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Abstract: 

This work develops statistical methods for estimat­
ing local rates of recombination from genetic map­
ping data. Heterogeneity of recombination rates has 
been observed in the genomes of fruitfl.y species for 
which detailed physical and genetic maps are avail­
able. However, it has proven to be difficult to study 
recombination rate variation in other species due 
to the lack of physical mapping data. It has been 
noted (Lyon, 1970; Nachman and Churchill, 1996) 
that local recombination rates can be estimated from 
genetic map data alone. Here we develop a local 
polynomial kernel regression method to estimate re­
combination rates across the mouse genome. Sim­
ulation results demonstrate that the local polyno­
mial kernel estimator with an appropriately selected 
bandwidth can recover the true initial recombination 
rates from the genetic map if markers are uniformly 
distributed on the physical map. This method was 
then applied to the Whitehead/MIT mouse genome 
crossover data. Recombination rates were observed 
to vary substantially within and between chromo­
somes. There is evidence for recombinational het­
erogeneity on most of the 20 mouse chromosomes. 
The methods developed here provide a useful tool 
for estimating genetic recombination rates in species 
for which physical maps are not available. 

1. Introduction 

Single-celled organisms can reproduce by simple mi­
totic division (mitosis) which involves chromosome 
replication, segregation, and division. Such asexual 
reproduction is simple and direct, but gives rise to 
offspring that are genetically identical to the parent 
organism. Sexual reproduction, on the other hand, 
involves meiosis which produces gametes with only 
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half of the parent organism's chromosome, and fertil­
ization that mixes the genomes from two individuals 
of opposite sex. An important feature of sexual re­
production is that it produces offspring that differ 
genetically from one another and from both their 
parents. Therefore, sexual reproduction has prob­
ably been favored by evolution (Maynard Smith, 
1978)because it improves the chance of producing 
at least some offspring that will survive in an un­
predictably variable environment. During meiosis, 
the two replicated homologous chromosomes pair to­
gether and crossing-overs may occur which allow the 
chromosomes to exchange some DNA. With such ge­
netic recombinations, a gamete produced at the end 
of meiosis receives a totally new assortment of genes 
on each chromosome, with some from each of pater­
nal and maternal homologues. 

·.r 
The process of genetic exchange can be exploited 

to locate gene positions on chromosomes. Geneti­
cists have been interested in the pattern and rates 
of genetic recombinations across the chromosomes. 
Morgan and his students first reasoned that the 
greater the distance between two loci (a locus is the 
site of a gene in the genome), the greater the chance 
that they will be recombined by crossing-over oc­
curring at a site between them. Using this notion 
of distance, a map of the relative positions of genes 
on chromosomes can be produced. If two markers (a 
marker is a distinct portion of DNA, or a known gene 
for which the parental origin can be determined) re­
combined in a proportion r of gametes, they are said 
to be separated by a genetic map distance of x map 
units, where x = -~ log(1 - 2r) (Haldane, 1919). 
If recombination rates were homogeneous across the 
genome, the genetic map would be in concordance 
with the physical map. However this is generally not 
the case. 

Many studies have noted heterogeneity in recom­
bination rates across the genomes of Drosophila 
melanogaster(fruit fly) for which both detailed phys­
ical and genetic maps exist for the same set of mark­
ers. With both maps, Kliman and Hey(1993) es­
timated recombination rates across the genome of 
Drosophila melanogaster from plots of genetic po-



sition (in centimorgans, eM) versus physical posi­
tion (in megabase, Mb) for markers on each chro­
mosome. They fit a least-squares polynomial curve 
for each chromosome and estimated recombina­
tion rate by taking the derivative of the polyno­
mial. Kindahl(1994) estimated recombination rates 
of Drosophila melanogaster by comparing the genetic 
and physical distance between many pairs of mark­
ers over different genomic regions. 

