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High-dimensional function approximation (HFA) for

combustion simulations was recently introduced by [22].

Learning methods for predictive models have tradition- Scientists study how the composition of gases in a com-
ally focused on prediction quality and model building time, bustion chamber changes over time due to chemical reac-
while prediction time (the time taken to make a prediction) tions. The composition of a gas particle is described by a
is often ignored. However there is an increasing need for high-dimensional vector. The simulation consists of aeseri
models that are not only accurate, but also make fast pre- of time steps. During each time step some particles in the
dictions. Some of the most accurate models like ensemblehamber react, causing their compositions to change. This
models are often too slow to be used in practice. We be-reaction is described by a complex high-dimensional func-
lieve that exploring the tradeoff between predictiontimda  tion, which, given a particle’s current composition vector
model accuracy is an exciting new direction for data mining and other simulation properties, produces a new composi-
research. tion vector. Combustion simulations usually require up to

In this paper, we make a first step toward exploring this 10® to 10'° reaction function evaluations. For most experi-
tradeoff. We introduce a new learning problem where we ments, a single evaluation of the reaction function costs te
minimize model prediction time subject to a constraint on of milliseconds of CPU time on a modern PC. This makes
model accuracy. Our solution is a generic framework that running large scale simulations computationally infekesib
leverages existing data mining algorithms while taking-pre Scientists address this problem by building computatignal
diction time into account. We show a first application of less expensive models that approximate the reaction func-
our framework to a combustion simulation, and our results tion within a user defined error tolerance ©f23]. Our
show significant improvements over existing methods. work is motivated by these specialized solutions for build-

ing models with low prediction time.

Combustion represents one of many physical phenom-
ena studied by scientists using simulation methods. In most
cases the mathematical model describing the phenomenon

Predictive models, both for classification and for regres- iS complex, making it necessary to build approximate mod-
sion problems, play a major role in machine learning and €!s that improve simulation runtime. Recently Bucila et
data mining. After a predictive model is learned from a @l- [6] observed that ensemble models, while being the most
given set of training cases, it can be used to make predic-2ccurate in many scenarios, are often too slow to be used
tions for new inputs. Traditionally, learning algorithnez f ~ in practice. In addition to scientific simulations, predliet
such models have focused on improving prediction qual- models with low prediction time are also important for on-
ity, e.g., measured by accuracy, root mean squared errofine transactions, financial forecasting, fraud detectiod
(RMSE), area under the ROC curve and other metrics [7]. "umerous other applicgtipns whereitis impo_rtam to be both
Research in data mining also considered model building fast and accurate. Building models for applications where
time, i.e., to improve the time it takes to learn predictive Prediction time is crucial is the focus of this paper.
models for large or high-dimensional data sets. However, One approach to reducing prediction time would be to
there is another aspect of a predictive model, which is usu-concentrate on a given data mining model and its construc-
ally ignored by learning algorithmsprediction time— the tion algorithm and modify them to take prediction time into
time taken by the model to process an input and make aaccount. This modification would have to be made for each
prediction. Let us describe a concrete application where model/algorithm combination, an arduous task. We instead
prediction time is important. propose a meta-learning framework that leverages existing

1. Introduction
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data mining models and model building algorithms. The
main idea is a local model approach, where we divide the
domain of the learning problem into regions with associated 0.05 O. 05 0.3
data mining models. The search algorithms in our frame- ! |

work select appropriate regions and models across a large

|
|
|

space of possible region/model configurations. Our work f
shows that this novel local model approach that uses differ- A

ent model types in different parts of the space can signifi- LLin
cantly reduce prediction time while maintaining high pre- S| T | QQua

diction accuracy. We make the following contributions.

e We introduce a new learning probletrgw Prediction
Time Learning with the goal to minimize model pre-
diction time while maintaining a user-defined model
accuracy. (Section 2)

We propose a generic framework for Low Predic-
tion Time Learning. Our framework is application-
independent and it is not limited to any particular
model type or learning algorithm. (Section 3)

We show how our ideas lead to significant speed-up for
real simulation workloads. (Sections 4 and 5)

Section 6 discusses related work and Section 7 concludes
the paper.

2. Problem Formulation

Figure 1. Example

We formally define the Low Prediction Time Learning
problem and then describe a detailed example, which illus-
trates several aspects that make the problem challenging. degree 10, that is
Assume we are given a distributidd on R™ and two
functionsf : R™ — R™ and M: R™ — R"™. We say that M= Z a; -
M is an (e, 6)-approximation off with respect taD if i—=0.n

Ep[|lf(x) - @)

where|| is some metric. Lety(x) be the time taken by M
to compute Mx).

