of angle brackets with instructions for holes 

in high-pressure cryocooling apparatus. Illustration by Martin Novak, 

hole specifications by Buz Barstow.
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Figure 4.7: Expanded isometric view of gas exit port. Plates G and H face towards 

the interior of the high-pressure cryocooling enclosure. Gas may  escape 

from the interior through the aperture between plates G and H, and is 

directed up and down by  plate D, which also serves to capture any 

debris accelerated by  an explosion in the interior of the enclosure. 

Illustration by Martin Novak.



The calculations also indicate the need to protect against an errant high pressure 

cooling system. Although it seems unlikely that the high pressure cooling system 

could be accelerated to 9.5 mph, the danger associated with this outcome was 

considered sufficiently  high that precautions be taken against it. Originally, it was 

proposed that energy absorbing material be placed around the apparatus. However, this 

material would pose an inconvenience for the operator, and Professor Sol Gruner 

proposed that  the enclosure should contain a gas exit port direct escaping gas up and 

down, resulting in zero net thrust  from a gas release. A schematic of the gas exit port is 

shown in figure 4.7 and photographs are shown in figures 4.8 and 4.9.
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Figure 4.8: View of the gas exit port from the outside of the high-pressure 

cryocooling safety enclosure. Plate D (figure 4.7) is at the bottom of the 

photograph, and plates G and H are at the top of photograph.



Finally, to prevent opening of the door to the safety enclosure in the event of a gas 

release, the apparatus would feature a sliding door. The door would be secured by 

angle brackets, and would slide along an internal rail. The angle brackets will clamp 

the two parallel edges of the door, and prevent it from escaping.

These calculations illustrate the dramatic changes in energy absorption capacity that 

different types of steel may have. A small 0.5” thick hard steel shielding plate 

considered in these calculations can only  absorb ≈ 6000 J of energy from an explosive 

wave prior to failure. This is less than the energy released from rupture of high 

pressure cooling system operating at 400 atmospheres: 8160 J. However, if this steel is 
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Figure 4.9: View of gas exit port (plates G and H in figure 4.7) from inside the 

high-pressure cryocooling safety enclosure.



replaced with more ductile steel, for instance 1020 or 835, it  can absorb ≈ 160,000 J 

prior to failure. 

It should be noted that if the high-pressure cryocooling system were ever to fail, the 

shielding surround it  should be replaced, as the ability of even ductile steel to absorb 

energy elastically is less than 1000 J. It  is also important to note, that an estimate of 

the energy absorbing capacity of concrete indicates that it could not absorb all of the 

energy from a rupture of the high-pressure system prior to failure.
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Figure 4.10: Electrically actuated sample release mechanism in the high-pressure 

cryocooling system. The blue oblate in the top  right of the photograph is 

a pneumatically actuated valve.



The new apparatus was custom fabricated and assembled by AccuFab (Ithaca, NY, 

USA). Although the construction material was originally specified as 1020 steel, high 

steel prices at the time of construction necessitated the use of a cheaper equivalent: 

835 steel. Calculations indicate that 835 steel has similar energy absorbing properties 

to 1020 steel. Martin Novak at Cornell University performed final assembly of the 

apparatus, including installation of the sliding door and painting.

In order to reduce the number of openings to the exterior from the high-pressure 

cryocooling enclosure, the magnets that hold the protein samples in the high-pressure 

tubing above the cold reservoir would no longer be removed by strings, but would be 

electrically removed. A photograph of the electrically actuated sample release system 

is shown in figure 4.10. The electrical sample release system was designed by Yi-Fan 

Chen and Mark Tate. Additionally, the screw actuated high-pressure valves in the 

original high-pressure cryocooling apparatus were replaced with pneumatically 

actuated valves (the blue oblates in figure 4.10). 

The pneumatically actuated valves require only the entry of a pneumatic line into the 

high-pressure enclosure, rather than an electrically  driven screw. The high-pressure 

cryocooling apparatus in its final assembled state is shown in figure 4.11.
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Figure 4.11: High-pressure cryocooling apparatus in its final assembled state.



151

Figure 4.12: First generation crystal fluorescence monitor at CHESS station F2.



4.4 Micro-spectrophotometer for Low Temperature Measurement of Citrine’s 

Fluorescence Spectrum

4.4.1 Introduction

As the thermal contraction of a protein molecule between room temperature and 100 K 

is comparable to the changes due to pressurization to several hundred MPa [177], it 

was important to measure the fluorescence spectra of high-pressure cryocooled 

samples of Citrine to establish a direct link between structure of the molecule and its 

fluorescence properties. 

4.4.2 First and Second Generation Micro-spectrophotometers

During the course of this thesis work, we used three micro-spectrophotometers to 

measure the fluorescence spectra of high-pressure cryocooled Citrine samples. The 

first micro-spectrophotometer was constructed at CHESS (Cornell High Energy 

Synchrotron Source) station F2. Photographs of this apparatus are shown in figures 

4.12 and 4.13. This apparatus was built at station F2 due to the availability  of a well-

maintained cryogenic nitrogen stream. The apparatus was used to measure the 

fluorescence spectra of high-pressure cryocooled Citrine crystals, in order to find a 

correlation between the freezing pressure and the peak of the fluorescence spectrum. 

In the first generation apparatus, fluorescence excitation light was supplied to a Citrine 

crystal through a microscope objective, coupled by an optical fiber to a portable xenon 

lamp (PX-2 Pulsed Xenon Light Source, Ocean Optics, Dunedin, FL, USA). The 

spectral width of the excitation lamp was narrowed with an optical filter. The 

fluorescence light was collected through a telescope and passed through an optical 

fiber to a USB2000 spectrometer (Ocean Optics, Dunedin, FL, USA). Alignment of 

the excitation optics was performed by hand, by moving a clamp that held the 
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excitation source microscope objective. This was unwieldy, but proved acceptable. 

The fluorescence excitation optics are shown in figure 4.12. Alignment of the 

fluorescence collection optics was considerably  more difficult. The fluorescence 

collection telescope was aligned on the crystal by eye, by swapping the optical fiber 

coupler at the rear of the fluorescence collection telescope for a telescope eyepiece 

lens. Once the crystal was aligned in the telescope, the eyepiece lens was swapped for 

the fiber optic couple. The author is seen aligning the telescope on a crystal in figure 

4.13. 
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Figure 4.13: First generation micro-spectrophotometer at CHESS station F2. The 

author is aligning the fluorescence collection optics on the sample, 

which also served as a fluorescence collection optic.



Although this apparatus was unwieldy, it did highlight some of the complications that 

would arise when attempting to measure the spectra of high-pressure cryocooled 

samples of Citrine. Firstly, this apparatus highlighted the need for good separation of 

the excitation light and the fluorescence spectrum of the Citrine sample. In the case of 

the first generation micro-spectrophotometer, the excitation light was monochromated 

with a filter (Linear Variable Filter, Ocean Optics, Dunedin, FL, USA), and still had a 

considerable spectral width after passing through the filter. Scattering of the excitation 

light impinged on the fluorescence spectrum of the crystal, and considerably  reduced 

our confidence in our ability to accurately measure the peak of the spectrum. 

Secondly, the stability of the optics in this first generation apparatus were poor, 

making alignment difficult, and sample changes long. The lack of easy adjustability of 

the optics also contributed to the length of the sample changes. Finally, and most 

importantly, we were unable to find any obvious correlation between the freezing 

pressure of a Citrine crystal and the peak of its fluorescence spectrum. However, we 

did notice that the fluorescence peak of Citrine crystals was consistently higher than 

that seen in dilute solutions, typically ranging from 530 to 540 nm, rather than the 

solution peak of 527 nm. This was perplexing, as early crystal structures of Citrine 

under pressure, when viewed in the light of the simple quantum mechanical model of 

Citrine’s fluorescence spectrum presented in section 3.6.4, indicated that the 

fluorescence peak should shift to the blue with increasing freezing pressure. 

In order to more fully investigate the fluorescence spectra of high-pressure cryocooled 

samples, we moved our experiments away from CHESS to a location where longer 

experiments could be conducted. Professor Brian Crane in the Cornell department of 

Chemistry and Chemical Biology  allowed us to modify an absorption micro-

spectrophotometer that he had constructed that was modeled upon the absorption 
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micro-spectrophotometer designed by Hadfield and Hajdu [178]. A photograph of this 

apparatus is shown in figure 4.14. A close-up photograph of the sample stage, sample, 

cryostream and fluorescence collection optics is shown in figure 4.15. Fluorescence 

excitation was provided by the 488 nm line of a continuous wave krypton-argon laser 

that was selected with a 488 nm interference filter with a 1 nm bandpass (Catalog 

number FL488-1, Thor Labs, North Newton, NJ, USA). The excitation laser beam was 
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Figure 4.14: Second generation micro-spectrophotometer in Professor Brian Crane’s 

laboratory. The fluorescence collection optics are in the center left of 

the photograph. The sample is mounted on a bright pink Hampton 

CryoBase in the center-right of the photograph. Note the mirror in the 

top right of the photograph used to direct the excitation beam onto the 

sample. 



propagated through free space, and directed onto the sample by a mirror. This mirror 

can be seen in the top right of figure 4.14. Two screw actuators on the mirror mount 

allowed adjustment of the excitation beam position. The path of the excitation laser 

beam is shown in figure 4.16.

This apparatus allowed considerably more detailed investigation of the spectra of 

high-pressure cryocooled Citrine samples. Most importantly, experiments with this 

device suggested that small size variations in Citrine crystals could cause apparent 

shifts in the fluorescence spectrum of the sample.
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Figure 4.15: Close-up of the sample stage, cryostream and fluorescence collection 

optics (at the bottom of the photograph) in the second generation micro-

spectrophotometer.
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Figure 4.16: Pathway of the fluorescence excitation light from the krypton-argon 

laser at the top of the photograph, to the excitation beam positioning 

mirror, where it  is deflected by  ≈ 90˚ toward the sample at the right of 

the bottom right of the photograph. 
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We believe this apparent peak shift is due to repeated absorption and re-emission of 

fluorescence photons. As the fluorescence and absorption spectrum of Citrine overlap, 

photons emitted by fluorescence may be reabsorbed. As the quantum yield of Citrine 

is not 1.0, there is a small, but finite probability of the complete loss of an absorbed 

photon. Given a sufficiently high number of Citrine molecules, this process depletes 

the number of photons with wavelengths that overlap with absorption spectrum of 

Citrine, resulting in an apparent peak shift of the sample. 

A simple Monte-Carlo computer code was implemented to assist in understanding of 

this effect. In this model, excitation photons are generated with a wavelength of 473 

nm. The measured absorption spectrum of a dilute solution of Citrine was interpolated 

to define the probability of absorption of a photon of any wavelength. If the photon 

was absorbed, the fluorescence spectrum of a random number was generated to 

determine the emission wavelength based upon the fluorescence spectrum of a dilute 

solution of Citrine. The total probability of emission was normalized to 0.89, the 

quantum yield of Citrine, so there existed a small probability of non-emission. A 

histogram showing the distribution of photon wavelengths after re-emission of 10,000 

photons by 1 molecule and absorption and re-emission by a line of 100 molecules is 

shown in figure 4.17. The two histograms in figure 4.17 show a clear shift in the peak 

of the Citrine fluorescence spectrum from the solution peak of ≈ 527 nm, to close to 

the very far red edge of the Citrine absorption spectrum at ≈ 550 nm. 

This Monte-Carlo experiment was attempted for several different lengths of molecule 

chain. A plot of the approximate apparent fluorescence peak position versus molecule 

number is shown in figure 4.18. 
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A plot of the apparent fluorescence peak of Citrine solutions of varying concentration 

is shown in figure 4.19. At low concentrations, the Citrine fluorescence peak 

asymptotes to ≈ 528 nm. The Monte Carlo simulations of the increase in apparent 

fluorescence peak with increasing Citrine concentration indicate that  the apparent peak 

should asymptote to ≈ 550 nm, the red edge of the Citrine fluorescence spectrum. A 

sigmoidal function should produce two asymptotes, one at  low concentration and one 

at high concentration. The fluorescence peak, λem C( ) , in figure 4.19 was fitted to a 

sigmoidal function of the protein concentration, C, 

 λem C( ) = a + b
1+ exp −c x − d( )( ) , (4.22)
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where, a = 528 nm, b = 22 nm, c = 0.4 and d = 12.5 mg/mL. 

This function reasonably reproduces the apparent fluorescence peak shift as a function 

of protein solution concentration over the range 0.1 to 10 mg/mL. However, it  is likely 

that the exact dependence of apparent fluorescence peak probably  depends upon the 

geometry of the system under study. For instance, in the 1-dimensional case studied in 

the Monte-Carlo simulation, photons are limited to propagate in 1-dimension, and 1 

direction only. To reach the detector, a photon must pass through all of the molecules 

in the chain, whereas in a 3-dimensional case, fluoresced photons are emitted over a 

wide range of angles and may escape the sample without interacting with all of 

molecules in the sample. It is interesting to note that a crystal or solution with an 

apparent fluorescence peak close to 550 nm (the far red edge of the Citrine absorption 

spectrum) was never observed, even though the optical densities of crystals are 

apparently  very high. The density of Citrine molecule’s in a crystal is one molecule 

per 52.5 × 61.8 × 70.7 Å3, giving a concentration C = 7.2 M. Assuming that the 

solution extinction coefficient of Citrine ξ = 80,000 M-1 cm-1 is appropriate for a 

crystal, the absorbance of a Citrine crystal of length l = 50 µm is

 

� 

A = ξCl  (4.23)

 

� 

A = 80000 × 7.2 × 50 ×104 = 2896 (4.24)

This probably  indicates that escape mechanisms serve to prevent the apparent peak 

shift from ever reaching the maximum implied in the Monte Carlo simulation 

presented in figures 4.17 and 4.18. However, these models do suggest that it is 

plausible to believe that small size variations in crystals may cause crystal-to-crystal 
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variations in fluorescence peak that may dominate any  effect due to pressure 

deformation of the chromophore. However, the effect of high-pressure cryocooling, 

and thus pressure deformation of the chromophore of on the fluorescence spectrum of 

Citrine was indicated by  experiments in which a high-pressure cryocooled crystal of 

Citrine was warmed slowly, and the fluorescence peak recorded. These experiments 

indicated that a fluorescence peak shift is locked into the crystal by the high-pressure 

cryo-cooling technique. As the crystal is warmed the fluorescence peak gently shifts to 

the red, by a small amount, until the crystal reaches its glass transition temperature, at 

which point, the fluorescence shifts markedly to the red. Upon re-cooling, the 

fluorescence peak does not return to the blue, but remains red, indicating that a 

fluorescence blue-shift had been locked into the crystal by the high-pressure cryo-

cooling technique. This effect is shown in figure 4.20.
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Figure 4.21: Top: Droplet of food dye injected into a droplet of NVH oil in a 

Hampton CryoLoop. Bottom: Droplet  of Citrine injected into a droplet 

of NVH oil. 
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In an attempt to address the limitations of the crystals we experimented with freezing 

droplets of dilute Citrine solution inside droplets of NVH oil (Catalog number 

HR3-617, Hampton Research, Aliso Viejo, CA, USA). Droplets of NVH oil were 

prepared by dipping a Hampton CryoLoop  into NVH oil. Dilute Citrine solutions were 

injected into the oil droplets with a micro-syringe (Catalog number 86257, Hamilton 

Company, Reno, NV, USA). This technique had a low success rate, as it was very 

difficult to remove air bubbles from the droplets, which caused optical scattering. 

Additionally, it proved difficult to produce samples with a reproducible size. 

Photographs of two successful droplets, one containing food dye, and the other 

containing Citrine are shown in figure 4.21.

4.4.3 Third Generation Micro-spectrophotometer

To further investigate the fluorescence peak shift of Citrine samples under high-

pressure cryocooling conditions, we constructed a third generation micro-

spectrophotometer in the Gruner lab. This gave considerable extra convenience to 

experiments, and with the experience gained from the previous two micro-

spectrophotometers used in these experiments, were able to construct a device that was 

easy to use, and allowed rapid measurement of many samples. 

We constructed a fluorescence and absorption spectroscopy apparatus, drawing upon 

the designs of Hadfield [178] and Klink et al. [179]. Like Hadfield’s apparatus [178], 

the device has the ability to measure the absorption of small samples. Additionally, 

following the design of Klink et al. [179], the device features backscattering 

fluorescence, allowing easy  measurement of the fluorescence spectrum of a sample 

without the need to align the collection and excitation optics, as they are both 

combined into a single optic. The system has been optimized for ease use, ease of 
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Figure 4.22: Schematic of third generation micro-spectrophotometer.
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sample handling, use at low temperatures, reproducibility  of measurements and for 

operator safety  and comfort. These design considerations dictated the physical layout 

of the optical and cooling elements of the system. A schematic of the micro-

spectrophotometer is shown in figure 4.22. A photograph of the entire micro-

spectrophotometer is shown in figure 4.23. A closer view of the optics of the micro-

spectrophotometer is shown in figure 4.24, and a close-up of the sample mounting area 

is shown in figure 4.25.
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Figure 4.23: Photograph of the third generation micro-spectrophotometer showing, 

from the left, the excitation lamp, the cryostream, the excitation optic, 

the fluorescence optic, the sample alignment telescope, the fluorescence 

excitation laser, and the data acquisition computer.



4.4.4 Design Elements of Third Generation Micro-spectrophotometer

4.4.4.1 General Layout

Use of the micro-spectrophotometer with high-pressure cryocooled samples 

necessitated several features of the layout of the apparatus. Firstly, the layout of the 

apparatus needed to accommodate a low temperature nitrogen cryostream (Molecular 

Structure Corporation, The Woodlands, TX, USA) to allow for the use of samples at 

low temperature. Secondly, rapid and convenient sample loading were desirable, to 

prevent inadvertent warming of high-pressure cryocooled samples and to allow the 

inspection of many samples without user fatigue. To prevent accidental exposure of 
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Figure 4.24: Photograph of the third generation micro-spectrophotometer showing, 

from the left, the cryostream, the excitation optic, the fluorescence 

optic and the sample alignment telescope.



the user to the laser beam the excitation optics were required to not point towards the 

user. Finally, the sample stage, light sources and optics had to be rigidly mounted, to 

permit exact positioning of the excitation light. 

All components were mounted on a 2 ft  × 3 ft threaded optical breadboard (Catalog 

number MB2436, Thor Labs, Newton, NJ, USA) that was itself mounted on Isomode 

pads (Catalog number 60015K21, McMaster-Carr, Santa Fe Springs, CA, USA) to 

isolate it  from vibration. The breadboard and Isomode pads were mounted on a steel 

workbench (Modern Equipment Company, Omaha, NE, USA) with vibration 
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Figure 4.25: Photograph of the micro-spectrophotometer fluorescence and excitation 

optics, sample mount and alignment plate. A polycarbonate capillary is 

mounted to an orange Hampton CryoCap.



damping, leveling feet (Catalog number 6167K13, McMaster-Carr, New Brunswick, 

NJ, USA). As moisture accumulation was likely on many surfaces due to the presence 

of a low temperature cryo-stream, all screws used in construction were coated with 

bearing grease (Phil Waterproof Grease, Phil Wood Company, San Jose, CA, USA) to 

prevent galvanic fusion. 

The sample stage was mounted ≈ 6 inches (approximately  half of the length of the 

author’s forearm) above the optical breadboard, to allow the user to easily transfer a 

frozen sample from a low form dewar (Catalog number HR5-102, Hampton Research, 

Aliso Viejo, CA, USA) on the breadboard to the sample stage using a pair of 

CryoTongs (Hampton Research, Aliso Viejo, CA, USA). The sample stage is mounted 

on four 1-inch thick posts (Pedestal Posts, Newport Corporation, Irvine, CA, USA) to 

ensure its stability  under the heavy weight of the sample stage. The sample is mounted 

on a two-arc goniometer (Charles Supper Company, Natick, MA, USA) with a 

Hampton Research magnetic base (Either HR4-627, HR4-943 or HR4-629, Hampton 

Research, Aliso Viejo, CA, USA). The goniometer is attached through a custom 

mating piece (figure 4.26) to a 360˚ micrometer driven rotation stage (Newport 

Corporation, Irvine, CA, USA. Although the item used in this design is discontinued, 

the 481-AS is extremely similar). The rotation stage is affixed through a custom 

mating piece (figure 4.27) to an x-y-z micrometer translation stage (460P-XYZ, 

Newport Corporation) with 1 inch of travel in each dimension, actuated by micrometer 

drives (SM-25, Newport Corporation). The goniometer is suspended several inches 

forward from the footprint of the translation stage pillars on the optical breadboard, 

and faces towards the user, allowing the user to view the sample mounting area and 

ease sample loading. 
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Figure 4.26: Custom mating piece to attach goniometer to Newport Rotation stage.
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Figure 4.27: Adaptor to couple manual rotation stage to x-y-z translation stage.
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The cryostream nozzle is directed at right angles to the rotation axis of the sample 

stage, and points down at a shallow angle, of approximately  30˚ to the horizontal. The 

temperature of the stream at the sample position was verified with a custom made 

sensor. An N-type thermocouple was attached to a CryoLoop (Hampton Research, 

Aliso Viejo, CA, USA) with heat-shrink material and mounted on a CryoBase 

(Hampton Research). A photograph of this sensor is shown in figure 4.28. 

The fluorescence excitation/collection optics are opposite the cryostream, and are also 

mounted above the optical breadboard using four 1-inch thick posts (Pedestal Posts, 

Newport Corporation, Irvine, CA, USA), above the level of the sample stage, and 

perpendicular to the rotation axis of the sample stage. The optic is directed down 

towards the sample stage by  a 45˚ angle bracket (Catalog number 360-45, Newport 
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Figure 4.28: N-type thermocouple mounted on a Hampton Research CryoLoop and 

CryoBase.



Corporation). The face of the excitation/collection reflecting objective is 1 inch away 

from the sample, the working distance of this objective.  This arrangement limits the 

user’s exposure to the excitation light as it is directed at right angles to the line of sight 

of the user, and also limits the possibility of the excitation light  leaving the immediate 

area of the crystal fluorescence monitor. This arrangement also minimizes exposure of 

the excitation/collection optics to the cryostream, as it is mounted above the level of 

the cryostream nozzle. A photograph of the fluorescence excitation/collection optics 

can be seen in figures 4.24 and 4.25. The widely separated posts that form the base of 

the excitation/collection optics also give the cryostream a large distance over which to 

dissipate past the sample, allowing the cryostream flow to remain laminar. The legs of 

the mount for the fluorescence excitation/collection optics can be seen in figure 4.24. 

The absorption excitation optic, shown on the left in figures 4.24 and 4.25 are 

mounted underneath the cryostream, and could be accidentally  exposed to liquid 

oxygen that may have pooled in the cryostream and may be ejected when the 

cryostream flow rate is turned to high. The absorption excitation optic is normally 

protected from liquid emissions from the cryostream by a neoprene sheet that is taped 

over the face of the optic. This protective sheet can be seen in figure 4.24.

