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Recent advances in machine learning have enabled the training of increasingly

complex information retrieval models. This dissertation proposes principled ap-

proaches to formalize the learning problems for information retrieval, with an eye

towards developing a unified learning framework. This will conceptually simplify

the overall development process, making it easier to reason about higher level

goals and properties of the retrieval system. This dissertation advocates two com-

plementary approaches, structured prediction and interactive learning, to learn

feature-rich retrieval models that can perform well in practice.
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CHAPTER 1

INTRODUCTION

This dissertation describes advances towards a more unified framework for

learning information retrieval models. Recent progress in machine learning has

strongly impacted the development of state-of-the-art retrieval systems. For in-

stance, online search, which is a multi-billion dollar industry, relies heavily on

machine learning when designing retrieval models. But while commercial search

engines have been very successful, it remains unclear how we can systematically

improve performance and model more complex retrieval paradigms. Having a

unified framework supported by theory simplifies the task of analyzing complex

modeling problems, thus making it much easier to reason about higher level goals

and properties of the retrieval system.

The research described herein is motivated by the following general observa-

tions: (1) the utility that users derive from using an information retrieval system

is a highly complex function that depends on several interacting factors, (2) infor-

mation retrieval systems do not exist in a vacuum, but rather must interact with

users. Properly understanding and leveraging the associated underlying technical

issues can help us more effectively model user utility jointly over multiple factors

as well as automatically tune system parameters via intelligently interacting with

users and collecting feedback.

Building upon these motivations, this dissertation describes two complemen-

tary approaches for designing expressive and robust models with effective training

and prediction methods. First, information retrieval can be formulated as a struc-

tured prediction problem, which can jointly model the interdependencies between

the predictions (e.g., documents in a ranking). Second, optimizing an information
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retrieval system using user feedback can be formulated as an interactive learning

problem, where the system adaptively chooses how to respond to information re-

quests in order to simultaneously both provide good service and also learn from user

feedback. A related important problem is proper interpretation of user feedback:

accurately interpreting implicit user feedback1 is vital to the design of interac-

tive systems, since otherwise we might be optimizing an incorrect objective. For

the remainder of this chapter, we briefly introduce these aforementioned research

directions and the corresponding contributions of this dissertation.

1.1 Structured Prediction

In order to effectively respond to a wide range of information needs, a retrieval

model must be rich enough to capture the essential qualities which discriminates

between good and poor results. Another important component is the objective

function to be optimized during model-parameter tuning (i.e. learning). This

objective function must be expressive enough to accurately capture user intent.

Both of these goals can be formulated as structured prediction problems.

Broadly speaking, structured prediction refers to any type of prediction per-

formed jointly over multiple input instances (e.g., a ranking over a list of docu-

ments). Rankings are the most common types of structured outputs within in-

formation retrieval. Indeed, structured prediction is not a new idea. But until

recently, the primary impediment has been a lack of efficient and robust methods

for training. One can naively incorporate all possible information and constraints

in solving an optimization problem, but this approach rather quickly becomes too

expensive and also does not generalize well to unseen test data. Most previous

1Implicit feedback makes up the majority of the feedback that can be derived from observing
users’ interactions.
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work focused instead on modeling individual documents and their relevance to

individual queries and information needs.

Within this context, the contributions of this dissertation are two-fold. First,

we propose a novel framework for optimizing rank-based performance measures

commonly used to evaluate retrieval methods. The complexity of these measures

make direct optimization difficult when using conventional machine learning meth-

ods. This dissertation proposes the first structured prediction learning algorithm

that provably optimizes a rigorous upper bound on the rank-based performance

measure average precision (and can be extended to other measures as well).

Second, this dissertation proposes a structured prediction approach for diver-

sified retrieval. Diversified retrieval has recently become a popular research topic,

as many information retrieval researchers have noted the need to reduce redun-

dancy and to deal with ambiguity when responding to information requests. In

this dissertation, I will show that interdependencies such as redundancy of infor-

mation between documents can be naturally modeled using structured prediction

approaches.

These approaches are described in greater detail in Chapters 3 and 4, which

include a description of the model, training and prediction algorithms, theoretical

guarantees, and empirical evaluations.

1.2 Interactive Learning

One potential limitation of batch learning algorithms (which includes many learn-

ing algorithms for structured prediction) is the assumption that the training data

4



is representative of unseen test instances. Current approaches to learning and

evaluating retrieval models are largely restricted to supervised learning techniques

using large amounts of expensive training data labeled by a small number of hu-

man judges. Due to this substantial cost, such datasets are typically not fully

representative of the natural usage contexts of real search engines.

The key observation here is that information retrieval systems do not exist in

a vacuum; they must interact with users. The information we search for, the web

pages we browse, the emails we send, the Twitter tweets we post, the items we

purchase on Amazon – they all leave digital footprints that reflect the fine grained

dynamics of our online activities. These interactions are plentiful and can be

harvested at virtually no cost. This naturally beckons for developing systems that

can adaptively reconfigure or tune themselves in new environments by intelligently

interacting with users.

This dissertation proposes a novel online learning framework, called the Du-

eling Bandits Problem, tailored towards real-time learning from user behavior in

information retrieval systems. In particular, this framework only requires pair-

wise comparisons, which were shown to be reliably inferred in search applications.

Chapters 5 and 6 describe this framework in greater detail, and include provably

efficient algorithms for optimizing over both discrete and continuous hypothesis

classes of retrieval functions. Furthermore, the proposed algorithms are simple,

making them easy to implement and extend in a variety of applications.
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1.3 Interpreting User Feedback

Machine learning algorithms typically assume the availability of explicit feedback

(e.g., human annotated training labels). However, the overwhelming majority of

feedback collected from users’ interactions with an information retrieval system

will be implicit in nature. The final contribution of this dissertation is a collection

of methods that can learn to better interpret implicit user feedback.

Clicks are the most plentiful form of user interactions. But a clicked result

need not be a good result. As a simple thought experiment, consider two rankings,

where one has good results and the other mediocre results. Which ranking would

you expect to receive more clicks? On one hand, all the results in the first ranking

are good. But users might click around more in the second ranking to collect more

information. Such questions must be resolved in order for computers systems to

tease out useful information from observed behavior. This dissertation proposes

methods for making the data collection process more efficient by learning more

informative interpretations of user feedback; the methods and experiments are

described in Chapter 7.
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CHAPTER 2

LEARNING TO RANK: A BRIEF HISTORY

Information retrieval (IR) has been an active research area since the 1960s.

Popular techniques used today include the vector space model [152], TF-IDF [150],

Okapi BM25 [144], and language modeling approaches [131, 107, 188, 170]. While

some approaches offer deeper theoretical discussions than others, in practice, vir-

tually all successful methods reduce to using a similarity function to compute the

compatibility (or relevance) of a document to a query [121]. Assuming that rele-

vance of documents are independent, then the optimal ranking (to present to users)

results from sorting by the compatibility scores (this is known as the Probability

Ranking Principle [143]).

Traditional IR methods typically employ relatively simple similarity functions

with few or no parameters. As such, they are easy to tune and have been shown to

generalize well to new corpora. However, over the past fifteen years, we have seen

a trend towards using richer models which utilize large feature spaces. As a result,

one now must automatically find good models from large parameter spaces. Due

to its practical importance as well as natural formulation as a learning problem,

both the machine learning (ML) and information retrieval (IR) communities have

accordingly shown growing interest in the problem of learning ranking functions

(see [117] for a longer survey of Learning to Rank).

Let D and Q be the space of documents and queries, respectively. In general,

the basic learning goal is to find a scoring function h : Q×D → R such that, for a

given query q and set of documents {d1, . . . , dnq}, the induced ranking from sorting

by h(q, di) is “good” under certain criteria. The similarity between documents and
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queries can be captured using an appropriate feature map φ,

x ≡ φ(q, d) ⊆ Rm, (2.1)

which maps queries and documents to a high dimensional feature space. Following

standard ML notation, these input instances are typically denoted as x, and the

space of input instances is denoted as X . Discovering useful features for learning

is an area of ongoing research.

We can thus state our goal as learning a hypothesis function h : X → Y between

an input space X and output space Y (e.g., Y could be a space of rankings). In

order to quantify the quality of a prediction, ŷ = h(x), we will consider a loss

function ∆ : Y ×Y → <. ∆(y, ŷ) quantifies the penalty for making prediction ŷ if

the correct output is y. In the supervised learning scenario,1 where input/output

pairs (x, y) are available for training and are assumed to come from some fixed

distribution P (x, y), the goal is to find a function h such that the risk (i.e., expected

loss),

R∆
P (h) =

∫
X×Y

∆(y, h(x))dP (x, y),

is minimized. Of course, P (x,y) is unknown. But given a finite set of training

pairs, S = {(xi, yi) ∈ X × Y : i = 1, . . . , N}, the performance of h on S can be

measured by the empirical risk,

R∆
S (h) =

1

N

N∑
i=1

∆(yi, h(xi)).

For simplicity and ease of notation, we will typically restrict our discussion to

linear hypothesis functions,

h(x|w) = wTx, (2.2)

1Supervised learning is the most common learning setting. The drawback of requiring la-
beled data (which can be expensive to obtain) is a major motivation for the interactive learning
approach discussed in Chapters 5 and 6.
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although other function classes can be used. In this setting, the learning goal re-

duces to finding a model vector w which optimizes an appropriate objective func-

tion. The challenge lies in choosing objective functions which not only accurately

measure the quality of the induced rankings, but also yield efficiently computable

solutions.

2.1 Classification & Regression

One can treat learning ranking functions as a conventional classification or regres-

sion problem. In the classification setting, one assumes that training inputs are

categorized into discrete classes, and the learned hypothesis function discriminates

between instances of different classes. In the simple case of binary classification

(two classes), most approaches learn a decision threshold b along with a model

vector w such that predictions are made via sign(wTx− b). The specific objective

function formulation varies depending on assumptions regarding the learning prob-

lem, but the high level goal is maximizing accuracy. For example, the popular SVM

training algorithm uses the principle of structural risk minimization [167, 153] to

learn a model w that separates the two classes by as large a margin as possible.

Let yi denote the label of the ith training instance, with relevant and non-relevant

labels taking on values of +1 and -1, respectively. The SVM formulation can be

written as OP 1.

Optimization Problem 1. (SVM)

argmin
w,b,ξ≥0

1

2

(
‖w‖2 + b2

)
+
C

N

m∑
i=1

ξi (2.3)

s.t. ∀i ∈ {1, . . . , N} :

yi(w
Txi − b) ≥ 1− ξi (2.4)
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Each input example has a corresponding slack variable ξi which penalizes mar-

gin violations. Note that ξi ≥ 1 if training instance xi is misclassified. Thus we can

see that the sum of slacks
∑
ξi defines a smooth upper bound on accuracy loss.

Other popular classification methods include boosting [67], neural nets [124, 17, 18],

decision trees [21, 124, 18], perceptrons [147, 70, 68], and näıve Bayesian networks

[57, 124, 18].

In the regression setting, one aims to learn models whose output scores match

the target labels. For linear regression, this amounts to learning a w and a bias

b to produce output scores of the form wTx + b. The most popular objective

minimizes the sum of squared error,
∑

(yi − (wTxi + b))2, which can be justified

from assuming a probabilistic model that has i.i.d. Gaussian noise on the target

labels. Since squared error is differentiable everywhere, gradient descent techniques

can easily find a local optimum. For linear regression, the objective function is also

convex and has a closed form solution. Other popular regression methods include

neural nets [124, 17, 18], decision trees [21, 124, 18], Gaussian processes [141], and

logistic regression [124, 18].

While classification and regression approaches have proven effective for many

IR tasks, they optimize for loss functions which can conflict with the goal of pre-

dicting good rankings. First, the relevance labels induce a weak ordering on the

input examples. Multi-class classification approaches ignore this ordinal structure

completely and assume the class labels do not interact. On the other hand, regres-

sion approaches consider more restrictive goals by requiring output scores to match

their target labels. Second, many datasets exhibit a large class imbalance, where

most of the input instances are not relevant. Consider an extreme case where

99.9% of the instances are non-relevant. Then a baseline hypothesis which always
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predicts 0 will achieve an average accuracy of 0.999. As such, models which achieve

the highest accuracy might not produce the best possible rankings. Subsequent

sections describe approaches that explicitly learn to predict good rankings.

2.2 Ordinal Regression

Ordinal regression refers to prediction problems where the target labels have an

ordinal structure. The goal then is to predict output scores whose induced ranking

agrees with the weak ordering defined by the ordinal class labels. Let the ordinal

classes be {0, 1, . . . , T}. The learned hypothesis function must score instances la-

beled 1 higher than those labeled 0, those labeled 2 higher than those labeled 1,

and so forth. In contrast to multiclass prediction, ordinal regression explicitly pe-

nalizes disgreement with the label ordering. In contrast to conventional regression,

ordinal regression does not require that the output scores match the class label

values.

2.2.1 Learning Multiple Thresholds

One natural approach to ordinal regression involves learning thresholds which sepa-

rates instances of different classes. The goal can be expressed as learning thresholds

b1 < b2 < . . . < bT along with a model vector w such that, for instances with or-

dinal label j, we have bj < wTx < bj+1. This general principle can be adapted to

many different learning algorithms. For example, using SVMs [42], one can find the

w that maximizes the margin of the output scores wTx from their corresponding

thresholds. This leads to an extension of conventional SVMs which uses multiple
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decision thresholds (as opposed to just one b), as well as two slack variables for

each input instance (for both upper and lower threshold margin violation). The

SVM formulation can be written as OP 2. Other prior work have also adapted

this approach to Gaussian processes [41], decision trees [102], perceptrons [49], and

neural nets [33].

Optimization Problem 2. (Multiple Threshold Ordinal SVM)

argmin
w,b,ξ≥0

1

2
‖w‖2 +

C

N

T∑
j=1

(∑
i

ξ+
i,j +

∑
i

ξ−i,j

)
(2.5)

s.t. ∀j ∈ {0, . . . , T} :

wTxi − bj ≥ 1− ξ−i,j, ∀i : yi = j (2.6)

wTxi − bj ≥ −1 + ξ+
i,j, ∀i : yi = j − 1 (2.7)

b1 < b2 < . . . < bT (2.8)

2.2.2 Decomposition into Multiple Training Sets

Another approach, which has seen increased interest in applications to IR, decom-

poses ordinal regression into smaller classification or regression problems. The most

common approach is to use T classifiers w1, . . . , wT , where wi learns to discrimi-

nate between classes {0, . . . , i− 1} and {i, . . . , T}. The final output score is then

a combination of the outputs of all T classifiers (e.g., the sum). Existing methods

adopting this approach include using SVMs [132], as well as using boosted deci-

sion trees [113]. These two methods were specifically designed for learning retrieval

models, and are also applicable beyond ordinal regression since the decomposition

into smaller classification tasks can be motivated by other types of label structure.

More general decomposition techniques also exist which can convert any type of
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multi-class classification problem (of which ordinal regression is a special case) into

a collection of binary classification problems [16].

2.2.3 Optimizing Pairwise Preferences

The most popular ordinal regression approach used for IR decomposes the learning

problem into pairwise preferences. Any pair of instances (x, y) and (x′, y′), with

y > y′, generates a preference that the learned model should satisfy wTx > wTx′.

In the case where relevance is binary (relevant or not relevant), the fraction of

satisfied pairwise preferences is equivalent to the ROC-Area measure.

Optimizing over pairwise preferences reduces to generating a dataset (often

represented implicitly) where each input instance has the form (x− x′) with label

+1. Correctly predicting wT (x − x′) > 0 indicates that the preference wTx >

wTx′ is satisfied. Optimizing pairwise preferences can be applied to almost any

learning method. For example, an SVM approach [75, 85, 29] might require that

the preferences be satisfied by as large a margin as possible. The SVM formulation

can be written as OP 3.

Optimization Problem 3. (Pairwise SVM)

argmin
w,ξ≥0

1

2
‖w‖2 +

C

#pairs

∑
(i,j):yi>yj

ξi,j (2.9)

s.t. ∀i, j where yi > yj :

wT (xi − xj) ≥ 1− ξi,j (2.10)

Other work on optimizing pairwise preferences include using neural nets [26],

logistic regression [76, 32], and boosting [66, 44, 119], and more general model-
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agnostic approaches [14, 5]. Optimizing pairwise preferences also naturally deals

with severe class imbalances, which is easy to see in the binary case due to its

equivalence to optimizing ROC-Area. Like the methods described in Section 2.2.2,

many methods mentioned in this section were designed specifically for learning re-

trieval models [26, 32, 29], and have been shown to perform well empirically. These

methods can also be applied beyond ordinal regression since pairwise preferences

can be generated in other ways.

2.3 Rank-based Performance Measures

The different approaches described in Section 2.2 can be thought of as optimizing

an objective function defined over rankings. The popular pairwise approaches

described in Section 2.2.3 use objective functions which decomposes into a sum

over pairwise preference agreements. As stated previously, optimizing pairwise

preferences over binary relevance labels is equivalent to optimizing ROC-Area,

which is a well-known rank-based performance measure.

ROC-Area weighs all positions in the ranking equally. In contrast, studies have

shown that users typically focus on the very top of presented rankings [71, 88].

Likewise, the IR community primarily uses rank-based measures which empha-

size the top of the ranking [82, 145]. Among the most common measures are

precision@k, mean average precision, mean reciprocal rank, and normalized dis-

counted cumulative gain.

Precision@k - precision@k is a binary relevance measure and refers to the

percentage of relevant documents amongst the top k documents. For example, the
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ranking

0 1 0 1 0 (2.11)

has precision@1 = 0, precision@2 = 1/2, precision@3 = 1/3, and precision@4 =

2/4. Typical values of k for IR studies range between 1 and 10. The special case

of k = 1 is also known as winner takes all. This measure emphasizes the top of

rankings by simply not considering any documents lower than rank k.

Mean Average Precision (MAP) - average precision is a binary relevance

measure that is computed by averaging the precision@k scores for k equal to the

rank position of each relevant document. MAP is then the mean of average preci-

sion scores over a group of queries. For example, the ranking in (2.11) has relevant

documents in the second and fourth rank positions, thus yielding precision@2 =

0.5 and precision@4 = 0.5. The average precision of the above ranking is then

(0.5 + 0.5)/2 = 0.5. In contrast, the ranking

1 0 0 0 1 (2.12)

has relevant documents in the first and fifth positions, yielding precision@1 =

1 and precision@5 = 0.4. The average precision of the above ranking is then

(1 + 0.4)/2 = 0.7. Changing from (2.11) to (2.12) requires moving one relevant

document up a rank and one down a rank. Since greater emphasis is placed at the

top of the ranking, average precision improves from (2.11) to (2.12).

Mean Reciprocal Rank (MRR) - reciprocal rank is a binary relevance

measure that results from computing the reciprocal rank value of the highest ranked

relevant document. MRR is then the mean of reciprocal rank scores over a group

of queries. For example, the ranking in (2.11) has a reciprocal rank of 1/2, whereas

the ranking in (2.12) has a reciprocal rank of 1.
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Normalized Discounted Cumulative Gain (NDCG) - NDCG is scored for

documents with multiple levels of relevance. Discounted cumulative gain (DCG)

can be computed as

DCG@k =
k∑
i=1

2ri − 1

log(i+ 1)
,

where ri ∈ {0, . . . , T} is the relevance level of the document a rank i. One can

think of DCG@k as a sum of document scores up to rank k, where more rele-

vant documents are given exponentially larger scores, and all scores are subject to

logarithmic decay with respect to rank position. NDCG@k is then a normalized

version of DCG@k such that the best possible ranking has NDCG@k = 1. When

the measure is computed over the entire ranking (instead of up to a rank limit k),

it is refered to simply as NDCG.

Explicitly optimizing for rank-based measures is the subject of very recent

and ongoing research within the ML and IR communities. Initial approaches to

optimizing rank-based measures either used ad-hoc heuristics [29], or optimized

over very restricted parameter spaces [123]. Chapter 3 describes current approaches

(including contributions of this dissertation) to optimizing rank-based measures by

viewing it as a structured prediction problem.

2.4 Diversified Retrieval: Beyond Independent Relevance

Standard retrieval functions typically consider the relevance of each document

independently of other documents. While this greatly reduces the modeling com-

plexity and yields efficient prediction algorithms (i.e., sorting by the output scores),

it limits the ability of such retrieval functions to model more complex criteria. One

rapidly growing research direction in IR is diversified retrieval, which is concerned
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with suppressing information redundancy, or encouraging diversity and novelty,

in the retrieved results. The performance measures described in Section 2.3 do

not penalize redundancy. Indeed, it is unclear (and will likely vary depending on

the retrieval task and domain) how well measures such as NDCG actually cor-

relate with real user satisfaction [6]. Recent studies have noted the necessity of

modeling inter-document dependencies when explicitly optimizing diversity in IR

[31, 186, 40, 156, 189, 43, 92]. Some studies have also proposed new performance

measures which penalize redundancy in the retrieved results [186, 43].

Two particular settings which clearly benefit from improved diversity are am-

biguous queries [90] and learning or informational queries [156]. Ambiguous queries

arise from users with different information needs issuing the same textual query.

For example, the query “Jaguar” can refer to many different topics such as the car

or the feline. It might be wise to retrieve at least one relevant result for each topic.

On the other hand, users issuing learning queries are interested in “a specific detail

or the entire breadth of knowledge available” for a specific query [156]. Thus, the

retrieved results should maximize the information covered regarding all aspects of

the query.

Ambiguity in the information need can fall into different levels of granularity.

For example, the query “Support Vector Machine” might be issued from users

looking for tutorials, downloadable implementations, specific formulations (e.g.,

SVMs for ranking), or theoretical results. The ambiguity for this query is clearly

more fine-grained than for the aforementioned query “Jaguar”. Learning queries

require very fine-grained measures of information diversity. Existing evaluation

measures are typically calculated over manually defined information needs (specific

to each query) [53, 77, 43, 186], or must rely on live user studies [156]. The query-
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specific information needs (also known as information nuggets or subtopics) are

either pre-defined and corpus independent [53], or are determined after viewing a

set of candidate documents for that query [77]. The granularity of these evaluation

measures is then determined by the granularity of manual labeling, and thus can

vary from query to query.

For relatively broad topics, existing ML approaches can effectively categorize

documents using large topic hierarchies [27, 59, 172, 69, 118]. Recent IR studies

have also demonstrated the benefit of using global topic hierarchies to augment re-

trieval functions [22, 9, 114, 56]. For queries with coarse-grained ambiguities (such

as for the query “Jaguar”), it may be sufficient to simply use these hierarchical

classification techniques to automatically determine the different information needs

of such queries. But it is much more difficult for such techniques to improve search

results for queries such as “Support Vector Machine” and for learning queries in

general.

More generally, one should optimize metrics that best reflect user utility. Per-

formance measures such as mean average precision and NDCG can be interpreted

as ways to model (i.e., approximate) user utility – albeit ones that make very

strong independence assumptions regarding the relevance each document.2 Chap-

ter 4 describes a general learning approach for optimizing utility functions that are

sensitive to inter-document overlap and redundancy.

2The measures described in Section 2.3 all decompose into a (weighted) sum individual rele-
vances of documents at each rank position.
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2.5 Learning from User Interactions

The earliest studies on evaluating and optimizing information retrieval systems

commonly used the Cranfield methodology (such as many tasks in TREC [168]),

which relies on explicit relevance judgments collected from human experts. Given

such a collection of labeled data, the aforementioned supervised learning approaches

can then be applied, evaluated, and compared.

Unfortunately, acquiring explicit relevance judgments is quite costly and time

consuming, making it difficult to apply at scale for large search services such as

commercial search engines. It is also infeasible to collect explicit relevance judg-

ments across a variety of search domains such as patent or medical search. Most

importantly, it ignores many other aspects of the usage context. Indeed, some

metrics based on human judgments have been shown to not necessarily correlate

with more user-centric performance measures [166]. Thus, it can be difficult to

use labeled data to generate representative models of user utility. Consequently,

collecting usage logs such as clickthrough data has become increasingly popular in

recent years.

Implicit feedback offers many benefits. First, it is harvested from usage data

such as clickthrough logs, and is thus cheap to acquire and plentiful. It is also natu-

rally representative of the target user population. As such, successfully integrating

implicit feedback into the development of retrieval models can greatly improve

search performance. For example, one can incorporate implicit user feedback as

features into a standard batch learning algorithm [3, 39].

Implicit feedback can be also used instead of explicitly labeled data when mod-

eling and optimizing user utility (cf. [20, 44, 94, 157]). The challenge lies in cor-
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rectly interpreting clickthrough results into a quantifiable value for optimization

purposes. Despite implicit feedback being noisier than explicitly labeled training

data, the sheer quantity of data available will hopefully allow us to learn more

effective retrieval models.

Accurate interpretation of usage logs is an area of intense study (see [93] for an

overview). The most prevalent issue is that of position bias – that users tend to

click more on higher ranked results [83, 71, 88] – which must be addressed when

deriving reliable implicit feedback from clickthrough data. Since users typically

scan results in rank order, clicking on higher ranked results does not necessarily

indicate relevance. For example, one way to leverage usage data as an evaluation

metric is by adjusting for bias post-collection [169].

2.5.1 Eliciting Unbiased Feedback

One effective line of approach is to infer pairwise or relative preferences from

usage logs. For example, one can interpret a clicked document to be more relevant

than an unclicked document presented higher in the ranking [83]. This type of

feedback integrates well with the learning methods discussed in Section 2.2.3 that

optimize over pairwise preferences, and has been shown to agree with human judged

relative preferences [88, 135]. Since users often reformulate queries after finding

no satisfactory results from the original query [155, 112], relative preferences can

be extended across multiple query formulations: a clicked on document in this

“query chain” can be interpreted as being more relevant than unclicked documents

presented in servicing earlier query formulations [136].

A more proactive approach to eliciting unbiased feedback is to apply on-line
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experiment design in order to preemptively control for position bias. For example,

if two competing results were randomly shown in the the original and reversed

orders equally often, then clicks might correspond to relative preferences between

the two results (i.e., the superior result is clicked on more often) [83, 137, 138, 50].

Of particular relevance to this dissertation are evaluation methods which elicit

pairwise preferences over the entire set or ranking of retrieved results. For instance,

to elicit whether a user prefers ranking r1 over r2, Radlinski et al [140] showed how

to present an interleaved ranking of r1 and r2 so that clicks indicate which of

the two has higher utility (this is described in greater detail in Chapter 7). One

advantage of this approach is that it allows for inferring which ranking has higher

utility (to the users) without explicitly defining a possibly inaccurate model of user

utility.

2.5.2 Towards Interactive Learning

From a machine learning perspective, a major limitation of the aforementioned

approaches is that implicit feedback is collected passively, e.g. users’ clicks are

logged on results retrieved by the incumbent retrieval function. Thus, users will

never see (and thus never click on and provide feedback for) results not ranked

highly by the incumbent retrieval function. A more satisfying approach is to

allow the search engine to actively choose which results to present in order to

optimize for some compromise between providing good service and exploring for

better retrieval strategies. For example, given a family of retrieval functions, one

can design adaptive approaches that interact with users by choosing which two

retrieval functions to compare (e.g., via interleaving as described above), and then

use users’ clicks to infer unbiased feedback. This motivates the interactive learning
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framework, called the Dueling Bandits Problem, that is described in Chapter 5.

2.6 Other Related Work

The intersection of machine learning and information retrieval is quite broad and

diverse, much of which is beyond the scope of this dissertation. The following

provides a brief overview of a few prominent related areas.

2.6.1 Language Modeling

Probabilistic language modeling [188, 107] is a research area with strong ties

to both Information Retrieval and Natural Language Processing. The standard

premise is relatively simple to state. Given a probabilistic language model P (d, q)

of how to generate (i.e., sample) documents and queries, one can then compute

the following relevance measure by invoking Bayes rule:

P (d|q) =
P (q, d)

P (q)
, (2.13)

One simple intuition to explain (2.13) is the following: the user issuing the query

has a particular document in mind that satisfies the information need – but which

one is it? The conditional distribution P (d|q) models the conditional probability

that any particular document d is the one that satisfies a user that issues query

q. An application of Bayes rule shows this to be equivalent to the RHS of (2.13).

Note that P (q) is constant, since we’re dealing here with a single query. This yields

P (d|q) rank
= P (d, q), (2.14)
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which is often computed as P (q|d)P (d) due to computational convenience. Since

P (d) is also often assumed to be uniform for all d,3 this yields

P (d|q) rank
= P (q|d). (2.15)

Note that computing P (q|d) might not require anything more complex than

simple vector space models, and in practice often reduces to some kind of fre-

quency counting of the query terms within the document d. One advantage of

language modeling approaches is that they offer a principled framework for de-

signing such probabilistic models (which can incorporate smoothing via priors).

One disadvantage is that model estimation is typically done via maximum likeli-

hood (as is appropriate for probabilistic generative models), which may not lead

to the best retrieval performance as determined by rank-based measures such as

NDCG.

Beyond directly applying to the standard retrieval setting, language models are

also used to capture salient properties of a corpus, such as its topics (or aspects or

clusters) [54, 81, 19]. These methods are often employed when developing diver-

sified retrieval approaches, since modeling the different topics or clusters within a

set of candidate documents is often used as a pre-processing step to result diversi-

fication.

2.6.2 Relevance Feedback

In the relevance feedback setting, feedback from users or expert judges are used to

augment the query in order to generate more informative models of the information

3The model P (d, q) is often estimated using a corpus of documents, where each document is
assumed to be sampled according to some unknown distribution. Making the further assumption
that this sampling occurs i.i.d. immediately suggests that P (d) should be uniform.
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need [149]. At a high level, there are three types of relevance feedback: explicit

feedback from users or expert judges, implicit feedback collected from users as

they interact with the system, and pseudo or blind feedback which is collected

without any human response (e.g., by assuming the top results retrieved by an

existing search engine tend to be relevant). This feedback is typically collected for

individual documents (e.g., feedback that certain documents are relevant to the

query), but other forms of feedback are also possible.