We can now define theLow Prediction Time
Learning Problem as follows. Given a set
T = {1, f(X0), (Xa, f(X2)), ..., (X, f(xx))} find
a function M (themode) such that M is ar{e, §) approxi-
mation of f while minimizing

z'ln=0,1,...,10}

For simplicity, assume the cost of evaluating a polynomial
of degreen is equal to the number of multiplication oper-
ations, i.e., it i2n — 1. (Note that one can compuié as
x'~1.2, hence all powers af up to then-th can be obtained
with n — 1 multiplications.)

Suppose the true functighis a polynomial of degree 10.
Then it is clearly possible to approximagtewith a polyno-
mial of degree 10 with(e, §) error. If we approximatef
using a polynomial of degree 10, then the model will take
19 time units per prediction.

Observation 1:Assumef can also be approximated within
(e,0) by a 6th-degree polynomial. This reduces model cost

MX)[| <€ =1-4,

ModelCost= Ep|em(X)]

We now describe a simple example to illustrate why Low
Prediction Time Learning is an interesting problem. The
example will also provide insights into the overall soluatio

to 11 time units per prediction.
Observation 2:Assume further that polynomials of degree
less than 6 do not approximate the function well in all parts

described in the next section. Suppose we want to approxi-of the domain. However, lower degree polynomials may

mate the one dimensional functignshown in Figure 1(A)
within a specifiede, §) error constraint for the distribution

work well in some parts of the space. For example, in part
(B) of Figure 1 the function domain has been divided into

D shown in the figure. Further assume that we have a set6 parts and a polynomial of degree 1 is fit in each part.

of model types denoted by that can be used to approxi-
mate the function. Let this set consist of polynomials up to

Assume that for all points in a particular partition the lin-
ear model in that partition approximates the function waithi



(e,0). Therefore, this set of linear models defines another exploit both the tradeoffs described in this example.
model that overall satisfies tHe, J) constraint. However,
now the predictioq timeis notjustan eva!uation ofa polypo- 3 Algorithmic Framework
mial, but actually involves two steps. Given a query point,
we first have to find the partition that contains the point
(search timg¢and then evaluate the polynomial in the parti-
tion (approximation timg

In order to find a partition containing the query point, we
need a search structure S on the partitions. In this exam
ple we use a simple linear list S as shown in part B of the
figure. For a given query point, the list is scanned until the
corresponding partition is found. For simplicity we assume .
that the search cost is equal to the number of list elements3-1 Model Definition
accessed. Hence for the overall prediction time we obtain
on expectatio.05 -1 4 0.05-2+0.3-3+0.3-4+0.15 - A region-model M for a functiorf : R™ — R™ consists
5+ 0.15 - 6 = 3.9 units for search and 1 unit for evaluating ©f a set of convex regions R {r;|r; C R™}, stored in
the corresponding degree-1 polynomial, for a total cost of Some search structure S, and a mapping Q of regions to stan-
4.9 units per query. dard data mining models such that; € R : Q[r;] = m;.
Observation 3:Part (C) of Figure 1 shows another parti- Herem; is an instantiation of a model type i, whereM
tioning of the function. In this case the first and the last is a set of types of data mining models.
partitions have polynomials of degree 2, while the second The search structure S supports a Lookup(®pera-
and third partitions have polynomials of degree 1. Using an tion that returns a region € R containingx. Given a
argument similar to Observation 2, assume that this modelquery pointx the prediction process consists of the fol-
also satisfies the:, §) constraint and again we use a list Sto lowing steps: (1) find- = Lookup(S, x), (2) then select
search for partitions. In this case the average approximati m = Q[r], and (3) compute predictiom(x). We can now
time per query i$).1-34+0.3-1+0.3-1+0.3-3=1.8 revisit the notion of arje, ¢)-approximation of a functiorf
time units and the average search time per query similarlywith respect to a region-model. We say that a region-model
i50.1:140.3-240.3-340.3-4 = 2.8 time units, resulting M is a(¢, d)-approximation of a functiorf if the following

Recall that in the example in the previous section, dif-
ferent partitionings of the input domain and using différen
model types in the partitions resulted in varying predictio
times. In this section we formalize the approach and dis-
cuss how to explore the design space of possible regions
and models.

in a total prediction time of 4.6 time units per query. holds:
The example illustrates several interesting tradeoffs for
Low Prediction Time Learning. Epl||f(x) — Q[Lookup(S,x)[(x)]|| < €] = 1 — 4.

e Observation 1 showed that at a particular error toler- . i ) )
ance there may exist several models of different com- ~ Notice that there might be (R,Q) configurations where

plexity that can approximatgé. As the error tolerance ~ SOMe query points are not covered by any of the regions in

is increased, simpler models can be used, reducingR' i.e., Lookup() returns no result. To handle this, we
prediction time. We call this thAccuracy-Prediction assume the existence of a ground truth model of function