The sample is aligned to the excitation/collection optics by translations of the crystal 

station goniometer. Sample alignment is viewed with a 40 × telescope with a working 

distance of 1 inch (2.54 cm), using a grid reticule (Catalog number NT39-446, 

Edmund Optics, Barrington, NJ, USA) as a reference mark. This telescope can be seen 

on the right of figures 4.23 and 4.24. 

The optics room in which the crystal fluorescence monitor is located is darkened 

during data collection as the spectrum of the room lights overlaps with the Citrine 
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excitation and fluorescence spectra. The LCD monitor of the data acquisition 

computer monitor is turned to the lowest brightness and contrast setting. All other light 

sources, typically LED lights on electronics, are taped over with black electrical tape 

to further reduce the background light signal.
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longer in the absorption excitation optics to permit more convenient 

placement of the ST1XY-D lens translation stage. Also, a 12.5 mm 

micrometer actuator is used in the absorption excitation optics. A 

schematic of the custom mating piece is shown in figure 4.30.
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Figure 4.30: Custom mating piece to couple ST1XY-D lens translation stage to 

Newport 460P-X linear translation stage in fluorescence excitation/

collection optics and absorption excitation optics.
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4.4.4.2 Absorption Excitation and Fluorescence Optics

As in the design by to Klink et al. [179] the front end of the fluorescence excitation/

collection optic is a large numerical aperture, infinite conjugate, reflecting objective 

(Catalog number NT58-417, Edmund Optics, Barrington, NJ, USA) that is achromatic 

over a wide range of UV, optical and infrared wavelengths. In order to couple these 

lenses to an optical fiber, a focusing lens is required. An achromatic lens is used to 

accomplish this task. Currently, this optic is a 400 to 700 nm achromat (Catalog 

number AC254-030-A1, Thor Labs, North Newton, NJ, USA). 

However, if operation in another wavelength range is desired, the lens tube may be 

easily unscrewed and replaced with another achromatic lens. The achromat focuses 

collimated light from the reflecting objective onto a bifurcated optical fiber. One 

bundle of the fiber leads to a USB2000 spectrometer (Ocean Optics, Dunedin, FL, 

USA), while the other bundle comes from a diode laser that provides fluorescence 

excitation light. The interior surfaces of the lens tube are covered with black flocked 

paper to absorb scattered light and reduce backgrounds due to scattering in the system. 

The reflecting objective and lens tube is mounted on a Thor Labs ST1-XY translation 

mount. Motion of the fluorescence optics is actuated by differential drives, while the 

excitation optics have micrometer drive actuators. The micrometer drives were found 

to perform better than the differential drives. This permits fine positioning of the 

optics relative to one another over a short range of distances. 

A schematic of the fluorescence excitation/collection optic is shown in figure 4.29. A 

photograph of the rear lens tube is shown in figure 4.31. The absorption excitation 

optic is essentially  identical to the fluorescence excitation/collection optic, except that 
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the lens tube connecting the reflecting objective to the optic translation stage is 

slightly longer, so as to permit more convenient placing of the optic translation stage.

For absorption measurements, the fluorescence collection/excitation optic is used 

purely  as an absorption light collection optic. The absorption excitation and 

fluorescence collection/excitation optics are aligned with respect to one another with a 

custom machined alignment plate. This alignment plate is shown in the photographs in 

figures 4.23, 4.24 and 4.25. A schematic of the alignment plate is shown in figure 4.32. 
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Figure 4.31: Photograph of the fluorescence optics showing the achromatic focusing 

lens, and black flocked paper lining of the lens tube. 
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Figure 4.32: Plate to align fluorescence excitation/collection optics and absorption 

excitation optics for micro-spectrophotometer.
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Fine alignment of the absorption excitation and fluorescence excitation/collection 

optics is performed by placing a target, usually a piece of white paper, at the focal spot 

of the excitation optic. The focus appears as a bright dot on the paper. The 

fluorescence excitation/collection optic may then be aligned to this spot by turning the 

fluorescence excitation laser on, and aligning the laser spot to the focal spot of the 

absorption excitation optic.
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Figure 4.33: Schematic of laser to optical fiber coupler.



4.4.4.3 Excitation Sources

Fluorescence excitation was provided by  a high-stability 473 nm diode laser (Catalog 

number LRS-473-TM-10, LaserGlow Inc, Toronto, Canada). This laser was 

specifically chosen to provide excitation at the blue-edge of the Yellow Fluorescent 

Protein absorption spectrum [52], so as to minimally  overlap with the fluorescence 

spectrum. The power output of the device was limited upon our request to 5 mW to 

ensure classification as a class IIIa laser), coupled by  a bifurcated fiber optic bundle 

(Ocean Optics, Dunedin, FL, USA) to a long working length, high numerical aperture 

reflecting objective (Catalog number NT58-417, Edmund Optics, Barrington, NJ, 
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Figure 4.34: Photograph of the excitation laser and fiber coupler optics. In normal 

use this assembly is covered by  a box with a black flocked paper 

interior.



USA), used as both excitation and collection optics in the fluorescence backscattering 

mode. 

The spectral width of the fluorescence excitation laser beam was narrowed by  a train 

of bandpass optical interference filters; 1 high-transmission 473 nm filter (Catalog 

number LD01-473/10-12.5, Semrock, Rochester, NY, USA), and two lower 

transmission filters, at  470 (Catalog number NT43-062, Edmund Optics, Barrington, 

NJ, USA) and 467 nm (Catalog number NT43-061, Edmund Optics). 

A schematic of the laser to optical fiber coupler is shown in figure 4.33. A photograph 

of this optical train is shown in figure 4.34. The diode laser is raised slightly above the 

optical breadboard by a 0.5” thick brass plate that also serves as a heat sink. This heat 

sink plate may be seen in figure 4.34. Absorption excitation light was provided by a 

high-intensity blackbody lamp (DH-2000, Ocean Optics, Dunedin, FL). 
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4.4.4.4 Spectrometer

The backscattered fluorescence light was analyzed with an Ocean Optics USB2000 

spectrophotometer (Ocean Optics, Dunedin FL, USA) with a 200 µm slit and a #2 

grating. The spectrophotometer was calibrated prior to use by fiber connection to a 

blackbody calibration source (DH-2000 Calibration lamp, Ocean Optics, Dunedin, 

FL). It should be noted that Ocean Optics sells a blackbody  lamp, and blackbody 

calibration source both called the DH-2000. We used the calibration version that has a 

carefully  calibrated spectrum, but much lower intensity  for calibration purposes, and 

also used the high intensity version of the DH-2000 for absorption excitation. 

4.4.4.5 Preparation of High-Pressure Cryocooled Solutions

As discussed in section 4.3.2, due to the high optical density and overlapping 

absorption and fluorescence spectra of Citrine crystals, we were unable to repeatably 

measure the position of the peak of the fluorescence spectra of pressure cooled Citrine 

crystals due to small size variations in the crystals. Thus, we were forced to seek a 

substitute: high-pressure cryocooled solutions in polycarbonate capillaries (Plastic part 

number 8-000-1000, length 5 inches (127 mm), inner diameter 0.012 inches (304.8 

µm), outer diameter 0.036 inches (914.4 µm), Drummond Scientific Company, 

Broomall, PA, USA). High-pressure cryocooling of Citrine in flat glass capillaries 

with an outer diameter of 0.1 mm (VitroCells, Catalog number 8505, VitroCom Inc., 

Mountain Lakes, NJ, USA) was also attempted, but the capillaries were found to be 

too mechanically fragile for use in the high-pressure cryocooling apparatus. 

Citrine stock solution (20 mg/mL Citrine in 50 mM  HEPES, pH 7.5) was slowly 

dialyzed into crystallization precipitant solution (5% PEG 3350, 50 mM sodium 

acetate, 50 mM ammonium acetate, pH 5.0). The curve of fluorescence peak versus 

concentration shown in figure 4.19 indicates that a Citrine solution with a 
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concentration of 1 mg/mL in a 300 µm diameter capillary should be free of 

concentration-induced fluorescence spectrum artifacts. 

The solution was loaded into optically  clear polycarbonate capillaries that were cut to 

approximately 18 mm in length, so as to match the length of a mounted cryo-loop, and 

were frozen in the high pressure cryo-cooling apparatus [117] (chapter 2). The frozen 

capillaries were transferred in a low form liquid nitrogen dewar to the micro-

spectrophotometer and transferred by hand to the station’s goniometer mount. 

Fluorescence spectra from flash frozen Citrine samples in polycarbonate capillaries 

and glass capillaries are shown for comparison in figure 4.35.
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4.3.4.6 Absorption 

To demonstrate the absorption measurement capabilities of the micro-

spectrophotometer, the room temperature absorbance of a Citrine sample measured 

with the micro-spectrophotometer is shown in figure 4.36. For comparison, the 

absorption spectrum of the same sample measured with a Nanodrop ND-1000 

absorption spectrophotometer is plotted alongside. At first examination, the two 

spectra are very similar. It is worth noting that the absorbance spectra do differ 

noticeably at wavelengths longer than ≈ 540 nm. The negative value of the absorbance 

is due to fluorescence emission from the sample. We believe the difference in negative 

magnitude of the absorbance to be due to differences in light collection by  the 

Nanodrop and the micro-spectrophotometer. The Nanodrop collects light directly 
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through an optical fiber, while the micro-spectrophotometer uses a large-area 

reflecting objective that will collect a large amount of fluorescence light, resulting in a 

more negative value of the absorbance at wavelengths exceeding 540 nm, where the 

absorbance of Citrine is very low. 

4.5 The Fluorescence Spectrum of Citrine Under High Pressure Cryo-Cooling 

Conditions

Due the difficulties in collecting room temperature X-ray diffraction data from crystals 

of Citrine, and thus solving the room temperature high-pressure structure of Citrine, it 

was important to establish a direct link between the high-pressure cryo-cooled X-ray 

structures of Citrine and the fluorescence spectra of high-pressure cryo-cooled Citrine 

samples. The fluorescence spectra of high-pressure cryo-cooled Citrine samples were 

measured with a micro-spectrophotometer based upon the designs by Hadfield and 

Hajdu [178] and Klink et al. [179]. The construction of this device and the preparation 

of high-pressure cryocooled Citrine solution samples in polycarbonate capillaries was 

described in section 4.3.

The fluorescence peak of high-pressure cryo-cooled Citrine solutions shifts from 527 

nm when frozen at ambient pressure, to 530 nm at 50 MPa, and to 510 nm at 360 MPa 

with most of the shift occurring by 250 MPa. A plot of the peak shift of the Citrine 

samples versus freezing pressure is shown in figure 4.37A. As a control, the peak of 

high-pressure cryo-cooled monomeric Enhanced Green Fluorescent Protein (mEGFP) 

samples are also shown in figure 4.37A. mEGFP contains a similar main chromophore 

to Citrine, but lacks the perturbing tyrosine 203 ring. In addition, mEGFP, and all 

other monomeric Aequorea fluorescent proteins, contain the surface mutation A206K 

that strongly  discourages dimerization [180]. The fluorescence peak of mEGFP does 
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Figure 4.37: A: (■) Citrine’s fluorescence peak under high-pressure cryocooling. 

Connecting line drawn to aid eye. (Ï) mEGFP’s fluorescence peak under identical 

conditions. Fit shown as green dot-dashed line. B: Fluorescence peak of Citrine 

solution in capillary  pressurized to 200 MPa as it is warmed. Note dashed circles 

surrounding start (gray) and end (black) points of curve, corresponding to spectra 

shown in C: spectra of high pressure cryo-cooled Citrine solution before and after 

warming. 
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not shift  as function of the freezing pressure. The fluorescence peak of conventional 

EGFP also does not shift as a function of pressure at room temperature [53]. 

The fluorescence peak shift of high-pressure cryocooled Citrine from yellow to green, 

and the insensitivity of the fluorescence peak of EGFP to pressure, suggests that the 

perturbing interaction of tyrosine 203 is slowly removed by  the application of high 

pressure. 

It is interesting to note that the fluorescence peak of Citrine approaches ≈ 510 nm at 

350 MPa (it should be noted that we have no evidence that the peak asymptotes to this 

value). This peak fluorescence wavelength is approximately the same wavelength as 

that of mEGFP at room temperature (511 nm), suggesting that the orbitals of the 

Citrine main chromophore are returning to an unperturbed EGFP-like state as the 

perturbation from the tyrosine 203 phenol ring is removed.

As is the case with high-pressure cryocooled crystals of Citrine (figure 4.20), the 

fluorescence peak of high-pressure cryocooled Citrine relaxes to yellow upon 

warming of the sample above a critical temperature (≈ 180 K), and does not return to 

its original position upon re-cooling, suggesting that the original fluorescence shift to 

the green had been locked in by the high-pressure cryocooling procedure. 

The fluorescence peak of a high-pressure cryo-cooled solution that  was slowly 

warmed and re-cooled is shown as function of temperature in figure 4.37B. The 

fluorescence peak remains constant until a critical temperature of ≈ -80 ˚C, and then 

suddenly shifts to the blue. This critical temperature at which the fluorescence 

spectrum suddenly relaxes is the same as that observed in high-pressure cryocooled 
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Citrine crystals (figure 4.20). The fluorescence spectra of a high-pressure cryo-cooled 

sample before and after warming above the critical temperature are shown in figure 

4.37C.

The shift of the fluorescence peak of Citrine to the blue was anticipated from early 

structures of the Citrine molecule under high pressure and the simple quantum 

chemical model of the Citrine fluorescence spectrum that was presented in section 

3.6.4. Early  structures of Citrine under high-pressure cryocooling at  192 MPa 

indicated that the main chromophore and the perturbing tyrosine 203 ring separated at 

high pressure. The quantum chemical model of the Citrine fluorescence spectrum 

indicates that  as the perturbing tyrosine 203 ring separates from the main 

chromophore, the fluorescence band-gap  should increase, causing the fluorescence 

emission from the chromophore to shift to the blue. 

The fluorescence spectra of high-pressure cryocooled Citrine solutions shows that the 

fluorescence peak of Citrine first shifts slightly to the red with increasing freezing 

pressure, and then shifts to the blue at freezing pressures above 500 MPa. The 

fluorescence peak of Citrine shifts to 510 nm by a freezing pressure of 350 MPa, 

approximately the same fluorescence peak as mEGFP at room temperature, suggesting 

that the perturbing interaction of tyrosine 203 has been largely removed by this 

pressure. This shift  of the fluorescence spectrum to the blue is consistent with 

computer models of the Citrine fluorescence spectrum in which the main chromophore 

and tyrosine 203 are spatially separated.
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4.6 Crystallization of Citrine

4.6.1 Hanging Drop Crystallization of Citrine

Citrine was first  crystallized using a batch of Citrine that was expressed from the 

pRSETB vector provided by Professor Roger Tsien. Initially, attempts to crystallize 

Citrine used a close approximation of the crystallization conditions reported by 

Griesbeck et al. [1]: 50 mM sodium acetate, 50 mM ammonium acetate, 7% w/v PEG 

3400, pH 5.0 at 4 ˚C. PEG 3400 appears to be currently commercially unavailable, and 

PEG 3350 (Lot number 259134, Catalog number HR2-591, Hampton Research, Aliso 

Viejo, CA, USA was used as a substitute. Unfortunately, early attempts to reproduce 

these conditions failed to yield any crystals of Citrine. 

Although alternative Yellow Fluorescent Protein conditions do exist [52], the 

crystallization conditions reported by Griesbeck et al. [1] produced crystals which 

displayed the highest diffraction resolution. Attempts to reproduce the Yellow 

Fluorescent Protein crystallization experiments by Wachter et al. [52] also failed, and 

it was decided that persistence should by  applied to reproducing the crystallization 

experiments by Griesbeck et al. [1]. 

A large crystallization trial, sampling a wide range of crystallization conditions 

surrounding those reported by  Griesbeck et al. [1] was performed. This crystallization 

trial sampled precipitant (PEG 3350) concentrations from 3% to 15%, and from pH 

3.0 to pH 9.0. The sodium acetate and ammonium acetate concentrations were both 

fixed at 50 mM. In total, approximately  70 individually hand-made crystallization 

solutions were tried. Citrine concentrations of 10 mg/mL and 20 mg/mL were used. 

Hanging drops of 1 µL protein, and 1 µL well solution were prepared. 
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For safekeeping, and a certain degree of psychological comfort on the part of the 

experimenter, it was decided to store these crystals in a 4 ˚C cold room rather than the 

refrigerator normally used to store protein crystals in the Gruner lab. Prior to storing 

these crystallization trays in the cold room, the crystallization trays were stored in two 

large Styrofoam boxes. The crystallization trays were left undisturbed for 5 days, the 

duration of time reported for crystal nucleation by Griesbeck et al. [1]. After 7 days, a 

single Citrine crystal was found at 11% PEG 3350, pH 4.5. This crystal can be seen in 

figure 2.6A. This crystal served as a seed for all following Citrine crystals. I speculate 

the difference in crystallization experience between myself and Griesbeck et al. [1] 

may  be due to differences in the precipitant used in our respective experiments. It 

seems unlikely, although not entirely implausible, that the small difference in polymer 

molecular weight (3350 versus 3400 Da) would greatly decrease the precipitating 

power of PEG 3350 when compared to PEG 3400. However, the composition of PEGs 

is known to vary  greatly from manufacturer to manufacturer and even from batch to 

batch [95]. For this reason, all of our Citrine crystallization experiments were 

performed with a single batch of PEG 3350 (Lot number 259134, Catalog number 

HR2-591, Hampton Research, Aliso Viejo, CA, USA). I did attempt crystallization 

with another batch of PEG 3350 (Lot number 259147, Hampton Research), and found 

no difference in crystallization experience. It  is possible that the PEG 3400 used by 

Griesbeck et al. [1] contained a contaminant not present in the Hampton PEG 3350 

that promoted nucleation of Citrine crystals. I asked Robert Campbell who performed 

the crystallization experiments presented in the report on Citrine by Griesbeck et al. 

[1] (and one of the co-authors) where he found the PEG 3400 used to crystallize 

Citrine, and he replied “off the shelf”, literally meaning off a shelf.
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Later attempts to reproduce the successful Citrine crystallization experiment without 

the Styrofoam outer box failed. I believe that the box is crucial for success of the 

crystallization trial, as it prevents the exterior temperature of the cover-slide from 

dropping too rapidly when the crystallization tray is placed in the refrigerator and 

causing excess condensation of vapor from the well onto the cover-slide, causing 

dilution of the protein droplet, and preventing precipitation of the protein.

Streak seeding was used to produce a second generation of Citrine crystals. In streak 

seeding, the side of a crystal is tapped with a fine needle (Hampton Research, Aliso 

Viejo, CA, USA; sells a product called the Crystal Probe (Catalog number HR4-217) 

for this purpose), to dislodge crystal seeds from its surface. Some of these seeds will 

attach to the needle. The needle is then run through a hanging droplet containing a 

mixture of protein and well solution. Some of the crystal seeds that were attached to 

the needle will be deposited along the trace or streak of the needle in the new droplet. 

Crystals typically  form in a line that marks the trace of the needle through the droplet. 

These second generation crystals were produced at 7% w/v PEG 3350, pH 4.5, 50 mM 

sodium acetate, 50 mM ammonium acetate. A third generation of crystals was 

produced by micro-seeding with a Seed Bead (Catalog number HR2-320, Hampton 

Research, Aliso Viejo, CA, USA) from these crystals. This third generation of crystals 

was the best batch of Citrine crystals that was produced in this thesis work, showing 

diffraction out to at least 1.3 Å. 

At this time, the Citrine supply from pRSETB was depleted, and we moved to a new 

Citrine purification batch grown from a pET-24 (Novagen, a division of Merck KGaA, 

Darmstadt, Germany) vector. This batch of protein showed no problems with 

nucleation; however, it produced a plate like form of the Citrine crystal. These plate-
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like crystals were mechanically fragile, and were later shown to diffract extremely 

poorly. To discourage the formation of these plate-like crystals, seeds were derived 

from the original generation of brick-like crystals. A photograph of the plate-like 

Citrine crystals is shown in figure 4.1. Although the formation of the plate-like crystals 

could not be completely eliminated, the crystals could be partially eliminated by 

leaving a sealed hanging droplet crystallization well at room temperature for several 

hours. The plate-like Citrine crystals appear to be much less stable at room 

temperature than the brick-like crystals, and largely dissolve over the course of several 

hours. At this time, the crystallization well may be placed back into the 4 ˚C 

refrigerator. Although some plate-like crystals will reappear, they will be far less 

numerous than before the exposure to room temperature.

Further crystals of Citrine were grown by micro-seeding, using a 5% PEG 3350, 50 

mM sodium acetate, 50 mM ammonium acetate, pH 5.0 precipitant solution, using a 

Seed Bead (Catalog number HR2-320, Hampton Research, Aliso Viejo, CA, USA). 

All crystallization solutions were stored at 4 ˚C, but were allowed to warm to room 

temperature before proceeding. No more than 12 crystal wells were prepared at  a 

single time. 60 µL of precipitant, and 60 µL of 10 mg/mL Citrine in 50 mM HEPES, 

pH 7.5, were mixed in a Seed Bead, and then 10 µL of this mixture was dispensed 

onto the cap of the Seed Bead. A brick-like crystal of Citrine was transferred to the cap 

of the centrifuge tube, and the Seed Bead was then centrifuged in a centrifuge pre-

cooled to 4 ˚C for ≈ 10 seconds while accelerating to 14,000 × g, to remove the droplet 

from the cap. The Seed Bead was then vortexed for approximately  1/4 of a second, 

making sure that the bead moved vigorously  around inside the Seed Bead. The Seed 

Bead was then re-centrifuged to pellet the solution, and immediately transferred to ice. 

The seeding solution was then dispensed onto cover-slides in 10 µL droplets, and each 
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slide sealed onto a well before proceeding to the next well. For these crystallization 

experiments, Nextal Biotech (Montreal, Quebec, Canada. Nextal Biotech is now a 

subsidiary of Qiagen) single screw cap  crystallization wells were used (unfortunately, 

these single wells are no longer available from Nextal Biotech, however, replacement 

screw caps are still available under part number 132073, and the individual wells may 

be cleaned and reused). The Seed Bead was chilled on ice between dispensations, and 

the whole procedure lasted no longer than 5 minutes. 

The sealed wells were immediately  transferred to a Styrofoam box and refrigerated at 

4 ˚C. Crystals appeared overnight, and grew to approximately 300 x 50 x 50 µm 

within a few days. 

At least three forms of Citrine crystals will grow under these conditions; bricks, with 

the most equal dimensions, plates with two long dimensions, and a very thin third 

dimension, and rods with one long dimension and two very  short dimensions. The 

plate form of the Citrine crystal does not appear to diffract well, and has imperfect 

symmetry, only indexing well in a P2 or P1 space-group. The rod crystals have not 

been tested. 

