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Transaction processing systems are commonly employed in a wide range of ap-

plications, such as travel booking, financial trading, and online games. Typ-

ically, these applications are used by thousands of users simultaneously, and

many a times, users attempt to coordinate on data values. In this dissertation,

we argue that the current support for coordination in such systems is ad-hoc

and not scalable. We propose simple, efficient, and scalable abstractions for co-

ordination in transaction processing systems.

This dissertation comprises of three papers – Scalability in Virtual Environ-

ments, Declarative Data-driven Coordination, and Entangled Transactions. In

each of these papers, we look at scalability of coordinated transaction manage-

ment from a unique perspective that can remarkably alter the manner in which

coordination is perceived by both the users and developers of the aforemen-

tioned applications.

In the first paper, we address scalability in virtual environments. Virtual en-

vironments are software systems in which users interact with each other in real-

time within some shared environment. Current virtual environments, however,

are unable to support a large number active users. The scalability problems

arise in part because of the need to maintain consistency between all the play-

ers. In this paper, we propose a protocol that actively replicates actions, and

show that replicating actions, as opposed to techniques that replicate data, al-

lows for highly scalable virtual environments. We also propose an optimization

of the AB-protocol that guarantees minimal execution at client machines.

In the second paper, we explore declarative data-driven coordination. We



propose Entangled Queries, a novel abstraction for coordination in databases.

Entangled Queries provides the user with a simple but powerful declarative

method to coordinate with other users. In addition to introducing Entangled

Queries, we propose an efficiently enforceable syntactic safety condition that

we argue is at the sweet spot of expressiveness and application requirements.

In the last paper of this dissertation, we introduce entangled transactions. En-

tangled Transactions are units of work performed within a database manage-

ment system against a database. Although such transactions look similar to

classical transactions, they do not run in isolation and communicate with each

other via entangled queries. In this paper, we look at an abstract model for En-

tangled Transactions and investigate interesting system issues that arise in their

implementation.
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CHAPTER 1

INTRODUCTION

Scalability [­skeIl@"bIlItI]

- n the ability of something, esp a computer system, to adapt to increased demands

Coordination [koU­Ordn"eIS@n]

- n harmonious combination or interaction, as of functions or parts

1.1 Overview

A transaction processing system is a type of information system that is used

to collect, store, modify, and retrieve the transactions of an application. The

definition follows from that of a transaction which is an event that generates or

modifies data that is eventually stored in an information system. Transaction

processing systems are commonly employed in a wide range of applications,

such as travel booking, financial trading, and online games. Typically, these

applications are used by hundreds and thousands of users simultaneously, and

many a times, users attempt to coordinate on data values. In this dissertation,

we argue that the current support for coordination in such systems is ad-hoc

and not scalable. We propose simple, efficient, and scalable abstractions for

coordination in transaction processing systems.

This dissertation comprises of three papers – Scalability in Virtual Environ-

ments, Declarative Data-driven Coordination, and Entangled Transactions. In

each of these papers, we look at scalability in coordinated transaction manage-

ment from a unique perspective, one that can remarkably alter the manner in

which coordination is perceived by both the users and developers of the afore-

mentioned applications.

1



1.2 Scalability in Virtual Environments

In the first paper, we address scalability in virtual environments (VE). Virtual

environments are software systems in which users interact with each other in

real-time within some shared environment. With increasing popularity, VEs are

poised to be the next wave of digital entertainment, with Massively Multiplayer

Online Games (MMOs) a very popular instance. Current MMO architectures are

server-centric in that all game logic is executed at the servers of the company

hosting the game. The server-centric architecture, however, does not scale both

in the number of users and their interactions with the environment, primarily

because MMOs require realistic graphics and game physics – computationally

expensive tasks that are currently computed centrally.

In this paper, we argue that the client-side architecture is an optimal can-

didate for VE architectures, and propose a distributed action based protocol for

virtual environments. The key feature of our protocol is active replication of

actions. We show that replicating actions, as opposed to the currently popular

techniques that replicate data, allows for highly scalable virtual environments.

We also propose an optimization of the AB-protocol that guarantees minimal

execution at client machines. Our protocols allow us to explore the tradeoff

between scalability, computational complexity, and consistency. We investi-

gate our proposal both theoretically and through a comprehensive experimental

evaluation.

1.3 Declarative Data-driven Coordination

In the second paper, we propose an abstraction for coordination in transaction

processing systems. This paper introduces entangled queries, a declarative lan-
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guage that extends SQL by constraints that allow for the coordinated choice of

result tuples across queries originating from different users or applications.

It is nontrivial to define a declarative coordination formalism without arriv-

ing at the general (NP-complete) Constraint Satisfaction Problem from AI. In

this paper, we propose an efficiently enforcible syntactic safety condition that

we argue is at the sweet spot where interesting declarative power meets appli-

cability in large scale data management systems and applications.

The key computational problem of declarative data-driven coordination is

to match entangled queries to achieve coordination. We present an efficient

matching algorithm which statically analyzes query workloads and merges co-

ordinating entangled queries into compound SQL queries. These can be sent

to a standard database system and return only coordinated results. We present

the overall architecture of an implemented system that contains our evaluation

algorithm; we also evaluate the performance of the matching algorithm experi-

mentally on realistic coordination workloads.

1.4 Entangled Transactions

In the last paper of this dissertation, we propose entangled transactions. Entan-

gled Transactions are units of work performed within a database management

system against a database. Although such transactions look similar to classical

transactions, they do not run in isolation and communicate with each other via

entangled queries.

We motivate entangled queries by looking at an example. Assume that two

friends, Mickey and Minnie, wish to travel to Los Angeles on the same flight

and stay at the same hotel. Their arrival date is flexible, but their departure date

is fixed. They start by jointly selecting a suitable flight. Once they know the

3



flight number, and consequently their date of arrival in Los Angeles, they will

try to make joint hotel reservations. With existing mechanisms, they can use en-

tangled queries to coordinate on the choice of the flight and then on their choice

of hotel. These queries, however, need to be embedded within a larger code unit

that Mickey and Minnie separately execute and populate with their constraints

such as the class of the hotel or airline restrictions. Once both their individual

entangled transactions have been submitted, the system needs to match them up,

execute the associated logic, and guarantee “transaction-like” semantics for this

execution.

In this paper, we first introduce a novel semantic model for entangled trans-

actions that comes with analogues of the classical ACID properties. We show

that despite the interaction among them, each of the entangled transactions rep-

resents a logical unit of work on its own, and that this work is dependent on

input from other transactions in the system. We also show how our model for

entangled transactions extends to transactions that contain more than one en-

tangled query.

We then discuss execution models for entangled transactions and select a

concrete design motivated by application scenarios. With a prototype system

that implements this design, we show experimental results that demonstrate

the viability of entangled transactions in real-world application settings.
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CHAPTER 2

SCALABILITY IN VIRTUAL ENVIRONMENTS

2.1 Introduction

Networked virtual environments (VE) are software systems in which users in-

teract with each other in real-time within some shared virtual environment.

[21]. Virtual worlds are typically designed to create a very high degree of im-

mersion. Many feature 3D graphics and stereo sound, and have extremely in-

teractive environments. But the primary selling point of many virtual worlds

is the large number of players that they can support. In MMOs like World of

Warcraft it is common for groups of up to 40 players to work cooperatively in

a “raid” [73]. Other online virtual worlds like Habbo Hotel [63] market them-

selves as social-networking environments, and must support large parties or

other social events online. While high-bandwidth, low-latency internet is now

becoming ubiquitous, this is not enough to solve the scalability issues that VEs

are beginning to encounter.

These scalability problems arise in part because of the need to maintain con-

sistency between all the players. In the best case, inconsistency may just lead to

transient visible artifacts with no long-term consequences. However, in practice,

it can easily cause much more serious problems, like objects being lost or dupli-

cated during a financial transaction. In addition to degrading the realism of the

virtual world, consistency violations are a major source of security problems in

VEs [31]. To maintain consistency, all VEs have a transaction management layer

that employs a commercial database. Every interaction in the VE encapsulates a

transaction that is executed on the database. In essence, as players interact with

the virtual environment, they send transactions to the database at an extremely

5



high rate. The transaction management layer, therefore, is affected by severe

scalability problems. Even the fastest MMOs cannot handle more than about 10

frames per second [14] through their database transaction layer.

Figure 2.1 illustrates the scalability-complexity tradeoff for a sample of cur-

rent VEs. Social games such as Farmville are highly scalable because user in-

teractions involve only simple updates that rarely conflict. MMO Games with a

static environment such as World of Warcraft require comparatively more com-

putational resources, leading to a drop in scalability [43]. Simulators, partic-

ularly military simulators such as SIMNET, are even more “real” than virtual

worlds, in that players can interact with the virtual environment (e.g., destroy

buildings); the result is even less scalability [40]. Finally, user-designed virtual

worlds such as Second Life [42] allow objects to be created, modeled, and scripted

by the users at run-time. This flexibility comes with high computational cost; for

example, the resulting scalability of Second Life is on the order of at most 25-30

players per server [37]. If the player-to-server ratio of collaborative software

were possible in a VE with the flexibility and degree of immersion of virtual

worlds, this would allow for a user experience beyond the reach of current sys-

tems.

The desire to support more players in complex environments has spawned

research both in distributed system architectures [8, 17, 24, 61] and database

management systemsdatabase management systems [5, 29].

A problem with the methods adopted in distributed systems is that the user

interactions, such as shooting a person, are tied to character visibility. However,

in real VEs, players often interact in complex and subtle ways beyond visibil-

ity. For example, suppose we have a fantasy MMO designed to support a large

number of players. A classic feature for such a game is a “scrying spell” that

6
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allows a healer to identify and heal the most wounded ally in a crowd [3]. Dur-

ing combat, the result of this spell affects many users beyond the visibility of

the healer, as the health of each player is continually changing. The range and

nature of such a spell makes character-visibility partitioning useless.

Database management systems, on the other hand, are not ideal candidates

for VE engines for the following reasons. First, database management systems

require that significant parts of the application logic be executed on the server

side. As a result, the scalability of an application is strongly related to the com-

putational footprint of a single machine. One could argue that server-side com-

puting platforms such as commercial cluster instances are more powerful; but

given that the interactions in VEs are computationally expensive, server-side

computing platforms are unable to handle the load for millions of players. Sec-

ond, distributed databases work by either by partitioning or replicating and

synchronizing the database. While database partitioning is outright unaccept-

able for true world VEs, inter-node communication in data replication has ad-

ditional latency that negatively affects gaming experience.

Fortunately, virtual worlds have a lot of semantic information that can be

7



leveraged for scalable consistency. Virtual worlds and simulations are essen-

tially high-dimensional databases where the attributes can change only in pre-

dictable ways [70]. For example, in a fantasy MMO game, health is itself an

attribute that changes as a player is damaged. By examining semantic infor-

mation such as the maximum damage that an attack transaction can cause, we

can predict the ways in which the health attribute can change, and exploit this

semantic information to reduce the number of messages needed to maintain a

consistent state among the many distributed clients.

In this paper, we propose a distributed model for virtual environments that

achieves massive scalability. Our model inherits concepts from distributed

databases, where the game play and transaction processing take place at the

client machine, thereby reducing the computation performed at the server. The

key feature of our model is its novel transaction model that eliminates unwar-

ranted inter-node communication in replicated TPS to reduce latency, and ex-

ploits application semantics to reduce the number of messages needed to main-

tain consistency. Our model assumes realistic restrictions on the interaction be-

tween participants located in different parts of the world. We also show how

our model can be scaled to a massive number of participants.

Outline of the Paper

We begin the paper, in Section 2.2, by arguing that client-side architecture is

an optimal candidate for VEs. Further, our paper continues with the following

contributions.

• In Section 2.3, we introduce the AB-protocol that works by actively repli-

cating actions in the virtual environment among client replicas.

8



• In Section 2.4, we give the MinAB-protocol that has minimizes computa-

tion in the AB-protocol thus making is massively scalable.

• In Section 2.5, we explore boundedness of the MinAB-protocol. We also

detail certain application semantics to provide theoretical bounds that

show the scalability of our approach, and present several techniques that

leverage spatial properties of VEs to optimize our protocols.

• In Section 2.6, we present an experimental evaluation using both simu-

lation and real experiments demonstrating the effectiveness of our new

protocol.

We conclude with a discussion in Section 2.7.

2.2 Background

As discussed in the previous section, consistency is important to VEs. Realistic

gameplay requires that everyone share a single view of the virtual environment,

the world state. Virtual environments typically represent the world state in a

database [4]. Any interaction in the environment can be perceived as a database

transaction: making an observation is a database query about the state of the

world, and a change in state is a database update. However, because of lim-

ited throughput of commercial databases, most VEs use them only to commit

and read at periodic checkpoints [10]. For real-time interactions, they generally

implement their own in-memory transaction layer on top of the database [71].

This design decision is not because database transactions are unsuited to the

task; rather, it is because existing commercial databases are not optimized for

the type of in-memory processing that VEs need for real-time performance [14].
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In this section, we look at popular database architectures used by virtual en-

vironments. We argue that a client-side architecture with a central audit server

is a good design choice.

2.2.1 Server-side Architectures

In practice, databases are often architected such that most of the processing hap-

pens at the server. The server may be a cluster of machines, in which case the

computation is distributed among these machines. The clients in such server-

side architectures are analogous to I/O devices for the purpose of the game

play [16].

Server-side architectures are instances of master-slave replication. The

server (also called the “master”) executes all transactions, and the write sets are

then propagated to all other clients (“slaves”), which update data in the same

order so as to guarantee convergence of their final states with that of the master.

Log shipping [32, 53] is a popular technique to send logs to client machines.

In order to scale with an increasing number of users and handle the heavy

cost of computation, virtual environments commonly use techniques that per-

mit database architectures with low throughput rates. Three such techniques

are:

Zoning. Zoning refers to the technique of geographically partitioning

(“tiling”) the virtual environment into areas small enough for a single server

to handle. Commercial MMOs have only recently adopted the idea of dynamic

zoning [14]. While dynamic zones are more flexible than traditional zones, they

still restrict player actions to a geographic area.

Sharding. Zoning works well to about a few dozen servers, which translates

into a few thousand players for most virtual worlds. In order to scale beyond
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a few thousand players, MMO companies instantiate completely separate in-

stances of the virtual world called shards.

Instancing. Unlike sharding, instancing is confined to small partitions of the

virtual environment. An instance is essentially a private zone into which no

players may enter except those that originally spun off the instance. In World

of Warcraft, instancing is used heavily for dungeons that are intended to be per-

sonal experiences [74].

All of the above techniques split the user base, degrading the “massive” mul-

tiplayer experience [33]. For example, sharding and instancing prevent large

groups of users from working together by design, while zoning collapses if too

many users crowd into a single zone [67]. Users often have difficulty finding

their real life friends in such MMOs. Some virtual worlds even require the users

to pay if they want to play with someone of their choice [65]. Therefore, MMO

companies are still struggling to meet the scalability requirements demanded

by their user base.

2.2.2 Client-side Architectures

Alternatives to the server-side architectures are the client-side architectures [4],

in which computation is distributed among client machines in order to achieve

scalability. Distributing computation between clients has the potential not only

to reduce load on the central server, but also to leverage capabilities of the client

machines.

Peer-to-peer

While P2P architectures seem to be the natural choice for client-side architec-

tures, there are both technical and non-technical reasons to not choose P2P.
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First, strongly consistent P2P architectures do not scale because they use pro-

tocols such as Paxos [38] or Virtual Synchrony [7] to enforce a consistent total

order of events across all participants. Examples of virtual worlds that use a

peer-to-peer architecture include Reality Build For Two [8] and MR Toolkit [61].

Both these VEs maintain consistent state among N workstations by sending a

point-to-point message to each of the workstations for every single state change.

This approach yields O(N2) update messages during every simulation step, and

this does not scale.

However, there is an even stronger, non-technical reason to rely on a server-

side architecture. Virtual environments are developed and operated by compa-

nies that have a vital interest in exerting total control over the virtual world,

even if that means investing in server hardware. In many virtual worlds,

players pay real money both to participate and for game content; hence the

MMO company has an obligation to provide uninterrupted service. Addition-

ally, the absence of audit logs makes cheating a major concern for peer-to-peer

MMOs [28]. For these reasons, companies desire to have all content stored se-

curely and persistently by a trusted authority.

Distributed with Central Auditor

An architecture that has client-side computing with a central audit server strikes

a balance between preserving the interests of the MMO companies in exerting

control, scalability of the system, and alleviating the problems of no centralized

control compared to a P2P architecture. Thus, we will adopt it in the remainder

of the paper.

A client-side architecture with a central audit server consists of a server to

which all clients connect. Without loss of generality, we assume that the clients
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are replicas and run identical VE software, which we refer to as client programs.

The client program contains the actual virtual world logic. Clients initiate and

process units of code called actions in the environment.

Definition 2.2.1. Action. An action is a stored procedure call that encapsulates a

transaction. It can be perceived as the code that specifies both application logic and

database queries. Any action must adhere to the ACID properties that are associated

with the encapsulated transaction.

An example of an action is the procedure call to move a player in the virtual

environment that involves first a query of the player’s position and surround-

ings, followed by a check for conflicts on the movement, and finally an update

of the state. In this paper, we assume that each action consists of exactly one

atomic operation. This is merely for simplicity of exposition, and has no effect

on the techniques proposed. Though processing actions in the client program

may raise security issues, a lot of prir research already exists for developing

non-hackable clients [59, 60]. As an added security measure, the servers can

also log MMO statistics to detect any cheating or security threat [28].

The key component of a client-side architecture is its consistency protocol.

Since the transactions are executed at the clients, a protocol needs to be es-

tablished between clients and server that ensures consistency and durability of

data. Commonly used protocols generally fall into one of three families, each

with its own subtleties, variations, and costs.

Lock Based Protocols. Distributed locking is a popular family of protocols

used to provide consistency. To process a transaction, a client must first acquire

global locks on the objects read and written by the transaction. This can be im-

plemented by having all clients in the system agree on granting a lock request,

or by managing locks at the server-side. By virtue of two message exchanges
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per transaction, distributed locking has a high overhead for transaction latency.

This can significantly detract from achievable transaction throughput required

in virtual environments. Furthermore, the consistence resolution in two-phase

locking is object based, while many consistency problems in VEs are semantic.

The virtual world designer is forced to map every single consistency issue in the

world to an object access, which is not always easy to do.

Timestamp Based Protocols. Timestamp optimistic concurrency control is

a well-known alternative to locking. Here, we associate a version with ev-

ery object, and a timestamp with every transaction; the timestamp can be as-

signed by the server. Clients optimistically execute tentative actions against

their local, possibly stale versions of objects. The server integrates the local,

transactional histories submitted by clients into a global multi-version history.

Since the server makes commit and abort decisions, the server must understand

game-specific logic and perform possibly expensive operations in order to re-

solve conflicts. For example, any change in the read set of a transaction, such as

some player moving, would potentially cause the transaction to abort. In order

to neglect irrelevant changes, the server must implement a significant part of

the application logic that specifies what combination of movements are valid.

Object Ownership Based Protocols. Object ownership differs from lock-

based protocols in that each object is owned and managed by exactly one client,

known as the object owner. Other clients are allowed to cache a version of the

object, but are not allowed to make modifications to its state. RING [17], Cy-

berwalk [49], and WAVES [30] are three popular systems using such a proto-

col. Variations of such protocols allow non-owners to obtain “leases” from the

master for a particular data item. In order to allow object contention in such a

protocol, applications are either degraded to a lower level of consistency, or are
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forced to employ timestamp-based serializability [6], resulting in unacceptable

response time for VEs.

RING [17] and DIVE [24] are VEs that use a distributed architecture with a

central auditor. They handle message filtering by sending all updates to the cen-

tral server. The server tracks the location of each client in the virtual world, and

thus determines the updates that a client would be interested in. In Section 2.4.1,

we show that this filtering of updates based on who can “see” the client leads

to inconsistency. Two recent proposals in the database literature [5, 66] also use

a distributed architecture with central auditor. [66] introduces concurrency in

deterministic distributed transaction processing systems. Fundamentally, the

proposal increases availability and redundancy of the database but does very

little towards scalability. Hyder [5] is an optimistic concurrency control frame-

work that uses intention logs of actions in messages as a substitute for stored

procedure calls. However, the system is susceptible to high abort rates by virtue

of its optimistic framework.

A common characteristic in all popular server-side and client-side architec-

tures is that while the data is either partitioned or replicated, processing is al-

ways partitioned, i.e. any given action is always executed by only one machine.

What would be the scalability and consistency properties of an architecture in

which each action is executed on a few (or all) client machines? In this paper,

we seek to explore the effect resulting from replication of computation.

2.3 Action Based Protocols

Recent developments in database research have given way to models that are

characterized by fast execution of transactions across all replicas of the client [66,

21]. In order to better understand how transaction processing is replicated at
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clients, we next describe our action based protocol (AB-protocol) that lays the

foundation for this paper.

Action based protocols are a family of protocols designed for client-side

architectures that work by replicating both data and actions across client ma-

chines. In AB-protocols, the messages passed between the clients and the server

primarily consist of actions. An action a consists of a read set RS (a), a write set

WS (a) and the code that needs to be executed to compute values for WS (a) given

values for RS (a). For simplicity of exposition we also assume that RS(a) ⊇ WS(a).

This allows us to drop the distinction between read sets and write sets and fo-

cus on intersecting read sets in our discussion and protocols. The state of the

virtual world is a database of objects, the world state. Each client program main-

tains two versions of the world state: an optimistic version CO and a consistent

version CS. The player always sees CO and therefore might witness effects of

uncommitted transactions; however, CO is reconciled periodically with CS to

correct the game play.

