
High-Speed Function Approximation

Biswanath Panda, Mirek Riedewald, Johannes Gehrke
Dept. of Computer Science

Cornell University
{bpanda,mirek,johannes}@cs.cornell.edu

Stephen B. Pope
Dept. of Mechanical & Aerospace Eng.

Cornell University
pope@mae.cornell.edu

Abstract

Learning methods for predictive models have tradition-
ally focused on prediction quality and model building time,
while prediction time (the time taken to make a prediction)
is often ignored. However there is an increasing need for
models that are not only accurate, but also make fast pre-
dictions. Some of the most accurate models like ensemble
models are often too slow to be used in practice. We be-
lieve that exploring the tradeoff between prediction time and
model accuracy is an exciting new direction for data mining
research.

In this paper, we make a first step toward exploring this
tradeoff. We introduce a new learning problem where we
minimize model prediction time subject to a constraint on
model accuracy. Our solution is a generic framework that
leverages existing data mining algorithms while taking pre-
diction time into account. We show a first application of
our framework to a combustion simulation, and our results
show significant improvements over existing methods.

1. Introduction

Predictive models, both for classification and for regres-
sion problems, play a major role in machine learning and
data mining. After a predictive model is learned from a
given set of training cases, it can be used to make predic-
tions for new inputs. Traditionally, learning algorithms for
such models have focused on improving prediction qual-
ity, e.g., measured by accuracy, root mean squared error
(RMSE), area under the ROC curve and other metrics [7].
Research in data mining also considered model building
time, i.e., to improve the time it takes to learn predictive
models for large or high-dimensional data sets. However,
there is another aspect of a predictive model, which is usu-
ally ignored by learning algorithms—prediction time— the
time taken by the model to process an input and make a
prediction. Let us describe a concrete application where
prediction time is important.

High-dimensional function approximation (HFA) for
combustion simulations was recently introduced by [22].
Scientists study how the composition of gases in a com-
bustion chamber changes over time due to chemical reac-
tions. The composition of a gas particle is described by a
high-dimensional vector. The simulation consists of a series
of time steps. During each time step some particles in the
chamber react, causing their compositions to change. This
reaction is described by a complex high-dimensional func-
tion, which, given a particle’s current composition vector
and other simulation properties, produces a new composi-
tion vector. Combustion simulations usually require up to
108 to 1010 reaction function evaluations. For most experi-
ments, a single evaluation of the reaction function costs tens
of milliseconds of CPU time on a modern PC. This makes
running large scale simulations computationally infeasible.
Scientists address this problem by building computationally
less expensive models that approximate the reaction func-
tion within a user defined error tolerance ofǫ [23]. Our
work is motivated by these specialized solutions for build-
ing models with low prediction time.

Combustion represents one of many physical phenom-
ena studied by scientists using simulation methods. In most
cases the mathematical model describing the phenomenon
is complex, making it necessary to build approximate mod-
els that improve simulation runtime. Recently Bucila et
al. [6] observed that ensemble models, while being the most
accurate in many scenarios, are often too slow to be used
in practice. In addition to scientific simulations, predictive
models with low prediction time are also important for on-
line transactions, financial forecasting, fraud detectionand
numerous other applications where it is important to be both
fast and accurate. Building models for applications where
prediction time is crucial is the focus of this paper.

One approach to reducing prediction time would be to
concentrate on a given data mining model and its construc-
tion algorithm and modify them to take prediction time into
account. This modification would have to be made for each
model/algorithm combination, an arduous task. We instead
propose a meta-learning framework that leverages existing

data mining models and model building algorithms. The
main idea is a local model approach, where we divide the
domain of the learning problem into regions with associated
data mining models. The search algorithms in our frame-
work select appropriate regions and models across a large
space of possible region/model configurations. Our work
shows that this novel local model approach that uses differ-
ent model types in different parts of the space can signifi-
cantly reduce prediction time while maintaining high pre-
diction accuracy. We make the following contributions.

• We introduce a new learning problem,Low Prediction
Time Learning, with the goal to minimize model pre-
diction time while maintaining a user-defined model
accuracy. (Section 2)

• We propose a generic framework for Low Predic-
tion Time Learning. Our framework is application-
independent and it is not limited to any particular
model type or learning algorithm. (Section 3)

• We show how our ideas lead to significant speed-up for
real simulation workloads. (Sections 4 and 5)

Section 6 discusses related work and Section 7 concludes
the paper.

2. Problem Formulation

We formally define the Low Prediction Time Learning
problem and then describe a detailed example, which illus-
trates several aspects that make the problem challenging.

Assume we are given a distributionD on Rm and two
functionsf : Rm → Rn and M : Rm → Rn. We say that
M is an(ǫ, δ)-approximation off with respect toD if

ED[||f(x) − M(x)|| ≤ ǫ] ≥ 1 − δ, (1)

where|| is some metric. LetcM(x) be the time taken by M
to compute M(x).

We can now define theLow Prediction Time
Learning Problem as follows. Given a set
I = {(x1, f(x1)), (x2, f(x2)), . . . , (xN , f(xN))} find
a function M (themodel) such that M is an(ǫ, δ) approxi-
mation off while minimizing

ModelCost= ED[cM(x)]

We now describe a simple example to illustrate why Low
Prediction Time Learning is an interesting problem. The
example will also provide insights into the overall solution
described in the next section. Suppose we want to approxi-
mate the one dimensional functionf shown in Figure 1(A)
within a specified(ǫ, δ) error constraint for the distribution
D shown in the figure. Further assume that we have a set
of model types denoted byM that can be used to approxi-
mate the function. Let this set consist of polynomials up to

S

S

L LL L L

L L QQ

0.05 0.3 0.3 0.15 0.150.05

A

B

C

L

LLin
QQuad

f

D

Figure 1. Example

degree 10, that is

M = {
∑

i=0,n

ai · x
i|n = 0, 1, . . . , 10}

For simplicity, assume the cost of evaluating a polynomial
of degreen is equal to the number of multiplication oper-
ations, i.e., it is2n − 1. (Note that one can computexi as
xi−1 ·x, hence all powers ofx up to then-th can be obtained
with n − 1 multiplications.)