Such feedback is then used to build a more refined model of user intent. Well-

known methods include vector space model approaches [146, 151], language model

approaches [130, 187], as well as query expansion approaches [23, 28, 51, 9]. These

motheods all follow the same general motivation: the resulting query intent should

be close with respect to a chosen similarity measure to the documents provided by

the relevance feedback. One can alternatively employ various approaches such as

network analysis techniques[104, 105] to directly compute the quality or relevance

of a candidate set of documents without explicitly producing a query/document

distance measure.

Interactive learning can be thought of as a way to model how a live retrieval

system should gather feedback in an on-line setting. Most prior research on rele-

vance feedback have instead focused either on how to best integrate feedback into

an existing model class, or how to best gather feedback (i.e. explore) in order

to learn as much as possible. In contrast, interactive learning is concerned with

optimizing the entire user experience over time. One particularly important com-

ponent is how to balance the exploration versus exploitation trade-off – this is

discussed further in Chapters 5 and 6.
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Part II

Structured Prediction
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CHAPTER 3

STRUCTURED PREDICTION AND OPTIMIZING RANK-BASED

PERFORMANCE MEASURES

Structured prediction refers to any type of prediction task that is performed

jointly over multiple input instances or a single complex input (e.g., a ranking over

a set of documents). Rankings are the most common types of structured outputs

within information retrieval.

At an abstract level, a structured prediction task is much like a multi-class

classification task. Let X be the space of structured input instances and Y be the

space of structured ouput labels. Each possible structure y ∈ Y (e.g., a parse tree

or a ranking) corresponds to one “class”, and classifying a new example x amounts

to predicting its correct “class”. We can write the structured hypothesis function

(which is used to make predictions) as

h(x) = argmax
y∈Y

F (x,y), (3.1)

where F : X ×Y → R, also known as the joint discriminant, measures the quality

of predicting y ∈ Y for a given input x ∈ X . The hypothesis function h then

predicts by choosing the best possible y. For simplicity, we restrict ourselves to

discriminants which are parameterized linearly in some large feature space,

F (x,y|w) = wTΨ(x,y), (3.2)

where w is the model weight vector, and Ψ : X ×Y → RM , also known as the joint

feature map, is a high dimensional feature map characterizing the compatibility of

x and y, and also captures the structure of the prediction task.

The strength of the joint feature formulation Ψ is that it allows for using

features that examine the combined properties of X and Y (rather than just X as
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in most conventional machine learning approaches). This way, the number features

in Ψ need not depend on Y at all, leading to a compact feature representation.

For example, in part of speech tagging, we can define Ψ as

Ψ(x,y) =


∑

i φ1(y(i), y(i−1))

∑
i φ2(x(i), y(i))

 ,
where φ1 is feature vector describing adjacent part-of-speech tags y(i) and y(i−1)

(e.g., one feature for each possible transition, noun/verb, noun/conjunction, etc.),

and φ2 is a feature vector describing the assignment of tag y(i) to word x(i) in

the input sentence x. This is structurally equivalent to a hidden Markov model,

thus allowing h(x) to be computed efficiently via the standard Viterbi algorithm

[45, 7, 165, 106].

In recent years, numerous structured prediction approaches have been pro-

posed that span an impressive range of applications including part-of-speech tag-

ging, parsing and segmentation [45, 161, 106, 7, 165, 8], object recognition and

stereo vision problems [158, 64, 133, 160, 148, 78], sequence alignment problems

in computational biology [177, 142], and clustering [62, 63]. These approaches all

exploit known structure in the prediction task, which typically makes prediction

(i.e., computing h(x)) tractable.

Given an appropriate formulation for Ψ and a learned model w, (3.1) can often

be solved using existing algorithms such as the Viterbi algorithm for hidden Markov

models, the CYK algorithm for parse trees [165], graph cuts [101, 97] and belief

propagation [176, 110] for Markov random fields, and sorting for rankings. Given

a training set of labeled inputs {xi,yi}Ni=1, training a good model vector w can,

in principle, be accomplished using methods such as perceptrons [45], conditional

random fields [106], SVMs [160, 165, 159], neural networks [25], and general gra-
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dient descent techniques [46, 162]. We build upon the structural SVM framework

[164, 165, 87, 89] for developing our approach.

3.1 Optimizing Rank-Based Performance Measures

Commonly used information retrieval performance measures such as MAP and

NDCG (see Section 2.3) provide precise optimization goals during training. Unfor-

tunately, small changes in the document output scores do not necessarily change

the ranking, thus causing no change in the rank-based performance measures.

When rankings do change (due to two document scores swapping in relative mag-

nitude), they cause instantaneous changes in the performance measures. Thus,

these rank-based measures are either flat or discontinuous everywhere with re-

spect to a similarity function’s model parameters. This causes great difficulty

when attempting to optimize via gradient descent approaches [181]. Initial ap-

proaches to optimizing these performance measures either used ad-hoc heuristics

[29], or optimized over very restricted parameter spaces [123].

In lieu of directly optimizing rank-based measures, a surrogate objective func-

tion is often used. Approaches based on boosting optimize an exponential loss

upper bound [190, 173], whereas approaches based on SVMs optimize a hinge loss

upper bound of performance loss [37, 182, 174]. Both upper bounds are smooth and

can be optimized as is or with regularization (such as L2 regularization commonly

used in SVMs). We will present an SVM approach for optimizing mean average

precision (more precisely, the approach will optimize a convex loss function that is

a rigorous upper bound of average precision loss).

Following the supervised learning setup described in Chapter 2, our goal is to

learn a function h : X → Y between an input space X (e.g., all possible queries)
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and output space Y (e.g., rankings over a corpus). In order to quantify the quality

of a prediction, ŷ = h(x), we will use a loss function ∆ : Y × Y → < that allows

us incorporate specific performance measures such as MAP. Given a finite set of

training pairs, S = {(xi,yi) ∈ X × Y : i = 1, . . . , N}, the performance of h on S

can be measured by the empirical risk,

R∆
S (h) =

1

N

N∑
i=1

∆(yi, h(xi)).

Since we are focusing on functions which are parametrized by a weight vector w,

we can restate the goal as finding the w which minimizes the empirical risk,

R∆
S (w) ≡ R∆

S (h(·|w)). (3.3)

In the case of learning a ranked retrieval function, X corresponds to a space

of queries, and Y to a space of (possibly weak) rankings over some corpus of

documents C = {d1, . . . ,d |C|}.

We can define average precision loss as

∆map(y, ŷ) = 1−MAP(rank(y), rank(ŷ)),

where rank(y) is a vector of the rank values of each document in C. For exam-

ple, for a corpus of two documents, {d1, d2}, with d1 being more relevant than

d2 according to y, we can write rank(y) = (1, 0). We assume that ground truth

rankings have two rank values, where relevant documents have rank value 1 and

non-relevant documents rank value 0. We further assume that all predicted rank-

ings are complete rankings (no ties).

Let p = rank(y) and p̂ = rank(ŷ). The average precision score is defined as

MAP(p, p̂) =
1

rel

∑
j:pj=1

Prec@j,
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where rel = |{i : pi = 1}| is the number of relevant documents, and Prec@j is the

percentage of relevant documents in the top j documents in predicted ranking ŷ.

MAP is the mean of the average precision scores of a group of queries.

It remains to develop an appropriate feature formulation of the hypothesis func-

tion h (i.e., Ψ) as well as an effective supervised training approach for optimizing

MAP. As we shall see in the following, the structure of the joint feature map Ψ is

relatively simple. But unlike many other structured prediction learning problems,

the challenge here lies in solving the induced optimization problem during train-

ing, since MAP is a complex multivariate loss function that is defined over entire

rankings of labeled documents.1

Comparing MAP with ROCArea and Accuracy

Most learning algorithms optimize for accuracy or ROCArea. While optimizing for

these measures might achieve good MAP performance, we use two simple examples

to show it can also be suboptimal in terms of MAP.

ROCArea assigns equal penalty to each misordering of a relevant/non-relevant

pair. In contrast, MAP assigns greater penalties to misorderings higher up in the

predicted ranking. Using our notation, ROCArea can be defined as

ROC(p, p̂) =
1

rel · (|C| − rel)

∑
i:pi=1

∑
j:pj=0

1[p̂i>p̂j ],

where p is the ground truth (weak) ranking, p̂ is the predicted ranking, and 1[b] is

the indicator function conditioned on predicate b.

1In most other structured prediction learning problems, the loss function is fairly simple and
can be evaluated independently on each individual prediction (e.g., Hamming loss in sequence
labeling problems).
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Table 3.1: Comparing MAP and ROCArea: Toy Example and Models

Doc ID 1 2 3 4 5 6 7 8
p 1 0 0 0 0 1 1 0

rank(h1(x)) 8 7 6 5 4 3 2 1
rank(h2(x)) 1 2 3 4 5 6 7 8

Table 3.2: Comparing MAP and ROCArea: Performance of Toy Models

Hypothesis MAP ROCArea
h1(x) 0.59 0.47
h2(x) 0.51 0.53

Suppose we have a hypothesis space with only two hypothesis functions, h1 and

h2, as shown in Table 3.1. These two hypotheses predict a ranking for query x over

a corpus of eight documents. Note that rank(·) gives the rank label (so a larger

value means more relevant). Table 3.2 shows the MAP and ROCArea scores of h1

and h2. Here, a learning method which optimizes for ROCArea would choose h2

since that results in a higher ROCArea score, but this yields a suboptimal MAP

score.

Using a very similar example, we can also demonstrate how optimizing for

accuracy might result in suboptimal MAP. Models which optimize for accuracy

are not directly concerned with the ranking. Instead, they learn a threshold such

that documents scoring higher than the threshold can be classified as relevant and

documents scoring lower as non-relevant.

Consider again a hypothesis space with two hypotheses. Table 3.3 shows the

predictions of the two hypotheses on a single query x. Table 3.4 shows the MAP

and best accuracy scores of h1(q) and h2(q). The best accuracy refers to the high-

est achievable accuracy on that ranking when considering all possible thresholds.

For instance, with h1(q), a threshold between documents 1 and 2 gives 4 errors

(documents 6-9 incorrectly classified as non-relevant), yielding an accuracy of 0.64.
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Table 3.3: Comparing MAP and Accuracy: Toy Example and Models

Doc ID 1 2 3 4 5 6 7 8 9 10 11
p 1 0 0 0 0 1 1 1 1 0 0

rank(h1(x)) 11 10 9 8 7 6 5 4 3 2 1
rank(h2(x)) 1 2 3 4 5 6 7 8 9 10 11

Table 3.4: Comparing MAP and Accuracy: Performance of Toy Models

Hypothesis MAP Best Acc.
h1(q) 0.56 0.64
h2(q) 0.51 0.73

Similarly, with h2(q), a threshold between documents 5 and 6 gives 3 errors (doc-

uments 10-11 incorrectly classified as relevant, and document 1 as non-relevant),

yielding an accuracy of 0.73. A learning method which optimizes for accuracy

would choose h2 since that results in a higher accuracy score, but this yields a

suboptimal MAP score.

3.1.1 Structured Prediction Model for Optimizing MAP

We develop our structured prediction model by building off the approach proposed

in [85] for optimizing ROCArea. Unlike ROCArea, however, MAP does not de-

compose linearly in the examples and requires a substantially extended algorithm

[182], which we describe in the following sections.

Recall that the ground truth ranking is a weak ranking with two rank val-

ues (relevant and non-relevant). Let Cx and Cx̄ denote the set of relevant and

non-relevant documents of C for query x, respectively. Following the notation

established in (3.1) and (3.2), the combined feature function we use is

Ψ(x,y) =
1

|Cx| · |C x̄|
∑
i:di∈Cx

∑
j:dj∈Cx̄

[yij (φ(x, di)− φ(x, dj))] , (3.4)
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where φ : X × C → <N is a feature mapping function from a query/document

pair to a point in N dimensional space.2 We represent rankings as a matrix of

pairwise orderings, Y ⊂ {−1, 0,+1}|C|×|C|. For any y ∈ Y , yij = +1 if di is ranked

ahead of dj, and yij = −1 if dj is ranked ahead of di, and yij = 0 if di and dj have

equal rank. We consider only matrices which correspond to valid rankings (i.e,

obeying antisymmetry and transitivity). Intuitively, Ψ is a summation over the

vector differences of all relevant/non-relevant document pairings. Since we assume

predicted rankings to be complete rankings, yij is either +1 or −1, and never 0.

Given a learned weight vector w, predicting a ranking (i.e., solving (3.1)) given

query x reduces to picking each yij to maximize wTΨ(x,y). As is also discussed in

[85], this is attained by sorting the documents by wTφ(x, d) in descending order.3

Thus the formulation in (3.1) provides an explicit structure that is compatible with

many exist classes of retrieval functions.4 We will discuss later the choices of φ we

used for empirical evaluations.

3.2 Training with Structural SVMs

The formulation in (3.4) is very similar to learning a straightforward linear model

while training on the pairwise difference of relevant/non-relevant document pair-

ings. Many SVM-based approaches optimize over these pairwise differences (e.g.,

[32, 75, 85, 29]), although these methods do not optimize for MAP during training.

2For example, one dimension might be the number of times the query words appear in the
document.

3Note that the feature formulation requires knowing the relevance labels, which are unavailable
at test time. However, since the argmax is solved by sorting on wTφ(x, d), the explicit joint
feature model is not actually required when making predictions.

4Most existing approaches use some method to train or tune w, after which rankings are
computed by sorting on wTφ(x, d). However, a full model is usually left undefined.
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Previously, it was not clear how to incorporate non-linear multivariate loss func-

tions such as MAP loss directly into global optimization problems such as SVM

training. We now present a method based on structural SVMs [165] to address

this problem.

We use the structural SVM formulation, presented in Optimization Problem 4,

to learn a w ∈ RN .

Optimization Problem 4. (Structural SVM)

min
w,ξ≥0

1

2
‖w‖2 +

C

n

N∑
i=1

ξi (3.5)

s.t. ∀i, ∀y ∈ Y \ yi :

wTΨ(xi,yi) ≥ wTΨ(xi,y) + ∆(yi,y)− ξi (3.6)

The objective function to be minimized (3.5) is a trade-off between model

complexity, ‖w‖2, and a hinge loss relaxation of MAP loss,
∑
ξi. As is usual in

SVM training, C is a parameter that controls this trade-off and can be tuned to

achieve good performance in different tasks.

For each (xi,yi) in the training set, a set of constraints of the form in equa-

tion (3.6) is added to the optimization problem. Note that wTΨ(x,y) is exactly

the discriminant function F (x,y|w) (see equation (3.2)). During prediction, the

model chooses the ranking which maximizes the discriminant (3.1). If the discrim-

inant value for an incorrect ranking y is greater than for the true ranking yi (i.e.,

F (xi,y|w) > F (xi,yi|w)), then the corresponding slack variable, ξi, must be at

least ∆(yi,y) in order for that constraint to be satisfied. Therefore, the sum of

slacks,
∑
ξi, upper bounds the MAP loss. This is stated formally in Proposition

1.
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Algorithm 1 Cutting Plane Training for Structural SVMs.

1: Input: S = ((x1, y1), . . . , (xn, yN)), C, ε
2: W ← ∅, w = 0, ξi ← 0 for all i = 1, ..., N
3: repeat
4: for i=1,...,N do
5: ŷ ← argmaxŷ∈Y{∆i(ŷ) + 〈w,Ψ(xi, ŷ)〉}
6: if 〈w, [Ψ(x̄i, yi)−Ψ(x̄i, ŷ)]〉 < ∆i(ŷ)− ξi − ε then
7: W ←W ∪ {〈w,[Ψ(xi,yi)−Ψ(xi,ŷ)]〉 ≥ ∆i(ŷ)− ξi}
8: (w, ξ)← argmin

w,ξ≥0

1
2
〈w,w〉+ C

N

∑N
i=1 ξi s.t. W

9: end if
10: end for
11: until W has not changed during iteration
12: return(w,ξ)

Proposition 1. Let ξ∗(w) be the optimal solution of the slack variables for OP 4

for a given weight vector w. Then 1
N

∑N
i=1 ξi is an upper bound on the empirical

risk R∆
S (w).

Proof. The essential observation is that

ξ∗i = max

{
0,max

y
{∆(yi,y)−wT (Ψ(xi,yi)−Ψ(xi,y))}

}
,

which is guaranteed to upper bound ∆(yi,y) for y such that

Proposition 1 shows that OP 4 learns a ranking function that optimizes an

upper bound on MAP error on the training set. And since OP 4 is a quadratic (and

thus convex) program it should be straightforward to optimize. Unfortunately, the

number of constraints (3.6) is typically very large (often exponential in |Y|), thus

making it intractable to enumerate all the constraints to input to a standard SVM

solver, let alone optimize.

The key idea is to iteratively construct a working set of constraints W that

is equivalent to the full set of constraints in OP 4 up to a specified precision
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ε. Starting with an empty W and w = 0, Algorithm 1 iterates through the

training examples. For each example, the argmax in Line 5 finds the most violated

constraint of the quadratic program in OP 4. If this constraint is violated by

more than ε (Line 6), it is added to the working set W (Line 7) and a new w

is computed by solving the quadratic program over the new W (Line 8). The

algorithm terminates and returns the current w if W did not change between

iterations.

It is obvious that, for any desired ε, the algorithm only terminates when it has

found an ε-accurate solution since it verifies in Line 8 that none of the constraints

of the quadratic program in OP 4 are violated by more than ε. It can be shown

[165] that Algorithm 1 always terminates in a polynomial number of iterations that

is independent of the cardinality of the output space Y .

Theorem 1. [165] Let R̄ = maxi maxy ‖Ψ(xi,yi)−Ψ(xi,y)‖, ∆̄ = maxi maxy ∆(yi,y),

and for any ε > 0, Algorithm 1 terminates after adding at most

max

{
2n∆̄

ε
,
8C∆̄R̄2

ε2

}
constraints to the working set W.

In fact, a refined version of Algorithm 1 [86, 87] always terminates after adding

at most O(Cε−1) constraints toW (typically |W| << 1000). Note that the number

of constraints is not only independent of |Y|, but also independent of the number

of training examples N .

However, while the number of iterations is small, the argmax in Line 8 might be

expensive to compute. Though closely related to solving the argmax for comput-

ing predicitons h(x), it has the additional complication in that we must contend

with the additional ∆(yi,y) term. Without the ability to efficiently find the most
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violated constraint (i.e., solve argmaxy∈Y H(y,w)), the constraint generation pro-

cedure is not tractable. We will present an efficient algorithm for finding the most

violated constraint in the following section.

3.2.1 Finding the Most Violated Constraint

Using OP 4 and optimizing to ROCArea loss (∆roc) is addressed in [85]. Computing

the most violated constraint for ∆map is more difficult. This is primarily because

ROCArea decomposes nicely into a sum of scores computed independently on each

relative ordering of a relevant/non-relevant document pair. MAP, on the other

hand, does not decompose in the same way as ROCArea.

We first define the following objective function,

H(y|w) ≡ ∆(yi,y) + wTΨ(xi,y)−wTΨ(xi,yi). (3.7)

Note that finding the most violated constraint is equivalent to solving argmaxy∈Y H(y).

One useful property of ∆map is its invariance to the swapping of any two doc-

uments with equal relevance. For example, if documents da and db are both rel-

evant, then swapping the positions of da and db in any ranking does not affect

∆map. By extension, ∆map is invariant to any arbitrary permutation of the rele-

vant documents amongst themselves and of the non-relevant documents amongst

themselves. However, this reshuffling will affect the discriminant score, wTΨ(x,y).

This leads us to Observation 1.

Observation 1. Consider rankings which are constrained by fixing the relevance

at each position in the ranking (e.g., the 3rd document in the ranking must be rele-

vant). Every ranking which satisfies the same set of constraints will have the same
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∆map. If the relevant documents are sorted by wTφ(x, d) in descending order, and

the non-relevant documents are likewise sorted by wTφ(x, d), then the interleav-

ing of the two sorted lists which satisfies the constraints will maximize H for that

constrained set of rankings.

Observation 1 implies that in the ranking which maximizes H, the relevant

documents will be sorted by wTφ(x, d), and the non-relevant documents will also

be sorted likewise. By first sorting the relevant and non-relevant documents, the

problem is simplified to finding the optimal interleaving of two sorted lists. We

henceforth assume that the relevant documents and non-relevant documents are

both sorted by descending wTφ(x, d). We will also refer to relevant documents as

{dx1 , . . . dx|Cx|} = Cx, and non-relevant documents as {dx̄1 , . . . dx̄|Cx̄|} = Cx̄.

We define δj(i1, i2), with i1 < i2, as the change in H from when the highest

ranked relevant document ranked after dx̄j is dxi2 to when it is dxi1 . For i2 = i1 + 1,

we have

δj(i, i+ 1) =
1

|Cx|

(
j

j + i
− j − 1

j + i− 1

)
−

2 · (sxi − sx̄j )
|Cx| · |Cx̄|

, (3.8)

where si = wTφ(x, di). The first term in (3.8) is the change in ∆map when the ith

relevant document has j non-relevant documents ranked before it, as opposed to

j − 1. The second term is the change in the discriminant score, wTΨ(x,y), when

yij changes from +1 to −1.

. . . , dxi , d
x̄
j , d

x
i+1, . . .

. . . , dx̄j , d
x
i , d

x
i+1, . . .

Figure 3.1: Optimizing Average Precision: Example for δj(i, i+ 1)

Figure 3.1 gives a conceptual example for δj(i, i + 1). The bottom ranking

differs from the top only where dx̄j slides up one rank. The difference in the value
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Algorithm 2 Finding the Most Violated Constraint for Optimizing MAP

1: Input: w, Cx, Cx̄
2: sort Cx and Cx̄ in descending order of wTφ(x, d)
3: sxi ← wTφ(x, dxi ), i = 1, . . . , |Cx|
4: sx̄i ← wTφ(x, dx̄i ), i = 1, . . . , |Cx̄|
5: for j = 1, . . . , |Cx̄| do
6: optj ← argmaxk δj(k, |Cx|+ 1)
7: end for
8: encode ŷ according to (3.10)
9: return ŷ

of H for these two rankings is exactly δj(i, i+ 1).

For any i1 < i2, we can then define δj(i1, i2) as

δj(i1, i2) =

i2−1∑
k=i1

δj(k, k + 1), (3.9)

or equivalently,

δj(i1, i2) =

i2−1∑
k=i1

[
1

|Cx|

(
j

j + k
− j − 1

j + k − 1

)
−

2 · (sxk − sx̄j )
|Cx| · |Cx̄|

]
.

Let o1, . . . , o|Cx̄| encode the positions of the non-relevant documents, where dxoj is

the highest ranked relevant document ranked after the jth non-relevant document.

Due to Observation 1, this encoding uniquely identifies a complete ranking. We

can recover the ranking as

yij =



0 if i = j

sign(si − sj) if di, dj equal relevance

sign(oj′ − i′ − 0.5) if di = dxi′ , dj = dx̄j′

sign(j′ − oi′ + 0.5) if di = dx̄i′ , dj = dxj′

. (3.10)

We can now reformulate H into a new objective function,

H ′(o1, . . . , o|Cx̄||w) = H(ȳ|w) +

|Cx̄|∑
k=1

δk(ok, |Cx|+ 1),
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where ȳ is the true (weak) ranking. Conceptually H ′ starts with a perfect ranking

ȳ, and adds the change in H when each successive non-relevant document slides

up the ranking.

We can then reformulate the argmaxH problem as

argmaxH ′ = argmax
o1,...,o|Cx̄|

|Cx̄|∑
k=1

δk(ok, |Cx|+ 1) (3.11)

such that

o1 ≤ . . . ≤ o|Cx̄|. (3.12)

Algorithm 2 describes the algorithm used to solve equation (3.11). Concep-

tually, Algorithm 2 starts with a perfect ranking. Then for each successive non-

relevant document, the algorithm modifies the solution by sliding that document

up the ranking to locally maximize H ′ while keeping the positions of the other

non-relevant documents constant.

3.2.2 Proof of Correctness

Algorithm 2 is greedy in the sense that it finds the best position of each non-

relevant document independently from the other non-relevant documents. In other

words, the algorithm maximizes H ′ for each non-relevant document, dx̄j , without

considering the positions of the other non-relevant documents, and thus ignores

the constraints of (3.12).

In order for the solution to be feasible, then jth non-relevant document must

be ranked after the first j − 1 non-relevant documents, thus satisfying

opt1 ≤ opt2 ≤ . . . ≤ opt|Cx̄|. (3.13)
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If the solution is feasible, then it clearly solves (3.11). Therefore, it suffices to

prove that Algorithm 2 satisfies (3.13). We first prove that δj(·, ·) is monotonically

decreasing in j.

Lemma 1. For any 1 ≤ i1 < i2 ≤ |Cx| + 1 and 1 ≤ j < |Cx̄|, it must be the case

that

δj+1(i1, i2) ≤ δj(i1, i2).

Proof. Recall from (3.9) that both δj(i1, i2) and δj+1(i1, i2) are summations of i2−i1

terms. We will show that each term in the summation of δj+1(i1, i2) is no greater

than the corresponding term in δj(i1, i2), or

δj+1(k, k + 1) ≤ δj(k, k + 1)

for k = i1, . . . , i2 − 1.

Each term in δj(k, k+1) and δj+1(k, k+1) can be further decomposed into two

parts (see (3.8)). We will show that each part of δj+1(k, k + 1) is no greater than

the corresponding part in δj(k, k + 1). In other words, we will show that both

j + 1

j + k + 1
− j

j + k
≤ j

j + k
− j − 1

j + k − 1
(3.14)

and

−
2 · (sxk − sx̄j+1)

|Cx| · |Cx̄|
≤ −

2 · (sxk − sx̄j )
|Cx| · |Cx̄|

(3.15)

are true for the aforementioned values of j and k.

It is easy to see that (3.14) is true by observing that for any two positive integers

1 ≤ a < b,

a+ 1

b+ 1
− a

b
≤ a

b
− a− 1

b− 1
,

and choosing a = j and b = j + k.
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The second inequality (3.15) holds because Algorithm 2 first sorts dx̄ in de-

scending order of sx̄, implying sx̄j+1 ≤ sx̄j .

Thus we see that each term in δj+1 is no greater than the corresponding term

in δj, which completes the proof.

The result of Lemma 1 leads directly to the main correctness result of this

chapter:

Theorem 2. In Algorithm 2, the computed values of optj satisfy (3.13), implying

that the solution returned by Algorithm 2 is feasible and thus optimal.

Proof. We will prove that

optj ≤ optj+1

holds for any 1 ≤ j < |Cx̄|, thus implying (3.13).

Since Algorithm 2 computes optj as

optj = argmax
k

δj(k, |Cx|+ 1), (3.16)

then by definition of δj (3.9), for any 1 ≤ i < optj,

δj(i, optj) = δj(i, |Cx|+ 1)− δj(optj, |Cx|+ 1) < 0.

Using Lemma 1, we know that

δj+1(i, optj) ≤ δj(i, optj) < 0,

which implies that for any 1 ≤ i < optj,

δj+1(i, |Cx|+ 1)− δj+1(optj, |Cx|+ 1) < 0.
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Suppose for contradiction that optj+1 < optj. Then

δj+1(optj+1, |Cx|+ 1) < δj+1(optj, |Cx|+ 1),

which contradicts (3.16). Therefore, it must be the case that optj ≤ optj+1, which

completes the proof.

3.3 Experiments

The main goal of these experiments is to evaluate whether directly optimizing MAP

leads to improved MAP performance compared to conventional SVM methods that

optimize a substitute loss such as accuracy or ROCArea. We empirically evaluated

using two sets of TREC Web Track queries, one each from TREC 9 and TREC

10 (topics 451-500 and 501-550), both of which used the WT10g corpus. For each

query, TREC provides the relevance judgments of the documents.

We generated features using the scores of existing retrieval functions on these

queries. While the proposed method is agnostic to the meaning of the features, we

chose to use existing retrieval functions as a simple yet effective way of acquiring

useful features. As such, these experiments essentially test our method’s ability to

re-rank the highly ranked documents (e.g., re-combine the scores of these retrieval

functions) to improve MAP.

We compare against the best retrieval functions trained on (henceforth base

functions), as well as against previously proposed SVM methods. Comparing with

the best base functions tests our method’s ability to learn a useful combination.

Comparing with previous SVM methods allows us to test whether optimizing di-

rectly for MAP (as opposed to accuracy or ROCArea) achieves a higher MAP score
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in practice. The rest of this section describes the base functions and the feature

generation method in detail.

3.3.1 Choosing Retrieval Functions

We chose to evaluate using two sets of base functions. For the first set, we generated

three indexes over the WT10g corpus using Indri.5 The first index was generated

using the default settings, the second used Porter-stemming, and the last used

Porter-stemming and Indri’s default stopwords.

For both TREC 9 and TREC 10, we used the description portion of each query

and scored the documents using five of Indri’s built-in retrieval methods, which

are Cosine Similarity, TFIDF, Okapi, Language Model with Dirichlet Prior, and

Language Model with Jelinek-Mercer Prior. All parameters were kept as their

defaults.

We computed the scores of these five retrieval methods over the three indexes,

giving 15 base functions in total. For each query, we considered the scores of

documents found in the union of the top 1000 documents of each base function.

For the second set of base functions, we used scores from the TREC 9 [73] and

TREC 10 [74] Web Track submissions. We used only the non-manual, non-short

submissions from both years. For TREC 9 and TREC 10, there were 53 and 18

such submissions, respectively. A typical submission contained scores of its top

1000 documents.