The basis of AB-Protocol is its execution model that has the property that

any action an’s outcome is uniquely determined by the database’s initial state

and a totally ordered series of previous actions a0, a1, ..., an−1. Algorithms 1 and

2 give the pseudo-code for the server and the client. To execute an action a, a

client first executes a on CO to get the optimistic evaluation v, which we denote

v = a(CO). It simultaneously submits a to the server for serialization. Upon

submission, the server attaches a monotonically increasing sequence number

to a and broadcasts it to all clients. In effect, the client receives a serialized

stream of actions originating at all clients. It executes them, in order, on CS. The

results of applying locally originated actions to CO and CS are compared, and

disagreements are reconciled if necessary.
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Algorithm 1: Client-Side Protocol
Require: Q a queue of unreconciled optimistic evaluations 〈ai, vi〉where1

vi = ai(CO)
1: Create action a and apply to get v = a(CO)
2: Add 〈a, v〉 to Q and send a to server.
3: Wait to receive action b from the server.
4: if b is not an action in Q then
5: Apply action b to CS
6: for each write x← v performed by b do
7: if x < WS (Q) then
8: Perform the write x← v on CO
9: else if b = a1 then {b must be head of Q}

10: Apply a1 to CS to get result u = a1(CS)
11: if u = v1 then {optimistic evaluation okay}
12: Remove 〈a1, v1〉 from Q
13: else
14: Reconcile CO with CS via Algorithm 3

Algorithm 2: Server-Side Protocol
Require: Q is a global queue of actions
Require: posC is index of action last sent to client C

1: Wait for action a from client C
2: Timestamp a and put it into Q
3: pos(a)← index of a in Q
4: Send C all actions in Q between posC and pos(a)
5: posC ← pos(a)

A pertinent aspect of the AB-protocol is the unit of communication between

various clients. While prior work focusses on intention logs [5], in our protocol,

we transmit the entire action (or a pointer to the stored procedure call). By this

lazy replication of actions at other clients, we make the AB-protocol indepen-

dent of the high abort rates often witnessed in optimistic methods of concur-

rency control.

The reconciliation procedure in our protocol, Algorithm 3, is designed to pre-

vent the optimistic state from diverging too far from the stable state, by rolling

back and re-applying optimistic actions when an actual conflict is discovered.
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Algorithm 3: Reconciliation Protocol
Require: Q a queue [〈a1, v1〉, . . . , 〈ak, vk〉] of unreconciled optimistic1

evaluations
1: CO(WS (Q)) ← CS(WS (Q))
2: Q ← []
3: for j = 1; j <= k; j + + do
4: Apply ai to CO producing result v = ai(CO)
5: Insert 〈ai, v〉 into Q

We use an approach proposed previously [52], which assumes that actions con-

tain code to check for conflicts. When an action is re-applied, it either computes

appropriate new result values or else it detects a fatal conflict and behaves as a

no-op to simulate aborting.

Our action-based protocol has two advantages. First, it guarantees low la-

tency because of one phase commit, while allowing any kind of interaction

including object contention in the virtual environment. A second advantage

is that the central server does not execute any actions, and therefore is inde-

pendent of the application logic. The server only timestamps actions, queues

them for delivery to clients, and manages the network traffic; this allows it to be

highly scalable. This virtual timestamp, together with the positions of actions

on the queue at the server, establishes virtual synchrony between the server

and the clients [7]. Popular systems such as SIMNET [64, 9] and WAVES [30]

use similar protocols at the object level — they broadcast updated data objects

to all clients.

Correctness of our protocol is easy to establish. By the virtue of timestamp-

ing and ordering of actions on the server, each client executes every action that

originates anywhere in the system, in the same order, on the same initial world

state, CS. With our previous assumption of identical clients, every client would

produce the same final state of the database. Action based protocols use active

18



replication and therefore only need to use a one-phase commit protocol. Since

replicas are executing transactions in parallel, the commit log of an action is the

same for all replicas. Further, there is a fundamental determinism-concurrency

tradeoff of the action based protocol. Serial execution of transactions can only

be as fast the computational footprint of one replica. The only constraint of

AB-protocol is deterministic execution of actions at client machines; and the de-

signer is free to choose any platform that satisfies this constraint. [66] gives an

novel model to introduce concurrency at clients by imposing a deterministic

schedule on transactions across all replicas of a distributed system.

2.4 Minimality in AB-Protocols

The AB-protocol achieves a minimal transactional latency, but does not scale

well. Trivially, if every client were to execute all actions for the entire system,

each client would need resources of the order of the central server in a server-

side architecture. Fundamentally, we would like to limit the computation at

each client without forgoing the consistency and latency achieved by the AB-

protocol. To achieve better scalability we explore minimality of computation in

the AB-protocol, as described next.

2.4.1 Causality of actions

In the realm of object based protocols, numerous optimizations have been pro-

posed to reduce the number of messages that are sent to each client [17, 24].

Most of these optimizations are variants of area-of-interest paradigm [25, 48]. In

such models, the server restricts the set of update messages (and object data) to

the visibility of a player in the virtual world. Although one could consider gen-
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Figure 2.2: The RING system limits itself to the visibility of players, resulting in
an inconsistent state across clients. The actually area that can causally influence
A is much larger than its visibility.

eralizations of the methods proposed in such systems to action-based protocols,

we next present an argument on why such an approach is not a general solution

to the scalability problem.

A first observation is that restricted visibility applies only to movement-like

actions and does not generalize well to arbitrary actions. For example, the RING

architecture requires that the designer create an obstruction layer representing

the objects blocking visibility. This obstruction layer is what is used to partition

the database replicas [17]. If the game designer wants to base actions on other

senses such as sound or scent, she must create a separate obstruction layer for

each new sense. Furthermore, in cases like our example of a scrying spell from

Section 2.1, there may be no obstruction information at all.

Furthermore, the usage of syntactic constraints such as restricted visibility

has a deeper, subtle problem: the constraints are not sufficient to ensure consis-

tency. For example, none of the current proposals cover transitivity of actions—

characters can easily interact with one another even if they cannot see one an-
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Figure 2.3: Inconsistency in area of interest paradigm

other. We illustrate this problem in Figure 2.2. Although players A, B, C, and

D (filled circles) all inhabit the same virtual environment, very little interaction

(filled and hatched polygons) is possible due to the occlusion of walls (solid

lines). In fact, in this example, only two direct interactions are possible — be-

tween players A and B; and between players B and C. The restricted vision

paradigm suggests that each action submitted by B would only affect A and C,

whereas an action submitted by C would only affect B (because A cannot see

C). However, this observation leads to an inconsistent state in the system as

described next.

We illustrate the inconsistency using a scenario in a battlefield (Figure 2.3).

In the following example, we denote the network latency from client machine to

server as RTT, i.e. time it takes for a client machine to send a network packet to

the server and get back an acknowledgement. Consider the following sequence

of actions:

1. At time t = 0, C shoots an arrow at B.

2. At time t = ∆, B shoots at A. We can assume ∆ < RTT , since otherwise the

client machine of player B has received and executed the action of C, and

so already knows that player B is dead.
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3. At time t = RTT , machine of player B receives and executes the action of

player C. B dies.

4. At time t = RTT + ∆, client machine of player A gets the action of player B.

A dies.

Ideally, in the above scenario, player B should die before it actually shot the

arrow. However, the client machine of player B receives the action with C’s

shoot request only at time t = RTT , and by this time it has already sent player

B’s shoot request to the server. The client machine of player A receives B’s shoot

request at time t = ∆ + RTT , and subsequently determines that A is dead. It is

interesting to note that player A could have determined B’s death only if it also

knew that C had shot B.

We conclude that although there is a bound on the visibility of a player, the

actual area that can influence a player is much larger than the visible region

(Figure 2.2). The primary limitation of prior work is that it assumed a syntactic

restriction on influence of actions, however the influence is really determined by

a causal relationship between actions in the virtual world. In the next section,

we propose a protocol that leverages this causality.

2.4.2 MinAB-Protocol

We learned from the previous section that actions in virtual worlds directly af-

fect only those objects that lie within a specific range (as determined by visibil-

ity). The information of objects within visibility range, however, is not enough

to uniquely (and correctly) determine the outcome of actions. The causal de-

pendence of actions depends on the nature of interactions and typically cannot

be captured by syntactic constraints.
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In this section we introduce the Minimal Action Based Protocol (MinAB-

Protocol) that minimizes computational requirements of the clients. The pro-

tocol works by resolving the consistency problems that we discovered in the

previous section.

In order to understand the causality of actions, let us begin by examining

the transaction that is encapsulated in an action. We make an assumption that

the read-set and write-set for an action are known a priori; as discussed in the

previous section, the read and write sets of an action are limited to visibility in

most virtual worlds and can therefore easily be determined. Next, we change

the system architecture such that the central server also maintains an object set

S , and although it does execute any actions, it updates this object set with the

writes of actions executed by the clients. For simplicity of exposition, we denote

by W(S , v) an event that unconditionally stores the values v into the object set S .

Armed with these definitions, we can now change our protocols as shown

in Algorithms 4, 5 and 6. To execute an action a, a client first executes a on CO.

It simultaneously submits a to the server for serialization. Upon submission,

the server first attaches a monotonically increasing sequence number to a. The

server then finds a set of actions A(a) such that each action A(a) is serialized

before a and if a′ ∈ A(a), then either of the two hold:

• WS (a′) ∩ RS (a) , φ

• a′ ∈ A(a′′) and a′′ ∈ A(a)

Effectively, the server finds a set of actions that are necessary to determine

the outcome of a. It sends the set A(a) back to the client. The client executes

these actions, in order, on CS. The results of applying locally originated actions

to CO and CS are compared, and disagreements are reconciled if necessary.
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Algorithm 4: MinAB Client-Side Protocol
Require: Q a queue [〈a1, v1〉, . . . , 〈ak, vk〉] of unreconciled optimistic1

evaluations
1: Create action a and apply to get v = a(CO)
2: Add 〈a, v〉 to Q and send a to server.
3: Wait to receive action b from the server.
4: if b is not an action in Q then
5: {Either b originated at another client or}
6: {is a blind write created by server}
7: Apply action b to CS
8: for each write x← v performed by b do
9: if x < WS (Q) then

10: Perform the write x← v on CO
11: else if b = a1 then {b must be head of Q}
12: Apply a1 to CS to get result u = a1(CS)
13: if u = v1 then {optimistic evaluation okay}
14: Remove 〈a1, v1〉 from Q
15: else
16: Reconcile CO with CS via Algorithm 3
17: Send completion message 〈ai, u〉 to server

The advantage of our protocol is that a client does not (necessarily) evaluate

every action, only those that affect its transactions, thus saving both the exe-

cution time at the clients and the network bandwidth. In order to further opti-

mize our proposal, we augment the client protocol to return a completion message

when the stable result of an action is produced. The server uses these messages

to construct S, an authoritative stable world state. The server performs analysis

of read and write sets (Algorithm 6) to determine independently for each client

which additional actions must be sent for evaluation because they (transitively)

affect the client’s submitted actions.

An interesting aspect of the MinAB-protocol is that it can be made tolerant of

client failures at a reasonable cost in network bandwidth, by asking each client

to send completion messages for every action it applies, not just its own. With

this change, the only case in which the server does not receive a response to
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Algorithm 5: MinAB Server-Side Protocol
Require: S is the authoritative state1

Require: Q is a global queue of actions2

Require: sent(a) is set of clients sent action a3

Require: S(i) is state after applying actions a1 . . . ai. For the least j such4

that no response for a j+1 was received, the server holds S( j) as well as
a j+1 . . . an.

1: Wait for message from client C
2: if message is an action a then
3: Timestamp a and put it into Q
4: pos(a)← index of a in Q
5: sent(a)← ∅
6: Compute a reply to a using Algorithm 6
7: else if message is completion for ai then
8: Server holds message until S(i − 1) available
9: Installsinto S, resulting in S(i)

10: Discard ai from action queue

Algorithm 6: Transitive Closure(A)
Require: ai, . . . , an is the action queue1

Require: an+1 has just arrived from client C2

Require: + denotes prepending action to sequence3

1: A← {an+1}

2: S ← RS (an+1)
3: for j = n to i + 1 do
4: if WS (a j) ∩ S , ∅ then
5: if C ∈ sent(a j) then
6: S ← S \WS (a j)
7: else
8: S ← S ∪ RS (a j)
9: A← a j + A

10: sent(a j)← sent(a j) ∪ {C}
11: A← W(S ,S(S )) + A
12: return A

some action is when all clients that evaluate that action have failed. In such

cases, it is acceptable to assume that the action was never submitted. The client

can also be optimized for memory. The server can inform the client periodi-

cally of the last installed action, enabling the client to garbage collect the results
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of actions received in the past that it is no longer explicitly interested in. The

correctness of our algorithm is stated as follows:

Theorem 2.4.1. If the server follows Algorithm 5 and all clients follow Algorithm 4,

then in a distributed snapshot of the system the states CS at the clients and the state S

at the server will never be inconsistent.

2.5 Boundedness of MinAB-Protocol

In the MinAB-protocol, each client evaluates only a necessary subset of the

actions—those actions that actually affect the client. We investigate the bound-

edness of MinAB-protocol in this section.

To make the discussion more succinct and relevant to current MMOs, we as-

sume that the virtual world follows the standard model of a discrete simulation

engine, where the world state changes only at regular time intervals, the simu-

lation ticks [70]. We denote the non-zero time interval between two consecutive

ticks by τ.

Let us assume that a client could evaluate a set of actions AS in constant time

γ such that γ is independent of the size of AS . Then the time for the server to

receive a response for any action from a client should be RTT + γ, where RTT

is the round-trip time between the client and the server. This implies that the

server would need to send to the client a subset of actions that it has seen in

the previous (RTT + γ)/τ ticks, which provides our first bound. In our analysis,

we made an assumption that network latency is equal across all clients—we can

easily drop this assumption by substituting RTTmax for RTT . Assuming that all

clients have reasonable latency, and the virtual environment is very large, we

believe that this is still a reasonable bound.
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The bound is not valid in practice, however, because the time required for the

client program to execute the set of actions AS is, in the worst case, proportional

to the size of AS . We observe this when the time to execute the set of actions

in A is of the order of RTT . In such a case, the time after which the server

receives a response for an action translates into 2 × RTT . This increase in time

consequently increases the size of the subsequent set of actions that is sent to the

client. A trivial analysis of this phenomenon shows that the number of actions in

A increases geometrically, thereby invalidating the previously obtained bound.

2.5.1 Hyperactive Replication Model

A drawback of MinAB-protocol is that when a client submits a new action af-

ter having been idle for a while, the server may respond with an unboundedly

large set of actions. However, our MMO semantics provide us a limit on the

size of this set. Most existing VEs have strict properties of locality that we can

exploit. Every participant in can be represented as a high-dimensional tuple.

Furthermore, this tuple has a finite maximum rate of change in position. For ex-

ample, traditional spatial attributes like the position of a player cannot change

more than the maximum object velocity. Similar restrictions apply to attributes

like health if the virtual world has a maximum damage amount. As a result,

many of the actions are restricted to a ball of fixed radius about a high dimen-

sional point determined by the participant. For example, when a combatant is

looking a target to attack, this is ball about the combatant’s attack power and

spatial position.

We use the MMO semantics to scale our system. In the situation described

above, we know the position of the balls at time t and the maximum rate of

change. If we couple this information with an action A of some other participant,
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Figure 2.4: The worst-case in Hyperactive Replication Model

we can use simple geometrical calculations to answer the following question —

can the participant’s future actions be directly affected by the outcome of A?

The server now works as follows. It proactively pushes to each client a set

of actions AS that may affect its future actions. The server therefore does not

wait for a client to submit an action A. Such a push enables the client to execute

the actions of AS during what would otherwise be idle time. In particular, at

regular intervals of ω RTT time, where 0 < ω < 1, the server sends to each client

all actions submitted in the previous ω RTT that could possibly affect any of

future actions of the client.

Claim: The server receives a response for any action A from the client in time

(1 + ω) RTT of sending A to the client.

Proof: We assume that it takes ½RTT time for an action to travel from the server

to the client. Therefore, if an action A (along with some other actions) is sent to

the client j ticks after the closestωRTT cycle from the server, where j ≤ ω RTT/τ,

it reaches the client j ticks after the client has finished executing the previous

action set. The client can therefore execute A in at most j ticks and respond back

to the server. The response takes an additional ½RTT. Since j is bounded by

ω RTT , the maximum time for this entire process is (1 + ω) RTT .

As stated earlier, the decision whether an action A is sent from the server

to a client is based on whether or not the client’s future actions could possibly
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conflict with A. Let the maximum area of influence of A in the virtual world be

given by a sphere centered at the point p̄A and radius rA. Let the position of the

character representing client C be given by p̄C, and let the maximum radius of

influence of an action by C be rC, and let the maximum rate of change in position

of any object be given by s. Then A can affect any of C’s future action in time

(1 + ω) RTT if and only if

‖ p̄A − p̄C ‖≤ (2s × (1 + ω) RTT ) + rC + rA (2.1)

This equation reflects a worst-case in which A affects an object at distance

rA from itself, that object and C’s character move towards one another, each

traveling at maximum speed s, and they approach to distance rC within the

specified time bound of (1 + ω) RTT , as illustrated in Figure 2.4. The equation

gives us the first bound on the number of actions that can directly conflict with

the actions of the client, represented as a sphere centered at the position of the

client in the virtual world.

2.5.2 β-Hyperactive Replication Model

Though the Hyperactive Replication model gives a bound on the number of

actions that can directly conflict with a client’s actions and therefore have to be

sent to the client, the actual set of actions that are sent to a client is the transitive

closure of actions that conflict with the aforementioned set of actions.

We claim that the number of uncommitted actions than can directly or in-

directly cause a conflict with any given action is unbounded. We illustrate this

using the following example.

Dining Philosophers Problem. Consider a scenario with n participants, with

each of them trying to grab two forks—one to their left and one to their right.
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Let them be organized in the form of a circular ring located on earth’s equator.

If each of them tries to pick up the two forks at the same tick, then although the

direct conflicts never involve more than two participants, a transitive closure of

conflicts encompasses the entire world.

In order to counter this problem, we believe that the prevalent uncertainty in

the system can be used to break the long chains. This can be used to restrict

the size of the transitive closure of actions by aborting some actions a priori. A

possible alternative to aborting actions is delaying actions by some amount of

time so that the bulk of the actions in the conflicting action set are committed.

Determining the optimal way to abort actions is non-trivial. Issues such as

fairness are prevalent—what if the actions for the same client are repeatedly

aborted or delayed? Another issue is to find the minimal set of actions to abort

in real-time, given the fact that most VEs are online and demand immediate re-

sponse. With more and more people joining VEs, a fear in such a protocol is that

the cost of evaluating transitive closures of conflicting actions might surpass the

cost of processing actions at the server. Evaluating all such techniques is beyond

the scope of this paper, and is interesting area for further research. algorithm to

decide the fate of submitted actions.

As a first step towards solving this problem, we propose the β-Hyperactive

Replication model. This model greedily decides whether or not an action should

be aborted. Since all clients do not submit actions exactly at the same time, we

believe that the random order of arrival of actions at the server will ensure fair-

ness, i.e. the probability of an action getting aborted is the same for all clients.

The greedy nature of the algorithm is computationally inexpensive, and there-

fore we conjecture that the model can be used in real-time environments.

Algorithm 7 shows the modules of the β-Hyperactive Replication model.
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Algorithm 7: β-Hyperactive Replication Model
Require: Variables actionCount, previousCount, lastCommitted, and1

numClients are global

function onActionSubmission(action) {2

1: AactionCount ← action
2: i← actionCount
3: for ( j = 0 to clientCount − 1) do
4: if |pAi−pC j |≤(2s×(1+ω) RTT ) + rC + rA then
5: clientConflictsi,clientConflictCounti

← j
6: clientConflictCounti += 1
7: actionCount += 1

}

function onNextTick() {
1: for (i = previousCount to actionCount − 1) do
2: S ← RS (Ai)
3: invalid← false
4: for ( j = i − 1 to lastCommitted + 1) do
5: if isValid j and S ∩WS (A j) , ∅ then
6: if |pAi − pA j | > threshold then
7: invalid← true
8: break
9: S ← (S −WS (A j)) ∪ RS (A j)

10: conflictsi,conflictCounti
← j

11: conflictCounti += 1
12: isValidi ← not invalid
13: previousCount← actionCount
}

The function onActionSubmission() is called when any client submits an

action. This action is added to a global queue of actions (line 4). The function

then evaluates the set of clients (given by clientConflicts) that could be interested

in the action sometime in the near future. The second function onNextTick()

is invoked at every tick, i.e. at regular intervals of time τ. The identifier range

[previousCount, actionCount) gives the identifiers of all actions submitted in the

previous tick. For each submitted action A, onNextTick() evaluates into con-
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Figure 2.5: Chain breaking in the beta-Hyperactive Replication Model

flicts a transitive closure of all conflicting uncommitted actions. If any of the

conflicting actions is at a distance greater than some threshold distance from A,

then A is aborted.

The Hyperactive Replication model and the β-Hyperactive Replication

model together give two bounds. The first bound is on the maximum number

of actions that need to be sent to a client due to direct conflicts, represented as a

function of time and distance in the attribute hyperspace. The second bound is

on the maximum number of actions that can be a part of any actions transitive

closure, represented as a function of distance. Combining these two bounds, we

get the following (loose) bound on the number of actions sent to a client at each

tick, represented as a function of time and distance:

‖ p̄A − p̄C ‖≤ (2s × (1 + ω) RTT ) + rC + rA + threshold (2.2)

An important aspect of the Bounded Hyperactive Replication model is the

conflict detection algorithm. Typically, virtual worlds require an unordered

evaluation of actions with the same timestamp [71]. However, the decision to

abort actions in our β-Hyperactive Replication model is sequential (lines 19-34).

This enables the model to accept a majority of the actions, while aborting only

those actions that invalidate the bound. To put things in perspective, we again

consider the Dining Philosophers problem. If all participants try to pick up the
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two forks at the same tick, we conjecture that the decision to abort all of the

requests is suboptimal. The primary reason for this is the fact that the intention

was to break long chains, and not make a decision. By aborting a few actions at

regular intervals, the chain can be broken into numerous pieces, each of which

satisfies the requisite threshold.

2.5.3 Other optimizations

In the remainder of this section, we give two optimizations for our models.

Though most of these techniques are popular in the graphics community [51],

they generalize to the domain of event propagation. In particular, as we repre-

sent the virtual world by a high-dimensional database, we can apply many of

these techniques to higher dimensions.