Time Tradeoff f,» which would be evaluated for such query points. The

e Observation 2 showed that there exists a tradeoff be-ground truth model returng(x) for anyx € R™ at some
tween search time and approximation time. Fitting (high) costC'. For scientific simulations, this ground truth
a polynomial of degree 6 resulted in a model with Model is usually a differential equation solver. For tradi-
no search time but high approximation time. Parti- tional machine learning prediction problems this could be
tioning the domain and using a linear model in each & highly accurate, but expensive ensemble model. If such
partition resulted in model with high search cost and & ground truth model does not exist, we can still apply our
low approximation cost. We call this th8earch-  a@pproach by simply setting = oc.
Approximation Time Tradeoff As described earlier, the prediction time per query con-
e Observation 3 indicated that exploiting the Search- Sists of two costs: search time and approximation time. Let
Approximation Time Tradeoff is challenging because Ss(x) be the time taken by Lookup to find a regiorcon-
there are many different ways to partition the function tainingx using search structure S. Similarly, let &) be
domain and build models for each part. In this simple the time taken to compute an approximation using model
example the difference in prediction times did notvary m = Q[r]. Then the expected total prediction time per
significantly between the two partitioning schemes, but query can be written as ModelCost Ep [Ss(X) + ag[, (X)]-
for more complex functions it can be significant. Important properties: We would like to point out some
In the following sections we will develop a cost-model important observations about the model definition above.
based optimization framework in order to find models that First, we do not impose any restrictions on what model



types can be included in séf and what search structure region candidates to be either base regions or latgeved

S to use. Any predictive model (e.g. neural nets, decisionregions, which are the union of some base regions that are
trees, SVMs) that can represent parts of the target functionnear each other. We will present a concrete algorithm in
could be used. Similarly, the search structure could be aSection 4.

spatial index, a point index with post-processing to take re  For each region under consideration, base region or de-
gion extent into account, a simple list, or any other striectu  rived, the next step is to find a local model for that region.
that supports lookup functionality. Second, the models in This is described in Algorithm 1. Using the points fram

M need not be modified to be included in our framework. andV that lie in a given region (called 7. andV,.), the
This way we can leverage existing techniques, without hav- algorithm finds the lowest prediction time,(t model in-

ing to modify each technique individually. Third, “global stantiation {n) from M that can be learned in the region
models”, i.e., those where a single model is learned for theand produces-approximations for at leadt— § fraction of
entire function domain, are a special case of our model def-the points inV,..

inition. For a global model search time is zero. Finally, Two observations make the implementation of Algo-
it has been observed that models similar to ours may ex-rithm 1 efficient. FirstZ,. and)V,. for a derived region can be
hibit variance because of discontinuities at region bound- approximated by merging the corresponding lists from base
aries, that is addressed using a more general mixture modetegions. Second, it is common for more complex models to
framework [15]. We discuss ways to address this in Sec- have higher prediction time. Rather, than trying all models

tion 7. in a region we sortM in increasing order of model com-
plexity and iterate the list till a model satisfying the erro
3.2. Algorithms constraint is found.

Region-Model Selection: The region-model generation

Let 7 denote a set of input points with known function algorithm produces a set with elements of the form
values. We partition this set into a training s&t)(and a (rsy,mq, 4y, ). We call this set of region model pairs RM.
validation set ¥) for model building. Generalization error Notice that each of the models in RM satisfies {lag))
and model cost (ModelCost) will be measured on an inde- error constraint for its region. Region-model selection in
pendent test set not used for model building. volves selecting a subset of RM and initializing a model

An exhaustive exploration of all possible combinations M (as defined in Section 3.1) that has lowest prediction
of region partitioning, models used for each region, and time. Therefore, selection finds a model that minimizes
index for managing regions, is practically infeasible. To > . (Ss(X) + agj(X)). There are two important obser-
reduce the complexity, we divide the problem into smaller vations about this problem formulation.

sub-problems. In particular, our algorithm has two major  ® A selected subset of regions need not cover all points

steps: in V. The ground truth model (Section 3.1) will be
1. Generate a set of regions and find the best model for used to make predictions for such non-covered points.
A ground truth model with approximation time o

each region. : :
. . . forces the selection algorithm to search for subsets of
2. For eachindex structure under consideration, select the RM that completely cover the function domain.

set of region-model pairs that minimizes expected pre- o Algorithm 1 guarantees that every region-model pair

diction time for this index. Return the best solution. in RM satisfies thQE, 6) error constraint. However, if
regions are allowed to overlap this does not guarantee