5http://www.lemurproject.org
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Figure 3.2: Optimizing Average Precision: Example Feature Binning

3.3.2 Generating Features

In order to generate input examples, a concrete instantiation of φ must be provided.

For each document d scored by a set of retrieval functions F on query x, we generate

the features as a vector

φ(x, d) = 〈1[f(d|x)>k] : ∀f ∈ F ,∀k ∈ Kf〉,

where f(d|x) denotes the score that retrieval function f assigns to document d for

query x, and each Kf is a set of real values. From a high level, we are expressing

the score of each retrieval function using |Kf |+ 1 bins.

Since we are using linear kernels, one can think of the learning problem as find-

ing a good piecewise-constant combination of the scores of the retrieval functions.

Figure 3.2 shows an example of the feature mapping method. In this example we

have a single feature F = {f}. Here, Kf = {a, b, c}, and the weight vector is

w = 〈wa, wb, wc〉. For any document d and query x, we have

wTφ(x, d) =



0 if f(d|x) < a

wa if a ≤ f(d|x) < b

wa + wb if b ≤ f(d|x) < c

wa + wb + wc if c ≤ f(d|x)

.

This is expressed qualitatively in Figure 3.2, where wa and wb are positive, and wc
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Table 3.5: Optimizing Average Precision: Dataset Statistics

Dataset Base Funcs Features
TREC 9 Indri 15 750
TREC 10 Indri 15 750
TREC 9 Submissions 53 2650
TREC 10 Submissions 18 900

Table 3.6: Comparing SVM∆
map with Base Functions

TREC 9 TREC 10
Model MAP W/L MAP W/L
SVM∆

map 0.242 – 0.236 –

Best Func. 0.204 39/11 ** 0.181 37/13 **

2nd Best 0.199 38/12 ** 0.174 43/7 **

3rd Best 0.188 34/16 ** 0.174 38/12 **

is negative.

We evaluated using four choices of F : the set of aforementioned Indri retrieval

functions for TREC 9 and TREC 10, and the Web Track submissions for TREC

9 and TREC 10. For each F and each function f ∈ F , we chose 50 values for Kf

which are reasonably spaced and which capture the sensitive region of f .

Using the four choices of F , we generated four datasets. Table 3.5 contains

statistics of the generated datasets. There are many ways to generate features,

and we do not necessarily advocate this particular method over others. This was

simply an efficient means to normalize the outputs of different functions and allow

for a more expressive model.
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Table 3.7: Comparing SVM∆
map with TREC Submissions

TREC 9 TREC 10
Model MAP W/L MAP W/L
SVM∆

map 0.290 – 0.287 –

Best Func. 0.280 28/22 0.283 29/21

2nd Best 0.269 30/20 0.251 36/14 **

3rd Best 0.266 30/20 0.233 36/14 **

Table 3.8: Comparing SVM∆
map with TREC Submissions (w/o best)

TREC 9 TREC 10
Model MAP W/L MAP W/L
SVM∆

map 0.284 – 0.288 –

Best Func. 0.280 27/23 0.283 31/19

2nd Best 0.269 30/20 0.251 36/14 **

3rd Best 0.266 30/20 0.233 35/15 **

3.3.3 Experiment Results

For each dataset in Table 3.5, we performed 50 trials. For each trial, we train

on 10 randomly selected queries, and select another 5 queries at random for a

validation set. Models were trained using a wide range of C values. The model

which performed best on the validation set was selected and tested on the remaining

35 queries.

The randomization was designed such that all queries were selected to be in

the training, validation and test sets the same number of times overall. Using this

setup, we performed the same experiments while using our method (SVM∆
map),

an SVM optimizing for ROCArea (SVM∆
roc) [85], and a conventional classification

SVM (SVMacc) [167]. All SVM methods used a linear kernel. We reported the

average performance of all models over the 50 trials.
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3.3.4 Comparing SVM∆
map with Base Functions

The first question to answer is, can SVM∆
map learn a model which outperforms

the best base functions? Table 3.6 presents the comparison of SVM∆
map with the

best Indri base functions. Each column group contains the macro-averaged MAP

performance of SVM∆
map or a base function. The W/L columns show the number

of queries where SVM∆
map achieved a higher MAP score. Significance tests were

performed using the two-tailed Wilcoxon signed rank test. Two stars indicate a

significance level of 0.95. All tables displaying the experimental results are struc-

tured identically. Here, we find that SVM∆
map significantly outperforms the best

base functions.

Table 3.7 shows the comparison when trained on TREC submissions. While

achieving a higher MAP score than the best base functions, the performance dif-

ference between SVM∆
map the base functions is not significant. Given that many of

these submissions use scoring functions which are carefully crafted to achieve high

MAP, it is possible that the best performing submissions use techniques which

dominate the techniques of the other submissions. As a result, SVM∆
map would

not be able to learn a hypothesis which can significantly out-perform the best

submission.

Hence, we ran the same experiments using a modified dataset where the features

computed using the best submission were removed. Table 3.8 shows the results

(note that we are still comparing against the best submission though we are not

using it for training). Notice that while the performance of SVM∆
map degraded

slightly, the performance was still comparable with that of the best submission.
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Table 3.9: Comparing SVM∆
map with SVM∆

roc and SVMacc using Base Functions

TREC 9 TREC 10
Model MAP W/L MAP W/L
SVM∆

map 0.242 – 0.236 –

SVM∆
roc 0.237 29/21 0.234 24/26

SVMacc 0.147 47/3 ** 0.155 47/3 **

SVMacc2 0.219 39/11 ** 0.207 43/7 **

SVMacc3 0.113 49/1 ** 0.153 45/5 **

SVMacc4 0.155 48/2 ** 0.155 48/2 **

Table 3.10: Comparing SVM∆
mapwith SVM∆

roc and SVMacc using TREC Submis-
sions

TREC 9 TREC 10
Model MAP W/L MAP W/L
SVM∆

map 0.290 – 0.287 –

SVM∆
roc 0.282 29/21 0.278 35/15 **

SVMacc 0.213 49/1 ** 0.222 49/1 **

SVMacc2 0.270 34/16 ** 0.261 42/8 **

SVMacc3 0.133 50/0 ** 0.182 46/4 **

SVMacc4 0.233 47/3 ** 0.238 46/4 **

3.3.5 Comparison w/ Conventional SVM Methods

The next question to answer is, does SVM∆
map produce higher MAP scores than

conventional SVM methods? Tables 3.9 and 3.10 present the results of SVM∆
map,

SVM∆
roc, and SVMacc when trained on the Indri retrieval functions and TREC sub-

missions, respectively. Table 3.11 contains the corresponding results when trained

on the TREC submissions without the best submission.

To start with, the results indicate that SVMacc was not competitive with

SVM∆
map and SVM∆

roc, and at times underperformed dramatically. As such, we

tried several approaches to improve the performance of SVMacc.
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3.3.6 Alternate SVMacc Methods

One issue which may cause SVMacc to underperform is the severe imbalance be-

tween relevant and non-relevant documents. The vast majority of the documents

are not relevant. SVMacc2 addresses this problem by assigning more penalty to

false negative errors. For each dataset, the ratio of the false negative to false

positive penalties is equal to the ratio of the number non-relevant and relevant

documents in that dataset. Tables 3.9, 3.10 and 3.11 indicate that SVMacc2 still

performs significantly worse than SVM∆
map.

Another possible issue is that SVMacc attempts to find just one discriminating

threshold b that is query-invariant. It may be that different queries require different

values of b. Having the learning method trying to find a good b value (when one

does not exist) may be detrimental.

We took two approaches to address this issue. The first method, SVMacc3,

converts the retrieval function scores into percentiles. For example, for document

d, query q and retrieval function f , if the score f(d|q) is in the top 90% of the scores

f(·|q) for query q, then the converted score is f ′(d|q) = 0.9. Each Kf contains 50

evenly spaced values between 0 and 1. Tables 3.9, 3.10 and 3.11 show that the

performance of SVMacc3 was also not competitive with SVM∆
map.

The second method, SVMacc4, normalizes the scores given by f for each query.

For example, assume for query q that f outputs scores in the range 0.2 to 0.7.

Then for document d, if f(d|q) = 0.6, the converted score would be f ′(d|q) =

(0.6 − 0.2)/(0.7 − 0.2) = 0.8. Each Kf contains 50 evenly spaced values between

0 and 1. Again, Tables 3.9, 3.10 and 3.11 show that SVMacc4 was not competitive

with SVM∆
map
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Table 3.11: Comparing SVM∆
map with SVM∆

roc and SVMacc using TREC Submis-
sions (w/o Best)

TREC 9 TREC 10
Model MAP W/L MAP W/L
SVM∆

map 0.284 – 0.288 –

SVM∆
roc 0.274 31/19 ** 0.272 38/12 **

SVMacc 0.215 49/1 ** 0.211 50/0 **

SVMacc2 0.267 35/15 ** 0.258 44/6 **

SVMacc3 0.133 50/0 ** 0.174 46/4 **

SVMacc4 0.228 46/4 ** 0.234 45/5 **

3.3.7 MAP vs ROCArea

SVM∆
roc performed much better than SVMacc in our experiments. When trained

on Indri retrieval functions (see Table 3.9), the performance of SVM∆
roc was slight,

though not significantly, worse than the performances of SVM∆
map. However, Table

3.10 shows that SVM∆
map did significantly outperform SVM∆

roc when trained on the

TREC submissions.

Table 3.11 shows the performance of the models when trained on the TREC

submissions with the best submission removed. The performance of most models

degraded by a small amount, with SVM∆
map still having the best performance.

3.4 Discussion

The proposed SVM∆
map method provides a principled approach and avoids difficult

to control heuristics. This make it conceptually just as easy to optimize SVMs

for MAP as was previously possible only for Accuracy and ROCArea. The com-

putational cost for training is very reasonable in practice. Since other methods

typically require tuning multiple heuristics, we also expect to train fewer models
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before finding one which achieves good performance.

The learning framework is fairly general. A natural extension would be to

develop methods to optimize for other important IR measures, such as Normalized

Discounted Cumulative Gain [26, 25, 29, 82, 175] and Mean Reciprocal Rank. One

such follow-up study [35] showed that optimizing for a compromise between these

different measures can yield more robust performance.

3.4.1 Other Feature Structure Formulations

The joint feature formulation used for optimizing average precision (3.4) has two

useful properties. First, it provides an explicit model that can quantify the quality

of any ranking (which is required for structural SVM training). Second, making

predictions (i.e., finding the best ranking) reduces to sorting using the model’s

scores on individual documents, thus making the approach compatible for opti-

mizing over many existing classes of retrieval functions.

There are other feature structures that also satisfy the two aforementioned

properties. For example, let each y ∈ Y be encoded as a permutation (i.e., yi is

the rank position of the ith document according the permutation y). Then one can

consider the following joint feature formulation that was proposed independently

of our work [37, 35],

wTΨ(x,y) =
∑
j

α(yj)w
Tφ(x, dj), (3.17)

where φ(x, dj) again denotes a feature vector describing document dj ∈ x, and α

is a non-negative, monotonically non-increasing function defined over the positive

integers (e.g., α(i) = 1/ log(i + 1)). It is straightforward to see that making
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predictions (i.e., solving argmaxy wTΨ(x,y)) also reduces to sorting by wTφ(x, d).

This joint feature structure was first proposed for optimizing NDCG and mean

reciprocal rank [37].

So how do the two formulations (3.4) and (3.17) compare? While the argmax

problem for both reduces to a simple sort, the two formulations differ in how they

model or quantify the quality of matching a set of input documents with any given

ranking. For instance, (3.4) models the quality of a ranking based purely on the

relative difference of document scores (e.g., wTφ(x, di) − wTφ(x, dj)) between a

relevant and non-relevant document pair. As such, the quality of predicting any

given ranking depends only on whether relevant documents are ranked ahead of

non-relevant documents, and can only be explicitly computed when given the true

relevance labels. For example, swapping the rank positions of two adjacent relevant

documents does not change the joint discriminant score.

On the other hand, (3.17) computes quality based purely on the document

scores wTφ(x, d) weighted by the α value assigned to each rank position. For ex-

ample, if α(i) = 0 for all i greater than some cuttoff (e.g., i > 10), then swapping

the rank positions of any two documents ranked below that cutoff will not change

the joint discriminant score. In this setting, finding the most violated constraint

reduces to a linear assignment problem [37], which can be substantially more ex-

pensive to solve than the greedy approach described in Section 3.2 for (3.4).

It is worth noting that neither feature formulation is more “correct” than the

other in the sense that they are both structured prediction models for measuring

ranking quality. The more general issue at play here is understanding and resolving

potential mismatches between the structure of the joint feature map Ψ and the

structure of the loss function ∆.
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3.4.2 Alternative Approaches: Smooth Approximations

Instead of optimizing a convex upper bound on performance loss, an alternative

line of approach is to optimize for a smoothed version of the rank-based perfor-

mance measures. Smoothing techniques are generally popular when dealing with

discontinuous or high-curvature functions. While typically not convex, one benefit

of using smoothed approximations over convex upper bounds is that they might

better approximate the actual performance measure.

Consider the simple case of optimizing over a single query with documents

x1, . . . , xn (extending to multiple queries is straightforward). For a fixed model

class h with parameters w, let U(σ) denote a generic rank-based measure (e.g.,

MAP or NDCG) of a ranking σ of the documents x1, . . . , xn. We can state the goal

as finding the w which maximizes U(w) ≡ U(sort{h(x1|w), . . . , h(xn|w)}).6 Since

U(w) is discontinuous, the approaches described in the following define a smoothed

objective function Û(w) such that ∂Û/∂w exists and is efficiently computable, and

that maximizing Û(w) will (approximately) maximize U(w).

Two general classes of approaches are (a) explicitly defining a globally smooth

approximation and (b) defining a gradient for some implicit smooth approxima-

tion (since the gradient is all that is required for gradient descent optimization

techniques).

6By defining the loss as ∆ = 1 − U(w), minimizing the empirical risk R∆
S (h) (3.3) becomes

equivalent to maximizing U(w).
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Global Smoothing

Perhaps the most straightforward approach is to use a model which adds uncer-

tainty such that each document’s output score is spread across a distribution.

This can be used to create “soft” versions of the otherwise discontinuous rank-

based performance measures. Then we can define a Û as the expectation of U over

the uncertainty, i.e.,

Û =

∫
U(sort{s1, . . . , sn})ds1ds2 . . . dsn,

where si is a random variable corresponding to the score of the ith document.

When the uncertainty is Gaussian distributed, Û can be naturally optimized using

Gaussian processes [163, 72], which have been shown to perform well in practice.

One drawback of this approach is that it is not necessarily compatible with existing

classes of retrieval functions, which typically sort using a single score per document.

Using a single score essentially amounts to computing the maximum likelihood

value, i.e.,

U(sort{s1, . . . , sn}) s.t. (s1, . . . sn) = argmaxP (s1, . . . , sn),

as opposed to the expected value.

Of course, as the uncertainty (or variance) of the document scores approach

zero, the expectation converges to the maximum likelihood value since the distri-

bution of documentscores becomes more and more concentrated. This implies that

Û → U as the uncertainty of the document scores approaches zero. On the other

hand, the less smooth the objective function, the more susceptible the optimization

procedure is to local optima. This motivates an iterative training procedure which

solves a sequence of optimization problems that gradually reduce the variance [38].
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One can also take a more top-down approach to defining probability distribu-

tions over rankings [30, 171] rather than over individual document scores (which is

a special type of probability distributions over rankings). Different variations will

yield different objective functions. In general, these approaches can be effective so

long as the smoothed objective is easily differentiable and well approximates the

original discontinuous rank-based measure.

Gradient Smoothing

Defining conceptually satisfying global approximations to rank-based measures

can be difficult. However, gradient descent techniques do not require an explic-

itly defined objective function, but rather just a well-behaved gradient definition.

Focusing on gradient definitions reduces the problem to finding nice local approx-

imations.

For instance, the LambdaRank method computes a gradient on the document

output scores [25, 24]. Assuming the scoring function is C1-continuous, then simple

chain rule will yield a gradient in the model parameter space. In practice, one might

assume that the gradient can be decomposed additively into pairwise gradient,

which can be defined as

λij = ∆U(i, j)

(
1

1 + esi−sj

)
, (3.18)

where si and sj are the output scores for documents xi and xj (where xi is more

relevant than xj), and ∆U(i, j) is the change in U when documents i and j swap

rank positions. A smoothing function is used which decreases in magnitude as the

si increases relative to sj. The total derivative for a single document output score
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can then be written as

λi ≡
∑
j∈D−i

λij −
∑
j∈D+

i

λji, (3.19)

whereD+
i andD−i denote sets containing documents that are more relevant and less

relevant than document i. LambdaRank has been empirically shown to find local

optima for many standard rank-based measures when using neural net function

classes [181, 58].
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CHAPTER 4

DIVERSIFIED RETRIEVAL AS STRUCTURED PREDICTION

Diversified retrieval is a growing research area within the Information Retrieval

community [31, 186, 40, 156, 189, 43, 92]. However, most learning-to-rank ap-

proaches cannot adequately model information diversity since they were devel-

oped for optimizing conventional ranking models which evaluate each document

independently (e.g., by sorting using the document scores). Indeed, several re-

cent studies on diversified retrieval (cf. [186, 156]) emphasized the need to model

inter-document dependencies such as information redundancy, which is fundamen-

tally a structured prediction problem. Those machine learning approaches that

do consider diversity either cannot explicitly learn to optimize for the task-specific

evaluation criterion [55, 40, 191] or are limited to only a single query and cannot

generalize effectively [139]. The following describes a general machine learning ap-

proach of how to diversify with respect to a given dataset of queries and documents

labeled to reflect the underlying information diversity [184].

4.1 The Learning Problem

In this learning setting, we assume that each query is associated with a set of

candidate documents and a set of subtopics (which may be distinct to that query).

Let x = {x1, . . . , xn} denote the set of candidate documents for a query, and let

T = {T1, . . . , Tn} be defined such that topic set Tj contains the subtopics covered

by document xj ∈ x. Topic sets may overlap. The goal then is to select a subset

y of K documents from x which maximizes subtopic coverage.

If the topic sets T were known at test time, then we can formulate making
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predictions as solving the following optimization problem,

argmax
s⊂y,|s|≤K

∣∣∣∣∣⋃
j∈s

Tj

∣∣∣∣∣ , (4.1)

where K is a pre-specified retrieval set size (e.g., K = 10). Naively computing the

globally optimal solution takes n choose K time, which we consider intractable for

most values of K. However, this problem is an instance of the budgeted max cov-

erage problem (and more generally is a budgeted submodular optimization prob-

lem) [95]. For such optimization problems, the straightforward greedy selection

process (iteratively choosing the document that myopically maximizes the num-

ber of subtopics covered) yields a solution that is guaranteed to achieve at least

(1 − 1/e)OPT , where OPT is the number of subtopics covered by the optimal

solution,1 and typically performs much better than the worst-case lower bound.

However, the topic sets of a candidate set are not known, nor is the set of all

possible topics known. Only a set of training examples of the form (x(i),T(i)) is

assumed available, and our goal is to find a good function for predicting y in the

absence of T. This in essence is the learning problem.

Following the supervised learning setup described in Chapter 2, we formulate

our task as learning a hypothesis function h : X → Y to predict a y when given x.

We quantify the quality of a prediction by considering a loss function ∆ : T ×Y →

< which measures the penalty of choosing y when the topics to be covered are those

in T. Given a set of training examples, S = {(x(i),T(i)) ∈ X × T : i = 1, . . . , N},

the strategy is to find a function h which minimizes the empirical risk,

R∆
S (h) =

1

N

N∑
i=1

∆(T(i), h(x(i))).

In order to encourage diversity, the loss function ∆(T,y) is defined to be the

1See Appendix A for more details.
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Figure 4.1: Visualization of Documents Covering Subtopics

weighted percentage of distinct subtopics in T not covered by y, although other

formulations are possible.

Following the notation established in (3.1) and (3.2), we can write the hypoth-

esis function as

h(x,w) = argmax
y

wTΨ(x,y).

The feature representation Ψ must enable meaningful discrimination between high

quality and low quality predictions. As such, different feature representations may

be appropriate for different retrieval settings. We discuss some possible extensions

in Section 4.5.

4.2 Maximizing Word Coverage

Figure 4.1 depicts an abstract visualization of the prediction problem. The sets

represent candidate documents x of a query, and the area covered by each set is

the “information” (represented as subtopics T) covered by that document. If T

were known, we could use a greedy method to find a solution with high subtopic

diversity. For K = 3, the optimal solution in Figure 4.1 is y = {D1, D2, D10}. In
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general however, the subtopics are unknown. We instead assume that the candidate

set contains discriminating features which separates subtopics from each other. In

this case the features will be derived primarily using word frequencies.

As a proxy for explicitly covering subtopics, we formulate the discriminant

Ψ based on weighted word coverage. Intuitively, covering more (distinct) words

should result in covering more subtopics. The relative importance of covering any

word can be modeled using features describing various aspects of word frequencies

within documents in x. We make no claims regarding any generative models

relating topics to words, but rather simply assume that word frequency features

are highly discriminative of subtopics within x.

4.2.1 Joint Feature Formulation: A Simple Example

Let V (y) denote the union of words contained in the documents of the predicted

subset y, and let φ(v,x) denote the feature vector describing the frequency of word

v amongst documents in x. We can then write Ψ as

Ψ(x,y) =
∑

v∈V (y)

φ(v,x). (4.2)

Given a model vector w, the benefit of covering word v in candidate set x is

wTφ(v,x). This benefit is realized when a document in y contains v, i.e., v ∈ V (y).

We use the same model weights for all words. Following the notation established

in Chapter 3, a prediction is made by choosing y to maximize (3.1).

This formulation yields two properties which enable optimizing for diversity.

First, covering a word twice provides no additional benefit. Second, the feature

vector φ(v,x) is computed using other documents in the candidate set. Thus,
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This word appears ...
... in a document in y.
... at least 5 times in a document in y.
... with frequency at least 5% in a document in y.
... in the title of a document in y.
... within the top 5 TFIDF of a document in y.

Figure 4.2: Maximizing Word Coverage: Examples of Importance Criteria

diversity is measured locally rather than relative to the whole corpus. Both prop-

erties are absent from conventional ranking methods which evaluate each document

individually.

In practical applications, a more sophisticated Ψ may be more appropriate. We

develop the discriminant by addressing two criteria: how well a document covers

a word, and how important it is to cover a word in x.

4.2.2 How Well a Document Covers a Word

In the simple example (4.2), a single word set V (y) is used, and all words that

appear at least once in y are included. However, documents do not cover all words

equally well, which is something not captured in (4.2). For example, a document

which contains 5 instances of the word “lion” might cover the word better than

another document which only contains 2 instances.

Instead of using only one V (y), one can use L such word sets V1(y), . . . , VL(y).

Each word set V`(y) contains only words satisfying certain importance criteria.

These importance criteria can be based on properties such as appearance in the

title, the term frequency in the document, and having a high TFIDF value in the

document [150]. Figure 4.2 contains examples of importance criteria. For example,

if importance criterion ` requires appearing at least 5 times in a document, then
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The word v has ...
... a |D1(v)|/n ratio of at least 40%
... a |D2(v)|/n ratio of at least 50%
... a |D`(v)|/n ratio of at least 25%

Figure 4.3: Maximizing Word Coverage: Examples of Document Frequency Fea-
tures

V`(y) will be the set of words which appear at least 5 times in some document in

y. The most basic criterion simply requires appearance in a document, and using

only this criterion will result in (4.2).

In practice, one can use a separate feature vector φ`(v,x) for each importance

level. We will describe φ` in greater detail section to follow. We can thus define Ψ

from (3.1) to be the vector composition of all the φ` vectors,

Ψ(x,y) =



∑
v∈V1(y) φ1(v,x)

...∑
v∈VL(y) φL(v,x)∑n
i=1 yiψ(xi,x)


. (4.3)

The last feature vector ψ(x,x) encodes any salient document properties which are

not captured at the word level (e.g., “this document received a high score with an

existing ranking function”).

4.2.3 The Importance of Covering a Word

The feature vectors φ1(v,x), . . . , φL(v,x) encode the benefit of covering a word,

and can be defined in many ways. Here we show a feature definition based primarily

on frequency information in x.

Let D`(v) denote the set of documents in x which cover word v at importance
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Algorithm 3 Greedy subset selection by maximizing weighted word coverage
1: Input: w, x
2: Initialize solution ŷ← ∅
3: for k = 1, . . . , K do
4: x̂← argmaxx:x/∈ŷ wTΨ(x, ŷ ∪ {d})
5: ŷ← ŷ ∪ {x̂}
6: end for
7: return ŷ

level `. For example, if the importance criterion is “appears at least 5 times in the

document”, then D`(v) is the set of documents that have at least 5 copies of v.

This is, in a sense, a complementary definition to V`(y). One can use thresholds

on the ratio |D`(v)|/n to define feature values of φ`(v,x) that describe word v at

different importance levels. Figure 4.3 describes examples of such features.

4.2.4 Making Predictions

Putting the formulation together, wT
` φ`(v,x) denotes the benefit of covering word

v at importance level `, where w` is the sub-vector of w which corresponds to φ`

in (4.3). A word is only covered at importance level ` if it appears in V`(y). The

goal then is to select K documents which maximize the aggregate benefit.

Similar to the problem of maximizing subtopic coverage (when the subtopic

assignments are known), maximizing the aggregate benefit,

h(x|w) = argmax
y∈Y

wTΨ(x,y),

is an instance of the budgeted max coverage problem [95, 79]. Algorithm 3 de-

scribes the myopic greedy algorithm which iteratively selects the document with

highest marginal gain, which is known to have a (1 − 1/e)-approximation bound.

Appendix A contains an analysis that proves this performance guarantee.
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In summary, we have replaced the problem of maximizing subtopic coverage

with the surrogate problem of maximizing weighted word coverage. The surrogate

problem does not require human annotations when making predictions, but rather

relies on having expressive feature and parameter spaces that can be tuned to the

particular retrieval domain. The following section describes a machine learning

approach based on structural SVMs for learning the appropriate w such that pre-

dictions made by the model are aligned with the original problem of maximizing

subtopic coverage (with respect to the task-specific annotated training data).

4.3 Training with Structural SVMs

For a given training set S = {(T(i),x(i))}Ni=1, we again use the structural SVM

formulation to train the model parameters (see Section 3.2 for a more detailed

discussion). We restate the optimization problem in slightly modified form using a

loss function ∆ that assumes the ground truth labelings to have a different format

than the model predictions.

Optimization Problem 5. (Structural SVM)

min
w,ξ≥0

1

2
‖w‖2 +

C

N

N∑
i=1

ξi (4.4)

s.t. ∀i, ∀y ∈ Y \ y(i) :

wTΨ(x(i),y(i)) ≥ wTΨ(x(i),y) + ∆(T(i),y)− ξi (4.5)

The objective function (4.4) is a tradeoff between model complexity, ‖w‖2, and

a hinge loss relaxation of the training loss for each training example,
∑
ξi, and
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the tradeoff is controlled by the parameter C. The loss function ∆ is typically a

coverage loss (e.g., the amount of subtopics not covered). The y(i) in the constraints

(4.5) is the prediction which minimizes ∆(T(i),y(i)), and can be chosen via greedy

selection (since choosing optimal prediction can be intractable). The cutting plane

algorithm described in Algorithm 1 from Section 3.2 can be used to solve OP 5

efficiently. As in the case of optimizing average precision in Section 3.1, we require

a method for finding the most violated constraint (Line 5), or solving for each

training example

argmax
y∈Y

∆(T(i),y) + wTΨ(x(i),y), (4.6)

Unfortunately, solving (4.6) exactly can be intractable. A straightforward approach

is to use the same myopic greedy algorithm that is used for inference. Although

the rigorous theoretical results are no longer guaranteed to hold (such as solving

original learning problem to within a specified accuracy ε), the overall cutting

plane training procedure described in Algorithm 1 is still efficient [64]. From

an optimization perspective, the cutting plane training procedure is effectively

ignoring some of the constraints in the original SVM learning problem. This may

cause the model to underfit. We explore this issue empirically in the following

section.

4.4 Experiments

We conducted an empirical evaluation using the TREC 6-8 Interactive Track

Queries.2 Relevant documents are labeled using subtopics. For example, query

392 asked human judges to identify different applications of robotics in the world

2http://trec.nist.gov/
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today, and they identified 36 subtopics among the results such as nanorobots and

using robots for space missions.

The 17 queries we used are 307, 322, 326, 347, 352, 353, 357, 362, 366, 387,

392, 408, 414, 428, 431, 438, and 446. Three of the original 20 queries were

discarded due to having small candidate sets, making them uninteresting for our

experiments. Following the setup in [186], candidate sets only include documents

which are relevant to at least one subtopic. This decouples the diversity problem,

which is the focus of this study, from the relevance problem. In practice, approaches

like ours might be used to post-process the results of a commercial search engine.

We also performed Porter stemming and stop-word removal.

We used a 12/4/1 split to generate the training, validation and test sets, re-

spectively. We trained using C values varying from 1e-5 to 1e3. The best C value

is then chosen on the validation set, and evaluated on the test query. We permuted

the train/validation/test splits until all 17 queries were chosen once for the test set.

Candidate sets contain on average 45 documents, 20 subtopics, and 300 words per

document. We set the retrieval size to K = 5 since some candidate sets contained

as few as 16 documents.