Inconsequential Action Elimination

Throughout the discussion in this paper, we have assumed that an action sub-

mitted by any participant can affect the future actions of all other participants

that satisfy a certain bound on the distance between their positions. We claim

that the number of such conflicts can be sharply reduced by integrating non-

trivial MMO semantics into the system. For example, suppose that a virtual

environment contains humans and insects. A participant who is pretending to

be an insect in the VE would probably need to consistently know the location

of other insects and of the humans. However, a participant who is acting as a

human in the VE may not need to reliably know the locations of all of the in-

sects. We can therefore extend the system so as to allow the clients to specify

exactly what kind of actions and information they are interested in, instead of

assuming absolute uniformity.
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Area Culling

Another assumption that has been made is that the area of influence of any

action is a sphere centered at its point of occurrence. However, most of the

actions such as shooting an arrow, or even walking, normally have a velocity

vector associated with them. Even health may have an associated “velocity”

vector to it, if the damage is occurring over time. We can therefore integrate

this velocity vector in the bound calculation to predict any future conflicts. The

conflict equation (Equation 2.1) can be restructured as:

‖ p̄M + (v̄M × (tM − tC)) − p̄C ‖≤ (2s × (1 + ω)RTT ) + rC, (2.3)

where v̄M is the velocity vector associated with M, tM is the time of occurrence

of M, and tC is the time at which the position of client C was last updated to

p̄C. Note that the term, rM, corresponding to the area of influence of M is now

represented as a vector and moved to the left hand side of the equation.

2.6 Experiments

To examine the performance characteristics of action based protocols, we built

a virtual world that used the MinAB-protocol in Java 5.0 and conducted exper-

imental studies to quantify and evaluate its performance. We call our imple-

mentation SEVE, for Scalable Engine for Virtual Environments. We also built

a virtual world that used server-side architecture. We put in our best effort to

create an optimized system to represent current online virtual worlds such as

Second Life or World of Warcraft. Furthermore, we implemented the NPSNET

and the RING architectures, which represent the state of the art in distributed

simulations.
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Our experimental evaluation is based on a synthetic workload that stresses

the consistency issues in MMOs. We generated the synthetic workload for a

simple virtual world, similar to the example in Section 2.4.1. We call this virtual

world Manhattan People. It consists of avatars moving about in a rectangular

area and colliding with walls or other avatars. Whenever an avatar bumps into

something, it changes its direction by 90◦. By adjusting the number of walls,

we controlled the computational complexity per action, while we controlled the

expected number of conflicts between actions by varying the number of partic-

ipants.

2.6.1 Experimental Setup

System Setup

We obtained performance results by running the virtual world on an EM-

ULab [69] testbed consisting of 65 machines—64 clients and 1 server.

Each EMULab machine was a Pentium III Processor with 2 GB of RAM,

running Linux 2.4.0. We report the timings obtained using the Java

System.currentTimeMillis() method. Each machine, except one desig-

nated as the central server, was running other programs such as a desktop man-

ager, a document editor and a web browser in the background. We consider this

a simple way to emulate a typical client machine. Additionally, we used EMU-

Lab to introduce latency at the network level in order to simulate deployment

on a wide-area network. The average latency between machines was 238ms.

The numbers we present are repeatable, and were averaged over 10 runs of the

system, with each run lasting approximately 1 hour.
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Table 2.1: Simulation Settings
Virtual world size 1000 x 1000
Number of walls 0 – 100,000
Number of clients 0 – 64
Average latency 238ms
Maximum bandwidth 100Kbps
Moves per client 100
Move generation rate Every 300ms per client
Move effect range 10units
Avatar visibility 30units
Threshold 1.5 × Avatar visibility

Virtual World Setup

We fixed the size of the virtual environment in Manhattan People at 1000 x 1000

points. Each wall had length 10, and the number of walls was limited to 100,000.

Each action checked for conflicts with a varying number of walls closest to the

client’s avatar, and all other avatars within walk-able range. Checking for colli-

sions with walls, we made heavy use of trigonometric functions—a complexity

that was forced in to simulate the performance of virtual worlds such as Second

Life.

Our simulations showed that the average time required to execute a single

action is linear in the number of walls in the virtual world. In our system, we

noticed that systems used an average of 6.95ms to execute an action, per 1,000

visible walls (1,000 is very close to the average number of walls a client sees for

100,000 walls in our virtual world). Table 2.1 gives an overview of the simula-

tion parameters.

2.6.2 Performance Evaluation

We performed three batteries of experiments. First, we evaluated the scalability-

complexity tradeoff in (a) a server-side model (Central)—to represent Second
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Figure 2.6: Scalability of SEVE vs. Central architecture

Life and WoW, the state of the art in online games; (b) a broadcast model

(Broadcast)—representing NPSNET and SIMNET, the state of the art in dis-

tributed simulations; and (c) our action based distributed model (SEVE). Sec-

ond, we explored the bandwidth requirements of the three models. Third and

last, we evaluated the consistency-performance tradeoff.

Scalability vs. Complexity

For this first set of experiments, every single client submitted a total of 100 ac-

tions at intervals of 300ms per action. The number of walls was fixed at 100,000,

while we varied the number of clients between 0 and 64. In a single run of

the simulation, the number of other avatars that a client’s avatar could see was

empirically determined to be 6.87 on average.

We empirically determined that the time it took for a machine to evaluate a

single action was 7.44ms. Figure 2.6 compares the response time observed by

clients against the number of clients. As apparent from the figure, the server-
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side architecture and the broadcast model break down at about 30-32 clients.

This is not too surprising for the server-side architecture since for every action

that a client submits, the server has about 300ms to evaluate it. If 32 clients sub-

mit actions simultaneously, each action consuming 7.44ms of a server’s time,

the total time required to evaluate a round of actions is 240ms. The remaining

60ms can be attributed to synchronization and networking overhead. As noted

earlier, each client in the broadcast model has computational requirements com-

parable to the central server; and therefore we observe a similar scalability for

the broadcast model.

In contrast to that, SEVE’s response time remained perfectly stable as the

number of clients increased. We empirically determined the time for calculating

the transitive closure of conflicts over a single action to be 0.04ms on average.

However, as the number of clients goes up, so does the number of concurrent

actions and the time required to evaluate a transitive closure. This factor is

alleviated by the fact that the size of the transitive closure is bounded as a result

of the actions getting aborted. We performed experiments on a single server

and determined the limit of our implementation to be about 3500 clients.

Figure 2.7 compares the response time observed by the clients against the

time it took to evaluate a single action. The number of clients employed in

this experiment was fixed at 25. The server-side model and broadcast model

performed well for actions that took less than 10ms for processing. However,

as the complexity increased, the response time increased drastically, effectively

making the game unplayable. Again, the response time for SEVE remained

unaffected.

Finally, we evaluated the sensibility of SEVE with respect to the density of

avatars. Recall that humans are social beings, so avatars can be expected to
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form clusters in a real system. For this test, the number of clients was fixed at

60. The size of the virtual world was reduced to 250x250 units, and the avatars

were initially positioned 4 units apart from each other. We varied the visibility

of avatars from 10units to 100units. Figure 2.8 gives the observed response time

versus the average number of other avatars visible to each avatar.

39



Action effect range 1 3 5 7 9 11
% Actions aborted 0 0 0.01 1.53 4.03 8.87

Table 2.2: Percentage of actions aborted (visibility = 20units)

The naive implementation of SEVE bogged down as the number of visi-

ble avatars exceeded 35, primarily because the clients ran out of computational

power. In comparison, the improved implementation of SEVE started aborting

actions that were causing long chains, allowing it to keep response time stable

regardless of the density of avatars. The number of aborted actions varied from

1.5%-7.5% for different runs of the system.

At this point, it should be noted that the percentage of actions aborted is

in fact independent of avatar visibility. This is because the length of chains

depends on the range of action effect, and not avatar visibility. Table 2.2 gives

the percentage of actions aborted as a function of action effect range. While the

numbers appear to be fairly high for a large action effect range, the density of

avatars in this particular experiment is really an extreme case. We can safely

consider this a worst case scenario.

Varying the number of actions per client, or the rate of action generation had

no impact on the performance of SEVE. The server-side model and the broadcast

model, however, diverged when the number of actions, or the rate of generation,

was increased. We omit the corresponding graphs due to space constraints.

Bandwidth Requirements

A main concern of distributed systems is in the amount of network traffic gen-

erated. Figure 2.9 shows the comparison between Central, Broadcast and SEVE.

As expected, the broadcast model requires excessive network traffic (quadratic

in the number of clients). This was the original reason why systems such as
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RING were proposed. We note that the total traffic for the server in SEVE does

not differ significantly from a server-side model, which obviously is optimal in

total traffic. We conclude that SEVE does not incur higher costs on network

infrastructure than current systems.

Performance vs. Consistency

We evaluated the performance impact of calculating transitive closures in SEVE

with 64 clients and 100,000 walls compared to a RING-like architecture which

only evaluates actions within the visible range of an avatar. The average number

of avatars that an avatar could see was increased to 14.01 as opposed to 6.87

earlier, leading to more conflicts processing at the clients. Figure 2.10 shows the

results we obtained.

Calculating the transitive closure in SEVE accounted for a runtime overhead

of 1% compared to the RING-like architecture. This shows that the runtime

overhead of our strongly consistent approach is negligible.
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In summary, our experiments show that our architecture is massively scal-

able while preserving strong consistency. It gives an order of magnitude im-

provement over existing strongly consistent architectures for networked virtual

environments.

2.7 Conclusions

In this paper we motivate that at the core of networked virtual environments lie

data management problems. We identified an interesting concurrency problem

to which we proposed a novel practical solution based on taking semantics into

account. We believe, however, that we just scratched the surface of this (for the

database community) new area, and that both virtual worlds as well as other

virtual networked environments — from collaborative problem solving to on-

line games — can benefit from solutions from the database community for years

to come.
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CHAPTER 3

ENTANGLED QUERIES

3.1 Introduction

3.1.1 Declarative data-driven coordination

Collaboration and coordination are increasingly important aspects of the ways

people produce, process and consume data. This is true not only for serious

tasks such as scientific dataset management, but also at the grass-roots level,

as internet users organize and coordinate activities online. In [34], the authors

presented the vision of declarative data-driven coordination (D3C) as a high-level

design principle for collaborative data management systems. In this paper, we

address some of the challenges related to making D3C a reality by introducing a

system that supports entangled queries – a declarative mechanism for data-driven

coordination.

The paper [34] motivates D3C through a series of real-world coordination

scenarios. We revisit these examples here and explain D3C in some detail in

order to make more concrete the technical challenges involved in implementing

entangled queries.

A common coordination scenario is joint travel planning with friends or fam-

ily; for instance, several colleagues on a business tour might wish to separately

reserve rooms at the same hotel. The desired coordination is based on attributes

of the data itself, such as hotel name and date, rather than on context infor-

mation such as the time the booking is made. Thus, the coordination itself is

data-driven.

An example of such coordination that we witnessed recently was a room
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(a) (b)

Figure 3.1: SIGMOD Room Sharing Website

sharing website deployed for a conference (Figure 3.1). The SIGMOD 2011 room

sharing tool was created using Google Docs as a simple form that is used to

input data into a spreadsheet. A user who wishes to find a partner to share a

room at the conference hotel expresses her intention by inputing her name, dates

of travel, and constraints that she is bound by. On entering this information,

the user is redirected to the spreadsheet, where she queries the data to see if

there is an intention by another user who satisfies her constraints. On finding

satisfactory partners, users communicate over email or phone to coordinate on

hotel name and then proceed to make bookings.

There are many other settings in which users wish to coordinate. College

students want to enroll in the same courses as their friends, busy professionals

want to schedule joint meetings, and wedding guests want to purchase gifts in

a way that avoids duplication. Coordination also occurs in massively multi-

player online (MMO) games, where players are often interested in developing

joint strategies with other players to achieve common objectives. Again, the

coordination is data-driven as it relates to in-game goals.
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Despite the ubiquity of scenarios such as those described above, coordina-

tion is not commonly supported in today’s data-driven applications. For exam-

ple, joint travel planning usually starts with significant out-of-band communi-

cation to fix an itinerary; this requires the use of email, telephone, or perhaps

a more elaborate custom solution like the SIGMOD 2011 room sharing website

discussed above. Next, one designated user makes a group booking, or all users

try to make bookings simultaneously and hope that enough seats will remain

available. Finally, more communication may be necessary to sort out finances.

The same is true for the other examples of coordination mentioned above. In

MMO games, for instance, joint strategies are currently formed using out-of-

band communication, to the detriment of gameplay experience.

The idea behind D3C is to provide a way for users to coordinate within the

system and without having to worry about the details of the coordination. Be-

cause the coordination is data-driven, the coordination abstraction is designed

to sit at the same level as other abstractions that relate to the data. Declarativ-

ity – allowing users to express what is to be achieved, rather than how it is to

be achieved – has long been an underlying design principle in databases. In

a declarative specification of coordination, the users’ only responsibility is to

state their individual preferences and constraints, and the system takes care of

the rest. D3C is thus in contrast with existing work on data-driven coordina-

tion in workflows [2, 47] and Web services [12, 26, 58], which does not clearly

separate the coordination specification and mechanism.

To see what coordination looks like in a system that supports D3C, consider

an example. Suppose Ron wants to travel to Paris on the same flight as Harry.

In our system, he can express his request with the following entangled query:

SELECT ‘Ron’, fno INTO ANSWER Reservation
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WHERE

fno IN (SELECT fno FROM Flights WHERE dest=‘Paris’)

AND (‘Harry’, fno) IN ANSWER Reservation

CHOOSE 1

Harry also wants to travel with Ron, but he has an additional constraint: he

wants to travel only on flights operated by United. His query is as follows:

SELECT ‘Harry’, fno INTO ANSWER Reservation

WHERE

fno IN (SELECT fno FROM Flights F, Airlines A WHERE

F.dest=‘Paris’ AND F.fno = A.fno

AND A.airline = ‘United’ )

AND (‘Ron’, fno) IN ANSWER Reservation

CHOOSE 1

Section 3.2 explains the syntax of these queries in detail. For now, it is

enough to understand that Reservation is a name for a virtual relation that

contains the answers to all the current queries in the system. The SELECT clause

specifies Ron’s own expected answer, or, in other words, his contribution to the

answer relation Reservation. This contribution, however, is conditional on

two requirements, which are given in the WHERE clause. First, the flight num-

ber in question must correspond to a flight to Paris. Second, the answer relation

must also contain a tuple with the same flight number but Harry as the traveler

name. Harry’s query places a near-symmetric constraint on Reservation.

Neither user explicitly specifies which other queries he wishes to coordinate

with – e.g. by using an identifier for the coordination partner’s query. Instead,

the coordination partner is designated implicitly using the partner’s query re-
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Flights Airlines
fno dest
122 Paris
123 Paris
134 Paris
136 Rome

fno airlines
122 United
123 United
134 Lufthansa
136 Alitalia

(a)
Ron’s query Harry’s query

answer tuple: R(‘Ron’, 122) R(‘Harry’, 122)

answer relation
constraint: R(‘Harry’, 122) R(‘Ron’, 122)

satisfies

satisfies

(b)

Figure 3.2: (a) Flight database (b) Mutual constraint satisfaction

sult. This is a deliberate choice that allows coordination with potentially un-

known partners based purely on desired shared outcomes. In travel planning,

of course, it typically is known who one’s coordination partners will be. How-

ever in other scenarios such as MMO games, coordination partners may be un-

known and their identities irrelevant.

When the system receives Ron and Harry’s queries, it answers both of them

simultaneously in a way that ensures a coordinated flight number choice. In

general, there may be many different suitable flights, but Ron and Harry only

want to make a booking on one of them. The CHOOSE 1 clause present in both

queries specifies that only one tuple is to be returned per query. The tuples

returned must be such that all constraints are satisfied. If the database is as

shown in Figure 3.2 (a), the system non-deterministically chooses either flight

122 or 123 and returns appropriate answer tuples. Figure 3.2 (b) shows the mu-

tual constraint satisfaction that takes place in answering for 122. The intent is

that Ron and Harry should now be able to make a booking on flight 122.
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The above queries are of course simplified to illustrate the basic coordination

mechanic; in a real travel reservation setting, they would include checks for seat

availability and other factors.

3.1.2 Enabling D3C

Existing related abstractions

Other research communities have long recognized the need for communication

among concurrently running processes and have designed solutions to sup-

port it. Systems researchers have developed solutions ranging from low-level

mechanisms such as message passing, shared memory, locks and semaphores to

higher level abstractions such as transactional memory [39]. The programming

languages community has given us Concurrent ML [56], Erlang [68], Stackless

Python [55], Concurrent Haskell [27] and many other languages that come with

concurrency support. These languages enable communication through chan-

nels or other mechanisms in a clean and precisely specified way. At a higher

level, abstractions such the π-calculus [46] allow formal modeling and reason-

ing about communication.

The data management research community has long avoided the coordina-

tion problem, probably as a consequence of accepting isolation among trans-

actions as a dogma. However, as pointed out above, data-driven coordination

has real uses. The process-centric abstractions mentioned above are not a good

fit for data-driven applications [34]; a large class of such applications would be

much easier and faster to develop using a data-centric abstraction such as entan-

gled queries. Moreover, a well engineered high-level abstraction like entangled

queries creates an opportunity for automatically optimizing coordination on a

large scale that is not possible for the lower-level abstractions offered by oper-
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ating systems.

It is important to emphasize that existing database mechanisms such as

nested transactions [44], Sagas [18], or ConTract [57] that weaken isolation in

a form or another do not solve the coordination problem, for two reasons. First,

they only allow for unidirectional information flow between transactions on the

same conceptual layer (of nesting), not the kind of bi- or multidirectional flow

required to achieve coordination. Moreover, coordination requires automated

matchmaking between queries, a challenge which the work cited above does not

address.

In fact, one may be biased towards mechanisms such as Cooperative Trans-

action Hierarchies [50] or Split Transactions [54] for enabling coordination. Both

these mechanisms, with their specific application domain, require explicit dec-

laration of the coordination structure. They are basic extensions of a system

implementing shared memory for transactions and require declaration of data

that is potentially either immutable or dependent on other transactions. This

not only makes it very hard for the programmer to determine an execution, but

also takes way a lot of flexibility from target applications.

Triggers or other active database constructs [72] may also seem relevant and

appear to address the same problems as D3C, since active databases perform

actions based on certain conditions becoming true in the database. However,

trigger conditions are preconditions, while the coordination constraints of en-

tangled queries are postconditions on the desired state of the database after the

coordination. Again, triggers provide no straightforward way to achieve coor-

dination matchmaking, which is the key problem addressed and solved in this

paper.
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Making coordination possible

Once the new entangled query abtraction has been formalized, a key technical

challenge is to solve the coordination problem. That is, we need an algorithm

that finds answers to the entangled queries in a way that satisfies the coordina-

tion constraints.

There is, however, a fundamental obstacle. The combination of a declara-

tive query language such as SQL with coordination constraints of the kind il-

lustrated above naturally captures the general Constraint Satisfaction Problem

(CSP) of AI [15], which is NP-complete. This source of complexity is included

by design: the very idea of D3C calls for a coordination solution to be a choice

(nondeterministic, if you will) from a query result, constrained by cross-query con-

ditions. Declarativity naturally entails a (combinatorial) satisfiability problem.

There are in fact two sources of nondeterminism (disjunction) and thus com-

plexity in the coordination problem. The first is the choice of queries to be

grouped together; the second, the choice of data tuples from the query results

that are chosen as coordinating solutions. We cannot reasonably hope to elim-

inate the second type of complexity; this is the same issue that causes select-

project-join queries to be NP-complete if one considers the query to be part of

the input. On the other hand, one usually considers this acceptable because

queries are small. If this second source of NP-completeness had to be elimi-

nated, one could not support declarative queries with coordination constraints

in a similar formalism.

A key contribution of this paper is a syntactic condition, safety, which en-

sures that coordination can be performed efficiently in the sense that the first

source of complexity is eliminated. Coordination is only NP-hard in the size

of the groups of queries or individuals who want to coordinate; in a travel sce-
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nario like our example where an arbitrary number of pairs of two people want

to coordinate, this size is two. The hardness result is independent of the total

number of entangled queries in the system, and also of the size of the data in

the database. The latter fact is comfortingly obvious from the fact that the al-

gorithm presented in this paper merges queries to be coordinated statically into

standard SQL queries that only produce coordinated solution tuples for the con-

stituent entangled queries; the essential query matching/coordination problem

is solved without access to the data.

3.1.3 Contributions

The contributions of this paper are as follows. First, we formalize entangled

queries, a simple yet powerful abstraction for D3C. Entangled queries are ex-

pressed in an extension of SQL, allowing the coordination constraints and the

data involved in the coordination to be specified at the same level of abstrac-

tion. They are inspired by a language example from [34]; however, in this paper

we give a full formal treatment of these queries, including a precise syntax and

semantics.

Second, we introduce a formal notion of safety for queries that are admit-

ted into the system. In keeping with our previous discussion, safe queries are

designed to allow efficient evaluation in realistic settings rather than express

generic CSP instances.

Third, we present an algorithm for coordination. The algorithm begins by

working at the syntactic level to solve the query matching problem – identifying

the potential coordination partners for each query. Next, each set of matching

queries is combined into a larger query that expresses the desired joint outcome.

For example, Harry and Ron’s queries would be combined into a single query
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asking for a United flight to Paris. Finally, the answers to the combined query

are used to generate individual answers.

Fourth, we introduce an end-to-end system that supports entangled queries.

Apart from an optimized implementation of the algorithm, we present other

components for query management and interaction with the application layer.

Our system supports coordination in two modes: set-at-a-time mode (queries

arrive in batches) and incremental mode (queries arrive as a stream). We lever-

age the properties of coordination structures to partition and evaluate query

sets independently and in parallel.

Finally, we give experimental results that use our system and demonstrate

the scalability of the coordination algorithm. We strive to use workloads that are

as realistic as possible; in generating them, we make use of real social network

data and extend them to a scale which is realistic for today’s internet.