4.6.2 Crystallization of Citrine Crystals in Polycarbonate Capillaries

While experimenting with solving the structure of Citrine under high pressure at room 

temperature, it was found that Citrine crystals did not react well to immobilization in 

Sephadex, the method commonly  used to immobilize crystals inside the beryllium cell, 

described by Kundrot and Richards [23], Urayama [70] and Collins [181]. Thus, a 

different method of immobilizing the crystals inside the high-pressure beryllium cell 

was sought. One method that was explored was to grow Citrine crystals inside 

201



polycarbonate capillaries, as suggested by recent experiments by Chae Un Kim, who 

was working on freezing Thaumatin crystals grown in capillaries for the NIH Protein 

Structure Initiative. The Citrine crystallization procedure was modified slightly in 

order to accommodate the different vapor exchange rates found in a capillary 

crystallization trial compared with those found in a hanging drop crystallization trial.

The most successful capillary crystallization procedure initially followed the hanging 

drop crystallization procedure described in section 4.5.1. Micro-seeded hanging drops 

were prepared in Nextal screw cap  wells as described in section 4.5.1. These droplets 

were left to equilibrate for between 16 and 40 hours, and were examined for signs of 

crystal formation every 8 hours. When crystal formation was noticed, characterized by 

a slight shimmer on the surface of the hanging droplet, the hanging droplets were 

drawn up into polycarbonate capillaries (Plastic part number 8-000-1000, length 5 

inches (127 mm), inner diameter 0.012 inches (304.8 µm), outer diameter 0.036 inches 
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Figure 4.38: Modified 10 µL Rainin LTS pipet tips for use with polycarbonate 

capillaries.



(914.4 µm), Drummond Scientific Company, Broomall, PA, USA) using a modified 10 

µL Rainin LTS pipette tip (RT-L10, Rainin Instruments, Woburn MA, USA) (figure 

4.38) attached to a 10 µL Rainin LTS pipettor. Immediately after a hanging drop was 

drawn up into a capillary, the pipette tip  holding the capillary was gently pierced with 

the point of a sharp  X-acto blade to allow air pressure equilibration between the inside 

203

Figure 4.39: Polycarbonate capillary cooling block. The block was fabricated by 

Martin Novak.

Figure 4.40: 10 mL pipette tip used for storing Citrine crystals grown in 

polycarbonate capillaries.



and outside of the tip  (pulling the tip off the pipettor would result in discharge of the 

capillary contents), and the pipette tip  was gently removed. Finally, the capillary was 

gently removed from the pipette tip with curved micro-tweezers, and immediately 

placed on a pre-cooled brass block with fine channels for the capillaries (shown in 

figure 4.39). No more than 6 capillaries were prepared at once. 

Immediately  after finishing the last capillary, all 6 capillaries were transferred to a 10 

mL pipette tip (Catalog number RC-L10ML, Rainin Instruments, Woburn, MA, USA) 

(figure 4.40). A cotton wool ball soaked in mother liquor (5% PEG 3350, 50 mM 

sodium acetate, 50 mM ammonium acetate, pH 5.0) was placed into the capillary, and 

both ends were sealed with Parafilm. The pipette tip was placed inside a Styrofoam 

box and stored at 4 ˚C. The procedure yielded sizable crystals within several days. 
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Figure 4.41: Citrine crystal grown in a polycarbonate capillary.



The crystals that grew by this procedure attached to the wall of the capillary, and 

appeared to remain attached to the wall even under pressures of up to 200 MPa. A 

photograph of a brick-like crystal in shown in figure 4.41. Unfortunately, these 

crystals suffered cracking and dissolution under high pressure, and radiation damage. 

A photograph of a capillary-grown crystal at CHESS station F1, showing the signs of 

radiation damage can be see in figure 4.42.

4.7 X-ray Diffraction Data Collection

To investigate the structural origin of Citrine's fluorescence shift, the high-pressure 

cryo-cooling technique developed by  Kim et al. [3], and described in chapter 2, was 

used to prepare Citrine crystals, at cooling pressures ranging from 50 MPa to 500 

MPa. A consequence of this preparation method is that each structure at each pressure 

is derived from a different crystal.

X-ray diffraction data were collected at CHESS (Cornell High Energy Synchrotron 

Source, Ithaca, NY) macromolecular crystallography  station F2 at an X-ray 

wavelength of 0.9795 Å (the selenium edge), with a 0.1 mm X-ray collimator using a 

Quantum 210 CCD detector (Area Detector Systems Corporation, Poway, CA, USA). 

For data-sets taken in April and November of 2007, the detector used an upgraded 

computer for image processing. The datasets were collected between May 2005 and 

November 2007. In total, approximately 50 diffraction datasets were collected, of 

which approximately 30 were of suitable quality. 

Crystals were transferred by hand from a liquid nitrogen storage dewar to a cryogenic 

nitrogen stream at 100 K (Oxford Cryo-systems, Oxford, UK). Care should be taken 

while performing the transfer as even slight warming of the sample will allow the 
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Figure 4.42: Citrine crystal grown in a polycarbonate capillary at CHESS beamline 

F1. The upper image shows the early signs of radiation damage, 

indicated by the white arrow. The lower image shows the crystal after 

significant radiation damage has accumulated. The area of maximum 

damage is indicated by a white arrow in the lower image. The circle 

diameter in the top image is 100 µm. In the lower image the circle 

diameter is 160 µm.
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pressure-induced deformations in the sample to relax, and release the helium gas 

trapped in the crystal. 

Typically, between 120 and 180 oscillation images were taken from each crystal, with 

an angular separation of 1˚, and a 1˚ oscillation angle, with exposure times ranging 

from 30 to 60 seconds. Full data collection details are shown in table 4.3.

The X-ray diffraction data was indexed with Rossmann and van Beek’s [99] Data 

Processing Suite (DPS) algorithm, integrated with MOSFLM [100], scaled with SCALA 

[102] and truncated with TRUNCATE [103]. Indexing quality indicators for each dataset 

are shown in tables 4.4 and 4.5. The indexing quality indicators shown in table 4.4 are 

for indexing out to the resolution ring where 

� 

I σ = 3.0 , and those in table 4.4 are 

for indexing out to the maximum observable resolution ring. 

4.8 The Structure of the Citrine Chromophore Under High Pressure Cryo-

Cooling

The crystal structures of Citrine under high-pressure cryocooling were examined to 

find evidence for deformations of the chromophore in response to pressure that would 

explain the blue-shift of the fluorescence spectrum that was discussed in section 4.4. 

The earliest structures of Citrine under high-pressure cryocooling conditions showed a 

separation of the main chromophore and perturbing tyrosine 203 phenol ring. The 

main chromophore translated by approximately  0.6 Å in a plane parallel to the plane 

of the tyrosine 203 phenol under a pressure of 192 MPa. This sliding deformation 

motion was supported by  the quantum chemical model of the Citrine fluorescence 

peak that was discussed in section 3.6.4 that suggested that the fluorescence peak of 

208



209

Table 4.3:  Crystallographic data collection information. All datasets were taken at  

CHESS (Cornell High Energy  Synchrotron Source) macromolecular 

crystallography  station F2 with a Quantum 210 CCD detector (ADSC, 

Poway, CA, USA). All datasets were taken using a 0.1 mm X-ray 

collimator with an X-ray wavelength of 0.9795 Å. Datasets 

Citrine0001_10 and Citrine2500_1 to Citrine5000_3 were taken 

following an upgrade to this detector. All datasets were taken with an 

oscillation angle of 1˚, and a step of 1˚, except  CitrineFF1 and 

CitrineFF2 which were taken with a 3˚ oscillation angle and step. 
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Crystal
Pressure  

(MPa) Run
Distance 

(mm)
Exposure 
Time (s) Frames

Mosaicity 
(˚)

CitrineFF1 0.1 1 200.67 90 30 0.496
CitrineFF2 0.1 1 201.17 90 30 0.74
CitrineOFF2 0.1 1 200.42 25 120 0.538
Citrine0001_10 0.1 1 170.43 30 190 0.402
Citrine0500_1 50 1 199.35 60 120 0.527
Citrine0500_2 50 1 169.37 60 120 0.668
Citrine0500_3 50 1 194.7 30 180 0.546
Citrine0750_2 75 1 169.49 60 120 0.593
Citrine0750_4 75 1 194.71 60 120 1.038
Citrine1000_1 100 1 169.35 60 120 0.61
Citrine1000_2 100 1 169.3 60 120 0.551
Citrine1000_3 100 1 169.28 60 180 0.872
Citrine1000_5 100 1 194.89 30 180 0.912
Citrine1000_7 100 1 194.83 30 180 0.365
Citrine1000_8 100 1 195.35 30 105 0.524
Citrine1250_1 125 1 169.57 60 120 0.402
Citrine1250_2 125 1 169.09 60 120 0.912
Citrine1250_3 125 1 169.4 60 120 0.719
Citrine1250_4 125 1 179.89 25 200 0.672
Citrine1500_1 150 1 169.37 60 120 0.598
Citrine1500_2 150 1 169.3 60 120 0.843

CitrineOPF2

192 1 200.82 60 10 0.078

CitrineOPF2 192 2 160.84 60 7 0.113CitrineOPF2 192 3 140.77 60 120 0.159CitrineOPF2

192 4 140.71 60 120 0.125

CitrineOPF3 192 1 200.62 60 90 0.162CitrineOPF3 192 2 199.66 60 90 0.086
Citrine1960_2 196 1 179.34 30 120 0.685

Citrine2000_2 200 1 195.05 30 120 0.566Citrine2000_2 200 2 194.91 30 120 0.481

Citrine2000_3 200 1 194.95 60 151 0.44Citrine2000_3 200 2 194.89 30 120 0.412
Citrine2500_1 250 1 197.71 20 120 0.291
Citrine4000_1 400 1 177.49 45 180 0.362
Citrine4000_2 400 1 177.67 30 180 0.904
Citrine4000_3 400 1 177.54 30 180 0.632
Citrine5000_3 500 1 167.75 30 180 0.554
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Table 4.4:  Crystallographic indexing quality  indicators for the X-ray diffraction 

datasets presented in table 4.3 when indexed out to resolution ring with  

� 

I σ = 3.0. Indicators are given for the overall (OA) dataset and for 

the final resolution shell (FS) of the dataset. All datasets were indexed 

using Rossmann and van Beek’s Data Processing Suite [27] algorithm 

and scaled using the CCP4 program Scala [29].
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Table 4.5:  Crystallographic indexing quality  indicators for the datasets first shown 

in table 4.3 when indexed out to maximum detectable resolution ring. 

Indicators are given for the overall (OA) dataset and for the final 

resolution shell (FS) of the dataset. All datasets were indexed using 

Rossmann and van Beek’s Data Processing Suite [99] algorithm and 

scaled using the CCP4 program SCALA [102].
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Citrine should shift to the blue under this deformation motion, and the observed shift 

of the Citrine fluorescence peak to the blue under high-pressure cryocooling 

conditions. However, it was felt that due to the small magnitude of this deformation (≈ 

0.6 Å), careful refinement of a series of structure was required to definitively  identify 

this deformation motion. Additionally, we desired multiple structures at each pressure 

in order to estimate the positional error at each pressure level. 

Although in retrospect, the precision estimate from Cruickshank’s formula, discussed 

in section 2.8, indicates that a 0.6 Å deformation motion should be readily  identifiable 

by X-ray  crystallography, we remained skeptical of this result, and spent considerable 

time analyzing the structure of Citrine under high-pressure for evidence of systematic 

error. 

The results of two crystallographic refinement procedures are presented in this thesis, 

and can be compared to estimate some of the uncertainty on atomic coordinates that 

result from different refinement procedures. One of these methods was used to 

produce the set of high-pressure atomic models of Citrine that  were presented in our 

article on the deformation of the Citrine chromophore and the accompanying 

fluorescence peak shift [5]. The X-ray  diffraction datasets used to derive each Citrine 

atomic model are listed in table 4.6. The unit cell axes for each model are shown in 

table 4.7. The second refinement procedure was used to produce the set  of atomic 

models that were deposited in the Protein Data Bank. The PDB accession codes of the 

models are listed in table 4.8.
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4.8.1 Refinement Procedure 1

The first crystallographic refinement process (refinement procedure 1) was developed 

by performing many refinement trials in which the refinement steps and parameters 

were varied, in order to find a globally good procedure that minimized the RFree factor 

for the maximum number of structures. This large search was conducted using the 

Feynman parallel computer cluster at CHESS. 
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Model Name Datasets Used
Citrine0001_2 CitrineOFF2
Citrine0001_18 Citrine0001_10
Citrine0500_9 Citrine0500_1, Citrine0500_2
Citrine0750_16 Citrine0750_2, Citrine0750_4
Citrine1000_1 Citrine1000_1
Citrine1000_2 Citrine1000_2
Citrine1000_3 Citrine1000_3
Citrine1000_5 Citrine1000_5
Citrine1000_7 Citrine1000_7
Citrine1000_8 Citrine1000_8
Citrine1250_1 Citrine1250_1
Citrine1250_2 Citrine1250_2
Citrine1250_3 Citrine1250_3
Citrine1250_4 Citrine1250_4
Citrine1500_1 Citrine1500_1
Citrine1500_2 Citrine1500_2
Citrine1920_2 CitrineOPF2
Citrine1920_3 CitrineOPF3
Citrine1960_2 Citrine1960_2
Citrine2000_2 Citrine2000_2
Citrine2000_3 Citrine2000_3
Citrine2500_1 Citrine2500_1
Citrine4000_1 Citrine4000_1
Citrine4000_2 Citrine4000_2
Citrine4000_3 Citrine4000_3
Citrine5000_3 Citrine5000_3

Table 4.6: X-ray diffraction datasets used to derive each Citrine atomic model.



The procedure that was found to be most satisfactory was similar to that suggested by 

Kleywegt and Jones [182]. Each dataset was truncated at a resolution where the 

average signal-to-noise calculated by SCALA ( I σ ) was 3.0, minimizing the RFree 

factor and minimizing the Log Likelihood Gain (LLG) [107] of the resulting model. 

For each structure, molecular replacement was performed by MOLREP [85] in the 

space group  P212121, using the 1HUY structure of Griesbeck et al. [1], stripped of 

solvent, as a search model. 
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Model a (Å) b (Å) c (Å)
citrine0001_2 51.385 62.624 69.994
citrine0001_18 51.376 62.375 70.639
citrine0500_9 51.383 63.056 70.804
citrine0750_16 51.336 62.886 71.1
citrine1000_1 51.408 62.99 71.315
citrine1000_2 51.362 62.928 71.297
citrine1000_3 51.413 63.122 71.225
citrine1000_5 51.475 62.935 71.664
citrine1000_7 51.401 61.976 70.561
citrine1000_8 51.45 62.272 70.366
citrine1250_1 51.36 62.8 71
citrine1250_2 51.193 62.977 71.128
citrine1250_3 51.44 63.356 71.575
citrine1250_4 51.462 63.34 71.672
citrine1500_1 51.459 62.784 71.163
citrine1500_2 51.343 62.982 71.084
citrine1920_2 51.447 63.223 66.653
citrine1920_3 51.271 62.77 66.11
citrine1960_2 51.549 63.127 71.464
citrine2000_2 51.428 62.944 71.205
citrine2000_3 51.418 63.207 70.904
citrine2500_1 51.363 62.74 70.185
citrine4000_1 51.366 69.993 62.499
citrine4000_2 51.126 60.56 67.209
citrine4000_3 51.531 62.653 71.471
citrine5000_3 51.621 61.06 68.132

Table 4.7:  Unit cell axes for Citrine models. All models were indexed in space 

group P212121 with unit cell angles  α = β = γ = 90˚.



Molecular replacement was followed by 10 cycles of rigid body refinement using 

REFMAC5 [107]. Next, 10 cycles of restrained refinement with overall temperature 

factor refinement were performed by REFMAC5 [107], followed by 10 cycles of 

restrained refinement with isotropic B-factor refinement for each atom. For all steps 

using REFMAC5, the maximum likelihood residual was used [107]. 
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PDB Accession Code Label Pressure (MPa)
3DPW Citrine0001_2 0.1
3DQO Citrine0001_18 0.1
3DQN Citrine0500_9 50
3DQM Citrine0750_16 750
3DQL Citrine1000_1 100
3DQK Citrine1000_2 100
3DQJ Citrine1000_3 100
3DQI Citrine1000_5 100
3DQH Citrine1000_7 100
3DQF Citrine1000_8 100
3DQE Citrine1250_1 125
3DQD Citrine1250_2 125
3DQC Citrine1250_3 125
3DQA Citrine1250_4 125
3DQ9 Citrine1500_1 150
3DQ8 Citrine1500_2 150
3DQ7 Citrine1920_2 192
3DQ6 Citrine1920_3 192
3DQ5 Citrine1960_2 196
3DQU Citrine2000_2 200
3DQ4 Citrine2000_3 200
3DQ3 Citrine2500_1 250
3DQ2 Citrine4000_1 400
3DQ1 Citrine4000_2 400
3DPZ Citrine4000_3 400
3DPX Citrine5000_3 500

Table 4.8:  Protein Data Bank accession codes of high-pressure Citrine atomic 

structures. The second refinement procedure was used for the deposited 

structures.
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Table 4.9:  Quality indicators and estimated standard uncertainties for Citrine 

atomic models derived by  refinement procedure 1. ESU RFree is the 

estimated standard uncertainty derived from Cruickshank’s RFree 

positional uncertainty formula (equation 2.31). ESU R is the estimated 

standard uncertainty  derived from Cruickshank’s R positional 

uncertainty formula (equation 2.30). C is the completeness of the 

dataset used to derive the model out  the maximum resolution indicated 

in the table. n is the number of observations used to derive the model. 

Cro Mean B is the mean B-factor of all atoms in the main 

chromophore. Y203 Mean B is the mean B-factor of all atoms in 

Tyr203. ESU B is the estimated standard uncertainty on the average B 

factor for the whole molecule. 



220

La
be

l
P 

(M
Pa

)
R

R F
re

e
n

At
om

s
C

Hi
 

Re
s 

(Å
)

Lo
w

 
Re

s 
(Å

)
M

ea
n 

B 
(Å

2 )

Cr
o 

M
ea

n 
B 

(Å
2 )

Y2
03

 
M

ea
n 

B 
(Å

2 )
ES

U 
B 

(Å
2 )

Bo
nd

 
Le

ng
th

s 
RM

SD
 (Å

)

An
gl

es
 

RM
SD

 
(˚)

ES
U

R F
re

e 
(Å

)
ES

U 
R 

(Å
)

Ci
tri

ne
00

01
_2

0.
1

0.
21

0.
31

78
72

18
60

1
2.

46
46

.6
8

17
.8

16
.3

14
.1

12
.2

0.
04

7
3.

43
0.

38
1.

06
Ci

tri
ne

00
01

_1
8

0.
1

0.
19

5
0.

24
8

18
96

8
21

38
1

1.
81

16
.1

4
11

.1
11

.9
15

.4
2.

9
0.

01
7

1.
80

5
0.

15
0.

16
Ci

tri
ne

05
00

_9
50

0.
18

3
0.

23
5

17
73

5
20

80
1

1.
9

41
.5

9
15

.3
15

.1
19

.6
3.

4
0.

02
1

1.
95

1
0.

16
0.

16
Ci

tri
ne

07
50

_1
6

75
0.

18
5

0.
26

10
42

5
19

44
1

2.
28

41
.6

3
15

.2
12

.2
18

.3
6.

7
0.

03
4

2.
59

1
0.

26
0.

36
Ci

tri
ne

10
00

_1
10

0
0.

19
1

0.
25

1
15

89
5

20
12

1
1.

97
39

.8
4

16
.9

14
.6

19
.3

4.
4

0.
02

5
2.

11
2

0.
18

0.
19

Ci
tri

ne
10

00
_2

10
0

0.
19

2
0.

24
3

17
18

9
20

45
1

1.
92

34
.7

5
16

.9
14

.7
19

.6
3.

8
0.

02
3

2.
03

9
0.

16
0.

18
Ci

tri
ne

10
00

_3
10

0
0.

19
4

0.
26

1
14

71
2

19
84

1
2.

03
39

.8
7

17
.8

15
.1

22
.3

5
0.

02
9

2.
22

4
0.

2
0.

21
Ci

tri
ne

10
00

_5
10

0
0.

18
5

0.
23

7
15

24
2

20
21

1
2.

01
41

.8
1

19
.3

19
.4

23
.2

4.
4

0.
02

6
2.

11
9

0.
18

0.
2

Ci
tri

ne
10

00
_7

10
0

0.
18

4
0.

23
2

24
16

0
21

81
1

1.
67

41
.5

6
12

.7
12

.8
15

.6
2

0.
01

3
1.

73
8

0.
12

0.
12

Ci
tri

ne
10

00
_8

10
0

0.
17

9
0.

22
7

18
57

3
21

46
1

1.
86

28
.4

8
14

.5
13

.8
17

.4
3

0.
01

9
1.

91
9

0.
15

0.
15

Ci
tri

ne
12

50
_1

12
5

0.
19

2
0.

26
2

19
17

9
20

55
1

1.
84

35
.5

1
16

15
.2

20
3.

1
0.

01
9

1.
92

1
0.

16
0.

15
Ci

tri
ne

12
50

_2
12

5
0.

19
0.

24
6

14
35

8
19

91
1

2.
04

34
.6

9
19

.5
15

.9
22

.8
4.

9
0.

02
7

2.
28

0.
19

0.
22

Ci
tri

ne
12

50
_3

12
5

0.
19

3
0.

26
5

14
30

6
19

67
1

2.
04

39
.9

4
20

.4
16

.8
22

.9
5.

4
0.

02
9

2.
33

4
0.

2
0.

22
Ci

tri
ne

12
50

_4
12

5
0.

19
4

0.
23

7
19

26
0

20
58

1
1.

86
31

.6
7

18
.3

19
24

.9
3.

1
0.

02
1.

95
2

0.
15

0.
16

Ci
tri

ne
15

00
_1

15
0

0.
19

8
0.

23
20

92
6

20
58

1
1.

78
39

.8
1

17
.6

16
19

2.
7

0.
02

1.
92

0.
13

0.
14

Ci
tri

ne
15

00
_2

15
0

0.
19

7
0.

26
2

13
02

8
19

45
1

2.
04

34
.7

3
19

.4
14

.7
19

.9
5

0.
02

8
2.

33
3

0.
21

0.
24

Ci
tri

ne
19

20
_2

19
2

0.
2

0.
23

6
28

93
8

21
05

1
1.

58
34

.2
4

14
.2

11
.3

14
.3

1.
7

0.
01

4
1.

67
3

0.
1

0.
1

Ci
tri

ne
19

20
_3

19
2

0.
19

4
0.

25
3

19
41

9
20

72
1

1.
75

34
.0

4
15

.4
13

.2
15

.8
2.

7
0.

01
7

1.
82

2
0.

15
0.

15
Ci

tri
ne

19
60

_2
19

6
0.

2
0.

24
9

19
15

6
20

04
1

1.
86

41
.8

1
19

.9
15

.6
18

.4
3.

9
0.

02
3

2.
11

9
0.

15
0.

16
Ci

tri
ne

20
00

_2
20

0
0.

19
6

0.
23

9
19

91
6

20
51

1
1.

83
41

.7
17

.3
15

.3
17

.6
3.

1
0.

02
1

1.
99

0.
14

0.
15

Ci
tri

ne
20

00
_3

20
0

0.
18

5
0.