We compared against Okapi [144], and Essential Pages [156]. Okapi is a con-

ventional retrieval function which evaluates the relevance of each document indi-

vidually and does not optimize for diversity. Like our method, Essential Pages

also optimizes for diversity by selecting documents to maximize weighted word

coverage (but based on a fixed, rather than a learned, model). In their model, the

benefit of document xi covering a word v is defined to be

TF (v, xi) log

(
1

DF (v,x)

)
,

where TF (v, xi) is the term frequency of v in xi and DF (v,x) is the document

67



Subtopic # Docs Weight
t1 1 1/6
t2 2 1/3
t3 2 1/2

Figure 4.4: Weighted Subtopic Loss Example

frequency of v in x.

For these experiments, the loss function was defined to be the weighted percent-

age of subtopics not covered. For a given candidate set, each subtopic’s weight is

proportional to the number of documents that cover that subtopic. An example is

given in Figure 4.4. This is attractive since it assigns a high penalty to not covering

a popular subtopic. It is also compatible with our discriminant since frequencies

of important words will vary based on the distribution of subtopics.

The small quantity of TREC queries makes some evaluations difficult, so we

also generated a larger synthetic dataset of 100 candidate sets. Each candidate set

has 100 documents covering up to 25 subtopics. Each document samples 300 words

independently from a multinomial distribution over 5000 words. Each document’s

word distribution is a mixture of its subtopics’ distributions. We used this dataset

to evaluate how performance changes with retrieval size K. We used a 15/10/75

split for training, validation, and test sets.

4.4.1 Experiment Results

We evaluated using two versions of the proposed method: SVM∆
div which uses term

frequencies and title words to define importance criteria (how well a document

covers a word), and SVM∆
div2 which in addition also uses TFIDF. SVM∆

div and
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Table 4.1: Diversified Retrieval: Performance on TREC Dataset (K = 5)

Method Loss
Random 0.469

Okapi 0.472

Unweighted Model 0.471

Essential Pages 0.434

SVM∆
div 0.349

SVM∆
div2 0.382

Table 4.2: Diversified Retrieval: Per Query Comparison on TREC Dataset (K = 5)

Method Comparison Win / Tie / Lose
SVM∆

divvs Essential Pages 14 / 0 / 3 **

SVM∆
div2vs Essential Pages 13 / 0 / 4

SVM∆
divvs SVM∆

div2 9 / 6 / 2

SVM∆
div2 use roughly 2000 and 3000 features, respectively.

Table 4.1 shows the performance results on TREC queries. We also included

the performance of randomly selecting 5 documents as well as an unweighted word

coverage model (all words give equal benefit when covered). Only Essential Pages,

SVM∆
div and SVM∆

div2 performed better than random.

Table 4.2 shows the per query comparisons between SVM∆
div, SVM∆

div2 and Es-

sential Pages. Two stars indicate 95% significance using the Wilcoxon signed rank

test. While the comparison is not completely fair since Essential Pages was de-

signed for a slightly different setting, it demonstrates the benefit of automatically

fitting a retrieval function to the specific task at hand.

Despite having a richer feature space, SVM∆
div2 performs worse than SVM∆

div.

One possibility is that the top TFIDF words do not discriminate between subtopics.

These words are usually very descriptive of the query as a whole, and thus may

appear in all subtopics.
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Figure 4.5: Diversified Retrieval: Comparing Training Size on TREC Dataset
(K = 5)

Figure 4.5 shows the average test performance of SVM∆
div as the number of

training examples is varied. We see a substantial improvement in performance

as training set size increases. It appears that more training data would further

improve performance.

4.4.2 Approximate Constraint Generation

Using greedy constraint generation might cause the learning aproach to underfit

the data. A simple way to check for underfitting is to examine training loss as

the C parameter is varied. The training curve of SVM∆
div is shown in Figure 4.6.

Greedy optimal refers to the loss incurred by a greedy method with knowledge of

subtopics. As we increase C (favoring low training loss over low model complexity),

the model is able to fit the training data almost as well as the clairvoyant greedy

approach. This indicates that using the greedy method for constraint generation

is acceptable for for this learning task.
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Figure 4.6: Diversified Retrieval: Comparing C Values on TREC Dataset (K = 5)

4.4.3 Varying Predicted Subset Size

We used the synthetic dataset to evaluate performance as we vary the retrieval

size K. It is difficult to perform this evaluation on the TREC queries – since

some candidate sets have very few documents or subtopics, using higher K would

force us to discard more queries. Figure 4.7 shows that the test performance of

SVM∆
div consistently outperforms Essential Pages at all levels of K.

4.5 Extensions

4.5.1 Alternative Discriminants

Maximizing word coverage might not be suitable for other types of retrieval tasks.

Our method is a general framework which can incorporate other discriminant for-

mulations. One possible alternative is to maximize the pairwise distance of items
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Figure 4.7: Diversified Retrieval: Varying Retrieval Size on Synthetic Dataset

in the predicted subset. Learning a weight vector for (3.1) would then amount to

finding a distance function for a specific retrieval task. Any discriminant can be

used so long as it captures the salient properties of the retrieval task, is linear in

a joint feature space (3.1), and has effective inference and constraint generation

methods.

4.5.2 Alternative Loss Functions

Our method is not restricted to using subtopics to measure diversity. Only the

loss function ∆(T,y) makes use of subtopics during SVM training. We can also

incorporate loss functions which can penalize other types of diversity criteria and

also use other forms of training data, such as clickthrough logs. The only require-

ment is that it must be computationally compatible with the constraint generation

oracle (4.6).
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4.5.3 Additional Word Features

Our choice of features is based almost exclusively on word frequencies. The sole

exception is using title words as an importance criterion. The goal of these features

is to describe how well a document covers a word and the importance of covering

a word in a candidate set. Other types of word features might prove useful, such

as anchor text, URL, and any meta information contained in the documents.

4.6 Discussion

Diversified retrieval is not the only task that can be viewed as a coverage problem.

For example, consider the document summarization task [52]. Given a small col-

lection of documents, the goal is to develop approaches to automatically extract

a subset of sentences that best summarizes the collection. A common evaluation

measure is the ROUGE score [115]. Given gold-standard sentences extracted by

human judges y, the ROUGE score of a prediction p essentially computes the

degree to which p covers y (e.g., how many words contained in y are also con-

tained in p). Unsurprisingly, many researchers have proposed approaches that

optimize for coverage models that do not rely on human annotations (cf. [116]).

The SVM∆
div approach can be naturally applied here to train compex models con-

taining many parameters with the explicit goal of optimizing ROUGE score on a

training set.

In some sense, structured prediction learning is the “inverse” of solving combi-

natorial optimization problems. For example, when given detailed information of

the true objective function (e.g., having access to the subtopic labels), one can ex-
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ploit combinatorial structure (e.g., submodularity) in order to find a good solution.

The inverse problem is to find the best possible surrogate model that can be used

in more general settings (such when ground truth labels are unavailable). From a

machine learning perspective, this task can be restated as training the parameters

of a general parameterized model (which ideally has a combinatorial structure that

is compatible with the true loss/objective function) such that the predictions of

the parameterized model (i.e., the solution to solving the resulting combinatorial

optimization problem induced by the model) matches the solution to the original

problem (i.e., has low loss).

One limitation of many existing structured prediction approaches is the need

for labeled data. It is typically much easier to define conceptually satisfying utiliy

functions (or loss functions) for training when given labeled data, which can be

difficult to acquire. Moreover, in many structured prediction tasks, supervision

may only be available at a coarse level, leading to a latent variable learning problem

[178, 36]. This limitation is a major motivation for a complementary line of research

on interactive learning (i.e., a machine learning algorithm that can collect feedback

from interacting with users) to be presented in the following chapters.

4.6.1 Beyond Predicting Static Rankings

It is common for information retrieval research to focus either on relevance estima-

tion or user interface design, but rarely both simultaneously. However, for many

tasks, it can be useful to model both jointly. For instance, as potentially relevant

information become more heterogeneous (possibly due to ambiguity in estimating

users’ interests), then it may prove more beneficial to move away from displaying
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Figure 4.8: Example of user interacting with dynamic ranking.

results using static, one-dimensional rankings and towards richer layouts.3 One

major limitation of result diversification over static rankings is that it sacrifices

recall in favor of some minimal amount of utility for all usage intents – such a

limitation could be dealt with by moving towards more dynamic interfaces.

Consider the example interface shown in Figure 4.8, which is inspired by and

adapted from the SurfCanyon.com search engine [48]. In this example, the user first

receives a conventional diversified ranking in response to the query SVM (Figure

4.8, left). However, by clicking or mousing over a result that matches the users

intent, additional indented results are inserted into the original ranking1 (Figure

4.8, middle). This process can be repeated multiple levels deep (Figure 4.8, right).

This interaction is quite natural, since the process resembles navigating a drop-

down menu and since users are already familiar with result indentation. And yet

even this one additional degree of freedom in content display can offer tremendous

benefits. In the example, the indented results have greatly improved recall for the

users information need on the learning method Support Vector Machine. While

there is only a single relevant document in the original ranking, the final ranking

3In fact, even standard search services present other potentially relevant information in addi-
tion to the retrieved results, with the most notable being web advertisements. But virtually all
research have focused on one of the two aspects in isolation.
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covers many aspects of the learning method.

The interplay between content and interface becomes more pronounced as one

considers settings that deal with increasingly heterogeneous content. Consider the

setting of optimizing the information content of an internet based vendor (e.g.,

Amazon, Netflix) or a media service (e.g., Hulu, YouTube). These services offer

information that can be customized both to particular users as well as to varying

types information requests. Furthermore, the retrieved content is rarely presented

in a clean, one-dimensional ranking. Structured prediction approaches offer the

potential to develop rich models that can jointly quantify retrieval quality over

both content relevance and placement (i.e. interface design) that can be optimized

using domain-specific training data.
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Part III

Interactive Learning
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CHAPTER 5

INTERACTIVE LEARNING AND THE DUELING BANDITS

PROBLEM

When responding to queries, the goal of an information retrieval system –

ranging from web search, to desktop search, to call center support – is to return

the results that maximize user utility. The conventional approach – which we

adopted for the methods described in Chapter 3 – is to optimize a proxy-measure

that is hoped to correlate with utility. A wide range of measures has been proposed

to this effect (e.g., average precision, precision at k, NDCG), but all have similar

problems. Most notably, they require expensive manual relevance judgments that

ignore the identity of the user and the user’s context.1 This makes it unclear

whether maximization of a proxy-measure truly optimizes the search experience

for the user.

In this chapter, we therefore take a different approach based on interacting

with and gathering implicit feedback directly from users. But how can a learning

algorithm access the utility a user sees in a set of results? While it is unclear

how to reliably derive cardinal utility values for a set of results (e.g., U(r) = 5.6),

it was shown that interactive experiments can reliably provide ordinal judgments

between two sets of results (i.e., U(r1) > U(r2)) [88, 140]. For example, to elicit

whether a user prefers ranking r1 over r2, Radlinski et al. [140] showed how to

present an interleaved ranking of r1 and r2 so that clicks indicate which of the

two has higher utility.2 This ready availability of pairwise comparison feedback in

1Although beyond the scope of this dissertation, it should be noted that these problems
become even more pronounced when attempting to define proxy-measures to characterize the
diversified retrieval setting described in Chapter 4.

2The interleaving mechanism is described in greater detail in Chapter 7. For this chapter,
we simply assume the availability of an unbiased comparison oracle for the target application
domain, which in our case is search.
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applications where absolute payoffs are difficult to observe motivates our learning

framework.

Algorithms which can perform well in this setting must interact with users

by pro-actively choosing which results to show them (e.g., which two retrieved

rankings to interleave). In particular, they must choose which retrieval functions

to compare in order to optimize for a model of user utility described in the following

section – this utility function leads to a natural and well-founded trade-off between

exploration and exploitation. On one hand, if we only passively collect feedback

from the incumbent ranking function (as is often done in practice), then we run the

risk of never discovering the best retrieval function – this point was also touched on

in Section 2.5. On the other hand, if we only explore (e.g., by always comparing

new pairs of retrieval functions), then we might be using suboptimal retrieval

functions for far longer than we need to; this leads to suboptimal performance

since user utility accumulates with every comparison.

For the rest of this chapter, we proceed by first introducing the Dueling Ban-

dits Problem [180, 179, 185] for modeling such interactive learning scenarios. We

then present efficient algorithms for the discrete setting (where there are K re-

trieval functions to choose from), and prove performance guarantees [180, 179].

We conclude by discussing of related work and presenting empirical simulation re-

sults. Chapter 6 describes a method for optimizing the Dueling Bandits Problem in

the continuous setting (where we must choose from a continuously parameterized

family of retrieval functions).
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5.1 The K-armed Dueling Bandits Problem

We propose a new online optimization problem, called the Dueling Bandits Prob-

lem, where the only actions are comparisons (or duels) between two bandits within

a space of bandits B (e.g., a collection of candidate retrieval functions for a

search engine). We assume that the outcomes of these noisy comparisons are

independent random variables3 and that the probability of bandit b winning a

comparison with bandit b′ is stationary over time. We write this probability as

P (b > b′) = ε(b, b′) + 1/2, where ε(b, b′) ∈ (−1/2, 1/2) is a measure of the distin-

guishability between b and b′. We assume that there exists a total ordering on B

such that b � b′ implies ε(b, b′) > 0. We will also use the notation εi,j ≡ ε(bi, bj).

We quantify the performance of an online algorithm using the following regret

formulations. Let (b
(t)
1 , b

(t)
2 ) be the bandits chosen at iteration t, and let b∗ be

the overall best bandit. We define strong regret based on comparing the chosen

bandits with b∗,

RT =
1

2

T∑
t=1

(
ε(b∗, b

(t)
1 ) + ε(b∗, b

(t)
2 )
)
, (5.1)

where T is the time horizon. We also define weak regret,

R̃T =
T∑
t=1

min{ε(b∗, b(t)
1 ), ε(b∗, b

(t)
2 )}, (5.2)

which only compares b̂ against the better of b
(t)
1 and b

(t)
2 . One can regard regret

as essentially the fraction of users who would have preferred the best bandit over

the chosen ones in each iteration.4 More precisely, it corresponds to the fraction

3For example, the probabiltiy of bi winning a comparison with bj in any given comparison
can be sampled from a Bernoulli distribution µij . The independence assumption here requires
that the result of any particular comparison, conditioned on the pair of bandits bi and bj (thus
µij), is sampled independently of all other comparisons between any pair of bandits.

4In the search setting, users experience an interleaving, or mixing, of results from both retrieval
functions to be compared.
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of users who prefer the best bandit to a uniformly-random member of the pair of

bandits chosen, in the case of strong regret, or to the better of the two bandits

chosen, in the case of weak regret. Building from this perspective, we can also

define generalized regret,

R̄T =
T∑
t=1

rt(b
(t)
1 , b

(t)
2 ), (5.3)

where

rt(b
(t)
1 , b

(t)
2 ) ∈

[
min{ε(b∗, b(t)

1 ), ε(b∗, b
(t)
2 )}, max{ε(b∗, b(t)

1 ), ε(b∗, b
(t)
2 )}

]
.

At each time step t, rt(b
(t)
1 , b

(t)
2 ) is the (potentially non-deterministic) incurred re-

gret of comparing b
(t)
1 and b

(t)
2 and is assumed to be bounded between the two indi-

vidual regret values. Note that both strong regret and weak regret are special cases

where rt(b
(t)
1 , b

(t)
2 ) = (ε(b∗, b

(t)
1 )+ε(b∗, b

(t)
2 ))/2 and rt(b

(t)
1 , b

(t)
2 ) = min{ε(b∗, b(t)

1 ), ε(b∗, b
(t)
2 )},

respectively. We will present algorithms which achieve identical regret bounds

for all three formulations (up to constant factors) by assuming a property called

stochastic triangle inequality, which is described in the next section.

In this chapter, we assume a discrete space of K bandits, i.e. B = {b1, . . . , bK};

we call this setting the K-armed Dueling Bandits Problem. We will consider a

continuum-armed instance of the Dueling Bandits Problem in Chapter 6.

5.2 Modeling Assumptions

We impose additional structure to the probabilistic comparisons. First, we assume

strong stochastic transitivity, which requires that any triplet of bandits bi �

bj � bk satisfies

εi,k ≥ max{εi,j, εj,k}. (5.4)
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This assumption provides a monotonicity constraint on possible probability values.

We also assume stochastic triangle inequality, which requires any triplet of

bandits bi � bj � bk to satisfy

εi,k ≤ εi,j + εj,k. (5.5)

Stochastic triangle inequality captures the condition that the probability of differ-

ent bandits winning (or losing) a comparison will exhibit diminishing returns as

they become increasingly superior (or inferior) to the competing bandit.5

We briefly describe two common generative models which satisfy these two

assumptions. The first is the logistic or Bradley-Terry model, where each bandit

bi is assigned a positive real value µi. Probabilistic comparisons are made using

P (bi > bj) =
µi

µi + µj
.

The second is a Gaussian model, where each bandit is associated with a random

variable Xi that has a Gaussian distribution with mean µi and variance 1. Prob-

abilistic comparisons are made using

P (bi > bj) = P (Xi −Xj > 0),

where Xi − Xj ∼ N(µi − µj, 2). It is straightforward to check that both models

satisfy strong stochastic transitivity and stochastic triangle inequality. We will

describe and justify a more general family of probabilistic models in Appendix

B.1.

5Our analysis also applies for a relaxed version where εi,k ≤ γ(εi,j + εj,k) for finite γ > 0.
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Algorithm 4 Explore Then Exploit Solution

1: Input: T , B = {b1, . . . , bK}, EXPLORE
2: (b̂, T̂ )← EXPLORE(T,B)
3: for t = T̂ + 1, . . . , T do
4: compare b̂ and b̂
5: end for

5.3 Algorithm and Analysis

Our solution, which is described in Algorithm 4, follows an “explore then exploit”

approach. For a given time horizon T and a set of K bandits B = {b1, . . . , bK}, an

exploration algorithm (denoted generically as EXPLORE) is used to find the best

bandit b∗. EXPLORE returns both its solution b̂ as well as the total number of

iterations T̂ for which it ran (it is possible that T̂ > T ). Should T̂ < T , we enter an

exploit phase by repeatedly choosing (b
(t)
1 , b

(t)
2 ) = (b̂, b̂), which incurs no additional

regret assuming EXPLORE correctly found the best bandit (b̂ = b∗). In the case

where T̂ > T , then the regret incurred from running EXPLORE still bounds our

regret formulations (which only measures regret up to T ), so our analysis in this

section will still hold.6

We will consider two versions of our proposed exploration algorithm, which we

call Interleaved Filter 1 (IF1) and Interleaved Filter 2 (IF2). We will show that

both algorithms (which we refer to generically as IF) correctly return the best

bandit with probability at least 1− 1/T . Correspondingly, a suboptimal bandit is

returned with probability at most 1/T , in which case we assume maximal regret

6In practice, we can terminate EXPLORE after it has run for T time steps, in which case the
incurred regret is strictly less than running EXPLORE to completion.

83



O(T ). We can thus bound the expected regret by

E[RT ] ≤
(

1− 1

T

)
E
[
RIF
T

]
+

1

T
O(T )

= O
(
E
[
RIF
T

]
+ 1
)

(5.6)

where RIF
T denotes the regret incurred from running Interleaved Filter. Thus the

regret bound depends entirely on the regret incurred by Interleaved Filter.

The two IF algorithms are described in Algorithm 5 and Algorithm 6, respec-

tively. IF2 achieves an expected regret bound which matches the information-

theoretic lower bound (up to constant factors) presented in Section 5.3.5, whereas

IF1 matches with high probability the lower bound up to a log factor. We first

examine IF1 due to its ease of analysis. We then analyze IF2, which builds upon

IF1 to achieve the information-theoretic optimum.

In both versions, IF maintains a candidate bandit b̂ and simulates simultane-

ously comparing b̂ with all other remaining bandits via round robin scheduling

(i.e., interleaving). Any bandit that is empirically inferior to b̂ with 1 − δ confi-

dence is removed (we will describe later how to choose δ). When some bandit b′ is

empirically superior to b̂ with 1− δ confidence, then b̂ is removed and b′ becomes

the new candidate b̂ ← b′. IF2 contains an additional step where all empirically

inferior bandits (even if lacking 1−δ confidence) are removed (called pruning – see

lines 16-18 in Algorithm 6). This process repeats until only one bandit remains.

Assuming IF has not made any mistakes, then it will return the best bandit b̂ = b∗.

Terminology. Interleaved Filter makes a “mistake” if it draws a false con-

clusion regarding a pair of bandits. A mistake occurs when an inferior bandit is

determined with 1 − δ confidence to be the superior one. We call the additional

step of IF2 (lines 16-18 in Algorithm 6) “pruning”. We define a “match” to be
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all the comparisons Interleaved Filter makes between two bandits, and a “round”

to be all the matches played by one candidate b̂. We always refer to log x as the

natural log, lnx, whenever the distinction is necessary.

In our analysis, we assume without loss of generality that the bandits in B are

sorted in preferential order b1 � . . . � bK . Then for T ≥ K, we will show in

Theorem 3 that running IF1 incurs, with high probability, regret bounded by

RIF1
T = O

(
K logK

ε1,2
log T

)
.

Note that ε1,2 = P (b1 � b2) − 1/2 is the distinguishability between the two best

bandits. Due to strong stochastic transitivity, ε1,2 lower bounds the distinguisha-

bility between the best bandit and any other bandit. We will also show in Theorem

4 that running IF2 incurs expected regret bounded by

E
[
RIF2
T

]
= O

(
K

ε1,2
log T

)
,

which matches the information-theoretic lower bound (up to constant factors) de-

scribed in Section 5.3.5.

Analysis Approach. Our analysis follows three phases. We first bound the

regret incurred for any match. Then for both IF1 and IF2, we show that the

probability of making a mistake7 is at most 1/T . We finally bound the number of

matches played by IF1 and IF2 to arrive at our final regret bounds.

7This is the probability that our algorithms come to the wrong conclusion regarding any pair
of bandits. Thus, our analysis is conservative since our algorithms can potentially recover from
making a few mistakes.
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Algorithm 5 Interleaved Filter 1 (IF1)

1: Input: T , B = {b1, . . . , bK}
2: δ ← 1/(TK2)

3: Choose b̂ ∈ B randomly
4: W ← {b1, . . . , bK} \ {b̂}
5: ∀b ∈ W , maintain estimate P̂b̂,b of P (b̂ > b) according to (5.7)

6: ∀b ∈ W , maintain 1− δ confidence interval Ĉb̂,b of P̂b̂,b according to (5.8), (5.9)
7: while W 6= ∅ do
8: for b ∈ W do
9: compare b̂ and b

10: update P̂b̂,b, Ĉb̂,b
11: end for
12: while ∃b ∈ W s.t.

(
P̂b̂,b > 1/2 ∧ 1/2 /∈ Ĉb̂,b

)
do

13: W ← W \ {b} //b̂ declared winner against b
14: end while
15: if ∃b′ ∈ W s.t.

(
P̂b̂,b′ < 1/2 ∧ 1/2 /∈ Ĉb̂,b′

)
then

16: b̂← b′, W ← W \ {b′} //b′ declared winner against b̂ (new round)
17: ∀b ∈ W , reset P̂b̂,b and Ĉb̂,b
18: end if
19: end while
20: T̂ ← Total Comparisons Made
21: return (b̂, T̂ )

5.3.1 Confidence Intervals

In a match between bi and bj, Interleaved Filter maintains a number

P̂i,j =
# bi wins

# comparisons bi vs bj
, (5.7)

which is the empirical estimate of P (bi � bj) after t comparisons.8 For ease

of notation, we drop the subscripts (bi, bj), and use P̂t, which emphasizes the

dependence on the number of comparisons. IF also maintains a confidence interval

Ĉt = (P̂t − ct, P̂t + ct), (5.8)

where

ct =
√

4 log(1/δ)/t. (5.9)

8In other words, P̂i,j is the fraction of these t comparisons in which bi was the winner.
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We justify the construction of these confidence intervals in the following lemma.

Lemma 2. For δ = 1/(TK2), the number of comparisons in a match between bi

and bj is with high probability at most

O
(

1

ε2i,j
log(TK)

)
.

Moreover, the probability that the inferior bandit is declared the winner at some

time t ≤ T is at most δ.

Proof. First we argue that the probability of the inferior bandit being declared

the winner is at most δ. Note that by the stopping condition of the match, if

we mistakenly declare the inferior bandit the winner at time t, then we must

have 1/2 + εi,j /∈ Ĉt (note that εi,j can be either positive or negative). By the

definition of Ĉt and the fact that E[P̂t] = 1/2 + εi,j, we have P (1/2 + εi,j /∈ Ĉt) =

P (|P̂t−E[P̂t]| ≥ ct). It follows from Hoeffding’s inequality [80] that the probability

of making a mistake at time t is bounded above by

P (|P̂t − E[P̂t]| ≥ ct) ≤ 2 exp(−2tc2
t ) = 2 exp(−8 log(1/δ)) = 2δ8 =

2

T 8K16
.

Now an application of the union bound shows that the probability of making a

mistake at any time t ≤ T is bounded above by

P

(
T⋃
t=1

{1/2 + εi,j /∈ Ĉt}

)
≤ 2T

T 8K16
≤ 1

TK2
= δ,

provided that K ≥ 2, which is the desired result.

We now show that the number of comparisons n in a match between bi and bj

is O(log(TK)/ε2i,j) with high probability. Specifically, we will show that for any

d ≥ 1, there exists an m depending only on d such that

P

(
n ≥ m

ε2i,j
log(TK)

)
≤ K−d
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for all K sufficiently large. By the stopping condition of the match, if at any time

t we have P̂t − ct > 1/2, then the match terminates. It follows that for any time

t, if n > t, then P̂t − ct ≤ 1/2, and so

P (n > t) ≤ P (P̂t − ct ≤ 1/2).

To bound this probability, assume without loss of generality that εi,j > 0, and note

that since E[P̂t] = 1/2 + εi,j, we have

P (P̂t − ct ≤ 1/2) = P (P̂t − 1/2− εi,j ≤ ct − εi,j) = P (E[P̂t]− P̂t ≥ εi,j − ct).

For any m ≥ 8 and t ≥ d2m log(TK2)/ε2i,je, we have ct ≤ εi,j/2, and so applying

Hoeffding’s inequality for this m and t shows

P (E[P̂t]− P̂t ≥ εi,j − ct) ≤ P (|P̂t − E[P̂t]| ≥ εi,j/2) ≤ 2 exp(−tε2i,j/2).

Since t ≥ 2m log(TK2)/ε2i,j by assumption, we have tε2i,j/2 ≥ m log(TK2), and so

2 exp(−tε2i,j/2) ≤ 2 exp(−m log(TK2)) =
2

TmK2m
≤ K−m

for K ≥ 2, which proves the claim.

5.3.2 Regret per Match

We now bound the accumulated regret of each match. We first bound strong and

weak regret, and then extend the result to generalized regret.

Lemma 3. Assuming b1 has not been removed and T ≥ K, then with high prob-

ability the accumulated weak regret and also strong regret from any match is at

most

O
(

1

ε1,2
log T

)
.
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Proof. Suppose the candidate bandit b̂ = bj is playing a match against bi. Since all

matches within a round are played simultaneously, then by Lemma 2, any match

played by bj contains at most

O
(

1

ε21,j
log(TK)

)
≤ O

(
1

ε21,2
log(TK)

)
comparisons, where the inequality follows from strong stochastic transitivity. Note

that min{ε1,j, ε1,i} ≤ ε1,j. Then the accumulated weak regret (5.2) is bounded by

ε1,jO
(

1

ε21,j
log(TK)

)
= O

(
1

ε1,j
log(TK)

)
≤ O

(
1

ε1,2
log(TK)

)
= O

(
1

ε1,2
log T

)
(5.10)

where (5.10) holds since log(TK) ≤ log(T 2) = 2 log T . We now bound the ac-

cumulated strong regret (5.1) by leveraging stochastic triangle inequality. Each

comparison incurs ε1,j + ε1,i regret. We consider the following three cases.

Case 1: Suppose bi � bj. Then ε1,j + ε1,i ≤ 2ε1,j, and the accumulated strong

regret of the match is bounded by

2ε1,jO
(

1

ε21,j
log(TK)

)
≤ O

(
1
ε1,2

log(TK)
)

Case 2: Suppose bj � bi and εj,i ≤ ε1,j. Then

ε1,j + ε1,i ≤ ε1,j + ε1,j + εj,i

≤ 3ε1,j

and the accumulated strong regret is bounded by

3ε1,jO
(

1

ε21,j
log(TK)

)
= O

(
1
ε1,j

log(TK)
)

≤ O
(

1
ε1,2

log(TK)
)
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Case 3: Suppose bj � bi and εj,i > ε1,j. Then we can also use Lemma 2 to

bound with high probability the number of comparisons by

O
(

1

ε2j,i
log(TK)

)
.

The accumulated strong regret is then bounded by

3εj,iO
(

1

ε2j,i
log(TK)

)
= O

(
1
εj,i

log(TK)
)

≤ O
(

1
ε1,j

log(TK)
)

≤ O
(

1
ε1,2

log(TK)
)

Like in the analysis for weak regret (5.10), we finally note that

O
(

1

ε1,2
log(TK)

)
= O

(
1

ε1,2
log T

)
.

Lemma 4. Assuming b1 has not been removed and T ≥ K, then with high proba-

bility the accumulated generalized regret from any match is at most

O
(

1

ε1,2
log T

)
.

Proof. Suppose the candidate bandit b̂ = bj is playing a match against bi. At each

time step t that bi is compared to bj, the accumulated generalized regret for that

comparison is r(bi, bj) ∈ [min{ε1,i, ε1,j},max{ε1,i, ε1,j}]. Let n denote the number

of comparisons made in the match. Then the accumulated generalized regret can

be bounded by

nmax{ε1,i, ε1,j} ≤ n (ε1,i + ε1,j) = O
(

1

ε1,2
log T

)
,

where the last equality is the regret bound for strong regret derived in Lemma

3.
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In the next two sections, we will bound the mistake probability and total

matches played by IF1 and IF2, respectively.