The remainder of this paper is organized as follows. Section 3.2 introduces

the syntax and semantics of entangled queries. Section 3.3 discusses the kinds

of coordination structure that are likely to be present in the most common use

cases. Section 3.4 presents the evaluation algorithm for coordination. Section 3.5

and 3.6 describe our system implementation and contain experimental results,

while Section 3.7 discusses future work. We mention related work throughout.

3.2 Entangled queries

In this section, we introduce a SQL-like syntax for entangled queries, propose

an intermediate representation for ease of exposition and define the semantics

of query answering.
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3.2.1 Syntax

An entangled query is expressed in extended SQL using the following syntax:

SELECT select_expr

INTO ANSWER tbl_name [, ANSWER tbl_name] ...

[WHERE where_answer_condition]

CHOOSE 1

The WHERE clause is a normal condition clause that may refer to both

database and ANSWER tables. The ANSWER tables are not normal database re-

lations, whether permanent or temporary. Their purpose in the query is only

to serve as names that are shared among queries and permit coordination. For

example, the relation Reservation in the example from the introduction is an

ANSWER relation. There is no relation named Reservation in the database;

after the queries are evaluated, Ron and Harry each receive a result set with the

appropriate answer tuple. These answer tuples do not persist anywhere, nor

are they accessible to any other queries. In particular, Ron’s answer tuples are

not even accessible to Harry’s query and vice versa. The CHOOSE 1 at the end

of the query explicitly specifies that the system should choose exactly 1 tuple

among all the tuples which satisfy the coordination constraints, and that such a

query should be chosen at random.

This paper presents semantics and an evaluation algorithm for entangled

queries that are restricted to use only select-project-join (conjunctive) queries

on the ANSWER relations in the WHERE clause, and arbitrary queries otherwise.

Such queries are powerful and expressive enough to handle many real-world

coordination scenarios. We discuss potential extensions in Section 3.7.
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3.2.2 Intermediate representation

Although entangled queries are specified in an extension of SQL, their evalua-

tion is easier to perform on an intermediate representation. The representation

uses a Datalog-like syntax; however, it does not involve any recursion and it is

completely equivalent to the SQL syntax presented above.

In this representation, an entangled query has the form

{C} H D B

where C and H are conjunctions of relational atoms over answer relations and

B a query over database (non-answer) relations. B, H and C are the body, head

and postcondition of the query, respectively. Each atom in the representation may

contain constants and variables. All variables that appear in H or C must also

appear in B (a range-restriction requirement). For simplicity of discussion, we

restrict B to conjunctions of relational atoms for the remainder of this paper.

This is, however, not enforced by the model in general.

For an entangled query expressed in extended SQL, H corresponds to the

SELECT INTO clause, while B and C correspond to information in the WHERE

clause. C specifies all the conditions on ANSWER relations from the WHERE

clause. B specifies the conditions on database relations from the WHERE clause,

as well as serving to bind variables used in H and C.

Figure 3.3 (a) shows the intermediate representation of Ron and Harry’s

queries from the introduction. The relations Reservation, Flights and

Airlines are abbreviated as R, F and A respectively.
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{R(Harry, x)} R(Ron, x) D F(x,Paris)
{R(Ron, y)} R(Harry, y) D F(y,Paris) ∧ A(y,United)

(a)

1: {R(Harry, 122)} R(Ron, 122)
2: {R(Harry, 123)} R(Ron, 123)
3: {R(Harry, 134)} R(Ron, 134)
4: {R(Ron, 122)} R(Harry, 122)
5: {R(Ron, 123)} R(Harry, 123)

(b)

Figure 3.3: (a) Intermediate representation of entangled queries (b) Grounded
queries

3.2.3 Semantics

From the point of view of a single entangled query, evaluation is a process that

returns an answer, i.e. a single row from the appropriate answer relation. From

the point of view of the system, evaluation always involves a set of entangled

queries, and the goal is to populate the answer relation in a way that respects all

queries’ coordination constraints. In the running example, Ron and Harry wish

to coordinate on flight numbers. The system evaluates their queries by finding

a tuple for Ron’s query and a tuple for Harry’s query that share the same flight

number, and returning each tuple as an answer to the appropriate query.

Consequently, coordination semantics must be defined from the perspective

of the system, by specifying how a set of entangled queries must be answered

together. The process which the system must perform is called coordinated query

answering; it is described next. For correctness, it is necessary to ensure that the

underlying database is not changed during the answering process.

Grounding the queries: Coordinated query answering makes use of two

technical concepts – valuations and groundings. If q is a query in the intermediate
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representation and the current database is D, a valuation is simply an assign-

ment of a value from D to each variable of q. For example, on the database in

Figure 3.2 (a), Ron’s query has three valuations: x can be mapped to either 122,

123 or 134. Every valuation of a query is associated with a grounding, which is q

itself with the variables replaced by constants following the valuation. We use

the terms “grounding” and “grounded query” interchangeably.

Let Q be the set of queries to be evaluated in a coordinated manner. In the

description that follows, we make use of G, the set of groundings of the queries

on the database. It is important to understand that evaluation does not require

that G be materialized; indeed, our evaluation algorithm presented in Section

3.4 does not materialize it. However, for the purpose of explaining the seman-

tics, G is a useful tool.

Figure 3.3 (b) shows the set G obtained by grounding Ron and Harry’s

queries on the database in Figure 3.2 (a). The bodies of the groundings are no

longer needed and can be discarded.

Finding the answers: At a high level, the evaluation is a search for a subset

G′ ⊆ G such that G′ contains at most one grounding of each query and the

groundings in G′ can all mutually satisfy each other’s postconditions. That is, if

all the heads of the groundings in G′ were combined into a set, this set would

contain all the postconditions. Any set of groundings satisfying this property

is called a coordinating set. Once such a G′ is found, the evaluation produces

an answer relation which consists of the union of all the head atoms in G′ (the

answer may consist of more than one relation – this will happen if the head

atoms refer to more than one relation, i.e. the original queries mention more

than one ANSWER relation).

In the example, the initial set G is as shown in Figure 3.3 (b). Groundings 1
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and 4, as well as groundings 2 and 5, are suitable coordinating subsets G′. Either

of them may be used to generate the answer relation and return answers to the

respective queries.

It is possible that the selected G′ might not contain any groundings for some

queries. This event can be thought of as a statement that those queries could not

be answered; it is up to the programmer to determine how to handle this case

in the transaction code.

Guarantees on answering: In general, multiple suitable coordinating sets

G′ may exist. This raises the question of what requirements one should place

on evaluation. It is clearly desirable that some G′ be found unless none exists,

and perhaps also that the G′ chosen be maximal, i.e. contain groundings of as

many queries as possible. However, as we show next, there are fundamental

limitations on the guarantees that we can provide efficiently.

Definition 3.2.1 (CQA). Let the problem instance consist of a set Q of entangled

queries and a database D. The problem is to evaluate Q on D, and to return a nonempty

answer if one exists. More formally, the problem is to determine whether there exists a

coordinating set G′ ⊆ G, where G is the set of all groundings for Q on D, containing at

most one grounding of each query from Q.

It turns out CQA is NP-complete. This is unsurprising, as each query in Q

has a body that is a conjunctive query, and the combined complexity of evaluat-

ing conjunctive queries is NP-complete [20]. The complexity that arises in coor-

dinated query answering, however, is orthogonal to the potential blowup due

to the evaluation of the bodies. To demonstrate this, we prove NP-completeness

of the following restricted version of the problem where all body queries consist

of a single atom and are thus tractable.

Definition 3.2.2 (CQA*). Let the problem instance consist of a set Q of entangled
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queries, each with a single-atom body, and a database D. The problem is to evaluate Q

on D, and to return a nonempty answer if one exists.

In the case of instances of CQA*, the size of the instance is proportional to

the total number of groundings of all queries in Q put together, so no blowup

due to grounding occurs. Unfortunately, even in this case, coordinated query

answering remains intractable.

Theorem 3.2.3. CQA* is NP-complete. This holds even if all queries are additionally

restricted to have single-atom heads and postconditions.

Proof. The proof follows a reduction from a custom NP-complete graph-

theoretic problem which we call the CNRC (Cycle with no Repeated Colors)

problem.

Definition 3.2.4 (Vertex-Colored Digraph). A vertex-colored digraph is a 3-tuple

(V, E,C), where V is a set of vertices {v1, v2, . . . , vn}, E is a set of directed edges

{(va1 , vb1), . . . , (vam , vbm)}, and C : V → {1, 2, . . . , c} is a coloring on vertices.

Definition 3.2.5 (CNRC). Given a colored digraph (V, E,C), the Cycle with No Re-

peated Colors Problem (CNRC) is that of determining whether (V, E,C) contains a di-

rected cycle v1, v2, . . . , vl s.t. if 1 ≤ i < j ≤ l then C(v j) , C(vl).

Theorem 3.2.6. CNRC is NP-complete.

The proof for NP-completeness of CNRC is given in the Appendix.

The basic idea behind the proof of Theorem 3.2.3 is to take an instance of

CNRC and associate one entangled query with each possible color. Each edge

in the graph will be represented by a possible grounding of a entangled query.

Formally, let (V, E,C) be a vertex-colored digraph. We define a table Edges

such that for every edge (va, vb) ∈ E there is an entry (a, b,C(va)) in Edges. For
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each possible color i = 1, 2, . . . , c we define a new entangled query

{Cycle(b)} Cycle(a) D Edges(a, b, i)

We claim that a nonempty coordinating setG containing at most one ground-

ing of each query in Q exists if and only if the graph (V, E) contains a cycle with

no repeated colors. First suppose that there exists a nonempty coordinating set

G. Then the coordinating set must contain a grounding whose body is the atom

Edges(x1, x2,C(vx1)). Since this grounding’s postcondition is satisfied, G must

also contain a grounding that has the body atom Edges(x2, x3,C(vx2)). This pro-

cess can be continued ad infinitum to obtain a sequence of (non-unique) vertex

indices x1, x2, . . . such that (vxi , vxi+1) ∈ E for all integers i ≥ 1. By the infinite

pigeon-hole principle, there must be some vertex that appears at least twice.

Hence, there must be indices s, t with s ≤ t such that xs, xs+1, . . . , xt are all distinct

and xt+1 = xs. We claim that the vertices xs, xs+1, . . . , xt, xt+1 form a cycle with no

repeating colors. By construction, (xi, xi+1) ∈ E for each i ∈ [s, t]. Furthermore,

the indices xs, xs+1, xs+2, . . . , xt are all distinct, which means that they must have

originated from the heads of different queries. Since each query is associated

with its own unique color, it follows that xs, xs+1, . . . , xt, xt+1 must be a cycle with

no repeating colors, as promised.

Now suppose that there exists a cycle with no repeating colors, say with ver-

tex indices x1, x2, . . . , xn, xn+1 = xn. We claim that there must exist a nonempty

coordinating set. Consider the set G which contains precisely those groundings

whose bodies contain the atoms Edges(xi, xi+1,C(vxi)) for i = 1, 2, . . . , n. By as-

sumption, every such edge really is present in the table. Furthermore, each edge

must originate from the body of a different user’s entangled query because the

colors C(x1),C(x2), . . . ,C(xn) are distinct. This completes the proof.
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3.3 Query answering in practice

The main reason for the complexity of entangled query evaluation indicated in

Theorem 3.2.3 is not actually the choice of the data values – such as specific flight

numbers or hotel rooms. The complexity is due to the fact that if we consider ar-

bitrary sets of queries, a backtracking search [15, 62] is required to discover the

coordination structure, that is, the way the queries (and their respective ground-

ings) match up together. Moreover, sometimes this coordination structure is not

unique. The need to search for the coordination structure can be better under-

stood using the graph encoding from the proof of Theorem 3.2.3; in this setting,

it corresponds to a search for the “template” of the desired cycle, i.e. the length

and specific sequence of colors involved.

Fortunately, real-world users are very unlikely to generate sets of entangled

queries that encode complex constraint satisfaction. In fact, the sets of queries

that they do generate are likely to have a very specific structure. It turns out that

we can put this knowledge to good use in developing an efficient evaluation

algorithm. In this section, we formalize this additional structure and explain

why it allows tractable evaluation with respect to the data complexity.

3.3.1 Safe and Unique coordination

We argue that in most practical scenarios, the coordination structure that users

express through entangled queries has two formal properties: it is safe and

unique. We informally introduce each of these properties in turn before formal-

izing them and explaining how they jointly guarantee tractability of evaluation.

We begin with the notion of safe coordination. Consider Ron and Harry’s

example queries from our running example. Each query has a clear coordination
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{R(Harry, x)} R(Ron, x) D F(x,Paris)
{R(Harry, y)} R(Hermione, y) D F(y,Athens)

{R( f , z)} R(Harry, z) D F(z,w) ∧ Friend(Harry, f )

(a)

{R(Harry, x)} R(Ron, x) D F(x,Paris)
{R(Ron, y)} R(Harry, y) D F(y,Paris)

{R(Harry, z)} R(Frank, z) D F(z,Paris) ∧ A(y,United)

(b)

Figure 3.4: (a) An unsafe set of queries (b) A set of queries which is not unique

partner. This means there is one clear desired global outcome: both Harry and

Ron receive the details of a United flight to Paris. Suppose, however, that we

extend the database in our flight booking scenario with a Friend relation, and

that three users – Ron, Harry and Hermione – are mutual friends. Consider the

three queries in Figure 3.4 (a). The queries represent the fact that Ron wants to

coordinate with Harry on a flight to Paris, Hermione wants to coordinate with

Harry on a flight to Athens, and Harry is happy to coordinate with any friend

on any flight.

This set of queries does not fully specify the structure of the desired coor-

dination. Harry’s query has two potential queries in the set that could be its

coordination partners; however, his query requires a single tuple as an answer.

There are two possible coordination outcomes that satisfy some users: either

Harry flies with Ron or he flies with Hermione. However, there is no outcome

that satisfies all users, and it is unclear how the system might choose between

the two outcomes above.

To understand what it means for a coordination structure to be unique, con-

sider the three queries shown in Figure 3.4 (b). Here Harry and Ron wish to
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coordinate on a flight to Paris as before. In addition, Frank wishes to coordinate

with Harry on a flight to Paris, but only if the airline is United. Depending on

the flight database, there are several possibilities for coordination here. First,

it may be possible to book all three users on a United flight. Of course, it is

possible that no suitable United flights exist. In this case, Harry and Ron may

still be able to coordinate and fly with another airline. The coordination struc-

ture here is safe – each query has a unique coordination partner – but it is not

unique. There are proper subsets of the entire set of queries that may be able to

coordinate “locally” even if the entire set cannot.

We next formalize the two above notions.

Safety

Formally, a safe set of queries can be characterized in terms of logical unifia-

bility between various head and postcondition atoms of the queries in the set.

Consider two relational atoms containing constants and variables that involve

the same relation. They are unifiable unless they contain different constants for

the same attribute value; for example, R(x, y) and R(z, z) are unifiable whereas

R(2, y) and R(3, z) are not. We call a set of queries Q unsafe if it contains a query

q with a postcondition atom that is unifiable with two (or more) head atoms

found in Q. These can be either head atoms of two different queries, or two

head atoms of the same query. Evaluation of such queries is intractable and

leads to degradation in the performance of the system.

For example, in Figure 3.4 (a), Harry’s query has a postcondition atom R(f,z)

which unifies with the head of Ron’s query as well as the head of Hermione’s

query. Therefore, the set of queries is unsafe.

If presented with a set of queries which is unsafe, the system has several op-
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tions. Ideally, the problem would be pointed out to the users involved and they

would receive feedback allowing them to reformulate their queries. Alternately,

the system could remove queries from the set until the remaining set was safe.

A simple way to do this is to iterate over the query set and search for queries q

with postconditions that unify with more than one head atom. All such queries

q would be removed from the set when found. This procedure is not in general

Church-Rosser, but it is simple and can be performed efficiently. More sophisti-

cated strategies for query removal may be appropriate in particular application

settings.

Uniqueness of the coordination structure

The formal definition of safety involves excluding queries whose postcondi-

tions unify with more than one head. Uniqueness of the coordination structure,

on the other hand, has to do with heads that unify with more than one post-

condition, as seen in the three queries in Figure 3.4 (b): the head atom of the

second query, R(Harry, y) unifies with the postcondition atoms of both the first

and third query. However, the restriction required for uniqueness of coordina-

tion structure (UCS) is not as straightforward as excluding all queries with such

heads; sometimes these types of configurations can be permitted. Intuitively,

the problem is due to the fact that a subset of the queries can coordinate sepa-

rately of the rest.

To define the UCS property for a set of queries, we use a simplified version

of the unifiability graph that will be introduced in more detail in Section 3.4.

Construct a graph with a node for every query in the system. Draw an edge

from node qi to q j if a head atom of qi unifies with a postcondition atom of q j.

Intuitively, if there is a path from query qk to ql, this means that groundings of
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query ql require groundings of qk for satisfaction, directly or transitively.

We can use this graph to define UCS. We say that a set of queries has the UCS

property if every node in its simplified unifiability graph belongs to a strongly

connected component of the same graph. This excludes the type of behavior

shown in Figure 3.4 (b). The simplified unifiability graph for this set of queries

has three nodes, one for each query. There are three edges – edges in both di-

rections between Harry and Ron’s queries, and an additional edge from Harry’s

query to Frank’s query. Thus, Frank’s query does not belong to a strongly con-

nected component of the graph.

An interesting property is that a set of queries could satisfy the UCS property

even though a query in the set is unsafe. For example, the third query shown in

Figure 3.4 (a) is part of the strongly connected component of the graph although

it is unsafe.

3.3.2 Tractable evaluation

In settings where the coordination structure is both safe and unique, efficient

evaluation is possible.

Theorem 3.3.1. If a set of entangled queries Q is safe and UCS, then all the queries can

be evaluated in PTIME with respect to data complexity.

In Section 3.4, we prove Theorem 3.3.1 by outlining an algorithm to per-

form query evaluation in PTIME. The intuition for why efficient evaluation is

possible is that the coordination structure can be discovered efficiently. If we

construct a graph based on the unifiability of the head and postcondition atoms

of the query, the strongly connected components of the unifiability graph corre-

spond to sets of queries that are coordination partners and require each other’s

postconditions during evaluation.
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Within each such group, the specific way in which the queries match is

unique. It is therefore possible to collect the queries together into a big query

that specifies a single joint outcome based on the way they match. This is ex-

plained in much greater detail in Section 3.4, but as an example, Harry and

Ron’s queries from the introduction can be combined into this postcondition-

free query:

R(Ron, x) ∧ R(Harry, x) D F(x,Paris) ∧ A(x,United)

This query specifies that the system should find a United flight to Paris and

return the two answer tuples to Harry and Ron.

In the evaluation process as outlined above, safety guarantees tractability,

by ensuring that there is a unique way to combine the queries in each strongly

connected component into a bigger query. The UCS property guarantees cor-

rectness: we know that we will not miss any possible answers (i.e. coordinating

sets of groundings) that involve proper subsets of a set of matching queries, as

explained in our discussion of the queries in Figure 3.4 (b).

3.4 The evaluation algorithm

We now introduce our algorithm for coordinated query answering. Within our

system, this algorithm is implemented in the coordination module as explained

in Section 3.5.1. It is invoked by the coordination middleware, either automat-

ically at regular intervals or through explicit requests. Upon invocation, the al-

gorithm operates on a snapshot of the database and on a fixed set Q of queries.

The set Q is assumed to be safe; if necessary, a simple check can be run on Q to

ensure safety.
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The algorithm has two main phases: query matching and evaluation proper.

Query matching discovers the coordination structure implicit in the individual

entangled queries and uses this structure to construct a set of combined queries.

Once each combined query is available, it is sent to the database for evaluation;

each answer to this query corresponds to a set of answers to the individual

entangled queries. The first (or any other) combined query answer can be used

to produce the individual answers.

3.4.1 Query Matching

Query matching discovers the coordination structure implicit in the set of entan-

gled queries. In most cases, as discussed, users submit small groups of queries

that match only each other. That is, the structure consists of a potentially large

number of small, disconnected groups of queries that will coordinate only in-

ternally.

The query matching phase discovers this structure in two steps. First, it iden-

tifies the disconnected, independent groups of queries. In doing so, it partitions

Q into a set of components which can subsequently be processed independently

and in parallel. We call this phase the partitioning phase and describe it in Sec-

tion 3.4.1.

Next, the algorithm works on each group of queries to discover the actual

coordination by determining how the query heads and postconditions match.

We refer to this phase as matching (proper) and describe it in Section 3.4.1.

All stages of this process make use of a data structure called the unifiability

graph that represents certain dependencies among the queries in Q with respect

to matching. We begin by introducing this graph and explaining how it is con-

structed. We then discuss how the subsequent phases make use of it.
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The unifiability graph

The unifiability graph of a set of queries Q is a multi-digraph (directed multi-

graph) that contains a distinct node N(qi) for each query qi in Q. There is an

edge from query node N(qi) to query node N(q j) for each pair of atoms (h, p)

such that h is a head atom of qi, p is a postcondition atom of q j, and h unifies

with p. For the remainder of this section, we use qi to represent both a query in

Q and the corresponding node in the unifiability graph.

For every query qi in Q, let INDEGREE(qi) denote the indegree of the corre-

sponding graph node, and let PCCOUNT(qi) equal the number of postconditions

of query qi. Safety guarantees that there will be at most one edge into a graph

node qi for each postcondition of qi. This means that for every query qi in Q,

INDEGREE(qi) ≤ PCCOUNT(qi)

Equality holds if and only if every postcondition atom of qi unifies with a head

atom of some query.

For instance, suppose Q consists of the three following queries:

q1 : {R(x1) ∧ S(x2)} T(x3) D D1(x1, x2, x3)

q2 : {T(1)} R(y1) D D2(y1)

q3 : {T(z1)} S(z2) D D3(z1, z2)

Then the unifiability graph is as shown in Figure 3.5 (a). We will use this set

of three queries as our running example for this section.