These two steps that we c&legion-Model Candidate Set that the(e, 9) error constraint will hold for a model M
SelectiorandRegion-Model Selecticare discussed in more consisting of a subset of RM. In our experience having
detail below. all regions satisfy the error constraint leads to tighter
Region-Model Candidate Set Selection: Any subset of error for M. This is not surprising, because M will
points in7 could be connected as a candidate region, re- only have worse error for some corner cases. We do
sulting in a number of regions exponential in the training se not elaborate on this further due to space constraints.
size. We therefore have to resort to heuristics for generat- As the experiments show, in practice enforcifagd)

ing “the most promising” candidate regions. To reduce the for each region usually leads to better global error.
search space, without being overly restrictive, we proposeSeveral factors make the region-model selection problem
the following general approach. Assume we are given a setdifficult. First, lookup cost in a search structure depends
of relatively small regions, which we refer to aase re- on the properties of the regions it stores like their degree
gions These base regions could be obtained from a regularof overlap, extent, and orientation. If multiple regions in
grid partitioning of the space, from the leaves in aregoessi  the search structure S contain a given query point, then ap-
tree [5], or based on ISAT's regions of accuracy [23]. No- proximation cost depends on the region-model pair that will
tice that base regions do not need to be disjoint. We restrictbe finally used in the prediction. These issues aside, we



Algorithm 1 : Model Generation Algorithm 2 : Greedy Region Selection
Require: Training set7, Validation SetV, Region r, Require: RM, Validation Set/, Cost functiorC

Model SetM, Errore, Error Rated 1: Sol (C RM) = {(r;, m;, t,,,,)|r; is a base region
LT ={(X fX)xernxf(x)eT} 2: Cost =C(Sol)
22 V. ={(x, fX)|xernx f(x) eV} 3: while Cost improveslo
3: for all model typese M in ascending order of com- 4.  TempSol{}

plexity do 5. foral (r,m,t,) € SA (r,m,t,) ¢ Soldo
4:  if model instantiatiomn using7Z,. existsthen 6: Rem ={(r;, my, tm, )| (s, mi, tm,) € SOIAT; C 1}
5: Y={(X, FO))|(X, f(X)) € V- Allm(X) — fF(X)]] < 7: tSol. = Sol +(r,m,t,,) - Rem

€ 8: tCost. = C(tSol.)

6: i % > 1 — 6 then 9: TempSol = TempSal(tSol,, tCost,)
7: return (M,t,) 10: if 3(tSol.,tCost) € TempSols.t. tCost < Cost
8: return "No model found” then

11: (Sol,Cost)%tSol., tCost.)

12: S= Regions in Sol, Q= Region-Model map for Sol
can show that even if we make very restrictive assumptions 13: return S,Q

about the search time and approximation time of a query
point, the region model selection problem is very hard.

the base regions correspond to the leaf nodes of a regres-
sion tree ) like CART [5]. The region merge process
could then attempt to merge a subtreeTointo a single
region with a more complex model. Intuitively the selec-
We skip the proof due to space constraints. Given tion algorithm would prune away subtreesiofvhenever it
the complexity of the selection problem, we use a greedyis cheaper to use the complex model in the merged region
heuristic, shown in Algorithm 2. The algorithm starts out to make a prediction compared to traversing the subtree and
with an initial solution of base regions. This initial solu- using the simpler models in the leaves. For both the grid-
tion is biased toward high search cost and low approxima-based and the regression tree approach defining cost func-
tion cost. In each step the algorithm replaces a set of re-tion C is fairly straightforward and we omit the details.
gions in the current solution with a larger region from the A third and more general instantiation is to treat each
set of candidate regions, such that the larger region coversndividual pointinZ as a base region and define a merge that
all the removed regions. This is done greedily by selecting creates regions enclosing the 1, 2,.n.nearest neighbors
the region that brings about the largest reduction in predic of a point. In this case the set of regions can have arbitrary
tion time. The algorithm stops when no more improvement shape, size, overlap; and the search structure (S) can be any
is possible. high dimensional index. We discuss a variation of this idea
Notice that Algorithm 2 assumes the existence of a costfor the combustion simulation where scientists build medel
function (), which, given a set of region-model pairs and with flexible region definitions.
a validation set/, returns the prediction time of the best
model that can be created using the given region-model4.1. Simulation Instantiation
pairs. Finding such a cost function is challenging, because
of reasons pointed out earlier. We will discuss this in more
detail in the next section.

Theorem 1. For a non-trivial set of region-model pairs RM,
selecting the subset of region-model pairs from RM, such
that expected prediction time is minimized, is NP-hard.