Some studies on Mus musculus (laboratory 
mouse) also indicate that recombinations are not 
uniformly distributted along the physical chromo­
some. At present, the physical distances between 
markers on Mus musculus chromosomes are incom­
plete or unknown. As a result, variation in recombi­
nation rate across the mouse genome has not been 
investigated as extensively as in the fruitfly genome. 
Lyon (1976) proposed that it should be possible to 
infer variation in recombination rates across chromo­
somes from a genetic map alone if some conditions 
are satisfied. Specifically, under the condition that 
markers are uniformly and randomly located on a 
physical map, chromosomal regions with low recom­
bination should contain many markers, while regions 
of high recombination contain few markers. Nach­
man and Churchill (1996) applied Lyon's theory 
to estimate recombination rates across the mouse 
genome. They first estimated the density function 
of markers for each mouse chromosome by apply­
ing a kernel density smoother with a cosine kernel 
to the histogram of markers along the genetic map, 
and then estimated the genetic recombination rates 
by inverting the estimated density function of mark­
ers. 

Here we will develop a different approach to esti­
mate the local recombination rate across the mouse 
genome. As in Nachman and Churchill (1996), we 
will also make the following two assumptions. First, 
markers are uniformly distributed on the physical 
maps of chromosomes. Second, for a chromosome of 
size P in physical map (i.e. P Mb in length) and 
size G in genetic map (i.e. G eM), there is a smooth 
and differentiable monotonely nondecreasing func­
tion A : [0, P] --t [0, G] (P and G may be normal­
ized to be 1) that maps physical locations along the 
chromosomes onto the genetic locations. The re­
combination rate is proportional to the derivative, 
.A = ft_A(t). In this artical, we will make another 
assumption that the function A has a continuous 
second derivative. Under these assumptions, A can 
be approximated, up to some constant, by a local 
quadratic kernel regression whose second coefficient 
(first derivative) provides an estimate for the local 
recombination rate (Wand and Jones, 1995). 
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2. Materials and Methods 

2.1 Data 

There are several distinct genetic maps for the mouse 
genome, generated in different ways and maintained 
in separate databases. The data we used were the 
intercross genetic map (Dietrich et al., 1992) avail­
able on line from the Whitehead/MIT Center for 
Genome Research. The map consists of 6331 mark­
ers of simple sequence length polymorphisms ( C A)n 
mapped on an ObxCast F2 intercross at an average 
resolution of 1.1 eM. In those maps, one finds clus­
ters of markers and spacings between clusters (in 
eM). Two markers will appear in the same cluster 
when no recombination events have been observed 
between them. In this case their estimated genetic 
distance is zero. Because the Whitehead/MIT data 
are based on a small sample of 46F2 mice obtained by 
intercrossing F1 progeny, there only are 92 meioses 
on this map. Thus many of the markers occur in 
clusters. Note that in those maps only the order 
of markers and their genetic distances are available, 
the physical distances are unknown. Now ~f markers 
are randomly distributed on the physical map and 
crossing-over events occur according to a smooth 
density function, then what we observe is simply 
an interlacing of two point processes- markers and 
crossovers - along the chromosomes. We can then 
count numbers of crossover events between markers. 
In other words, we have binned data for which the 
bins are defined by the markers, and the count in 
each bin is the number of crossovers between the 
two adjacent markers that defined the bin. 

Let Xi be the true but unobservable physical po­
sition of marker i (i = 1, 2, ... , M, where M is the 
number of markers on a chromosome), and Yi the 
cumulative number of recombinations up to marker 
i (Y1 is defined to be 0). Under the assumption 
that markers are uniformly distributed on the phys­
ical map, a realization of (X 1, X 2, ... , X M), denoted 
as (x1,x2, ... ,xM), would be either the normalized 
rank order of markers or a sequence of sorted ran­
dom numbers. The plot of Yi's versus Xi's gives an 
empirical estimate of the smooth function A up to 
a constant. The local derivative of the fitted curve 
obtained by applying local quadratic kernel regres­
sion to the data (xi, Yi) then provides an estimate 
of the regional recombination rate .. The mathemat­
ical theory of local polynomial kernel regression is 
introduced in the next section. 



2.2 Theory of Univariate Local Polynomial 
Kernel Regression 

Suppose our data, (x1, Yl), (x2, Y2), ... , (xn, Yn), 
satisfy the following relationship 

i = 1,2, ... ,M (1) 

where Yi 's are the response variables (the cumulative 
recombination counts in our work), xi's are some 
fixed and known values of a predictor (the realiza­
tion of unobserved physical marker positions), A is 
a smooth function with continuous pth derivatives, 
Ei are random variables with E(Ei) = 0, and M is 
the number of markers on a chromosome (Wand and 
Jones 1995). Note that A is in proportion to the 
aforementioned mapping function, and its deriva­
tive, A, is the recombination rate of our interest. 