Partitioning

The unifiability graph allows Q to be partitioned into subsets that can be pro-

cessed separately and in parallel. These partitions are precisely the connected
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components of the unifiability graph; for convenience, we refer to the queries

corresponding to a connected component of the unifiability graph as a compo-

nent of Q. Suppose that queries q1 and q2 are in different components of Q. Then

any coordinating set that contains groundings of both q1 and q2 can be broken

into two smaller disjoint coordinating sets, one of which contains q1 and the

other of which contains q2. All subsequent stages of evaluation can therefore be

performed separately on each component of Q. Partitioning the graph has other

potential benefits in addition to the performance advantages associated with in-

creased parallelization and smaller search spaces. For instance, it has security

benefits. By analyzing the unifiability graph, an implementation of our system

could provide guarantees about the interaction between different queries in the

system. A system sensitive to privacy could partition the workload by group-

ing queries into sets of “trusted and sensitive,” “trusted but not sensitive,” or

“untrusted” queries and ensure that no component of Q could contain both a

“trusted and sensitive” and an “untrusted” query.

Unifier Propagation

At the core of our algorithm is an iterative process that identifies and removes

unanswerable queries, i.e. those that have no chance to participate in a coordi-

nating set. Fundamental to the algorithm is the observation that a query with a

postcondition that does not unify with any query’s head cannot have a ground-

ing that participates in a coordinating set. Any such query can therefore be

safely disregarded. We can identify such queries using our unifiability graph: a

query node N(qi) can be safely removed from the graph if its indegree is strictly

less than the number of postconditions of qi.

Unifier propagation requires that no variable name can appear in more than
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one query. If the initial Q does not satisfy this property, it is easy to enforce it

by renaming variables as needed. For the remainder of this section, we assume

that each variable is indeed unique to a single query. Let Val denote the set of

all constants and variables occurring in Q.

Unifiers The matching algorithm associates a unifier U(n) with each node n in

the unifiability graph. A unifier is a constraint on the valuations of the variables

in Val. Formally, it is a partition of a subset of Val which contains at most one

constant per partition class. It can be represented as a set of subsets of Val.

For example, {{x, 3}, {y, z}} is a unifier specifying that in any permitted valuation,

the variable x must have value 3 and the variables y and z must have the same

value.

Given unifiers u1 and u2, the Most General Unifier of u1 and u2, denoted

mgu(u1, u2), is the most general (least restrictive) unifier that enforces all the con-

straints imposed by each ui. In general, mgu(u1, u2) may not exist, but if it does

exist then it is unique. For instance, there is no most general unifier for the uni-

fiers {{x, 3}} and {{x, 4}}; if one existed, it would need to restrict valuations so that

x was equal to both 3 and 4.

Given two unifiers u1 and u2, it is possible to compute mgu(u1, u2) – or de-

termine that it does not exist – using standard methods. An optimized imple-

mentation of the MGU procedure based on disjoint-set forests provides strong

performance guarantees. If unifiers u1 and u2 jointly contain k distinct variables

then it possible to compute their most general unifier in expected O(k ·α(k)) time,

where α is the inverse of the Ackermann function.

Cascading effects of unifier propagation If a query node qi is removed from

the graph then we can also remove any node q j such that a postcondition atom

of q j unifies with a head atom of qi. This is true because of our safety condition:
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we know that each postcondition atom unifies with at most one head atom.

In practice, this means that if a node qi is removed from the unifiability graph

then every successor q j of qi may be removed as well. Repeating this argument,

we may remove every successor of a successor of qi, and so on until we have

removed all descendants of qi from the graph. This can be accomplished using

a standard graph traversal algorithm such as Breadth-First Search. We assume

that there is a function CLEANUP(n) that removes an input node and all its de-

scendants from the dependency graph, as well as all edges into and out of those

nodes. We also assume that CLEANUP removes all of these nodes from the up-

dates queue, a data structure whose purpose will be described shortly.

Matching

We are now ready to explain the query matching algorithm proper.

We begin by constructing a unifiability graph for the set of queries Q. For

each query qi in Q, we create a node, and we define a set U(qi), called the unifier,

for this node. Intuitively, U(qi) represents the minimal (least restrictive) cur-

rently known constraints on valuations that must hold for any coordinating set

that contains a grounding of qi.

We initialize the unifier U(qi) of each node qi to the empty set. For each head

atom h of each query qi we check whether there is a postcondition atom p of a

query q j that unifies with it. If such a p exists then we create an edge from qi to

q j in the unifiability graph. We also update U(q j) to be the MGU of U(q j) and

the most general unifier of p and h. If no such h exists or no MGU exists then

the query qi is unsatisfiable, and we may run CLEANUP to remove it and all its

descendants from the graph.

The unifiability graph can be generated in a straightforward but inefficient
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manner by trying to unify each postcondition with each head in our entire input

set of queries. This process can be made more efficient by building indices, but

doing so is non-trivial. For example, consider the atoms Reserve (Ron, x)

and Reserve (Harry, y). Clearly, a unifier does not exist for these atoms

despite the fact that they point to the same relation. Interestingly, we can attempt

to reduce the number of these matchings by simply replacing the variables in

every atom by a unique constant ∆. We then build an index on all heads in Q of

the following form:

(Relation, Parameter, Value) → [List of Atoms]

A lookup for a postcondition atom Reserve (Harry, y) involves a seek on

the index for (Reserve, 1, Harry) and (Reserve, 1, ∆). Formally, ifL

denotes the lookup function on the index andA represents the set of atoms, an

atom R(v1 . . . vn) can only unify with

A∩
⋂

constants vi

(L(R, i, vi) ∪ L(R, i,∆))

Such an index structure does not provide us with any guarantee on complex-

ity. Indeed, we expect it to perform poorly when queries have many variables.

However, a query set with a very large number of variables is highly likely to

be unsafe: postconditions and heads that contain mostly variables rather than

constants will typically unify with each other densely. In practice, therefore, this

type of index is immensely useful.

In building the graph, we iteratively removed any query containing a post-

condition that did not unify with some head atom. This fact, together with our

assumption that Q is safe, is sufficient to guarantee that that for each postcon-

dition p of each query qi in the graph there is exactly one other query q j with

a head h that unifies with p. This establishes a local satisfaction of constraints
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Algorithm 8: Matching on a unifiability graph G
1: updates := queue containing all nodes in G
2: while updates is not empty do
3: parent := DEQUEUE(updates)
4: for child in successors of parent do
5: U(child) := MGU(U(parent), U(child))
6: if U(child) was changed then
7: if U(child) = NIL then
8: CLEANUP(child)
9: else
10: ENQUEUE(updates, child)

for each of the remaining nodes in the dependency graph. The algorithm next

propagates these constraints using the structure of the unifiability graph. More

specifically, if a postcondition of query q j requires the head of some query qi for

satisfaction, the coordinating set cannot contain a grounding of q j unless both

q j’s existing constraints and qi’s constraints hold.

Unifier propagation is an iterative procedure that runs on each component

of the unifiability graph. As it runs, it performs two tasks. First, it discovers

the coordination structure, i.e. how the queries match with respect to satisfying

each other’s postconditions. As it does this, it updates the unifiers associated

with the graph nodes to reflect the current known constraints on valuations

that are required for this query to be answerable. Simultaneously, the algorithm

discovers and removes unanswerable queries from the graph.

The propagation procedure is shown in Algorithm 8. At a high level, it

pushes unifier information forward along edges. If a unifier does not exist for

some node qi then the CLEANUP function is invoked on qi, removing it and all its

descendants from the unifiability graph and the updates queue. The intuition is

that such a node corresponds to an unanswerable query, and any descendants

of this node represent queries that relied on a postcondition of qi for satisfac-
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Figure 3.5: A sample run of matching

tion, so are also unanswerable. Whenever the unifier of a node is updated, that

node is added to the updates queue so that the change can be propagated to the

node’s children. This propagation of unifier information continues until no new

information is propagated by any of the nodes and the updates queue becomes

empty.

The execution of the algorithm on our running example is shown in Figure

3.5. In Figure 3.5 (b), unifiers are computed for all nodes in the graph, and
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all nodes in the graph are added to the updates queue. In Figure 3.5 (c), the

first node, q1, is removed from the head of the queue and information about its

constraints is propagated to its successors q2 and q3. In 3.5 (d), q2 is removed

from the queue and information about its constraints is propagated to its child

q1. Since q1 is not currently in the queue, it is added at this point. In 3.5 (e), q3 is

removed from the queue and its constraints are propagated to its child q1. In 3.5

(f), q1 is processed again with its new unifier, and information about the update

is propagated to q2 and q3. In 3.5 (g) and 3.5 (h), the update is propagated to q1,

but since U(q1) is not changed by the operation, it is not added to the queue.

We now consider a variant of this example in which q3 has the postcondition

T(2) rather than T(z1). In this case, no choice of head atoms for q1 can simulta-

neously satisfy the postconditions of q2 and q3, so we expect that the matching

algorithm should fail. Indeed, immediately before Figure 3.5 (e), U(q2) will con-

tain the set {x3, 1} and U(q3) will contain the set {x3, 2}. The unifier of q1 will

be updated first to mgu(U(q1),U(q2)) and then to the unifier of that value with

mgu(U(q1),U(q2)). The last unification will require x3 to be equal to 1 and 2 si-

multaneously, and that unification will therefore fail. As expected, the matching

algorithm will consequently eliminate the node q1 and its children q2 and q3.

Complexity Analysis

Graph Construction We first analyze the complexity of constructing the unifia-

bility graph. Let H denote the total number of head atoms in all queries in Q, let

P denote the total number of postcondition atoms, and let κ denote the greatest

number of columns that appears in any single atom in Q. In the absence of any

indices, for each head atom h and postcondition atom p in Q, we must check

whether h unifies with p; each such check takes expected O(κ α(κ)) time. If h is
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fixed then we must perform this check with P different values of p. Since every

query in Q contains at least one postcondition atom, the time required to find

all postcondition atoms and perform this loop is expected O(P κ α(κ)). We must

perform this inner loop for H different values of h. Since each query in Q has at

least one head atom, finding all the head atoms in the input and iterating over

all of them takes expected O(P H κ α(κ)) time.

Unifier Propagation We now analyze the complexity of Algorithm 8. The

input is a connected component of the unifiability graph containing nodes Q′ ⊂

Q such that each variable appears in at most one query in Q′, as well as a unifier

for each node in the graph. Suppose that all queries in the input jointly contain

k free variables, and let w be the maximum number of postconditions of any

query in Q. Let P be the total number of postcondition atoms in every query in

the graph, and n the number of queries in Q′.

We add a node to the updates queue only at the very beginning of the algo-

rithm or when its unifier is updated by a call to the MGU function on line 5 of

the algorithm pseudocode. First suppose that k = 0, i.e. there are no variables in

the input. In this case, unification is trivial, unifiers are never changed, and the

whole algorithm runs in time proportional to the number of edges in the graph;

this is bounded above by O(P) time.

Now suppose that k > 0. If a unifier is updated by a call to the MGU function

then either the new unifier must contain a constant that the old unifier did not

contain or else two sets in the old unifier must be merged together and the total

number of sets in the unifier must decrease. This means that if all queries in the

input jointly contain k free variables then for each node child in Q′, the check on

line 6 can succeed at most O(k) times. If every node q in the input has indegree

at most w then each node can be added to the updates queue at most O(kw) times.
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It follows that lines 5-12 can be executed at most once O(kw2) for each node in

the graph. Each execution takes expected O(k · α(k)) time if we ignore the time

spent in the CLEANUP function on line 8, so the running time of the loop is

expected O(k2 w2 · α(k)). The total time spent in the CLEANUP function across

all calls is at worst linear in the number of nodes in the input. It follows that

the entire procedure runs in O(k2 w2 α(k) + n + P) time. Since every query in

the input contains at least one postcondition, this can be simplified to expected

O(k2 w2 α(k) + P) time.

Discussion

We note that at any given time, the unifier of a query node q represents the

weakest constraints on variables that must hold in order for there to be a coor-

dinating set of groundings for a subset Q′ ⊂ Q that contains exactly one ground-

ing for each query in Q′. A node is removed from the graph only when this

is known to be impossible, either because some of its postconditions can’t be

satisfied at all or because some subset of its postconditions can’t be mutually

satisfied by any variable assignment.

This is the best we can do without any knowledge of the records in the

database: the unifier of any query that remains in the system after the matching

algorithm halts can be satisfied for some valuation of the variables it contains.

This means that for each remaining query q there exists a database D, a set of

queries Q ⊂ Q′, and a coordinating set of groundings G, such that q ∈ Q and G

consists of exactly one grounding for each q′ ∈ Q.
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3.4.2 Constructing and evaluating the combined query

After the matching procedure finishes, we are left with a set of answerable

queries Q = {qi}i∈I , each associated with a unifier U(qi), such that Q is a sub-

set of the current component Q′ of Q. We compute a global unifier U for the

whole set of queries as mgu({U(qi)}). If such a U cannot be computed, evalua-

tion fails for Q′ and all the queries in Q′ are rejected. If U does exist then it can

be expressed as a conjunction of equality statements relating the variables and

constants involved; call this conjunction ϕU .

At this point, the evaluation algorithm creates a combined query using Q

and ϕU . Let Bi denote the body of query qi, and let Hi denote the conjunction of

its head atoms. Then the combined query q∗ is

∧
i

Hi D
∧

i

Bi ∧ ϕU

That is, the body of q∗ is the conjunction of all the bodies of the original queries,

together with equality atoms that encode the constraints in u. The head of q∗ is

the conjunction of the original query heads.

In our running example illustrated in Figure 3.5, all query nodes end up with

the same unifier after matching. This is

{{x1, y1}, {x2, z2}, {x3, z1, 1}}

The required most general unifier U is consequently also

{{x1, y1}, {x2, z2}, {x3, z1, 1}}

A suitable corresponding ϕU is

x1 = y1 ∧ x2 = z2 ∧ x3 = z1 ∧ x3 = 1

The combined query generated by the system is as follows:
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T(x3) ∧ R(y1) ∧ S(z2) D D1(x1, x2, x3) ∧ D2(y1) ∧ D3(z1, z2)

∧x1 = y1 ∧ x2 = z2 ∧ x3 = z1 ∧ x3 = 1

As this example makes clear, q∗ can be simplified making use of the informa-

tion in ϕU . Our example query is equivalent to the following query:

T(1) ∧ R(x1) ∧ S(x2) D D1(x1, x2, x3) ∧ D2(x1) ∧ D3(1, x2)

Once q∗ is constructed, it can be sent to the database for evaluation. Each

answer to q∗ is a valuation of the variables in q∗ that corresponds to a set of

fully grounded head atoms. Only one such valuation is necessary to answer

the entangled queries, so q∗ may be equipped with a LIMIT 1 clause. Once

an answer is available, the fully grounded head atoms can be used to generate

answers for the individual queries from Q in a straightforward manner.

3.5 Youtopia System

In this section, we describe the system that we built to provide end-to-end sup-

port for entangled queries. We also describe a real world travel booking appli-

cation that we designed and implemented to establish the usability of entangled

queries for coordination.

3.5.1 D3C Engine

Designing an entire system to provide end-to-end coordination support is a ma-

jor research challenge. For instance, all levels of the system must handle not just

coordination success, but coordination failure as well. Suppose Ron submits his
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query as in our first example, but Harry’s matching query never arrives; the

system needs a suitable mechanism for dealing with this, ultimately sending a

message to the transaction code that the query is not answerable. As another

example, suppose Ron and Harry do coordinate, but Ron’s transaction aborts

before he makes the booking. The coordination has created a dependency be-

tween their transactions which must be considered during recovery.

In [34], the authors argue that designing for D3C raises questions about the

very foundations of database system design. Coordination, by definition, re-

quires communication between user programs. As such, it is a breach of isola-

tion, which is a cornerstone of the transaction abstraction. If transactions are no

longer isolated, this has fundamental implications for the overall system archi-

tecture at all levels. A model that integrates entangled queries into transactions

is described in [23].

Figure 3.6 gives the outline of the portion of our system which is directly

involved in handling entangled queries. The design is closely tied to the life

cycle of the entangled queries, from the moment the query is generated until

the answers are returned.

Entangled queries can, in principle, be input by hand, but normally they are

generated by a front end web interface, just like regular (non-entangled) queries.

Once a query is generated, it is passed to a suitable layer for answering.

From the perspective of the application, the coordinated answering is an

asynchronous process. An individual query may not in general be answerable

until other, partner queries are available. The middleware layer provides to the

application an asynchronous query answering abstraction with callback func-

tionality. Such an abstraction is needed due to the misalignment between the

asynchronous query submission by the application code and the synchronous
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entangled query answering by the coordination module.

It is unrealistic for an entangled query to wait an arbitrary amount of time

for a coordination partner. To deal with this, the system has a notion of query

staleness; when a query becomes stale, it is removed from the list of pending

queries and its evaluation is considered to have failed. Any further handling of

the query is up to the programmer in application code. Staleness can be defined

in a variety of ways; a timeout mechanism or manual user intervention are two

possibilities.

Below the middleware layer, a dedicated module actually performs the co-

ordination. The structure of this module directly mirrors that of the algorithm

presented in Section 3.4. It receives a stream of queries and constructs the unifi-

ability graph using suitable indices over the queries. Subsequently, each com-

ponent of the graph can be processed by an independent server thread, which

performs the actual query matching and generates a combined query. This com-

bined query is then sent to the database for evaluation. The DB query opti-

mizer can apply traditional query optimization techniques in evaluating this

combined query. Once the coordination module computes answers to the in-

dividual entangled queries, these answers are returned back to the application

code.

At present, we have a full implementation of the coordination module. The

implementation consists of a server which can accept connections and queries

from a hundred clients. The evaluation algorithm can be executed periodically

in a set-at-a time fashion (after specific time intervals or after a fixed number

of queries). Alternately, it can be executed incrementally upon submission of

every query. On the arrival of a new query in the system, the unifiability graph

may be updated and only certain partitions may require updates. The incre-
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Figure 3.6: D3C Engine based on entangled queries

mental evaluation requires each partition to store the partial matching unifiers

and continues the matching algorithm from this state with the addition of a new

query. A parameter in our implementation allows us to switch between the two.

Section 3.6.2 discusses the impact of using each of these approaches.

The system is implemented in Java 1.6.0. The implementation uses JDBC to

connect to a MySQL database system (version 4.1.20).
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3.5.2 Real-World application

We implemented entangled queries in an actual travel Web site that allows users

to coordinate travel and hotel reservations with their Facebook friends. The ap-

plication itself follows a standard three-tier architecture. The graphical frontend

runs in a browser; it gives an interface to all the functionality provided by the

middle tier. At the middle tier, we have implemented application logic to han-

dle the standard functionality of a travel Web site such as searching for flights

and hotels, selecting specific flights and hotels, and to create and coordinate

new travel reservations based on the users list of friends that is populated using

the Facebook API. The application logic also contains an account view where a

user can see pending or confirmed reservations.

Coordinated travel is very simple using our application. In order for

Hermione to make joint travel bookings with Harry, the workflow is as follows:

1. Hermione logs into the system and is led to her travel booking page. She

can see a form to specify her travel criterion along with a list of Facebook

friends on the right panel (Figure 3.7a).

2. From the left panel, she chooses her route and dates of travel. She then

choose Harry in the right panel and her travel partner. On clicking submit,

she is led to the flight selection page.

3. On the flight selection page (Figure 3.7b), she either chooses a flight of her

choice, or asks the system to find a flight that fits her criterion.

4. On submission of her request, Hermione’s booking request is added to the

system (Figure 3.7c). She is given a request code along with a confirmation

that her request has been queued.
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Figure 3.7: Youtopia Social-Travel Website

5. Harry follows similar steps. If he chose Hermione as a coordination part-

ner and both their constraints are satisfied, the system issues a combined

SQL statement for both the users (Figure 3.7d).

6. Harry is given a confirmation along with seats alloted to both Hermione

and him. Hermione is also sent an email with this information.

The coordination, from the users perspective, is therefore very simple. The

users are not made aware of what goes on in the system. Also, at no point was

Hermione asked to email Harry her request id or any other details. The co-
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ordination was implicitly determined by their individual preferences and con-

straints.

This real world application helped us establish the ease of use of entangled

queries. It demonstrates the applicability of our approach along with its social

utility.

3.6 Experiments

This section outlines our experimental setup and presents results from an exper-

imental evaluation of our implementation of the query evaluation algorithm.

3.6.1 Experimental Setup

To evaluate the system, we use a simulated flight booking scenario in which

users want to coordinate their travel plans with their friends. We use the Slash-

dot social network data [41] to establish friendship relationships between users.

The graph has 82168 users and 102 airport destinations. We assign a “home-

town” airport to each of the users, ensuring as far as possible that that each user

has at least half his or her friends living in the same city.

The schema for our system is as follows:

Reserve(UserName, Destination)

Friends(UserName1, UserName2)

User(UserName, HomeTown)

In the rest of this section, we use R, F and U to denote the Reserve, Friends

and User tables respectively. Within this flight booking scenario, we test our
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system under various different coordination scenarios and with different work-

loads.

We run all experiments on an Intel Core-2 Duo E8500 3.16GHz processor

with 3.2GB of RAM; the reported values are averages over three runs. The stan-

dard deviation is less than 2% in each experiment.

3.6.2 Results

We present results from five sets of experiments. The first three are designed

to test the scalability of coordination in an increasingly complex set of scenar-

ios; the last two stress-test our query matching and safety check procedures.

All experiments use an incremental version of the algorithm unless specified

otherwise.

Two-way coordination
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Figure 3.8: Scalability on best-case and random workload
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The first experiment tests the scalability of coordinated query answering in

a basic scenario where pairs of friends want to coordinate on flights. The query

sets used consist of pairs of queries of the following form:

{R(x,JFK)} R(Harry,JFK) D

F(Harry, x) ∧ U(Harry, c) ∧ U(x, c)

{R(x,JFK)} R(Ron,JFK) D

F(Ron, x) ∧ U(Ron, c) ∧ U(x, c)

The intuition is that the above pair of queries is generated by Harry and

Ron who each want to fly to JFK with any of their friends. When generating

such query pairs, we ensure that Harry and Ron are friends according to the

social network structure, but we do not ensure that they live in the same city.

Enforcing only one of these two conditions in query generation allows us to

produce queries that have a realistic – not too small and not too large – chance
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to coordinate.