Suppose the true functionf is a polynomial of degree 10.
Then it is clearly possible to approximatef with a polyno-
mial of degree 10 with(ǫ, δ) error. If we approximatef
using a polynomial of degree 10, then the model will take
19 time units per prediction.
Observation 1:Assumef can also be approximated within
(ǫ, δ) by a 6th-degree polynomial. This reduces model cost
to 11 time units per prediction.
Observation 2:Assume further that polynomials of degree
less than 6 do not approximate the function well in all parts
of the domain. However, lower degree polynomials may
work well in some parts of the space. For example, in part
(B) of Figure 1 the function domain has been divided into
6 parts and a polynomial of degree 1 is fit in each part.
Assume that for all points in a particular partition the lin-
ear model in that partition approximates the function within

(ǫ, δ). Therefore, this set of linear models defines another
model that overall satisfies the(ǫ, δ) constraint. However,
now the prediction time is not just an evaluation of a polyno-
mial, but actually involves two steps. Given a query point,
we first have to find the partition that contains the point
(search time) and then evaluate the polynomial in the parti-
tion (approximation time).

In order to find a partition containing the query point, we
need a search structure S on the partitions. In this exam-
ple we use a simple linear list S as shown in part B of the
figure. For a given query point, the list is scanned until the
corresponding partition is found. For simplicity we assume
that the search cost is equal to the number of list elements
accessed. Hence for the overall prediction time we obtain
on expectation0.05 · 1 + 0.05 · 2 + 0.3 · 3 + 0.3 · 4 + 0.15 ·
5 + 0.15 · 6 = 3.9 units for search and 1 unit for evaluating
the corresponding degree-1 polynomial, for a total cost of
4.9 units per query.
Observation 3:Part (C) of Figure 1 shows another parti-
tioning of the function. In this case the first and the last
partitions have polynomials of degree 2, while the second
and third partitions have polynomials of degree 1. Using an
argument similar to Observation 2, assume that this model
also satisfies the(ǫ, δ) constraint and again we use a list S to
search for partitions. In this case the average approximation
time per query is0.1 · 3 + 0.3 · 1 + 0.3 · 1 + 0.3 · 3 = 1.8
time units and the average search time per query similarly
is 0.1 ·1+0.3 ·2+0.3 ·3+0.3 ·4 = 2.8 time units, resulting
in a total prediction time of 4.6 time units per query.

The example illustrates several interesting tradeoffs for
Low Prediction Time Learning.

• Observation 1 showed that at a particular error toler-
ance there may exist several models of different com-
plexity that can approximatef . As the error tolerance
is increased, simpler models can be used, reducing
prediction time. We call this theAccuracy-Prediction
Time Tradeoff.

• Observation 2 showed that there exists a tradeoff be-
tween search time and approximation time. Fitting
a polynomial of degree 6 resulted in a model with
no search time but high approximation time. Parti-
tioning the domain and using a linear model in each
partition resulted in model with high search cost and
low approximation cost. We call this theSearch-
Approximation Time Tradeoff.

• Observation 3 indicated that exploiting the Search-
Approximation Time Tradeoff is challenging because
there are many different ways to partition the function
domain and build models for each part. In this simple
example the difference in prediction times did not vary
significantly between the two partitioning schemes, but
for more complex functions it can be significant.

In the following sections we will develop a cost-model
based optimization framework in order to find models that

exploit both the tradeoffs described in this example.

3 Algorithmic Framework

Recall that in the example in the previous section, dif-
ferent partitionings of the input domain and using different
model types in the partitions resulted in varying prediction
times. In this section we formalize the approach and dis-
cuss how to explore the design space of possible regions
and models.

3.1 Model Definition

A region-model M for a functionf : Rm → Rn consists
of a set of convex regions R= {ri|ri ⊆ Rm}, stored in
some search structure S, and a mapping Q of regions to stan-
dard data mining models such that∀ri ∈ R : Q[ri] = mi.
Heremi is an instantiation of a model type inM, whereM
is a set of types of data mining models.

The search structure S supports a Lookup(S,x) opera-
tion that returns a regionr ∈ R containingx. Given a
query pointx the prediction process consists of the fol-
lowing steps: (1) findr = Lookup(S, x), (2) then select
m = Q[r], and (3) compute predictionm(x). We can now
revisit the notion of an(ǫ, δ)-approximation of a functionf
with respect to a region-model. We say that a region-model
M is a (ǫ, δ)-approximation of a functionf if the following
holds:

ED[||f(x) − Q[Lookup(S, x)](x)]|| ≤ ǫ] ≥ 1 − δ.

Notice that there might be (R,Q) configurations where
some query points are not covered by any of the regions in
R, i.e., Lookup(S,x) returns no result. To handle this, we
assume the existence of a ground truth model of function
f , which would be evaluated for such query points. The
ground truth model returnsf(x) for any x ∈ Rm at some
(high) costC. For scientific simulations, this ground truth
model is usually a differential equation solver. For tradi-
tional machine learning prediction problems this could be
a highly accurate, but expensive ensemble model. If such
a ground truth model does not exist, we can still apply our
approach by simply settingC = ∞.