23
9

16
55

3
20

35
1

1.
95

41
.6

3
16

.5
15

.8
17

.9
3.

6
0.

02
1

1.
94

5
0.

17
0.

18
Ci

tri
ne

25
00

_1
25

0
0.

19
3

0.
23

2
19

41
2

20
55

1
1.

78
24

.1
2

15
.9

14
.5

16
.8

2.
8

0.
01

8
1.

85
5

0.
14

0.
15

Ci
tri

ne
40

00
_1

40
0

0.
21

7
0.

26
6

19
70

4
20

54
1

1.
82

41
.4

2
13

.7
11

.1
13

.3
2.

9
0.

01
8

1.
86

2
0.

16
0.

17
Ci

tri
ne

40
00

_2
40

0
0.

20
1

0.
30

2
98

32
19

16
1

2.
25

22
.5

13
.8

10
12

.2
8.

5
0.

04
1

2.
95

0.
31

0.
42

Ci
tri

ne
40

00
_3

40
0

0.
2

0.
26

4
14

91
1

20
12

1
2.

02
20

.4
4

16
.7

12
.6

16
.1

4.
3

0.
02

6
2.

13
0.

2
0.

22
Ci

tri
ne

50
00

_3
50

0
0.

18
0.

24
2

19
03

0
21

57
1

1.
8

16
.4

2
10

.5
8.

3
9.

5
2.

7
0.

01
8

1.
83

5
0.

15
0.

15



Finally, 5 cycles of solvent addition followed by 5 cycles of restrained refinement with 

isotropic B-factor refinement were performed using the ARP/WARP program by 

Perrakis et al. [111, 183] and REFMAC5 [107], until the RFree [138] factor and log-

likelihood gain (LLG) function [107] were simultaneously minimized. The number of 

restrained refinement cycles in the final solvent addition-restrained refinement cycle 

was chosen to minimize RFree and LLG. Finally, the structures were validated with 

COOT [184] and PROCHECK [114]. The maximum resolutions of the data sets used in 

the first refinement procedure ranged from 2.46 Å to 1.5 Å. Refinement quality 

indicators for each structure derived by refinement procedure 1 are shown in table 4.9. 

In addition to the model quality indicators, R and RFree, table 4.9 shows the quantities 

necessary  to compute the positional estimated standard uncertainty for each model 

(equations 2.30 and 2.31). Table 4.9 also shows overall B-factor for each model, and 

the mean B-factor for the main chromophore and tyrosine 203. 
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Pressure 
(MPa)

Average 
ESU (Å)

Std Dev Phenol CoMStd Dev Phenol CoMStd Dev Phenol CoM Std Dev Imidazolinone CoMStd Dev Imidazolinone CoMStd Dev Imidazolinone CoMPressure 
(MPa)

Average 
ESU (Å) X (10-2 Å) Y (10-2 Å) Z (10-2 Å) X (10-2 Å) Y (10-2 Å) Z (10-2 Å)

0.1 0.265 1.23 0.03 0.392 6.31E-01 0.02 0.001
50 0.156 - - - - - -
75 0.260 - - - - - -
100 0.164 6.49 27.14 0.190 3.35E+00 21.36 19.390
125 0.176 8.85 7.29 1.164 8.34E-01 3.08 1.273
150 0.171 0.12 0.08 0.001 3.05E-02 1.91 0.085
196 0.142 1.96 2.64 0.616 2.06E+00 2.02 1.108
250 0.137 - - - - - -
400 0.221 4.02 2.66 0.595 1.12E+01 2.82 3.461
500 0.149 - - - - - -

Table 4.10:  Average positional estimated standard uncertainties (ESU) at  each 

pressure level compared with standard deviations of main chromophore 

phenol ring and imidazolinone ring center of mass positions for Citrine 

atomic models derived by refinement procedure 1. 



It should be noted that  the overall B-factor for the structure is similar to, often within 

error of, the mean B-factors of the main chromophore and tyrosine 203, suggesting 

that the average uncertainty formulas (equations 2.30 and 2.31) are appropriate for the 

main chromophore and tyrosine 203. 

Table 4.10 shows the average positional estimated standard uncertainty at each 

pressure level, and the standard deviations of the main chromophore and tyrosine 203 

phenol ring center of mass positions for the atomic models derived by refinement 

procedure 1. 

4.8.2 Refinement Procedure 2

The second refinement procedure was similar to the first, except that the lengths of the 

peptide bonds from residues 64 and 68 to the main chromophore were tightly 

constrained to satisfy the stereochemical constraints required for accession into the 

Protein Data Bank. Additionally, the maximum resolution used in refinement was 

raised to the maximum found in the X-ray diffraction dataset. Although raising the 

maximum resolution used in the refinement reduces the R-factor of the resulting 

model as the signal to noise ratio of higher-resolution spots is lower, the precision of 

the model should increase. Additionally, the completeness of the diffraction dataset out 

to the maximum resolution used in the refinement, C, will be reduced due to an 

inability to collect all reflections in the maximum resolution ring as the detector has a 

square face. Cruickshank’s estimates for the coordinate uncertainty in a protein atomic 

model (equations 2.30 and 2.31) indicate that while the precision of the atomic model 

may suffer from a reduced R-factor and reduced completeness, C, this will be more 

than compensated for by an increase in the number of observations, n, relative to 

model parameters, p. 
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Table 4.11:  Quality indicators and estimated standard uncertainties for Citrine 

atomic models derived by refinement procedure 2. ESU RFree is the 

estimated standard uncertainty  derived from Cruickshank’s RFree 

positional uncertainty formula (equation 2.31). ESU R is the estimated 

standard uncertainty derived from Cruickshank’s R positional 

uncertainty formula (equation 2.30). C is the completeness of the 

dataset used to derive the model out the maximum resolution indicated 

in the table. n is the number of observations used to derive the model. 

Cro Mean B is the mean B-factor of all atoms in the main 

chromophore. Y203 Mean B is the mean B-factor of all atoms in 

Tyr203. ESU B is the estimated standard uncertainty  on the average B 

factor for the whole molecule. 
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Refinement quality indicators for set of atomic models produced by refinement 

procedure 2 are shown in table 4.11. The average positional estimated standard 

uncertainty at each pressure level, and the standard deviations of the main 

chromophore and tyrosine 203 phenol ring center of mass positions for the atomic 

models derived by refinement procedure 2 are shown in table 4.12. 

The model-set derived from refinement procedure 2 was analyzed to find the effects of 

high pressure on the Citrine scaffold. This analysis is described in a forthcoming 

article by us [6] and in chapter 5. 
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Pressure 
(MPa)

Average 
ESU (Å)

Std Dev Phenol CoMStd Dev Phenol CoMStd Dev Phenol CoM Std Dev Imidazolinone CoMStd Dev Imidazolinone CoMStd Dev Imidazolinone CoMPressure 
(MPa)

Average 
ESU (Å) X (10-2 Å) Y (10-2 Å) Z (10-2 Å) X (10-2 Å) Y (10-2 Å) Z (10-2 Å)

0.1 0.144 0.211 1.159 0.047 0.350 10.160 1.788
50 0.113 - - - - - -
75 0.111 - - - - - -
100 0.119 1.580 1.958 0.710 0.610 24.910 7.932
125 0.119 0.296 1.137 0.980 0.996 12.630 2.713
150 0.125 0.089 0.001 0.003 0.259 0.004 0.004
196 0.110 1.304 1.452 0.582 6.783 6.869 1.420
250 0.147 - - - - - -
400 0.148 2.277 4.225 0.369 7.208 8.726 3.874
500 0.111 - - - - - -

Table 4.12:  Average positional estimated standard uncertainties (ESU) at each 

pressure level compared with standard deviations of main chromophore 

phenol ring and imidazolinone ring center of mass positions for Citrine 

atomic models derived by refinement procedure 2. 



4.8.3 Analysis of High-pressure Atomic Models

Refinement procedures 1 and 2 both yielded a set of atomic models that  reveal a small, 

but progressive reorientation of the two stacked aromatic rings that compose Citrine’s 

chromophore. This deformation of the chromophore smoothly  increases with pressure 

and stands out from atomic coordinate error. Structures of the main chromophore and 

tyrosine 203 of the highest quality structures derived by refinement procedure 1 at 
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Z
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Motion of Chromophore 

with Increasing Pressure

! 3.4 Å

400 MPa

200 MPa

0.1 MPa

100 MPa

0.82 Å

Figure 4.43:  X-ray crystal structures of Citrine’s chromophore at selected pressures 

with the lowest RFree factors. Note the x-y-z coordinate axes defined in 

this figure. The origin of the coordinate system is at the center of the 

tyrosine 203 phenol ring. Note that the centers of mass of the main 

chromophore phenol and imidazolinone rings have negative z 

coordinates. 



representative pressures are shown in figure 4.43. The tyrosine 203 phenol rings of the 

high pressure cryo-cooled structures were aligned using the LSQKAB program [185] 

to allow inspection of the main chromophore position relative to tyrosine 203. This 

aligned tyrosine 203 coordinate system used in this discussion is defined in figure 

4.43. The origin of the aligned tyrosine 203 coordinate system is at the center of the 

tyrosine 203 phenol ring. The x and y axes of this system are embedded in the plane of 

the phenol ring while the z axis is normal to this plane. The x, y and z axes are oriented 

so that all motions with increasing pressure have a positive sign. 

Plots of the motion of the main chromophore’s two rings in the aligned tyrosine 203 

coordinate system are shown in figures 4.44 and 4.45. Figure 4.44 shows the motion 

of the main chromophore in the tyrosine 203 coordinate system for the model-set 

derived by refinement procedure 1. Figure 4.45 shows the same motions for the 

model-set derived by refinement procedure 2. 

Both model-sets show highly  similar chromophore deformation motions. In the 

model-sets derived by both refinement procedures, the center of the main 

chromophore’s phenol ring slides underneath the stacked tyrosine 203 phenol with 

increasing pressure. This sliding motion is largely confined to a plane parallel to the x-

y plane, and 3.4 Å below it, at z ≈ -3.4 Å. In the model-set derived from refinement 

procedure 2 there is a slight downward motion of the main chromophore relative to 

tyrosine 203 of ≈ 0.05 Å over 500 MPa. 
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A : Chromophore Phenol Ring Average Center of Mass Coordinates

B : Chromophore Imidazolinone Ring Average Center of Mass Coordinates

C : Average Normal Vector to Phenol and Imidazolinone Angle with z-Axis

Figure 4.44:  Average center of mass positions of the main chromophore phenol and 

imidazolinone rings in the coordinate system defined in figure 4.43. 

Error bars estimated by Cruickshank’s formula (equation 2.31) using 

the data in table 4.9. Fits are shown as solid, blue lines. Models derived 

from refinement procedure 1. 
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A : Chromophore Phenol Ring Average Center of Mass Coordinates

B : Chromophore Imidazolinone Ring Average Center of Mass Coordinates

C : Average Normal Vector to Phenol and Imidazolinone Angle with z-Axis
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Figure 4.45:  Average center of mass positions of the main chromophore phenol and 

imidazolinone rings in the coordinate system defined in figure 4.43. 

Error bars estimated by  Cruickshank’s formula (equation 2.31) using 

the data in table 4.11. Fits are shown as solid, blue lines. Models 

derived using refinement procedure 2.



In both model-sets the maximum extent of the swing is approximately 0.8 Å over 500 

MPa. In both model-sets, the largest component of motion is approximately +0.5 Å in 

the y-direction, moving the main chromophore away from the origin. It  is interesting 

to note that the starting position of the motion is slightly different for both model-sets, 

0.5 Å for model-set 1 and 0.4 Å for model-set 2, but the extent of the motion is the 

same for both model-sets. 

The motion in the x-direction brings the center of the main chromophore’s phenol 

closer to the origin of the coordinate system. The motion is approximately  0.4 Å for 

model-set 1 and 0.35 Å for model-set 2.  

The motion of the main chromophore imidazolinone ring shows greater differences 

between the two model-sets. This is not surprising, as the main chromophore is 

attached to the rest of the Citrine polypeptide through the imidazolinone ring, and 

these bonds were tightly constrained in refinement procedure 2. For refinement 

procedure 1, the center of mass of the main chromophore’s imidazolinone ring moves 

by 0.4 Å in y, 0.4 Å in x and 0.2 Å in z. For refinement procedure 2, the center of mass 

of the main chromophore’s imidazolinone ring moves by  ≈ 0.3 Å in y, 0.4 Å in x and 

0.1 Å in z

In addition to sliding, the main chromophore phenol ring re-orients with respect to the 

tyrosine 203 phenol ring, and to the main chromophore’s imidazolinone ring. In 

refinement procedure 1, the normal vector to the main chromophore’s phenol ring 

rotates from 6˚ with respect  to the z-axis to 14˚ by  500 MPa, while in refinement 

procedure 2, this rotation is from 6˚ to 11˚. In refinement procedure 1, the normal to 

the main chromophore imidazolinone ring rotates by less than 5˚, from ≈ 12˚ to 17˚, 
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changing the orientation of the two rings composing the main chromophore. For 

refinement procedure 2, a rotation of ≈ 5˚, from 11  ̊to 16˚ occurs from 0.1 to 50 MPa, 

and then stops. The re-orientation as a function of pressure is shown in figures 4.44 

and 4.45.

The progressive deformation of Citrine’s chromophore under high-pressure 

cryocooling conditions appears to be reproduced under differing refinement 

conditions. It is noteworthy, that just  prior to publication of our article on the effects of 

pressure on the structure and fluorescence spectrum of the Citrine chromophore, we 

detected an error in the model of the Citrine structure used in refinement. Residue 80 

of the Citrine molecule, a surface residue, is listed as an arginine in the original Citrine 

structure (PDB accession code 1HUY) by Griesbeck et al. [1]. However, genetic 

sequencing indicates that residue 80 is a glutamine. Conversion of residue 80 to a 

glutamine produces only a minor variation in the deformation motion seen at the 

chromophore, further suggesting that the motion seen is robust to refinement error. 

The progressive deformation of Citrine’s structure under high-pressure cryo-cooling is 

consistent with the mechanism suggested for the shift towards the green of Citrine’s 

fluorescence peak: a horizontal sliding of the main chromophore and tyrosine 203, that 

was suggested by quantum mechanical modeling in chapter 3. The relative positions of 

the main chromophore and the perturbing tyrosine 203 phenol ring separate with 

increasing pressure, removing the perturbing influence of the tyrosine 203 phenol 

allowing the main chromophore to return to its unperturbed, green fluorescent state. 

The removal of the perturbing interaction requires a structural shift of only ≈ 0.8 Å. 
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The fluorescence peak shift of Citrine from yellow to green, discussed in this chapter, 

further suggests that the deformation motion seen here is real, not an artifact of 

refinement.

This chapter has reported on the deformation at the chromophore of the Citrine 

molecule, and implicated this structural deformation in a shift of the fluorescence peak 

of the molecule. However, this chapter does reveal how pressure actuates the 

deformation seen at the chromophore. Chapter 5 discusses an analysis of the entire 

structure of the Citrine molecule under high pressure and proposes a mechanism of 

actuation of this deformation at the chromophore.
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CHAPTER 5

THE DEFORMATION OF THE CITRINE SCAFFOLD UNDER HIGH PRESSURE

5.1 Introduction

Chapter 4 discussed the deformation motion at  the chromophore of the Citrine 

molecule that is correlated with a shift in the fluorescence peak of the molecule from 

yellow to green. This chapter focuses on structural changes in the scaffold of the 

Citrine molecule that actuate the deformation motion at the chromophore; that is, how 

pressure is mechanically  transmitted from the surface of the Citrine molecule to the 

chromophore. The results of this analysis show that  the actuation of the chromophore 

motion is due to the concerted, differential motion of two clusters of residues that 

compose the β-barrel and central 3-10 helix of the Citrine molecule. 

It has long been appreciated that the three-dimensional structure of a protein molecule 

can exert a strong influence over the active site of the molecule [8]. This linkage 

permits allosteric binding of ligands and processing of substrates. Examples of this 

include the relaxed (oxygenated) to tense (de-oxygenated) transition in hemoglobin 

[8], the allosteric inhibition of phospho-fructo-kinase-1 (PFK-1) by phospho-

enolpyruvate [186], and the gating of ion channels [187]. These, and other well-known 

examples of allosteric behavior occur in protein molecules that possess more than one 

subunit. 

Small structural changes, sometimes less than 1 angstrom in magnitude, in a distant 

part of the molecule may be communicated through the protein matrix to an active 

and/or binding site, promoting a change in binding constant, catalytic rate or other 

functional change. 
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The structural flexibility  of multi-subunit proteins seems to permit the ready 

transmission of mechanical signals between distant parts of molecule, and facilitates 

allosteric behavior.

However, although multiple subunit proteins most obviously  display allosteric 

behavior, recent results indicate that the possession of multiple subunits is not a 

prerequisite for the manifestation of allosteric behavior. As discussed in chapter 1, 

Ansari et al. [50] demonstrated that carbon-monoxy  sperm whale myoglobin displays 

three conformational substates associated with the infrared stretch bands of the heme-

bound carbon monoxide. Frauenfelder et al. [51] speculated that these conformational 

substates may possess different reactive properties, giving myoglobin ligand binding 

and reactive properties not  traditionally  associated with single subunit, non-allosteric 

enzymes, suggesting that even monomeric proteins display behavior that might be 

regarded as allosteric. 

Single molecule experiments also indicate that many  catalytic, monomeric proteins 

display  a variety of catalytic rates or functional states. Blum et al. [7] observed that 

isolated molecules of Yellow Fluorescent Protein, a close relative of Citrine, 

transiently  convert to a blue-shifted form, with a fluorescence peak at ≈ 514 nm. This 

blue-shifted fluorescence peak is close the fluorescence peak value that is 

asymptotically approached by Citrine under increasing freezing pressure. 

Coureux et al. [61] suggested that this functional heterogeneity  seen in single 

molecule experiments is the result of these molecules assuming a variety  of 

conformations that differ only  on the sub-angstrom level. As the active site of the 
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enzyme is intricately interwoven into the structure of the scaffold, these different 

structural configurations may result in differing active site behavior. 

This interplay of the scaffold of the protein and its function suggests that  deliberate 

perturbation of the scaffold on the 0.1 Å level could greatly  affect the function of the 

molecule. Chapter 1 discussed the effects of high pressures on the structure and 

function of protein molecules. Protein atomic structures solved at pressures up to a 

few hundred MPa [3-5, 23, 24, 26-29, 74] indicate that atoms in protein molecules are 

typically displaced by approximately  0.1 to 1 Å from their ambient pressure positions. 

Pressures in the same range also significantly  modify protein function . For example, 

the flash decay  rate of firefly luciferase is reduced [13], the oxygen binding affinity of 

human hemoglobin is doubled [188], and oxidation rates by  morphinone reductase are 

substantially  increased [18]. Urayama et al. [4] demonstrated that sub-angstrom 

structural changes in the scaffold of the sperm-whale myoglobin may correspond to 

the A0 sub-state of myoglobin. 

While it is reasonable to assume that the functional changes follow from changes in 

protein structure with pressure, there is a lack of specific experimental examples that 

explicitly explore the mechanism of interaction between the matrix of a protein 

molecule, the structure of its active site and its function. Chapter 4 discussed a direct 

correlation between a sub-angstrom progressive deformation of the Citrine 

chromophore and a large progressive change in the fluorescence spectrum of the 

molecule [5]. This chapter attempts to understand the interaction of structural changes 

in the matrix of the Citrine molecule and structural deformations in the fluorescent site 

of the molecule. 
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5.2 Analysis Procedures

5.2.1 Clustering Analysis

Clusters of residues that move in concert with increasing pressure in the series of 

Citrine atomic structures were identified using the heuristic clustering algorithm 

RIGIMOL (DeLano Scientific LLC, Palo Alto, CA, USA). Input coordinate files to 

RIGIMOL were prepared with PYMOL (DeLano Scientific LLC, Palo Alto, CA, USA). 

The results of the clustering analysis and attempts to understand sources of 

computational artifacts in the procedure are discussed in section 5.3.4. 

5.2.2 Computation of Structural Properties

Structural properties of Citrine atomic structures such as inertia tensors, centers of 

mass, and principal axes were computed using custom software implemented in 

PYTHON with use of the NUMPY [189] numerical library. Fitting of structural 

parameters was performed using the IPYTHON interactive interpreter (http://

ipython.scipy.org) and the NUMPY AND SCIPY numerical libraries. NUMPY is an open-

source numerical library for the PYTHON programming language, available at http://

numpy.scipy.org [189]. SCIPY is an open-source scientific library for PYTHON available 

at http://www.scipy.org. 

Cavity detection and volume calculations were performed with the molecular surface 

computation program MSMS [190] using a 1.2 Å radius probe. Cavity surface 

information from the MSMS program was visualized in PYMOL (DeLano Scientific 

LLC, Palo Alto, CA, USA) using a modified version of a custom PYTHON script by 

Warren DeLano. 
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5.2.3 Assignment of Secondary Structures

Assignment of secondary structural properties to the series of Citrine structures was 

performed with DSSP [191].
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B: Chrompore region of Citrine molecule at 0.1 (red) and 400 MPa (blue)
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Figure 5.1:  A: Stereo image of superimposed atomic structures of Citrine frozen at 

0.1 MPa (red) and 400 MPa (blue). The main chromophore and 

tyrosine 203 are highlighted in the 0.1 MPa structure. B: Stereo image 

of the chromophore region of the Citrine molecule at 0.1 MPa (red) and 

400 MPa (blue). 



5.2.4 Choice of Refinement Set

For the analysis presented in this chapter, and in forthcoming article on the effects of 

pressure on the scaffold of Citrine [6], we chose to use the atomic models of Citrine in 

refinement set 2 discussed in chapter 4. The reasons for this choice are two-fold. 

Firstly, these models were deposited into the Protein Data Bank (PDB), and are thus 

publicly available, so that our analysis may be repeated, critiqued and improved upon 

easily. Secondly, refinement of these models used the highest resolution diffraction 

resolution data available, and thus, these models show the lowest estimated standard 

uncertainties.