We vary the size of our query sets from five to one hundred thousand. In ad-

dition, to detect any side effects of our incremental query evaluation approach,

each run of the experiment is evaluated on a randomly permuted set of mutu-

ally coordinating pairs of queries. Figure 3.8 shows our results.

It is interesting to note that although the heads and postconditions of all

queries point to the same ANSWER relation, the performance of system is linear

in the number of queries. This is due to an artifact of our dataset in which

queries coordinate often and the number of “pending” queries in the system

does not grow with an increase in the number of queries.

We also test the effect of making the queries more specific. In particular, we

eliminate the variables from the postcondition and the head, so that the pairs

queries are now of the following form:

{R(Ron,JFK)} R(Harry,JFK) D

F(Harry,Ron) ∧ U(Harry, c) ∧ U(Ron, c)

{R(Harry,JFK)} R(Ron,JFK) D

F(Ron,Harry) ∧ U(Ron, c) ∧ U(Harry, c)

Earlier, a join was required in the body between F and U to ground the value

of x. However, with the complete specification of friends, this join is now elim-

inated and the grounding step is faster. This leads to a marginal increase in

performance, as shown in Figure 3.8.

Three-way coordination

The second experiments tests scalability in a slightly more complex scenario. We

now generate triples of queries, corresponding to triangles in the social network
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structure, of the following form:

{R(Ron,IAH)} R(Harry,IAH) D

F(Harry,Ron) ∧ U(Harry, c) ∧ U(Ron, c)

{R(Hermione,IAH)} R(Ron,IAH) D

F(Ron,Hermione) ∧ U(Ron, c) ∧ U(Hermione, c)

{R(Harry,IAH)} R(Hermione,IAH) D

F(Hermione,Harry) ∧ U(Hermione, c) ∧ U(Hermione, c)

We vary the size of the query set within the same parameters as before. As

show in Figure 3.8, we observe a quadratic behavior of evaluation time in the

number of queries. On profiling the results, we discover that the time to execute

the MySQL queries grows only linearly and is negligible compared to the query

matching time. We attribute the quadratic increase in time to complexity of

unifier propagation in the matching phase. In our dataset, for three queries to

match, the unifiers must propagate at least twice (as opposed to once when two

queries are to match). Also, unifier propagation takes place for every pair of

queries that have matched partially. For example, if the queries submitted by

Harry and Ron match partially, they must wait for Hermione’s query. Until

Hermione’s query arrives, Harry and Ron’s queries may repeatedly propagate

unifiers. However, despite the quadratic behavior of our system, the time to

execute a query even in such a complex scenario is under 2ms.

Increasing the number of postconditions

The next set of experiments investigates the performance impact of an increase

in the complexity of the coordination required. Specifically, we increase the
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number of postconditions per query, varying it from one to five. For each indi-

vidual experimental run, all queries have the same number of postconditions.

A sample set of three queries with two postconditions is given below.

{R(Harry,SBN) ∧ R(Ron,SBN)} R(Hermione,SBN) D

F(Hermione,Harry) ∧ F(Hermione,Ron)∧

U(Ron, c) ∧ U(Hermione, c) ∧ U(Harry, c)

{R(Hermione,SBN) ∧ R(Ron,SBN)} R(Harry,SBN) D

F(Harry,Hermione) ∧ F(Harry,Ron)∧

U(Ron, c) ∧ U(Harry, c) ∧ U(Hermione, c)

{R(Hermione,SBN) ∧ R(Harry,SBN)} R(Ron,SBN) D

F(Ron,Hermione) ∧ F(Ron,Harry)∧

U(Harry, c) ∧ U(Ron, c) ∧ U(Hermione, c)

This represents a scenario where Hermione wants to travel with both her

friends, Harry and Ron. Harry and Ron have analogous requirements. Note

that this is different from the three way coordination mentioned above; cliques

in the social graph are required for coordination, rather than just cycles. The in-

tent of the coordination is that they all travel together from the same city to the

same destination. Queries with a greater number of postconditions are gener-

ated in a similar fashion. Increasing the number of postconditions is associated

with an increase in the number of queries that must be matched for successful

coordination.

Figure 3.9 shows two components of the result obtained by executing 50000

queries. The first component corresponds to the time taken by the algorithm

to find matching sets of queries, and the second part corresponds to the time
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taken by the MySQL database for query evaluation. We observe that both the

matching time and the query execution time increase linearly with increasing

number of postconditions, with the query execution time having a larger slope

because of the increase in join size for the MySQL queries.

Stress-testing the query matching
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Figure 3.10: Scalability when queries do not match

Our next sets of experiments are designed to test the performance of query

matching for workloads where little coordination can take place because most

queries are unanswerable.

We first test this contingency using a query set generated to ensure that no

query has a postcondition unifying with the head of another query. In this case,

the unifiability graph does not have any edges; however, with the arrival of each

query, index looks are performed to check for new edges. The unifier propaga-

tion phase of the algorithm is never initiated because postcondition and head

atoms never unify. As expected the “no coordination, no unification” curve in
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Figure 3.10 is near-linear.

We also run experiments on a workload in which queries frequently have

coordination partners but the system is never able to generate a single combined

query in the evaluation phase. This process requires both graph construction

and unifier propagation, and ideally the unifier propagation, even for queries

without variables, should dominate the running time. If the matching algorithm

was run after every query, one would initially expect the algorithm’s running

time to be at least quadratic.

As the “usual partitions” line in Figure 3.10 shows, the query evaluation

time is nearly linear even though there is an increase in the number of pending

queries (as no matching takes place) and many queries unify. In other words,

the current set of queries forms a long chain in the unifiability graph but does

not form cycles. After more careful analysis, we observe that the clustering in

the social network graph restricts the size of partitions of our unifiability graph

to a small number. This explains the high throughput in the experiment on the
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query set with high unification but no matching.

In order to stress test our system, we identify a big cluster in the social net-

work graph and run experiments on this single large cluster. This change results

in significant increase in the overall running time of our experiment, often not

running to completion. We therefore run a set-at-a-time evaluation of such mas-

sively unifying partitions instead. Figure 3.10 shows the performance of such a

process. The time to execute the queries is a quadratic curve. We observe that

with increasing number of queries, the number of people trying to coordinate

increases. For all of these queries, a big chain of potential matches is formed. For

example, consider the first query. The unifier associated with this query must

propagate; however, in every iteration of the system, the unifier propagates to

only one more query. After iterating over every query for this particular uni-

fier, the system determines that the matching fails. This repeated iteration of

the order of the number of queries leads to the quadratic behavior that we ob-

serve. However, we conjecture that the execution time is still within reasonable

bounds, given that thousands of people are trying to coordinate together. We

therefore establish that for extremely huge coordinating groups, evaluating the

queries set-at-a-time is definitely a better approach. By doing so, we wait till all

coordination partners arrive before we actually run the algorithm.

Stress-testing the safety check

In the final experiment, we test the performance of the safety check. We load

the system with twenty thousand queries that are unable to coordinate. Then,

we add large sets of queries to the system. Such sets contain queries that will

fail the safety check with respect to the queries already present in the system.

We vary the size of such sets of queries from five to one hundred thousand. The
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results are shown in Figure 3.11. It clearly shows that the safety check does not

add significant overhead to the system.

Discussion

In designing our experiments, our goal was not to design a full benchmark for

entangled queries, but to understand whether this functionality is viable for use

in a real-world system. As our results show, the algorithm is efficient in remov-

ing queries that are unable to be matched with others and queries that cause

safety violations. The queries that are matched can be evaluated efficiently. The

overall evaluation algorithm scales to workloads which are realistically sized

with respect to today’s social networks.

3.7 Future work

Notwithstanding the tractability bounds imposed by Theorem 3.2.3, a more ex-

pressive language for entangled queries would have many practical advan-

tages. In this section, we present several concrete language extensions that

would greatly enhance the usefulness of entangled queries. The syntax for en-

tangled queries could be extended with features such as disjunction, union and

aggregation in WHERE clauses. Consider a database that contains three tables:

a table Parties with schema (pid, pdate), a table Friend with schema

(name1, name2), and a relation Attendance with schema (pid, name).

Suppose a user named Harry wants to attend a party on Friday subject to the

constraint that more than five of his friends attend this same party. This could

be expressed as follows using aggregation:

SELECT party_id, ‘Harry’ INTO ANSWER Attendance
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WHERE

party_id IN (SELECT pid

FROM Parties

WHERE pdate=‘Friday’)

AND

(SELECT COUNT(*)

FROM ANSWER Attendance A, Friend F

WHERE party_id = A.pid AND

A.name = F.name2 AND

F.name1 = ‘Harry’) > 5

CHOOSE 1

“Soft” preferences, another possible extension of entangled queries, would

allow coordination constraints to be relaxed when full coordination is diffi-

cult. For example, if Harry and Ron have trouble obtaining matching travel

itineraries, they could instead request that their respective travel dates be as

close together as possible.

It is also desirable to allow users to specify a ranking function on preferred

query groundings. In our travel example, users who are coordinating on travel

dates may prefer some dates to others. Disregarding their preferences may be

acceptable if satisfying them precludes coordination, but the evaluation algo-

rithm should favor coordinating sets G′ that satisfy the users’ preferences.

Finally, many applications could benefit from extended semantics that allow

a query to return more than one answer tuple. Such semantics might allow

users to request that all groundings of a query be included in the coordinating

set, or that as many as possible be included up to some limit k. For instance, in a

coordination-aware course enrollment system, students might request that they
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be enrolled in the same courses as their friends while the registrar ensures that

no student enrolls in more than four courses.

Developing these and other extensions fully and designing suitable seman-

tics and evaluation methods for them is ongoing work.
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CHAPTER 4

ENTANGLED TRANSACTIONS

4.1 Introduction

Empty-handed I entered the world

Barefoot I leave it.

My coming, my going –

Two simple happenings

That got entangled. — Kozan Ichikyo.

In twentieth century data processing practice, programs and processes were

largely solitary entities. Each operated individually to achieve a given task.

Physical systems needed to handle multiple simultaneous processes, so the re-

search community developed protection mechanisms to prevent interference. In

the database community, this work culminated in the concept of a transaction.

Such a classical transaction represents a discrete unit of data processing work as

reflected in the ACID properties of atomicity, consistency, isolation, and dura-

bility: it provides the conceptual properties of being executed completely or not

at all, of preserving database consistency as it runs, of running without interfer-

ence from other transactions, and if committing, making its changes persistent.

However, in recent years data processing programs have become interde-

pendent by design. For example, web services frequently interact and coordi-

nate to carry out tasks spanning enterprises [13]. Coordination is now needed in

domains ranging from course enrollment [36] and travel planning [22] to online

social games such as Farmville, where gameplay is fundamentally collaborative.

The coordination strategies used in these games are similar to those found in

more “serious” application domains such as managing charity donations with
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gift matching [11] and auctions [45]. With Farmville now attracting over fifteen

million users each day, data-driven coordination has become big business, and

it is here to stay.

We recently started to take first steps towards the problem of supporting

data-driven coordination [35, 22]. We introduced entangled queries, a mechanism

that admits a limited form of interaction between database queries by automat-

ically coordinating — not on events or conditions, but on the choice of common

values between the queries. However, most real-world data management appli-

cations that involve coordination require not just queries, but a transaction-like

abstraction that covers larger units of work. As an example, assume that two

friends, Mickey and Minnie, wish to travel to Los Angeles on the same flight

and stay at the same hotel. Their arrival date is flexible, but their departure date

is fixed. They start by jointly selecting a suitable flight. Once they know the

flight number, and consequently their date of arrival in Los Angeles, they will

try to make joint hotel reservations. With existing mechanisms, they can use en-

tangled queries to coordinate on the choice of the flight and then on their choice

of hotel. These queries, however, need to be embedded within a larger code unit

that Mickey and Minnie separately execute and populate with their constraints

such as the class of the hotel or airline restrictions. Once both their individual

entangled transactions have been submitted, the system needs to match them up,

execute the associated logic, and guarantee “transaction-like” semantics for this

execution.

Research Challenges. What are these entangled transactions? How do they

relate to entangled queries and to classical transactions? First, in order to define

what we even mean by entangled transactions we need a clean semantic model

which must capture both the fact that each entangled transaction represents a
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logical unit of work on its own, and that this work is dependent on input from

other transactions in the system. Furthermore, the input from other transactions

is not arbitrary; it is restricted to what can be achieved with entangled queries.

This means entangled transactions have different semantics than nested transac-

tions [44] and Sagas [19], where arbitrary communication is permitted between

the components of a single unit of execution, or cooperative transaction groups

[50], where such communication is regulated through complex custom policies.

They are also different from split-transactions [54] as the components are de-

fined statically and matched into a larger execution unit at runtime, and not the

other way around.

The entangled transaction model must extend to transactions that contain

more than one entangled query. Indeed, Mickey and Minnie’s travel planning

example requires entangled transactions with several entangled queries: the

number of nights for the hotel reservation depends on the arrival date, which is

not known until they have chosen a flight. This means Mickey and Minnie need

to use separate entangled queries to coordinate on the flight and the hotel.

The semantics of classical transactions is closely tied to the ACID properties;

it is appropriate to understand what analogues of these can be expected to hold

for entangled transactions. For entangled transactions, isolation is clearly re-

laxed, but we also do not want to throw out the baby with the bathwater – that

is, completely give up on the advantages and convenience of isolation between

transactions. Our need to relax isolation is motivated by the novel semantics of

entangled transactions, not by performance considerations as with relaxations

of classical isolation [1]. Therefore, it appears isolation should be relaxed only

“as far as necessary” to permit controlled communication through entangled

queries.
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Formalizing the above intuition is an interesting problem in its own right,

but it is not sufficient for a full treatment of entangled isolation. It is also neces-

sary to deal with the fact that when entangled transactions run, they see more of

the system’s state than classical transactions do. A transaction that receives an

answer to an entangled query becomes aware of the existence of another entan-

gled transaction in the system. Since the ultimate goal of isolation is to ensure

that each transaction sees a consistent system state during execution, entangled

isolation requires a consistent view of both the database and the concurrent pro-

cesses.

Defining consistency preservation for entangled transactions is nontrivial.

Intuitively, Mickey and Minnie’s transactions still appear to be coherent units of

work; neither one of them should individually introduce inconsistencies in the

database if implemented and executed correctly. However, neither can execute

by itself, so formalizing this intuition is not straightforward.

Even once a semantic model of entangled transactions is in place and we un-

derstand how the ACID properties extend to them, the details of a full execution

model are far from obvious. Returning to Mickey and Minnie, suppose Min-

nie’s transaction aborts after the two friends have chosen and booked a flight;

the corrective action to be taken is not immediately clear. Also, it is likely that

the two transactions may not arrive in the system simultaneously; if one of them

has to wait for the other, it is important to ensure usability of the system by other

transactions in the interim. Designing an execution model to handle issues like

the above in a principled way raises many research questions.

Last but not least, entangled queries are not useful until they are supported

in a real system that can be deployed in practice. Designing the architecture of

such a system and combining it with existing DBMS functionality presents deep
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systems challenges.

Our contributions. In this paper, we lead the reader into the new world of

entanglement. First, we review our building block of entangled queries (Section

4.2). We then introduce a model of entangled transactions that comes with ana-

logues of the classical ACID properties. Our model permits trading off isolation

to achieve greater concurrency, albeit at the cost of some loss of consistency, re-

sulting in the definition of isolation levels for entangled transactions (Section

4.3). Second, we discuss execution models for entangled transactions. We out-

line the major design issues involved and present a specific model that we found

especially suitable for our motivating application scenarios (Section 4.5). Third,

we outline the challenges that arise when implementing a system supporting

entangled transactions. We present the architecture of our prototype implemen-

tation of entangled transactions within the Youtopia system (Section 4.6). The

prototype is implemented at the middle tier, and as such can be used with any

existing DBMS. Experiments with our prototype show that the overheads as-

sociated with supporting entangled transactions are acceptable for real-world

use.

4.2 Entangled queries

Entangled queries are expressed in extended SQL as follows:

SELECT select_expr

INTO ANSWER tbl_name [, ANSWER tbl_name] ...

[WHERE where_answer_condition]

CHOOSE 1

The WHERE clause is a standard condition clause that may refer to both

database and ANSWER relations. The ANSWER relations are not database tables;
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they serve only as names that are shared among queries and permit entangle-

ment. As in our previous work [22], the WHERE-clause is restricted to contain

only select-project-join queries.

To continue with our example from the introduction, suppose Mickey wants

to travel to Los Angeles on the same flight as Minnie. He can express this with

the entangled query below.

SELECT ‘Mickey’, fno, fdate INTO ANSWER Reservation

WHERE fno, fdate IN

(SELECT fno, fdate FROM Flights

WHERE dest=‘LA’)

AND (‘Minnie’, fno, fdate) IN ANSWER Reservation

CHOOSE 1

The name Reservation refers to a conceptual relation which collects the

answers to all the queries relating to flight bookings. The SELECT clause spec-

ifies Mickey’s own expected answer, or, in other words, his contribution to the

answer relation Reservation. This is a tuple containing the constant Mickey,

the flight number and the date of the booking. The existence of Mickey’s answer,

however, is conditional on two requirements, which are given in the WHERE

clause. First, the flight’s destination must be Los Angeles. Second, the answer

relation must also contain a tuple with the same flight number and date but

Minnie as the passenger name. The CHOOSE 1 at the end of the query speci-

fies that the system should choose only one flight, even if more than one might

be suitable.

Now suppose Minnie actually wants to fly with Mickey, but she wants to fly

only on United. Her query is as follows:

SELECT ’Minnie’, fno, fdate INTO ANSWER Reservation
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Flights Airlines

fno fdate dest
122 May 3 LA
123 May 4 LA
124 May 3 LA
235 May 5 Paris

fno airline
122 United
123 United
124 USAir
235 Delta

(a)

Mickey’s query Minnie’s query

answer tuple: R(‘Mickey’, 122,May 3) R(‘Minnie’, 122,May 3)

answer relation
constraint: R(‘Minnie’, 122,May 3) R(‘Mickey’, 122,May 3)

satisfies

satisfies

(b)

1

Figure 4.1: (a) Flight database (b) Mutual constraint satisfaction

WHERE fno, fdate IN

(SELECT fno, fdate

FROM Flights F, Airlines A WHERE

F.dest=‘LA’ and F.fno = A.fno

AND A.airline = ‘United’ )

AND (‘Mickey’, fno, fdate) IN ANSWER Reservation

CHOOSE 1

When the system receives the two queries, it answers both of them simulta-

neously in a way that ensures a coordinated choice of flight. If the database is

as shown in Figure 4.1 (a), the system nondeterministically chooses either flight

122 or 123 and returns appropriate answer tuples. Figure 4.1 (b) shows the mu-

tual constraint satisfaction that takes place in answering for 122; the relation

name Reservation is abbreviated as R. Neither Mickey nor Minnie sees the

other’s answer, but each of them is guaranteed that all answer constraints have

been met.
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After Mickey and Minnie receive answers to their queries, each of them can

book a seat on the flight and date specified. The above queries are simplified; in

practice, they would perform more work such as verification of seat availability.

Section 3.2 gives an overview of the semantics of entangled queries; for more

details, see our previous work [22]. The semantics makes use of the notion of a

grounding for each entangled query. To compute a grounding essentially means

to evaluate of the portion of the WHERE clause which does not refer to an ANSWER

relation. This identifies the set of acceptable answers for each individual query;

for Minnie’s query, for example, it would identify that only answers involving

flights 122 or 123 are suitable. Answering a set of entangled queries involves

choosing an acceptable answer for each individual query such that the corre-

sponding individual answers all satisfy the appropriate constraints.

4.3 Entangled Transactions

In this section, we introduce our model for entangled transactions and discuss

the new meaning of the ACID properties in the presence of entanglement.

4.3.1 Syntax and Semantics

Entangled transactions have the following syntax.

BEGIN TRANSACTION [WITH TIMEOUT duration]

[SQL standard syntax | entangled_query | ROLLBACK]*

entangled_query

[SQL standard syntax | entangled_query | ROLLBACK]*

COMMIT
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BEGIN TRANSACTION WITH TIMEOUT 2 DAYS;

SELECT ‘Mickey’, fno, fdate AS @ArrivalDay
INTO ANSWER FlightRes
WHERE fno, date IN

(SELECT fno, fdate FROM Flights
WHERE dest=‘LA’)

AND (‘Minnie’, fno, fdate) IN ANSWER FlightRes
CHOOSE 1;

-- (Code to perform flight booking omitted)

SET @StayLength = ‘2011-05-06’ - @ArrivalDay;

SELECT ‘Mickey’, hid, @ArrivalDay, @StayLength
INTO ANSWER HotelRes
WHERE hid IN

(SELECT hid FROM Hotels
WHERE location=‘LA’)

AND (‘Minnie’, hid, @ArrivalDay, @StayLength) IN
ANSWER HotelRes
CHOOSE 1;

-- (Code to perform hotel booking omitted)

COMMIT;
Figure 4.2: Example Entangled Transaction

Figure 4.2 shows a transaction that Mickey might run to coordinate with

Minnie on a flight and a hotel in Los Angeles, as discussed in the introduction.

The table Hotels contains information about hotels, including a hotel id (hid)

and location attribute. FlightRes and HotelRes are the answer relations for

flight and hotel booking coordination, respectively. HotelRes has attributes

for customer name, hotel id, arrival date, and number of nights.

An entangled transaction is specified by the code enclosed within BEGIN

TRANSACTION and COMMIT. In addition to the functionality offered by an ordi-

nary transaction, an entangled transaction also contains one or more entangled

queries. Calls to evaluate an entangled query are blocking: the transaction does
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not proceed until the entangled query receives an answer. The programmer

may directly bind the values returned by an entangled query to host variables

by specifying AS @varname next to the appropriate value in the query; this can

be seen in the example above with @ArrivalDay.