As described earlier, the prediction time per query con-
sists of two costs: search time and approximation time. Let
sS(x) be the time taken by Lookup to find a regionr con-
taining x using search structure S. Similarly, let am(x) be
the time taken to compute an approximation using model
m = Q[r]. Then the expected total prediction time per
query can be written as ModelCost= ED[sS(x)+aQ[r](x)].

Important properties: We would like to point out some
important observations about the model definition above.
First, we do not impose any restrictions on what model

types can be included in setM and what search structure
S to use. Any predictive model (e.g. neural nets, decision
trees, SVMs) that can represent parts of the target function
could be used. Similarly, the search structure could be a
spatial index, a point index with post-processing to take re-
gion extent into account, a simple list, or any other structure
that supports lookup functionality. Second, the models in
M need not be modified to be included in our framework.
This way we can leverage existing techniques, without hav-
ing to modify each technique individually. Third, “global
models”, i.e., those where a single model is learned for the
entire function domain, are a special case of our model def-
inition. For a global model search time is zero. Finally,
it has been observed that models similar to ours may ex-
hibit variance because of discontinuities at region bound-
aries, that is addressed using a more general mixture model
framework [15]. We discuss ways to address this in Sec-
tion 7.

3.2. Algorithms

Let I denote a set of input points with known function
values. We partition this set into a training set (T) and a
validation set (V) for model building. Generalization error
and model cost (ModelCost) will be measured on an inde-
pendent test set not used for model building.

An exhaustive exploration of all possible combinations
of region partitioning, models used for each region, and
index for managing regions, is practically infeasible. To
reduce the complexity, we divide the problem into smaller
sub-problems. In particular, our algorithm has two major
steps:

1. Generate a set of regions and find the best model for
each region.

2. For each index structure under consideration, select the
set of region-model pairs that minimizes expected pre-
diction time for this index. Return the best solution.

These two steps that we callRegion-Model Candidate Set
SelectionandRegion-Model Selectionare discussed in more
detail below.
Region-Model Candidate Set Selection: Any subset of
points inT could be connected as a candidate region, re-
sulting in a number of regions exponential in the training set
size. We therefore have to resort to heuristics for generat-
ing “the most promising” candidate regions. To reduce the
search space, without being overly restrictive, we propose
the following general approach. Assume we are given a set
of relatively small regions, which we refer to asbase re-
gions. These base regions could be obtained from a regular
grid partitioning of the space, from the leaves in a regression
tree [5], or based on ISAT’s regions of accuracy [23]. No-
tice that base regions do not need to be disjoint. We restrict

region candidates to be either base regions or largerderived
regions, which are the union of some base regions that are
near each other. We will present a concrete algorithm in
Section 4.

For each region under consideration, base region or de-
rived, the next step is to find a local model for that region.
This is described in Algorithm 1. Using the points fromT
andV that lie in a given regionr (calledTr andVr), the
algorithm finds the lowest prediction time (tm) model in-
stantiation (m) from M that can be learned in the region
and producesǫ-approximations for at least1− δ fraction of
the points inVr.

Two observations make the implementation of Algo-
rithm 1 efficient. First,Tr andVr for a derived region can be
approximated by merging the corresponding lists from base
regions. Second, it is common for more complex models to
have higher prediction time. Rather, than trying all models
in a region we sortM in increasing order of model com-
plexity and iterate the list till a model satisfying the error
constraint is found.
Region-Model Selection: The region-model generation
algorithm produces a set with elements of the form
(ri,mi, tmi

). We call this set of region model pairs RM.
Notice that each of the models in RM satisfies the(ǫ, δ)
error constraint for its region. Region-model selection in-
volves selecting a subset of RM and initializing a model
M (as defined in Section 3.1) that has lowest prediction
time. Therefore, selection finds a model that minimizes∑

x∈V(sS(x) + aQ[r](x)). There are two important obser-
vations about this problem formulation.
• A selected subset of regions need not cover all points

in V. The ground truth model (Section 3.1) will be
used to make predictions for such non-covered points.
A ground truth model with approximation time of∞
forces the selection algorithm to search for subsets of
RM that completely cover the function domain.

• Algorithm 1 guarantees that every region-model pair
in RM satisfies the(ǫ, δ) error constraint. However, if
regions are allowed to overlap this does not guarantee
that the(ǫ, δ) error constraint will hold for a model M
consisting of a subset of RM. In our experience having
all regions satisfy the error constraint leads to tighter
error for M. This is not surprising, because M will
only have worse error for some corner cases. We do
not elaborate on this further due to space constraints.
As the experiments show, in practice enforcing(ǫ, δ)
for each region usually leads to better global error.

Several factors make the region-model selection problem
difficult. First, lookup cost in a search structure depends
on the properties of the regions it stores like their degree
of overlap, extent, and orientation. If multiple regions in
the search structure S contain a given query point, then ap-
proximation cost depends on the region-model pair that will
be finally used in the prediction. These issues aside, we

Algorithm 1 : Model Generation
Require: Training setT , Validation SetV, Region r,

Model SetM, Errorǫ, Error Rateδ
1: Tr = {(x, f(x))|x ∈ r ∧ (x, f(x)) ∈ T }
2: Vr = {(x, f(x))|x ∈ r ∧ (x, f(x)) ∈ V}
3: for all model types∈ M in ascending order of com-

plexity do
4: if model instantiationm usingTr existsthen
5: Y={(x, f(x))|(x, f(x)) ∈ Vr ∧ ||m(x) − f(x)|| ≤

ǫ}

6: if |Y |
|Vr|

> 1 − δ then
7: return (m,tm)
8: return ”No model found”

can show that even if we make very restrictive assumptions
about the search time and approximation time of a query
point, the region model selection problem is very hard.