5.3 Results

5.3.1 Secondary and Tertiary Structure of Citrine Under High Pressure

The aligned structures of the Citrine molecule at ambient pressure and at 400 MPa are 

shown in figure 5.1. By visual inspection, the low and high-pressure structures of the 

Citrine molecule shown in figure 5.1 appear largely identical. A plot of the average 

displacement of the α-carbon of each residue under a pressure increase from ambient 
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pressure to 400 MPa is shown in figure 5.2. The displacement of the α-carbons due to 

pressurization indicates that the effects of pressure up  to 400 MPa on the structure of 

the Citrine molecule are small in magnitude when compared to the overall dimension 

of the protein. By adding the estimated standard uncertainties on the structures of 

Citrine shown in table 4.10 in quadrature, we estimate that the uncertainty  in the 

displacements between pressures is approximately  0.2 to 0.3 Å, as indicated by the 

“noise threshold” in figure 5.2 [4, 29]. Explicitly, we believe that the estimated 

standard uncertainty  on a displacement of an atom, Δx, between two pressure levels, 

P0 and P1, should be estimated by the estimated standard positional uncertainties at  the 

two pressure levels, 

� 

σ x,P0( ) and 

� 

σ x,P1( ) ;

 

� 

Σ Δx,P0,P1( ) = 3 σ x,P0( )2 + σ x,P1( )2( )1/ 2  (5.1)

The 3 term is incorporated to account for the possibility that the error the 

coordinates of the atom at each pressure may not be in the same dimension. The 

Cruickshank uncertainty formula (equations 2.30 and 2.31) estimates the uncertainty 

on each component of coordinate of an atom, rather than in the position. To account 

for the uncertainty in a position, the coordinate uncertainty  must be multiplied by 3  

(equation 2.32). Thus, for figure 5.2

 

Σ Δx, 0.1MPa, 400 MPa( ) = 3 0.1142 + 0.1112( )1/2
= 1.59 3 Å
= 0.27 Å

. (5.2)

239



It is worth noting, that the apparent noise threshold in figure 5.2 is ≈ 0.2 Å, suggesting 

that the error estimate of 0.27 Å may be slightly  too large. This is certainly possible as 

the Cruickshank error estimation formula only accounts for the diffraction data 

contribution to the error on the structure. Geometric constraints applied in the 

refinement of these structures may  assist in reducing the noise threshold for detection 

of pressure induced perturbations, at least  at the maximum diffraction resolutions, 1.5 

to 2.5 Å, observed in these experiments. 

It is important to emphasize that although there are likely many residues in the 

structure of Citrine where the displacement due to pressurization is < 0.2 to 0.3 Å, the 

structural resolution of the diffraction experiments does not permit the definitive 

identification of displacements smaller than the noise threshold [4, 29].

There are numerous residues that are displaced by several times the noise threshold. 

The largest of the deviations in figure 5.2 are at the start (N-terminus) of the primary 

sequence. This may  in part be due to a change in secondary structure of this region 

with increasing pressure. Calculation of the secondary structure of Citrine with DSSP 

[191] indicates that  the first 10 residues (Proline -1 to Phenylalanine 8) form an α-

helix at ambient pressure. However, with increasing pressure, the number of residues 

in the N-terminal α-helix is reduced. In structures above 125 MPa, Phe8 consistently 

(14 out of 16 structures) is no longer in the α-helix. Leu7 also is not in the helix in 10 

of 16 structures above 125 MPa. The N-terminal residues Pro-1 and Met0 are not part 

of the helix in 5 of 7 structures above 200 MPa. 
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However, the large displacements at the N-terminus seen in figure 5.2 cannot be 

attributed solely to pressure. The N-terminus α-helix and loops of Citrine have poorly 

resolved electron density, indicating disorder. At  high pressure, these N-terminal 

residues have B-factors that  are considerably higher than the average B-factor for the 

entire Citrine molecule. Cruickshank’s coordinate uncertainty formulas, discussed in 

section 2.8.2, predict an exponential increase in coordinate uncertainty  with increasing 

B-factor. The variation in α-carbon position between any two structures at the same 

pressure in the series of high-pressure Citrine structures is of similarly large 

magnitude to that seen in figure 5.2. It is interesting to note that N-terminal primary 

sequence deletions up to Phe8, the same residues that showed changes of secondary 

structure with increasing pressure, have no impact on the folding or maturation of the 

Green Fluorescent Protein [192]. This suggests that changes of the secondary structure 

up to Phe8, while notable, do not affect the spectral properties of Citrine. Additionally, 

the N or C terminus (or both) of YFP and other Aequorea fluorescent proteins can be 

fused to other materials, including proteins, without changing the spectral properties of 

the molecule [2]. Therefore, we believe that these large spatial deviations seen at the 

N-terminus are decoupled from the pressure-induced actuation of the chromophore 

deformation. 

The secondary structure of the 3-10 helix that fills the center of the β-barrel and the 

walls of the β-barrel is retained up to at least 500 MPa. These results are consistent 

with the spectroscopic observations by  Scheyhing et al. [148] and Herberhold et al. 

[193] that suggest that the tertiary structures of Aequorea fluorescent protein 

molecules are stable to unfolding until pressures of at least 900 MPa and up to 1300 

MPa for many mutants. 
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In addition to the displacements seen at the disordered N-terminus region of Citrine, 

there are numerous residues that also displaced by several times the noise threshold. 

Two notable displacements highlighted in figure 5.2 are the pressure-induced 

displacements of residues 66 and 203, the main chromophore and tyrosine 203, 

consistent with our previous report of the deformation of the chromophore [5]. It is 

noted that the magnitudes of the residue displacements are non-uniform, suggesting 

the non-isotropic nature of the compression of Citrine.

Although the displacement plot shown in figure 5.2 shows the magnitude of structural 

changes due to pressurization, it does not provide information on the directions of 

these motions. To further understand the deformation of the Citrine molecule under 

pressure, a distance difference matrix [24] was calcuated, showing the expansion and 

contraction of distances between residue pairs in the Citrine structure under a pressure 

increase from 0.1 to 400 MPa. The distance difference matrix of Citrine under 

pressure shown in figure 5.3 indicates that Citrine does not uniformly compress with 

pressure: some distances compress (blue regions in figure 5.3), while others expand 

(red regions in figure 5.3) with increasing pressure. The white regions in figure 5.3 

indicate distances that either compress by  more than 0.6 Å, or expand by more than 

0.4 Å. The largest expansion of a distance in the whole molecule is by  ≈ 2.7 Å, while 

the largest compression of a distance is by ≈ 1.7 Å. At least of one of the residues in 

the atom pairs that show these large distance compressions and expansions are often 

observed at the N-terminus of the Citrine molecule. The largest distance compression 

between residues in the β-barrel is 0.92 Å, and the largest distance expansion is 0.67 

Å.
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Figure 5.3:  Averaged distance difference matrix for the Citrine molecule under a 

pressure increase from 0.1 to 400 MPa. Compressions are shown in 

blue and expansions are shown in red. The matrix is symmetrical about 

the diagonal that runs from lower left to upper right of the matrix. Note 

that all elements on this diagonal are zero. The white regions in the 

matrix, predominantly  at the periphery of the protein structure, indicate 

distances that either compress by more than 0.6 Å, or expand by  more 

than 0.4 Å. The largest expansion of a distance is by  ≈ 2.7 Å, while the 

largest compression of a distance is by ≈ 1.7 Å. The largest expansion 

of a distance in the β-barrel and central 3-10 helix region, marked by 

the large black square is ≈ 0.9 Å, and the largest compression is ≈ 0.7 

Å. Note the smaller rectangles marking the expansion of the distance 

from the central 3-10 helix to the section of the β-barrel containing 

Tyr203. 
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5.3.2 Volume Reduction of Citrine Molecule Under Pressure

The overall volume of the Citrine molecule shrinks under high pressure. The external 

surface and surfaces of internal cavities present in each solvent-stripped Citrine 

structure were identified and traced with the reduced surface computation program 

MSMS [190] using a 1.2 Å radius probe. The surfaces identified by  MSMS were used 

to compute the volume enclosed by the external surface of each Citrine structure (the 

excluded volume) and the volumes of the cavities present in the interior of each Citrine 

structure. The net volume of each structure was computed by subtracting the total 

internal cavity  volume from the excluded volume of the structure. Plots of the 

averaged excluded volume and averaged net volume of the solvent-stripped Citrine 

structures are shown as a function of pressure in figure 5.4. 

Both the excluded volume and net volume of Citrine decrease by approximately  300 

Å3, or 1.1% over the 500 MPa pressure range investigated. The equal reduction of the 

excluded and net volumes of Citrine indicates that  the volume reduction of the 
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molecule is not accounted for solely by reduction in internal cavity  volume. The 

volume reduction of Citrine over the 500 MPa pressure range gives an isothermal 

compressibility of

 

� 

β = −ΔV ΔP( ) VInitial = 2.35 MBar−1 = 2.35 ×10−2 GPa−1 (5.3)

This value of the isothermal compressibility is at the low end of the protein 

compressibility range reported by  Heremans and Smeller [194]. The inverse of the 

isothermal compressibility, the isotropic bulk modulus of Citrine is  κ = 42.5 GPa. For 

comparison, the bulk modulus of steel is approximately  160 GPa and for aluminum it 

is 76 GPa. 

5.3.3 Non-Isotropic Volume Reduction of Citrine Under Pressure

As protein molecules have non-homogeneous structures, it is reasonable to expect that 

the structural response to pressure will not be uniform throughout the structure. The 

expectation of non-uniform compressibility is supported by the observation of 

multiple domains of differential compressibility under pressure in the structure of hen 

egg white lysozyme by Kundrot and Richards [24] and Refaee et al. [26], in the 

structure of T4 lysozyme under pressure by Collins et al. [29], and in the differing 

response to pressure of the α-helices forming the structure of sperm whale myoglobin 

[4] that was discussed in chapter 1. If the compression of Citrine under high pressure 

were isotropic and homogeneous, we would expect that the relative orientation and 

spatial arrangement of the two elements of the chromophore would be retained as the 

pressure applied was increased. However, we observe that the two elements of the 

chromophore slide apart with very  little change in their vertical separation as the 

pressure applied to the molecule is increased [5]. 
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Figure 5.5:  A: Orientation of the principal axes of the Citrine β-barrel walls at 

ambient pressure. Arrows indicate the direction of rotation of principal 

axes 2 and 3 with increasing pressure. B: Angular deviation of principal 

axis 3 with increasing pressure. C: Variation of the eigenvalues of the 

inertia tensor of the β-barrel walls with increasing pressure. 

Eigenvalues 1 (red) and 3 (blue, dotted) reduce by approximately  1% 

over the pressure range from 0.1 to 500 MPa. Eigenvalue 2 (green,  

dashed) increases by approximately 0.2% over the same pressure range.
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This observation of the sliding of the chromophore elements suggests, despite 

Citrine’s overall linear volume reduction with pressure, that Citrine does not compress 

uniformly.

The principal axes of the Citrine β-barrel wall were computed [195] to provide more 

intuitive insight into the pressure-induced deformation of Citrine. The residues 

involved in β-sheet interactions in the β-barrel region of the Citrine molecule were 

extracted from the series of high-pressure Citrine structures. Analysis was limited to 

the β-barrel wall to avoid being dominated by the disordered regions. The α-carbons 

of the extracted structures were first aligned using the least squares fitting algorithm 

incorporated into PYMOL (DeLano Scientific LLC, Palo Alto, CA, USA) prior to 

computing the inertia tensor of each structure. The principal axes of each β-barrel 

structure were found by computing the eigenvectors of the structure’s inertia tensor 

and associated eigenvalues using the NUMPY numerical library. A diagram showing 

the orientation of the principal axes of the Citrine β-barrel at ambient pressure is 

shown in figure 5.5A. The number 2 principal axis is directed approximately along the 

cylindrical symmetry axis. Principal axes 1 and 3 are mutually perpendicular and lie 

approximately in the plane of cylindrical symmetry. 

As the Citrine molecule is pressurized, the number 1 β-barrel wall principal axis 

remains largely fixed in direction relative to the reference frame defined by the 

alignment of the β-barrel structures. The other two principal axes, 2 and 3, 

approximately rotate about principal axis 1. A plot of the averaged angular deviation 

of principal axis 3 from its room pressure direction is shown in figure 5.5B. The 

angular deviation of principal axis 3 from its room pressure direction proceeds linearly 

up to the maximum pressure observed of 500 MPa at a rate of ≈ 0.5˚ per 100 MPa. 
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The directions of drift of principal axes 2 and 3 are shown in figure 5.5A. The slight 

re-orientation of the principal axes of the Citrine β-barrel wall indicates a 

redistribution of mass on the wall of the Citrine β-barrel. The direction of the drift  of 

the principal axes suggests a motion of mass towards the side of Citrine β-barrel to 

which the perturbing tyrosine 203 ring is attached (see figure 5.5A).

The eigenvalues of the inertia tensor of the Citrine β-barrel wall are an indicator of the 

radius of the β-barrel wall and the height of the β-barrel. For an ideal, thin walled 

cylinder of mass m, radius r and height h, the eigenvalue associated with the principal 

axis aligned with the cylindrical symmetry axis is

 

� 

Iz = mr2 2  (5.4)

The eigenvalues associated with the principal axes lying in the cross section of the thin 

walled cylinder are

 

� 

Ix = Iy = m 3r2 + h2( ) 12   (5.5)

Given that the amino acid mass of the cylinder is constant, the eigenvalues are 

sensitive indicators of the dimensions of the cylinder. 

While the eigenvalues associated with principal axes 1 and 3 reduce with pressure, the 

eigenvalues associated with principal axis 2 remains relatively constant. A plot of the 

eigenvalues associated with the β-barrel principal axes is shown in figure 5.5C. The 

reduction of eigenvalues 1 and 3 is consistent with the overall compression of the 

molecule under pressure of approximately 1.1% over 500 MPa. However, the 
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constancy of eigenvalue 2 suggests that the side of the β-barrel wall close to principal 

axis 2 may not be compressing. This observation indicates that rather than 

isotropically compressing, part of the wall of the β-barrel in the vicinity  of principal 

axis 2 may be retaining its original radius of curvature, appearing to bulge out as other 

sections of the wall reduce in radius of curvature. The Citrine molecule β-barrel 

appears to be buckling or bending under pressure, in a manner reminiscent of the 

buckling of a strut or the bending of a bimetallic strip under heating.

5.3.4 Clustering Analysis of Citrine Compression

To further quantify the non-isotropic compression of the Citrine structure under high 

pressure, we sought to identify groups of atoms in the Citrine structure that move in 

concert under the application of high pressure. The high pressure structures of hen egg 

white lysozyme [24, 26] and of T4 lysozyme [29] show the existence of domains of 

differing compressibility. 

The existence of groups of residues that move in concert  with increasing pressure was 

first suggested by manual inspection of animated distance difference matrices of the 

Citrine structure. Each frame in the animation corresponded to a colored, averaged 

distance difference matrix between the ambient structures of Citrine and the structures 

at an elevated pressure. 

This visual analysis hinted at the presence of residues that maintained an 

approximately constant distance between one another with increasing pressure, yet 

showed varying distances between themselves and other residues not in the cluster. 

However, this visual analysis was tedious, and somewhat sensitive to the vagaries of 

the eye and mind of the inspector. The eye of the author is much more sensitive to the 
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motion present in these animations, and is poor at selecting these patterns in a static 

image. For this reason, while it was easy to gain a sense that some sort  of concerted 

motion was occurring in the Citrine molecule with elevated pressure, it was hard for 

the author to definitively draw boundaries between clusters. Thus, an automated 

procedure was desired, that would analyze these distance difference maps, and 

examine them for internal correlations. The proprietary  clustering algorithm RIGIMOL 

that is incorporated into the molecular graphics and manipulation program PYMOL 

(DeLano Scientific LLC, Palo Alto, CA, USA) performs this task: automated analysis 

of distance difference matrices between structures. RIGIMOL was originally  developed 

to interpolate between two or more distinct structures of a protein, for instance 

between the open and closed states of a hinged protein, and produce a trajectory 

between the two states, for the purposes of producing an animation of the trajectory. 

RIGIMOL rapidly  identified what we believe to be the defining feature of the Citrine 

deformation: the presence of two groups of residues that compose the β-barrel. As 

protein domains tend to be visually distinguishable, while the Citrine molecule is at 

first inspection, cylindrically  symmetrical, these groups of residues were termed 

clusters. It  was very important to definitively  identify the cluster assignment produced 

by the RIGIMOL algorithm, to reduce the possibility  that the identification of these two 

clusters was simply an artifact of the clustering algorithm, perhaps due to random 

coordinate error due to coordinate uncertainty  in the Citrine structure. For this reason, 

the clustering algorithm was re-run many times with different Citrine structures, 

different portions of the Citrine structure, different refinement model-sets and different 

values for the clustering algorithm parameters. The reproducibility  of the clustering 

assignment was checked in each of these cases. 
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While these clustering-assignment reproducibility experiments consistently identified 

the presence of two clusters in the β-barrel of the Citrine molecule, the location, 

relative size, and boundary between these two clusters varied from experiment to 

experiment. 

The RIGIMOL algorithm permits the user to select a variety of clustering parameters 

including the maximum allowed aspect ratio of a cluster, threshold positional and 

angular displacements above which atoms are no longer considered part of a cluster 

and the minimum size of a cluster.  It  was found that the cluster-assignment, at  least in 

the case of Citrine, was largely insensitive to the clustering algorithm parameters. As 

an aside, the RIGIMOL algorithm was applied to a series of high-pressure cryocooled 

T4 lysozyme structures, and the identification of clusters of residues in this series of 

structures was found to be highly dependent upon clustering parameters.

The cluster-assignment reproducibility experiments, found that the clustering 

assignment is heavily dependent upon the choice of input structures. RIGIMOL takes a 

series of structures as an input. However, RIGIMOL cannot interpret sequences of 

structures containing multiple equivalent structures, for instance, two structures at the 

same pressure. For this reason, multiple sequences with different structures at each 

pressure were tried. The experiments were also repeated with sequences of structures 

derived from both model-sets, refinement set 1 and refinement set 2, discussed in 

chapter 4. In each of these cases, for the full Citrine molecule, the results of the 

clustering algorithm were sensitive to the choice of input structures. 
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The sensitivity in the results of the clustering assignment to the choice of input 

structures is intuitively understandable. Some regions of the Citrine structure: the N-

terminal α-helix and the C-terminus show disorder and are highly variable from 

structure to structure, even at the same pressure. For this reason, it was suspected that 

random errors in the positions of atoms in these regions would bias the clustering 

analysis, and mask the real, but smaller pressure-induced concerted motions present in 

the well-ordered β-barrel scaffold. For this reason, we focused on finding a subset of 

the Citrine structure that  would produce highly similar clustering results independent 

of the choice of input structures. 
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Cluster Assignment from 

Refinement Set 1

Cluster Assignment from 

Refinement Set 2

Cluster 1 (front side 

of !-barrel wall)

Cluster 2 (back side of 

!-barrel wall)

Cluster 1 (front side 

of !-barrel wall)

Cluster 2 (back side of 

!-barrel wall)

Figure 5.6:  Comparison of the results of RIGIMOL cluster assignment using 

structures from refinement sets 1 and 2. Cluster 1 is colored red and 

cluster 2 is colored in blue. The main chromophore, colored in light 

blue, is attached to cluster 2, while tyrosine 203, colored in red, is 

attached to cluster 1. 
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Chromophore

Cluster 1 (front side 

of !-barrel wall)

Cluster 2 (back side of 

!-barrel wall)

Figure 5.7:  Clusters identified in the β-barrel walls and central 3-10 helix of the 

Citrine molecule that move in concert under high-pressure perturbation. 

Note that the main chromophore is attached to cluster 2, while the 

perturbing tyrosine 203 ring is attached to cluster 1. The main 

chromophore is colored in light blue for emphasis. 



We found that the subset of the Citrine molecule that produced the most reproducible 

clustering assignment consisted of the central 3-10 helix and β-barrel walls, without 

the floppy β-strand composed of residues 143 to 148. Figure 5.6 shows the results of 

the clustering analysis for refinement sets 1 and 2. The results of the clustering 

assignment, using the reduced Citrine structure shown in figure 5.6, appear to be 

highly similar, independent of refinement set. 

The RIGIMOL clustering algorithm identified two clusters of atoms in the β-barrel and 

central 3-10 helix of Citrine that move with respect to one another as the pressure 

applied to the Citrine molecule is increased. The two clusters are shown as colored 

regions in cartoon images of the Citrine structure in figures 5.6 and 5.7. Cluster 1 is 

colored in red, while cluster 2 is colored in blue. An important feature of the cluster 

assignment is that the perturbing tyrosine 203 is attached to cluster 1, while the main 

chromophore is attached to cluster 2. A relative motion of the two clusters under 

increasing pressure could actuate the motion of the main chromophore and tyrosine 

203 that has been reported [5]. 

To further quantify the non-isotropic compression of the Citrine structure under 

pressure, the relative motion of clusters of residues was analyzed in the series of high-

pressure Citrine structures. The β-barrel and the central 3-10 helix of the Citrine 

molecule were extracted from the series of high-pressure Citrine structures and aligned 

using the least squares fitting algorithm incorporated into PYMOL (DeLano Scientific 

LLC, Palo Alto, CA, USA). The heuristic clustering algorithm RIGIMOL (DeLano 

Scientific LLC, Palo Alto, CA, USA) was used to identify clusters of atoms in the 

extracted structures that move in concert with increased pressure. 
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The centers of mass of the two clusters composing the Citrine β-barrel and central 

3-10 helix move relative to one another with increasing pressure, and their principal 

axes rotate relative to one another. The relative motion of the centers of mass of the 

two clusters is small, but shows a strong trend with increasing pressure. The relative 

displacement motion of the center of mass of cluster 1 from its ambient pressure 

position in a reference frame where the center of mass of cluster 2 is fixed is shown in 

figure 5.8A. For ease of reference, the coordinate axes used in this discussion are the 
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A: Re-orientation of Cluster 1 Principal Axes Relative to Cluster 2 Principal Axes

B: Cluster 1 Center of Mass Motion Relative to Cluster 2 Center of Mass
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Figure 5.8:  A: Rotation of the principal axes of cluster 1 in a reference frame where 

the principal axes of cluster 2 are fixed. B: Motion of the center of mass 

of cluster 1 from its ambient pressure position in a reference frame 

where the cluster 2 center of mass is fixed. The directions of the 

coordinate axes of this system are shown in figures 1 and 9 and are the 

same as used in chapter 4. Fit lines in all plots were determined by least 

squares fitting with the NUMPY (http://numpy.scipy.org) numerical 

library. 

http://numpy.scipy.org
http://numpy.scipy.org
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Figure 5.9:  Upper panel: Motion of the cluster 1 (shown in red) center of mass in a 

reference frame where the center of mass of cluster 2 (shown in blue) is 

fixed. Lower panel: rotation of the cluster 1 principal axes relative to 

the cluster 2 principal axes. The circled cross (⊗) next to cluster 1 

principal axis indicates that the direction of rotation of the axis is 

rotating into the figure. The main chromophore is colored in light blue 

for emphasis. 
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same as those used in chapter 4 in the description of the deformation of the 

chromophore of Citrine [5]. The x and y axes of this coordinate system lie in the plane 

of the tyrosine 203-phenol ring, and the z-axis is normal to the ring. This coordinate 

system is shown in figures 4.43 and 5.9.

The center of mass of cluster 1, containing the perturbing tyrosine 203 ring, moves by 

approximately +0.2 Å in the y-direction, and +0.05 Å in the x-direction with respect to 

the center of mass of cluster 2. There is no discernible motion in the z-direction. These 

motions correspond well to the direction of the motions of the chromophore seen in 

our earlier work [5], where the perturbing tyrosine 203 ring moves by approximately 

+0.5 Å in the y-direction, +0.4 Å in the x-direction and relative to the main 

chromophore. 