At any arbitrary point x, the estimator for A(x) 
is obtained by fitting a polynomial of degree p 

to the data using weighted least squares. In this 
work, we used the weight kernel Kh(xi- x) which is 
defined to be h-1 K( x;hx) where K is the Epanech­
nikov kernel K(z) = (1 - z 2 )+· This kernel im­
plies that an observed point (xi, Yi) will get zero 
weight if the distance between xi and x is greater 
than h. Therefore, h is usually called the band­
width. Suppose, at the point x with specified p and 

A (A A )T h, [3 = [30 , .•• , [3p minimizes the weighted sum 

of squared errors 

n 

L)Yi- f3o -f3I(Xi- x)- ... 
i=l 

Then, the estimator for A(x) at the point x is the 
height of the fitted polynomial, ~0 . And the deriva­
tive, A(x), is estimated by ~I· 

At the point x, let Y = (Y1 , ... , Yn)T be the vec­
tor of responses, 

Xn -X 

and Wx = diag{Kh(xl-x), ... ,Kh(Xn-x)}. 
The standard weighted least squares theory leads to 
the solution 
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assuming the invertibility of X~ W x X x. 
given a predetermined polynomial degree 
bandwidth h, we have 

and 

Thus, 
p and 

where ei is the (p+ 1) x 1 vector with 1 in the ith en­
try and zero elsewhere. A smooth local polynomial 
kernel estimator can be produced by calculating (4) 
and (5) on a grid of x. 

Since only the first two coefficients of the poly­
nomial are of interest, we shall fit a polynomial of 
degree p = 2, as generally suggested by statisticians. 
To specify the bandwidth h, however, requires a 
more subtle decision, as discussed in the following 
section. 

2.3 Simulation and Bandwidth Selection 

To choose an appropriate bandwidth for our analy­
sis, standard bandwidth selectors such is the cross­
validation method are not applicable for our ap­
proach due to the fact that cumulative crossover 
counts are somehow correlated. In this section, sim­
ulation is utilized to select an appropriate bandwidth 
for analyzing real genomic data. This also serves our 
purposes of investigating whether our approach with 
an adequate bandwidth can recover the true recom­
bination rate and how the weight kernel bandwidth 
affects the accuracy of estimation. The simulation 
algorithm follows. The first step is to generate 500 
sorted random numbers on the interval [0, 1], repre­
senting the true but unobserved physical positions 
of markers. The second step is to generate crossover 
events that follow a nonhomogeneous Poisson pro­
cess with the true rate 

~ (z-0.5); 
A(t) = 1.2 x e- 2(o.o8) + 1.5 x e- 2(o.o8) 

~ +1.2 x e- 2(0.1) ' (6) 

and then count numbers of crossovers between mark­
ers. Step 3 is to smooth the empirical curve of cumu­
lative recombination numbers versus the normalized 
rank order of markers by local quadratic kernel re­
gression with a specified bandwidth, and then take 
the local derivatives. Step 4 repeats steps 2 and 3 
to obtain 1000 estimates of the true rate A and the 
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Figure 1: Illustration of Simulation - The thick curve 
is the true recombination rate>. in (6). Each solid curve 
represents an estimate of >.. At this specified bandwidth 
(h = 1/7), the simulation is repeated 1000 times to cal­
culate the Monte Carlo MASE and three replicates are 
shown for illustration. 

Monte Carlo mean average squared error (MASE). 
The simulation is illustrated in Figure 1. 

The MASE measures the closeness of an estimator 
to the true function, and is thus used to evaluate the 
performance of an estimator. It is calculated with 
respect to the recombination rate, namely, 

The MASEs are given in Table 1 for two differ­
ent numbers of markers with different bandwidths 
within a reasonable range. The bandwidth which 
provides the smallest MASE is considered appropri­
ate to be employed in our analysis. 