Theorem 1. For a non-trivial set of region-model pairs RM,
selecting the subset of region-model pairs from RM, such
that expected prediction time is minimized, is NP-hard.

We skip the proof due to space constraints. Given
the complexity of the selection problem, we use a greedy
heuristic, shown in Algorithm 2. The algorithm starts out
with an initial solution of base regions. This initial solu-
tion is biased toward high search cost and low approxima-
tion cost. In each step the algorithm replaces a set of re-
gions in the current solution with a larger region from the
set of candidate regions, such that the larger region covers
all the removed regions. This is done greedily by selecting
the region that brings about the largest reduction in predic-
tion time. The algorithm stops when no more improvement
is possible.

Notice that Algorithm 2 assumes the existence of a cost
function (C), which, given a set of region-model pairs and
a validation setV, returns the prediction time of the best
model that can be created using the given region-model
pairs. Finding such a cost function is challenging, because
of reasons pointed out earlier. We will discuss this in more
detail in the next section.

4. Instantiations

There are many ways to instantiate the above framework,
differing in how base regions are generated and merged and
the search structure used to store the regions. One can de-
fine a grid-based partitioning of the function domain [3],
attempt to merge adjacent grid cells and use a search struc-
ture that performs a binary search along each dimension to
find the cell the query point lies in. Another possible in-
stantiation is a regression tree style partitioning of the func-
tion domain with a binary tree search structure. In this case

Algorithm 2 : Greedy Region Selection
Require: RM, Validation SetV, Cost functionC

1: Sol (⊆ RM) = {(ri,mi, tmi
)|ri is a base region}

2: Cost =C(Sol)
3: while Cost improvesdo
4: TempSol={}
5: for all (r,m, tm) ∈ S ∧ (r,m, tm) /∈ Sol do
6: Rem ={(ri,mi, tmi

)|(ri,mi, tmi
) ∈ Sol∧ri ⊆ r}

7: tSolr = Sol +(r,m, tm) - Rem
8: tCostr = C(tSolr)
9: TempSol = TempSol∪(tSolr, tCostr)

10: if ∃(tSolr, tCostr) ∈ TempSol s.t. tCostr < Cost
then

11: (Sol,Cost)=(tSolr, tCostr)
12: S= Regions in Sol, Q= Region-Model map for Sol
13: return S,Q

the base regions correspond to the leaf nodes of a regres-
sion tree (T) like CART [5]. The region merge process
could then attempt to merge a subtree ofT into a single
region with a more complex model. Intuitively the selec-
tion algorithm would prune away subtrees ofT whenever it
is cheaper to use the complex model in the merged region
to make a prediction compared to traversing the subtree and
using the simpler models in the leaves. For both the grid-
based and the regression tree approach defining cost func-
tion C is fairly straightforward and we omit the details.

A third and more general instantiation is to treat each
individual point inI as a base region and define a merge that
creates regions enclosing the 1, 2,. . . ,n nearest neighbors
of a point. In this case the set of regions can have arbitrary
shape, size, overlap; and the search structure (S) can be any
high dimensional index. We discuss a variation of this idea
for the combustion simulation where scientists build models
with flexible region definitions.

4.1. Simulation Instantiation

The ISAT algorithm used by the domain scientists [22]
approximates the combustion reaction function by a set of
(possibly overlapping) high-dimensional ellipsoids withlin-
ear models inside these ellipsoids. These regions are ob-
tained based on selective evaluations of the reaction func-
tion, which is the ground truth model for this application.

To ensure that the ellipsoids satisfy the model definition
in Section 3.1, we use a slightly modified version of the
algorithm [30]. The main modification is a stricter error
control mechanism that periodically checks existing regions
in the model and updates region boundaries to not include
parts of the space where the model is producing poor ap-
proximations. Studies also indicated that hyper-rectangular
regions work at least as well as ellipsoids, we will therefore

use hyper-rectangular base regions. In the remainder of the
paper, this modified algorithm is referred to as the ISAT al-
gorithm.

Domain scientists also observed that their long-running
simulations (> 109 queries) almost always have the follow-
ing two properties. First, the future query distribution of
the simulation can be fairly accurately estimated after a few
million queries. Second, simulation time is dominated by
model prediction time, i.e., model construction and mainte-
nance time are negligible. We describe the instantiation of
our framework for such simulations.

Without loss of generality we model the simulation as
a 2-phase process. During the first phase (a few million
queries) the ISAT algorithm is run. This algorithm pro-
duces a set of base regions in the function domain with a
similar model in each region. In order to create this set of
region-model pairs, the ISAT algorithm has to evaluate the
reaction function for some query points. These points will
be used as the training and validation data for our technique
(I). At the end of the first phase we apply our framework
usingI as the input data set and build a new model opti-
mized for prediction time. This model is used for the rest
of the simulation. Long-running simulations need not have
exactly two phases; in that case the above procedure can be
repeated periodically. Note that the framework instantiation
for the combustion simulation can also be applied to im-
prove prediction time in atraditional supervised learning
model, using the training data explicitly provided.

Our instantiation for the combustion problem starts with
the set of regions created by the ISAT algorithm during
phase one as the base regions. Larger regions are created by
merging a base region with its nearest neighbors. Specif-
ically, for each base regionr, we add the following de-
rived regions:r merged with its first nearest base region,
r merged with its two nearest base regions, and so on until
some upper limitn of neighbors. Duplicate derived regions
are eliminated. Since the base regions are hyper-rectangles,
we define a derived region as the smallest bounding hyper-
rectangle of the merged base regions. Conceptually, we do
not need to use ISAT’s regions as base regions, and could
use individual points inI as base regions instead. However,
if cardinality ofI is large this would make nearest neighbor
search costly.