In addition to the relative motions of the centers of mass of clusters 1 and 2, the 

principal axes of the two clusters also slightly  rotate with respect to one another. In a 

reference frame where the principal axes of cluster 2 are fixed, the principal axes of 

cluster 1 rotate by  approximately 2˚ from their ambient pressure orientations. This 

rotation is shown in figure 5.8A. 

The motion of the center of mass of cluster 1 relative to cluster 2, coupled with the 

slight rotation of the principal axes of cluster 1, appear to produce sufficient leverage 

to actuate the relative motion of the two elements of the Citrine chromophore: the 

main chromophore, attached to cluster 2, and the perturbing tyrosine 203 ring, 

attached to cluster 1. The rotation of the principal axes and motion of the center of 

mass of cluster 1 relative to cluster 2 are shown in figure 5.9. 
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5.3.5 Compression and Expansion of Links in Hydrogen Bonding Network in 

Chromophore Cavity

In chapter 4, we discussed the fluorescence peak shift  of the Citrine molecule with 

increasing pressure. Accompanying this fluorescence peak shift is a considerable 

reduction in the fluorescence intensity of the molecule, implying a reduction in 

quantum yield. The fluorescence peak intensity of Citrine solution samples, high 

pressure cryo-cooled at  a range of pressures from 50 to 360 MPa, is shown in figure 

5.10. The fluorescence peak initially increases, from 0.1 MPa to 50 MPa, and then 

decreases with increasing pressure up the maximum observed pressure of 360 MPa. 

By a pressure of 200 MPa, the peak Citrine fluorescence intensity is approximately 

1/100th of its value at 50 MPa.

Experiments on other Aequorea fluorescent protein mutants suggest that this reduction 

in fluorescence intensity (see figure 5.10) may be due to pressure-induced disruption 

of the hydrogen bonding network [52] present in the chromophore cavity. This 

hydrogen bonding network serves to anchor the main chromophore, stabilizing the 

excited state of the molecule, preventing non-radiative decay and facilitating the high 
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Figure 5.10:  Fluorescence peak intensity  of high pressure cryo-cooled Citrine 

solution samples.



quantum yield of the molecule [196]. Niwa et al. [155] noted that certain analogs of 

the Aequorea fluorescent protein chromophore (isolated from the  β-barrel) absorb 

light yet are non-fluorescent at room temperature. However, when these chromophore 

analogs and their solvent are frozen to cryogenic temperatures, they become 

fluorescent [155]. Computer simulations indicate that in a vacuum environment the 

chromophore is fluorescent, while in a liquid environment, the excited state of the 

molecule de-excites by quenching [156]. Mauring et al. [196] demonstrated that the 

application of high pressure to an Aequorea Blue Fluorescent Protein (BFP) increased 

the quantum yield of the molecule. The central residue of the BFP chromophore is a 

histidine, a shorter residue than the tyrosine normally found at the center of an 

Aequorea fluorescent protein chromophore. This shortened chromophore is unable to 

link to the chromophore cavity  hydrogen bonding network. This loss of bonding 

interactions results in the destabilization of the BFP chromophore excited state. As a 

result, BFPs display  lower quantum yields than other Aequorea fluorescent proteins 

[196]. Mauring et al. [196] attributed the pressure-induced increase in the quantum 

yield to the re-attachment of the BFP chromophore to the chromophore cavity 

hydrogen bonding network as distances from residue to residue in the cavity were 

reduced as the molecule compressed. 
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Figure 5.11:  A. Hydrogen-bonding network in Citrine chromophore cavity. B. 

Variation of lengths in chromophore cavity with pressure. 
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A: Hydrogen Bonding Network in Chromophre Cavity

B: Variation in Bond Lengths in Hydrogen Bonding Network
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While the behavior of Citrine and EYFP (Enhanced YFP) [53] under high pressure is 

the opposite of BFP: the fluorescence intensity reduces, the structural mechanism may 

be the same: the expansion or contraction of chromophore cavity  hydrogen-bonding 

network. This speculation is supported by the existence of the REACh1, a YFP with 

reduced quantum yield developed by Ganesan et al. [197]. The H148V mutation in 

REACh1 removes a critical link in the hydrogen-bonding network attaching the 

phenolic oxygen of the main chromophore to the His148 δ1-nitrogen and results in an 

82% reduction in the fluorescence intensity with only a 15% drop in absorption [197].  

In order to investigate the structural origin of the fluorescence intensity reduction of 

Citrine with increasing pressure (figure 5.10), the length of several of the hydrogen 

bonds in chromophore cavity were investigated as a function of pressure. A simplified 

schematic of the hydrogen-bonding network stabilizing the Citrine chromophore is 

shown in figure 5.11A. Plots of the averaged length of the hydrogen bonds anchoring 

the main chromophore are shown in figure 5.11B.

Most of the hydrogen bonds in the network show very small changes. The distance 

between the Leu68 amide nitrogen and the solvent molecule HOH-2 (bond 3 in figure 

5.11) shows no variation with pressure. The chromophore oxygen-2 to Arg96 amide 

nitrogen distance (bond 2 in figure 5.11) varies by less than 0.1 Å over 500 MPa, as 

does the Tyr203 phenolic oxygen to HOH-2 distance (bond 4 in figure 5.11). The 

Ser205 γ-oxygen to the HOH-1 solvent molecule distance (bond 7 in figure 5.11) 

compresses by 0.1 Å over the pressure range 0.1 to 50 MPa, and then remains constant 

up to a pressure of 500 MPa. The bond between the chromophore phenolic oxygen and 

HOH-1 (bond 8 in figure 5.11) increases in length by ≈ 0.1 Å at a pressure ≈ 250 MPa, 

and then recompresses to its original length by  500 MPa. The bond between the 
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carbonyl oxygen of Asn146 and HOH-1 (bond 9 in figure 5.11) also expands by ≈ 0.25 

Å at a pressure of 250 MPa, and the recompresses by 0.2 Å by 500 MPa. 

Three bonds that do show large variations with pressure are those between the His148 

δ1-nitrogen and the chromophore phenolic oxygen (bond 1 in figure 5.11), the Glu222 

ε1-oxygen and the HOH-2 solvent molecule (bond 5 in figure 5.11), and chromophore 

nitrogen-2 and Glu222 ε2-oxygen (bond 6 in figure 5.11). The bond 1 (figure 5.11) 

distance increases by 0.4 Å over 500 MPa, while bond 5 and bond 6 (figure 5.11) 

compress from 3.8 to 3.4 Å and 4.0 to 3.0 Å over 500 MPa, respectively. Ganesan et 

al. [197] demonstrated that elimination of bond 1 by mutation results in a YFP mutant 

with much lower quantum yield. We speculate that the pressure-induced increase in 

this bond length is responsible for the reduction in fluorescence intensity of Citrine 

shown in figure 5.10.

5.4 Discussion

The deformation of the Citrine scaffold can be thought of as the slight bending or 

buckling of the β-barrel scaffold. A cartoon representation of the deformation of the 

Citrine scaffold under pressure is shown in figure 5.12. This cartoon representation 

accentuates the relative movement of the two clusters composing the β-barrel and 3-10 

helix. As the pressure applied to the molecule is increased, the main chromophore 

remains anchored inside cluster 2, attached to the central helix. However, the side of 

the β-barrel wall containing the perturbing tyrosine 203 ring and stabilizing His148 

residue, moves away from cluster 2 (the side of the β-barrel wall containing Tyr203 

bulges out), carrying these two important residues with it. The large expansion of the 

distance from the central 3-10 helix to the wall of β-barrel in the vicinity of Tyr203 

can be seen in the highlighted region in the distance difference matrix in figure 5.3. 
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It is interesting to note that the fluorescence peak intensity of all Aequorea fluorescent 

proteins studied under pressure [5, 53] increases with applied pressure, with the 

exception of the YFP types. Verkhusha et al. [53] measured the fluorescence peak and 

peak intensity  of EYFP (Enhanced Yellow Fluorescent Protein), EGFP (Enhanced 

Green Fluorescent Protein), ECFP (Enhanced Cyan Fluorescent Protein) and DsRed (a 

red fluorescent protein that is structurally highly similar to GFP, yet is derived from a 

corallimorpharian from the genus Discosoma [198, 199]) under high hydrostatic 

pressure at room temperature. Verkhusha et al. [53] found that  of the four fluorescent 

proteins studied, only the fluorescence peak of EYFP (a close relation of Citrine), 

shifted under the application of pressure. The fluorescence peak intensities of EGFP, 

ECFP and DsRed all increased with the application of pressure, while only EYFP 

showed a decrease in fluorescence intensity  with increasing pressure [53]. At 

cryogenic temperatures, (see figure 5.10), we also observed a reduction in the 

fluorescence intensity of Citrine with increasing freezing pressure.
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Figure 5.12:  Cartoon representation of the bending of the Citrine scaffold. 



We speculate that the unique spectral response of the YFPs under pressure, at  room 

temperature [53] and at  cryogenic temperatures (figure 5.10), may be due to a YFP 

structure that predisposes the YFP-type molecules to the bending behavior observed 

here. 

We do not believe that the crystalline environment significantly affects the 

fluorescence properties of the Citrine molecule. The fluorescence spectra of a very 

small, flash frozen Citrine crystal and a solution sample of Citrine are highly similar. 

These two spectra are plotted together in figure 5.13 for comparison.  The similarity  of 

these two spectra suggests that the crystalline environment does not significantly 

perturb the fluorescence properties of Citrine. As pressure-induced unfolding is not 

expected to occur in the solution state of citrine below at least 900 MPa [148, 193], we 

also believe that the pressure effects captured in the crystalline state represents those 

in the solution state within the explored pressure range. This is reasonable as the 
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Figure 5.13:  Comparison of the fluorescence spectra of a flash frozen Citrine 

solution and a very  small, flash frozen Citrine crystal. The Citrine 

solution is composed of 1 mg/mL Citrine and 5% PEG 3350, 50 mM 

Na Acetate, 50 mM NH4 Acetate, pH 5.0, the same buffer conditions as 

the crystal.
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deformation of citrine in the crystal state is not a response to a directionally applied 

external force. As opposed to typical small molecule crystals, the fluid water channels 

intrinsic to most protein crystals constitute approximately half of the crystal mass and 

transmit applied hydrostatic pressure to each protein. In other words, there is no 

pressure gradient across the volume of the crystal: identical, uniform hydrostatic 

pressure is effectively  transmitted by the solvent  channels to each molecule. A force 

originating at the surface of the crystal is not transmitted through covalent or metal 

bonds from molecule to molecule as happens in a small molecule crystal or a metal. 

Thus the protein deformation in response to pressure is not due to an externally 

applied force per se; rather it results from pressure-dependent interactions of the 

molecule. For example, it is known that the degree of ionization [200], hydration [162, 

200], and hydrogen bonding [200, 201] of many amino acid residues are pressure 

dependent. It has also been shown that pressure changes the water occupancy of 

internal cavities [28, 29, 202, 203]. One expects that as these interactions change with 

pressure, the conformation of the protein will change in response. The fact that 

pressure is transmitted to the individual molecules in the crystal also argues that the 

resultant deformations are similar to those expected for the same molecule in solution, 

and differ only in so far as molecular contacts in the crystal change the surface 

exposure to water or constrain large deviations in protein structure.

All Aequorea fluorescent protein display a floppy β-strand composed of residues 143 

to 148. These residues do not form β-sheet interactions with the rest of the β-barrel 

scaffold. At room temperature, these residues appear to bulge slightly  more out into 

solution in the Citrine structure when compared with the corresponding residues in the 

EGFP structure. It may be that this “weakness” predisposes the Citrine β-barrel wall to 

further bulge under pressure, rather than compressing. Additionally, at room 
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temperature, the main chromophore of YFP protrudes slightly  further, by ≈ 0.9 Å, into 

the chromophore cavity  than the chromophore in the EGFP structure [52]. These two 

pre-existing deformations, possibly induced by the presence of the perturbing tyrosine 

203 residue, may slightly weaken the YFP structure. These “weaknesses” may 

predispose the YFP scaffold to the bending behavior seen under high-pressure 

cryocooling conditions in this chapter. This bending behavior may be analogous to 

macroscopic structures failing at the weakest point. 

Although the structure of Citrine and the response of its structure to high pressure are 

no doubt subtly different to that of wild-type Green Fluorescent Protein (wtGFP), the 

extension in path length from the phenolic oxygen to the ε-oxygen of Glu222 may 

explain (or at  least  provide a framework for explaining) the subtle shift in peak 

position of wtGFP observed under high pressure [204]. In the Citrine structures 

presented here, the distance from the phenolic oxygen of the main chromophore to the 

HOH-1 solvent molecule to the ε2-oxygen of Glu222 increases by approximately  0.5 

Å from ambient pressure to 500 MPa. The increase in this distance from the main 

chromophore through the HOH-1 solvent molecule to Glu222 should have no impact 

on the fluorescence properties of Citrine as excited state proton transfer from the main 

chromophore to Glu222 appears to play  no role in the fluorescence mechanism of 

Aequorea fluorescent protein mutants containing de-protonated chromophores 

(phenolate anion chromophores; this class of molecules includes mutants containing 

the S65T or S65G mutation such as Citrine and EGFP [2]). However, excited state 

proton transfer does play a role in the fluorescence mechanism of wtGFP, and the 

extension of the proton transfer path may alter the fluorescence properties of wtGFP 

[205, 206]. 
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An important observation from that was presented in chapter 4 [5] is that the 

fluorescence peak of Citrine asymptotes to ≈ 510 nm, the fluorescence peak of 

Enhanced Green Fluorescent Protein (EGFP) under ambient conditions, as the 

pressure applied to the molecule is raised to above 350 MPa. This shift to the green of 

the fluorescence peak is due to the removal of the perturbation of the tyrosine 203 ring 

is from the main chromophore [5]. The results presented here, on the effect of high 

pressure on the scaffold of the Citrine molecule indicate that the sliding motion of the 

perturbing tyrosine 203 phenol ring relative to the main chromophore is actuated by 

the separation of two clusters that compose the β-barrel wall and central 3-10 helix. 

This observation may provide a structural explanation for the observation of Blum et 

al. [7] that a single molecule of another YFP [1, 2] occasionally  becomes dark, and 

then adopts a spectrum closely resembling the spectrum of bulk EGFP [2, 142, 159], 

before returning to a spectrum close to that of bulk YFP. It is known that protein 

molecules are fluctuating molecules that  adopt a number of structural conformations 

[207]. We speculate that at  room temperature, YFPs may  occasionally  adopt a 

configuration structurally highly similar to the bent state seen at high-pressure. The 

bent scaffold of this state may transiently  stabilize the main chromophore-Tyr203 

separation needed for the molecule to fluoresce in the green. This observation may 

have wider implications for understanding the protein structure-function relationship. 

Single molecule experiments indicate that single enzymes display a range of catalytic 

rates [54, 55, 57-60, 208, 209], and switch between them, in much the same way that a 

single YFP molecule displays a range of spectra and switches between them [7]. This 

result suggests that the high-pressure cryo-cooling technique may be useful for 

accessing the atomic structures of transiently populated enzyme states that are 

presently only observable in single molecule experiments. It is possible that the dark 
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state of YFP observed by Blum et al. [7] is one in which the stabilizing interaction 

between the main chromophore and His148 is completely lost. 

An interesting feature of the high-pressure state of Citrine is the penetration of a water 

molecule into a cavity  close to the main chromophore. This water molecule joins 

another molecule already present in the cavity at  ambient pressure. This additional 

water molecule has not been observed in any ambient pressure structure of Citrine, 

either at room temperature (PDB accession code 1HUY [1]) or at  100 K (PDB 

accession codes 3DPW and 3DQO (chapter 4) [5]) but consistently  appears in 

structures at pressures of 50 MPa and above. We do not believe that the presence of 

this water molecule directly affects the spectral properties of Citrine, for instance by 

quenching the chromophore, as it appears at low pressure, before many  of the spectral 

changes to the Citrine molecule have occurred. However, this additional water 

molecule may indirectly  affect the spectrum of Citrine, by assisting in actuating the 

bending of the molecule. The presence of this water molecule may be a necessary, but 

insufficient, condition for initiation of the transition to the green shifted state of 

Citrine. 

5.5 Conclusions

The analysis presented in this chapter demonstrates that the scaffold of the Citrine 

molecule deforms under high-pressure. Rather than isotropically compressing, the 

high-pressure deformation of Citrine is non-homogeneous. We speculate that the 

response to pressure of Citrine may differ from the structural response of non-tyrosine 

203 bearing Aequorea fluorescent proteins due to the presence of a pre-existing 

weakness in the β-barrel scaffold of Citrine in the vicinity  of introduced tyrosine 203 

mutation. 
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The Citrine β-barrel is approximately divided into two atomic clusters that move and 

rotate relative to one another under pressurization. The two elements of the Citrine 

chromophore, the perturbing tyrosine 203 ring and the main chromophore, are each 

attached to different clusters. The relative motion and rotation of the two clusters 

composing the β-barrel and central 3-10 helix of the Citrine molecule causes a 

deformation in the Citrine scaffold that is reminiscent of buckling or bending, 

actuating the separation of these two elements of the Citrine chromophore, resulting in 

a fluorescence shift of the molecule. We speculate that this bending deformation only 

occurs for tyrosine 203 bearing mutants of the Green Fluorescent Protein. In addition 

to actuating the fluorescence shift of the molecule, the bending of the Citrine scaffold 

also perturbs the hydrogen-bonding network stabilizing the main chromophore. The 

most important  consequence of this hydrogen-bonding network perturbation is an 

increase in the distance from the main chromophore phenol to the His148 side chain. 

We speculate that the increase in the His148 to main chromophore distance results in a 

destabilization of the excited state of the chromophore and the consequent dimming of 

Citrine seen under high-pressure cryo-cooling conditions [5] and under high 

hydrostatic pressure [53]. 

The bent or buckled state of the Citrine scaffold may be highly structurally  similar to 

the transiently observed blue-shifted state of YFP at ambient pressure [7]. This 

suggests that high-pressure X-ray crystallography may offer the possibility  of solving 

the structures of transiently occupied enzymatic states and understanding the structural 

basis of their differing catalytic rates. 
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CHAPTER 6

DISCUSSION, CONCLUSIONS AND FUTURE EXPERIMENTS

6.1 Introduction

The experimental results and analysis presented in this thesis comprise one of only a 

small number of experimental examples that demonstrate the detailed coupling of 

deformations of the scaffold of a protein molecule to the active site and then to the 

function of the molecule. 

This chapter first details an attempt to model the fluorescence shift  of Citrine under 

pressure. This model uses the high-pressure atomic structures of Citrine presented in 

chapters 4 and 5 in combination with the Extended Hückel model of the fluorescence 

spectrum of Citrine presented in chapter 3.

The chapter then turns to future experiments with other Aequorea fluorescent proteins, 

to test inferences that have been drawn from the analysis of Citrine data, with the aim 

of learning more about the mechanical stability  of protein structure, details of the 

mechanism of protein allostery and possibly more about the detailed mechanism of 

catalysis. 

The chapter then reports upon experiments with other protein systems that  we have 

investigated in the course of this thesis and summarizes the results thus far. Finally, the 

chapter suggests possible protein engineering experiments that have been inspired by 

our experiences with Citrine.
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6.2 Extended Hückel Calculation of Citrine’s Fluorescence Peak Shift

6.2.1 Comparison of Fluorescence Band-gap Energy Shifts

In order to test the extended Hückel theory (EHT) model of Citrine’s fluorescence 

peak shift that was discussed in chapter 3, and to provide a more substantial physical 

and chemical basis to this peak shift, we used the high-pressure structures of the 

Citrine as inputs to the YAEHMOP code, and calculated the corresponding fluorescence 

band-gap  between the highest occupied molecular orbital (HOMO) and lowest 

unoccupied molecular orbital (LUMO) of the chromophore. 
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Figure 6.1:  Calculated and observed fluorescence peak energy shift for Citrine 

under high-pressure cryocooling conditions. The final measured point, 

at 500 MPa, corresponds to the fluorescence peak energy shift of 

mEGP relative to Citrine at 0.1 MPa (527 versus 500 nm). The green 

shaded area should be considered as the location of the fluorescence 

energy shift of Citrine between 350 and 500 MPa. Calculation of the 

error bars on the calculated peak shifts is discussed in section 6.2.



For the calculation presented here, we used the structures that were derived from 

refinement procedure 2, discussed in chapter 4, using the highest resolution diffraction 

data available in the refinement process. 

The results of the extended Hückel computation are shown in figure 6.1. Figure 6.1 

shows the measured and average calculated shift in energy of the fluorescence peak 

from its value at ambient pressure. The value the measured fluorescence band-gap 

shift at 500 MPa was taken as that of mEGFP relative to Citrine at 0.1 MPa (500 nm 

versus 527 nm) (figure 4.37). We consider this to be a reasonable estimate of the upper 

value fluorescence band-gap shift. 

The calculated shifts shown in figure 6.1, ΔEc P( ) , from the ambient pressure 

HOMO-LUMO band-gap are compared with the measured energy shifts at each 

pressure,

 ΔEc P( ) = Ec P( ) − Ec P0( ) . (6.1)

For the measured fluorescence band-gap, the energy shift from ambient pressure, 

� 

ΔEm , was calculated from the fluorescence wavelength data shown in figure 4.37,

 ΔEm P( ) = hc 1
λm P( ) −

1
λm P0( )

⎛

⎝⎜
⎞

⎠⎟
, (6.2)

where P0 is 0.1 MPa. 

The measured and calculated fluorescence band-gap shifts, ΔEm P( ) and ΔEc P( )  

respectively, are presented in terms of energy, rather than wavelength as the measured 
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and calculated baseline energies and wavelengths are different. We believe that it is 

unreasonable to expect this simple extended Hückel model of the Citrine fluorescence 

spectrum to correctly calculate the baseline HOMO-LUMO band-gap given the 

limited structure input into the model, and that much more sophisticated quantum 

chemical methodologies appear necessary to accurately estimate the absolute 

fluorescence peak of the Aequorea fluorescent proteins [210]. However, we do believe 

it reasonable to expect that this simple perturbation model could accurately calculate 

deviations from this baseline energy. However, if the results of this perturbation 

calculation were presented in term of wavelength, the calculated shift would appear 

inaccurate due to differences in baseline energies. To illustrate

 

Δλ P( ) = λ P( ) − λ P0( )
Δλ P( ) = hc

E0 − ΔE
−
hc
E0

Δλ P( ) = hc
E0
2

E0 − E0 + ΔE
1− ΔE E0

⎛
⎝⎜

⎞
⎠⎟

Δλ P( ) = hcΔE
E0
2 1− ΔE E0( )−1

. (6.3)

Binomially expanding the inverse term,

 
 

Δλ P( ) = hcΔE
E0
2 1+ ΔE E0 +…( ) . (6.4)
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As 

� 

ΔE E0 is on the order of 1/100th for wavelength shifts of several nanometers from 

baseline wavelengths of several hundred nanometers, 

 Δλ P( ) ≈ hcΔE
E0
2 . (6.5)

Thus, as wavelength shifts are scaled by the inverse square of the baseline energy, 

comparison of two energy shifts from differing baseline energies can be misleading. 