5.3.3 Regret Bound for Interleaved Filter 1

We first state our main regret bound for Interleaved Filter 1.

Theorem 3. Running Algorithm 4 with B = {b1, . . . , bK}, time horizon T (T ≥

K), and IF1 incurs expected generalized regret (and thus also weak and strong

regret) bounded by

E[RT ] ≤ O
(
E
[
RIF1
T

])
= O

(
K logK

ε1,2
log T

)
.

The theorem will follow from combining Lemma 4, (5.6), and Lemmas 5 and 7

to follow. We begin by analyzing the probability of IF1 making a mistake.

Lemma 5. IF1 makes a mistake with probability at most 1/T .

Proof. By Lemma 2, the probability that IF1 makes a mistake in any given match

is at most 1/(TK2). Since K2 is a trivial upper bound on the number of matches,

applying the union bound over all matches proves the lemma.

We assume for the remainder of this section that IF1 is mistake-free, since

the cost of making a mistake is considered in (5.6), and we are interested here

in bounding RIF1
T . We can model the sequence of candidate bandits using the

following random walk model.

Definition 1. (Random Walk Model) Define a random walk graph with K

nodes labeled b1, . . . , bK (these will correspond to the similarly named bandits).
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Each node bj (j > 1) transitions to bi for j > i ≥ 1 with probability 1/(j − 1),

or in other words bj transitions to b1, . . . , bj−1 with uniform probability. The final

node b1 is an absorbing node.

A path in the Random Walk Model corresponds to a sequence of candidate

bandits taken by IF (both IF1 and IF2) in an instance of the Dueling Bandits

problem where ε1j = ε2j = . . . = εj−1,j for all j > 1 (and no mistakes are made).

Thus, the path length of the random walk is exactly to the number of rounds in

IF.

Proposition 2. Either IF makes a mistake, or else the number of rounds in the

execution of IF is stochastically dominated by the path length of a random walk in

the Random Walk Model.

Proposition 2 follows directly from Lemma 21 in Appendix B.2. This allows us

to concentrate our analysis on the (simpler) upper bound setting of the Random

Walk Model. We will prove that the random walk in the Random Walk Model

requires O(logK) steps with high probability. Let Xi (1 ≤ i < K) be an indicator

random variable corresponding to whether a random walk starting at bK visits bi

in the Random Walk Model. We first analyze the marginal probability of each

P (Xi = 1), and also show that X1, . . . , XK−1 are mutually independent.

Lemma 6. Let Xi be as defined above with 1 ≤ i < K. Then

P (Xi = 1) =
1

i
,

and furthermore, for all W ⊆ {X1, . . . , XK−1}, we can write P (W ) ≡ P (
∧
i∈W Xi)

as

P (W ) =
∏
Xi∈W

P (Xi), (5.11)

meaning X1, . . . , XK−1 are mutually independent.
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Proof. We can rewrite (5.11) as

P (W ) =
∏
Xi∈W

P (Xi|Wi),

where Wi = {Xj ∈ W |j > i}.

We first consider W = {X1, . . . , XK−1}. For the factor on Xi, denote with j

the smallest index in Wi with Xj = 1 in the condition. Then

P (Xi = 1|Xi+1, ..., XK−1)

= P (Xi = 1|Xi+1 = 0, ..., Xj−1 = 0, Xj = 1) =
1

i
,

since the walk moved to one of the first i nodes with uniform probability indepen-

dent of j. Since ∀j > i : P (Xi = 1|Xj = 1) = 1
i
, this implies P (Xi = 1) = 1

i
. So

we can conclude

P (X1, . . . , XK−1) =
K−1∏
i=1

P (Xi).

Now consider arbitrary W . We use
∑

W c to indicate summing over the joint

states of all Xi variables not in W . We can write P (W ) as

P (W ) =
∑
W c

P (X1, . . . , XK−1)

=
∑
W c

K−1∏
i=1

P (Xi)

=
∏
Xi∈W

P (Xi)

(∑
W c

∏
Xi∈W c

P (Xi)

)

=
∏
Xi∈W

P (Xi).

This proves mutual independence (5.11).
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We can express the number of steps taken by a random walk from bK to b1 in

the Random Walk Model as

SK = 1 +
K−1∑
i=1

Xi. (5.12)

Lemma 6 implies that

E[SK ] = 1 +
K−1∑
i=1

E[Xi] = 1 +HK−1 ≈ logK,

where Hi is the harmonic sum. We now show that SK = O(logK) with high

probability.

Lemma 7. Assuming IF1 is mistake-free, then it runs for O(logK) rounds with

high probability.

Proof. Due to Proposition 2, it suffices to analyze the distribution of path lengths

in the Random Walk Model. It thus suffices to show that for any d sufficiently

large, there exists a m depending only on d such that

∀K ≥ 1 : P (SK > m logK) ≤ 1

Kd
, (5.13)

for SK as defined in (5.12). From Lemma 6, we know that the random variables

X1, . . . , XK−1 in SK are mutually independent. Then using the Chernoff bound

[126], we know that for any m > 1,

P (SK > m(1 +HK−1)) ≤
(
em−1

mm

)1+HK−1

≤
(
em−1

mm

)1+logK

(5.14)

= (eK)m−1−m logm

(5.14) is true since

logK ≤ HK−1 < logK + 1
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for all K ≥ 1. We require this bound to be at most 1/Kd, or

(eK)m−1−m logm ≤ K−d.

The above inequality is satisfied by m ≥ d for d ≥ e. The Chernoff bound applies

for all K ≥ 0. So for any d ≥ e, we can choose m = d to satisfy (5.13).

Corollary 1. Assuming IF1 is mistake-free, then it plays O(K logK) matches

with high probability.

Proof. The result immediately follows from Lemma 7 by noting that IF1 plays at

most O(K) matches in each round.

5.3.4 Regret Bound for Interleaved Filter 2

We first state our main regret bound for Interleaved Filter 2.

Theorem 4. Running Algorithm 4 with B = {b1, . . . , bK}, time horizon T (T ≥

K), and IF2 incurs expected generalized regret (and thus also weak and strong

regret) bounded by

E[RT ] ≤ O
(
E
[
RIF2
T

])
= O

(
K

ε1,2
log T

)
.

The proof follows immediately from combining Lemma 4, (5.6), and Lemmas

9 and 10 to follow. IF2 builds upon IF1 by additionally removing all empirically

inferior bandits whenever the incumbant is defeated, which we call pruning. We

begin by analyzing the pruning procedure. The following lemma could be infor-

mally summarized by saying that when IF2 produces a new incumbent b′ and then

eliminates a bandit b in the subsequent pruning step, we can conclude that b′ is

superior to b with 1− (δT ) confidence.
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Algorithm 6 Interleaved Filter 2 (IF2)

1: Input: T , B = {b1, . . . , bK}
2: δ ← 1/(TK2)

3: Choose b̂ ∈ B randomly
4: W ← {b1, . . . , bK} \ {b̂}
5: ∀b ∈ W , maintain estimate P̂b̂,b of P (b̂ > b) according to (5.7)

6: ∀b ∈ W , maintain 1− δ confidence interval Ĉb̂,b of P̂b̂,b according to (5.8), (5.9)
7: while W 6= ∅ do
8: for b ∈ W do
9: compare b̂ and b

10: update P̂b̂,b, Ĉb̂,b
11: end for
12: while ∃b ∈ W s.t.

(
P̂b̂,b > 1/2 ∧ 1/2 /∈ Ĉb̂,b

)
do

13: W ← W \ {b} //b̂ declared winner against b
14: end while
15: if ∃b′ ∈ W s.t.

(
P̂b̂,b′ < 1/2 ∧ 1/2 /∈ Ĉb̂,b′

)
then

16: while ∃b ∈ W s.t. P̂b̂,b > 1/2 do
17: W ← W \ {b} //pruning
18: end while
19: b̂← b′, W ← W \ {b′} //b′ declared winner against b̂ (new round)
20: ∀b ∈ W , reset P̂b̂,b and Ĉb̂,b
21: end if
22: end while
23: T̂ ← Total Comparisons Made
24: return (b̂, T̂ )

Lemma 8. For all triples of bandits b, b′, b̂ such that b � b′, the probability that IF2

eliminates b in a pruning step in which b′ wins a match against the incumbent bandit

b̂ (i.e. P̂b̂,b′ < 1/2) while b is found to be empirically inferior to b̂ (i.e. P̂b̂,b > 1/2)

is at most δ.

Proof. Let X1, X2, . . . denote an infinite sequence of i.i.d. Bernoulli random vari-

ables with E[Xi] = P (b̂ � b′), and let Y1, Y2, . . . denote an infinite sequence of i.i.d.

Bernoulli random variables with E[Yi] = P (b̂ � b). We couple the outcomes of the

comparisons performed by the algorithm to the sequences (Xi), (Yi) in the obvious

way: Xi (resp. Yi) represents the outcome of the ith comparison between b̂ and
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b′ (resp. b̂ and b) if the algorithm performs at least i comparisons of that pair of

bandits; otherwise Xi (resp. Yi) does not correspond to any comparison observed

by the algorithm.

If b is eliminated by IF2 in a pruning step at the end of a match consisting

of n comparisons between b′ and the incumbent b̂, then X1, . . . , Xn represent the

outcomes of the n matches between b̂ and b′ in that round, and Y1, . . . , Yn represent

the outcomes of the n matches between b̂ and b in that round. From the definition

of confidence intervals in IF2 we know that X1 + · · ·+Xn < n/2−
√

4n log(1/δ),

whereas the definition of the pruning step implies that Y1 + · · ·+ Yn > n/2. Thus,

if we define Zi = Yi −Xi for i = 1, 2, . . ., then we have

Z1 + · · ·+ Zn >
√

4n log(1/δ). (5.15)

To complete the proof of the lemma, we will show the probability that there exists

an n satisfying (5.15) is at most δT .

The random variables (Zi)
∞
i=1 are i.i.d. and satisfy |Zi| ≤ 1. Furthermore, our

assumption that b � b′ together with strong stochastic transitivity implies that

E[Zi] = P (b̂ � b)− P (b̂ � b′) ≤ 0.

By Hoeffding’s inequality, for every n the probability that
∑n

i=1 Zi exceeds
√

4n log(1/δ)

is at most exp(−8n log(1/δ)/(4n)) = δ2. Taking the union bound over n =

1, 2, . . . , T , we find that the probability that there exists an n satisfying (5.15)

is at most δ2T ≤ δ, as claimed.

Lemma 9. The probability that IF2 makes a mistake resulting in the elimination

of bandit b1 is at most 1/T .

Proof. By Lemma 2, for every i the probability that b1 is eliminated in a match

against bi is at most δ. A union bound over all i implies that the probability of
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b1 being eliminated by directly losing a match to some other bandit is at most

δ(K − 1). On the other hand, by Lemma 8, for all i, j the probability that b1

is eliminated in a pruning step resulting from a match in which bi defeats bj is

at most δ. A union bound over all i, j implies that the probability of b1 being

eliminated in a pruning step is at most δ(K−1)2. Summing these two bounds, the

probability that IF2 makes a mistake resulting in the elimination of b1 is at most

δ[(K − 1) + (K − 1)2] < δK2 = 1/T.

For the remainder of this section, we analyze the behavior of IF2 when it is

mistake-free. We will show that, in expectation, IF2 plays O(K) matches and thus

incurs expected regret bounded by

O
(
K

ε1,2
log T

)
.

Lemma 10. Assuming IF2 is mistake free, then it plays O(K) matches in expec-

tation.

Proof. Let Bj denote a random variable counting the number of matches played

by bj when it is not the incumbant (to avoid double-counting). We can write Bj

as

Bj = Aj +Gj,

where Aj indicates the number of matches played by bj against bi for i > j (when

the incumbant was inferior to bj), and Gj indicates the number of matches played

by bj against bi for i < j (when the incumbant was superior to bj). We can thus

bound the expected number of matches played via

K−1∑
j=1

E[Bj] =
K−1∑
j=1

E[Aj] + E[Gj]. (5.16)
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By Lemma 6 and leveraging the Random Walk Model defined in Section 5.3.3, we

can write E[Aj] as

E[Aj] ≤ 1 +
K−1∑
i=j+1

1

i
= 1 +HK−1 −Hi,

where Hi is the harmonic sum.

We now analyze E[Gj]. We assume the worst case that bj does not lose a match

(with 1 − δ confidence) to any superior incumbant bi before the match concludes

(bi is defeated) unless bi = b1. We can thus bound E[Gj] using the probability

that bj is pruned at the conclusion of each round. Let Ej,t denote the event that

bj is pruned after the tth round in which the incumbant bandit is superior to

bj, conditioned on not being pruned in the first t − 1 such rounds. Define Gj,t

to indicate the number of matches beyond the first t − 1 played by bj against a

superior incumbant, conditioned on playing at least t − 1 such matches. We can

write E[Gj,t] as

E[Gj,t] = 1 + P (Ecj,t)E[Gj,t+1],

and thus

E[Gj] ≤ E[Gj,1] ≤ 1 + P (Ecj,1)E[Gj,2]. (5.17)

We know that P (Ecj,t) ≤ 1/2 for all j 6= 1 and t. From Lemma 7, we know that

E[Gj,t] ≤ O(K logK) and is thus finite. Hence, we can bound (5.17) by the infinite

geometric series 1 + 1/2 + 1/4 + . . . = 2.
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We can thus write (5.16) as

K−1∑
j=1

E[Aj] + E[Gj] ≤
K−1∑
j=1

(1 +HK−1 −Hj) + 2(K − 1)

=
K−1∑
j=1

(
1 +

K−1∑
i=j+1

1

i

)
+ 2(K − 1)

=
K−1∑
j=1

(j − 1)
1

j
+ 3(K − 1) = O(K).

5.3.5 Lower Bounds

We now show that the bound in Theorem 4 is information theoretically optimal up

to constant factors. The proof is similar to the lower bound proof for the standard

stochastic multi-armed bandit problem. However, since we make a number of

assumptions not present in the standard case (such as a total ordering of B), we

present a simple self-contained lower bound argument, rather than a reduction

from the standard case.

Theorem 5. Any algorithm φ for the dueling bandits problem satisfies

Rφ
T = Ω

(
K

ε
log T

)
,

where ε = minb6=b∗ P (b∗ > b).

Here is a heuristic explanation of why we might suspect the theorem to be true.

Rather than consider the general problem of identifying the best of K bandits,

suppose we are given a bandit b, and asked to determine with probability at least

1 − 1/T whether b is the best bandit. (Intuitively, the regret incurred by the
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optimal algorithm for this decision problem should be a lower bound on the regret

incurred by the optimal algorithm for the general problem). We have seen that,

given two bandits bi and bj with P (bi > bj) = 1/2 + ε, we can identify the better

bandit with probability at least 1 − 1/T after O(log T/ε2) comparisons. If this

is in fact the minimum number of comparisons required, then we would suspect

that any algorithm for the above decision problem that is uniformly good over all

problem instances must perform Ω(log T/ε2) comparisons involving each inferior

bandit. We will see in Lemma 11 that this is in fact the case, and we begin by

constructing the appropriate problem instance.

Fix ε > 0 and define the following family of problem instances. In instance j, let

bj be the best bandit, and order the remaining bandits by their indices. That is, in

instance j, we have bj � bk for all k 6= j, and for i, k 6= j, we have bi � bk whenever

i < k. Given this ordering, define the winning probabilities by P (bi > bk) = 1/2+ε

whenever bi � bk. Note that this construction yields a valid problem instance, i.e.

one that satisfies (5.4), (5.5).

Let qj be the distribution on T -step histories induced by a given algorithm φ

under instance j, and let nj,T be the number of comparisons involving bandit bj

scheduled by φ up to time T. Using these instances, we prove Lemma 11, from

which Theorem 5 follows.

Lemma 11. Let φ be an algorithm for the dueling bandits problem such that

Rφ
T = o(T a) (5.18)

for all a > 0. Then for all j,

Eq1 [nj,T ] = Ω

(
log T

ε2

)
.
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Lemma 11 formalizes the intuition given above, in that any algorithm whose

regret is o(T a) over all problem instances must make Ω(log T/ε2) comparisons

involving each inferior bandit, in expectation. The proof is motivated by Lemma

5 of [99].

Proof. Fix an algorithm φ satisfying assumption (5.18), and fix 0 < a < 1/2.

Define the event Ej = {nj,T < log(T )/ε2}, and let J = {j : q1(Ej) < 1/3}. For each

j ∈ J, we have by Markov’s inequality that

Eq1 [nj,T ] ≥ q1(Ecj )(log(T )/ε2) = Ω

(
log T

ε2

)
,

so it remains to show that Eq1 [nj,T ] = Ω(log T/ε2) for each j /∈ J. For any j, we

know that under qj, the algorithm φ incurs regret ε for every comparison involving

a bandit b 6= bj. This fact together with the assumption (5.18) on φ implies that

Eqj [T − nj,T ] = o(T a). Using this fact and Markov’s inequality, we have

qj(Ej) = qj({T − nj,T > T − log(T )/ε2})

≤
Eqj [T − nj,T ]

T − log(T )/ε2
= o(T a−1),

and so choosing T sufficiently large shows that qj(Ej) < 1/3 for each j (and in

particular, that 1 ∈ J by construction). Now by Lemma 6.3 of [91], we have that

for any event E and distributions p, q with p(E) ≥ 1/3 and q(E) < 1/3,

KL(p; q) ≥ 1

3
ln

(
1

3q(E)

)
− 1

e
.

For each j /∈ J, we may apply this lemma with q1, qj, and the event Ej, to show

KL(q1; qj) ≥
1

3
ln

(
1

3o(T a−1)

)
− 1

e

= Ω(log T ). (5.19)
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On the other hand, by the chain rule for KL divergence [47], we have

KL(q1; qj) ≤ Eq1 [nj,T ]KL(1/2 + ε; 1/2− ε)

≤ 16ε2Eq1 [nj,T ], (5.20)

where we use the shorthand KL(1/2 + ε; 1/2− ε) to denote the KL-divergence be-

tween two Bernoulli distributions with parameters 1/2+ε and 1/2−ε, respectively.

The first inequality follows from the fact that the distribution on the outcome of

a comparison will differ under distributions q1 and qj only if the comparison in-

volves bandit bj, and the second inequality follows from a standard result on the

KL divergence between two Bernoulli distributions. Combining (5.19) and (5.20)

shows that Eq1 [nj,T ] = Ω(log T/ε2) for each j /∈ J, which proves the lemma.

Proof of Theorem 5. Let φ be any algorithm for the dueling bandits problem. If φ

does not satisfy the hypothesis of Lemma 11, the theorem holds trivially. Other-

wise, on the problem instance specified by q1, φ incurs regret at least ε every time

it plays a match involving bj 6= b1. It follows from Lemma 11 that

Rφ
T ≥

∑
j 6=1

εEq1 [nj,T ] = Ω

(
K

ε
log T

)
.

5.4 Related Work

Regret-minimizing algorithms for multi-armed bandit problems and their general-

izations have been intensively studied for many years, both in the stochastic [108]

and non-stochastic [13] cases. The vast literature on this topic includes algo-

rithms whose regret is within a constant factor of the information-theoretic lower
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bound in both the stochastic case [12] and the non-stochastic case [10]. Our use

of upper confidence bounds in designing algorithms for the dueling bandits prob-

lem is prefigured by their use in the multi-armed bandit algorithms that appear

in [11, 12, 108].

Upper confidence bounds are also central to the design of multi-armed bandit

problems in the PAC setting [60, 122], where the algorithm’s objective is to identify

an arm that is ε-optimal with probability at least 1 − δ. Our work adopts a

very different feedback model (pairwise comparisons rather than direct observation

of payoffs) and a different objective (regret minimization rather than the PAC

objective) but there are clear similarities between our proposed algorithms and

the Successive Elimination and Median Eliminiation algorithms developed for the

PAC setting in [60]. There are also some clear differences between the algorithms:

in our setting, the highly suboptimal arms must be eliminated quickly (before

sampling more that ε−2 times). In the Successive/Median Elimination algorithms,

every arm is sampled at least ε−2 times. The need to eliminate highly suboptimal

arms quickly is specific to the regret minimization setting and exerts a strong

influence on the design of the algorithm; in particular, it motivates the interleaved

structure as explained above.

The difficulty of the dueling bandits problem stems from the fact that the

algorithm has no way of directly observing the costs of the actions it chooses. It is

an example of a partial monitoring problem, a class of regret-minimization problems

defined in [34], in which an algorithm (the “forecaster”) chooses actions and then

observes feedback signals that depend on the actions chosen by the forecaster and

by an unseen opponent (the “environment”). This pair of actions also determines

a loss, which is not revealed to the forecaster but is used in defining the forecaster’s
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regret. Under the crucial assumption that the feedback matrix has high enough

rank that its row space spans the row space of the loss matrix (which is required

in order to allow for a Hannan consistent forecaster) the results of [34] show that

there is a forecaster whose regret is bounded by O(T 2/3) against a non-stochastic

(adversarial) environment, and that there exist partial monitoring problems for

which this bound cannot be improved. Our dueling bandits problem is a special

case of the partial monitoring problem. In particular, our environment is stochastic

rather than adversarial, and thus our regret bound exhibits much better (i.e.,

logarithmic) dependence on T .

Banditized online learning problems based on absolute rewards (of individual

actions) have been previously studied in the context of web advertising [129, 111].

In that setting, clear explicit feedback is available in the form of (expected) revenue.

We study settings where such absolute measures are unavailable or unreliable.

Our work is also closely related to the literature on computing with noisy com-

parison operations [1, 15, 61, 91], in particular the design of tournaments to identify

the maximum element in an ordered set, given access to noisy comparators. All

of these papers assume unit cost per comparison, whereas we charge a different

cost for each comparison depending on the pair of elements being compared. In

the unit-cost-per-comparison model, and assuming that every comparison has ε

probability of error regardless of the pair of elements being compared, Feige et

al. [61] presented sequential and parallel algorithms that achieve the information-

theoretically optimal expected cost (up to constant factors) for many basic prob-

lems such as sorting, searching, and selecting the maximum. The upper bound

for noisy binary search has been improved in a recent paper [15] that achieves

the information-theoretic optimum up to a 1 + o(1) factor. When the probabil-
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ity of error depends on the pair of elements being compared (as in our dueling

bandits problem), Adler et al. [1] and Karp and Kleinberg [91] present algorithms

that achieve the information-theoretic optimum (up to constant factors) for the

problem of selecting the maximum and for binary search, respectively. Our results

can be seen as extending this line of work to the setting of regret minimization.

It is worth noting that the most efficient algorithms for selecting the maximum

in the model of noisy comparisons with unit cost per comparison [1, 61] are not

suitable in the regret minimization setting considered here, because they devote

undue effort to comparing elements that are far from the maximum.

Learning based on pairwise comparisons is well studied in the (off-line) su-

pervised learning setting called learning to rank (also see Section 2.2.3). Typi-

cally, a preference function is first learned using a set of i.i.d. training examples,

and subsequent predictions are made to minimize the number of mis-ranked pairs

(e.g., [44]). Most prior work assume access to a training set with absolute labels

(e.g., of relevance or utility) on individual examples, with pairwise preferences

generated using pairs of inputs with labels from different ordinal classes (e.g.,

[5, 14, 66, 75, 85, 119]). In the case where there are exactly two label classes, this

becomes the so-called bipartite ranking problem [5, 14], which is a more general

version of learning to optimize ROC-Area [75, 85, 119].
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Figure 5.1: Comparing regret ratio between IF1 and IF2 in worst-case simulations.

5.5 Experiments

5.5.1 Synthetic Simulations

We performed numerical simulations on two synthetic problem instances. The

first set of simulations used the worst-case instance from the lower bound proof

of Theorem 5. In this instance, P (bi > bj) = 1/2 + ε whenever i < j. For this

experiment, we fixed ε = 0.1 and the time horizon T = 107. We varied K from 100

to 500 in increments of 50, and for each value of K, we performed 500 simulations

of both IF1 and IF2. In Figure 5.1, we plot the ratio of the regret incurred by IF1

and IF2 (which we henceforth also call the regret ratio).

For the second set of simulations, we generated random problem instances

according to a Bradley-Terry model with uniformly random weights. For normal-

ization purposes, we then modified each problem instance to ensure that the best

bandit had a winning probability of at least 1/2 + ε against all other bandits. The

details of the procedure are as follows. For each value of K, we generated K − 1

random numbers w2, . . . , wK sampled independently from the uniform distribution

on (0, 1). To define w1, we found the largest weight wmax = max{w2, . . . , wK}, and
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Figure 5.2: Comparing regret ratio between IF1 and IF2 in random case simula-
tions.

defined w1 = wmax(1 + 2ε)/(1 − 2ε). We then defined P (bi > bj) = wi/(wi + wj),

so that for all i 6= 1,

P (b1 > bi) =
w1

w1 + wi
≥ w1

w1 + wmax

=
1

2
+ ε.

Note that this is the Bradley-Terry model discussed in Section 5.2, which satis-

fies the modeling assumptions introduced in that section. We fixed ε = 0.1 and

T = 107, and performed 500 simulations of IF1 and IF2 on each of the randomly

generated instances. We plot the regret ratio of IF1 versus IF2 in Figure 5.2.

For the worst-case simulations, we see that IF2 outperforms IF1, and that the

median of the regret ratio increases logarithmically with K. For the random-case

simulations, we also see that IF2 outperforms IF1, but the regret ratio does not

increase with K as in the worst-case simulations. Intuitively, IF1 and IF2 incur

a large amount of regret during matches in which P (bi > bj) is close to 1/2. In

the worst-case problem instance, this is guaranteed to be true for every match

by construction. Consequently, each pruning step performed by IF2 reduces the

total regret incurred by a significant amount by eliminating a high-cost match that

would otherwise be played. In contrast to the worst-case instances, we expect that

in the random-case, many matches will have P (bi > bj) far from 1/2, and thus will
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Figure 5.3: Comparing regret ratio between IF1 and IF2 in web search simulations.

Figure 5.4: Comparing matches played ratio between IF1 and IF2 in web search
simulations.

contribute little to the total regret. A pruning step that eliminates such a match

will have little effect on the total regret, and so we should expect the regret of IF1

and IF2 to be more similar in the random-case than in the worst-case, which fits

our empirical results.

5.5.2 Web Search Simulations

For a more realistic simulation, we leveraged a real Web Search dataset (courtesy

of Chris Burges at Microsoft Research). The idea is to simulate users issuing

queries by sampling from queries in the dataset. For each query, the two competing
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retrieval functions will produce rankings, after which the “user” will randomly

prefer one ranking over the other. User preferences are modeled probabilistically

using the logistic transfer function and NDCG@10, which is a measure used for

evaluating the quality of rankings in information retrieval tasks (see [58]).

The compatibility between a document/query pair is represented using 367

features. A standard retrieval function computes a score for each document based

on these features, with the final ranking resulting from sorting by the scores. We

can then use that ranking to compute NDCG@10. For simplicity, we considered

only linear functions w, so that the score for document x is wTx. Any particular

bandit corresponds to a particular weight vector.

We varied the number of bandits (retrieval functions) K from 100 to 500 in

increments of 50. For each experimental setting, we randomly selected K retrieval

functions from a pool of 1000 retrieval functions. For each value of K, we used 25

experimental settings with 25 trials per setting. We fixed T = 107 for all settings,

since our primary goal in this experiment is to compare the performance of IF1

and IF2. We used strong regret (5.1) to measure performance.

Figure 5.3 shows a box plot of the regret ratio for IF1 and IF2. Since different

collections of retrieval functions yield different performances (due to differences in

the distinguishability between the bandits), it is more informative to compare the

ratio of regret on the same initial conditions, which we again call the regret ratio.9

We can see that IF2 consistently outperforms IF1, however the performance ratio

does not scale as log(K) as implied by our worst case bounds.

Intuitively, there are two conditions that must be satisfied for IF2 to improve

9Both IF1 and IF2 start with the same initial incumbant bandit and the same (randomly
selected) permutation ordering over the remaining bandits to use for when interleaving matches
in round robin fashion.
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by a logarithmic factor over IF1. First, a logarithmic number of rounds must be

played (i.e., we must consider a logarithmic number of candidate bandits). Second,

within each round, most of the bandits must not be confidently eliminated from

consideration so that they can be eliminated via the pruning procedure in IF2.

Satisfying both of these conditions would imply IF1 playing a logarithmic factor

more matches than IF2. In the web search dataset, we observe neither condition

being strongly satisfied. In all settings, only a small number of rounds are played

(typically between 2 and 4) for all values of K (which admittedly only ranges up

to 500 in our experiments). Futhermore, in many rounds, a substantial fraction of

the bandits are confidently eliminated from consideration before the conclusion of

the round. This is summarized in Figure 5.4, which shows a box plot of the ratio

of matches played between IF1 and IF2. Nonetheless, we can see that IF2 can

offer real practical improvements over IF1, although the difference in performance

is perhaps not as dramatic as suggested by the worst case analysis.

5.6 Discussion

The Dueling Bandits Problem is appealing due to not only its simplicity, but also

its practical applicability. In the discrete setting, our Interleaved Filter algorithms

are guaranteed to provide good performance so long as there exists a comparison

oracle which satisfies the assumptions described in Section 5.2.

But while the methods presented in this chapter demonstrate significant progress

towards practical interactive algorithms for real information systems, significant

challenges remain. Most obviously, do such comparison oracles which satisfy our

modeling assumptions actually exist in practice? And if not, then can we design
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methods that are robust to using oracles which violate these assumptions in some

quantifiable way?