The ISAT algorithm used by the domain scientists [22]
approximates the combustion reaction function by a set of
o (possibly overlapping) high-dimensional ellipsoids with
4. Instantiations ear models inside these ellipsoids. These regions are ob-

tained based on selective evaluations of the reaction func-

There are many ways to instantiate the above framework,tion, which is the ground truth model for this application.
differing in how base regions are generated and merged and To ensure that the ellipsoids satisfy the model definition
the search structure used to store the regions. One can den Section 3.1, we use a slightly modified version of the
fine a grid-based partitioning of the function domain [3], algorithm [30]. The main modification is a stricter error
attempt to merge adjacent grid cells and use a search struceontrol mechanism that periodically checks existing regio
ture that performs a binary search along each dimension tan the model and updates region boundaries to not include
find the cell the query point lies in. Another possible in- parts of the space where the model is producing poor ap-
stantiation is a regression tree style partitioning of trect proximations. Studies also indicated that hyper-rectigu
tion domain with a binary tree search structure. In this caseregions work at least as well as ellipsoids, we will therefor



use hyper-rectangular base regions. In the remainder of the We discuss cheaper alternatives for selected index struc-
paper, this modified algorithm is referred to as the ISAT al- tures. Due to space constraints we omit implementation de-
gorithm. tails. The main idea is to take advantage of two properties of
Domain scientists also observed that their long-running the problem. (1) The selection process picks region-models
simulations & 10° queries) almost always have the follow- from a fixed set and optimizes the solution for a fixed set of
ing two properties. First, the future query distribution of points (/). Hence we can precompute information like the
the simulation can be fairly accurately estimated aftema fe Ssubset of)’ in each region. (2) At each step the algorithm
million queries. Second, simulation time is dominated by leaves most of the solution unchanged and only replaces a
model prediction time, i.e., model construction and mainte small set of regions with a single larger region. We can
nance time are negligible. We describe the instantiation of leverage this property for incremental computation.
our framework for such simulations. Random List stores regions in a simple list. The lookup
Without loss of generality we model the simulation as operation scans the list from the beginning until a region
a 2-phase process. During the first phase (a few million containing the query point is found. While lists are not so-
queries) the ISAT algorithm is run. This algorithm pro- Phisticated index structures, linear scans are known to per
duces a set of base regions in the function domain with aform well for disk-based accesses in high dimensions [28]
similar model in each region. In order to create this set of and also as in-memory data structures for combustion sim-
region-model pairs, the ISAT algorithm has to evaluate the ulations [22].
reaction function for some query points. These points will ~ Different orders of regions in the list will result in differ
be used as the training and validation data for our techniqueent prediction costs. Given a set of regions it is infeadible
(Z). At the end of the first phase we apply our framework try all possible orders to find the best one. The idea behind
usingZ as the input data set and build a new model opti- the random list approach is to compute and minimize the
mized for prediction time. This model is used for the rest expected cost assuming all region orders are equally likely
of the simulation. Long-running simulations need not have and then to pick the best order for the set of regions with the
exactly two phases; in that case the above procedure can biwest expected cost.
repeated periodically. Note that the framework instaratiat Given a selected set of region model pairs of $&ethe
for the combustion simulation can also be applied to im- cost function CompUteExieV(f o + Avg(t,, "'tmf,i))-
prove prediction time in araditional supervised learning  The intuition for the formula is as follows. For a set of
mode| using the training data explicitly provided. regions, if a query point lies in multiple regions, then in
Our instantiation for the combustion problem starts with any random order of the list it is very likely that a region
the set of regions created by the ISAT algorithm during containing the query point is found early. Therefore, the
phase one as the base regions. Larger regions are created Rearch time for a query pointis approx|matedr% where
merging a base region with its nearest neighbors. Specif-f; is the number of regions that query pox;tlles in. The
ically, for each base region, we add the following de-  approximation time for a query point is simply the average
rived regions:r merged with its first nearest base region, of the cost of the models in the regions that the query point
r merged with its two nearest base regions, and so on untillies in (each one is equally likely to be found first in the)list
some upper limit: of neighbors. Duplicate derived regions After the selection algorithm finds a set of regions with the
are eliminated. Since the base regions are hyper-rec&ngle lowest expected cost, we try a few different sort orders of
we define a derived region as the smallest bounding hyper-these regions and pick one with the lowest cost.
rectangle of the merged base regions. Conceptually, we daviFU List: In practice it is often a good heuristic to store
not need to use ISAT’s regions as base regions, and coulthe most frequently queried regions in front of the list.
use individual points i as base regions instead. However, Thijs strategy is called Most Frequently Used (MFU). No-
if cardinality of Z is large this would make nearest neighbor tice that this need not be an 0ptima| order, because the
search costly. model in a frequently accessed region might be expensive
Having defined the region creation process, the next stepand the query point might also be covered by a region with
is to find models for each region (Algorithm 1). We now a cheaper model later in the list. We use the validation set
turn our attention to the major challenge for the next step— ) to estimate the fraction of future queries that will fallant
defining cost functior. a given region.
Cost Function (C): For high dimensional indexes, it is In a MFU list the order in which a set of regions will
difficult to accurately estimate the search cost of a query be stored is known and therefore search and approximation
just based on the set of regions to be stored, without agtuall cost for all query points can be accurately computed. In this
building the index. Unfortunately, building the index for case an efficient implementation exists by first sorting all
each iteration of the greedy region selection algorithmpst candidate regions in RM according to the number of points
8 in Algorithm 2) is very expensive. in V that they contain.