Because of the blocking calls to evaluate entangled queries, we associate a

timeout parameter with each entangled transaction. This parameter limits the

maximum time that this transaction may “wait” in the system for its entangle-

ment partner(s). If a particular entangled query within the transaction is unable

to succeed before the timeout expires, then the entire transaction is unable to

complete. An error is thrown and must be handled by the application code. En-

tangled query failure is a relatively complex phenomenon that can happen for

several reasons, not just the absence of a partner. Section 3.2 in the Appendix

contains a more in-depth discussion of this issue and how it impacts transaction

execution.

From a programmer’s perspective, entangled queries have an additional ad-

vantage beyond allowing information exchange: They provide explicit synchro-

nization points between transactions. This can be useful if the programmer

knows the code of other transactions in the system. Once an entangled query

is answered, a transaction can assume that all entanglement partners have exe-

cuted the code preceding their corresponding entangled queries. For instance, if

Minnie manages to coordinate with Mickey’s transaction on a hotel, she knows

that he has already booked his flight.

4.3.2 Consistency

We now present extensions of the ACID properties to entangled transactions.

Consistency and isolation are particularly affected by entanglement, so we start

105



by treating each of them in turn.

Classically, consistency is an abstract property of databases which transac-

tions preserve by the following assumption:

Assumption 4.3.1 (Consistency). Every transaction, if executed by itself on an ini-

tially consistent database, will produce another consistent database.

The motivation behind this assumption is that an individual transaction is

a logical and self-contained unit of work. A correct implementation of such

a transaction will never deliberately create data inconsistencies, except perhaps

temporarily in the middle of its execution. The only time consistency of the final

database is not guaranteed is if the initial database was inconsistent as well.

Assumption 4.3.1 is used to infer global consistency guarantees for the exe-

cution of a set of transactions. Suppose the permissible concurrent executions

are constrained in such a way that every individual transaction sees (i.e. reads) a

consistent version of the database as it runs. Then, the above assumption allows

us to infer that any set of concurrent transactions, run on an initially consistent

database, will produce another consistent database.

To formulate an analogous guarantee for entangled transactions, we need an

equivalent of Assumption 4.3.1. The key is deciding what constitutes a logical

and self-contained unit of work; this is non-trivial for an entangled transaction

as it cannot execute by itself.

Three candidates for units of work are individual entangled transactions,

groups of transactions that entangle during execution, and non-entangled por-

tions of individual entangled transactions. With respect to the example shown

in Figure 4.2, the first option would correspond to Mickey’s transaction, the sec-

ond to Mickey and Minnie’s transactions, and the third to the two non-entangled

code segments that are executed between entangled queries. The first option
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maintains the closest correspondence between entangled transactions and clas-

sical transactions; it is the one we use in this paper, and we leave the others as

future work.

It is not obvious what it means for an individual entangled transaction to

constitute a unit of work, given that a transaction like the one in Figure 4.2

is unable to run and complete by itself. However, intuitively, the only infor-

mation this transaction needs “from the outside” is answers to the two entan-

gled queries so that it knows which flight and which hotel to book. As long

as Mickey’s transaction is executed in the system alongside some process that

provides this information, it will be able to complete correctly. This other pro-

cess could be Minnie’s transaction, but it could also in principle be a “query

answering oracle” whose only functionality is to create Mickey’s answer tuples.

We formalize the notion of an entangled query oracle as follows.

Definition 4.3.2 (Entangled Query Oracle). An entangled query oracle O is a process

that executes alongside an entangled transaction t. Whenever t poses an entangled

query, the oracle generates an answer and returns it to t. The oracle has no direct effect

on the database’s state, i.e. it performs no writes.

The above definition deliberately does not constrain the kinds of answers

that the oracle may supply to t. However, these answers should clearly simulate

those received in true entanglement.

Definition 4.3.3 (Valid oracle answer). Suppose a transaction t executes with an

oracle O and poses an entangled query q at a time when the state of the database is D.

An answer to q returned by the oracle is valid if it directly corresponds to a grounding

of q on D.

Definition 4.3.4 (Valid oracle execution). Suppose a transaction executes alongside
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an oracle O. If the oracle returns a valid answer to each entangled query, the entire

execution is valid.

This allows us to formulate the following consistency assumption for entan-

gled transactions.

Assumption 4.3.5 (Oracle Consistency). Suppose an entangled transaction executes

by itself on an initially consistent database, using an entangled query oracle to obtain

answers to the entangled queries it poses, and suppose the execution is valid. Then the

execution will produce another consistent database.

This assumption is close in spirit to Assumption 4.3.1. It states that an en-

tangled transaction will produce consistent “output” – i.e. a set of database

writes that together do not violate consistency – as long as it is presented with

consistent “input” – i.e. a consistent view of the data and valid answers to its

entangled queries. This assumption holds for Mickey’s transaction and is likely

to hold for typical transactions in most realistic settings.

As with classical transactions, Assumption 4.3.5 can be used to infer a con-

sistency guarantee for the execution of a set of entangled transactions. To this

end, we again need to constrain the permissible concurrent executions so that

each transaction is guaranteed to receive consistent “input”. That is, we need

to define isolation for entangled transactions, and it is to this issue that we turn

next.

4.3.3 Isolation

Classical isolation is motivated by the need to provide each transaction with

a consistent view of the database as it runs. As discussed, this together with

108



Assumption 4.3.1 guarantees that the final database produced by a set of con-

current transactions is consistent.

An elegant way to define classical isolation is in terms of serializability, i.e.

equivalence of an execution schedule to a serial execution schedule with the

same transactions. In a serial schedule, Assumption 4.3.1 guarantees that each

transaction does indeed see a consistent view of the database, so serial execution

is a suitable gold standard for consistency. Equivalently, classical isolation can

be defined as the avoidance of certain execution anomalies such as dirty reads

and unrepeatable reads [1].

For entangled transactions, serializability is not directly applicable. How-

ever, we can use our entangled query oracles to define oracle-serializability, that

is, equivalence to a schedule where the entangled transactions execute serially

alongside an oracle. We can also formulate an anomaly based definition of isola-

tion based on the classical anomalies and some new entanglement-related ones.

We have developed both an anomaly based and an oracle-serializability

based definition of entangled isolation and proved a theorem that relates them

to each other. Due to space constraints, we give only a high-level overview of

each of these contributions here; the full formal treatment is found in the Ap-

pendix, Section 4.4.

Anomaly-based definition

We first outline our anomaly-based definition of entangled isolation. Anomalies

are pathological phenomena where a transaction observes an inconsistent view

of the system state as it runs. If no such anomalies occur during execution, then

by Assumption 4.3.5, we know that the final database produced after the exe-

cution of a set of entangled transactions is consistent. We begin by introducing
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Figure 4.3: (a) Widowed transaction (b) Unrepeatable quasi-read

the anomalies which are unique to entangled transactions. Classical anomalies

such as dirty reads and unrepeatable reads can also happen in the entangled

setting and must be avoided.

Widowed transactions To execute correctly and preserve consistency, entan-

gled transactions need more than just a consistent view of the database. They

need a consistent view of the entire system state, insofar as they have access to it.

For classical transactions, the only accessible system state is the database. How-

ever, an entangled transaction t that has received an answer to an entangled

query knows something else: it knows that there is another process running

alongside it. If this other process subsequently aborts, t’s view of the system

may become inconsistent.

Consider for example the scenario in Figure 4.3 a), where Mickey runs the

transaction in Figure 4.2 and Minnie runs a symmetric transaction containing

the query from Section 4.2. The transactions successfully entangle on both the

flight and hotel queries. However, while performing the hotel booking, Min-

nie’s transaction aborts. Mickey’s transaction may still in principle be able to

complete its hotel booking; however, Mickey would be booking a room based
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on the assumption that Minnie is traveling with him, and this may no longer be

true. Mickey’s transaction is widowed due to the abort of its entanglement part-

ner. The widowed transaction anomaly is our first isolation anomaly which is

unique to the entangled setting.

The additional system state visible to entangled transactions can be made

explicit using the ANSWER relations. For simplicity, assume there is just one

such relation. The transactions perform operations on this relation during en-

tangled query answering. The answering process starts with a set of simultane-

ous writes by all transactions to the ANSWER relation – each transaction writes its

corresponding answer tuple. Next, each transaction receives a guarantee that its

partner’s answer tuple is in the ANSWER relation – that is, the transaction per-

forms an implicit read on the ANSWER relation. The reads are again performed

simultaneously by all transactions.

The above discussion makes it clear why widowed transactions are a prob-

lem: two transactions that entangle perform a dirty read of each other’s writes

to the ANSWER relation. If one later aborts, the other’s view of the ANSWER rela-

tion becomes inconsistent.

Unrepeatable quasi-reads The second new class of isolation anomaly is as-

sociated with the entangled query answering process itself, or more precisely

with the computation of groundings for the queries. As explained in Section 4.2,

the evaluation of a set of entangled queries conceptually begins by grounding

each query. The actual evaluation algorithm does not need to operate in this

way, but groundings are a useful tool for analysis. A grounding is a read on the

database that corresponds to the portion of the WHERE clause of an entangled

query that does not refer to any ANSWER relation. Two queries that entangle

may ground on the same data; for example, Mickey and Minnie’s flight entan-
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gled queries both ground on the Flights table by selecting all flights to Los

Angeles.

If groundings are not handled carefully, anomalies can occur due to interfer-

ence. To see an example of this, start with Mickey and Minnie’s queries from

Section 4.2 and consider the execution schedule shown in Figure 4.3 b). Minnie’s

query grounds on both Flights and Airlines, whereas Mickey’s grounds

only on Flights. Mickey receives flight number 122 as an answer. He decides

to check which flights are operated by United, to gain a better understanding of

the options from which his answer was chosen. However, between the time that

Mickey gets the entangled query answer and the time he reads Airlines him-

self, Donald adds a new flight with number 125 operated by United. Clearly

this creates a problem for Mickey. Mickey does not perform a classical unre-

peatable read, because he only reads Airlines once. The key to understand-

ing this anomaly is that Minnie has read the same table prior to entanglement;

intuitively, there has been some information flow from the Airlines table to

Mickey’s transaction during the answering of his entangled query. His subse-

quent explicit read of Airlines therefore shows him information that is incon-

sistent with his prior knowledge of this relation.

This and other similar anomalies can be formalized using the notion of a

quasi-read, which models the information flow that occurs through entangled

query answering. In our example, we say that Minnie’s grounding read on

Airlines was also a quasi-read by Mickey’s transaction on the same table.

It is now clear that Mickey has indeed performed an unrepeatable read on

Airlines: a quasi-read before Donald’s write and a normal read afterwards.

Consequently, we introduce unrepeatable quasi-reads as the second class of

anomalies which is unique to entangled transactions. This includes all anoma-
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lies involving two reads on the same object by the same transaction, at least one

of which is a quasi-read, and where the object changes value between the reads.

Entangled isolation Our anomaly-based definition of entangled isolation

prohibits widowed transactions and unrepeatable quasi-reads, as well as all

classical isolation anomalies; that is, an execution schedule is entangled-isolated

if it exhibits none of these anomalies. The definition is presented formally in the

Appendix, Section 4.4.2; it uses the notion of a conflict graph which tracks op-

eration conflicts between transactions to exclude both the classical anomalies

and unrepeatable quasi-reads. As in the classical case, it is possible to relax this

definition to admit lower isolation levels by permitting a specific subset of the

above anomalies to occur.

Oracle-serializability based definition

The key idea behind oracle-serializability is to compare a given execution sched-

ule to a schedule where the same entangled transactions are executed serially

alongside a suitable query oracle. The oracle answers need to be consistent

across transactions; if Mickey’s transaction executes first and receives 122 as the

answer to its flight query, Minnie’s transaction should also receive 122 as an

answer to the corresponding query when it executes later.

As explained in Section 4.4.3 in the Appendix, the oracle is constructed in

a custom way for each schedule σ. It essentially “stores” the entangled query

answers that each transaction received inσ and returns them verbatim at the ap-

propriate point during serial execution, whether or not these answers are valid

(as per Definition 4.3.3).

We define a schedule σ to be oracle-serializable if there is some serial order

of the transactions in σ for which execution with the above oracle is valid and
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yields the same final database as σ when run on the same starting database.

This definition is the entangled equivalent of classical final-state serializability.

The following theorem is our main result and relates both of our definitions

of isolation. It is proved in the Appendix, Section 4.4.4.

Theorem 4.3.6. Any schedule that is entangled-isolated is also oracle-serializable.

As expected, the serialization order for the oracle execution must be consis-

tent with the conflict graph.

Enforcing Isolation

To enforce isolation for entangled transactions, a system must prevent widowed

transactions and unrepeatable quasi-reads, in addition to the classical isolation

anomalies. Widowed transactions can be avoided by enforcing group commits:

if two transactions entangle, both must either commit or abort. This pairwise re-

quirement induces a requirement on groups of transactions that have entangled

with each other directly or transitively: all transactions in such a group must

either commit or abort. As for repeatability of quasi-reads, it can be enforced

for example using an appropriate locking protocol. In a system that uses Strict

2PL, Donald’s write in Figure 4.3 b) would not have been possible, as Minnie’s

transaction would have held a read lock on the Airlines table until commit.

4.3.4 Atomicity and Durability

Because we have identified individual entangled transactions as our basic unit

of work in the system, we can define atomicity and durability based on their

classical equivalents. For atomicity, each entangled transaction must execute to

completion or be rolled back. For durability, if an entangled transaction com-

mits, its database writes must be persistent despite any system failures.
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The above are the minimal atomicity and durability requirements which the

system must enforce at all times. Stronger guarantees are sometimes possible.

For example, at isolation levels that disallow widowed transactions, all groups of

transactions that entangle together are guaranteed to execute atomically. More-

over, once a transaction commits, both its changes and the changes of all its

entanglement partners are durable.

4.4 Formalizing isolation

In this section, we formalize the presentation of entangled isolation from Sec-

tion 4.3.3. Our presentation does not handle predicate reads explicitly, nor does

it deal with schedules produced in systems using explicit data versioning. The

entire discussion that follows can be extended to handle predicate reads with

suitable additional formalism [1]. We have chosen not to present this extension

here as it requires significant additional notation and is orthogonal to our main

focus, which is the unique meaning of isolation for entangled transactions and

specifically the differences between entangled and classical isolation. Multiver-

sion settings come with their own unique challenges – as in the case of classical

transactions – and we leave their treatment as future work.

4.4.1 Transaction schedules

Operations A schedule for entangled transactions is very similar to a sched-

ule for ordinary transactions and contains the familiar read, write, abort and

commit operations, denoted R, W, A and C respectively. The only two differ-

ences pertain to entangled query processing: certain reads are distinguished as

grounding reads and the schedules make use of an additional operation – entan-
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glement.

Entangled query processing begins by grounding the queries. This can

be done individually or through a combined query as in [22]. To remain

implementation-independent, we model the more general case where each

query grounds separately. Each grounding is a set of reads; we distinguish

these as grounding reads and denote them as RG rather than just R. Techni-

cally, the grounding reads are not performed by the transaction itself, but by

the system on behalf of the transaction. Nonetheless, they clearly represent in-

formation flow from the database into the transaction; we therefore associate

grounding reads with the transaction posing the entangled query, rather than

with a special “system” process.

The next step in entangled query evaluation is to find a set of groundings

that satisfy each other’s postconditions, i.e. to construct the answer relation. We

model this with an explicit entanglement operation, denoted E. We assign each

entanglement operation a unique identifier, and associate each entanglement

operation with the set of identifiers of the transactions that receive answers,

denoted as Tk, where k is the identifier of the entanglement operation. To intro-

duce notation by example, if transactions 1 and 3 participate in entanglement

operation 7, this is denoted as E7
1,3

Validity constraints An entangled transaction execution schedule is a se-

quence of read, write, entangle, commit and abort operations. Obviously it is

possible to construct sequences of such operations that do not correspond to any

possible real transaction execution. This means that we need a notion of valid

schedules – sequences of operations that are constrained to match the semantics

of entangled transactions. The constraints involved are straightforward; how-

ever, for completeness we present them next.
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First, for every transaction i, a valid schedule may contain at most one of

{Ai,Ci}. Indeed, we find it helpful to require that it contain exactly one of these,

thus ensuring we work with complete schedules (histories) only. Second, for ev-

ery transaction i that aborts or commits, the abort or commit operation must be

the last operation by i. Third, if a transaction i performs a grounding read RG
i (x)

on some object x, then the schedule must contain either a subsequent entan-

glement operation involving i or a subsequent Ai. Fourth, consider the interval

between a grounding read by transaction i and the next entanglement or abort

operation by i that follows it (such an operation must exist by the previous re-

quirement). During that interval, i may not perform any operations other than

additional grounding reads. This is because entangled query evaluation calls

are blocking: i cannot proceed with subsequent reads or writes until entangle-

ment occurs and it receives answers.

Schedules We can now formally define (valid) schedules for entangled

transactions.

Definition 4.4.1 (Schedules). A schedule is a sequence of the following operations:

read, write, abort, commit, and entangle, where each operation is tagged with one or

more transaction identifiers, and the sequence satisfies the validity constraints listed

above.

An example schedule is as follows:

RG
1 (x)RG

2 (y)R3(z)E1
1,2W1(z)W2(w)C1C2C3

In this schedule, transaction 1 grounds on x, then 2 grounds on y. 3 performs

a normal read on z, after which 1 and 2 and entangle together based on their

grounding reads. Finally, 1 and 2 perform a write to z and w respectively. All

three transactions commit.
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When a schedule σ is executed on a database, the final database produced

reflects exactly the writes of all the committed transactions in σ, in the order in

which these writes occurred in σ. We assume that the entangled query evalua-

tion algorithm is deterministic, i.e. always returns the same answers when pro-

cessing the same set of queries on the same database. This implies that when-

ever σ runs on the same starting database, it produces the same final database.

Lifting this assumption is possible but would make the presentation that follows

more complex.

4.4.2 Anomaly-based entangled isolation

We now formalize our anomaly-based isolation definition.

Preliminaries

Quasi-reads Suppose two transactions i and j perform grounding reads on two

different objects, say x and y respectively, and entangle immediately afterwards.

Although i has not directly read y and j has not directly read x, there has been

some information flow from each object to each transaction through entangle-

ment. As discussed, we model this information flow through quasi-reads. When-

ever a transaction performs a grounding read on an object, all of its partners in

the subsequent entanglement operation are considered to perform a simulta-

neous quasi-read on the same object. We denote a quasi-read by RQ. In the

pathological case where a transaction performs a grounding read but there is

no subsequent entanglement operation (i.e. the transaction aborts instead), no

quasi-reads are associated with that grounding read.

Given an entangled transaction schedule, it is straightforward to identify

which grounding reads are associated with quasi-reads by other transactions
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and to add in the quasi-reads explicitly. Concretely, our example schedule can

be rewritten as follows:

(
RG

1 (x)RQ
2 (x)

)(
RG

2 (y)RQ
1 (y)

)
R3(z)E1

1,2W1(z)W2(w)C1C2C3

The brackets surrounding a set of operations denote that the operations oc-

cur simultaneously. Often they will not be necessary as the timing of the quasi-

reads will be clear.

In the remainder of this section, we use the word schedule to refer to valid

entangled transaction schedules in which the quasi-reads are made explicit. The

unqualified term read refers to any read operation including a grounding read

or quasi-read.

Conflicts Given a schedule σ, we can compute a conflict graph for the commit-

ted transactions in σ. This is a graph where the nodes correspond to transaction

identifiers and edges are added based on conflicting operation pairs on the same

object. A pair of operations on the same object by two different transactions i

and j are conflicting if at least one is a write. If the operation by i occurs in the

schedule first, we add an edge from i to j in the conflict graph.

It is important to realize that the graph is defined only for those transactions

that commit; we only place restrictions on anomalies that affect committed trans-

actions. This allows reasoning about schedules that exhibit correct isolation, but

could not have been generated by preventative (pessimistic) concurrency con-

trol implementations. For a further discussion of this issue, see [1].

Entangled isolation

The following three requirements on schedules σ can be used to rule out isola-

tion anomalies.
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Requirement 4.4.2 (No cycles). The conflict graph for σ must be acyclic.

Requirement 4.4.3 (No read-from-aborted). If i is a transaction that aborts and j a

transaction that commits, σ may not contain the sequence of operations Wi(x) . . .R j(x)

Requirement 4.4.4 (No widowed transactions). If σ contains

an entanglement operation associated with transactions i and j, then it may not contain

both Ai and C j.

Requirements 4.4.2 and 4.4.3 are sufficient to rule out classical isolation

anomalies and unrepeatable quasi-reads, as the latter are made explicit in the

schedule. Note also that when two transactions ground on the same object and

entangle based on that grounding, Requirement 4.4.2 guarantees that they see

the same version of this object; as explained in Section 3.2, this is necessary for

correct entangled query answering. If the transactions were to ground on dif-

ferent versions of the same object and entangle, this would be an instance of an

unrepeatable quasi-read.

We now formally define entangled isolation.

Definition 4.4.5 (Entangled isolation). A schedule is entangled-isolated if it satisfies

Requirements 4.4.2, 4.4.3 and 4.4.4.

4.4.3 Oracle-serializability

Classical serializability compares a given execution schedule to a schedule

where the same transactions execute serially. We formulate an entangled ana-

logue of this where each transaction executes alongside an oracle. We can then

reason about equivalence between an entangled schedule and its oracle-serializa-

tions.
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Oracle construction

Suppose we are given a schedule σ; we explain how to construct an oracle Oσ

that enables serial execution of the transactions in σ on a given starting database

D. The oracle is customized to σ and to D, but not to any serialization order of

the transactions in σ.

To build the oracle, identify all the entanglement operations in σ and cre-

ate a procedure in the oracle that corresponds to each of these operations. In

any serial schedule involving the transactions in σ, this entanglement operation

will correspond to a number of oracle calls by the individual transactions, and

the appropriate oracle procedure will be invoked each time. For example, sup-

pose transactions i and j entangle in an operation Ek
i j, and the entangled queries

involved were qi and q j. The oracle contains a procedure specific to Ek
i j. This

procedure will be invoked twice in any serial execution – once when i executes

and poses qi, and once when j executes and poses q j.