Table 1: Simulation results for bandwidth selection 

MASE (1000 reps) 
h 200 markers 500 markers 

1/4 0.1293 
1/5 0.1234 0.0914 
1/6 0.1166 0.0823 
1/7 0.1178 0.0820 
1/8 0.1282 0.0889 
1/9 0.0927 

It is worth mentioning that when equally-spaced 
rank orders are used while the true marker positions 
are not equally-spaced, an observed large crossover 
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count between two markers may reflect two possi­
bilities: a high local recombination rate, or a large 
physical distance between the two markers. In the 
latter case, it results in an overestimate of the true 
regional recombination rate. Likewise, an observed 
small count may reflect two possibilities: a low local 
recombination rate, or a short physical distance be­
tween the two markers. And in the latter case, it re­
sults in an underestimate of the true rate. Such bias, 
fortunately, can be eliminated by increasing the size 
of the bandwidth. In general, the local polynomial 
kernel regression with a small bandwidth can bet­
ter discover jumps and thus produces a more wiggly 
curve, but may be too sensitive to the jumps caused 
by physically unequally-spaced x~s. An estimation 
with a large bandwidth, on the other hand, is more 
robust to the nonuniformity of markers and produces 
a rather smooth curve, but may fail to detect signif­
icant jumps caused by a high local recombination 
rate. For our case, specifically, we should not use a 
bandwidth that is too small to avoid the bias caused 
by physical nonuniformity of markers. 

As illustrated in Figure 1, the local polyno­
mial kernel estimator with an appropriately selected 
bandwidth can, although with some variation, cap­
ture the underlying pattern of the true recombina­
tion rate from the genetic data if the maskers are in­
deed uniformly distributed on the physical map. To 
analyze recombination rates for the 20 mouse chro­
mosomes, we will use a bandwidth equal to 1/6 or 
1/7 for the Epanechnikov kernel, depending on the 
number of markers on the chromosome. 

3. Results 

The plots of the normalized cumulative crossover 
counts versus the normalized rank order of markers, 
including the estimated mapping functions A, are 
given on the left of Figure 2 for mouse chromosomes 
4, 6, 7 and X. As in Nachman and Churchill (1996), 
the dashed identity line (x = y) gives the expecta­
tion under a uniform physical distribution of mark­
ers and no heterogeneity in recombination rate and 
is shown for reference. The Kolmogorov-Smirnov 
statistic measures the largest deviation of the cu­
mulative distribution from this line. For each chro­
mosome, this null hypothesis (x = y) is rejected by 
the Kolmogorov-Smirnov test (P < 0.01 for each). 
The estimated recombination rates for these mouse 
chromosomes are shown on the right of Figure 2. 
They are given by .5., the pointwise local derivatives 
of the smoothed mapping functions A. The rejec­
tion of the above Kolmogorov-Smirnov test for each 
chromosome implies that these recombination rates 
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Figure 2: Estimated Recombination Rates 

are all significantly different from the flat line y = 1. 

An interesting comparison reveals high similarity 
between the patterns of the recombination rates esti­
mated by the local polynomial kernel regression here 
and those obtained by taking the reciprocals of ker­
nel estimators of marker densities in Nachman and 
Churchill (1996). 

The "confidence" bands bounded by the dashed 
lines in Figure 2 for the recombination rates reflect 
the uncertainty and randomness in the physical po­
sitions of markers. The are calculated by generating 
100 sorted sequences of random numbers between 
0 and 1, representing 100 arbitrary possible alloca­
tions of markers along a chromosome. For each given 
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sequence of marker positions, a smoother for recom­
bination rate along this chromosome is evaluated at 
the same set of equally-spaced positions. Thus, there 
are 100 smoothed curves, representing different es­
timators of recombination rate. The average and 
standard deviation of these 100 curves are then cal­
culated pointwise at the equally-spaced positions. A 
"confidence" band is calculated by adding and sub­
tracting 2 standard deviations from the mean. 

Since the mouse chromosomes are all acrocentric, 
the centromeres are located at one end (left, in our 
plots) instead of middle, and the telemeres are at 
the other end. As shown in the graphs, the pattern 
of recombination rates varies greatly from one chro-
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mosome to another, and most chromosomes have 
the highest rate in regions close to the telemeres. 
Furthermore, there is evidence for recombinational 
hotspots on most of the 20 mouse chromosomes. 
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