Having defined the region creation process, the next step
is to find models for each region (Algorithm 1). We now
turn our attention to the major challenge for the next step—
defining cost functionC.
Cost Function (C): For high dimensional indexes, it is
difficult to accurately estimate the search cost of a query
just based on the set of regions to be stored, without actually
building the index. Unfortunately, building the index for
each iteration of the greedy region selection algorithm (step
8 in Algorithm 2) is very expensive.

We discuss cheaper alternatives for selected index struc-
tures. Due to space constraints we omit implementation de-
tails. The main idea is to take advantage of two properties of
the problem. (1) The selection process picks region-models
from a fixed set and optimizes the solution for a fixed set of
points (V). Hence we can precompute information like the
subset ofV in each region. (2) At each step the algorithm
leaves most of the solution unchanged and only replaces a
small set of regions with a single larger region. We can
leverage this property for incremental computation.
Random List stores regions in a simple list. The lookup
operation scans the list from the beginning until a region
containing the query point is found. While lists are not so-
phisticated index structures, linear scans are known to per-
form well for disk-based accesses in high dimensions [28]
and also as in-memory data structures for combustion sim-
ulations [22].

Different orders of regions in the list will result in differ-
ent prediction costs. Given a set of regions it is infeasibleto
try all possible orders to find the best one. The idea behind
the random list approach is to compute and minimize the
expected cost assuming all region orders are equally likely,
and then to pick the best order for the set of regions with the
lowest expected cost.

Given a selected set of region model pairs of size|S|, the
cost function computes

∑
xi∈V(|S|

fi+1 + Avg(tm1
. . . tmfi

)).
The intuition for the formula is as follows. For a set of
regions, if a query point lies in multiple regions, then in
any random order of the list it is very likely that a region
containing the query point is found early. Therefore, the
search time for a query point is approximated as|S|

fi+1 where
fi is the number of regions that query pointxi lies in. The
approximation time for a query point is simply the average
of the cost of the models in the regions that the query point
lies in (each one is equally likely to be found first in the list).
After the selection algorithm finds a set of regions with the
lowest expected cost, we try a few different sort orders of
these regions and pick one with the lowest cost.
MFU List: In practice it is often a good heuristic to store
the most frequently queried regions in front of the list.
This strategy is called Most Frequently Used (MFU). No-
tice that this need not be an optimal order, because the
model in a frequently accessed region might be expensive
and the query point might also be covered by a region with
a cheaper model later in the list. We use the validation set
V to estimate the fraction of future queries that will fall into
a given region.

In a MFU list the order in which a set of regions will
be stored is known and therefore search and approximation
cost for all query points can be accurately computed. In this
case an efficient implementation exists by first sorting all
candidate regions in RM according to the number of points
in V that they contain.

RTree: For hierarchical indexes like the RTree, it is known
that finding accurate cost models for high-dimensional data
is very difficult [18]. Fortunately, for our technique we do
not need absolute costs, but rather an estimate of the net
benefit of merging a set of regions into a single region. In
this section we propose a fairly simple and robust heuristic
that can be used for optimizing any index structure which
prunes search space by building a hierarchical structure on
the set of regions being indexed. We describe the heuristic
for the RTree [14], a popular index for spatial data. One
can develop more accurate cost models for different index
structures but our aim is to show that even a simple heuris-
tic works well for improving model prediction time. More
sophisticated cost models can be easily plugged into our al-
gorithm (Line 8 in Algorithm 2).

The RTree is a balanced tree structure. Nodes in the
tree correspond to hyper-rectangles in the data space. If
the tree indexes hyper-rectangles, a leaf node stores actual
data objects (up to a specified maximum), while a non-leaf
node stores the minimum bounding box of hyper-rectangles
in its subtree. During a search, all subtrees whose bound-
ing boxes contain the query point are examined, hence the
search cost is determined by number of hyper-rectangles ex-
amined till a data object containing the point is found, often
called thefalse positive rateof an index. A tree can have
a non-zero false positive rate because in high dimensions it
is difficult to partition objects well, causing the bounding
boxes of non-leaf nodes to overlap. This results in multiple
search paths in the tree for a given query point and some
paths may not have a data object containing the query point
(hence false positives). Our goal is to estimate the reduc-
tion in false positives for queries if a region merge is done
in Lines 7 and 8 of Algorithm 2. This cost reduction has to
be compared with the cost increase associated with a more
complex model in the larger merged region.

We estimate the benefit of merging as follows. Assume
the RTree on average hask false positives for a query. Since
RTrees (and any hierarchical index) tend to cluster nearby
objects, all false positives of a query tend to be in the neigh-
borhood of the query. Hence, if we merge some neighbor-
ing regions, then nearby query points will see a reduction
in their false positive rate because some of their false posi-
tives have been merged. We estimate this reduction in false
positives by defining a neighborhood around the merged re-
gions, such that it contains all queries that are affected by
the merge.

The order in which these affected queries will access re-
gions in the tree depends on the actual tree layout. Lacking
further knowledge, we assume that all regions in the neigh-
borhood are accessed in some random order. Hence we use
the random list cost model (see above) to estimate the bene-
fit of a region merge in the affected neighborhood. The main
challenge is to select the correct neighborhood. We define

Name Description
ISAT ISAT algorithm

Opt Proposed optimization algorithm
C Constant model
L Linear model
Q Second order model
|S| Index size grouped by model type
k Average number of false positives

Obsδ Observedδ on test set
Search Time Total cost of index lookup

Approx Time Total cost of model evaluation
Total Time Total prediction time

StdDev Standard deviation of total time

Table 1. Legend

the neighborhood by selecting a small number of nearest
neighbors, parameterized byγ, of each region that partici-
pates in the merge. Details onγ and the performance of the
heuristic are described in the experiments.