From a theoretical standpoint, questions also remain. For instance, while Inter-

leaved Filter 2 achieves expected regret that is information-theoretically optimal

(up to constant factors), it is an open question whether there exists algorithms that

can achieve this performance with high probability. The formulation of the Duel-

ing Bandits Problem can also be naturally extended along many other standard

directions, including incorporating shifting user interests, unknown time horizons,

and adversarial behavior.

From a practical standpoint, two additional related modeling questions arise.

The first is how to deal with context. Different retrieval functions may perform

better for different queries or usage contexts, and we may want our algorithm to

be able to choose which retrieval functions to compare depending on that context.

The current formulation of the Dueling Bandits Problem ignores contextual infor-

mation. This issue has been explored in the standard multi-armed bandit setting

in two ways. The first is to assume a collection of “experts” that gives advice on

which bandit (or retrieval function, in our case) is best for a given context [12].

The second, and more general, setting is to assume a (continuous) hypothesis class

of classifiers that predicts which bandit is best for a given context [111]. Both

problem settings can be easily reformulated into a dueling bandits setting.

The second modeling question is how to deal with large strategy spaces (i.e.,

large K). Since this subsumes the aforementioned problem of dealing with contex-

tual information (by treating the strategy space as the Cartesian product of the

original strategy space and the space of contexts), we focus here on a complemen-

tary sub-problem. Note that the regret bound for Interleaved Filter 2 is linear in K,
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which can be prohibitively expensive for even moderately large values of K (e.g.,

one thousand or one million). The most common approach to dealing with such

issues in the standard multi-armed bandit setting is to assume additional structure

in the strategy space, such as a metric [100] or a hierarchical decomposition [129].

This is a largely unexplored problem area in the dueling bandits setting., and the

specific modeling considerations will depend upon the application.
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CHAPTER 6

THE DUELING BANDITS PROBLEM FOR CONTINUOUS

PARAMETER SPACES

In this chapter, we investigate an instance of the Dueling Bandits Problem that

deals with a continuous space of bandits W [185]. This setting is very practical as

many information systems employ continuously parameterized retrieval functions,

and interactively optimizing those parameters can be naturally modeled using the

continuum-armed Dueling Bandits Problem described in the following.

More specifically, we consider the setting where W contains the origin and is

compact, convex, and contained in a d-dimensional ball of radius R. Like in Chap-

ter 5, we assume that any single comparison between two points w and w′ (e.g.,

individual retrieval functions) is determined independently of all other comparisons

with probability

P (w � w′) =
1

2
+ ε(w,w′), (6.1)

where ε(w,w′) ∈ [−1/2, 1/2]. In the search example, P (w � w′) refers to the

fraction of users who prefer the results produced by w over those of w′. One can

regard ε(w,w′) as the distinguishability between w and w′. Algorithms learn only

via observing comparison results (e.g., from interleaving [140]).

We quantify the performance of an on-line algorithm using the strong regret

formulation from Chapter 5,1

RT =
T∑
t=1

ε(w∗, wt) + ε(w∗, w′t), (6.2)

1Our results also apply, with little modification, to other regret formulations proposed in
Chapter 5.
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where wt and w′t are the two points selected at time t, and w∗ is the best point

known only in hindsight. Note that the algorithm is allowed to select two identical

points, so selecting wt = w′t = w∗ accumulates no additional regret. In the search

example, regret corresponds to the fraction of users who would prefer the best

retrieval function w∗ over the selected ones wt and w′t.

6.1 Modeling Assumptions

We further assume the existence of a differentiable, strictly concave value function

v : W → R. This function reflects the intrinsic quality of each bandit/point

in W , and is never directly observed. Since v is strictly concave, there exists a

unique maximum v(w∗). Probabilistic comparisons are made using a link function

σ : R → [0, 1], and are defined as

P (w � w′) = σ(v(w)− v(w′)).

Thus ε(w,w′) = σ(v(w)− v(w′))− 1/2.

Link functions behave like cumulative distribution functions (monotonic in-

creasing, σ(−∞) = 0, and σ(∞) = 1). We consider only link functions which

are rotation-symmetric (σ(x) = 1 − σ(−x)) and have a single inflection point at

σ(0) = 1/2. This implies that σ(x) is convex for x ≤ 0 and concave for x ≥ 0.

One common link function is the logistic function σL(x) = 1/(1 + exp(−x)).

We finally make two smoothness assumptions. First, σ is Lσ-Lipschitz, and v

is Lv-Lipschitz. That is, |σ(a) − σ(b)| ≤ Lσ‖a − b‖. Thus ε(·, ·) is L-Lipschitz in

both arguments, where L = LσLv. We further assume that Lσ and Lv are the least

possible. Second, σ is second order L2-Lipschitz, that is, |σ′(a)−σ′(b)| ≤ L2‖a−b‖.

These relatively mild assumptions provide sufficient structure for showing sublinear
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Algorithm 7 Dueling Bandit Gradient Descent

1: Input: γ, δ, w1

2: for query qt (t = 1..T ) do
3: Sample unit vector ut uniformly.
4: w′t ← PW(wt + δut) //projected back into W
5: Compare wt and w′t
6: if w′t wins then
7: wt+1 ← PW(wt + γut) //also projected
8: else
9: wt+1 ← wt

10: end if
11: end for

regret.

Note that these are stronger assumptions than the ones made in Chapter 5,

since they immediately imply strong stochastic transitivity (5.4) and stochastic

triangle inequality (5.5).

6.2 Dueling Bandit Gradient Descent

We now present an algorithm and analysis which build upon methods for online

convex optimization [192, 98, 65]. This method is compatible with many existing

classes of retrieval functions, and we provide theoretical regret bounds and an

experimental evaluation.

Our algorithm, Dueling Bandit Gradient Descent (DBGD), is described in Al-

gorithm 7. DBGD maintains a candidate wt and compares it with a neighboring

point w′t along a random direction ut. If w′t wins the comparison, then an update

is taken along ut, and then projected back into W (denoted by PW).

DBGD requires two parameters which can be interpreted as the exploration

116



Figure 6.1: Example relative loss functions (εt(w) ≡ ε(wt, w)) using the logistic
link function, W ⊆ R, and value function v(w) = −w2, for wt = −3,−2,−1. Note
that the functions are convex in the area around w∗ = 0.

(δ) and exploitation (γ) step sizes. The latter is required for all gradient descent

algorithms. Since DBGD probes for descent directions randomly, this introduces

a gradient estimation error that depends on δ (discussed Section 6.2.2). We will

show in Theorem 7 that, for suitable δ and γ, DBGD achieves sublinear regret in

T ,

E[RT ] ≤ 2λTT
3/4
√

26RdL,

where λT approaches 1 from above as T increases. For example, when T >

64R2d2L4
vL

4
2

132L2L4
σ

, then λT < 2.

Making an additional convexity assumption2 described in Theorem 9 yields a

much simpler result,

E[RT ] ≤ 2T 3/4
√

10RdL.

To analyze DBGD, we first define relative loss as

εt(w) ≡ ε(wt, w), (6.3)

which is the distinguishability between wt and any other point. We will also define

ε∗(w) as

ε∗(w) ≡ ε(w∗, w). (6.4)

2The assumption currently lacks theoretical justification, but is observed empirically in many
settings.
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This relative loss function is depicted pictorally in Figure 6.1 for the logistic link

function and v(w) = −w2.

Analysis Approach. Our analysis follows two conceptual phases. We first

present basic results demonstrating the feasibility of performing gradient descent

on the relative loss functions εt (6.3). These results include proving that εt is

partially convex,3 and how pairwise comparisons can yield good gradient estimates.

We then build on existing results [192, 65] to show that DBGD minimizes our regret

formulation (6.2). We begin by observing that εt is partially convex.

Observation 2. For link functions σ(x) and value functions v(w) satisfying as-

sumptions from Section 6.1, εt(w) is partially convex for wt 6= w∗.

Proof. Define Wt = {w : v(w) ≥ v(wt)}, which has a non-empty interior for

wt 6= w∗. For a, b ∈ Wt and β ∈ [0, 1] we know that

v(βa+ (1− β)b) ≥ βv(a) + (1− β)v(b),

since v is concave. We then write εt(βa+ (1− β)b) as

= σ(v(wt)− v(βa+ (1− β)b))− 1/2

≤ σ(v(wt)− βv(a)− (1− β)v(b))− 1/2

≤ βσ(v(wt)− v(a)) + (1− β)σ(v(wt)− v(b))− 1/2

= βεt(a) + (1− β)εt(b)

The first inequality follows from monotonicity of σ(x). The second inequality holds

since σ(x) is convex for x ≤ 0 (holds for a, b ∈ Wt). Since Wt is convex (due to

concavity of v), we conclude that εt is partially convex.

3A function f : W → R is partially convex if there is a convex region with a non-empty
interior and containing w∗ where f is convex.
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6.2.1 Estimating Gradients

We now elaborate on the update procedure used by DBGD. Flaxman et al. [65]

observed that

∇ct(wt) ≈ Eu[ct(wt + δu)u]
d

δ
, (6.5)

where δ > 0, d denotes the dimensionality, and u is a uniformly random unit

vector. Let Xt(w) denote the event of w winning a comparison with wt:

Xt(w) =

 1 w.p. 1− P (wt � w)

0 w.p. P (wt � w)
. (6.6)

We can model the update in DBGD (ignoring γ) as

Xt(PW(wt + δut))ut,

which we now show, in expectation, matches the RHS of (6.5) (ignoring d/δ) with

an additional projection.

Lemma 12. Let

ct(w) = P (wt � w) = εt(w) + 1/2.

Then for δ > 0 and uniformly random unit vector u,

EXt,u[Xt(PW(wt + δu))u] = −Eu[ct(PW(wt + δu))u].

Proof. Let S denote the unit sphere. Then we see that EXt,u[Xt(wt + δu)u] can be
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written as

= Eu[EXt [Xt(PW(wt + δu))|u]u]

=
∫

S EXt [Xt(PW(wt + δu))|u]udu

=
∫

S(1− ct(PW(wt + δu)))udu

= 0−
∫

S ct(PW(wt + δu))udu

= −Eu[ct(PW(wt + δu))u]

6.2.2 Gradient Quality & Function Smoothing

We now characterize the quality of the proposed gradient approximation (6.5). Let

ĉt denote a smoothed version of some function ct,

ĉt(w) = Ex∈B[ct(PW(w + δx))],

where x is selected uniformly within the unit ball B. We can show using Stokes

Theorem that our sampled gradient direction is an unbiased estimate of ∇ĉt.

Lemma 13. Fix δ > 0, over random unit vectors u,

Eu∈S[ct(PW(w + δu))u] =
δ

d
∇ĉt(w),

where d is the dimensionality of w, and S denotes the unit sphere (of dimensionality

d). (Analogous to Lemma 2.1 of [65])

Proof. (Adapted from [65].) For d = 1, the fundamental theorem of calculus

implies

d

dw

∫ δ

−δ
ct(PW(w + x))dx = ct(PW(w + δ))− ct(PW(w − δ)).
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Using Stokes Theorem, we can write the d-dimensional generalization as

∇
∫
δB
ct(PW(w + x))dx =

∫
δS
ct(PW(w + u))

u

‖u‖
du. (6.7)

By definition, we have

ĉt(w) = Ex∈B[ct(PW(w + δx))] =

∫
δB ct(PW(w + δx))dx

volume(δB)
, (6.8)

and

Eu∈S[ct(PW(w + δu)u] =

∫
δS ct(PW(w + u)) u

‖u‖du

area(δS)
. (6.9)

Combining (6.7), (6.8), (6.9), and the fact that ratio of volume to surface area of

a d-dimensional ball of radius δ is δ/d concludes the proof.

Combining Lemma 12 and Lemma 13 implies that DBGD is essentially per-

forming gradient descent over

ε̂t(w) = Ex∈B[εt(PW(w + δx))]. (6.10)

Note that |ε̂t(w)− εt(w)| ≤ δL, and that ε̂t is parameterized by δ (suppressed for

brevity). Hence, good regret bounds defined on ε̂t imply good bounds defined on

εt, with δ controlling the difference.

One concern is that ε̂t might not be convex at wt. Observation 2 showed that

εt is convex at wt, and thus satisfies εt(wt)− εt(w∗) ≤ ∇εt(wt) · (wt−w∗). We now

show that ε̂t(wt) is “almost convex” in a specific way.

Theorem 6. For λ defined as

λ =
Lσ

Lσ − δLvL2

, (6.11)

and δ ∈
(

0, Lσ
LvL2

)
, then

ε̂t(wt)− ε̂t(w∗) ≤ λ∇ε̂t(wt) · (wt − w∗) + (3 + λ)δL.
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Proof. First define wt,δx ≡ PW(wt+δx), and also εt,δx(w) ≡ ε(wt,δx, w). We rewrite

ε̂t(wt)− ε̂t(w∗) as

= Ex∈B [εt(PW(wt + δx))− εt(PW(w∗ + δx))]

≤ Ex∈B [εt,δx(wt,δx)− εt,δx(w∗)] + 3δL (6.12)

≤ Ex∈B [∇εt,δx(wt,δx) · (wt,δx − w∗)] + 3δL (6.13)

where (6.12) follows from ε being L-Lipschitz, and (6.13) follows from wt,δx and

w∗ both being in the convex region of εt,δx. Now define σt(y) ≡ σ(v(wt)− y), and

σt,δx(y) ≡ σ(v(wt,δx)− y). We can see that

∇εt(wt,δx) = σ′t(v(wt,δx))∇v(wt,δx).

and similarly

∇εt,δx(wt,δx) = σ′t,δx(v(wt,δx))∇v(wt,δx).

We can then write (6.13) as

= Ex

[
σ′t,δx(wt,δx)∇v(wt,δx) · (wt,δx − w∗)

]
+ 3δL. (6.14)

We know that both σ′t,δx(y) ≤ 0 and σ′t(y) ≤ 0, and

σ′t,δx(v(wt,δx)) = −Lσ,

since that is the inflection point. Thus

−Lσ ≤ σ′t(v(wt,δx)) ≤ −Lσ + δLvL2,

which follows from σ being second order L2-Lipschitz. Since εt,δx(wt,δx)−εt,δx(w∗) ≥

0, the term inside the expectation in (6.14) is also non-negative. Using our defini-
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tion of λ (6.11), we can write (6.14) as

≤ Ex [λσ′t(wt,δx)∇v(wt,δx) · (wt,δx − w∗)] + 3δL

= Ex [λ∇εt(wt,δx) · (wt,δx − w∗)] + 3δL

= Ex [λ∇εt(wt,δx) · (wt,δx − wt + wt − w∗)] + 3δL

≤ Ex [λ∇εt(wt,δx) · (wt − w∗)] + (3 + λ)δL (6.15)

= λ∇ε̂t(wt) · (wt − w∗) + (3 + λ)δL

where (6.15) follows from observing that

Ex [∇εt(wt,δx) · (wt,δx − wt)] ≤ Ex [‖∇εt(wt,δx)‖δ] ≤ δL.

6.2.3 Regret Bound for DBGD

Thus far, we have focused on proving properties regarding the relative loss functions

εt and ε̂t. We can easily bound our regret formulation (6.2) using εt.

Lemma 14. Fix δ > 0. Expected regret is bounded by

E [RT ] ≤ −2E

[
T∑
t=1

εt(w
∗)

]
+ δLT.

Proof. We can write expected regret as

E [RT ] ≤ 2E
[∑T

t=1 ε
∗(wt)

]
+ δLT

= −2E
[∑T

t=1 εt(w
∗)
]

+ δLT

by noting that |ε∗(w′t)− ε∗(wt)| ≤ δL, and also that εt(w
∗) = −ε∗(wt).
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We now analyze the regret behavior of the smoothed loss functions ε̂t. Lemma

15 provides a useful intermediate result. Note that the regret formulation analyzed

in Lemma 15 is different from (6.2).

Lemma 15. Fix δ ∈
(

0, Lσ
LvL2

)
, and define λ as in (6.11). Assume a sequence of

smoothed relative loss functions ε̂1, . . . , ε̂T (ε̂t+1 depending on wt) and w1, . . . , wT ∈

W defined by w1 = 0 and wt+1 = PW(wt − ηgt), where η > 0 and g1, . . . , gT are

vector-valued random variables with (a) E[gt|wt] = ∇ε̂t, (b) ‖gt‖ ≤ G, and (c)

W ⊆ RB. Then for η = R
G
√
T

,

E

[
T∑
t=1

ε̂t(wt)− ε̂t(w∗)

]
≤ λRG

√
T + (3 + λ)δT. (6.16)

(Adapted from Lemma 3.1 in [65])

Proof. Theorem 6 implies the LHS of (6.16) to be

=
T∑
t=1

E [ε̂t(wt)− ε̂t(w∗)]

≤
T∑
t=1

E [ λ∇ε̂t(wt) · (wt − w∗) + (3 + λ)δL ]

= λ
T∑
t=1

E [E[gt|wt] · (wt − w∗)] + (3 + λ)δLT

= λ
T∑
t=1

E[gt · (wt − w∗)] + (3 + λ)δLT (6.17)

Following the analysis of [192], we will use the potential function ‖wt − w∗‖2. In

particular we can rewrite ‖wt+1 − w∗‖2 as

= ‖PW(wt − ηgt)− w∗‖2

≤ ‖wt − ηgt − w∗‖2 (6.18)

= ‖wt − w∗‖2 + η2‖gt‖2 − 2η(wt − w∗) · gt

≤ ‖wt − w∗‖2 + η2G2 − 2η(wt − w∗) · gt
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where (6.18) follows from the convexity of W . Rearranging terms allows us to

bound gt · (wt − w∗) as

≤ ‖wt − w
∗‖2 − ‖wt+1 − w∗‖2 + η2G2

2η

We can thus bound
∑T

t=1 E[gt · (wt − w∗)] by

≤
T∑
t=1

E

[
‖wt − w∗‖2 − ‖wt+1 − w∗‖2 + η2G2

2η

]
= E

[
‖w1 − w∗‖2

2η
+ T

η2G2

2η

]
≤ R2

2η
+ T

ηG2

2
(6.19)

which follows from choosing w1 = 0 and W ⊆ RB. Combining (6.17) and (6.19)

bounds the LHS of (6.16) by

≤ λ

(
R2

2η
+ T

ηG2

2

)
+ (3 + λ)δT.

Choosing η = R
G
√
T

finishes the proof.

We finally present our main result.

Theorem 7. By setting w1 = 0,

δ =

√
2Rd√

13LT 1/4
, γ =

R√
T
, T >

(√
2RdLvL2√

13LLσ

)4

, (6.20)

DBGD achieves expected regret (6.2) bounded by

E [RT ] ≤ 2λTT
3/4
√

26RdL

where

λT =
Lσ
√

13LT 1/4

Lσ
√

13LT 1/4 − LvL2

√
2Rd

. (6.21)

Proof. Adapting from [65], if we let

gt = −d
δ
Xt(PW(wt + δut))ut,
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usingXt as described in (6.6), then by Lemma 12 and Lemma 13 we have E[gt|wt] =

∇ε̂t(wt). By restricting T in (6.20), we guarantee δ ∈ (0, Lσ/LvL2). We can then

apply Lemma 15 using the update rule

wt+1 = PW(wt − ηgt)

= PW(wt + η d
δ
Xt(PW(wt + δut))ut)

which is exactly the update rule of DBGD if we set η = γδ/d. Note that

‖gt‖ =

∥∥∥∥dδXt(PW(wt + δut))ut

∥∥∥∥ ≤ d

δ
.

Setting G = d/δ and noting our choice of γ = R/
√
T , we have η = R

G
√
T

. Applying

Lemma 15 yields

E

[
T∑
t=1

ε̂t(wt)− ε̂t(w∗)

]
≤ λRd

√
T

δ
+ (3 + λ)δLT. (6.22)

Combining Lemma 14 and (6.22) yields

E[RT ] ≤ −2E
[∑T

t=1 εt(w
∗)
]

+ δLT

= 2E
[∑T

t=1 εt(wt)− εt(w∗)
]

+ δLT

≤ 2E
[∑T

t=1 ε̂t(wt)− ε̂t(w∗)
]

+ 5δLT

≤ 2λRd
√
T

δ
+ (11 + 2λ)δLT

≤ λ
(

2Rd
√
T

δ
+ 13δLT

)
Choosing δ =

√
2Rd√

13LT 1/4 completes the proof.

Corollary 2. Using choices of w1, δ, and γ as stated in Theorem 6.2, if

T >

(√
2RdLvL2√

13LLσ

)4(
1 + α

α

)4

,

for α > 0, then

E[RT ] ≤ 2(1 + α)T 3/4
√

26RdL.
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The potential non-convexity of ε̂t significantly complicates the regret bound. By

additionally assuming that ε̂t is convex in Wt (which we have observed empirically

in many settings), we arrive at a much simpler result.

Proposition 3. Assume for all possible wt that ε̂t is convex in Wt, which implies

ε̂t(wt)− ε̂t(w∗) ≤ ∇ε̂t(wt) · (wt − w∗).

Then for w1 = 0, δ =
√

2Rd√
5LT 1/4 , and γ = R√

T
, we have

E[RT ] ≤ 2T 3/4
√

10RdL.

(Proved as Theorem 9 in Appendix 6)

6.2.4 Practical Considerations

Choosing δ to achieve the regret bound stated in Theorem 7 requires knowledge

of εt (i.e., L), which is typically not known in practical settings. The regret bound

is indeed robust to the choice of δ. So sublinear regret is achievable using many

choices for δ, as we will verify empirically. In the analysis w1 = 0 was chosen to

minimize its distance to any other point inW . In certain settings, we might choose

w1 6= 0, in which case our analysis still follows with slightly worse constants.

6.3 Experiments

6.3.1 Synthetic Simulations

We first experimented using synthetic value functions, which allows us to test the

robustness of DBGD to different choices of δ. Since L is unknown, we introduced
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Table 6.1: Average regret of DBGD with synthetic functions.

δL Factor 0.6 0.8 1 2 3
P1 0.465 0.398 0.334 0.303 0.415
P2 0.803 0.767 0.760 0.780 0.807
P3 0.687 0.628 0.604 0.637 0.663
P4 0.500 0.378 0.325 0.304 0.418
P5 0.710 0.663 0.674 0.798 0.887

a free parameter δL and used δ = T−1/4δL
√

0.4Rd. We tested on five settings P1

to P5. Each setting optimizes over a 50-dimensional ball of radius 10, and uses

the logistic transfer function with different value functions that explore a range of

curvatures (which affects the Lipschitz constant) and symmetries:

v1(w) = −wTw, v2(w) = −|w|

v3(w) = −
∑
i:odd

(
w(i)
)2 −

∑
i:even

∣∣w(i)
∣∣

v4(w) = −
∑
i

[
exp

(
w(i)
)

+ exp
(
−w(i)

)]
v5(w) = v3(w)−

∑
i:(i%3=1)

e[
w(i)]

+ −
∑

i:(i%3=2)

e[
−w(i)]

+

The initial point is w1 = 1
√

5/d. Table 6.1 shows the regret over the interesting

range of δL values. Performance degrades gracefully beyond this range. Note that

the regret of a random point is about 1 since most points in W have much lower

value than v(w∗).

We also compared against Bandit Gradient Descent (BGD) [65]. Like DBGD,

BGD explores in random directions at each iteration. However, BGD assumes

access to P (wt � w), whereas DBGD only observes random outcomes. Thus

BGD assumes strictly more information.4 We evaluated two versions: BGD1 using

4Our analysis yields matching upper bounds on expected regret for all three methods, though
it can be shown that the BGD gradient estimates have lower variance.
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Figure 6.2: Average regret for δL = 1

P (wt � w), and BGD2 using εt(w) = P (wt � w) − 1/2. We expect BGD2 to

perform best since the sign of εt(w) reveals significant information regarding the

true gradient. Figure 6.2 shows the average regret for problems P1 and P5 with

δL = 1. We observe the behaviors of DBGD and BGD being very similar for both.

Interestingly, DBGD outperforms BGD1 on P5 despite having less information.

We also observe this trend for P2 and P3, noting that all three problems have

significant linear components.

6.3.2 Web Search Simulations

For a more realistic simulation environment, we leveraged the same web search

dataset that was used in Chapter 5. The idea is to simulate users issuing queries

by sampling from queries in the dataset. For each query, the competing retrieval

functions will produce rankings, after which the “user” will randomly prefer one

ranking over the other; we used a value function based on NDCG@10 (defined

below) to determine the comparison outcome probabilities.

We stress that our usage of the dataset is very different from supervised learning
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settings. In particular, (extensions of) our algorithm might be applied to exper-

iments involving real users where very little is known about each user’s internal

value function. We leverage this dataset as a reasonable first step for simulating

user behavior in an on-line learning setting.

The training, validation and test sets each consist of 1000 queries. We only

simulated on the training set, although we measured performance on the other

sets to check for, e.g., generalization power. There are about 50 documents per

query, and documents are labeled by 5 levels of relevance from 0 (Bad) to 4 (Per-

fect). The compatibility between a document/query pair is represented using 367

features. A standard retrieval function computes a score for each document based

on these features, with the final ranking resulting from sorting by the scores. For

simplicity, we considered only linear functions w, so that the score for document

x is wTx. Since only the direction of w matters, we are thus optimizing over a

367-dimensional unit sphere.

Our value function is based on Normalized Discounted Cumulative Gain (NDCG),

which is a common measure for evaluating rankings [58]. For query q, NDCG@K

of a ranking for documents of q is

1

N
(q)
K

K∑
k=1

2rk − 1

log(k + 1)
,

where rk is the relevance level of the kth ranked document, and N
(q)
K is a nor-

malization factor5 such that the best ranking achieves NDCG@K=1. For our ex-

periments, we used the logistic function and 10×NDCG@10 to make probabilistic

comparisons.

We note a few properties of this setup, some going beyond the assumptions

in Section 5.2. This allows us to further examine the generality of DBGD. First,

5Note that N (q)
K will be different for different queries.
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Table 6.2: Average (upper) and Final (lower) NDCG@10 on Web Search training
set (sampling 100 queries/iteration).

δ \ γ 0.001 0.005 0.01 0.05 0.1
0.5 0.524 0.570 0.580 0.569 0.557
0.8 0.533 0.575 0.582 0.576 0.566
1 0.537 0.575 0.584 0.577 0.568
3 0.529 0.565 0.573 0.575 0.571

0.5 0.559 0.591 0.592 0.569 0.565
0.8 0.564 0.593 0.593 0.574 0.559
1 0.568 0.592 0.595 0.582 0.570
3 0.557 0.581 0.582 0.577 0.576

Table 6.3: Comparing Ranking SVM vs. final DBGD models (with different sam-
pling sizes) using average NDCG@10 and per-query win, tie, and loss counts.

Model NDCG@10 Win Tie Loss
SVM 0.612 – – –

Sample 1 0.596 490 121 389
Sample 5 0.593 489 121 390
Sample 10 0.589 504 118 378
Sample 25 0.593 489 118 393
Sample 50 0.596 472 119 409
Sample 100 0.595 490 116 394

the value function is now random (dependent on the query). Second, our feasible

spaceW is the unit sphere and not convex, although it is a well-behaved manifold.

Third, we assume a homogenous user group (i.e., all users have the same value

function – NDCG@10). Fourth, rankings vary discontinuously w.r.t. document

scores, and NDCG@10 is thus a discontinuous value function. We addressed this

issue by comparing multiple queries (i.e., delaying multiple iterations) before an

update decision, and also by using larger choices of δ and γ. Lastly, even smoothed

versions of NDCG have local optima [58], making it difficult to find w∗ (which is

required for computing regret). We thus used NDCG@10 to measure performance.
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Figure 6.3: NDCG@10 on Web Search training set

We tested DBGD for T = 107 and a range of γ and δ values. Table 6.2 shows

the average (across all iterations) and final training NDCG@10 when comparing

100 queries per update. Performance peaks at (δ, γ) = (1, 0.01) and degrades

smoothly. We found similar results when varying the number of queries compared

per update. Figure 6.3 depicts per iteration NDCG@10 for the best models when

sampling 1, 10 and 100 queries. Making multiple comparisons per update has no

impact on performance (the best parameters are typically smaller when sampling

fewer queries). Sampling multiple queries is very realistic, since a search system

might be constrained to, e.g., making daily updates to their ranking function.

Performance on the validation and test sets closely follows training set performance

(so we omit their results). This implies that our method is not overfitting.

For completeness, we compared our best DBGD models with a ranking SVM,

which optimizes over pairwise document preferences and is a standard baseline

in supervised learning to rank settings. More sophisticated methods (e.g., [35,

58]) can further improve performance. Table 6.3 shows that DBGD approaches

ranking SVM performance despite making fundamentally different assumptions

(e.g., ranking SVMs have access to very specific document-level information). We
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caution against over-optimizing here, and advocate instead for developing more

realistic experimental settings.

6.4 Discussion

The limitations and research directions discussed in Section 5.6 in the previous

chapter, such as extending to unknown time horizons and incorporating shifting

user interests, are all applicable to the continuous setting as well. In addition,

there also exist other questions specific to the continuum-armed dueling bandits

setting. Perhaps the most prominent theoretical question is whether the regret

bounds could be improved. The regret bound proved in this chapter is O(T 3/4)

whereas best known lower bound is Ω(
√
T ) [192]. Recently proposed approaches

that achieve nearly tight regret bounds in the standard conntinuum-armed bandit

setting [2] may be applicable in the dueling bandits setting as well.