The procedure to handle an entanglement operation Ek is as follows. By ob-

serving σ’s execution on D, we can keep track of the actual answers returned at

each entanglement operation Ek. The answers can be recorded in a data struc-

ture Ansk which is a map from Tk to the set of answers, so that Ansk(i) is the

answer entanglement operation k returns to transaction i. The oracle makes use

of the answer set Ansk directly; when answering the query posed by transaction

i, it simply returns Ansk(i). Therefore, by construction, it is guaranteed that the

oracle returns consistent answers to all corresponding entangled queries, as the

answers in Ansk are assumed to be consistent. On the other hand, the oracle an-

swers are not guaranteed to be valid according to Definition 4.3.3. This means

that invalid executions (Definition 4.3.4) for some transactions may be possible

with Oσ.
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Oracle-serializations of schedules

We now define an oracle-serialization of a schedule σ.

Definition 4.4.6 (Oracle-serialization). Let σ be an entangled schedule run on a

starting database D and Oσ the entangled oracle for σ and D as described above. An

oracle-serialization of σ on D is a schedule generated when the committed transac-

tions in σ are totally ordered in some way and each transaction executes individually

alongside Oσ in this order. We use os(σ) to denote an oracle-serialization of σ.

Oracle-serializations include only the committed transactions in σ; this is

consistent with our formalization of entangled isolation. Note also that oracle-

serializations of σ will in general not contain the exact same operations as σ it-

self. Specifically, the entangled transactions no longer perform grounding reads

or quasi-reads. For instance, consider our entangled schedule example from

before:

RG
1 (x)RQ

2 (x)RG
2 (y)RQ

1 (y)R3(z)E1
1,2W1(z)W2(w)C1C2C3

Suppose we serialize this schedule in the order 3, 1, 2 on some database D.

The serialization is as shown below; Om
l denotes an oracle call by transaction l

with the same entangled query that it posed in entanglement operation m in σ.

We have not listed the specific answers returned by the oracle, so the below can

more correctly be considered a template for an oracle-serialization of σ.

R3(z)C3O1
1W1(z)C1O1

2W2(w)C2

The grounding reads for the entangled queries posed by transactions 1 and

2 are no longer there. This is unsurprising, as the schedule represents reads and

writes to the database, whereas now the entangled queries are answered without
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any reference to the database, solely based on the set of answers stored in the

oracle.

Oracle-serializability

We now define oracle-serializability – the analogue of final-state serializability

for entangled transactions.

Definition 4.4.7 (Oracle-serializability). An entangled schedule σ is oracle-

serializable if there is some serialization order of the transactions in σ such that for all

starting databases D, the oracle-serialization of σ in that order on D is a valid execution

and yields the same final database as σ.

Note that although the oracle required for serialization depends on the start-

ing database the serialization order does not.

4.4.4 Entangled isolation guarantees

In this section, we give the proof of Theorem 4.3.6, that is, we argue that any

schedule which is entangled-isolated is also oracle-serializable.

Proof. Start with any entangled-isolated schedule σ and compute its conflict

graph. Choose any total ordering of the transactions in σ consistent with a

topological sort on the graph; such an ordering must exist as the graph is

acyclic by Requirement 4.4.2. Choose an arbitrary D and let os(σ) be the oracle-

serialization of σ on D with respect to that order. We must show that:

(1) the execution of os(σ) on D is valid, and

(2) the final database produced is the same as that produced by σ itself exe-

cuting on D.
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To prove (1), we need to show that at the time the oracle returns Ansk(i) to

transaction i, the state of the database is such that Ansk(i) is valid. To do so, we

introduce a technical device we call validating reads. Intuitively, suppose some

process were to monitor the execution of os(σ) and actually ground each entan-

gled query before the oracle answers it, in order to perform a validity check. For

the purpose of this proof, we explicitly introduce such validating reads into the

schedule os(σ) and associate them with the transaction that asked the original

entangled query. Consider our example oracle serialization from above:

R3(z)C3O1
1W1(z)C1O1

2W2(w)C2

With validating reads (denoted as RV) added, this becomes

R3(z)C3RV
1 (x)O1

1W1(z)C1RV
2 (y)O1

2W2(w)C2

For every validating read in os(σ), there is a grounding read in σ by the same

transaction on the same object, and vice versa. In fact, suppose we could show

that every validating read in os(σ) sees the same value as the corresponding

grounding read in σ. Then we could guarantee that all oracle answers are valid

and point (1) follows. This is because the oracle answers are exactly the answers

in Ansk, and these were computed based on the result of the actual grounding

reads in σ.

Before we prove the above statement about validating and grounding reads,

consider how we might prove point (2). Suppose we add a dummy transaction

at the end of both σ and os(σ) that reads every object mentioned in σ. It suffices

to show that this transaction reads the same values in both schedules.

We show both (1) and (2) by proving the stronger statement that every read

in os(σ), including validating reads and reads by the dummy transaction, sees

the same value as the corresponding read in σ. We prove this using an induc-
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tive argument similar to that used for classical conflict-serializability. We make

(an entangled equivalent of) the standard determinism assumption – if a trans-

action sees the same values for its reads and entangled query answers, and if

the process that provides the entangled query answers does not abort, then the

transaction will produce the same writes.

The first transaction in the serialization order in os(σ) sees the same values

as it did in σ, because in σ its reads depended only on the original values and

the results of its own writes; otherwise, it would have had an incoming edge

in the conflict graph and could not have been serialized first. It also receives

the same entangled query answers as it did in σ, by construction. Finally, in

both schedules, it has an entanglement “partner” that does not abort – a real

transaction in σ that commits due to requirement 4.4.4, and the oracle in os(σ).

Consequently, by the determinism assumption, it produces the same writes as

before. As our inductive step, consider the nth transaction in os(σ), and sup-

pose it reads object x. In σ, this transaction cannot have seen writes to x from

any aborted transactions, since that would violate Requirement 4.4.3. Consider

all committed transactions in σ that wrote to x before the current transaction

read it. All such transactions must have been serialized earlier in os(σ), since

the serialization ordering follows the conflict graph. The writes of each of these

transactions are the same as in σ by the inductive hypothesis, and they were

serialized in the same order as in σ because the conflict graph keeps track of

write-write conflicts. It follows that the nth transaction in os(σ) also reads the

same values as it did in σ. Since it also receives the same entangled query an-

swers, the determinism assumption can be applied to infer that it makes the

same writes as it did in σ. �
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4.5 Execution Model
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Figure 4.4: Example run of three transactions
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Figure 4.5: System architecture

With the semantic model for entangled transactions in place, we turn to the
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challenges and performance tradeoffs associated with execution models. There

is no single best execution model for entangled transactions; the final choice

depends on the requirements of the application. In this section, we highlight the

tradeoffs and propose a solution suited to realistic scenarios like travel planning.

Interactivity. One of the first key characteristics of an application is whether

the transactions are interactive or non-interactive, or both. Interactive transactions

are created by users online, statement by statement. Subsequent statements are

constructed dynamically, based on the result of earlier operations. An interac-

tive user may be willing to wait a few minutes for his or her entangled query

to find partners and return results. If results are not forthcoming, then the user

may decide to abort or issue another command. This interactive model is suited,

for example, to social games.

However, in other scenarios such as travel planning, users who want to co-

ordinate will most likely not issue their queries simultaneously and wait for

answers at the computer. A non-interactive model is a better fit here: users can

be expected to issue entire entangled transactions at once and specify an ap-

propriate timeout. If no partner is found before the timeout expires, then the

transaction aborts and is removed from the system. In this paper, we present an

execution model for non-interactive transactions; exploring the unique issues

associated with interactivity is future work.

Concurrency Control Protocol. As discussed in Section 4.3, several different

isolation levels may be appropriate for entangled transactions. The choice of

level is up to the system designer and depends on the application’s consistency

requirements. Whatever the isolation level(s) to be used, the execution model

must include a suitable protocol to enforce them.

For scenarios such as collaborative travel planning, a high level of isolation
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is desirable to ensure consistency of the underlying database. Full isolation can

be achieved by enforcing group commits and using a standard strict two-phase

locking protocol. This protocol has the additional advantage of admitting isola-

tion relaxations, if desired, by altering the length of time locks are held.

Scheduling. The system needs a policy for handling transactions that cannot

currently be matched with entanglement partners. The best choice of policy

depends on whether the transactions are interactive and on the isolation level

desired. The discussion below makes the assumption that we are working with

noninteractive transactions and desire full isolation as defined in Section 4.3.3.

A naı̈ve policy where each transaction blocks at each entangled query until

it has found a partner is impractical. This blocked transaction may need to hold

locks while it waits, unacceptably delaying the progress of other transactions

in the system. One solution is to limit the time for which an entangled query

blocks. If a partner does not arrive within a limited time frame, the transaction

is aborted and restarted.

It is possible to take this idea further and organize the execution of transac-

tions in discrete batches or runs. Each run is an execution of a set of transac-

tions chosen by the scheduler. If an entangled transaction arrives in the system

while a run is ongoing, it is suspended and added to a pool of dormant transac-

tions. Designing an optimal scheduling policy is nontrivial. A simple policy is

to schedule runs with a particular frequency, and include in a run all transactions

present in the dormant pool. The frequency can be explicitly given as a time in-

terval, or it can depend on the arrival rate of new transactions. For example, the

system may schedule a new run once ten new transactions have arrived.

When a transaction is scheduled in a run, all classical queries and updates

that precede the first entangled query are executed. At this point, the transac-
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tion blocks. Eventually, all transactions in the run either block, abort or reach

the ready to commit state. Now, the system evaluates all pending entangled

queries. If an entangled query receives an answer, the transaction is notified

and resumes execution. The run terminates when each transaction has either

aborted, reached the ready to commit state, or blocked on an entangled query

and is unable to proceed. Transactions that are ready to commit and satisfy the

group commit constraints (if applicable) are committed. Blocked transactions

are aborted and returned to the dormant pool for execution in subsequent runs.

To illustrate run-based transaction scheduling, we walk through an example

execution of three entangled transactions. The first is Mickey’s transaction from

Figure 4.2, and the second is a symmetric transaction by Minnie who wants to

coordinate with Mickey. The third transaction follows the same structure, but it

involves Donald who is interested in coordinating with Daffy.

Suppose Mickey’s and Donald’s transactions arrive in the system first. The

scheduler creates the first run that includes these two transactions only. The

first piece of code in each transaction is the respective flight booking entangled

query. Neither transaction is able to progress; therefore, the system immediately

aborts the run and returns both transactions to the dormant transaction pool.

Now, Minnie’s transaction arrives in the system and is placed in the pool.

The scheduler creates a second run containing all three transactions. The ex-

ecution of this run is shown in Figure 4.4. Mickey and Minnie’s transactions

are able to execute their first entangled query; they proceed to their respective

flight booking code. Donald’s entangled query does not receive an answer, so

his transaction blocks. Once Mickey and Minnie complete their flight booking,

their transactions reach the hotel entangled queries. These are submitted for

evaluation together with Donald’s flight query, which has not received an an-
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swer yet. Again, Mickey and Minnie receive answers and are able to proceed,

while Donald does not. Eventually, Mickey and Minnie both reach a state where

they are ready to commit, pending their partner’s commit. Donald’s transac-

tion, however, is still blocking on the flight query. The system recognizes that

no-one can proceed further and takes action. Mickey and Minnie’s transactions

are allowed to commit, while Donald’s is aborted again and returned to the

dormant transaction pool.

Persistence and Recovery. Entangled transactions come with atomicity and

durability requirements, as outlined in Section 4.3.4. It is therefore necessary to

ensure correct crash recovery. Standard algorithms must be suitably modified

to handle the additional entanglement-related recovery challenges.

In processing entangled transactions, the system maintains additional state

to keep track of the transactions that are currently in the system and awaiting

partners. It also may be keeping track of who has entangled with whom in order

to enforce group commits. This state must be made persistent to ensure correct

crash recovery. Further, the recovery algorithm must be entanglement-aware.

For example, if two transactions entangle and only one manages to commit prior

to a crash, both must be rolled back during recovery.

4.6 Implementation

In this section, we discuss our prototype implementation for the entangled

transaction management component in the Youtopia system and present the

results of our experimental evaluation.
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4.6.1 Prototype

Our prototype implements entangled transaction support in the middle tier, as

shown in Figure 4.5. This design makes it easy to port current applications

without any significant change to the DBMS or the interface. Alternately, entan-

gled transactions could be implemented within the DBMS itself, which has the

potential to improve performance through deep optimizations of the entangle-

ment logic; investigating this alternate architecture is future work.

The prototype is a component within our Youtopia system; it is implemented

as a Java application over a MySQL database (version 5.5.0) using the InnoDB

engine. It provides an API for clients to manage and query the database, with

the added functionality of answering entangled queries and managing entan-

gled transactions. Youtopia users submit transactions (entangled and classical)

through a front-end interface. Youtopia executes classical transactions as-is and

sends query results back to the client; entangled transactions are handled by our

custom component.

The prototype supports the execution model discussed in Section 4.5. It han-

dles non-interactive transactions and uses a run-based scheduling protocol for

execution. During runs, entangled queries are evaluated using the algorithm

described in [22].

Transactions can be executed at different isolation levels. If full isolation is

desired for strong consistency, the system enforces group commits to prevent

widowed transactions and uses Strict 2PL to prevent all other isolation anoma-

lies. The locking protocol is implemented using the lock manager of the DBMS.

In our implementation, the middleware is stateless. All relevant system state

is serialized and stored in the database to achieve persistency. This allows us to

leverage the recovery algorithms implemented in the DBMS to ensure correct
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crash recovery.

4.6.2 Evaluation

In our experiments, we set out to measure the overhead associated with sup-

porting entangled transactions relative to two other abstractions: classical trans-
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actions and non-transactional code containing entangled queries. We also

wanted to investigate the tradeoffs associated with the design decisions de-

scribed in Section 4.5.

Experimental Setup

All our experiments were set in the travel scenario discussed throughout the

paper and used a workload of simulated entangled transactions that modeled

the output of a front-end social travel application. We created a set of users

with friendship relations based on the Slashdot social network data [41]. Each

transaction was generated by choosing a user and expressing his or her intent to

coordinate on flight and/or hotel bookings with a set of friends; for examples,

see Section B.1 in the Appendix. Each transaction contained a single entangled

query, except where indicated otherwise.

In MySQL, as in most commercial database systems, the amount of concur-

rency is restricted by the maximum permissible number of connections rather

than the computational capacity of the system. This is because only a single
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transaction may run per connection. We worked within these constraints for

the purpose of our experiments. By default, we used 100 concurrent connec-

tions, and we examined experimentally the impact of varying that number.

We ran all experiments on a 2.13Ghz Intel Core i7 CPU with 4GB of RAM;

the reported values are averages over 3 runs. The standard deviation was less

than 2% in each experiment. All experiments involved 10000 (ten thousand)

transactions which were run to completion.

Results

Concurrency. In the first experiment, we varied the number of concurrent con-

nections to MySQL from 10 to 100 and investigated the performance of six dif-

ferent workloads. As mentioned, we wanted to compare entangled transac-

tions (Entangled-T) to non-entangled transactions in which users make travel

bookings based on existing bookings by their friends (Social-T). Our third

workload, NoSocial-T, contained individual travel booking transactions –

that is, transactions that made no reference at all to the activity of the user’s

friends. In addition, for each of the above three workloads, we generated a cor-

responding non-transactional workload that used the same code without en-

closing it within a transaction block. The non-transactional workloads are iden-

tified by the suffix -Q instead of -T. A further discussion of these workloads,

together with examples, is found in the Appendix, Section B.1.

For simplicity, all workloads were generated to ensure that all transactions

within a single run would be able to coordinate. That is, transactions were sub-

mitted in batches designed so that each transaction would find a coordination

partner within the same batch.

Figure 4.6.2 shows the results. The time taken to execute any given set of
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transactions was observed to be inversely proportional to the number of concur-

rent connections for all three transactional workloads. Although the time taken

by Entangled-T was always marginally higher compared to NoSocial-T

(and Social-T), the difference was roughly equal to the difference is execution

time between Entangled-Q and NoSocial-Q (and Social-Q). This shows

that entangled transactions do not impose significant additional overhead rel-

ative to classical transactions, except for the extra time needed for the actual

evaluation of entangled queries.

Pending Transactions. The first experiment was engineered so that all con-

currently submitted entangled transactions would find coordination partners

and commit. However, this may not be true in real life. We therefore ran a

second experiment where the number of pending transactions remaining at the

end of a run, p, was nonzero and varied from 10 to 100. This was achieved

by submitting the transactions in carefully designed batches to ensure that each

run contained p transactions without coordination partners.

We used three different run scheduling policies with different run frequen-

cies f . We set f in terms of the arrival rate of new transactions in the system and

varied it from 1 (start a new run after a single new transaction arrives) to f = 50

(start a new run after fifty new transactions arrive).

Figure 4.6 shows the results. As expected, using higher run frequencies had

a negative impact on execution time. Moreover, increasing p caused a linear

increase in the total execution time. However, this increase was much slower

when the run frequency was lower. Clearly, the optimal run frequency for a

given workload depends on the expected value of p.

Entanglement Complexity. Our last set of experiments investigated the

impact of varying the complexity and structure of the entanglement between
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transactions. The intuition is that with more complex entanglement structure

and more entangled queries per transaction, entanglement may be harder to

achieve and transactions may abort more frequently before succeeding.

The specific parameters we varied were the number of entangled queries per

transaction and the structure of the coordination. We considered two complex

coordination structures. In the Spoke-hub structure, a single transaction with

multiple entangled queries entangles with a different partner on each query.

The Cyclic structure is even more complex and involves a cyclic set of entan-

glement dependencies between a set of entangled transactions.

On all the above workloads, we ran experiments with a run frequency f of 1

and 50. Figure 4.7 gives the results. Increasing the number of entangled queries

per transaction increases the total execution time; however, the slope is very

small. This suggests that increasing entanglement complexity does not have a

significant negative performance impact.
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APPENDIX A

ENTANGLED QUERIES

A.1 NP-completness of CNRC

In this section we give a proof of Theorem 3.2.6, i.e. we show that CNRC is

NP-complete.

It is clear that the problem is in NP. For hardness, we argue via reduction

from 3-SAT.

Assume we are given a formula with k clauses. Construct a graph of the

shape indicated in Figure A.1. The graph contains two kinds of nodes: clause

nodes and beads. Intuitively, each clause node corresponds to a clause in the

formula, and each set of beads corresponds to a given occurrence of a literal in a

clause. The graph contains k clause nodes, and each string of beads is 3k nodes

long. This gives a total of 9k2 + k nodes.

The graph is colored as follows. First, each clause node is colored with a

fresh and distinct color, and none of these k colors are ever reused. Next, the

bead strings are colored. We explain how to color a bead string B corresponding

to the literal xi occurring in clause j; the description assumes xi is unnegated, but

the process for negated literals is symmetric.

Some of the beads in the bead string corresponding to xi may already have

assigned colors, so start with the first bead that does not already have a color-

ing. Identify all occurrences of ¬xi in clauses numbered l > j. For each such

occurrence, identify the corresponding bead string B′ and choose a fresh color

c. Color one bead on B and one bead on B′ with c. Discard c, i.e. ensure it never

gets used again. When all occurrences of ¬xi have been processed, color any

remaining beads on B with fresh and distinct colors that are never reused.
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Figure A.1: Graph shape for proof of Theorem 3.2.6

In this graph, a cycle with no repeated colors corresponds to a satisfying

assignment to the formula. If we have a cycle with no repeated colors, then we

can retrieve a satisfying assignment as follows. Identify the bead strings that

are involved in the cycle and the corresponding literals. It is not possible to

have both xi and ¬xi occurring in this set of literals, as the corresponding bead

strings for these literals must share at least one bead color by construction. Thus,

the set of literals directly yields a satisfying truth assignment to the formula.

Conversely, given a satisfying truth assignment, a cycle with no repeated colors

can be obtained by including, for each clause, any bead string that is consistent

with the assignment.
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APPENDIX B

ENTANGLED TRANSACTIONS

B.1 Examples

In this section we present several examples that we used in our experiments.

We created a set of users with friendship relations based on the Slashdot social

network data [41].

The schema for our system is as follows:

Reserve(uid, fid)

Friends(uid1, uid2)

Flight(source, destination, fid)

User(uid, hometown)

The first workload (No-Social) simulates individual travel booking transac-

tions. It queries the user table to get the source hometown, followed by a query

to find flights from this source to the destination. Finally, it makes a reservation

for the user.

BEGIN TRANSACTION;

SELECT @uid, @hometown FROM User WHERE uid=36513;

SELECT @fid FROM Flight WHERE source=@hometown

AND destination=’FAT’;

INSERT INTO Reserve (uid, fid)

VALUES (@uid, @fid);

COMMIT;

The second workload (Social) also gives a list of friends who live in the same

hometown and might be flying. This information is additional to the normal

flight reservation.
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BEGIN TRANSACTION;

SELECT @uid, @hometown FROM User WHERE uid=36513;

SELECT uid2 FROM Friends, User as u1, User as u2

WHERE Friends.uid1=@uid

AND Friends.uid2=u2.uid

AND u1.uid=@uid

AND u1.hometown=u2.hometown

LIMIT 1;

SELECT @fid FROM Flight WHERE source=@hometown

AND destination=’FAT’;

INSERT INTO Reserve (uid, fid)

VALUES (@uid, @fid);

COMMIT;

The third workload (Entangled) checks if a particular friend is also trying to

coordinate with the user to make flight reservations.

BEGIN TRANSACTION WITH TIMEOUT 2 DAYS;

SELECT @hometown FROM user WHERE uid=45747;

SELECT 36513 AS @uid, ’CAT’ AS @destination

INTO ANSWER Reserve

WHERE (36513, 45747) IN

(SELECT uid1, uid2 FROM

Friends, User as u1, User as u2

WHERE Friends.uid1=36513

AND Friends.uid2=45747

AND u1.uid=36513

AND u2.uid=45747
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AND u1.hometown=u2.hometown)

AND (45747, ’PHF’) IN ANSWER Reserve

CHOOSE 1;

SELECT @fid FROM Flight WHERE source=@hometown

AND destination=@destination;

INSERT INTO Reserve (uid, fid)

VALUES (@uid, @fid);

COMMIT;
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