RTree: For hierarchical indexes like the RTree, it is known Name Description
that finding accurate cost models for high-dimensional data ISAT ISAT algorithm

is very difficult [18]. Fortunately, for our technique we do Opt | Proposed optimization algorithm
not need absolute costs, but rather an estimate of the net C Constant mode
benefit of merging a set of regions into a single region. In L Linear model
this section we propose a fairly simple and robust heuristic Q Second order model
that can be used for optimizing any index structure which |S| | Index size grouped by model type
prunes search space by building a hierarchical structure on k | Average number of false positives
the set of regions being indexed. We describe the heuristic Obsd Observed on test set
for the RTree [14], a popular index for spatial data. One Search Time Total cost of index lookup
can develop more accurate cost models for different index Approx Time Total cost of model evaluation
structures but our aim is to show that even a simple heuris- Total Time Total prediction time
tic works well for improving model prediction time. More StdDev| Standard deviation of total time
sophisticated cost models can be easily plugged into our al-

gorithm (Line 8 in Algorithm 2). Table 1. Legend

The RTree is a balanced tree structure. Nodes in the

tree correspond to hyper-rectangles in the data space. Ifh iahborhood b lecti I ber of ¢
the tree indexes hyper-rectangles, a leaf node storesl actug"® neighborhood by selecting a small number of neares

data objects (up to a specified maximum), while a non-leaf ne|ght_)ors, parameterlze_d by of each region that partici-
node stores the minimum bounding box of hyper—rectangIespa‘te_S In the merge. Det_a|ls grand the performance of the
in its subtree. During a search, all subtrees whose bound-heurIStIC are described in the experiments.

ing boxes contain the query point are examined, hence the

seerch Cest is determined by n_u_mber of hype_r-rectangles exg, Experiments

amined till a data object containing the point is found, ofte

called thefalse positive ratef an index. A tree can have

a non-zero false positive rate because in high dimensions it As a proof of concept, we implemented and tested our
is difficult to partition objects well, causing the bounding approach for the combustion simulation application. We
boxes of non-leaf nodes to overlap. This results in multiple use libraries and data from a Hydrogen+Air simulation pro-
search paths in the tree for a given query point and somevided by the authors of [22]. The dataset comprises 5 mil-
paths may not have a data object containing the query pointlion simulation query points. Each query point is a 10 di-
(hence false positives). Our goal is to estimate the reduc-mensional composition vector. The reaction function that
tion in false positives for queries if a region merge is done describes the simulation in this case is a high dimensional
in Lines 7 and 8 of Algorithm 2. This cost reduction has to function f : R'* — R'L.

be compared with the cost increase associated with a more  The gverall setup is as follows. We run the ISAT algo-

complex model in the larger merged region. rithm on the first 3 million query points to generate the base
We estimate the benefit of merging as follows. Assume regions and training/validation data getvhich are used by
the RTree on average hagalse positives for a query. Since our algorithm as discussed in Section 4.1. A random sample
RTrees (and any hierarchical index) tend to cluster nearbyof ~ 2 x 10° query points from the last 2 million queries is
objects, all false positives of a query tend to be in the neigh used as an independent test set. We compare total simula-
borhood of the query. Hence, if we merge some neighbor-tion time on the test set against the original ISAT model as
ing regions, then nearby query points will see a reduction it is currently used by the domain scientists.
in their false positive rate because some of their false-posi  p| experiments used 20— 30 split of Z into training ")
tives have been merged. We estimate this reduction in falseand validation V) set ands = 0.1. For each base region,
positives by defining a neighborhood around the merged re-g derived regions are created by merging the base region
gions, such that it contains all queries that are affected bywith its 1,2,...,8 nearest neighbor base regions. For a fair
the merge. comparison we use exactly the same data that ISAT uses for
The order in which these affected queries will access re-model building. Notice thaf usually is not exactly a uni-
gions in the tree depends on the actual tree layout. Lackingform sample of the query points due to peculiarities of the
further knowledge, we assume that all regions in the neigh-1SAT algorithm. This puts our algorithm at a slight disad-
borhood are accessed in some random order. Hence we useantage, but overall we did not find significant differences
the random list cost model (see above) to estimate the benebetween the distribution df and the test set. All experi-
fit of a region merge in the affected neighborhood. The main ments were run on a Windows XP PC with a 2.79GHz pro-
challenge is to select the correct neighborhood. We definecessor and 8GB RAM.