From a practical standpoint, the challenge remains to find the most appropri-

ate modeling assumptions and utility definitions for characterizing these types of

on-line interactive learning problems. As was demonstrated in the experiments,

Dueling Bandit Gradient Descent (DBGD) is applicable beyond the assumptions

stated in Section 5.2, and an algorithm similar to DBGD may be provably efficient

for other interactive learning cost models.
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CHAPTER 7

INTERPRETING USER FEEDBACK IN INTERLEAVING

EXPERIMENTS

When developing interactive algorithms that learn from implicit user feedback,

two issues emerge to the foreground. The first is choosing the interaction strat-

egy to optimize for some trade-off between exploration and exploitation; this was

discussed in Chapters 5 and 6. The second issue, which we address in this chap-

ter, is how to derive increasingly more useful implicit feedback from observed user

interactions.

As was also discussed in previous chapters, one effective approach for deriv-

ing reliable judgments from implicit feedback is to focus on collecting relative as

opposed to absolute feedback. For example, while it is difficult to interpret clicks

on an absolute scale (e.g., clicked results are relevant, non-clicked results are not

relevant), there is clear evidence that clicks provide reliable relative feedback (e.g.,

clicked results are better than skipped results) [4, 88, 140]. This property is ex-

ploited in Interleaving Experiments [83, 140] to compare the relative quality of two

ranked retrieval functions h and h′. For every incoming query, the rankings of the

two retrieval functions are presented to the user as a single interleaved ranking, and

the user’s clicks are observed. If the user clicks more on results from h than from

h′ in the interleaved ranking, it was shown that one can reliably conclude that

h is preferred over h′ [140, 134]. From an experiment design perspective, inter-

leaving provides a blind paired test where presentation bias is eliminated through

randomization under reasonable assumptions.

In this chapter, we aim to make interleaving experiments more efficient – or

scalable – by developing a more powerful test statistic. Our motivation comes
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from the intuition that not every click in the interleaved ranking is equally infor-

mative. For example, a click at rank 1 in a query session immediately followed by

a “back” (i.e., a quick return to the search results page) is probably less informa-

tive than the last click in the session (which satisfies the information need). As

such, having more flexible weighting schemes on clicks can reduce the variance of

the test statistic.1 This improved experiment design will allow us to confidently

tease apart the quality of two competing retrieval functions using substantially

less data. Note that developing more data-efficient methods for interpreting user

feedback can benefit any methodology that relies on such feedback for evaluation

and/or optimization, and not just interactive learning approaches.

We present three learning methods for optimizing test statistics by using train-

ing data from pairs of retrieval functions of known relative retrieval quality (e.g.,

by gathering enough data so that the conventional test statistic is significant) [183].

The learned test statistic can then be used to more quickly identify the superior

retrieval function in future interleaving experiments. Learning test statistics can

be thought of as solving the inverse problem of conventional hypothesis testing,

and we present an empirical evaluation on real data from an operational search

engine for research papers.

7.1 Interleaving Evaluation

In analogy to experiment designs from sensory analysis (see e.g. [109]), inter-

leaving experiments [83, 140] provide paired preference tests between two retrieval

(i.e., ranking) functions. Such paired experiments are particularly suitable in sit-

uations where it is difficult or meaningless to assign an absolute rating (e.g., rate

1This is also known as the credit assignment problem [134].
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Algorithm 8 Team-Draft Interleaving

Input: Rankings A = (a1, a2, . . . ) and B = (b1, b2, . . . )
Init: I ← ();TeamA← ∅;TeamB ← ∅;
while (∃i : A[i] 6∈ I) ∧ (∃j : B[j] 6∈ I) do

if (|TeamA| < |TeamB|) ∨
((|TeamA|= |TeamB|) ∧ (RandBit()=1)) then
k ← mini{i : A[i] 6∈ I} . . . . . . . . . . . . . . . . . . . . . . . . . . . top result in A not yet in I
I ← I + A[k];. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .append it to I
TeamA← TeamA ∪ {A[k]} . . . . . . . . . . . . . . . . . . . . . . . . . . . . clicks credited to A

else
k ← mini{i : B[i] 6∈ I} . . . . . . . . . . . . . . . . . . . . . . . . . . . top result in B not yet in I
I ← I +B[k] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . append it to I
TeamB ← TeamB ∪ {B[k]} . . . . . . . . . . . . . . . . . . . . . . . . . . . . clicks credited to B

end if
end while
Output: Interleaved ranking I, TeamA, TeamB

this taste on a scale from 1 to 10), but a relative comparison is easy to make (e.g.,

do you like taste A better than taste B). To elicit such pairwise preferences, both

alternatives have to be presented side-by-side and without presentation bias. For

example, the order in which a subject tastes two products must be randomized,

and the identity of the products must be “blind” to the user.

For the case of comparing pairs of retrieval functions, interleaving experiments

are designed to provide such a blind and unbiased side-by-side comparison of two

retrieval functions h and h′. When a user issues a query q, the rankings A = h(q)

and B = h′(q) are computed but kept hidden from the user. Instead, the user

is shown a single interleaved ranking I computed from A and B, so that clicks

on I provide feedback on the users preference between A and B under reasonable

assumptions.

In this chapter, we focus on the Team-Draft Interleaving method [140] that is

summarized in Algorithm 8. Team-Draft Interleaving creates a fair (i.e. unbiased)

interleaved ranking following the analogy of selecting teams for a friendly team-
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Input Interleaved Rankings
Ranking Team-Draft

Rank A B AAA BAA ABA ...
1 a b aA bB aA

2 b e bB aA bB

3 c a cA cA eB

4 d f eB eB cA

5 g g dA dA dA

6 h h fB fB fB

...
...

...
...

...
...

Figure 7.1: An example showing how the Team-Draft method interleaves input
rankings A and B for different random coin flip outcomes. Superscripts of the
interleavings indicates team membership.

sports match. One common approach is to first select two team captains, who

then take turns selecting players in their team. Team-Draft Interleaving uses an

adapted version of this approach for creating interleaved rankings. Suppose each

document is a player, and rankings A and B are the preference orders of the two

team captains. In each round, captains pick the next player by selecting their most

preferred player that is still available, add the player to their team and append the

player to the interleaved ranking I. We randomize which captain gets to pick first

in each round. An illustrative example from [140] is given in Figure 7.1.

To infer whether the user prefers ranking A or ranking B, one counts the

number of clicks on documents from each team. If team A gets more clicks, A

wins the side-by-side comparison and vice versa. Denoting the sets of clicks on the

respective teams with C and C ′ for query q, the mean or median value of the test

statistic

δ(q, C, C ′) = |C| − |C ′| (7.1)

over the distribution P (q) of queries reveals whether one of h and h′ is consistently

preferred over the other. Section 7.1.1 discusses three possible tests that detect

whether the mean or median of δ(q, C, C ′) is significantly different from zero.
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Note that the presentation is unbiased in the sense that A and B have equal

probability of occupying each rank in I. This means that any user that clicks

randomly will not generate a significant preference in either direction.

In this chapter, we address one shortcoming of the test statistic in (7.1): the

test statistic scores all clicks equally, which is likely to be suboptimal in practice.

For example, a user clicking back immediately after clicking on a result is probably

an indicator that the result was not good after all. The goal here is to learn a more

refined function score(q, c) that scores different types of clicks according to their

actual information content. This scoring function can then be used in the following

rule

δ(q, C, C ′) =

[∑
c∈C

score(q, c)

]
−

[∑
c′∈C′

score(q, c′)

]
.

Note that this reduces to (7.1) if score(q, c) is always 1.

In the following, we will use a linear model score(q, c) = wTϕ(q, c) to score

clicks, where w is a vector of parameters to be learned and ϕ(q, c) returns a feature

vector describing each click c in the context of the entire query session q. We can

now rewrite δ(q, C, C ′) as

δw(q, C, C ′) = wTΦ(q, C, C ′)

where

Φ(q, C, C ′) =
∑
c∈C

ϕ(q, c)−
∑
c∈C′

ϕ(q, c) (7.2)

Feature vectors ϕ(q, c) will contain features that describe the click in relation to

position in the interleaved ranking, order and presentation. In Section 7.3.2, we

will describe the feature construction used in our empirical evaluation.
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7.1.1 Hypothesis Tests for Interleaving

To decide whether an interleaving experiment between h and h′ shows a prefer-

ence in either direction, one needs to test whether some measure of centrality (e.g.

median, mean) of the i.i.d. random variables ∆i ≡ δ(q, C, C ′) is significantly dif-

ferent from zero. For conciseness, let (δ1, ..., δn) denote the values of δ(q, C, C ′) on

a random sample. We consider the following three tests, which will also serve as

the baseline methods in our empirical evaluation.

The simplest test, and the one previously used in [83, 84, 140], is the Binomial

Sign Test (cf. [125]). It counts how often the sign of δi is positive, i.e. S =∑n
i=1[∆i > 0]. This sum S is a binomial random variable, and the null hypothesis

is that the underlying i.i.d. Bernoulli random variables [∆i > 0] have p = 0.5.

Unlike the Binomial Sign Test, the z-Test (cf. [125]) uses the magnitudes

of the ∆i and tests whether their sum is zero in expectation. The z-Test as-

sumes that S = 1
n

∑n
i=1 ∆i is normal, which is approximately satisfied for large

n. The ratio of the observed value s = 1
n

∑n
i=1 δi and standard deviation std(S),

called the z-score z = s/std(S), monotonically relates to the p-value of the z-

test. While std(S) has to be known, an approximate z-test results from estimating

std(S) = 1√
n

√
1
n

∑
j(s− δj)2 from the sample. The t-test accounts for the addi-

tional variability from the estimate of the standard deviation, but for large samples

z-test and t-test are virtually identical.

Finally, we consider the Wilcoxon Signed Rank Test (cf. [125]) as a non-

parametric test for the median of the ∆i being 0. To compute the test statistic,

the observations are ranked by |δi|. Let the resulting rank of δi be ri. The test

statistic is then computed as W =
∑
sign(δi)ri, and W is tested for mean 0 using
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a z-test.

7.2 Learning Methods

The main idea behind learning is to find a scoring function that results in the

most sensitive hypothesis test. To illustrate this goal, consider the following hypo-

thetical scenario where the scoring function score(q, c) = wTϕ(q, c) differentiates

the last click of a query session from other clicks within the same session. The

corresponding feature vector ϕ(q, c) would then have two binary features

ϕ(q, c) =

 1, if c is last click; 0 else

1, if c is not last click; 0 else

 .

Assume for simplicity that every query session has 3 clicks, with “not last clicks”

being completely random while “last clicks” favoring the better retrieval function

with 60% probability. Using the weight vector wT = (1, 1) (i.e., the conventional

scoring function), one will eventually identify that the better retrieval function gets

more clicks (typically after ≈280 queries using a t-test with p = 0.95). However,

the optimal weight vector wT = (1, 0) will identify the better retrieval function

much faster (typically after ≈150 queries), since it eliminates noise from the non-

informative clicks.

The learning problem can be thought of as an “inverse” hypothesis test: given

data for pairs (h, h′) of retrieval functions where we know h � h′, find the weights

w that maximizes the power of the test statistic on new pairs. More concretely, we

assume that we are given a set of ranking function pairings {(h1, h
′
1), ..., (hk, h

′
k)}

for which we know w.l.o.g. that hi is better than h′i, i.e. hi � h′i. This pref-

erence may be known by construction (e.g., h′i is a degraded version of hi), by
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running interleaving until the conventional test statistic that scores each click uni-

formly becomes significant, or through some expensive annotation process (e.g.,

user interviews or manual assessments). For each pair (hi, h
′
i), we assume access to

usage logs from Team-Draft Interleaving [140] for ni queries. For each query qj, the

clicks Cj and C ′j for each “team” are recorded in a triple (qj, Cj, C
′
j). Eventually, all

triples are combined into one training sample S = ((q1, C1, C
′
1), ..., (qn, Cn, C

′
n)).2

After training, the learned w and the resulting test statistic δw(q, C, C ′) will be ap-

plied to new pairs of retrieval functions (htest, h
′
test) of yet unkown relative retrieval

quality.

We now propose three learning methods, with each corresponding to opimizing

a specific inverse hypothesis test.

7.2.1 Maximize Mean Difference

In the simplest case, we can optimize the parameters w of scorew(q, c) to maximize

the mean difference of scores between the better and the worse retrieval functions,

w∗ = argmax
w

n∑
j=1

δw(qj, Cj, C
′
j)

= argmax
w

∑
j

wTΦ(qj, Cj, C
′
j)

To abstract from different scalings of w and to make the problem well posed, we

impose a normalization constraint ||w|| = 1, leading to the following optimization

problem:

w∗ = argmax
w

∑
j

wTΦ(qj, Cj, C
′
j) s.t. ||w|| = 1,

2We are essentially treating all interleaving pairs as a single combined example. A better
approach may be to explicitly treat each interleaving pair as a separate example.
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which can be written more compactly using Ψj = Φ(qj, Cj, C
′
j),

w∗ = argmax
w

[∑
j

wTΨj

]
s.t. ||w|| = 1.

This has the the following closed-form solution that can be derived via Lagrange

multipliers:

w∗ =

∑
j Ψj√

(
∑

j Ψj)T (
∑

j Ψj)
∼
∑
j

Ψj.

While maximizing the mean difference is intuitively appealing, one key shortcoming

is that variance is ignored. In fact, one can think of this method as an inverse z-

Test, where we assume equal variance for all w. Since the assumption of equal

variance will clearly not be true in practice, we now consider the following more

refined methods.

7.2.2 Inverse z-Test

The following learning method removes the assumption of equal variance and opti-

mizes the statistical power of a z-Test in the general case (with the null hypothesis

that the mean is zero). Finding the w that maximizes the z-score (and therefore

the p-value) on the training set corresponds to the following optimization problem:

w∗= argmax
w

1
n

∑
j δw(qj, Cj, C

′
j)

1√
n

√
1
n

∑
jδw(qj,Cj,C

′
j)

2−
[

1
n

∑
jδw(qj,Cj,C

′
j)
]2

= argmin
w

∑
j δw(qj, Cj, C

′
j)

2[∑
j δw(qj, Cj, C ′j)

]2 (7.3)

While (7.3) has two symmetric solutions, we are interested only in the one where∑
j δw∗(qj, Cj, C

′
j) > 0. Using the abbreviated notation Ψj = Φ(qj, Cj, C

′
j), this
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optimization problem can be rewritten as

w∗ = argmax
w

(wT
∑

j Ψj)
2

wT
[∑

j ΨjΨT
j

]
w
.

For any w solving this optimization problem, cw with c > 0 is also a solution. We

can thus rewrite the problem as

w∗ = argmax
w

[
wT
∑
j

Ψj

]
s.t. wT

[∑
j

ΨjΨ
T
j

]
w = 1.

Using the Lagrangian

L(w, α) = wT
∑
j

Ψj − α

(
wT

[∑
j

ΨjΨ
T
j

]
w − 1

)
,

and solving for zero derivative w.r.t. w and α, one arrives at a closed form solution.

Denoting Ψ =
∑

j Ψj and Σ =
∑

j ΨjΨ
T
j the solution can be written as

w∗ =
Σ−1Ψ√
ΨTΣ−1Ψ

.

While not used in our experiments, a regularized version Σreg of the covariance

matrix Σ can be used to prevent overfitting. One straightforward approach is to

add a ridge term Σreg = Σ + γI, where I is the identity matrix and γ is the

regularization parameter.

7.2.3 Inverse Rank Test

Last but not least, we consider a learning method that relates to inverting the

Wilcoxon Rank Sign test. A good scoring function δw(q, C, C ′) for the Wilcoxon

test should optimize the Wilcoxon statistic, which can be computed as follows.

Assuming h � h′ w.l.o.g., we denote a prediction as “correct” if δw(q, C, C ′) > 0;

otherwise, we denote it as incorrect. Ranking all observations by |δw(q, C, C ′)| (as-

suming no ties), the Wilcoxon statistic is isomorphic to the number of observation
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pairs where an incorrect observation is ranked above a correct observation. One

strategy for minimizing the number of such swapped pairs, and therefore optimiz-

ing the p-value of the Wilcoxon test, is to choose

δw(q, C, C ′) = Pr(h � h′|q, C, C ′)− 0.5, (7.4)

where Pr(h � h′|q, C, C ′) is the estimated probability that h is better than h′ given

the clicks observed for query q.

We estimate Pr(h � h′|q, C, C ′) from the training data S using a standard

logistic regression model

ln
Pr(h�h′|q, C, C ′)
Pr(h′�h|q, C, C ′)

= wTΦ(qj, Cj, C
′
j).

Using again the convention that h � h′ for the training data and abbreviating

Ψj = Φ(qj, Cj, C
′
j), the parameters w are chosen via maximum likelihood,

w∗ = argmax
w

n∏
j=1

1

1 + e−wTΨj
.

w∗ denotes the logistic regression solution on the training data. We used the

LR-TRIRLS package3 to solve this optimization problem. The final ranking func-

tion can be simplified to the linear function δw(q, C, C ′) = wTΦ(q, C, C ′), since it

produces the same rankings and signs as (7.4).

3http://komarix.org/ac/lr/
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7.3 Empirical Setup

7.3.1 Data Collection

We evaluated our methods empirically using data collected from the Physics E-

Print ArXiv.4 In particular, we used two datasets of click logs collected while

running Team-Draft Interleaving experiments. For both datasets, we recorded

information for each query (e.g., the entire session) and click (e.g., rank, timestamp,

result information, source ranking function, etc). This information is used to

generate features for learning (see Section 7.3.2 below). One could also collect user-

specific information (e.g., user history), but we have not done so in the following

experiments.

“Gold standard”. Our first dataset is taken from the Team-Draft experi-

ments described in [140]. In these experiments, the incumbent retrieval function

was corrupted in multiple ways to provide pairs of retrieval functions with known

relative quality. This provides cheap access to a “gold standard” dataset, since one

knows by construction which retrieval function is superior within each pair. A total

of six pairs was evaluated, with each yielding slightly over 1000 query sessions.

New interleaving experiments. Our second dataset was generated via inter-

leaving pairs of retrieval functions without necessarily having knowledge of which

retrieval function is superior within each pair. For example, one retrieval function

we used modifies the incumbant retrieval function by giving additional weight to

query/title similarity. It is a priori unclear whether this would result in improved

retrieval quality. Ideally (and intuitively), learning a test statistic on the gold stan-

4http://arxiv.org
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dard dataset should help us more quickly determine the superior retrieval function

within these interleaving pairs. We examine this hypothesis further in Section

7.4.4. A total of six different retrieval functions are considered in this setting. We

collected click data from interleaving every possible pairing of the six, resulting in

fifteen interleaving pairs with each yielding between 400 and 650 query sessions.

We then removed three of the fifteen interleaving pairs from our analysis, since all

methods (including the baselines) showed poor performance (p-value greater than

0.4), making them uninteresting for comparison purposes.

7.3.2 Feature Generation

The features we used describe a diverse set of properties related to clicking behav-

ior, including the rank and order of clicks, and whether search result clicks led to

a PDF download in ArXiv. Let Cown and Cother denote the clicks from the own

team and the other team, respectively. Recall from (7.2) that our feature function

Φ(q, Cown, Cother) decomposes as

Φ(q, Cown, Cother) =
∑

c∈Cown

ϕ(q, c)−
∑

c∈Cother

ϕ(q, c).

We will construct ϕ(q, c) for c ∈ Cown in the following way:

1. 1 always

2. 1 if c led to a download

3. 1
|Cown| if Cown gets both more clicks and downloads

4. If |Cown| == |Cother|:

(a) min
{
number of bolded words in title

number of query words
, 1
}

(b) min
{
number of bolded words in abstract

number of query words
, 2
}
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5. If it is a single-click query:

(a) 1 if c is not at rank 1

(b) 1 if c is on first page (top 10)

6. If it is a multi-click query:

(a) 1 if c is first click

(b) 1 if c is last click

(c) 1 if c is first click and not at rank 1

(d) 1 if c is at rank 1

(e) 1 if c is at ranks 1 to 3

(f) 1 if c is on first page (top 10)

(g) 1 if c is followed by click on a higher position (regression click)

Analogously, we construct ϕ(q, c) for c ∈ Cother by swapping Cown and Cother in

the preceding feature definitions.

Note that some features are more naturally expressed at the query level. For ex-

ample, feature 3 can be equivalently expressed directly as feature of Φ(q, Cown, Cother)

as 
1 if Cown gets both more clicks and downloads

−1 if Cother gets both more clicks and downloads

0 otherwise

.

For clarity, we focus our formulation on click-level features, since most features we

used are more naturally understood at the click level.
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Figure 7.2: Comparing the sample size required versus target t-test p-value in
the synthetic experimental setting. Measurements taken from 1000 bootstrapped
subsamples for each subsampling size.

7.4 Empirical Evaluation

For ease of presentation, we will only show comparisons against the t-test baseline;

our empirical results also hold when comparing against the other baselines. In

general, we find the inverse z-test to be the best performing method, with the

inverse rank test often being competitive as well.

7.4.1 Synthetic Experiment

We first conducted a synthetic experiment where all six gold standard interleaving

pairs in the training set are mixed together to form a single (virtual) interleaving

pair. From this, 70% of the data was used for training and the remaining 30% for

testing. Intuitively, this setup satisfies the assumption that the click distribution

we train on is the same as the click distribution we test on – a core assumption

often made when analyzing machine learning approaches.
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Figure 7.3: Comparing sample size required versus target t-test p-value in leave-
one-out testing on the training set. Methods compared are baseline (red), inverse
rank test (black dotted) and inverse z-test (black solid). The inverse z-test con-
sistently performs as well as the baseline, and can be much better. Note that the
different graphs vary dramatically in scale.

Figure 7.2 shows how the required sample size grows with decreasing target

t-test p-value. This plot (and all similar plots) was generated by subsampling the

test set (with replacement) at varying subset sizes and computing the p-value.

Subset sizes increase in increments of 25 and each subset size was sampled 1000

times. Our goal is to reduce the required sample size, so lower curves indicate

superior performance.

We observe in Figure 7.2 that our methods consistently outperform the baseline.

For example, for a target p-value of 0.01, the inverse z-test requires only about 800

samples whereas the baseline t-test requires about 1200 – a 50% improvement. In

all of our subsequent experiments, we find that the max mean difference method

consistently performs worse than the inverse z-test. As such, we will focus on the

inverse rank test and the inverse z-test in the remaining empirical evaluations.
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Figure 7.4: Comparing sample size required versus target t-test p-value in the
twelve new interleaving experiments. Methods compared are baseline (red), inverse
rank test (black dotted) and inverse z-test (black solid). Both the inverse rank test
and inverse z-test methods outperform baseline in most cases.

7.4.2 Analyzing the Learned Scoring Function

To give some insight into the scoring function δw(q, C, C ′) = wTΦ(q, C, C ′) learned

by our methods, Table 7.1 shows the weights w generated by the inverse rank test

on the full gold standard training set. Since the features are highly correlated, it

is difficult to gain insight merely through inspection of the weights. We therefore

provide some prototypical example queries for which we will compute the feature

vector Ψ = Φ(q, C, C ′) and the value of δw(q, C, C ′).
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Table 7.1: Weights learned by the inverse rank test on the full gold standard
training set. See Section 7.3.2 for a full description of the features.

ID Feature Description (w.r.t. ϕ(q, c)) Weight
1 Click 0.056693
2 Download 0.020917
3 More clicks & downloads than other team 0.052410
4a 1[# Clicks equal] × Title bold frac 0.083463
4b 1[# Clicks equal] × Abstract bold frac 0.118568
5a Single click query AND Rank > 1 0.149682
5b Single click query AND Rank ≤ 10 0.004950
6a Multi-clicks AND First click 0.063423
6b Multi-clicks AND Last click 0.000303
6c Multi-clicks AND First click AND Rank > 1 0.015217
6d Multi-clicks AND Click at rank = 1 0.018800
6e Multi-clicks AND Click at ranks ≤ 3 -0.00419
6f Multi-clicks AND Click at ranks ≤ 10 0.067362
6g Multi-clicks AND Regression click 0.033067

1. Single click on result from h at rank 1: Feature vector Ψ has value 1 for

features 1 and 5b, leading to δw = 0.062 (we are assuming no downloads in

this scenario).

2. Single click on result from h at rank 3: Feature vector Ψ has value 1 for

features 1, 5a and 5b, leading to δw = 0.211. As expected, this query is

judged to be more informative, since a click at rank 3 indicates a more

careful selection.

3. Single click on result from h at rank 3 followed by download: Feature vector Ψ

has value 1 for features 1, 2, 3, 5a, 5b, leading to δw = 0.285. The download

adds further evidence, which follows our intuition.

4. One click on result from h at rank 1, followed by another click on result from

h′ at rank 2. Rank 2 has bolded title terms, while rank 1 has not: Feature

vector Ψ has value 1 for features 6a, 6d, and value −1 for 4a and 6b. This

leads to δw = −0.002, indicating a slight preference for h′.
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7.4.3 Cross Validation Experiments

In this setting, we trained our models on five of the gold standard interleaving pairs

and tested on the remaining one, repeating this process for all six pairs. This pro-

vides a controlled way of evaluating generalization performance. Figure 7.3 shows

how required sample size changes as the target p-value decreases. Again, lower

curves indicate superior performance. We observe the inverse z-test performing at

least as well as the baseline on all except training pair 3. Note, however, that train-

ing pair 3 is an exceptionally easy case where one can achieve confident p-values

with very little data. We observe the inverse rank test to also be competitve, but

with somewhat worse performance.

7.4.4 New Interleaving Experiments

To further evaluate the methods in a typical application scenario, we trained our

models on all six of the gold standard interleaving pairs, and then tested their

predictions on new interleaving pairs. It should be noted that we did not examine

the new interleaving dataset when developing the features described in Section

7.3.2. As such, this evaluation very closely matches how such methods would be

used in practice.

Figure 7.4 shows, for all twelve test cases, how required sample size changes as

the target t-test p-value decreases. We observe both learning methods consistently

performing at least as well as, and often much better than, the baseline t-test (with

the exception of Exp 1). We also verified that all methods and baselines agree on

the direction of the preference in all cases (since we are using a two-tailed test).
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Table 7.2: Sample size requirements of three target t-test p-values for the twelve
new interleaving experiments.

Baseline Inv. rank test Inv. z-test
p=0.2 p=0.1 p=0.05 p=0.2 p=0.1 p=0.05 p=0.2 p=0.1 p=0.05

Exp 1 160 288 406 373 > 500 > 500 491 > 500 > 500
Exp 2 169 310 > 450 149 313 > 450 146 275 416
Exp 3 247 460 > 500 180 330 471 461 > 500 > 500
Exp 4 93 161 228 90 160 230 104 189 251
Exp 5 111 182 259 64 114 162 53 97 142
Exp 6 > 625 > 625 > 625 575 > 625 > 625 254 505 > 625
Exp 7 415 > 475 > 475 157 296 423 76 137 199
Exp 8 59 95 142 < 50 74 99 58 95 144
Exp 9 70 128 174 71 129 184 < 50 94 138
Exp 10 352 > 500 > 500 353 > 500 > 500 216 361 > 500
Exp 11 174 328 > 425 141 260 365 134 222 339
Exp 12 > 400 > 400 > 400 > 400 > 400 > 400 308 > 400 > 400

Table 7.2 provides numerical comparisons for several standard significance

thresholds. For half of the twelve test cases, the inverse z-test reduces the re-

quired sample size by at least 10% for a target significance of p = 0.1. For a

quarter of the cases, the inverse z-test achieves a significance of p = 0.05 using the

available data whereas the baseline t-test fails to do so. These results imply that

substantial savings can be gained from employing optimized test statistics.

7.5 Discussion

In this section, we discuss and summarize the core assumptions and limitations of

this approach.

While the learned test statistics generally improved the power of the experi-

ments on new retrieval function pairs (h, h′), there is likely a limit to how different
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the new pair may be from the training pairs. If the retrieval functions to be eval-

uated move far from the training data (e.g. after several iterations of improving

the ranking function), it might be necessary to add appropriate training data and

re-optimize the test statistic. Furthermore, we do not believe that test statistics

learned on one search engine would necessarily generalize to a different collection

or user population.

A key issue in generalizing to new retrieval function pairs (h, h′) lies in the

appropriate choice of features Φ(q, C, C ′). In particular, if the chosen features

allow the learning algorithm to models specific idiosyncracies of the training pairs,

this will likely result in poor generalization on new pairs.

Pooling the training examples from multiple training pairs (hi, h
′
j) into one joint

training set might lead to unwanted results, since the learning methods optimize

an “average” statistic over multiple pairs. In particular, the methods might ignore

difficult to discriminate pairs in return for increased discriminative power on easy

pairs. It would be more robust to minimize the maximum p-value uniformly over

all training pairs.

Finally, the empirical results need to be verified in other retrieval domains.

Particularly interesting are domains that include spam. It would be interesting to

see whether one can learn scoring functions that recognize (and discount) clicks

that were attracted by spam.

7.5.1 Closing the Loop with Interactive Learning

The methods presented in this chapter are complementary to the interactive learn-

ing approaches for the Dueling Bandits Problem presented in Chapters 5 and 6.
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In the Dueling Bandits Problem, the comparison oracle is assumed to satisfy cer-

tain somewhat idealistic properties. From the perspective taken in this chapter,

the most important such assumption is that the comparison oracle should exactly

reflect the distribution of user preferences. In other words, the probability of re-

trieval function A winning a comparison versus retrieval function B is assumed to

exactly reflect the degree of preference for A versus B. What is not known are the

relative qualities of the retrieval functions – this gives rise to the regret cost model

in the Dueling Bandits Problem.