The comparison of energy shifts, while less intuitive for an optical phenomenon such 

as a shift in fluorescence peak, is unambiguous.

Errors on the calculated fluorescence energy band-gap were estimated by  a Monte 

Carlo procedure in which the main chromophore was randomly translated and rotated 

inside the error volume allowed by Cruickshank’s positional uncertainty formula 

(equation 2.32). Translations and rotations were performed with the PYMOL 

molecular graphics and manipulation program (DeLano Scientific LLC, Palo Alto, 

CA, USA). For the simulation results presented in figure 6.1, 1000 random simulated 

perturbations were generated for each high-pressure structure. The HOMO-LUMO 

energy gap was calculated for each slightly perturbed structure with the extended 

Hückel theory program YAEHMOP. The highest and lowest energy  band-gaps calculated 

in this procedure were recorded and taken as estimates upper and lower limits on the 

HOMO-LUMO band-gap for each high pressure Citrine structure, given the estimated 

positional uncertainty on the structure.

The calculated data points shown in figure 6.1 are the average of the calculated 

HOMO-LUMO band-gaps for the unperturbed structures at each pressure. The error 

bars shown in figure 6.1 correspond to the average highest and lowest values of the 
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energy band-gap  calculated during this random translation and rotation procedure at 

each pressure. The baseline energy  of the simulated band-gaps, was taken as the value 

of the energy band-gap of structure citrine0001_2 (PDB accession code 3DPW). 

In general, the extended Hückel theory (EHT) procedure finds reasonable agreement 

between the measured and calculated shifts in the fluorescence band-gap. This result 

suggests that the mechanism of the fluorescence peak shift of Citrine under high-

pressure cryocooling is the removal of the overlap of the orbitals of the tyrosine 203 

phenol from the orbitals of the main chromophore. The result also supports the 

observed structural deformation of Citrine under high-pressure, suggesting that the 

deformation motion is real, rather than an artifact of refinement and data collection. 

6.2.2 Limitations of Extended Hückel Theory Model

However, despite the apparent success of EHT in calculating the energy shift of the 

fluorescence peak of Citrine due to the observed structural perturbation under high 

pressure, it is appropriate to discuss the limitations of EHT and possible alternative 

mechanisms for the fluorescence shift. 

Firstly, as we have noted before, the EHT model of the Citrine chromophore does not 

accurately calculate the Citrine fluorescence band-gap energy. At ambient pressure, the 

calculated fluorescence band-gap corresponds to a wavelength of ≈ 643 nm, while the 

observed fluorescence peak is 527 nm. As the errors on the calculated peak shift  are 

comparable in magnitude to the peak shift (figure 6.1), it is difficult  to confirm the 

accuracy  of the calculation. Additionally, it is difficult  to confirm if the model 

produces the correct results for the right reasons. 
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This discrepancy  between the calculated and observed ambient pressure fluorescence 

band-gap  may  in part  be due to the limited structure input into EHT model of Citrine’s 

fluorescence spectrum. However, the Citrine scaffold is believed to not significantly 

tune the absorbance of the chromophore [156]. This suggests that  the discrepancy in 

calculated and observed band-gaps is largely due to limitations intrinsic to EHT. Most 

importantly, EHT does not calculate the effects of electron-electron interaction. This 

limitation is particularly serious, as it  does not permit calculation of changes in energy 

levels due to photo-excitation of the chromophore. This limitation also excludes the 

possibility of identifying small conformational changes to the chromophore upon 

photo-excitation.

More sophisticated methodologies have been applied to the fluorescence spectrum of 

the Green Fluorescent Protein chromophore. Toniolo et al. [156] used a combined 

semi-empirical quantum mechanical/molecular mechanical (QM/MM) simulation to 

explore the effects of solvation on the fluorescence lifetime of the chromophore. 

Toniolo et al. [156] found that solvation reduced the fluorescence lifetime of the 

chromophore by  more than an order of magnitude, explaining the reduced quantum 

yield of GFP chromophore analogs in solution [155]. These simulations suggested that 

rotation of the chromophore phenol ring relative to the imidazolinone ring was 

responsible for non-radiative de-excitation of the chromophore. 

Sinicropi et al. [210] used a combined QM/MM simulation to calculate the absorption 

and emission peaks of the wtGFP chromophore. Sinicropi et al. [210] used the 

CHARMM (Chemistry at  HARvard Molecular Mechanics) molecular dynamics 

package to calculate molecular motion, and an ab initio CASSCF/CASPT2 (Complete 

Active Space Self-Consistent Field/Complete Active Space with Second-order 
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Perturbation Theory) molecular wavefunction calculation. These calculations [210] 

achieved notable accuracy in estimating the positions of the GFP chromophore 

absorption and emission peaks under a variety of chromophore cavity conditions. 

The high-pressure structures of Citrine and associated spectral information should 

provide an important test  of these more advanced quantum chemical models of 

fluorescence.

6.3 Future Experiments on Fluorescent Proteins

The experiments on the behavior of Citrine under high pressure discussed in this thesis 

suggest several immediate avenues for experimentation with other members of the 

Aequorea fluorescent protein family.

6.3.1 The Blue Fluorescent Protein

A first  choice of an experimental system after Citrine might be the effects of pressure 

on the function and structure of the Aequorea Blue Fluorescent Protein (BFP). As 

discussed in chapter 5, Mauring et al. [196] demonstrated that the fluorescence 

intensity of the Blue Fluorescent Protein increases linearly with pressures up  to 570 

MPa. Of all of the Aequorea fluorescent proteins tested under pressure, only the 

Yellow Fluorescent Protein types display a decrease in fluorescence intensity with 

rising pressure at room temperature [53, 196]. 

Mauring et al. [196] speculated that the increase in fluorescence intensity  of BFP 

under pressure was due to a decrease in the distance between His148, proximate to the 

chromophore on the β-barrel wall, and the BFP chromophore, increasing the 

stabilization of the excited state of the chromophore. This increased excited state 
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Figure 6.2:  A: Hydrogen bonding network in Blue Fluorescent Protein 

chromophore cavity. Adapted from Wachter et al. [52]. B: Hydrogen 

bonding network in Enhanced Green Fluorescent Protein chromophore 

cavity. Adapted from adapted from Brejc et al. [159]. C: Hydrogen 

bonding network in wild-type Green Fluorescent Protein chromophore 

cavity. Adapted from Ormö et al. [160]. Arrows indicate the direction of 

proton transfer following photon absorption by wtGFP. Bonds 

stabilizing the chromophore are shown as thick, red lines.
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A: Blue Fluorescent Protein Hydrogen Bonding Network

B: Enhanced Green Fluorescent Protein Hydrogen Bonding Network

C: Wild-Type Green Fluorescent Protein Hydrogen Bonding Network
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stabilization reduces the probability of non-radiative decay  and increases the quantum 

yield of the BFP chromophore. This speculation implies that the side of the  β-barrel 

wall containing His148 moves closer to the chromophore and the central 3-10 helix 

rather than being pushed away from it, as is the case with Citrine, shown in figures 5.9 

and 5.12. 
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Figure 6.3:  Room temperature and pressure Citrine chromophore cavity hydrogen 

bonding network. Network adapted from Wachter et al. [8]. Room 

temperature, room pressure hydrogen bonding distances from Citrine 

structure by Griesbeck et al. [7] (PDB accession code 1HUY). Bond 

lengths are measured in angstroms. Hydrogen bonds that stabilize the 

main chromophore are shown as thick, red lines.



A diagram of the BFP chromophore cavity hydrogen bonding network, adapted from 

Wachter et al. [211] is shown in figure 6.2A. For comparison, the chromophore cavity 

hydrogen bonding networks of Enhanced Green Fluorescent Protein (EGFP); adapted 

from Brejc et al. [159] and of wild-type GFP (wtGFP); adapted from Ormö et al. 

[160], are shown in figures 6.2B and C respectively. The hydrogen bonding network 

present in the chromophore cavity  of Citrine is re-presented for comparison in figure 

6.3. In the case of EGFP, wtGFP and Citrine the hydrogen bonding network makes 

multiple stabilizing interactions with the main chromophore. However, in the case of 

BFP, the hydrogen bonding network makes only a single, weakly stabilizing 
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Figure 6.4:  Ribbon diagram showing a bulge of β-barrel scaffold of BFP in the 

vicinity  of His148 (PDB accession code 1BFP). Room temperature 

atomic coordinates by Wachter et al. [52]. For comparison, the scaffold 

of Citrine at  room temperature by Griesbeck et al. [1] is shown 

alongside. The BFP model is shown in blue, and the Citrine structure is 

shown in yellow-green.



interaction, originating from His148, with the chromophore. In the case of Citrine, the 

links in this hydrogen bonding network, especially the bond between the main 

chromophore and His148, expand with pressure, reducing the stabilization of the main 

chromophore, and causing a reduction in the fluorescence intensity  of Citrine, both at 

room temperature and under high-pressure cryocooling. 

However, all other Aequorea fluorescent proteins studied under pressure show an 

increase in fluorescence intensity  with increasing pressure [53, 196]. These observed 

increases in fluorescence intensity suggest that the links in these hydrogen bonding 

networks compress, increasing the stabilization of the main chromophore. This implies 

that the response of the β-barrel scaffold of the Yellow Fluorescent Protein mutants 

differs from that of the other types of Aequorea fluorescent protein mutants. This 

suggestion is supported by  slight differences in the β-barrel scaffold of the YFP 

mutants and other types of Aequorea fluorescent protein. 

Firstly, comparison of the room temperature β-barrel scaffolds of BFP [211] and of 

Citrine [1] indicates that the section of β-barrel scaffold containing His148 slightly 

protrudes into solution in the BFP structure. This salient bulge of the BFP β-barrel 

scaffold is shown in figure 6.4. It is reasonable to expect that this bulge is 

compressible. Compression of this bulge may be the only structural deformation 

required in order to actuate the compression stabilizing hydrogen bond between 

His148 and the BFP chromophore proposed by Mauring et al. [196].

However, this bulge around His148 is not present in EGFP, and so does not explain the 

observation that the fluorescence intensity of EGFP increases under pressure, while 

that of Citrine falls. It is possible that the bending deformation motion under pressure 
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seen in the high-pressure atomic structures of Citrine does not occur in EGFP, nor in 

other Aequorea fluorescent protein mutants. 

All Aequorea fluorescent proteins display a floppy β-strand composed of residues 143 

to 148. These residues do not form β-sheet interactions with the rest of the β-barrel 

scaffold. At room temperature, these residues appear to bulge slightly more into 

solution in the Citrine structure when compared with the corresponding residues in the 

EGFP structure. Additionally, at room temperature, the main chromophore of YFP 

protrudes slightly further, by ≈ 0.9 Å, into the chromophore cavity  than the 

chromophore in the EGFP structure [52]. These two pre-existing deformations, 

possibly induced by  the presence of the perturbing tyrosine 203 residue, may slightly 

weaken the YFP structure. These two “weaknesses” may predispose the YFP scaffold 

to the bending behavior seen under high-pressure cryocooling conditions that was 

discussed in chapter 5. This bending behavior may be analogous to macroscopic 

structures failing at the weakest point. 

The possibly differing responses of different Aequorea fluorescent protein mutants 

suggest several experiments that may shed light on the influence of small mutations on 

the flexibility of the protein scaffold. 

Firstly, it would be interesting to measure the fluorescence intensity of BFP under 

high-pressure cryocooling conditions. Any changes in the fluorescence intensity of 

BFP could be further investigated by solving the structure of BFP under high-pressure 

cryocooling. Changes in the fluorescence intensity of BFP could be correlated with 

changes in the hydrogen bonding network present in the BFP chromophore cavity. 

Finally, analysis of the deformation of the BFP scaffold may reveal the structural 
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mechanism for deformations in the BFP chromophore cavity hydrogen bonding 

network. 

Additionally, it would be interesting to solve the structure of EGFP under high-

pressure cryocooling conditions. These structures could be analyzed to understand 

changes in the chromophore cavity  hydrogen bonding network, and perhaps most 

interestingly, changes in the overall scaffold of the molecule. While it is interesting to 

speculate about the nature of the high-pressure scaffold deformation of other members 

of the Aequorea fluorescent protein family, the true behavior is almost certainly 

extremely rich.

6.3.2 Wild-type Green Fluorescent Protein

Although the structure of Citrine and the response of its structure to high pressure are 

no doubt subtly different to that of wild-type Green Fluorescent Protein (wtGFP), 

changes in the hydrogen bonding network of Citrine, discussed in chapter 5, may 

provide a framework for explaining the subtle shift in the position of the fluorescence 

peak of wtGFP observed under high pressure observed by Oger et al. [204]. A diagram 

of the wtGFP chromophore cavity hydrogen bonding network is shown in figure 6.2C. 

Wild-type Green Fluorescent Protein (wtGFP) is unusual amongst the Aequorea 

Fluorescent Proteins, in that excited state proton transfer (ESPT) plays an important 

role in its fluorescence mechanism. Under neutral solution conditions, the wtGFP 

chromophore can be found in either a neutral form, with a protonated chromophore, or 

an anionic chromophore, with a de-protonated chromophore. These two forms of the 

chromophore correspond to two bands present in the absorption spectrum of wtGFP:  

395-397 nm for the protonated form, and 470-475 nm for the de-protonated form [2]. 
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Following absorption of light by the neutral chromophore, the proton is transferred 

from the phenol of the chromophore to a solvent molecule close to the chromophore, 

to the γ-oxygen of Ser205, and then to the ε-oxygen of Glu222. The mutation of the 

chromophore residue Ser65 in wtGFP to Thr65 in EGFP lowers the pKa of the 

chromophore, favoring the anionic form of the chromophore and disrupts wtGFP 

hydrogen bonding network, changing it to the network shown in figure 6.2B. The 

mutation S65T also shifts the fluorescence peak of the molecule from 504 nm to 511 

nm. 

Oger et al. [204] noted that when expressed in E. coli, under high pressures up 600 

MPa, the fluorescence peak of wild-type GFP shifts by ≈ 0.5 nm per 100 MPa of 

applied pressure. Leiderman et al. [205] studied the effects of pressure up to 1100 

MPa on the fluorescence peak and proton transfer rates in wtGFP. Leiderman et al. 

[205] concluded that the rate of proton transfer from the chromophore phenol to the 

solvent molecule in the chromophore cavity (figure 6.2C) was insensitive to pressure. 

However, Leiderman et al. [205] noted that recombination of the proton and excited 

state of the chromophore was increased by almost two orders of magnitude by the 

application of pressures up to 1100 MPa. 

It would be interesting to solve the structure of wtGFP under high pressure 

cryocooling conditions, and correlate changes in the chromophore cavity hydrogen 

bonding network with changes in the fluorescence peak of the molecule, and with the 

proton recombination rate modification reported by Leiderman et al. [205]. The red-

shifting of the fluorescence peak of wtGFP under pressure, suggests that  the hydrogen 

bonding network in the chromophore cavity of wtGFP may  be becoming more like 

that of EGFP. 
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6.3.3 Modifying the Structure of Citrine

In chapter 5, it was noted that the pressure-induced bent state of the Citrine scaffold, 

shown as a cartoon in figure 5.12, may be structurally  similar to the transiently 

observed, blue shifted state of the YFP (Yellow Fluorescent Protein) molecule seen in 

single molecule experiments at room temperature and pressure by Blum et al. [7].

We speculate that the structural information available on Citrine at high pressure may 

inspire structural modifications to Citrine that may permit the molecule to remain in 

the blue-shifted transient state for longer, or even permanently stabilize it, at room 

temperature and pressure. A cartoon representation of the bending deformation of 

Citrine under high-pressure was shown in figure 5.12. The bending of the scaffold is 

caused by  relative motion and rotation of the two clusters of atoms that compose the 

Citrine scaffold that  was shown in figure 5.9. It may be possible to induce this bending 
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Figure 6.5:  Speculated mutation sites to induce bending of Citrine scaffold under 

ambient conditions. We speculate that it may be possible to induce the 

bending of the Citrine scaffold seen in figure 5.9, and drawn as a 

cartoon in figure 5.12, by introducing small to large mutations on the 

left side of the molecule, and large to small mutations on the right side. 



under ambient conditions by repacking the Citrine scaffold by mutating or adding 

residues along the interface of these two clusters. We note that the identification of 

possible mutation sites in a cluster interface is not possible with conventional 

structural methods. 

Figure 6.5 shows several possible sites where we speculate that mutations may be 

introduced into the Citrine scaffold. To replicate the bending seen at high pressure, it is 

required that cluster 1 move down and to the right in figure 6.5. We speculate that this 

may  be achieved by simultaneously mutating residues on the left  hand interface 

between clusters 1 and 2 to higher molecular weight residues, and mutating those on 

the right hand interface to lower molecular weight residues, while keeping other 

properties of the residue as similar as possible. On the left hand side, possible 

mutations may be Phe46 to Tyr or Trp, Val16 to Leu, Ile or Met, Asn121 to Gln, 

Val112 to Leu, Ile or Met, Tyr92 to Trp. On the right hand side, these mutations may 

be Ile1161 to Val, Ala or Gly, Gln183 to Asp, Cys, Thr or Ser, Val163 to Ala or Gly, 

while leaving Phe165 unchanged as it is the smalles aromatic amino acid residue. The 

success of this strategy  would depend upon the perturbations of these mutations being 

small enough to not affect the folding of the β-barrel scaffold. If structural 

perturbations due to pressure of the character seen in Citrine are observed in catalytic 

proteins, it  may be possible to use an approach similar to this to suggest mutations to 

alter the rate of catalysis. 

6.4 Morphinone Reductase

6.4.1 Introduction

We sought to apply the techniques and lessons learned with Citrine to other proteins, 

specifically those that perform catalysis. Following the experiments with Citrine 
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detailed in chapters 2 to 5, we sought a second protein system that also displayed 

pressure sensitivity. For this second system, we desired a protein whose behavior, 

unlike Citrine, was well modeled under high pressure, but for which experimental 

confirmation of the proposed structural deformations under high pressure was lacking. 

Additionally, we sought to extend the high-pressure cryo-cooling analysis to proteins 

that catalyzed chemical reactions. 

A protein molecule that  met these requirements was Morphinone Reductase. The 

effects of pressure on the NADH oxidation rate of Morphinone Reductase, and a 

structural mechanism for this rate constant enhancement were recently reported by 

Hay et al. [18] and were summarized in chapter 1. We attempted to solve the structure 

of Morphinone Reductase, complexed with the non-oxidizable substrate analog 

NADH4, under high-pressure cryocooling conditions to confirm the model by Hay et 

al. [18].

6.4.2 Crystallizing Morphinone Reductase

We received purified, frozen wild-type Morphinone Reductase and several vials of 

frozen, lyophilized NADH4 from Christopher Pudney, a member of Professor Nigel 

Scrutton’s laboratory  (University  of Manchester, United Kingdom). To ensure that the 

package passed through U.S. customs with minimum delay, a letter on headed paper, 

clearly  explaining the contents of the package, and attesting to its non-hazardous 

nature was clearly affixed to the exterior of the shipping box. 

We attempted to crystallize this Morphinone Reductase following the crystallization 

conditions reported by Pudney  et al. [38]: 50% saturated ammonium sulfate, 100 mM 

HEPES, pH 7.0 using sitting drop vapor diffusion. Pudney et al. [38] reported that 
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crystals formed by this process diffracted to a maximum resolution of approximately 

1.3 Å (PDB accession code 2R14).

To make the ammonium sulfate solution, a saturated ammonium sulfate solution was 

made by adding between 155 and 180 grams of ammonium sulfate powder (Catalog 

number 09978-1KG, Fluka BioUltra Ammonium Sulfate, Sigma-Aldrich, St. Louis, 

MO, USA) to 250 mL of deionized water. The mixture was boiled with a Bunsen 

flame, left  to cool, and stored in a sterile container. This solution was used as a 

concentrate to make crystallization solutions. For example, for a 50% saturated 
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Figure 6.6:  Spherulite Morphinone Reductase crystals grown in 45% saturated 

ammonium sulfate, 100 mM HEPES, pH 7.0.



ammonium sulfate solution, this concentrate composed half of the volume of the final 

solution. Crystallization solutions were filtered with a 0.22 µm cellulose acetate filter.

Unfortunately, screening around the conditions reported by  Pudney et al. [38] did not 

yield diffraction quality protein crystals. Crystallization experiments consistently 

yielded spherulites, thought to be droplets formed by fine needle-like crystals that 

radiate from a single point. Simultaneous crystallization attempts using another aliquot 

of the same purification batch of Morphinone Reductase by Dr David Leys at the 

University  of Manchester found similar results. A photograph of these spherulites is 

shown in figure 6.6.
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Figure 6.7:  Brick-like crystals of Morphinone Reductase grown in 30% PEG 400, 

100 mM HEPES, 200 mM MgCl2, pH 7.0.



We then attempted to crystallize Morphinone Reductase following the conditions 

reported by Barna et al. [97]: 15-25% v/v PEG 550; 100 mM  HEPES; 100 mM NaCl; 

1 mM dithiothreitol; pH 6.5-7.6, and Moody et al. [96]: 28% v/v PEG 400; 100 mM 

HEPES; 200 mM MgCl2; pH 7.5 and 30% v/v PEG 400 3; 100 mM  HEPES; 200 mM 

MgCl2; pH 7.5. 

As recommended by Moody et al. [96], the Morphinone Reductase solution was 

dialyzed into deionized water and concentrated to 10 mg/mL. We found that  crystals 

of adequate appearance grew at 30-35% PEG 400, 100 mM HEPES, 200 mM MgCl2, 

pH 7.0-7.5. Moody et al. [96] reported diffraction from crystals grown under these 

conditions that extended only to 2.45 Å. Barna et al. [97] reported that crystals grown 

in PEG 550 diffracted to a maximum resolution of only  2.14 Å. A photograph of 

crystals grown in PEG 400 is shown in figure 6.7.

As discussed in chapter 1, Hay et al. [18] anticipated a pressure-induced reduction in 

the NADH4 to FMN distance in Morphinone Reductase of ≈ 0.7 Å by 200 MPa. The 

Morphinone Reductase dataset reported by Barna et al. [97] contained 23,548 unique 

reflections with a completeness of 85.1%. The model of Morphinone Reductase by 

Barna et al. [97] contains 2917 atoms, and has an R-factor of 20.5%. Cruickshank’s 

coordinate precision estimation formula (equation 2.30) indicates a coordinate 

uncertainty of

 

σ x,Bavg( ) = 1.0 Ni n − p( )( )1/2C−1/3Rdmin

σ x,Bavg( ) = 1.0 2917 23548 − 2917 × 4( )( )1/2 × 0.851−1/3 × 0.205 × 2.14Å
σ x,Bavg( ) = 0.229Å

. (6.6)
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This suggests that the uncertainty on the largely unrestrained distance between the 

NADH4 and FMN will be 

  

� 

Σ Δx( ) = 3 2 × 0.2292( )1/ 2Å
Σ Δx( ) ≈ 0.6Å

, (6.7)

indicating that it may be difficult to definitively identify the deformation motion 

speculated to exist by  Hay et al. [18] using diffraction data that extends to only ≈ 2.14 

Å. 