ExptNo(S,¢) | Method | M |S| k | Obsd Search| Approx Total | StdDev
Time(ms) | Time(ms) | Time(ms) (ms)

1: (RL,5 x 1079)
ISAT L L:63| 26 0.01 623 337 960 68
Opt | L,Q L:28Q:9 6 | 0.005 114 434 548 -
OnlyS| L,Q L:26:41 1| 0.0002 84 1750 1834 -

2: (RL,5 x 1079)
ISAT L L:2263 | 977 0.05 20477 383 20860| 2983
Opt | L,Q | L:1430():332 | 122 0.01 2071 1620 3691 -

3: (MFU, 3 x 1073)
ISAT C C:2226 | 113 0.08 2367 93 2460 -
Opt | C,L | C:1362L:115| 19| 0.003 414 342 756 -

4: (RTree3 x 1073)
ISAT C C:2226| 212 0.11 15530 78 15608 819
Opt| C,L | C:687L:229| 92 0.07 6751 266 7017 -

5: (RTree5 x 1079)
ISAT L L:2263| 166 0.06 12238 380 12618 | 1327
Opt| L,Q | L:1986():36 | 124 0.05 8927 385 9312 -

Table 2. Results Summary

v |S| | Avg Total Time(ms)| StdDev(ms) mization algorithm for selecting the best list order, tliere
ISAT | 2226 15608 819 we report average cost acro¥s different random sort or-
0.004| 1210 10584 1303 ders and standard deviation.

0.008 | 916 8350 736 To show that both approximation and search cost must

0.012 | 802 8050 950 be considered for prediction time optimization, we repeate
0.02| 653 6151 667 Experiment 1 using a simpler optimization goal—only min-
0.03] 555 5362 773 imize search cost ("Only S”). In this case the selection

algorithm aggressively merges regions to cover validation
points with the smallest number of derived regions contain-
ing quadratic models. As the results show, the additional
5.1. Results decrease in search cost is not significant enough to offset th
higher approximation cost. A surprising observation irs thi

experiment is that the number of regions created by "Only

structures and model types(). Table 2 summarizesthere- S IS greater than for ISAT, even though the selection algo-
rithm usuallyreplacesa set of regions with a larger region.

sults; variables are explained in Table 1. All measurements_’™’ e ) :

are on the test set and times reported are in milliseconds,! NiS Nappens because it is possible to select a candidate re-

rounded to the nearest integer. gion that does not completely contain any regions in the
Experiment 1is fore = 5 x 10~3 and the Random List c_urrentsolutipn, butsignificantly ove_rlaps with aI_ot oéth

(RL) index. ISAT built regions with linear modelgf* and  (-€- Rém%} in Line 6 and 7 of Algorithm 1). Adding such

our framework used both linear and quadra@y) fodels. a region increases list size but may still reduce expected

ISAT createds3 regions. Since index size and search cost S€&rCh cost per query as some query points now are covered

are small in this case, our method (Opt) does not mergePy multiple regions (recall that search CO]%:* 1).

many of the linear regions into quadratic ones (only 9).  Experiment 2 uses the same setup as Experiment 1 but

Nevertheless a significant reduction in prediction cost by with e = 5 x 107°. As e is stricter, it is not surprising that

~ 30% is achieved. The increase in approximation cost ISAT creates a larger number of regions and hence search

(some query points are approximated using quadratic mod-cost dominates prediction time. Opt in this case more ag-

els) is offset by the decrease in search cost. Recall that ougressively selects regions with quadratic models, causing

algorithm for a random list tries a few random orders and the approximation time to increase significantly. An even

returns the best as the solution. For ISAT there is no opti- larger decrease in search time results«ir70% improve-

ment in total time.