In this chapter we consider a setting that is opposite to what was considered

in the Dueling Bandits Problem. Here, we assume that the comparison oracle is

noisy and does not perfectly reflect user preferences, but we instead have prior

knowledge of relative retrieval quality. Furthermore, this noise also tends to be

“biased” due to presentation effects of the comparison oracle. This leads to an

interesting “chicken versus egg” dilemma when trying to combine this approach

with the Dueling Bandits Problem into a unified setting, and a solution could

potentially have significant practical as well as theoretical value.
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Part IV

Conclusion and Appendices
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CHAPTER 8

CONCLUSION AND OUTLOOK

Managing digital information is a growing problem in every application domain,

ranging from integrating biological data, browsing digital libraries, organizing per-

sonal content, searching in specialty domains, or filtering news feeds and Twitter

updates. Over the past 20 years, learning to rank approaches have proven to be

invaluable with their ability to combine coarse human feedback with statistical

regularities of the prediction domain in order to derive effective models. This has

enabled the development of a wide variety of intelligent information systems, and

their effectiveness is evidenced by their widespread commercial adoption.

But existing approaches use coarse and relatively unrepresentative models of

user utility. Thus, applying conventional machine learning approaches often results

in optimizing the wrong criteria. And although these surrogate criteria that exist-

ing approaches optimize for are typically somewhat aligned with true user utility

(which is a major reason for their practical successes thus far), properly applying

these techniques can be quite labor intensive and requires substantial hands-on

expertise. This inherently limits the scope and reasoning power of the systems

that we can efficiently deploy today.

The ultimate goal of any information system is to optimize user utility, and a

good general model of user utility should be efficiently and accurately adaptable to

any target domain. This requires us to move away from conventional approaches

that rely on expensive manual judgments that are necessarily ignorant of user

context, and towards methods that can learn rich, structured models from feedback

collected via user interaction.
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Following the above intuition, this dissertation has proposed methods to ad-

dress the following two challenges to applying learning to rank methods more

broadly and to greater effectiveness:

• Learning to optimize more sophisticated models of user utility

• Learning to interact with users and collect more representative feedback

And while the approaches proposed herein are by no means the complete and final

solutions to these challenges, they represent real progress towards a more unified

learning framework for designing increasingly intelligent information systems. A

particularly salient feature in all the approaches presented herein is that they

address these challenges by identifying a fundamental issue of practical importance,

and thus motivate models which directly tackle deep and cross-cutting research

questions.

The contributions of this dissertation include (1) methods for developing struc-

tured prediction models that can accomodate rich models of user utility (such

as models for maximizing diversity), (2) an interactive learning framework for

modeling system/user interactions that leads to a well-founded trade-off between

exploration and exploition, and (3) methods for deriving more useful feedback from

observed user interactions (i.e., implicit feedback).

The structured prediction approaches described in Chapters 3 and 4 show how

we can move beyond simple hypothesis classes and models of user utility that

make very unrealistic independence assumptions, thus addressing the first chal-

lenge stated above. For example, Chapter 4 describes a structured prediction

approach that can learn to perform well in diversified retrieval settings, where

retrieving redundant documents (something not well-modeled by previous learn-
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ing approaches) can significantly degrade retrieval quality. Previous methods for

tackling diversified retrieval typically apply a sequence of filters of clustering al-

gorithms in addition to using a conventional retrieval function. When applying

such approaches, it is often difficult to state – much less automatically optimize

– the learning objective or user utility function, and thus they require significant

“hand-holding” by human experts in order to achieve some benefit.

The on-line learning framework described in Chapters 5 and 6, called the Du-

eling Bandits Problem, provides a simple yet practical reformulation of the con-

ventional multi-armed bandits setting that leverages the growing body of methods

designed to elicit relative as opposed to absolute feedback. For example, the In-

terleaved Filter algorithms described in Chapter 5 provide a way to automatically

schedule on-line interleaving experiments using a pool of thousands or millions

of candidate retrieval functions. Each interleaving experiment is a blind on-line

test that yields noisy information regarding the relative quality of two retrieval

functions. This is done by showing users an interleaving of the two rankings and

observing clicks (e.g., more clicks on A or B?). But each on-line experiment also

incur a cost due to potentially decreasing user utility (the two rankings that were

interleaved might be very poor). The Dueling Bandits Problem directly models

this exploration/exploitation dilemma using a suitable notion of regret, and the

Interleaved Filter 2 algorithm was proven to be information-theoretically optimal

(up to constant factors).

Finally, Chapter 7 presents methods for deriving more informative feedback

from observed use behavior, such as clicks collected via on-line interleaving experi-

ments. It is well known that implicit feedback, though plentiful, is often very noisy

and biased, and deriving more useful (i.e., less noisy and/or biased) implicit feed-
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back is a subject of intense study. But most such methods typically tackle the issue

somewhat indirectly from a modeling perspective, such as by making very strong

assumptions about user behavior or utility. In contrast, the methods proposed in

Chapter 7 directly learn to optimize the efficiency of various statistical hypothesis

tests that are typically used when evaluating the relative quality of competing re-

trieval functions. Designing more effective methods to elicit implicit feedback is an

important complementary research direction to the interactive learning problem

explored in Chapters 5 and 6.

8.1 Future Directions

In this final section, we discuss how related research fields can also benefit from

the methods proposed in this dissertation, as well as more general information re-

trieval problems. All of these problems can be tackled by developing more powerful

structured prediction and interactive learning approaches.

There are many parallels between the fields of Information Retrieval and Natu-

ral Language Processing (NLP). Both deal primarily with text, which leads to very

similar modeling requirements. Thus, one expects many of the learning techniques

developed to also be applicable for problems in NLP. For example, as discussed

in Section 4.6, the document summarization task can be well modeled as a cover-

age problem [52], and the SVM∆
div method presented in Chapter 4 directly learns

coverage models that optimizes for coverage-based utility functions.

For many domains including and beyond NLP, such as Computer Vision and

Computational Biology, it is becoming clear that a major limiting factor in current

approaches is that model development is often done separate from the usage con-
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texts (e.g., providing a ranking of recommendations). This immediately suggests

rich and potentially fruitful directions of future research at the intersection of In-

formation Retrieval and many other domains, and the learning problems embedded

therein.

Fundamentally, interactive learning models how systems can learn to maximize

(the users’) utility through the actions they choose to take. This can be applied to

numerous domains. For example, given an appropriate comparison mechanism, one

can apply frameworks similar to the Dueling Bandits Problem to model computer-

assisted teaching (by interactively learning the best teaching strategy for some

population of students), product recommendation, providing driving directions,

computer-assisted scheduling, and much more.

To make developing such applications feasible, it appears necessary to rely

heavily (perhaps completely) on implicit feedback derived from observed user be-

havior. This is an attractive approach since observed user behavior (e.g., clicks on

search results, movement patterns tracked by cell phones, or behavioral patterns

observed in “smart” homes) is both cheap to collect and naturally representative

of the target user population (e.g., web users, individuals, or family-sized groups).

As discussed earlier, developing effective methods for inferring implicit feedback

is a vital complementary problem to interactive learning, and is also much more

application dependent.

Further research on modeling user interactions can also provide new methodolo-

gies for analyzing our numerous digital social networks. Currently, two methodolo-

gies exist: link (cf. [128, 96]) and text analysis (cf. [120, 154]). Usage data is, in a

sense, more democratic since it reflects the preferences of the end users rather than

the content creators. In many domains, content creators are also end users (e.g.,
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centralized scholarly libraries such as ArXiv), leading to an interesting symbiosis

between information access systems and the evolution of digital social networks. In

addition, studying user interactions can lead to a richer understanding of how top-

ics and concepts flow through a digital corpus. For example, by examining co-click

data, one might tease apart subtopics (from the users’ perspective) to generate

feedback for learning retrieval models in the aforementioned diversified retrieval

setting.

As our society becomes more data-driven, applications and tasks of all types

will come to increasingly rely upon information systems. Stated differently, in-

formation services can potentially aid us in every aspect of our lives, even those

that are not currently viewed as being information constrained. But our grow-

ing number of systems and services are becoming ever more difficult to maintain

and configure. This line of research can lead to cost-effective information systems

that can efficiently adapt to variety of retrieval domains such as enterprise search,

library search, medical search, and the many new and exciting applications to

come.
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APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER 4

A.1 Maximizing Coverage

Let U denote the universe of elements to be covered. Each element u ∈ U is

associated with a non-negative weight w(u). Let B = {B1, . . . , Bn} denote a

collection of sets, where each Bk ⊂ U “covers” a subset of the elements in U . We

write the benefit of covering a subset of the universe V ⊂ U as

F (V ) =
∑
u∈V

w(u). (A.1)

The goal then is to select a subcollection Y ⊂ B of size K that maximally covers

U , or

Y = argmax
Y ′⊂B,|Y ′|≤K

F (U(Y ′)), (A.2)

where

U(Y ) =
⋃
Bk∈Y

Bk.

We will show that the naive greedy algorithm described in Algorithm 9 achieves a

1− 1/e approximation guarantee of optimal. Note that this optimization problem

generalizes the coverage problems discribed in Chapter 4 and that Algorithm 9 is

essentially equivalent to Algorithm 3.

The optimization problem in (A.2) is an instance of the budgeted maximum

coverage problem [95, 79]. We now prove the 1− 1/e approximation bound based

on the analysis technique presented in [79].
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Algorithm 9 Greedy selection by myopically maximizing weighted coverage
1: Input: U ,B,K
2: Initialize solution A0 ← ∅
3: for k = 1, . . . , K do
4: B̂ ← argmaxB:B/∈Ak−1

{F (U(Ak−1) ∪B)− F (U(Ak−1))}
5: Ak ← Ak−1 ∪ {B̂}
6: end for
7: return AK

Let OPTK denote the value of the optimal solution. Let A1, . . . , AK denote

the sequence of (partial) solutions generated by the greedy algorithm at end of

each iteration, and let a1, . . . , aK denote the value of the greedy solution at each

iteration, i.e.

ak = F (U(Ak)).

Note that aK is the value of the greedy solution. We also define

a(k) =
∑
j≤k

aj.

In the following analysis, we consider a more general setting where each iter-

ation of the greedy algorithm might not necessarily find the maximally beneficial

set at each iteration, and instead finds a set B̂ that is a β-approximation to the

maximum weight set available. In other words, in Line 4 in Algorithm 9, the

solution B̂ at each iteration k satisfies

∑
u∈U(Ak−1)∪B̂

w(u)−
∑

u∈U(Ak−1)

w(u) ≥ β max
B:B/∈Ak−1

 ∑
u∈U(Ak−1)∪B

w(u)−
∑

u∈U(Ak−1)

w(u)

 .

Lemma 16. For k = 1, 2, . . . , K, we have

ak ≥
β

K
(OPTK − ak−1) .

Proof. At least OPTK − ak−1 worth of elements not covered by Ak are covered by

the by the K sets in the optimal solution. Hence, by the pigeonhole principle, one
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of the K sets in the optimal solution must cover at least (OPTK −Ak−1)/K worth

of these elements. Since Algorithm 9 finds a set that is a β-approximation of the

maximum weight set available, the result follows.

Lemma 17. For k = 1, 2, . . . , K, we have

a(k) ≥

(
1−

(
1− β

K

)k)
OPTK .

Proof. We prove by induction on k. The base case k = 1 follows immediately from

Lemma 16. For the inductive case, we have

a(k + 1) = a(k) + ak+1

≥ a(k) +
β

K
(OPTK − a(k))

=

(
1− β

k

)
a(k) +

β

K
OPTK

≥
(

1− β

K

)(
1−

(
1− β

K

)k)
OPTK +

β

K
OPTK

=

(
1−

(
1− β

K

)k+1
)
OPTK ,

where the first inequality follows from Lemma 16, and the second inequality follows

from the induction hypothesis.

We now state the main result.

Theorem 8. Using the notation defined above, we have

a(K) ≥

(
1−

(
1− β

K

)K)
OPTK ≥

(
1− 1

eβ

)
OPTK .

Proof. The proof follows immediately from Lemma 17 and observing that (1 −

β/K)K approaches 1/eβ from below as K →∞.
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Corollary 3. Running Algorithm 9 with size input K returns a prediction AK that

has value

ak ≥
(

1− 1

e

)
OPTK .

The utility function F defined in (A.1) is an instance of a submodular utility

function. The submodularity property states that for sets S ⊂ S ′

F (S ∪ s)− F (S) ≥ F (S ′ ∪ s)− F (S ′),

which can be interpreted as characterizing a notion of diminishing returns. It can

be shown that for a large class of submodular functions, the greedy algorithm

described in Algorithm 9 achieves a 1 − 1/e approximation bound, and that this

bound is tight in the worst case [127, 95, 103].
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER 5

B.1 Satisfying Modeling Assumptions

The following lemma describes a general family of probabilistic comparison models

and proves that both strong stochastic transitivity and stochastic triangle inequal-

ity are satisfied by this family of models. Note that both the logistic and Gaussian

models described in Section 5.2 are contained within this family of models.

Lemma 18. Let each bandit bi ∈ {b1 . . . bK} be associated with a distinct real value

µi such that outcomes from comparing two bandits are determined by

P (bi > bj) = σ(µi − µj),

for some transfer function σ. Let σ satisfy the following properties:

• σ is monotonically increasing

• σ(−∞) = 0

• σ(∞) = 1

• σ(x) = 1− σ(−x) (rotation symmetric)

• σ(x) has a single inflection point at σ(0) = 1/2

Then these probabilistic comparisons satisfy strong stochastic transitivity and stochas-

tic triangle inequality.

Proof. We begin by noting that that these properties essentially mean that σ

behaves like a symmetric cumulative distribution function with a single inflection

point at σ(0) = 1/2 (i.e., σ is an “S-shaped” curve).
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For any triplet of bandits bi � bj � bk, we know that µi > µj > µk. To show

strong stochastic transitivity, we first note that σ is monotonically increasing. Thus

we know that σ(µi− µk) ≥ σ(µi− µj) and σ(µi− µk) ≥ σ(µj − µk), which implies

that

εi,k = σ(µi − µk)−
1

2

≥ max

{
σ(µi − µj)−

1

2
, σ(µj − µk)−

1

2

}
= max {εi,j, εj,k} .

To show stochastic triangle inequality, we first note that σ(x) is sub-additive,

or concave, for x ≥ 0. Define

α =
µi − µj
µi − µk

such that (µi− µj) = α(µi− µk) and (µj − µk) = (1− α)(µi− µk). Then we know

from concavity of σ that

ασ(µi − µk) + (1− α)σ(0) ≤ σ(µi − µj),

and also

(1− α)σ(µi − µk) + ασ(0) ≤ σ(µj − µk).

Adding the two inequalities above yields

σ(µi − µk) + µ(0) ≤ σ(µi − µj) + σ(µj − µk),

and thus

εi,k ≤ εi,j + εj,k.
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B.2 Analyzing the Random Walk Model

We first describe a family of measure spaces which will be used to analyze the

coupling between executions of IF and the Random Walk Model described in Def-

inition 1.

Definition 2. We define a family of measure spacesM in the following way. Each

point in the sample space is a joint realization of the sequences of random variables

Xrt
ij and Zr

i for every pair of bandits bi and bj, and positive integers r and t. We

will define a joint distribution over the random variables Xrt
ij and a conditional

distribution over the Zr
i variables given the Xrt

ij variables. The random variables

and their distributions are explained in greater detail below.

• For every pair of bandits bi, bj, and positive integer r, there is a sequence of

Bernoulli random variables Xrt
ij (for t = 1, 2, . . .) describing the outcomes of

comparisons in a match played by bi and bj in round r provided that bi is the

incumbent in that round. In particular Xrt
ij = 1 if bi wins the t-th comparison

between bj in round r, and Xrt
ij = 0 if bi loses that comparison. We will also

define the following useful notation to denote prior execution histories: X r
i

is the σ-field generated by the random variables {Xqt
ij : j 6= i, q < r, t =

1, 2, . . .}.

• For a fixed i, the random variables Xrt
ij are all mutually independent as one

varies j, r, t, and they have the correct distribution for each pair i, j. (In

other words, the probability of bi beating bj is 1/2 + εij).

• For convenience we also define Y r, for every positive integer r, to denote the

identity of the incumbent in round r + 1 (i.e., the bandit that wins round r)

when running algorithm IF with the comparison outcomes specified by {Xrt
ij }.

169



Note that the value (likewise distribution) of Y r is completely determined by

the values (joint distribution) of Xrt
ij .

• For every bandit bi and positive integer r, there is a random variable Zr
i

taking non-negative integer values, such that the distribution of Y r + Zr
i ,

conditioned on X r
i , is uniform on 1, . . . , i − 1 at every sample point where

Y r−1 ≤ i and IF does not make a mistake in rounds 1, . . . , r. (This will later

be used to show that the Random Walk Model stochastically dominates any

mistake-free execution of IF.)

The values of Xrt
ij completely determine the history of execution of IF.1 Our

independence assumptions ensure that the history of play observed by IF has the

correct distribution over histories.

A priori, it is not obvious that measure spacesM satisfying Definition 2 exist;

the constraint on the conditional distribution of Y r+Zr
i is non-trivial but we prove

below that it is possible to design a measure space that satisfies this constraint,

i.e. M is not empty. We will then show how any measure space in M defines a

stochastic coupling between the number of rounds required in mistake-free execu-

tions of IF and the length of random walks in the Random Walk Model. To begin

proving that M is non-empty, we first prove a constraint on the distribution of

the Y r variables.

Lemma 19. For any measure space in M, we have

∀r, ∀j ∈ {1, 2, . . . , i− 1} :

j∑
j′=1

P (Y r = j′|X r
i , N

r) ≥ j

i− 1
, (B.1)

1Some of the values Xrt
ij are exposed as IF runs and schedules matches. Other values never

get exposed. In particular, for pairs of bandits bi and bj where neither is the incumbent in round
r, the values Xrt

ij have no bearing on the history of play observed by IF.
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where bi denotes the incumbent bandit chosen by IF for round r, the Y r and Xrt
ij

variables and the X r
i σ-field are defined as in Definition 2, and N r denotes the

event that IF does not make a mistake in round r.

Proof. We will prove the following inequality,

∀t ≥ tmin,∀r, ∀j ∈ {1, 2, . . . , i− 1} :

j∑
j′=1

P (Y r = j′|X r
i , N

rti) ≥ j

i− 1
, (B.2)

where tmin denotes the minimum number of comparisons required for IF to de-

termine a winner, and N rti denotes the event that IF does not make a mistake

in round r, that bi is the incumbent in that round, and that IF makes exactly t

comparisons between bi and each other remaining bandit in round r. Since (B.2)

will be shown to apply for all feasible t, i, then (B.1) will also hold.

It suffices to show that

∀1 ≤ j < k < i : P (Y r = j|X r
i , N

rti) ≥ P (Y r = k|X r
i , N

rti), (B.3)

since then (B.2) follows from iteratively applying the pigeonhole principle (for

j = 1, . . . , i− 1), and noting that

i−1∑
j′=1

P (Y r = j′|X r
i , N

rti) = 1.

Let U(i, k, r, t|X r
i ) denote the collection of comparison sequences of length t in

round r between the incumbent bi and each other remaining bj which results in

bk being declared the winner after t comparisons. In other words, an element in

U(i, k, r, t|X r
i ) consists of a realization of each X t′r

ij for incumbent bi, all remaining

bj, and time steps 1 ≤ t′ ≤ t. It is straightforward to see that

P (Y r = k|X r
i , N

rti) = P (U(i, k, r, t|X r
i )|X r

i , N
rti).
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We define a bijection between U(i, j, r, t|X r
i ) and U(i, k, r, t|X r

i ) for j < k such

that P (U(i, j, r, t|X r
i )|X r

i , Nrt) ≥ P (U(i, k, r, t|X r
i )|X r

i , N
rti), which directly im-

plies (B.3). Each uk ∈ U(i, k, r, t|X r
i , N

rti) is mapped to the corresponding point

uj ∈ U(i, j, r, t|X r
i , N

rti) that consists of the same sequences of comparisons as uk,

except that the comparison sequences involving bj and bk are swapped (implying

that bj is declared the winner).

It remains to show that P (uj|X r
i , N

rti) ≥ P (uk|X r
i , N

rti) for all uj, uk pairings

in the bijection. In the sequences of comparisons defined by uk, let

A =
t∑

t′=1

Xrt′

ik and B =
t∑

t′=1

Xrt′

ij ,

where A > B. Under the corresponding uj, the two summations are reversed,

B =
t∑

t′=1

Xrt′

ik and A =
t∑

t′=1

Xrt′

ij ,

and all other sequences of variables Xrt′

ii′ for i′ 6= j, i′ 6= k remain the same. We

also know that P (Xrt
ik) ≤ P (Xrt

ij ), since bk is inferior to bj. Let p = P (Xrt
ij ) and

q = P (Xrt
ik). Since all the Xrt′

ii′ variables are mutually independent, we can write

the ratio of the conditional probabilities of uj and uk as

P (uj|X r
i , N

rti)

P (uk|X r
i , N

rti)
=
P (
∑t′

t=1X
rt
ij = A)P (

∑t′

t=1X
rt
ik = B)

P (
∑t′

t=1X
rt
ij = B)P (

∑t′

t=1X
rt
ik = A)

=
pA(1− p)t′−AqB(1− q)t′−B

pB(1− p)t′−BqA(1− q)t′−A

=
pA−B(1− q)A−B

qA−B(1− p)A−B
≥ 1

where the first equality follows from noting that all comparisons are independent

and canceling out common terms (i.e., the realizations of Xrt
ii′ for i′ 6= j and i′ 6= k),

and the last inequality follows from noting that A > B and p > q.
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Corollary 4. For the setting described in Lemma 19, we also have

∀r, ∀1 ≤ j < i :

j∑
j′=1

P (Y r = j′|X r
i , N

r) ≥ j

i′ − 1
,

where i′ ≥ i.

Lemma 20. The family of measure spacesM defined in Definition 2 is non-empty.

Proof. We will use the notation for Xrt
jk, Y

r, Zr
j ,X r

j as described in Definition 2.

We will show that it is possible to construct a distribution on the non-negative

random variables Zr
j which satisfies the requirements of Definition 2. Since we are

conditioning on Xqt
ij for all q < r, then the value of Y r−1 is fixed (i.e., we know who

the incumbent is in round r). Assume WLOG that Y r−1 = i (i.e., the incumbent

in round r is bi). We will construct Zr
i based on the following two cases.

Case 1: IF does not make a mistake in round r and Y r−1 ≤ i (meaning the

incumbent during round r was bi). We will use the following flow network to

construct the conditional distribution of Y r + Zr
i (given X r

i and N r),

• source s and sink t

• vertices u1, . . . , ui−1

• vertices v1, . . . , vi−1

• edges from s to each uj with capacity P (Y r = j|X r
i , N

r)

• edges from each uj to vk where k ≥ j with infinite capacity

• edges from each vk to t with capacity 1/(i− 1)

Lemma 19 and Corollary 4 imply that the minimum s-t cut of this network has

capacity 1, and consequently the maximum s-t flow has value 1. In any maximum

173



flow, each edge (s, uj) and each edge (vj, t) (for 1 ≤ j ≤ i− 1) must be saturated.

Given a maximum flow, we can interpret the flow on the edge from uj to vk to be

the joint conditional probability P (Y r = j, Zr
i = k − j | X r

i , N
r), from which we

can recover the conditional distribution of Zr
i given X r

i and N r. The fact that the

conditional distribution of Y r +Zr
i is uniform on 1, . . . , i−1, given X r

i , N
r, follows

from the fact that the flow from vk to t is exactly 1/(i− 1) for every k.

Case 2: IF does make a mistake in round r or Y r−1 > i. Then we set Zr
i to

some arbitrary non-negative integer, e.g., 0.

Thus, we have shown that there exists a feasible probability distribution on the

Zr
i variables which satisfies the requirements of Definition 2, which implies that

M is non-empty.

Lemma 21. There exists a stochastic coupling between IF and the Random Walk

Model such that the number of rounds in mistake-free executions of IF is stochas-

tically dominated by the length of random walks in the Random Walk Model.

Proof. We can take any measure space inM to construct our stochastic coupling,

and we know from Lemma 20 that at least one such measure space exists. There is

one sample point for every possible joint outcome of the random variables Xrt
ij and

Zr
i . The execution of IF is determined by the Xrt

ij variables. Consider any execution

of IF that is mistake-free through rounds 1, . . . , s. The analogous execution of the

Random Walk Model is determined by looking at the sequence of incumbents

when one runs a “perturbed” version of IF. The perturbation consists to taking

the identity of the incumbent in round r+1 (for every r = 1, . . . , s) and modifying

it by adding Zr
i (where bi is the incumbent of “perturbed” IF in round r), and

then executing round r+ 1 using the perturbed incumbent instead of the one that
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would ordinarily be chosen by IF. Both IF and “perturbed” IF start with the same

initial incumbent at the beginning of round 1 chosen uniformly from 1, . . . , K.

Let br and b̃r be the incumbents chosen by IF and the analogous “perturbed”

IF, respectively, at round r (note that br = bi′ where i′ = Y r−1). Then it suffices

to show that any mistake-free execution of IF satisfies br � b̃r for all r > 0. It

is straightforward to see that this stochastic coupling holds from the definition of

the Y r and Zr
i variables in Definition 2, so long the initial condition b1 � b̃1 holds

(and b1 = b̃1 by definition).
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APPENDIX C

SUPPLEMENTARY MATERIAL FOR CHAPTER 6

C.1 A Simpler Regret Analysis Using Stronger Convexity

Assumptions

In this section, we assume for all possible points wt ∈ W that ε̂t is convex in the

region Wt = {w : v(w) ≥ v(wt)}. Recall that

ε̂t(w) = Ex∈B[εt(PW(w + δx))],

and that

εt(w) ≡ ε(wt, w).

Using this assumption, we first prove a simpler version of Lemma 15 that does not

require Theorem 6.

Lemma 22. Assume a sequence of smoothed relative loss functions ε̂1, . . . , ε̂T (ε̂t+1

depending on wt and convex in Wt) and w1, . . . , wT ∈ W defined by w1 = 0 and

wt+1 = PW(wt − ηgt), where η > 0 and g1, . . . , gT are vector-valued random vari-

ables with (a) E[gt|wt] = ∇ε̂t, (b) ‖gt‖ ≤ G, and (c) W ⊆ RB. Then for η = R
G
√
T

,

E

[
T∑
t=1

ε̂t(wt)− ε̂t(w∗)

]
≤ RG

√
T . (C.1)

(Adapted from Lemma 3.1 in [65])

Proof. Since ε̂t is convex in Wt, then we know that the LHS of (C.1) can be written
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as

E

[
T∑
t=1

ε̂t(wt)− ε̂t(w∗)

]
≤

T∑
t=1

E [∇ε̂t(wt) · (wt − w∗)]

=
T∑
t=1

E [E[gt|wt] · (wt − w∗)]

=
T∑
t=1

E[gt · (wt − w∗)] (C.2)

Following the analysis of [192], we will use the potential function ‖wt − w∗‖2. In

particular we can rewrite ‖wt+1 − w∗‖2 as

‖wt+1 − w∗‖2 = ‖PW(wt − ηgt)− w∗‖2

≤ ‖wt − ηgt − w∗‖2 (C.3)

= ‖wt − w∗‖2 + η2‖gt‖2 − 2η(wt − w∗) · gt

≤ ‖wt − w∗‖2 + η2G2 − 2η(wt − w∗) · gt

where (C.3) follows from the convexity of W . Rearranging terms allows us to

bound gt · (wt − w∗) as

gt · (wt − w∗) ≤
‖wt − w∗‖2 − ‖wt+1 − w∗‖2 + η2G2

2η

We can thus bound
∑T

t=1 E[gt · (wt − w∗)] by

T∑
t=1

E[gt · (wt − w∗)] ≤
T∑
t=1

E

[
‖wt − w∗‖2 − ‖wt+1 − w∗‖2 + η2G2

2η

]
= E

[
‖w1 − w∗‖2

2η
+ T

η2G2

2η

]
≤ R2

2η
+ T

ηG2

2
(C.4)

which follows from choosing w1 = 0 and W ⊆ RB. Combining (C.2) and (C.4)

bounds the LHS of (C.1) by

E

[
T∑
t=1

ε̂t(wt)− ε̂t(w∗)

]
≤ R2

2η
+ T

ηG2

2
.

Choosing η = R
G
√
T

finishes the proof.
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Theorem 9. Assume for all possible wt that ε̂t is convex in Wt, which implies

ε̂t(wt)− ε̂t(w∗) ≤ ∇ε̂t(wt) · (wt − w∗).

Then for w1 = 0, δ =
√

2Rd√
5LT 1/4 , and γ = R√

T
, we have

E[RT ] ≤ 2T 3/4
√

10RdL.

Proof. Adapting from [65], if we let

gt = −d
δ
Xt(PW(wt + δut))ut,

usingXt as described in (6.6), then by Lemma 12 and Lemma 13 we have E[gt|wt] =

∇ε̂t(wt). We can then apply Lemma 22 using the update rule

wt+1 = PW(wt − ηgt)

= PW(wt + η d
δ
Xt(PW(wt + δut))ut)

which is exactly the update rule of DBGD if we set η = γδ/d. Note that

‖gt‖ =

∥∥∥∥dδXt(PW(wt + δut))ut

∥∥∥∥ ≤ d

δ
.

Setting G = d/δ and noting our choice of γ = R/
√
T , we have η = R

G
√
T

. Applying

Lemma 22 yields

E

[
T∑
t=1

ε̂t(wt)− ε̂t(w∗)

]
≤ Rd

√
T

δ
. (C.5)

Combining Lemma 14 and (C.5) yields

E[RT ] ≤ −2E
[∑T

t=1 εt(w
∗)
]

+ δLT

= 2E
[∑T

t=1 εt(wt)− εt(w∗)
]

+ δLT

≤ 2E
[∑T

t=1 ε̂t(wt)− ε̂t(w∗)
]

+ 5δLT

≤ 2Rd
√
T

δ
+ 5δLT

Choosing δ =
√

2Rd√
5LT 1/4 completes the proof.
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