For crystals grown in ammonium sulfate, the estimated standard coordinate 

uncertainty is only 0.05 Å, giving an uncertainty on an unrestrained distance of only 

0.12 Å. For this reason, we pursued attempts to crystallize Morphinone Reductase 

under the conditions reported by Pudney et al. [38]. 

We used micro-seeding from the Morphinone Reductase crystals grown in PEG 400 in 

an attempt to grow crystals under the ammonium sulfate conditions reported by 

Pudney et al. [38]. These attempts were unsuccessful.
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As we were unable to grow apparently diffraction quality crystals of Morphinone 

Reductase in ammonium sulfate, we took crystals grown in PEG 400 and then soaked 

them in the ammonium sulfate well solution (45% saturated ammonium sulfate, 100 

mM HEPES, pH 7.0). We, and David Leys working independently, found this soak 

was necessary in order for the NADH4 substrate analog to bind to the Morphinone 

Reductase. Binding can be confirmed by visual inspection; a purified Morphinone 

Reductase solution is slightly yellow-green in color. However, when bound to 

NADH4, the protein solution turns to a tobacco-brown color.

Before freezing under high pressure or at room pressure, the crystals were soaked in a 

mixture of well solution (45% saturated ammonium sulfate, 100 mM HEPES, pH 7.0) 

containing 20% v/v glycerol and approximately 10 mM to 100 mM  NADH4. To make 

the ≈ 100 mM NADH4 solution, we took vials containing ≈ 10 mg of NADH4 

(molecular weight of 667.4) and dissolved the contents in 150 µL of 45% saturated 

ammonium sulfate well solution. This solution was used to soak Morphinone 

Reductase crystals for several minutes prior to high-pressure cryocooling. 

The high-pressure cryocooled crystals of Morphinone Reductase were taken to 

CHESS (Cornell High Energy Synchrotron Source) station F2, and X-ray diffraction 

data was collected from them. Unfortunately, the maximum resolution of these X-ray 

diffraction datasets was much lower than that used to derive the original Morphinone 

Reductase-NADH4 structure by Pudney et al. [38]. However, these datasets were 

refined by a refinement procedure similar to refinement procedure 2 used to refine the 

high-pressure Citrine atomic models (chapter 4), and several atomic models were 

derived. Quality  indicators, and the FMN N5 to NADH4 NC4 atom distance, are 

shown for each structure in table 6.1. 
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Table 6.1:  Quality indicators for high-pressure Morphinone Reductase structures. 

n is the number of reflections used to derive each dataset, C is the 

overall completeness of the dataset. ESU B is the estimated standard 

uncertainty on the B-factor of the structure. ESU R is the estimated 

standard coordinate uncertainty  based upon the R-factor of the structure 

(equation 2.30). ESU RFree is the ESU based upon RFree (equation 2.31). 

d is the FMN N5 to NADH4 C4 atom distance. d ESU is the estimated 

standard uncertainty on d. 
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The results presented in table 6.1 show a small reduction in the distance d, between 

atoms with increasing pressure. However, this reduction in distance does not appear to 

be simply  correlated with pressure. Additionally, we estimate the errors on this 

distance to be large in comparison to the apparent reduction in distance. To clarify, the 

distances shown in table 6.1, that between the FMN N5 to NADH4 NC4 atoms, is not 
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Figure 6.8:  Stereo view of possible deformation motion observed at  active site of 

Morphinone Reductase. The flash-frozen ambient pressure structure of 

Morphinone Reductase by Pudney et al.  is shown in blue (PDB 

accession code 2R14). A high-pressure cryocooled structure of 

Morphinone Reductase at 100 MPa is shown in red (MR_NADH4_-

AS_1000_3). Note that the distance between the FMN N5 and NADH4 

NC4 atom shrinks slightly with pressure. Note that in the ambient 

pressure structure of Morphinone Reductase, two conformations of the 

NADH4 NC5 atom can be resolved, while only  one conformation, can 

be resolved in the high-pressure structure.



the tunneling distance, r, discussed by Hay  et al. [18] and in chapter 1. The tunneling 

distance, r, is the distance between proton sites attached to the FMN N5 to NADH4 

NC4 atoms, rather than the distance, d, between the FMN N5 to NADH4 NC4 atom 

centers. However, it seems reasonable to assume that  the proton-nitrogen and proton-

carbon bond lengths should not be affected by  pressure; thus, changes in d, should be 

very closely equal to changes in r. 

It is interesting to note that for one of these structures at 100 MPa, there is a very 

notable reduction in the distance between the FMN N5 to NADH4 C4 atoms, 

reminiscent of the reduction in this distance proposed by Hay et al. [18]. This 

deformation motion is shown in figure 6.8. However, this deformation motion is not as 

clearly  present in the other high-pressure atomic models of Morphinone Reductase. It 

is also notable that the reduction in the atom center distance, d, is far smaller than that 

proposed by Hay et al. [18], of approximately 0.7 Å over 200 MPa. 

However, these small contractions are consistent with recent molecular dynamics 

(MD) simulation results by Hay et al. [212] that suggest that  the reduction in the FMN 

N5 to NADH4 C4 distance compresses by only ≈ 0.2 Å as the pressure applied to the 

MR-NADH4 complex is increased from 0.1 to 200 MPa. Additionally, the errors on 

the FMN N5 to NADH4 C4 distance are comparable to the spread in this distance 

implied by MD simulations [212].

These results, while intriguing, should be taken with some skepticism, due to the 

limited precision available in the high-pressure structure of Morphinone Reductase. 

Firstly, it may be that the compressibility of the Morphinone Reductase active site is 

lower under high-pressure cryocooling conditions than at room temperature, the 
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condition for which the model by Hay et al. [18] is proposed. Secondly, the structure 

of the Morphinone Reductase-NADH4 complex may respond differently than the 

Morphinone-Reductase-NADH complex under high pressure.

To resolve these issues, and shed more light on the behavior of Morphinone Reductase 

several issues should be addressed. Firstly, the error on the FMN N5 to NADH4 C4 

atom distance will need to be reduced considerably. This will require the production of 

higher quality crystals of Morphinone Reductase. Unfortunately, at  the present time, 

the crystals used to derive the high resolution Morphinone Reductase model appear to 

be irreproducible, by myself, and by the originator of these crystals; Dr David Leys 

(University  of Manchester, United Kingdom). We further purified, by  gel filtration 

chromatography, and then re-concentrated our aliquot of Morphinone Reductase. This 

suggests that an unknown contaminant was present  in the purification batch of 

Morphinone Reductase used to produce the original batch of crystals that diffracted to 

1.3 Å. To promote the growth of the diffraction quality  crystals from future 

purification batches of Morphinone Reductase, I would recommend the use of an 

additive screen (Hampton Research of Aliso Viejo, CA, USA sells an additive screen 

under catalog number HR2-428), to mimic the effects of the possible unknown 

contaminant. 

The second issue that should be addressed is the equivalence of the activity of 

Morphinone Reductase under high-pressure cryocooling conditions and under room 

temperature, high-pressure conditions. It is very important to remember that the 

behavior of Citrine under high-pressure cryocooling conditions and under room 

temperature, high pressure conditions is very  different: at room temperature, the 

fluorescence peak of Citrine shifts to the red with increasing pressure, while under 
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high-pressure cryocooling the fluorescence peak shifts to the blue. It is certainly likely 

that the structural response of Morphinone Reductase under high-pressure cryocooling 

is different from its response under high-pressure at room temperature. Unfortunately, 

it is presently not possible to repeat the high-pressure stopped flow measurements that 

Hay et al. [18] performed under high-pressure cryocooling conditions. However, 

Professor Nigel Scrutton (University of Manchester, United Kingdom) proposed that 

we measure the absorbance of the π-π charge-transfer complex formed between 

NADH4 and Morphinone Reductase [37, 212]. The absorbance of this complex is 

sensitive to the FMN N5 to NADH4 C4 distance, and could be used to validate the 

results of high-pressure crystallography on Morphinone Reductase and compare them 

with room temperature results. The micro-spectrophotometer that we constructed for 

use with Citrine, and that discussed in chapter 4, is capable of performing these 

absorbance measurements on high-pressure cryocooled Morphinone Reductase 

samples. 

Additionally, should larger crystals of Morphinone Reductase become available, it 

may  be possible to use the high-pressure beryllium X-ray  cell to determine the 

structure of MR under high pressure at room temperature. This will allow closer 

correlations with the work by Hay et al. [18, 212].
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6.5 Cellulase Activity Under High Pressure

6.5.1 Introduction

Cellulases are a class of enzymes that degrade the biological carbohydrate polymer 

cellulose. Cellulose is a highly abundant, natural source of glucose [213]. Cellulose 

may be hydrolyzed to glucose, and this glucose may  be fermented to ethanol for use as 

a transportation fuel [214, 215]. It is thought that the derivation of glucose from 

cellulosic material is environmentally  sustainable, as the crops necessary to provide 

this material may be grown on low quality  land with minimal artificial fertilizer input 

[214, 216]. However, present techniques to degrade cellulosic material are energy 

intensive, posing a barrier to the widespread production of cellulosic ethanol [216]. 

For this reason, attempts to understand the mechanism of cellulases, and suggest 

means to enhance their activity have received considerable attention [214, 216]. 

We sought to investigate if the activity  of cellulases could be modified by the 

application of pressure. The combination of information on a pressure-modified rate 

constant and high-pressure structural information might shed further light on the 

mechanism of action of cellulases. Additionally, high-pressure structures of cellulase 

may provide suggestions for mutations to induce acceleration of the activity of these 

enzymes at room temperature and pressure. 

6.5.2 Assay for Cellulase Activity Under High Pressure

We sought a convenient high-pressure assay for cellulase. We tested two cellulase 

substrate-analogs: Resorufin-β-D-Cellobioside [217] (Catalog number M1245, Marker 

Gene Technologies Inc., Eugene, OR, USA) and EnzChek (Catalog number EE33953, 

Molecular Probes, Eugene, OR, USA). Both of these substrate analogs release a 

fluorescent dye into solution upon digestion by cellulase. The rate of increase of this 
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fluorescence signal can be taken as a proxy for the catalytic rate of the cellulase. Both 

of these substrate-analogs degrade even in the absence of cellulase. We found that 

EnzChek showed an unacceptably  high degradation rate in the absence of cellulase, 

and was also prohibitively  expensive. Thus, we decided to use Resorufin-β-D-

Cellobioside in a high-pressure assay for cellulase activity. 

The Resorufin-β-D-Cellobioside substrate-analog contains cellobioside, a dimer of 

two D-glucose molecules, complexed with the fluorescent dye resorufin. When 

resorufin is complexed with cellobioside, it is quenched, and largely non-fluorescent. 

When cellulase hydrolyzes the Resorufin-β-D-Cellobioside, the resorufin is released 

into solution and is no longer quenched. Thus, the fluorescence signal from the 
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solution increases. The rate of increase of the fluorescence signal can be interpreted as 

the rate of action of the cellulase enzyme.

We attempted to measure the rate constant of two cellulases under high pressure: 

tomato Endo-β-1,4-glucanase, SlCel9C1 cellulase [213] and the highly active 

Thermobifida fusca Cel9A cellulase [215]. We found that the rate of degradation of 

Resorufin-β-D-Cellobioside by the tomato cellulase was indistinguishable from the 

background degradation rate. Thus, we focused our efforts on the T. fusca Cel9A 

cellulase [215].

6.5.3 Results

We measured the fluorescence signal from a solution of 0.01 µM T. fusca Cel9A 

cellulase and 0.025 mM Resorufin-β-D-Cellobioside (Molecular weight 537.47) in 

100 mM  sodium acetate, pH 5.0, under high pressure in a commercial high-pressure 

fluorescence cell (ISS, Urbana-Champaign, IL, USA) using a Chronos 

spectrophotometer (ISS). Fluorescence excitation was at 571 nm, and emission was 

monitored at 585 nm. The temperature of the high-pressure cell was maintained at 25 

˚C with a thermostatic re-circulating water bath (Neslab, Thermo Scientific, Waltham, 

MA, USA). 

We found a small rate constant increase of cellulase, of ≈ 14% under a pressure of 100 

MPa of the Thermobifida fusca Cel9A cellulase [215]. A plot of the apparent rate 

constant of the T. fusca cellulase versus pressure at room temperature is shown in 

figure 6.9. This plot shows an apparent increase in the activity of cellulase up  to a 

pressure of 100 MPa, and then a decrease as the pressure rises to 200 MPa. 
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6.5.4 Discussion

It should be emphasized that results on cellulase presented here should be treated with 

skepticism until many more careful control experiments have been performed. Firstly, 

the apparent rollover in the activity of the T. fusca cellulase at pressures exceeding 100 

MPa may be the result of an increasing of the optical density of the reaction buffer due 

to the release of resorufin. What appears to be a rollover in catalytic activity, may in 

fact be a large increase in activity. When the reaction vessel was placed in the high-

pressure cell, the reaction buffer had a light, translucent orange color, due to the 

presence of free resorufin. However, after the experiment was completed, and the 

reaction vessel was removed from the high-pressure cell, the appearance of the 

reaction buffer was more like that of red wine.

Secondly, at room temperature, resorufin cellobioside has a very  low, but still 

detectable breakdown rate. At room temperature and pressure, the fluorescence signal 

of the r Resorufin-β-D-Cellobioside will show a slight increase even in the absence of 

any carbohydrate active enzymes. This puts a limit on the detectability  of very low 

reaction rates by this method. The breakdown rate of Resorufin-β-D-Cellobioside at 

elevated pressures has not been quantified, and should be prior to drawing any 

definitive conclusions about the behavior of cellulase under high pressure.

Most importantly, Resorufin-β-D-Cellobioside is a highly  non-realistic test substrate 

for the cellulase. Cellobioside contains only  two glucose molecules. Breakdown of this 

molecule by cellulase, is an unrealistic analog of the real-world substrate that cellulase 

will be required to digest. In general, the activity of cellulases against soluble 

substrates is not a good proxy for the activity against more realistic, insoluble 
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substrates [214]. For this reason, the measurement of the activity  of cellulase under 

high pressure against more realistic substrates should be measured.

However, if these more realistic assays do show an increase, even a modest one, in the 

activity of cellulase under pressure, it  is worth considering a high-pressure 

crystallographic experiment on the T. fusca cellulase. The structure of the T. fusca 

cellulase is known to 1.9 Å resolution (PDB accession code 1TF4) [218]. This model 

was derived from an X-ray diffraction dataset of 120,169 unique reflections with a of 

94%. The model contains 11,077 non-hydrogen atoms and has a crystallographic R-

factor of 20%. This suggests a coordinate uncertainty, from Cruickshank’s formula 
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Figure 6.10:  Ribbon diagram of the of T. fusca Cel9A cellulase [215]. Atomic model 

by Sakon et al. [218] (PDB accession code 1TF4). The catalytic 

domain, residues 1-454, is colored in red and the binding domain, 

residues 455-605, is colored in blue. The active site residues are shown 

as sticks. A close up of the active site can be seen in figure 6.11.



(equation 2.30) of approximately  0.15 Å. A stereo diagram of the T. fusca Cel9A 

cellulase is shown in figure 6.10. A close up of the proposed active site of the Cel9A 

cellulase is shown in figure 6.11.

Preliminary  results of single molecule experiments on cellulases suggest that, like 

several other enzymes studied by single molecule techniques [7, 54, 55, 57, 58], 

individual cellulase molecules display several different rate constants [216]. If the 

deformation motion of cellulase under pressure is reminiscent of that of Citrine: 

deformation into state resembling a transiently  occupied state at room temperature and 

pressure; and this state is highly active; it may be possible to insert mutations into the 

cellulase scaffold that induce the protein to adopt a more highly  active state at room 

temperature and pressure. 
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[218]. Atomic model by Sakon et al. [218] (PDB accession code 1TF4).



6.6 Speculations on Hydrogenases

The ability to catalyze reactions at room temperature and pressure is an extremely 

attractive feature of protein molecules. Many  of the industrial catalysts in use today 

require high temperatures and high pressures, requiring high energy inputs. 

Molecular hydrogen is a highly attractive transportation fuel that can be oxidized in a 

fuel cell to form only water as an exhaust. Hydrogen oxidation produces no carbon 

dioxide or additional exhaust emissions such as the ozone precursors acetaldehyde and 

formaldehyde [219], nitrogen oxide, unburned hydrocarbons and nitrogen dioxide 

[220] that are produced by ethanol and ethanol-gasoline burning engines. However, 

present methods of producing H2 are less attractive: the light hydrocarbon steam 

reforming reaction and coal or heavy  hydrocarbon gasification require high 

temperatures, usually  well in excess of 1000 ˚C to proceed [221]. The electrolysis of 

water is in principle more desirable. However, electrolysis relies upon expensive 

electrodes to act  as catalysts, limiting its wide application especially in developing 

nations [222]. Mineable resources of hydrogen are scarce [223]. 

The need for onsite, on demand generation is particularly  great for H2, as climate 

modeling indicates that leakage may contribute to climatic disruption [224]. 

Photosynthetic production of hydrogen using engineered microorganisms is thought to 

be a desirable novel hydrogen generation technology  [225]. A key challenge in 

achieving this goal is the design and engineering of a hydrogenase enzyme that 

catalyzes the reduction of protons to H2 using electrons supplied by a photosystem that 

can operate in an aerobic industrial environment. Photosynthetic H2 production was 

demonstrated by Ihara et al. [226] using a cyanobacterial photosystem linked to a 

310



hydrogenase with a nickel-iron (NiFe) active site [226]. For industrial synthesis of H2, 

hydrogenases with an iron-iron (FeFe) active site are much more appropriate: they  are 

almost 1000 times more active [227] and require much less complex assembly than 

NiFe-hydrogenases [92]. However, the greatest obstacle to the use of FeFe-

hydrogenases is their intolerance to aerobic environments. 

It is thought that O2 migrates through gas channels in the hydrogenase structure that 

also transport  H2 [228-231] and irreversibly oxidizes the active site [232]. FeFe-

hydrogenases have a hydrogen generation rate of approximately 104 H2 molecules per 

second [233] and are inactivated by a single O2 molecule. This implies that in order to 

have a half-life of 24 hours, the hydrogenase must permit  only one O2 molecule to 

enter its active site for approximately every 109 H2 molecules generated. For 

comparison, a K+ ion channel membrane protein permits the passage of 1 Na+ ion for 

every  104 K+ ions that cross the channel [234]. The difference in average radius 

between O2 and H2 is only 0.3 Å, implying that the dimensions of the gas channels of 

a hydrogenase may need to be modified on the sub-angstrom scale in order to achieve 

a high level of discrimination between H2 and O2 while retaining the high catalytic 

rate of the enzyme. This subtle modulation of the gas channel dimensions may be 

possible by repacking the core of the hydrogenase.

If high-pressure structures of hydrogenases were to reveal a reduction in the gas 

volume, the structures could be analyzed in a fashion similar to that employed to 

understand the deformation of Citrine under pressure: a clustering analysis. If such a 

clustering analysis is successful (it is important to remember that this clustering 

analysis may not be appropriate for all proteins under pressure: it  does not appear to 

work for T4 lysozyme) it may reveal points in the structure amenable to the 
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introduction of “wedge” residues that may subtly  repack the core of the protein, and 

subtly reduce the volume of the gas channels at room temperature and pressure. 

6.7 Conclusions

The experiments presented in this thesis provide an explicit demonstration of the 

continuous linkage of the scaffold of a protein molecule, its active site and the activity; 

in this case fluorescence, of the molecule. 

These experiments link a slight bending, of approximately 2˚ over 500 MPa of applied 

pressure, of the β-barrel scaffold of the yellow fluorescent protein molecule Citrine to 

a deformation of approximately 0.8 Å in its active site. This bending motion under 

pressure is due to the relative motion of two clusters of atoms of differing 

compressibility that compose the scaffold of the Citrine molecule. This deformation of 

the β-barrel scaffold is communicated to the aromatic rings directly  involved in 

fluorescence. 

The bending motion of the β-barrel scaffold actuates the separation of the two 

elements of the Citrine chromophore: the main chromophore and the perturbing 

tyrosine 203 ring. The main chromophore and tyrosine 203 phenol slide apart by  ≈ 0.8 

Å under a pressure of 500 MPa. This sub-angstrom separation of the main 

chromophore and the tyrosine 203 ring removes the perturbing influence of the 

tyrosine 203 phenol on the main chromophore, and allows the fluorescence spectrum 

of Citrine to return to the green under high pressure. Extended Hückel modeling of the 

shift in energy of the fluorescence peak of Citrine indicates that the mechanism of 

perturbation of the main chromophore by the tyrosine 203 phenol is orbital overlap 

leading to destabilization of the highest molecular orbital (HOMO) of the main 
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chromophore, and narrowing in the energy of the HOMO-LUMO transition from 

which fluorescence photons are emitted. 

Dietz et al. [151-153] have performed single molecule unfolding experiments on 

Green Fluorescent Protein molecules using optical tweezers. We speculate that a 

similar experiment could be performed where mechanical forces, such as those 

produced by  the tip  of an atomic force microscope (AFM) or optical tweezers, could 

be used distort the protein to test if it results in a similar spectral shift to that observed 

under high pressure. While this would be a very  difficult  experiment to perform, it is 

in principle feasible.

High-pressure studies of protein structure and function offer the possibility of probing 

the energy  landscapes of protein active sites and offering new insights into the 

structural basis of enzymatic catalysis. Experiments of this kind may provide further 

insight into models of protein function, the coupling between protein active sites and 

the protein scaffold, giving additional insights into the structural basis of allosteric 

behavior in protein molecules. For example, the pressure dependent behavior of 

Citrine provides a test of models of protein fluorescence [156, 210, 235]. 

This type of simultaneous study  of the activity and structure of protein molecules 

under progressive deformation will provide challenging tests for, and may  allow the 

improvement of, many models of protein function. This chapter has suggested several 

prospects for future investigation: other members of Aequorea fluorescent protein 

family, Morphinone Reductase, cellulases and hydrogenases. An improvement in 

protein function prediction algorithms may have important benefits for rational protein 

design. 
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It is likely that small, less than 1 Å, structural deformations in the active sites of many 

proteins, may have measurable effects on their functions. It is also possible that 

seemingly small refinement errors, on the order 0.1 Å, in atomic structures of proteins 

derived from low resolution data or by homology modeling of known structures, could 

lead to substantial errors on the predicted catalytic activities of these proteins [236]. 

These results also suggest that  to achieve maximum efficiency in their design goal, 

designed macromolecules may  need to be engineered with sub-angstrom structural 

accuracy. 

These experiments may also provide structural insights into the results of single 

molecule experiments, by allowing the trapping of normally transiently occupied 

protein states, as we believe was shown with Citrine. Finally, high pressure 

perturbation may  provide a means to explore catalytic rate enhancement, and a way to 

achieve it, by  suggesting sites at which strain-inducing mutations [237, 238] may be 

introduced into the protein scaffold, to mimic the effects of high pressure under 

ambient conditions, that would not be highlighted by  single protein structures, random 

mutagenesis or directed evolution methods. 
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