5. Experiments

As a proof of concept, we implemented and tested our
approach for the combustion simulation application. We
use libraries and data from a Hydrogen+Air simulation pro-
vided by the authors of [22]. The dataset comprises 5 mil-
lion simulation query points. Each query point is a 10 di-
mensional composition vector. The reaction function that
describes the simulation in this case is a high dimensional
functionf : R10 → R11.

The overall setup is as follows. We run the ISAT algo-
rithm on the first 3 million query points to generate the base
regions and training/validation data setI, which are used by
our algorithm as discussed in Section 4.1. A random sample
of ≈ 2× 105 query points from the last 2 million queries is
used as an independent test set. We compare total simula-
tion time on the test set against the original ISAT model as
it is currently used by the domain scientists.

All experiments used a70−30 split ofI into training (T)
and validation (V) set andδ = 0.1. For each base region,
8 derived regions are created by merging the base region
with its 1,2,. . . ,8 nearest neighbor base regions. For a fair
comparison we use exactly the same data that ISAT uses for
model building. Notice thatI usually is not exactly a uni-
form sample of the query points due to peculiarities of the
ISAT algorithm. This puts our algorithm at a slight disad-
vantage, but overall we did not find significant differences
between the distribution ofI and the test set. All experi-
ments were run on a Windows XP PC with a 2.79GHz pro-
cessor and 8GB RAM.

ExptNo:(S, ǫ) Method M |S| k Obsδ Search Approx Total StdDev
Time(ms) Time(ms) Time(ms) (ms)

1: (RL, 5 × 10−3)
ISAT L L:63 26 0.01 623 337 960 68

Opt L,Q L:28,Q:9 6 0.005 114 434 548 -
Only S L,Q L:26,Q:41 1 0.0002 84 1750 1834 -

2: (RL, 5 × 10−5)
ISAT L L:2263 977 0.05 20477 383 20860 2983

Opt L,Q L:1430,Q:332 122 0.01 2071 1620 3691 -
3: (MFU, 3 × 10−3)

ISAT C C:2226 113 0.08 2367 93 2460 -
Opt C,L C:1362,L:115 19 0.003 414 342 756 -

4: (RTree, 3 × 10−3)
ISAT C C:2226 212 0.11 15530 78 15608 819

Opt C,L C:687,L:229 92 0.07 6751 266 7017 -
5: (RTree, 5 × 10−5)

ISAT L L:2263 166 0.06 12238 380 12618 1327
Opt L,Q L:1986,Q:36 124 0.05 8927 385 9312 -

Table 2. Results Summary

γ |S| Avg Total Time(ms) StdDev(ms)
ISAT 2226 15608 819
0.004 1210 10584 1303
0.008 916 8350 736
0.012 802 8050 950
0.02 653 6151 667
0.03 555 5362 773

Table 3. Neighborhood Effect

5.1. Results

We ran simulations using different values ofǫ, index
structures and model types (M). Table 2 summarizes the re-
sults; variables are explained in Table 1. All measurements
are on the test set and times reported are in milliseconds,
rounded to the nearest integer.

Experiment 1 is for ǫ = 5 × 10−3 and the Random List
(RL) index. ISAT built regions with linear models (L)1 and
our framework used both linear and quadratic (Q) models.
ISAT created63 regions. Since index size and search cost
are small in this case, our method (Opt) does not merge
many of the linear regions into quadratic ones (only 9).
Nevertheless a significant reduction in prediction cost by
≈ 30% is achieved. The increase in approximation cost
(some query points are approximated using quadratic mod-
els) is offset by the decrease in search cost. Recall that our
algorithm for a random list tries a few random orders and
returns the best as the solution. For ISAT there is no opti-

1ISAT always uses the same model in every region; it must be specified
when the simulation starts.

mization algorithm for selecting the best list order, therefore
we report average cost across30 different random sort or-
ders and standard deviation.

To show that both approximation and search cost must
be considered for prediction time optimization, we repeated
Experiment 1 using a simpler optimization goal—only min-
imize search cost (”Only S”). In this case the selection
algorithm aggressively merges regions to cover validation
points with the smallest number of derived regions contain-
ing quadratic models. As the results show, the additional
decrease in search cost is not significant enough to offset the
higher approximation cost. A surprising observation in this
experiment is that the number of regions created by ”Only
S” is greater than for ISAT, even though the selection algo-
rithm usuallyreplacesa set of regions with a larger region.
This happens because it is possible to select a candidate re-
gion that does not completely contain any regions in the
current solution, but significantly overlaps with a lot of them
(i.e., Rem={} in Line 6 and 7 of Algorithm 1). Adding such
a region increases list size but may still reduce expected
search cost per query as some query points now are covered
by multiple regions (recall that search cost=|S|

fi
+ 1).

Experiment 2 uses the same setup as Experiment 1 but
with ǫ = 5 × 10−5. As ǫ is stricter, it is not surprising that
ISAT creates a larger number of regions and hence search
cost dominates prediction time. Opt in this case more ag-
gressively selects regions with quadratic models, causing
the approximation time to increase significantly. An even
larger decrease in search time results in≈ 70% improve-
ment in total time.