Table 3. Neighborhood Effect

We ran simulations using different values gf index

1ISAT always uses the same model in every region; it must be secifi )
when the simulation starts. When we repeated Experiments 1 and 2 for the MFU



List, Opt did not merge any regions and simply continued cessed region, because less false positives are encaiintere
to use the base regions created by ISAT. The reason is the

skewed distribution of query points over base regions. The As we mentioned earlier, the goal of this paper is not to

first few regions in the list account for the vast majority of develop the most accurate cost models for high dimensional
accesses, resulting in very low search cost. Hence for the P 9

MFU List the benefit of merging regions would be too low Lﬂgtexi?.suﬁ]atgez’ir\:]\liigt\gzgtg? tr(()agirc?c;g?]etiri::g%oﬁihfr%:‘ifept
to offset the higher approximation cost of a quadratic model Mor(g accurgtepcost models FcJan easilv be leveraged in our
in a merged region. Stated differently, if the search cost is y g

low, then it is preferable to stay with the simplest models in fre}mework. However, we end the discussion h.ere with a
each region. micro benchmark that shows that the proposed simple Rtree

To show more clearly that Opt makes the right decisions .COSt modelis robust (i.e., not sensitivei Table 3 shows

. . : index size, average runtime and standard deviation (across
even for the MFU List, we performefperiment 3 using 10 different insertion orders) for Rtrees optimized using dif
a MFU List ande = 3 x 1073, but this time setting ISAT P 9

to produce base regions wittonstant model$C). Now f*t‘re”t \(alugs ofy. For instancey .0‘012 for an index of
. size|S| implies0.012-|S| nearest neighbors of each replaced
Opt chooses between linear and constant models. Because ™ : .
. region are assumed to be affected be a region merge. These
constant models lead to smaller base regions (to guarantee . . o
. : results are for the setup of Experiment 4, with the line in
the error), the list has now more elements and hence highet

. . ; .~ bold face representing the defagltvalue used in that ex-
search cost. Again Opt automatically makes the right choice . X
X . g . .. periment. Results were similar for Experiment 5, hence are
to merge regions into larger ones with linear models, signif

icantly improving cost. not reported here explicitly.

Experiments 4 and 5 report results for the RTree index.
In Section 4.1 we introduced parameterto control the The first conclusion from the results is that index size
affected neighborhood size of a region merge. We use adecreases with increasing This is expected since a larger
simple heuristic to set. First, an RTree is built from the neighborhood size implies that the tree is expected to have
base regions. Points i are queried using the tree and a larger false positive rate and hence our algorithm predict
the average number of base regions probed per qugry ( more cost savings by merging regions and using complex
is recorded. Based on the assumption that if on averagemodels. While it is clear from the table that total time is
k; leaves are scanned per query, this corresponds to a ranaot very sensitive toy, in this case it tends to improve as
dom list of size2 - k; being examined, we setsuch thatat  ~ increases. This is an artifact of the setup and happens
most 2 - k; regions are affected by a merge, when the cur- because here RTree search cost far exceeds approximation
rent solution has only base regions. Once initialized, we docost. As a result, Opt uses linear models in most regions.
not changey. Hence affected neighborhood size decreasesAs we increasey, Opt merges more regions. But this only

with index size. insignificantly increases approximation cost, because mos
Using this heuristic and otherwise the same setup as Ex-fegions are already linear for smaller However, search
periment 3, inExperiment 4 Opt shows~ 50% improve- cost may still decrease significantly.

ment over ISAT. Our RTree implementation [2] uses a one-

by-one insertion scheme and different insertion orders ANy ussion. Our experiments show that different indexes

lead to slightly different RTrees. Therefore, for ISAT we T . : )
...~ and model types work well in different simulation settings.
report average measurements and standard deviation in to: .
. : . ) .. Our proposed method (Opt) correctly and automatically
tal runtime acros$0 different insertion orders. Opt uses its . )
. captures the tradeoffs in the problem and effectively alapt
cost model to select the best among a few different RTree ) ; .
insertion orders the model to the index and simulation parameters. Our

Exoeriment 5 uses the same setup as Exoeriment 1. but method does not improve runtime at the cost of degrading
with apn RTree. The improvement inpruntimz is com élra— prediction quality (seé values in Table 2). In fact, in most
o P ) P cases Opt producesdavalue better than the original ISAT
bly small, suggesting either that linear models are good or

oor choice ofy. Notice that even though approximation model. This is because our algorithm performs robust er-
b : ' gnh app ror control by checking each region-model pair before ad-
time remains almost unchanged, search cost actually de-

; Thi n be explained by regions that contain v rmitting it as a candidate for region selection. ISAT on the
?e\?vasl?; oii;n(t::nez ?o E]javiei agc:gsg dsre ?or?s? I\/(Irier ir? Yother hand only randomly checks regions for error. Finally,
query p . y 9 - VIETAING 1 1 der for the method to be useful in practice, it should

cost. But it does help reduce search cost for the heavil acl-]10t generate a significant computational overhead for the
' P Y 8 simulation. In all our experiments the cost of the optimiza-
2We say "at most” because we scajeaccording to the size of the tion algorithm was negligible compared to the total cost of

merge. Larger merges affect larger neighborhoods. a long-running simulation as used by the domain scientists.
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