When we repeated Experiments 1 and 2 for the MFU

List, Opt did not merge any regions and simply continued
to use the base regions created by ISAT. The reason is the
skewed distribution of query points over base regions. The
first few regions in the list account for the vast majority of
accesses, resulting in very low search cost. Hence for the
MFU List the benefit of merging regions would be too low
to offset the higher approximation cost of a quadratic model
in a merged region. Stated differently, if the search cost is
low, then it is preferable to stay with the simplest models in
each region.

To show more clearly that Opt makes the right decisions
even for the MFU List, we performedExperiment 3 using
a MFU List andǫ = 3 × 10−3, but this time setting ISAT
to produce base regions withconstant models(C). Now
Opt chooses between linear and constant models. Because
constant models lead to smaller base regions (to guarantee
the error), the list has now more elements and hence higher
search cost. Again Opt automatically makes the right choice
to merge regions into larger ones with linear models, signif-
icantly improving cost.

Experiments 4 and 5 report results for the RTree index.
In Section 4.1 we introduced parameterγ to control the
affected neighborhood size of a region merge. We use a
simple heuristic to setγ. First, an RTree is built from the
base regions. Points inV are queried using the tree and
the average number of base regions probed per query (kl)
is recorded. Based on the assumption that if on average
kl leaves are scanned per query, this corresponds to a ran-
dom list of size2 · kl being examined, we setγ such that at
most2 2 · kl regions are affected by a merge, when the cur-
rent solution has only base regions. Once initialized, we do
not changeγ. Hence affected neighborhood size decreases
with index size.

Using this heuristic and otherwise the same setup as Ex-
periment 3, inExperiment 4 Opt shows≈ 50% improve-
ment over ISAT. Our RTree implementation [2] uses a one-
by-one insertion scheme and different insertion orders can
lead to slightly different RTrees. Therefore, for ISAT we
report average measurements and standard deviation in to-
tal runtime across10 different insertion orders. Opt uses its
cost model to select the best among a few different RTree
insertion orders.

Experiment 5 uses the same setup as Experiment 1, but
with an RTree. The improvement in runtime is compara-
bly small, suggesting either that linear models are good or
poor choice ofγ. Notice that even though approximation
time remains almost unchanged, search cost actually de-
creases. This can be explained by regions that contain very
few query points next to heavily accessed regions. Merging
the lightly accessed regions does not change approximation
cost. But it does help reduce search cost for the heavily ac-

2We say ”at most” because we scaleγ according to the size of the
merge. Larger merges affect larger neighborhoods.

cessed region, because less false positives are encountered.

As we mentioned earlier, the goal of this paper is not to
develop the most accurate cost models for high dimensional
indexes. Rather, we wanted to provide a proof of concept
that pursuing optimization of prediction time is worthwhile.
More accurate cost models can easily be leveraged in our
framework. However, we end the discussion here with a
micro benchmark that shows that the proposed simple Rtree
cost model is robust (i.e., not sensitive toγ). Table 3 shows
index size, average runtime and standard deviation (across
10 different insertion orders) for Rtrees optimized using dif-
ferent values ofγ. For instance,γ = 0.012 for an index of
size|S| implies0.012·|S| nearest neighbors of each replaced
region are assumed to be affected be a region merge. These
results are for the setup of Experiment 4, with the line in
bold face representing the defaultγ value used in that ex-
periment. Results were similar for Experiment 5, hence are
not reported here explicitly.

The first conclusion from the results is that index size
decreases with increasingγ. This is expected since a larger
neighborhood size implies that the tree is expected to have
a larger false positive rate and hence our algorithm predicts
more cost savings by merging regions and using complex
models. While it is clear from the table that total time is
not very sensitive toγ, in this case it tends to improve as
γ increases. This is an artifact of the setup and happens
because here RTree search cost far exceeds approximation
cost. As a result, Opt uses linear models in most regions.
As we increaseγ, Opt merges more regions. But this only
insignificantly increases approximation cost, because most
regions are already linear for smallerγ. However, search
cost may still decrease significantly.

Discussion. Our experiments show that different indexes
and model types work well in different simulation settings.
Our proposed method (Opt) correctly and automatically
captures the tradeoffs in the problem and effectively adapts
the model to the index and simulation parameters. Our
method does not improve runtime at the cost of degrading
prediction quality (seeδ values in Table 2). In fact, in most
cases Opt produces aδ value better than the original ISAT
model. This is because our algorithm performs robust er-
ror control by checking each region-model pair before ad-
mitting it as a candidate for region selection. ISAT on the
other hand only randomly checks regions for error. Finally,
in order for the method to be useful in practice, it should
not generate a significant computational overhead for the
simulation. In all our experiments the cost of the optimiza-
tion algorithm was negligible compared to the total cost of
a long-running simulation as used by the domain scientists.

6. Related Work

Closest to our work is recent work on model compres-
sion [6] where an ensemble model is approximated with a
neural network to improve prediction time. Robot motion
planning algorithms developed techniques to optimize pre-
diction time in local regression models [24]. However, none
of the prior work formalizes the learning problem and ex-
amines the various tradeoffs we discuss.

There is lot of work on local models. Instance based
learning [19] is a special class of local models where rather
than explicitly defining regions, function values at unknown
points are interpolated from neighboring training samples.
A regression tree [5] creates regions in the function domain.
Regression trees are often pruned for accuracy [5], and our
framework when applied to a regression tree uses the same
idea for improving prediction time. No work has focused
on optimizing regression trees for prediction time. [8, 17]
propose new split criteria for accuracy, [17, 26] use com-
plex models in the leaves (again for accuracy), [8] assumes
that shorter trees are easy to interpret and always creates the
most complex model for a subtree, [15, 13] propose meth-
ods to reduce variance in regression tree models, and [11]
optimizes tree construction costs. We optimize and build a
more general class of models and the regression tree is only
an instance of a model in the class.

Existing techniques in the combustion community use
region-models that differ in the types of regions and models
used [23, 3, 9, 22, 27]. However, no work in this community
addresses search and approximation costs together.

Numerous methods have been proposed for finding cost
models for high dimensional index structures with different
focus from our work [1, 4, 16, 29, 12, 21, 10, 20, 25, 18].

7. Conclusions and Future Work

We introduced and formalized the low prediction time
learning problem. We proposed a general framework that
leverages existing data mining models to minimize model
prediction time and used it to significantly speed up a scien-
tific application. Understanding how existing data mining
models can be optimized for prediction time is an interest-
ing direction for future research.

Future directions include reduction of the model vari-
ance using the overlap among regions (recall our remark
from 3.1) and periodic application of our framework for
long running combustion simulations.

References

[1] S. Arya, D. M. Mount, and O. Narayan. Accounting for
boundary effects in nearest neighbor searching. InSympo-
sium on Computational Geometry, pages 336–344, 1995.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The R*-tree: An efficient and robust access method for
points and rectangles. InACM SIGMOD, pages 322–331,
1990.

[3] J. B. Bell, N. J. Brown, M. S. Day, M. Frenklach, J. F. Gr-
car, R. M. Propp, and S. R. Tonse. Scaling and efficiency
of PRISM in adaptive simulations of turbulent premixed
flames. In28th International Combustion Symposium, 2000.

[4] S. Berchtold, C. B̈ohm, D. A. Keim, and H.-P. Kriegel. A
cost model for nearest neighbor search in high-dimensional
data space. InACM PODS, pages 78–86, 1997.

[5] L. Breiman, J. Friedman, C. J. Stone, and R. Olshen.Clas-
sification and regression trees. McGraw-Hill, 2000.

[6] C. Bucilu, R. Caruana, and A. Niculescu-Mizil. Model com-
pression. InACM SIGKDD, pages 535–541, 2006.

[7] R. Caruana and A. Niculescu-Mizil. Data mining in metric
space: an empirical analysis of supervised learning perfor-
mance criteria. InACM SIGKDD, pages 69–78, 2004.

[8] P. Chaudhuri, M. C. Huang, W. Y. Loh, and R. Yao.
Piecewise-polynomial regression trees.Statistica Sinica,
pages 143–167, 1994.

[9] J. Y. Chen, W. Kollmann, and R. W. Dibble. Pdf modeling
of turbulent nonpremixed methane jet flames.Combustion
Science and Technology, pages 315–346, 1989.

[10] P. Ciaccia and M. Patella. Bulk loading the m-tree. InAus-
tralasian Database Conference, pages 15–26, 1998.

[11] A. Dobra and J. Gehrke. Secret: A scalable linear regression
tree algorithm. InACM SIGKDD, 2002.

[12] C. Faloutsos and I. Kamel. Beyond uniformity and indepen-
dence: analysis of r-trees using the concept of fractal dimen-
sion. InACM PODS, pages 4–13, 1994.

[13] J. H. Friedman. Multivariate adaptive regression splines.
Stanford University Tech Report-102, 1988.

[14] A. Guttman. R-trees: A dynamic index structure for spatial
searching. InACM SIGMOD, pages 47–57, 1984.

[15] M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of
experts and the EM algorithm. Technical Report AIM-1440,
1993.

[16] I. Kamel and C. Faloutsos. On packing r-trees. InCIKM,
pages 490–499, 1993.

[17] A. Karalic. Linear regression in regression tree leaves. In
ECAI, 1992.

[18] C. A. Lang and A. K. Singh. Modeling high-dimensional
index structures using sampling. InACM SIGMOD, pages
389–400, 2001.

[19] T. Mitchell. Machine Learning. McGraw-Hill, 1997.
[20] A. Ning, J. Jin, and A. Sivasubramaniam. Analyzing range

queries on spatial data. InICDE, pages 525–625, 2000.
[21] B.-U. Pagel, F. Korn, and C. Faloutsos. Deflating the dimen-

sionality curse using multiple fractal dimensions. InICDE,
pages 589–598, 2000.

[22] B. Panda, M. Riedewald, S. B. Pope, J. Gehrke, and L. P.
Chew. Indexing for function approximation. InVLDB, 2006.

[23] S. B. Pope. Computationally efficient implementation of
combustion chemistry usingin situ adaptive tabulation.
Combustion Theory Modelling, (1):41–63, 1997.

[24] S. Schaal, C. Atkeson, and S. Vijayakumar. Real-time robot
learning with locally weighted statistical learning. InIEEE
Int’l Conf. Robotics and Automation, pages 288–293, 2000.

[25] Y. Theodoridis and T. Sellis. A model for the prediction of
R-tree performance. InACM PODS, pages 161–171, 1996.

[26] L. Torgo. Kernel regression trees. InECML, 1997.
[27] I. Veljkovic, P. Plassmann, and D. C. Haworth. A scien-

tific on-line database for efficient function approximation.
In ICCSA, pages 643–653, 2003.

[28] R. Weber, H.-J. Schek, and S. Blott. A quantitative analy-
sis and performance study for similarity-search methods in
high-dimensional spaces. InVLDB, pages 194–205, 1998.

[29] R. Weber, H.-J. Schek, and S. Blott. A quantitative analy-
sis and performance study for similarity-search methods in
high-dimensional spaces. InVLDB, pages 194–205, 1998.

[30] Xxx. Xxx. In Xxx.

